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CATEGORIES OF SKETCHED STRUCTURES
by Andrée and Charles EHRESMANN

INTRODUCTION.

In the last decade algebraic structures have been defined on the ob-

jects of a category V:

1° A multiplication on an object e of V is a morphism k& from a pro-
duct eXe to e; monoids on e, groups on e, ... are obtained if further
axioms are imposed on k by way of commuting diagrams ([Go], [EH]).

(The product may also be replaced by a «tensor product», but this point
of view will not be considered here.)

2° The theory of fibre spaces and local structures led to p -structured
categories (such as topological categories, differentiable categories, or-
dered categories, double categories) [EG] relative to a faithful functor p
from V to the category of mappings (*), and more generally to categories

in V (or category-objects in V).

Algebraic theories of Lawvere [Lw] (see also [B]) give an axio-
matic way to define universal algebras; but they do not cover structures
defined by partial laws, such as categories. However, all these structures
may be defined by «sketches». Other examples of sketched structures are:
categories equipped with a partial or a total choice of limits [Br], «dis-
cretely structured» categories [Bul, adjoint functors [L2], and also«less

algebraic » structures, such as topologies [Br].

More precisely, let o be a cone-bearing category, i.e. a category
(or even a neocategory) 2>, equipped with a set of cones. A O -structure in
V is [E3] a functor from = to V, applying the distinguished cones on
(*) A category will be considered as the category of its morphisms and not, as usu-

ally, as the category of its objects.
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1 EHRESMANN

limit-cones; a O -morphism in V is a natural transformation between O -
structures in V. We denote by V7 the category of o -morphisms in V.

There are many cone-bearing categories o' such that V7 is equi-
valent to V' ; among them, we associate «universally» to o :

- a limit-bearing category o (i.e. the distinguished cones are limit-
cones),

- a presketch & (i.e. a functor is at most the base of one distingui-
shed cone),

- a prototype 7 (i.e. a presketch which is a limit-bearing category),
and, if § is a set of categories containing the indexing-category of each
distinguished cone of o,

- a loose §-type 7' (i.e. a limit-bearing category in which each func-
tor indexed by an element of § is the base of at least one distinguished
cone); for a universal algebra, 7' (is» its algebraic theory;

- a g-type 7 (1. e. a loose g-type which is a presketch).

Moreover:
- o, &, 7 and T are defined up to an isomorphism,
.
7" is defined up to an equivalence,

- if o is a sketch (i.e. if it is injectively immersed in 77), then 7 and
o are isomorphic, while 7 and 7' are equivalent.

The existence of 77 and 7 was proved in [E4] and [ES] under
the stronger assumption that O were a presketch; this was necessary, the
proof using the existence theorem for free structures whose hypotheses are
not satisfied in the case of general cone-bearing categories. But subse-
quent works, in particular [Bu] and the (yet unpublished) paper of Lair on
tensor products of sketches [L], showed that cone-bearing categories are
often more convenient, and so they convinced us of the importance of im-
mersing them in «universal» loose types.

We achieve this here by giving an explicit construction (by trans-
finite induction) of 5, 77, 7 and T'. These constructions are suggested
by the explicit construction of the free §-projective completion of a cate-
gory in [E]. When applied to a prototype, the constructions of 7 and 7'

generalize theorems of [E] on completions of categories.
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CATEGORIES OF SKETCHED STRUCTURES 111

These results are proved in Part I in the case where the distingui-
shed cones are projective, in Parct II when there are both projective and
inductive distinguished cones. They may also be expressed as adjunctions
between the category S" of morphisms between cone-bearing categories,
and some of its full subcategories. In fact, 8" is the category of 1-mor-
phisms of a representable and corepresentable 2-category, and these ad-

junctions extend into 2-adjunctions.
Part Il is devoted to the problem:

If o is a projective limit-bearing category on = and if V is under-
(P) { lying a symmetric monoidal closed category 0, does V7 admit a

symmetric monoidal closed structure ?

We solve this problem in the case where U is «cartesianv», i.e. where the
category M7 of o -morphisms in the category M of maps is cartesian closed
(Proposition 20 isa characterisation of such a O ). More precisely, if O is
cartesian and if V admits «enough» limits, then V7 is underlying a sym-
metric monoidal closed category as soon as either the tensor product of
0 commutes with the projective limits considered on O, or the insertion
functor from V7 to VZ admits a left adjoint.

To prove this, we consider the symmetric monoidal closed category
@2 defined by Day (Example 5-3 [D]) and we show that V7 is closed for
the closure functor (or Hom internal functor) of @Z. The result is then de-
duced from a Proposition giving conditions under which a subcategory of
a symmetric monoidal closed category admits such a structure (these con-
ditions seem apparently slightly weaker than those we have just seen in a
recent paper by Day [D1]). Notice that we use only a partial result of [D];
his general result is used in [FL] to get solutions of (P) under another

kind of conditions (see Remark 2, page 82).

As an application, we deduce a symmetric monoidal closed struc-
ture on the category Cf(V) of functors in V (when o is the prototype of
categories), as was announced in [BE]. we finally show that the closure
functor E on F(V) may also be constructed by a direct method (whose

idea is to define the analogue of the «double category of quartets» geﬁe—
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v EHRESMANN

ralizing the method used in a particular case in [BED), which rfequires that
V has only pullbacks and kernels (and not even finite sums, which have

to be used in the first construction).

Sketched structures may be generalized in different ways: one of
them (proposed two years ago by the first of the authors in a lecture) is to
replace the cone-bearing categories by cone-bearing double categories ( 2-
theories of [Du] and [G1] are examples of them). Another way consists
in substituting «cylinders» to the cones, as is done in a just appeared pa-

per by Freyd and Kelly [FK].

We use throughout the terminology of [E1], but we have tried to
take lighter notations, nearer to those used in most papers on categorical
Algebra. We stay in the frame of the Zermelo-Fraenkel set theory, with the

supplementary axiom of universes: Any set belongs to a universe.
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CATEGORIES OF SKETCHED STRUCTURES 1

I. PROJECTIVE LIMIT-BEARING CATEGORIES

1. Neocategories and neofunctors.

Firstly, we recall the definition of a neocategory (or «graphe mul-
tiplicatif» [E1] ). Graphs and also categories appear as «extreme» examples
of neocategories.

A neocategory 2 is a couple formed by a set, denoted by 2 , and
a «partial law of composition» k on 2 satisfying the following axioms:

1° « is a mapping from a subset of 2x 2 (denoted by 2* 2 and cal-
led the set of composable'couples) into Z; instead of k(y,x), we write
y.x (or yox ,or yx,...) and we call y.x the composite of (y,x).

2° There exists a graph (X ,8,a ) (i.e. a and B are retractions
from 2 onto a subsetof 2 , denoted by 2,), such that:
a) For each element x of X, the composites x.a(x) and B(x).x

are defined, and we have:
x.a(x) =x=p8(x).x;
b) If the composite y.x is defined, then:

aly)=B(x), a(y.x)=a(x), Bly.x)=pB(y).

From the condition 2, it follows that the graph (£,8,a ) is uni-
quely defined; moreover the set 2, of its vertices (called objects of ) is
the set of unit elements (i.e. identities) of 2. We say that a(x) is the
source of x, and that 5(x) is the target of x. The elements of 2 are cal-

led morphisms of 2. We write
x€Z or x:e —e' in 2

instead of: x is a morphism of 2, with source e¢ and target e'. If e and

’

e’ are two objects of 2, the set of morphisms f:e — e’ in > will be de-

noted by e'.2.e orby 2(e', e) (and not (e, e’) as usually),

EXAMPLES. 1° A graph (2, 3,a ) may be identified with the neocategory
> admitting 2 as its set of morphisms and in which the only compositesare

x.a(x) and S(x).x, for every element x of 3 ,
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2 EHRESMANN

2° A category is a neocategory in which all the couples (y, x) where
a(y)= B(x) are composable (so that S* 3 is the pullback of (a,3)),

the law of composition being furthermore associative.

Let 2 and X' be two neocategories. A neofunctor ¢ from = to-

ward X' is a wiple (2',¢ ,3), where ¢ is a mapping from ¥ into 3’
such that ¢(e)€ 2, for each e € 2, and that:

If y.x is defined in 2, then ¢(y). P(x) is defined in =', and

P(y)d(x)=¢ (y.x).

We say also that ¢: > — 3’ is a neofunctor; we write ¢ (x) instead of

¢ (x) and ¢, denotes the restriction (y: 5, ~3! of .

If ¢: 22" and ¢':Z" —3" are two neofunctors, we denote

by @' *¢, or by @', the neofunctor from 5 to " assigning
¢'{Pplx)) to x in Z.

Neofunctors between graphs reduce to morphisms between graphs
(in the usual meaning [E1]) and neofunctors between categories are ordi-

nary functors,

Let = and 2’ be neocategories. If ¢ and Y are two neofunctors
from 2 to 3’ a natural transformation T from ¢ to  is defined as a triple
(Y ,70,% ), where 7, is a mapping associating to each object e of = a
morphism 7o (e): P(e) @Y (e) of 2' (also denoted by T(e) ), such
that the composites Y (x). 7(e) and 7(e').d(x) be defined and that

Y(x).r(e)=71(e"). d(x),

for each x: e —e' in 2. We say also that 7: ¢ 2 is a natural trans-

formation (defined by 7, ).

EXAMPLES. 1° If u is an object of 2’, the constant mapping assigning"
u to each morphism x in = defines a neofunctor 2™: > = ', If z:u —u'
is a morphism in Z', we denote by z" the natural transformation (said cons-
tant on z) from " to #'" such that z(e) =z for each e€ 2, .

2° A natural transformation from a constant neofunctor, i.e. a natural

transformation Y :u"* =, is called a projective cone in X', indexed by

412



CATEGORIES OF SKETCHED STRUCTURES 3

2, with base \y : = — 2' and vertex u. Similarly, a natural transformation
v': @d - u"is called an inductive cone.

3° Let 7: ¢~y be a natural transformation with ¢: 22" If
¢': 32" =3 is a neofunctor, the mapping ¢ 7, defines a natural transfor-
mation denoted by ¢'7m: ¢' P~ 'Y if T is a projective (resp. inductive)
cone, ¢'T is also one. If ¢": 2" = X is a neofunctor, the mapping 7, ¢

defines the natural transformation 7¢": &' =",
Let X be a neocategory and 2' a category. If
T:¢~yY and Ty =Y’
are natural transformations, the mapping 7, : £, 2’ such that
To(e)=7"'(e). T(e) foreach ecX,

. . 1 .
defines a natural transformation 7": ¢ =y’ , denoted by 7' oo7. (This
is not true if £’ is only a neocategory.) With this law of composition,
the set of natural transformations between neofunctors from 2 to X’ be-

comes a category, denoted by J{(Z',Z) or by X’ Z,

EXAMPLES. 1° Let z:u' —u be a morphism of 2/, If y:u"~ Y isa
projective cone in 2, with vertex #, we denote by Yz the projective
cone ymaz :uw" =y, If ¥': = u'"is an inductive cone, we define z 7'
as the inductive cone z'tmy’ .

20 Suppose that 2 is the category 2, with only two objets 0 and I,
and one morphism @ =(0,1) from 0 to 1. A functor ¢:2 = 2’ may be
identified with the morphism ¢(a) of the category =’ ; a natural transfor-
mation 7: ¢ = ¢' may be identified with the quartet (commutative squa-
re) (' (a), 7(1),7(0),P(a)). Then the category 5’2 teduces to the lon-
gitudinal category of quartets of Z' (often called category of pairs), deno-
ted by muZ'. By assigning (y',x',x,y) to the quartet (x',y",y,x),
we define an isomorphism from 2’ onto a category Hs , called the
lateral category of quartets of 3'. The pair (m3',HZ') is a double ca-
tegory [EG], written 02’ .

A projective cone yY: u" ~ ¢ in the category 2’ is called a pro-

jective limit-cone ( «limite projective naturalisée» in [ E]) if, for any pro-

413



4 EHRESMANN

jective cone ¥': u'" ~ ¢ in Z admitting the same base than 7y, there exists
one and only one z:u’ ~u in Z' such that yz = 7'; in that case, z will
be called the factor of <y’ through 7y, and denoted by lim,, v’ . Dually,
we define the notion of an inductive limit-cone.

If § is a set of categories, we say that thecategory > admits §-projec-
tive (resp. §-inductive) limits if each functor ¢: K =3, where Ke§, ad-

mits a projective (resp. an inductive) limit,

REMARK. Since we will essentially be concerned with projective cones
or projective limits, we call them briefly cones or limits; but the dual no-

tions will always be called explicitly inductive cone or inductive limit.

2. Cone-bearing neocategories.

By definition, a cone-bearing neocategory ¢ is a pair (Z,[7), whe-
re 2 is a neocategory and ' a set of (projective) cones in X, said the
distinguished cones of o, indexed by categories. The set of the indexing-
categories of all the distinguished cones is called the set of indexing-ca-
tegories of o,

If o' is another cone-bearing neocategory (Z'.I"'), a morphism
from o to o' is defined as a triple $=(U',gb,0'), where Y: 2 = 3 is
a neofunctor such that:

Yy el forany yel.
We say also that @ : 0 =o' is a morphism defined by ) ; we write:
D(x)=yY(x) if x€Z, Ypy=yy if yel
or, more generally, if ¥ is a cone in 2. Notice that the set of indexing-
categories of O must then be included in that of o’ .
If a' =(o”,y',0") is also a morphism from o' to the cone-bea-

ring neocategory 0", then '\ defines a morphism, denoted by
l/), . SL’ . o - o_Il .
If Y is an isomorphism and if its inverse defines also a morphism from o'

to O, we say that \J is an isomorphism.

Two cone-bearing neocategories 0 and o' are said equivalent if
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CATEGORIES OF SKETCHED STRUCTURES 5

there exist morphisms
Y=(c',y,0) and Y' =(o,y ,0")
such that Y ' and Y'Y be equivalent to identities (which implies the

equivalence of the underlying neocategories).

REMARK. Cone-bearing neocategories are sketches in the sense of [E3]
(but the notions of a sketch considered in [E4] and [ES] are more strict,
and here the word sketch will have the same meaning as in[ES]). They are
used in [Bul under the name «esquisse multiforme». Lair needs them in
[L] to define tensor products of sketches. Morphisms between cone-bea-

ring neocategories are called homomorphisms between sketches in [E3].

DEFINITION. A (projective) cone-bearing neocategory (2 ,[") is called a
limit-bearing category if 2 is a category and if each distinguished cone
vel is a (projective) limit-cone.
EXAMPLES. I° Let 2 be a category and § a set of categories. Let [T be
the set of all limit-cones in £ with indexing-categories in §. Then (Z, ")
is a limit-bearing category, called the full §-limit bearing category on .

2° Let 0 be a limit-bearing category (2,]") and K a category. Con-
sider the category of natural transformations ZK; for each object i of K,
denote by 71;: SK 'S the functor associating 7(7 ) to the natural trans-
formation 7. Let I be the set of cones Y in K such that:

7,y €D’ forany i€K,.

Then (ZK,T) is a limit-bearing category [E3], denoted by oK 1n par-
ticular, if K is the category 2 and if 52 is identified with the longitudi-
nal category (i3 of quartets of 2 (see example 2-1), we get the longitu-
dinal limit-bearing category of quartets of o, denoted by m o . The cano-
nical isomorphism from X to HZ defines an isomorphism from o to

the lateral limit-bearing category of quartets of o, written Ho .

Let U be a universe [{AB]; an element of U is called a U-set (or
a small set). We denote by:
- F, (resp. F,) the set of neocategories (resp. of categories) 2 whose

sets of morphisms are U-sets.
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6 EHRESMANN

- & the set of cone-bearing neocategories (2,["), where I' and 2
are U-sets as well as K, for each indexing-category K of o= (2 ),

- P, the set of limit-bearing categories belonging to S -

- M the category of all mappings between U-sets (following our conven-
tion to name a category according to its morphisms). »

- F' the category of all neofunctors ¢: 2 = 3', where S and Z' be-
long to ¥y (this category is denoted by 7' in [E1]).

= bFe: ' =M the faithful functor which assigns the map

k ¢: 22" to ¢p:Z-%
and by p'g. : &' =M the not-faithful functor associating
P12y 2325 to Pp:Z -,
- F the full subcategory of F' formed by the functors and by bG: F-M

the faithful functor restriction of PG .

The morphisms &: (Z,[") = (3.’ ) between cone-bearing neo-
categories (resp. between limit-bearing categories) belonging to & form a
category O (resp. F'). Assigning ¢: = =3’ to & , we define a faithful

functor
gsn - F (resp. g : P Fy,
Let pgw and ppr be the composite functors:
pge=0F ase: 8" =W, ppr =pgap, P M.
The following elementary proposition will be used later on.

PROPOSITION 1. & admits Fg -projective limits and F -inductive limits;
q§n commutes with projective and inductive limits; pgn commutes with pro-
jective limits and filtered inductive limits; P is closed in & for projec-
tive limits. (See also [E4] and [L1].)
L. The proof is straightforward. Let F : K =38" be a functor, where K
is a U-set, and write .
F(z‘}'Z(Zi,ri) for any i€ K, .

1o Let 2 be a projective limit of the functor g§vF ; then 2 is a pro-

jective limit of pgwF; denote by 7,: 2 = >, the canonical projection and
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CATEGORIES OF SKETCHED STRUCTURES

by I' the set of cones ¥ in 2 such that
;Y el’; forany i€K, .

Then (2,[") is a projective limit of F. If moreover F takes its values

in ', we have also (5,[") €%, .

2° gguF admits [E1] an inductive limit =', with canonical injections

v Zi - 2'. Let ' be the set of all cones
V;¥;, where i€K, and 7i6ri'

Then (Z',T"') is an inductive limit o' of F.If K is filtered, £’ is [E1]

an inductive limit of p§eF. V

Let O be a cone-bearing neocategory (2, ) and § its set of in-

dexing-categories.

DEFINITION. If o' is a limit-bearing category (Z',I"'), we define a o -
structure in o' as a neofunctor Y : 3 — =’ defining a morphism @ o —o!
(we also say [ES] that i is a realization of o in 0'). If = is a catego-
ry and if o' is the full g-limit-bearing category on > (example 1), a o -

. y . 14
structure in O’ is called a O ~-structure in 2' .

The set 5(0',0)0 of O -structures in the limit-bearing category
o' =(3',T"') is the set of objects of a full subcategory of 5'% denoted
by 8(o',0), and called the category of morphisms between o «structures
in o', or category of o -morphisms in o'

If ' is a category, a O -structure in >’ is just a neofunctor ¥ from
3 to Z' such that Y7y is a limit-cone, for any ¥ €. We will denote by
S(Z',0), or by Z'7, the full subcategory of X’ Z Ghose objects are the
o -structures in >'. Remark that >’ 9 admits 8( o’ ,0) as a full subcate-
gory, for any limit-bearing category o' on X' .
PROPOSITION 2. Let O be a cone-bearing neocategory, o' a limit-bea-
ting category and Bo' the lateral limit-bearing category of quartets of o'
(example 2). Then there exists a canonical bijection from the set of mor-

phisms of §(o', o) to the set S(Ho', 0 ), of o -structures in Ho'.

A. To a natural transformation 7:y = ', where Y : 2 = 2", there

417



8 EHRESMANN

corresponds the neofunctor T : 5, — HZ' which assigns the quartet
($'(z), ('), T(e),Y(z)) to z:e ~e' in =,

The map fassociating T to 7 is a bijection from Z_f_z to the set of neo-
functors from 2 to HZ'. (If we identify 7 with a functor from 2 to 2’ Z,

this bijection f is deduced from the canonical isomorphism:
(2522 (302)%2 (B5)2 )
The natural transformation 7 is a morphism between O -structures iff(*)

. . ! . e .
T is a O -structure in Ho'. Therefore f induces a bijection

fr:8(0',0) = §Ho',0) . ¥

3. Limit-bearing category generated by a cone-bearing neocategory.

The study of the category 8(o’,0) of morphisms between O -struc-
tures in the limit-bearing category o' will be much easier when the cone-
bearing neocategory O is itself a limit-bearing category. Hence the ques-
tion: Does there exist a limit-bearing category o such that §(o',0) and
S(o',o) are isomorphic ? The following proposition not only answers affir-
matively this question, but it gives an explicit construction of a smallest

o of this kind.

PROPOSITION 3. Let o be a cone-bearing neocategory (2,1 ). There
exists a limit-bearing category oc=(2,T) and a morphism § : o — o sa-
tisfying the following conditions:

1T ={8y | yel' .

20 If U is a universe such that o € & , then o € Py .

3° O is characterized, up to an isomorphism, by the universal property:
If o' is a limit-bearing category and \Z 10 =o' a morphism, then there

exists one and only one morphism E': o = o' such that L/T' -8 = l:b—

A. By transfinite induction, we shall construct a «tower» of cone-bea-
ring neocategories Op such that 0, be O and that Cg41 be deduced from
O ¢ by adding to Og « formal factors» through a distinguished cone 7 for

cones with the same base as y. We will show that this tower ends for

(*) iff means if and only if.

418



CATEGORIES OF SKETCHED STRUCTURES 9

some sufficiently big ordinal u , and that e is the limit-bearing cate-
gory ag.

Io Let us decribe the step from Of t0 Opyg. Let Og be any cone-
bearing neocategory (Zér ,I_"f ).

a) If 7y 61_'5 and if v' is a cone in Zg_. with the same baseas vy
we consider the pair (7y,¥ ') (called the «formal factor» of 7' through
7). Let { be the set of all these pairs; let U be the sum («disjoint union»)

of 2, and (0, with injections
’“25 U and v':0Q = U.

We define a graph (U, 8, a) in the following way:

- If x:ru —u'in Z§ , then

a(v(x))=vlu), Blvix))=uv(u).
- I (y,y")eQ, where y:u"~¢ and ¥':u'"" = ¢, then
a(v'(y,y N =vla'), B(v'(y,y' ) =v(u).

Let L be the free category generated by (U, B, a); it is [E1] the «cate-

gory of paths» on (U, [, a) and U is identified with paths of length I .

Consider the smallest equivalence relation 7 on L such that:
(v(x'),v(x))~v(x'.x), if x'.x is defined in Zf s

(v(y(i)),v'(y,y D~o(y'(i)), if (y,y')el and i€K,,

P
® v(z) Nv'(y,y'),ifzer ,if (v, v ') el and if

v'(i)=7y(i).z for any i €K, ,

where K is the indexing-category of .

There exists a quasi-quotient category [El] of L by 7, denoted
by if; since r identifies no objects, _Z_f is in fact the quotient category
of L by the smallest equivalence relation compatible with the law of com-
position of L and containing r . Let 0: L —‘ff be the canonical func-
tor corresponding to r. The map g v defines a neofunctor 55 :25 —*Zf
by the first condition imposed on r. Denote by F§ the set of all the cones
857, where ¥ € 1”5. Then (25 ,1“5) is a cone-bearing neocategory og

and 5§ defines a morphism Sg P 0g —';é. . Moreover, for each formal
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factor (y,y')Ye(l, we have
(8Y)z = 35’)/' , where z =p(v'(7y,¥")).
b) Suppose that o' is a limit-bearing category (Z',I"') and that
is a neofunctor defining a morphism Y op o' . Then there exists a uni-

que morphism

J' : Ef - o' such that —‘L' 'gf = @
Indeed, if (v,v')€{l, where y:u" — &, the cone Y7y is alimit-cone
with the same base as the cone Yy '; so there exists a unique y such
that (Yy)y ="', namely the factor of Y7y’ through )7y . By assigning
y to the formal factor (,y '), we get a mapping [ : {1 = Z' The unique
map f': U = 2" such that
ffv=yY and f'v'=f

defines a neofunctor from (U, 3, @) (considered as a neocategory) to 2’ .
This neofunctor extends into a functor F': L —Z2'. Since o' is a limit-
bearing category, this F' is compatible with 7, so that there exists one and
only one functor

1//':5f - 3' suchthat Y'p =F’.

This functor defines the unique morphism

Y':0p 0" such that ! °§§ =.
¢) If U is a universe such that Og € :,', then K, for each indexing-

category K of 0, and Iy are U-sets; it results thac the set ['p of cones

in Zf indexed by K is also a U-set, as well as the set U FK , where §
Kef

is the set of indexing-categories of O, . From this we deduce succesively

that O, U, L and 25 are U-sets, and that Eg belongs to & -

2° We are now ready to construct the tower. Let § be the set of indexing-
categories of 0. If K Eg, we denote by I=< the cardinal of K. (An ordinal
number { is considered as the set of ordinals & such that £ < {; the car-
dinal of a set E is identified with the initial ordinal equipotent to E). Let
A be the ordinal which is the upper bound of the ordinals l=<, where Ke |

and let ¢ be the least regular ordinal satisfying A< u .
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Accepting the «axiom of universes», there exists a universe U to

which belongs ['UZ U U K, i.e. such that o is an object of the cate-

Ke§~
gory &" corresponding to U. As K is a U-set, K belongs to U and, § be-
ing equipotent to a subset of the U-set [', the ordinal A\ belongs also to
U, as well as u . (Here we use the fact that the upper bound of the ordi-
nals which belong to a universe U is an inaccessible ordinal [AB]).
For each ordinal £, let <& > be the category defining the canoni-
cal order on £ ; its set of objects is & . (In particular, 2 = <2>). By trans-

finite induction, we define a functor «w: <y +1> - S

- First, w(0) =0,
- Let { be an ordinal, { < u ; suppose we have defined a functor
wyp: <> - §" such that w,(0) =0,
and write
4 wg(f):orfz(if,rf) for any £< (.
We extend @y into a functor @y g @ < {+1> — 8" in the following way:
If { is a limit ordinal, w §+1(§) is the canonical inductive limit,
denoted by Or= ( ZC, Fg) , of the functor @ g (which exists, Proposition 1)
and @ §+1( £,5): Og T Oy is the canonical injection, for any £ < [ . We
recall (Proposition 1 and [E1]) that Zg is the canonical inductive limit of
the functor Py from <{> to M and that each composite ;’57 in ZC is
of the form w, (L, &)(y".y), for some &< L, where y'.y is a compo-
sitein ., and y = wp (L E)(y), ¥ = wp (L EXy).
If { is the successor of & (that is: { =& +1), then w r+1¢ () will
be the cone-bearing neocategory (if vl:f) associated to T in Part 1,
and @, ( £+1,8): oy — 0y will be the morphism gg constructed in
Part 1. The induction hypothesis Og € o implies oy € S (Part 1).
- Finally, we put

CU:O.)'M+1, EZ(—Z-,I:)ZU#,—SZCU(/,L,O)Z(E,S,U).

. - . "
By construction, O is an object of .

3° a) By transfinite induction, we prove that 2 is a category. Indeed,

suppose that { is an ordinal, {< i, and that Zf is a category for any
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£ such that 0 ZE< L. 1f { =& 41, then ZC:ZE is a category, by
construction. If { is a limit ordinal, Zg is the inductive limit of the func-
tor g§n s; since <[> is a filtered category and since the Zg , for £< [
and 0 # £, are categories, the neocategory Zg is a category. Hence Z}L

is a category 2.
b) We are going to prove, by transfinite induction, that each cone .’;
of T is of the form 87, for some ¥ €I . Indeed, we have Iy =T. Let

{ be an ordinal, { < i, and suppose that, for any & < {, we have:
Fe={w(&,0y | yel}.
- If { is a limit ordinal, Proposition 1 asserts that
Py=A w8,y | veely, £<0}
and the induction hypothesis implies that
’yfzw(f,O)y, for some yel;
hence
w(L, 8y =w(l, &) w(£,0)y=w(l,0)y.
It follows that:
Fey={ w(L,00y | yel }.
- If {=£+1,byPart 1-a, we have:
Py=Tp={ 8% [ vpely },
where
SeYe=w(E+1, Oy =w(E+1,6) w(£,00y =w(L,0)y,
since Ve =w(&,0) 7y, for some ¥ €[ . Therefore, in this case also,
Fy={ w00y | yel }.

¢) The category Y is determined independently of the universe U. For,

let 11 be another universe such that
(Fruzu U K) e‘fj,
— Ke

&n N .
and let O be the category of morphisms between cone-bearing neocatego-

ries corresponding to 1. If F:C —38" and F:C — S" are two functors ta-
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king the same values (i.e. F(z) = I;(z) for any z € C), then they have
the same canonical inductive limit, according to the construction of this
limit as a quotient of a sum. So the inductive limit 0, of @, for a limit
ordinal [, does not depend on the choice of U. In particular, o is in-
dependent of U.

d) § satisfies the condition 3 of the Proposition. Indeed, let 17/ be
a morphism (0',y,0) from o to alimit-bearing category o' =(=',I"").
Part ¢ above shows that we may suppose o' ¢ S . Using the universal pro-
perty of the inductive limit 0y of @, and that of §4: 0, = 0s =0,y
(Part 1-b), we construct by transfinite induction a sequence of morphisms
Jg: op o', where (< M, such that LZO = J and

Prro(l,&) =y, foramy <.

Then @ﬂ is the unique morphism @': o-o satisfying @' 5 = @

(Notice that, up to now, we have not used the fact that u is a given

regular ordinal.)

4° To complete the proof, we have yet to show that o is a limit-bea-
ring category, i.e. that each cone ;ef is a limit-cone. This will imply
that the tower ends with o (this means that G#+1 is isomorphic to g).
Suppose that Yy is a distinguished cone of O ; then there exists some cone
v €T such that ¥ = 87 (Part 3-b). Denote by ¢ the base of 7, by K
its indexing-category, by Ye the cone w (&£ ,0)y Erg , for each £< u.
Let ’)7': u Y

r

- ¢ be a cone in S with the same base as Y.

a) We are going to prove the existence of an ordinal £ < u and of a
cone 7' with the same base as the distinguished cone Y ¢ such that we
have ¥' =w(u ,£)y" . Then the «formal factor» (Ve ,¥') determines a

morphism z of 55 = Z§+1 satisfying the equalities:
(0)(§+1,§)’)’§)Z=@‘(§+1,§)'}’I )
which gives, after transformation by w (u ,& +1):

(S'y)z_=§', where -;:w(/l,f"’I)(Z)-

Indeed, since Z is the inductive limit of pgne <u>-WM, for each

object i of K there exists an ordinal £,< u and a x;€Z, such that
12
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Vi) =w(p,EN0x).

Let k:7 —i' be a morphism in K. By construction of the inductive li-
mit O, the equality ¥ (i') = 8 b(k).7'(i) means that there exists an
ordinal fk such that &, < & < pu, fi' <& <u and
(D W( &, E) (xp) = w(EL,0) (E(R)) . w (&, E)(x;)
M being aregular ordinal such that

K<p and & < p forany keK,
the upper bound & of the £, where k€K, verifies £< u . For this or-
dinal & and for each k:7 — i’ in K, we get from (1):

@£ EN (xp) = w (£,E) 0 (€4, Ep)(%p)

w (€, (@ (&,0(PkN. w (&, ) (%))
w(€,00(P(k)).aw(€,E)(x,).

il

This shows that the map
Yo: Ko @ Z, suchthar ¥ (i) =w(&,&)(x;)
defines a cone 7' in 3, with the same base as ¥, = w (£, 0)y. Moreover
w(p,&)y' =7', since, for each object i of K, we have:
W, EVY (i) =w(u,E)(x)="(i).
b) We have found a z such that
5—2_:;", namely ;:w(p,§+1)(z).

Suppose that z' is another morphism of > satisfying _’)—/‘;' = ;'; we show
that z = z'. Indeed, there exists an ordinal { < x4 and a morphism z' in
Zg with w(u,{)(=z') = z'. We may suppose &£ < . For each i € K, , the

equality ¥'(7i) =7(i).z', which may also be written
wlp, &)Y (i)=w(p,0)y(i).w(pu, (")
implies the existence of an ordinal {; such that < {; < u and
w( L, Y ()y=w(,,00y(i).w(L;,)(=").
If {' is the upper bound of the (,, for 7 € K, , we get as above {' < u and

Wl EYY =(w (0w, ) (=) =yp £,
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2

where 2’ = w (L', {)(2’). From the equality
w(E+1,8)y =(w (41,872,
it follows, by applying w ( (', £ +1):
w (L) =(w () yp)E=yp £,
where £ =w({',£+1)(z). Hence £' and 7 are two morphisms such that
Yy z= Y Z', which implies
w (L' +1,0(2) =l +1,0"(£),

by construction of ZC'+1 = igl (Part 1). Finally, applying w ( u , '+ 1y,
we get z=2z". \Y
DEFINITION. With the hypotheses of Proposition 3, we call o the limit-

bearing category generated by o .

COROLLARY 1. The insertion functor I: P' = 8" admits a (left) adjoint.
P admits F, -inductive limits, and there exist quasi-quotient limit-bearing

categories.

A, The first statement results from Proposition 3.

If F:C ~%' is a functor, where C is a U-set, then IF: C — §" ad-
mits an inductive limit o (Proposition 1), and the limit-bearing category
o generated by O is an inductive limit of F .

Let o' be a cone-bearing neocategory (Z',T''") and p an equivalence
relation on X'. There exists a quasi-quotient cone-bearing neocategory O
of o' by p (i.e. a quasi-quotient pgu-structure [E1]); namely, o= (Z,"),
where 2 is the neocategory quotient of 2’ by the smallest compatible equi-

valence relation on X' containing © and where
C={py |yel"}, if p:3" =%
is the neofunctor corresponding to ©. Hence the limit-bearing category o

generated by O is the quasi-quotient limit-bearing category of o' by p .

If o' € ((P:, , then o isa quasi-quotient pP: ~structure of o' by p. V

COROLLARY 2. Let 0 be a cone-bearing neocategory and o the limit-bea-

ring category generated by o. If o' is a limit-bearing category, then the
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categories $(0',0) and §(0',0) are isomorphic. In particular, %' and

29 are isomorphic, for every category ' .

A. Let Ho' be the lateral limit-bearing category of quartets of o'

(Example 2-2). We have constructed, in Proposition 2, bijections
g: o', 0) = 8§Ho',0), and h: 8(o’,0) =~ §(Bo' o), .
By Proposition 3, there is a canonical bijection
d:8(Bo',0), ~ 8(Bo',0), ,

assigning ' 8 to the O -structure ', where 8 = (0 ,8,0) is the ca
nonical morphism. The bijection g'Idb defines the isomorphism from the

category 5(0',;) to 8(o', o) assigning 78 to T. \Y

REMARKS. 1° O is «universal» relative to all O -structures, and not only
to those which are «small enough». The universe U is used as a tool in
the proof of Proposition 3, and it does not appear inthe conclusion (as
we have shown in Part 3-c). We could have omitted U by considering «the
category of morphisms between all cone-bearing neocategories» (i. e. by ad-

mitting a theory of sets and classes).

2 In [L], Corollary 1 of Proposition 3 is deduced from the general
existence theorem for free structures of [E], the proof being identical with
the argument used in [E5]to prove the existence of the prototype of . Abo-
ve, we have not only shown the existence of E, but we have also given an
explicit construction of it, from which many properties of o may be deduced.
This construction is suggested by the explicit construction of a free $-pro-
jective completion of a category (Theorem 7 of [E]); the main difference,
apart from adding «no objects», lies in the fact that the hypotheses of The-
orem 7 of [E] (after adding «all formal cones») implied the injectivity of
the functor 8§ : Zg - Z§+1 , for any ordinal (which was difficult to prove
and required a detailed description of the morphisms of 25+1 as «reduced
‘paths»); so, the category ZZ', for a limit ordinal {, was just the union of
the categories Zf , for £< [ . This is no more true here, and we have to
define ZC’ for a limit ordinal {, as the inductive limit of the functor

qgnfl)gi<§> - %,
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3¢ Proposition 3 may also be expressed as follows: Let ¢ be a cone-
bearing neocategory. There exists a limit-bearing category o= (T,
characterized up to an isomorphism by the property:

If U is a universe such that 0 € & , then T is a free structure gene-
rated by o relative to the insertion functor from P' to &".
Intuitively, if o =(2,1"), the set z belongs to the smallest universe
to which belongs 2, while o solves the universal problem for any uni-

verse to which belongs 2 .

4. Loose types.

Let o be a cone-bearing neocategory and 0" a limit-bearing catego-
ry. We have seen that there exist limit-bearing categories o such that the
category S(o',0) is isomorphic with S(O",E). In fact, we have cons-
tructed a o which is minimal. Now the question arises: If any functor is
the base of a distinguished cone in o', does there exist a o with the sa-
me property? We are going to solve this problem relative to a given set of

categories.
We denote by § a set of categories.

DEFINITION. If O is a cone-bearing neocategory (resp. a limit-bearing
category) whose set of indexing-categories ga is a subset of §, we also
say that o is a §-cone-bearing neocategory (resp. a §-limit-bearing cate-

gory).
In particular, o is a ga-cone-bearing neocategory.

DEFINITION. Let o be a limit-bearing category (Z,I") and § its set of
indexing-categories. We say that o is a loose type (or, more precisely,
a loose §-type) if each functor ¢p: K = 3, where K €4, is the base of at

least one distinguished limit-cone y €l |
This condition implies that = admits §-projective limits.

If U is a universe such that § is a U-set, we denote by S"Q (resp.
?'g, resp, fg) the full subcategory of §&" whose objects are the §-cone-

bearing neocategories (resp. the §-limit-bearing categories, resp. the loose
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-types) o belonging to S .

PROPOSITION 4. Let 0 be a §-cone-bearing neocategory (Z,I" ). There
exists a loose §-type o (unique u}) to an equivalence) and a morphism s =
(0, 8,0) satisfying the following condition where o' is a loose §'-type for
aset§ of categories containing 4 :

1° If L,-Z/ o =o' is a morphism, there exist morphisms J': oo
such that ",Z' -5 = L-//_ , and two such morphisms are equivalent.

20 If Y =(o' W', o) and J'= (o, J", o) are morphisms and if
T:y'8 =" is a natural transformation (resp. an equivalence), there

exists one and only one natural iransformation (resp. equivalence)
Ty =" such that TS =T,

Moreover, if U is a universe such that § is a U-set and o€ &, then we

have Eeﬁg .

A. We will again construct, by transfinite induction, a tower of cone-
bearing neocategories which stops («up to an equivalence») at the first re-
gular ordinal u greater than all the ordinals 1=<', where K €4. The method
is similar to that used in Proposition 3, but, in the «non-limit step» from
Tg t0 Ogyg, We will add also «formal cones» for each neofunctorindexed

by an element of .

1o Let us first describe this non-limit step. We suppose that T is a
cone-bearing neocategory (Zg , Fé_-) .
a) Let us consider:
- the set {1 of pairs ('y,'y') (or «formal factors»), where 7 Erf and
v' is a cone in 25 with the same base as 7,
- the set M of neofunctors ¢: K —'Zf, where K e, which are not
the base of any distinguished cone 7 € I_'é- s
- the set M’ of pairs (i, ), where €M and where 7 is an object
of the indexing-category of ¢,
- the sum («disjoint union») U of Zf , £, M and M', with injections:

v:Zg U, v Q ~U, w:M U, w:M —U.

We describe a graph (U, 8, a ) in the following way:
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- if x:u ~u' in 5, then
aluv(x))=vlu), Bluvlx))=v(u'),
- i (y,yYeQ, with y:u" = ¢ and ' 1w’ >,
al(v'(y, Y N=vlu'), B(v'(y,¥'))=vlu),
- w(¢) is a vertex, for each ¢ €M,
- if (i,$) € M', we have:
al(w'(i,d))=wld), BL(w(i,P))=v(P(i).

We denote by L the free category generated by (U, 8, a )} and by r the
equivalence relation on L satisfying both the condition (P) of Part 1, Pro-

position 3 and the condition

" { (v(P(R),w' (i, P))~w (i ¢)
it PpeM, ¢:K=35,, k:ii=i'inK.

There exists a quotient category ié’ of L by the smallest equivalence re-
lation compatible on L and containing 7. Let o L —’Sé be the canoni-
cal functor corresponding to r; the map p v defines a neofunctor &, from
Zg to Zf . B

If $: K - Zf belongs to M, let ¥, be the cone in 25 with ver-
tex p(w(¢)) and base 85 @ such that

Yg(i)=p(w' (i, ¢)) for any 1€K,o
(it will be called «the formal cone associated to ¢»). Put:
Ce=A{ 87 yels YU{y, | peml.
Then (ig,ﬁf) is a cone-bearing (neo)category 5:5 and 85 defines a
morphism Sf 10 T Og .
When U is a universe such that § is a U-set and g €&y , the set
of neofunctors ¢: K —’Zé , where Ke§, is a U-set, as well as the set of

cones in 2, indexed by elements of §. It follows that M, M’ and () are

U-sets. Hence gf € 5':, .

b) Let §' be a set of categories containing § and o' a loose ' -type

(2, Iy = (O",‘//,Ug) is a morphism, there exists at least one mot-
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phism Y': Ef - o' such that ' °_8—§ =.
If ' exists and if ¢ €M, then Y’ will transfer the formal cone
Y into a distinguished cone v' of o' admitting Y as base; since there
may be several cones of this kind, ' will be defined «up to a choice»
of cones ’)/' .
Hence, for each element ¢: K —'25 of M, we choose a distin-
guished cone My r e, " = of I’ ' and we define mappings
- g M2 by g(P)=ey,
- g M = Z" by g'(i, ) =myli),
- f:Q -Z" by f(7v,¥' )=y, where y is the unique morphism such
that (Yy)y =Yy,
As in Part 1, Proposition 3, there exists a unique functor F': L — 2 «ex-

tending» Y, f, g, g, and a unique functor:
Y if - >' such that Y'p = F'.
Moreover the equivalence relation r is such that ' is .a gf-structure
in o'. By construction, )’ defines the unique morphism {': Eg ~ o' sa-
tisfying the conditions:
Y’ '-3_5 =y and ;b_"yqb =7y forany PeM.

o) If o’ is a loose type, if Y’ = (O'I,gzll,gf) and " =(o', y", Ef)
are morphisms and if 7: ' 55 -y 55 is a natural transformation, there
exists a unique natural transformation 7': Y’ =" such that T'Sf =

Indeed, let us consider the lateral limit-bearing category Ho' =
(B3 .Y of quartets of o’ . We identify the objects of HZ' with the mor-
phisms of £'. Since o' is a loose type, Ho' is also one. Proposition 2
canonically associates to 7 a neofunctor T.'Zé; - HZ' defining a mor-
phism T: o Ho'. 1f ¢:K '*Zf belongs to M, the cones l,b"yqs and
Y"7yy are two distinguished limit-cones with bases \[!'8§¢ and *0,¢. Sin-
ce Ty 8§</> -y quﬁ is a natural transformation, there exists a uni-

que morphism x 4 in 2! such that:
(" ')/qs)xqb = T¢E‘3(¢"')’¢)-

By assigning to an object 7 of K the quartet
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77¢(1) = (¢"7¢(i). T¢(i)» x¢.1711' 745(1))’
we define a cone ;7¢: x¢” ~ T in B’ which belongs to P (by the defi-
nition of Bo'). Part b asserts the existence of a unique morphism
T = (Bo', 1",5,) such that T8, = T and T'y, = N4
for any peM.
Let 7': & = &' be the natural transformation to which T' is associated;
the equality T’ Sg =T implies
’ —_ —_ ’ ) _— "
'7'85—7—. @85‘\085' @gg-—l[/gg
and, for each ¢ €M, from T'7%4 = 7y » we deduce
T'(p(w(P)))= Xg s 5')’¢ = ‘7["%75 , 9")/¢ = HZ’”'}’¢ .
0 and 6' define morphisms from ;é to o' . Hence, using Part b, we get
6 =y' and 6' =y".
Since T' and x4 are determined in a unique way, 7' is the unique natu-
ral transformation from ' to " satisfying 7'552 7. Moreover, if 7 is

. - . . ! .
an equivalence, x4 is invertible for every b eM, so that 7' is also an

equivalence,

2° a) Let A be the upper bound of the ordinals I=<, where K €§, and
L the least regular ordinal greater than A. We can choose a universe u,
such that

(guguFuKu K)el;

then 0 €8;. As in Part 2, Proposition 3, we see that i is a U-set and
we define by transfinite induction a functor w: <u +1> - §" (whose va-
lues are independent of U) satisfying the following conditions, where
w(&)=o0g I(Zf,rf) for any £€ u:

- w(0)=0;

- for each limit ordinal {, with { € u, we take for O¢ the canonical
inductive limit of the functor w,: <{> = §" restriction of @, and for
w (L,£) the injection from 0y to oy, if £< L.

- If {=£+1, where £< o, then oy is the cone-bearing (neo)cate-
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gory gf associated to o in Part 1 and w ({,&) is the morphism gg )
We write
{E:o:u, S=1(0,8,0)=w(u,0)
w({,&) =(U€,w§5 ,O’é) when £< (< u.
b) Let o' be a loose ' -type, where §' contains §, and :,Z;: o ~-o'
a morphism. Using Part 1-b, we construct by transfinite induction mor-
phisms tjjg 1oy 7 o' for each { < y, such that
@o:‘z7 @g'w(é,ﬁ):% if £<0.
In particular J,u is a morphism J': o =o' for which @' -5 = QJ_
Now, let ' and ' be two O-structures in o' and 7: ' § — "8
a natural transformation. Suppose that { is an ordinal, { < u, and that,

for each £ < [, there exists a natural transformation
T \,D'wlug - x,b”a)#f such that 7 W, = 7 for any £< L,

- If { =&+1, Part 1-c shows the existence and the unicity of a na-
tural transformation 7y : /' @, xp"w#g such that 7w, . = 7z, and so
T Wrg = Tp@pg=T.

- If { is a limit ordinal and if Te: 25 - B3’ is the neofunctor asso-

ciated to Tg, for any £ < [, there exists a unique neofunctor
. e 4 — <
Ty: 2y HZ' such that Tywye = Ty forany & g,
since Z! is the inductive limit of w,. Hence the natural transformation
corresponding to T, is the unique natural transformation
. L3 ., — " . . - <
Ty Y @t v W,y satisfying Ty@rg =T, for any £< (.
- By transfinite induction, we so define a natural transformation Ty
which is the unique natural transformation

7y =" suchthar 78 =T,

3° We have yet to prove that o= (—Z‘,F ) is a loose §-type.
a) We see that > is a category as in Part 3-a Proposition 3, Suppose
that ¥ is a distinguished cone of . By a method similar to that used in

Part 4-a, Proposition 3, we get an ordinal { < 14 and a cone 7 € Ft such
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that ; =W, 7, and we still deduce similarly that ; is a limit~cone.
b) Let ¢: K -3 be a functor, where K €d. There exists a cone
v el with base @' .

Indeed, for each k€ K, there exists an ordinal §k < u and a mor-
phism x, of ka such that ¢'(k)=w(pu, fk)(xk). If the composite
k'.k is defined in K, the equality ¢'(k').d' (k)= ¢'(k'. k) implies
the existence of an ordinal fk',k greater than &, &,» and &, such
that fk'.k < u and (1):

@ (Epn g S ) (3pr ) @0 (&n 1, §) (53 ) = @ (G o o g ) (X0 )-
We denote by £ the ordinal upper bound of the family of the &, , where

'(k',k) belongs to the set K K of composable couples. Since K < p, the

cardinal of K* K is strictly less than the regular ordinal i, so that
£< . Put

Plk)=w (&, &5 ) x,) forany k€K
if the composite &’.k is defined, we get

P(k'). p(k) =P(k'. k)

(by applying @ (&, &,r ;) to (1)); so, we have defined a functor

¢:K - Zé- such that w#§¢ = .
By construction of Z.f 1= ig (Part 1), there exists a distinguished cone

7¢ €r§+1 with base w§+1 é_-c,‘b. Hence w# §+1’y¢ is a cone of F,
admitting @, 5@5 = ¢' as its base. V

DEFINITION. If o0 =(2,[") is a loose type satisfying the conditions of
Proposition 4, we call o a loose §-type generated by o (or of o) and

S a loose §-projective completion of o .

COROLLARY 1. Let o be a§-cone-bearing neocategory and o a loose
§-type generated by o . If o' is a loose 8" -type, where §' contains g, the

categories §(o' o) and S(o' 5) are equivalent.
g , s q

A. Let & =(g, 8 ,0) be the canonical morphism. We have a func-
tor F: 8(o',0) = 8(o',0) assigning 7' 8 to the natural transformation

’ py . ’ - . .
7' between O-structures in O . This functor defines an equivalence. In-
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deed, for each o-structure Y in o', Proposition 4 asserts the existence
of O-structures V' in o' for which '8 =; choosing one of them, we
denote it by G(y). If 7:y = & is an element of S(¢',0), there exists
a unique natural transformation
G(T): G(yY) ~G(6) suchthat G(7T)8 =7

(Proposition 4). From the unicity of G(7), it results that we define in this
way a functor G: 8(o',0) = §(0’,0). The equalities

FG(T)=G(T)é =7, forany T,

mean that FG is an identity.

On the other hand, for each o-structure L[J' in o', we have
GF(Y')8 =F(y')=y"8,
so that there exists a unique equivalence 7(y'): Y’ = GF(y') for which
(Y’ )8 is an identity. If 7': ' = @' is an element of S(o',0), we get
(' )mT'=GF(T')m n(y'),

since

(n(E')m7) 8 =n(8")8mr 8 =7"8=F(7")
and

(GF(T'")mn(yY'))§ =GF(T")8mn(yY')é =

=GF(T')8§ =F(T').

Hence we have defined an equivalence 7: ldg .+ = = GF. v
COROLLARY 2. Let o be a §-cone-bearing neocategory (=,I" ) and '
a category admitting $§-projective limits. Then the category 3! is equiva-
lent to the full subcategory of =' Z whose objects are the functors from b3
to ' which commute with §-projective limits, 5 denoting a loose $-projec-
tive completion of o .

A. Let us denote by o =(>,I) a loose §-type generated by o and
let o' be the full g-limit-bearing category on 2'; since o’ is a loose type,
the categories

3'7=8(c",0) and E'7 =§(o',5)

are equivalent, by Corollary 1. If /': S35 isa functor, it commutes with
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§-projective limits iff each functor from K €9 to 5 is the base of a limit
cone 7Y, where "y is a limit-cone. Hence /' is a o-structure in ' iff
' commutes with §-projective limits. This means that 2’7 is the full sub-
category of X' Z Shose objects are functors commuting with §-projective

limits. V

COROLLARY 3. A loose §-projective completion s of a §-cone-bearing
neocategory O is characterized up to an equivalence by the conditions:

1° ¥ admits §-projective limits.

2° There exists a O-structure & in > satisfying the universal pro-
perty: If Z' is a category admitting $-projective limits and if \ is a o-
structure in Z', there exists a functor \J', unique up to an equivalence,

such that ' commutes with §-projective limits and '8 = .

A . Condition 2 results from Proposition 4, applied to the full §-limit-

bearing category o' on X'. V

REMARKS. 1° The construction of the loose g-type o =(—Z_,1:) , gene-
rated by o =(Z,I"), is yet suggested by the explicit construction of a
free §-projective completion of a category (Theorem 7 [E], in which ¥ is
a category and | is void); the difference is that we do not require that
there exists only one cone of T with a given base (this problem will be
studied in Paragraph 5). Notice that the general Proposition 4 and Corol-
laries cannot be immediatly deduced from the general existence theorem of
free structures. Indeed, if 0’ is a loose §-type (=',I"’) and if A is a sub-
set of 2', there does not exist a «smallest» loose g-type extracted from
o' and containing A .

2° The loose §-type o is defined up to an equivalence, and not up to
an isomorphism (as the limic-bearing category generated by o); so, Propo-
sition 4 does not imply the existence of an adjoint for the insertion func-

tor from 53{] to Sng. In fact, we have proved the following result:

Let 53‘(],\, (resp. S",%) be the quotient category of [ (resp. of .S"g) by
the equivalence (generated by): ¢ and &' are equivalent iff there exists an
equivalence between the neofunctors defining them. This category has the

same objects as £§ (resp. as S"g). From Proposition 4, it results:
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COROLLARY 4. Let o be a §-cone-bearing neocategory; there exists a
loose §-type o satisfying the following condition:
If U is a universe such that § is a U-set and o €&, then o isa

free structure generated by o relative to the insertion functor £g§>81g

5. Presketches. Prototypes. Sketches.

These are special cone-bearing neocategories and limit-bearing
categories. We are going to show that a cone-bearing neocategory gene-
rates a presketch and a prototype 7. If o is mapped injectively into 77
(we then call o a sketch), the limit-bearing category generated by o is

itself a prototype, isomorphic with 7.

DEFINITION. A cone-bearing neocategory (2,[") is called a (projective)
presketch if there exists at most one distinguished cone 7y €[’ with base
a given neofunctor ¢. A limit-bearing category which is a presketch is

called a prototype.

The cone-bearing neocategory (=,I" ) is a presketch iff [ is the
image of a mapping assigning to some neofunctors ¢: K — 2 a cone in
2 with base ¢. So, the notion of a presketch is equivalent to that used
in [ES]. In particular, as in [ES] a prototype «is» a category equipped with

a partial choice of projective limit-cones.

U being a universe, we denote by 5) (resp. by Py the full subca-
tegory of 8" whose objects are the presketches (resp. the prototypes) be-
longing to 8" . It results from [ES] that &' and P are closed in 8" for pro-

jective limits.

PROPOSITION 5. Let o be a cone-bearing neocategory (2,1 ). There
exists a presketch o= (—Z_,I: ), determined up to an isomorphism by the
following condition:

If U is a universe such that o €&, , then o isa free structure gene-

rated by O relative to the insertion functor from §' to §".

A. We shall construct O by transfinite induction, the idea being at

each step to «identify» distinguished cones with the same base.

436



CATEGORIES OF SKETCHED STRUCTURES 27

lo Let 0y be a cone-bearing neocategory (2, ,I'¢). We consider

the smallest equivalence relation 7 on 2 such that:

(P,,){’)/(i)"“’)/'(i), for each i€ Ky, if ¥ and ' are two cones of Ff

with the same base, indexed by K.

There exists a canonical quasi-quotient neocategory if of 25 by r (it
is [E1l] the quotient neocategory of Zsc by the smallest equivalence rela-
tion containing r and compatible with the law of composition and with the
maps source and target of 25). Let 55: Zg - —Z—f be the canonical neo-
functor and put:
Ce={87|vele}, op=(%:,Tp).
Then Eg is a cone-bearing neocategory and 85 defines a morphism gf
from 0y to O . B
If U is a universe, the quotient of a U-set is a U-set, so that Z§
is a U-set when _2_5 is a U-set; if Fg is also a U-set, r_f is a U -set.
If o' is a presketch (2',["') and if Y = (o' ,,0) is a morphism,
Y is compatible with r, and the unique neofunctor
Y ié_— - 2" such that ' 8g =
defines the unique morphism
g-b.': E.f - o' such that —‘/;"gg = ‘;Z .

20 Let u be the smallest regular ordinal such that R < o for each
indexing-category of ¢ . As in Proposition 3, by transfinite induction we
construct a functor @ : < > — 8" satisfying the following properties, where

op =w (&) =(2g,1;) forany £< p:

- w(0)=o0;

- w({), for any limit-ordinal { < x, is the canonical inductive limit
of the functor wy: <> ~ S", restriction of @, and w ({,£): op =0y is
the canonical injection;

- Oy, for an ordinal { =&+ < i, is the cone-bearing neocategory ;g

associated to Oy in Part 1, and w ([,£) is the morphism Eg of Part 1.

We denote by o= (_Z—,F) the neocategory o, thus obtained, and

by & =(0,8,0) the morphism « (u ,0). As in Part 3-b, Proposition
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3, we see that
g = {w(€,0)y | yel'} forany €< .

Let o' be a presketch and ‘,Z: o =o' a morphism; the universal
properties of the inductive limit and of 85 (Part 1) permit to define by trans-
finite induction a unique sequence of morphisms Q’-f 1op 7 o', <,
such that $0 = J and

Pprw(L,E) = for E<l<p.

3¢ It remains to prove that O is a presketch. We suppose that 7y and

v' are two distinguished cones of " with the same base. Then there exist
cones Y:u" =@ and Y :u'"" = ¢ of I such that
vy=25v ad vy =8
Let K be the indexing-category of v (and of ¥'). For each morphism £
of K, the equality §¢ (k)= 3¢’ (k) implies the existence of an ordinal
fk such that §k < u and
W(EL0)(P(k)=w(&, 0)(E (k).
If £ is the ordinal upper bound of the family of the &, for k € K, we have
£ < u (since u is regular and K < /). By construction the cones
w(£,0)y and w(&,0)y"
are distinguished cones of 0y with the same base. Hence they are identi-
fied in Of 41 i€ we get
w(&E+1,0)y =w(E+1,0)y" .
Applying w (u ,£+1), it follows ¥y =7'. V
COROLLARY 1. The insertion functor from §' to 8" admits a left adjoint.

DEFINITION. A presketch o satisfying Proposition 5 is called a presketch

generated by o .

COROLLARY 2. Let 0 be a cone-bearing neocategory, o a presketch ge-
nerated by o and o' a prototype. Then the category S(o’,0) is isomor-
phic with §(o',0).

A. The Proof is similar to that of Corollary 2, Proposition 3. V
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REMARK. In [F] Proposition 5 is proved more generally for V -categories,

where V is a monoidal closed category.

PROPOSITION 6. Let o be a cone-bearing neocategory (2,1" ). There
exists a prototype o defined up to an isomorphism by the condition:
If U is a universe such that o €8y, then o isa free structure gene-

rated by o relative to the insertion functor from ¥ to &".

A. The prototype o will be constructed by transfinite induction, as
end of a «tower». The method is similar to that used in Proposition 3, the
only difference being that the non-limit step has to be slightly modified in
the following way:

Let us suppose that O, is a cone-bearing neocategory (Zg ,ré).
As in Part 1, Proposition 3, we consider the set {1 of the «formal factors»
(v,7'), where 7 €r§ and v’ is a cone in Zg with the same base as
¥, the same graph (U, 5,a ), on the sum U of 25 and (), and the free
category L generated by it. Let 7’ be the smallest equivalence relation on
L satisfying the condition (i’) formed by the condition (P) of Part 1, Pro-

position 3 and the condition

(UP"){v(’y(i))’V v(7y'(i)) for any object i of the indexing-category ofy
when (7y,¥') € and ¥ €I,

(deduced from the condition (P") of Proposition 5), where v: gf - U still

denotes the canonical injection.

Then —55 is the canonical quasi-quotient category of L. by ' (we
recall [E1]that 25 is defined as follows: let L’ be the quotient neocategory
of L by the smallest compatible equivalence relation containing 7' and the
free category L"” generated by the graph underlying L'; the category ig
is the quotient category of L" by the smallest compatible equivalence re-

lation such that
(x',x)~x".x if x'.x is defined in L' ).

If 25 is a U-set, 25 is also one.
Apart from this modification (i. e. r' satisfies both (P) and (vP"),

not only (P)), the construction of o and of the canonical morphism S from
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o to O is essentially the same asdone in Proposition 3; the proof of Pro-
position 3 may also be copied to prove that each morphism ¥ from o to
a prototype is of the form kZ' -5, Finally an argument similar to that of
Proposition 3 shows that the distinguished cones of o are limit-cones,
and we prove as in Part 3, Proposition 5, that two distinguished cones ad-

mitting the same base are identical. Hence o is a prototype. V

COROLLARY 1. The insertion functors from P to §" and from P to §
admit (left) adjoints. The categories &' and § admit F,-inductive limits.
If (3,1") is a cone-bearing neocategory, there exists a quasi-quotient pro-

totype of it, by an equivalence relation on 2 .
A . The proof is similar to that of Corollary 1, Proposition 3. V

DEFINITION. A prototype o satisfying Proposition 6 will be called a pro-
totype generated by o . If the canonical morphism S:0 ~0is injective,

we say that O is a sketch.

COROLLARY 2. If 0 is a cone-bearing neocategory and o a prototype ge-
nerated by o, for every prototype o', the category 8§(o',0) is isomor
phic with $(o' o).

A . The proof is similar to that of Corollary 2, Proposition 3. V

REMARK. The existence of an adjoint for the insertion functor from P to
&' is deduced in [ES] from the general existence theorem for free structures.
This fact is generalized in [F] for V-categories, where V is a monoidal
closed category. Sketches are introduced in [ES].Naturally each prototype
is also a sketch, and every sketch O generates a prototype of which O is

a subsketch.

PROPOSITION 7. Let o be a sketch, o a limit-bearing category genera-
ted by o and 7 a prototype generated by o. Then o and T are isomorphic.
A . Let us denote by
§=(c,8,0) and II =(7,Il,0)

the canonical morphisms. Since 77 is a fortiori a limit-bearing category, it

exists a unique morphism
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' =(7,01',0) such that 11'-8 =11

(this is valid even is O is not a sketch). If o is also a prototype, then

there exists a unique morphism

$':7 =0 suchthar &'+ =3

and, from the equalities

§-T'§=% and II'-8' 11 =TI,
we deduce that &' is an isomorphism, whose inverse is TI'. Hence Propo-
sition 7 will be proved if we show that o= (E,I—:‘) is a prototype, when
o is a sketch.

Indeed, let 7 and v' be two distinguished cones of [ with the

same base ¢'. Since
F={8y|yel}

(Proposition 3), there exist cones <y and ¥’ of [" such that v =287y and
.’)_/' = 8", The cones ﬁ’y and 11y are distinguished cones of the pro-
totype 77; as 11=11"' 8, we get

Iy =M'y and Iy =TI"%,
so that 11 and 117’ have the same base I1'¢’. Hence 11y = 119" . The
injectivity of Il implies ¥ =’ and, therefore, ¥y =%’ . V

We denote by o the full subcategory of §' whose objects are the

L]
sketches o € 50 .

PROPOSITION 8. Let o be a cone-bearing neocategory (2,1 ) and let
O=(7,11,0) be the canonical morphism from O to a prototype T = (s, )
generated by o. The presketch & image of o by Il is a sketch, charac-

terized up to an isomorphism by the condition:

If U is a universe such that o €8, then & is a free structure gene-

rated by O relative to the insertion functor from & to §".

A. We denote by S the sub-neocategory of = defined by the set I1(Z)
and by 7: 5 =X the insertion neofunctor. Let T1’: & = 3 be the neofunc-
tor restriction of I1 and [ the set of cones II'7y, where v €' . Then,

5=(3,) is a cone-bearing neocategory, 11’ defines a morphism I1°
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from O to & and 7 defines a morphism 7: & — 77 . Moreover 711" = I .

2° We are going to prove that 77 is also a prototype generated by &,
the canonical morphism being %; it will follow that & is a sketch 7 being
injective. Indeed, let o' be a prototype and _l,E”: & — o' a morphism. By

definition of 77, there exists a unique morphism

J':i7m =o' suchthat ' -1l =y - 11",

this equality may also be written ' 711’ =" -II' and, 11’ being sur-

jective, it follows that E' is also the unique morphism satisfying

757

o
o’ "
@n/ H . 3
- Il
i N A
— 2
U
,)7
5:' e T

30 Let o' be a sketch (2,17") and g_l—f: o — ¢’ a morphism. It re-
mains to exhibit a morphism
p": 8 - o' suchthar p"-I1' =;
the surjectivity of I will imply the unicity of such a morphism. Indeed,
the canonical morphism 1" = (o', 11",0") from ¢’ to a prototype (=',T°")
generated by o' is injective, 0’ being a sketch. As 77 is a prototype ge-
nerated by o, there exists a unique morphism [/—,' =(o' ,Y',7) such that

ﬁu 'Q/—:i’ .ﬁ =¢I .’7; .ﬁl .

As ' 7 maps s = II'(Z) into II"(Z') and as II” is injective, there is
a unique neofunctor

l1[}”1: i - zl SUCh that H”l/lm - Lpln;

. . . ' . . .« . .
it satisfies Y"1’ =, since II" is injective and
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H”men' =¢"77H, =‘1J’H :-H,Il,[/.
If ¥ e’ , we have ¥ =II"y for some vy €["; from the equality
H”\/Jm’j/ — HII‘,bmH"}’ - H”\/J ,y ,
we deduce II"y"% €', the neofunctor I1“y defining a morphism. Now,
1" is injective and T’ is formed by the cones 11”7, where 7' €["’. Hen-
ce, l//”,’)=/ € I"l .

So, Y™ defines the unique morphism

@'": & - o' such that @"' 00 = E \Y
. . 1 L] .
COROLLARY 1. The insertion functors from & to & and & admit left ad-

joints; & admits ¥, -inductive limits.

DEFINITION. A sketch & satisfying the condition of Proposition 8 is cal-

led a sketch generated by o .

COROLLARY 2. Let o be a cone-bearing neocategory, & a sketch gene-
rated by o and o' a prototype. The categories d(o',c) and §(o',&)

are isomorpbic.

A. The proofs of these corollaries are similar to that of Corollaries

1 and 2, Proposition 3. V

6. Types.

A loose type which is a presketch will be called a type. We are go-
ing to show that each §-cone-bearing neocategory ¢ generates a §-type 7
which is defined up to an isomorphism (and not only up to an equivalence,
as the loose g-type o generated by O). Moreover 7 is equivalent to g,

when O is a sketch.
We still denote by § a given set of categories.

DEFINITION. A g-cone-bearing neocategory which is a presketch (resp. a
sketch, or a prototype) will be called a §-presketch (resp. a §-sketch or a

§-prototype). A loose d-type which is a presketch is called a §-type.

A J-type o =(Z,[") may be identified with a category > admit-
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ting §-projective limits, equipped with a choice of a limit-cone with base
¢ for each functor ¢: K — 2, where Ked (i.e. with a g-type as defined
in[ES]).1f § is a cU-set, denote by Sg, Sg, (Pg and 3:,(] the full sub-ca-
tegories of S"g whose objects are respectively the -presketches, the §-

sketches, the §-prototypes and the §-types belonging to Se .

PROPOSITION 9. Let o be a§-cone-bearing neocategory. There exists a
d-type o characterized up to an isomorphism by the condition:
If U is a universe such that § is a U-set and o 65:, then o is a

free structure generated by o relative to the insertion functor S:QC"S'g .

A. The construction of O is obtained by modifying the construction
of the loose §-type generated by o (Proposition 4) in a way similar to that
used to deduce in Proposition 6 the construction of the prototype from Pro-
position 3. In 'fac:t, we have only to modify the transition from Og to Og 4
by alsoidentifying two distinguished cones with the same base. More pre-
cisely:

I If 0y is a cone-bearing neocategory (Z,,[";), we define as in
Part 1, Proposition 4, the graph (U, 8, @) and the free category L it ge-
nerates. But now we denote by 55 the canonical quasi-quotient category
of L by the equivalence relation satisfying not only conditions (P) and (P")
as in Proposition 4, but also the condition (vP") of Proposition 6. After

this modification,

1'*5 , Eg and 35 =(0og, 8¢,9%)
are defined formally as in Part 1, Proposition 4.

Now, let §' be a set of categories containing §, let o' be a ' -type
and :/7 = (o', Y, Ug) be a morphism. For each functor ¢: K —'25 , where
Ked, there exists one and only one cone M €'’ with base ¥ ¢. Hence,
by the method of Part 1-b, Proposition 4, we get one and only one morphism

Z,Z': gg ~ o' such that $' ’—3-5 = $
(while in Proposition 4 the morphism @' was only defined up to anequiva-
lence, the choice of 7, being not unique).

2 By transfinite induction, exactly as in Proposition 4:
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a) we construct a functor w: <u+1> = 5", where p is yet the least
regular ordinal such that K < 4, for each K e;

b) putting oc=w(p) and 6=w(pu,0), we prove that o isaloose
§-type;

c) using the last statement of Part 1, we show that, if ‘,—b: o =o' is

. 1 A . . .
a morphism from O to al -type, where 4' contains 9, there exists a uni-

que morphism
\I': o —~o' satisfying t,-b—' 5 = @. .
Finally, we see that o is also a presketch (and therefore a g-type),

by an argument similar to that used in Part 3, Proposition 5. V

g

COROLLARY 1. Let § be a U-set; the insertion functors from S:g to &',
to S‘g, to Sg, to ?9 and to gg admit left adjoints. ifg admits & o-induc-
tive limits. There exists a quasi-quotient §-type of a §-cone-bearing neo-

category (2,1 ) by an equivalence relation on 2 .

A The proof is similar to that of Corollary 1, Proposition 3. V
DEFINITION. A §-type o satisfying the condition of Proposition 9 is cal-
led a §-type generated by o .

COROLLARY 2. Let o be a 8-cone-bearing neocategory and o a g-type
generated by o. If o' is § -type, where §' contains §, the categories
S(o',0) and §(o',0) are isomorphic.

A . The proof is similar to that of Corollary 2, Proposition 3. V
REMARKS. In [ES] Proposition 9 is deduced from the existence theorem
for free structures. The explicit construction of o given here generalizes
that of Theorem 7 [E] (where [" is supposed void). Proposition 9 may be
extended for V -categories (see (FD.

PROPOSITION 10. Let o be a §-presketch (2,17},
$=(0,8,0) and G=(7,0,0)
the canonical morphisms from o to a loose §-type o= (2,1 ) and to a -

type T generated by o. Then the following conditions are equivalent:
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1° o is a sketch;

2° 5 is injective;

3° @ is injective.

If they are satisfied, T and o are equivalent.

A. 10 Notice that, to prove the injectivity of &, it is sufficient to
exhibit an injective O -structure | in a loose §-type o' ; indeed, there
exists then a neofunctor ' defining a morphism from o to o' which sa-
tisfies '8 =y ; this equality implies the injectivity of § when Y is
injective. In particular, if & is injective, & is also injective, for & is
a O-strucmre in the (loose) J-type 7. Similarly, & will be injective as
soon as there exists an injective O-structure in a §-type.

We denote by 77 a prototype (AZ,fﬂ) generated by o and by I

the canonical morphism from o to 7.

a) If @ is injective, then O is a sketch. Indeed, since 7 is also a
prototype, there exists a unique morphism
I': 7 =7 such thae II' Il =6.

@ being injective, II is injective, i. e. o is a sketch.

b) Supposing O is a sketch, we now prove the .injectivity of 8. Let
U be a universe to which belong K, for any Ked, and u’.‘Z.u, for any
pair (u',u) of objects of $. The category M of maps between U-sets
admits then §-projective limits, so that the category ' = WZ* of natural
transformations, where * is the dual of AZ, admits g-projective limits.
Hence the full §-limit-bearing category o' on Z' is a loose §-type. If we
consider the Yoneda immersion Y from 5 to 2', it is injective and it com-
mutes with projective limits; so Y defines a morphism Y:m =o' A for
tiori, YIl:oc~0'isa morphism from O to a loose §-type and, II being
injective by definition of a sketch, Y T is injective. From the initial re-

mark, we deduce that & is also injective.

2° We have yet to show that, if 8 is injective, & is injective and 7

is equivalent to o. For this, we will use the following result:

a) Let o' be a loose g-type (' T'") and t/} an injective o-structure
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in o'. Then there exists a subset [ of ! such that (Z',T") is a -
type ©" and that \J defines also a morphism ‘z o =",
Indeed, let @' : K = 2’ be a functor, where K €. Since Y is in-

jective, there is at most one neofunctor
U
¢:K -2 suchthat ydp=¢

and, O being a presketch, there exists at most one distinguished cone
v €' with ¢ as its base; hence there is at most one cone 7y €[ such
that @' is the base of Yy €. If such a cone ¥ exists, we denote the
cone Y7y by Y4'; otherwise, we choose one cone v' el with @' asits

base, and we denote it by Vgt - The set I'" of cones
Yo' o where ¢': K = 3' and Ked,

is a subset of ', and (=',I"") is a §-type o"; by construction, Y de-
fines a morphism from o to o”.

b) We suppose now that & is injective. Part a applied to S:0 -0
asserts the existence of ag-type o' = (i,f') such that [’ is a subset
of [' and that 8 defines a morphism 8': o — o'. By definition of the §-
type generated by O, there exists a unique morphism 5" =(o' , 8", 7) sa-
tisfying 6" *6 = 8'. This implies the injectivity of 0.

The identity of S defines a morphism ;7—: o' = o and we have:
;'gl = 8. There exists a morphism 8 = (T, 9',;) such that 6' +§ = 6.
From the equalities
ER LI I = O S TR
it follows (Proposition 4, condition 2) that the functor 8" @' whichdefines
the morphism %-g" ‘G0 0 s equivalent to the identity of Z. On the

other hand, the equalities

'(9".;.5".5='§'.;7'.5' -0 -5=0

o
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imply that the functor §' 5" defining the morphism &' *7-8": 7 = 7 isan
identity. Hence, 8" defines an equivalence from o to 7. V

COROLLARY. Let 0 be a g-prototype (3., 1" ). The canonical morphism
G:0 —7T from o to a $-type T= (2, T) generated by O is injective.

Moreover, ¥ is a loose §-projective completion of o. V

REMARK. The injectivity of O was shown in Theorem 6 of [E] .
Ii. MIXED LIMIT-BEARING CATEGORIES

7. Mixed sketches and mixed types.

Up to now, we have always considered neocategories equipped with
projective cones. Dually, we could deduce similar results for neocatego-
ries 2 equipped with a set of inductive cones (since this is equivalent
with equipping the dual of 2 with projective cones). In this paragraph, we
will generalize all the preceding results to the case where the neocategory

is equipped with both projective cones and inductive cones.
We denote by § and g two sets of categories.

DEFINITIONS. 1° A mixed cone-bearing neocategory (resp. category) is
a triple (2,I",V), where 2 is a neocategory (resp. a category), | a set
of projective cones in 2 indexed by categories and V a set of inductive
cones in 2 indexed by categories. We say more precisely that (2,17 ,V)
is a (4, 9)-cone-bearing neocategory if the indexing-category of each 7y

of T belongs to § and that of each kK €V belongs to ﬂ

2° If moreover 2 is a category, if | is a set of projective limit-cones
and V a set of inductive limit-cones, then (2,[",V) is called a mixed
limit-bearing category (or, more precisely, a (9, 9> -limit-bearing category).
30 A (4, 9)-limirbearing category (2,17 ,V ) is called a (mixed) loose
(4,9)-type if each functor b: K = 2, where K€d (resp. where K€ 9) is

the base of at least one cone ¥ €[ (resp. of at least one cone « € V).

40 A (4,9) -cone-bearing neocategory (Z,[",V) is called a (mixed)
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(4,9) -presketch if two different cones of [ (resp. of V) have different
bases. A mixed presketch which is a mixed limit-bearing category (resp.

a loose (4, §)-type) is called a mixed prototype (resp. a (§,9)-type).

5° A morphism between mixed cone-bearing neocategories is a triple

(o', ¢,0), where
c=(Z,',V) and o' =(=",I"", V"

. . . L
are mixed cone-bearing neocategories and Y : 2. = 2’ is a neofunctor such

that

Yyel' forany y €', YxeV' forany xeV.

6° Let 0 be a mixed cone-bearing neocategory and o' = (2', T V')
a mixed cone-bearing category. A neofunctor Y defining a morphism E from
o to o' (still denoted by @: o = 0o') is called a o-structure in o' . We
denote by (o' ,0) the full subcategory of X' z formed by the natural trans-

- . ’
formations between O -structures in O .

EXAMPLES. 1° Let 2’ be a category. The full (4,9)-limit-bearing cate-
gory on 2' is the triple (2',T7',V’') = o', where [’ is the set of all the
projective limit-cones in 2’ indexed by a category Ked and V' the set
of all the inductive limit-cones in =’ indexed by a K€ . If o is a mixed
cone-bearing neocategory, a O-structure Y in O is called a o-structure
in 2', and 8(o’,0) is then denoted by 8(Z',0), or by ='7 .

2° Let K be a category and o =(2,I",V) a mixed conébearing ca-

tegory. We denote by ok

the mixed cone-bearing category (=K, V),
where |’ is defined as in Example 2-2 and ¥ is defined dually from V.
When O is a mixed limit-bearing category, such is oK. 1f K is the cate

gory 2, as in Example 2- 2, we deduce from o2

the longitudinal mixed co-
ne-bearing category DO of quartets of o and the lateral mixed cone-bea-
ring category Ho of quartets of o (they are mixed limit-bearing categories

when such is 0).

PROPOSITION 11. Let o be a mixed cone-bearing neocategory and o' a
mixed cone-bearing category. There is a canonical bijection from the set

of morphisms of the category 8( o' ,0) onto S(Ho',0), .
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A. The proof is similar to that of Proposition 2. V

Let U be a universe. We denote by:

- 8ml the set of mixed cone-bearing neocategories (Z,I" ,V) such
that Z , T,V oare LU-sets, as well as K, for any indexing category K of
acone ¥y of [ or V.

- Sm" the category of morphisms between elements of Smd .

- g§,n: Sm" = F' the functor associating Y o (o', ,0).

"

- Pt , Sm' , Pm the full subcategories of Sm" whose objects are those
o € 8m% which are respectively mixed limit-bearing categories, mixed pre-
sketches and mixed prototypes.

- S"Qﬂ, ngﬂ and 3‘45, if § and § are U-sets, the full subcategories
of dm" whose objects are those O € &m? which are respectively (4,9 )-
cone-bearing neocategories, loose (9,9) -types and (94,9) -types.

- S'Lgﬂ and gf]’é] the quotient categories of S"QS and ggﬂ by the equi-
valence relation. generated by:

(o' ,\/J,cr)m(a',x//',O’) iff there exists an equivaleﬁce n: Y —'l,b'.
The category & may be identified with the full subcategory of Sm",
whose objects are those (2,I7,V) €88 such that V is void; similarly
P, 8 and 9 may be identified with subcategories of Pim', Sm' and Pm.
The categories gg and ?Q will be identified with Qgﬂ and ng]j correspon~
ding to the case where the set § is void.
We also obtain the analogous categories of morphisms between in-

ductive cone-bearing neocategories as subcategories of Om".

PROPOSITION 12. &m" admits Fo -projective limits and %, -inductive li-
mits; 4§, w commutes with projective limits and with inductive limits. The

categories Pm's Sm', Pm are closed for projective limits in Sm", as well

as Egﬂ, when § and § are U-sets.

A . The proof is similar to that of Proposition 1. The distinguished pro-
jective cones on the limit are defined as in Proposition 1, while the distin-

guished inductive cones are defined dually. V

PROPOSITION 13. Let O be a mixed cone-bearing neocategory. There exist:
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a mixed limit-bearing category o,
a mixed presketch 7',
a mixed prototype 7T,
characterized up to an isomorphism by the condition:
If U is a universe such that o belongs to %, then o, 7' and 7
are free structures generated by T relative to the insertion functors toward

Sm" from respectively Pum', Sm* and Pm.

A. Let u be the least regular ordinal greater than K, for any cate-
gory K indexing either a cone of [ or a cone of V. We construct o (resp.
7', resp. 7) by transfinite induction, as the end of a tower of mixed cone
bearing neocategories O, for £< 4, as in Proposition 3 (resp. 5, resp.
6), the only difference being in the non-limit step which we now describe.

We suppose for this that Og is any mixed cone-bearing neocatego-
ry (Zf,l“g,vg)_

1° In the construction of O, we associate to Og the mixed cone-bea-
ring neocategory O = ( Zf R 1“5 ,Vf) defined as follows. We denote by:

- {0 the set of pairs (,7') (or «formal factors»), where 7 € Ff and
9" is a projective cone in 2y with the same base as Y.
-0 the set of pairs («', k) (or «formal cofactors»), where x € V§
and «' is an inductive cone in ' with the same base as «.
= U the sum of Zg , £ and O , with injections:
v:iZy U, v:Q-uU, 30 -u
- (U, B,a) the graph such that

vix):rv(u) ~v(u') if x:u —u' isin Zf_

vy, y')rvlu') > wvlu) if (7v,y' )ell and if ¥ and ' have u
(&

and #’' as vertices.
Py ! . .
(' k) vlu) ~vlu') if (', k)€ and if « and «’ have u

and u’ as vertices.

- L the free category generated by (U, B,a) and r the smallest equi-

valence relation on L satisfying the condition (Pm) obtained by adding

Condition (P), Part 1, Proposition 3, and
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(K", k) v(k(i)))~v(k'(i)), if iekKs,
(P1) ', k)~ulz), if zezf and z.x(i) = «'(i) for any i€ K, ,
where (', k) €{) and K is the indexing-category of .

- —Z—g the quasi-quotient category of L by r and p: L _'zf the ca-

nonical functor.

The map © v defines a neofunctor 8§: 25 - ig- The triple gg =
(if y I-:'f ’vf) 5 where

ff={8§7|75r§} and vf = SgK |K€v§},
is a mixed cone-bearing neocategory and 35 defines a morphism

—

85 10 " og.
2° In the construction of 7', we associate to Og the following mixed
cone-bearing neocategory Og: Let 7 be the smallest equivalence relation
on _2_5 satisfying the condition (P"m) obtained by adding to the condition

(P") of Proposition 5 the condition:

P {K(i) ~ k'(i), for any i € Ko, if k and «' are two cones of V§
with the same base, indexed by K.

We denote by 25 the quasi-quotient category of 2, by rand we define the
canonical neofunctor S : 25 - fg and the sets ﬁg and 75 formally as in
Part 1. Then 0y =(2,,1'z,V,) and & :0p — 0 is defined by 3.

3° In order to get 77, we construct 55 as in Part 1, replacing only
the condition (Pm) by the condition (Pm) deduced from the conditions (Pm)
and (P"m) (as (f’) was deduced from (P) and (P") in Proposition 6).

4° To prove that o (resp. 77, resp. 77) has the properties indicated
in Proposition 13, we use the same arguments as in Proposition 3 (resp. 5,
resp. 6) for the distinguished projective cones, and dual arguments for the
distinguished inductive cones. (This is possible, since the parts of the
constructions involving inductive cones are just deduced by duality from

those involving projective cones.) V

DEFINITION. With the hypotheses of Proposition 13, we call o (resp. 7',

452



CATEGORIES OF SKETCHED STRUCTURES 43

resp. 7) a mixed limit-bearing category (resp. a mixed presketch, resp. a
mixed prototype) generated by 0. We say that o is a mixed sketch if the ca-

nonical morphism from o to 77 is injective.

We denote by Sm the full subcategory of Sm' whose objects are

the mixed sketches O € Smé, .

PROPOSITION 14. Let o be a mixed cone-bearing neocategory. There
exists a mixed sketch & defined up to an isomorphism by the condition:
If U is a universe such that o € Sm', then & is a free structure ge-

nerated by o relative to the insertion functor from &m to Sm" .

A. Let (7,I1 ,0) be the canonical morphism from O to a prototype
generated by o and G the mixed presketch image of o by Il. Then a proof
similar to that of Proposition 8 shows that & is a sketch satisfying the

condition of Proposition 14. V

PROPOSITION 15. Let o be a (4, §)-cone-bearing neocategory. There exist
- aloose (4,9)-type o, defined up to an equivalence,
- a (g,ﬂ)-type T, defined up to an isomorphism,
satisfying the condition:
Let U be a universe such that § and § are U-sets and o € dm". Then
o and T are free structures generated by O relative to the insertion func-

tors respectively from 53%‘ to S‘lgﬂ and from ffgﬂ to S"gg.

A. The construction of o (resp. of 7) is done by transfinite induction
by a method similar to that used in Proposition 4 (resp. 9), the only modi-
fication occuring in the non-limit step, which we now describe.

Let Og be a (9, ﬂ)-cone-bearing neocategory. We consider the sets
- ;5 , £, M and M’, defined as in Part 1, Proposition 4,
-0 , /\71 and /&' defined dually as follows:

0 is the set of pairs of cones ( k', k), where « Evf and ' is
an inductive cone in 25 with the same base as «,

A?I is the set of neofunctors $: K — 25 , where K€ f] , which are not
the base of any inductive cone k € Vf ,

M’ is the set of pairs (¢, i), where €M and i€ K, .
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We denote by U the sum of these seven sets, by

a1

' 2 ar A
v, v, w, w, v, w, W

the canonical injections into U. We get a graph (U, 3, a) by imposing
condition (G) of Proposition 13 and
w' (i, d)rwl(d) ~ov(Pp(i)) if (i, PleM,
D (Poi):v( (i) () if (¢,i)el’.
Let L be the free category generated by this graph and 7 the smallest equi-
valence relation on L satisfying the condition (Pm) of Pare 1 (resp. (f’m),
of Part 3), Proposition 13, the condition (P') of Proposition 4 and

A b i) (PR~ (P, i), if (Pp,i)eM, P K —'Zf ,
(P'i) ‘
k:i'—1i in K.

There exists a quasi-quotient category if of L by r and, if p is
the canonical functor from L to if , then p v defines a neofunctor 85,
from 25 to _Sé— .

Let ¢: K = Zé be a functor. If ¢ € M, we define a projective cone

Yé: olwld))” “'35¢, the «formal projective cone associated to ¢», by
’)’qs(i) =plw'i, ¢)), forany 7€Ko.

If ¢ 6/;4, we define an inductive cone Kp :3£¢ = o @(P))" , the «formal
inductive cone associated to ¢», by: '
K¢(i) = p(%'(¢h,i)), for any 1€ Ko .

We denote by

- Ff the set of cones 8,7 where Y €el’y, and 7, where d>€M

- Vf the set of cones 55 k where x Evé— »and Ky where ¢€M

- 0y the mixed cone-bearing category (Zf ,I_'f ,V ),

- gg tog - O’é— the morphism defined by J, .

If —LL =(U',1,Z/,U§) is a morphism from 0z to a loose (49,9)-type

o', we can choose one (resp. to a 4,9 ) -type o', there exists one unique)
distinguished projective cone Me in o' w1th Y ¢ as its base, for each

¢$eM, and one distinguished inductive cone 'r]¢, with @' as its base,

for each ¢' ¢ M. As in Part 1 Proposition 4, we see there is a unique mor
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phism @': Ef - o' such that
Y Be=y, Ylyg=m, if deM,
P kge =g if P EM.
The construction of o (resp. of T) is done just as in Proposition
4 (resp. 9), but with this modified definition‘ of gg . The proof of Proposi-

tion 15 is completed similarly. V
DEFINITION. With the hypotheses of Proposition 15, we call o aloose
(9,9)-type generated by o and T a (4,9)-type generated by o . The ca

tegory underlying o is called a loose (%, 9)-completion of o .
The preceding Propositions admit the following corollaries:

COROLLARY 1. In the diagram

P

"

P oo S o smKCsm I 89
\\\\m/%‘/

the insertion functors admit left adjoints, all the categories admit Fo -induc-

tive limits and the functors toward W admit quasi-quotient structures.

COROLLARY 2. The corollaries of Propositions 3, 4, 5, 6, 8 and 9 are still
valid when (projective) cone-bearing neocategories are replaced by mixed

cone-bearing neocategories.

Let o be a(9,9)-cone-bearing neocategory. We will denote by:
o a mixed limirbearing category,
77 a mixed prototype,
7' aloose (4,9)-type,
T a(g,ﬂ)'type,
generated by 0. From Corollary 2, we deduce:
COROLLARY 3. 1°If o' is a($,9)-type, the categories
8(o', o), 8(o',m), 8(o',0) and (o', 7)

are isomorphic, and they are equivalent to S(o' ,T').
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2° If 2' is a category admitting -projective limits and §-inductive
limits, the categories 2'7 and Z'° are isomorphic, and they are equiva-

’
lent to the category Z'7 ,

PROPOSITION 16. Let o be a (4,9)-cone-bearing neocategory. The fol-
lowing conditions are equivalent:

1° o is a mixed sketch.

2° The canonical morphism §:0 —»7'is injective.

3° The canonical morphism G:o > 7Tis injective.
If they are satified, then

77 is isomorphic with L—T—,
{ T is equivalent to T' .

A. The proof is just similar to that of Propositions 7 and 10, except

that Part 1-b of Proposition 10 must be modified as follows.
We suppose that O is a mixed sketch (2,1 ,V); we want to exhi-

bit an injective O-structure in a loose (g,ﬂ)-type. As in Proposition 10,
we consider the canonical morphism o= (m,11,0) frorﬁ O to a prototype
7= (i ,fﬂ ,v) generated by o, a universe U such that K, for any cate-
gory K belonging to § or §, and «'. AZ.u, for any pair («', u) of objects
of Az, are U-sets, and the Yoneda immersion Y from b3 to mz*. But Y
does not commute with inductive limits. So we take the full subcategory 2“
of Z' = m}l* whose objects are functors F: $* oM commuting with ﬂ-pro-
jective limits. It is known (see, for example, [J]) that =" admits Fo -pro-
jective and inductive limits. (In fact, 2" is closed for projective limits in
3’ and the insertion functor from =" to ' admits a left adjoint). Moreover,

there exists [Lb] a restriction

yeS a3 o v:E o3,
which commutes with projective limits and with 4 -inductive limits. It fol-
lows that the full (g,ﬂ)-limit-bearing category on 2 is a loose (4,9)-type
o", and that Y' defines an injective morphism Y’': 7 - 0" . Hence Y'Il

. PR . . "
is an injective O-structure in the loose (g,ﬂ)-type o". V

REMARK. If 0 is a mixed limit-bearing category, the «type part» of Propo-
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sition 15 and the injectivity of 6 are stated in Theorem 15 [E]. The ex-
plicit constructions of the generated loose (g,ﬂ)-type and (g,ﬂ)-type T
are yet suggested by that of Theorem 8 [E] (the construction of the type
7 has also be done for V-categories [F]). Proposition 16 generalizes

Theorem 14 of [E] (which corresponds to the case ['= @ = V),

. . ' 4
DEFINITION. Let o be a mixed (§,)-cone-bearing neocategory. If o
. . o . . . !
is a mixed limit-bearing category (Z',["', V'), we say that o is o' -regu-
lar if each o -structure in 2’ is equivalent to a O -structure in o'. If O is

o' -regular for each (4,9)-type o', we say that o is regular.

. o e e . . [
This definition means that the insertion functor from &(o ,O) to

' . . .
3" 7 defines an equivalence between these two categories.

COROLLARY. Let O be a (g,ﬂ)-sketcb and &' a mixed prototype (resp.
a (8,9)-type) (=',T'',V'). Then o is O'-regular iff a prototype (resp.
4,9)-type) o generated by o is o’'-regular.

A. We denote by (U 8,0) the canonical morphism, by F the func-
tor from ' 7 to Z'° assigning 6’8 to 6'. By Proposition 16, & is also
a limit-bearing category (resp. a loose (§, d)-type) generated by . So, ac-
cording to the proof of Corollary 2, Proposition 15 via Corollary 2, Propo-
sition 3 (resp. via Corollary 1, Proposition 4), there exists a functor G from
SIO o 31T such that G is an inverse of F (resp. such that FG is an
identity and G F is equivalent to an identity).

1o If o is o'-regular and if u is a o-structure in 2, there exists
an equivalence 7’ from the & -structure G(p)in 2' to a o -structure v
in o', and "8 :G( )8 —»'S isan equivalence from i to the O -struc-
ture '8 in o, since G(pn )8 =FG(p) = .So o is o’ -regular.

2° We suppose that o is o' -regular. Let v be a & -structure in >
there exists an equivalence & from v & to a o-structure Y in o', and
G(£) is an equivalence from G(v 8) to G(). By definition of &, there
exists a O -structure Y' in o' satisfying F(Y') =y 'S=y. As '
equivalent to GF(y')=G(y) and v to G(v8)=GF(v), the func-

s ‘ . A ‘
tors ¥ and Y are equivalent. Hence, o is 0 -regular. V

REMARK. Most usual sketches are regular. More generally, we say that
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o is loosely o' -regular if the categories 2.’ and 8(¢’,0) are equiva
lent. From Corollary 2, Proposition 15, we deduce at once that ¢ is loose-
ly o' -regular, where o' is a mixed prototype (resp. a loose (g,ﬂ)-type,
resp. a (9,9)-type) iff so is a prototype (resp. a loose (g,fj)-type, resp.
a (4,9)-type) generated by O . In several papers, regular meansloosely
regular. In particular in {[L], each mixed cone-bearing neocategory is uni-

versally immersed into a loosely regular one.

8. Corresponding 2 -categories of bimorphisms.

In this paragraph, we give a reformulation of the preceding results
in terms of 2-categories. The categories Pm', Pm,... appear as the catego-
ries of l-morphisms of representable and corepresentable 2-categories and

the adjoint functors constructed above extend into 2-adjoints.

2-categories will be considered as those special double categories
(or category-objects in F) (C’, C™ ) for which the objects of the category
C’ are also objects of the category c* (they are often considered as ¥.
categories, relative to the closed cartesian category .

Let C be a 2-category (C , C*). The categories C' and C* have
the same set of morphisms, denoted by C, and whose elements are called
bimorphisms (or 2-cells) of C. The category C° will be called the catego-
ry of bimorphisms of C (or « strong category» [G]), and written €, while
c* , also denoted by G , is called the transverse category ( or « weak» ca-
tegory) of C. We say that an object of €~ is a vertex of €, and that an ob-
ject of C is a 1-morphism (or 1-cell) of C. The set of 1-morphisms de-
fines a subcategory of @, denoted by l@l If » is an element of Q, it
is both a morphism b: f —f' in C”" and a morphism in C°, with source the

source e of the l-morphism [ (or f’) in ]@ I and with target the target e’

of { in l@ |; to «visualize» the two laws, we will write:
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or, more precisely:
h:f=f:e=ze in C.

The 2-category C is said repfesentable (resp. corepresentable)
[G1] if the insertion functor I from ](‘3[ to the category of bimorphisms
C’ admits a coadjoint (resp. a left adjoint) O . A cofree (resp. free) struc-
ture generated by a vertex e of € is called a representation (resp. acore-
presentation) of e. Hence Oe is a representation of e iff there exists a
bimorphism Oe : Oe 33 e such that, for each bimorphism 5 : ¢/ 2 e, there

is a unique 1-morphism
h': e’ = De satisfying Je.h' = h.

tf C is a representable 2-category, the triple on IG ‘associated
to the pair (I, O ) of adjoint functors admits the category of bimorphisms

of C as its Kleisli category.

We still denote by JU the 2-category of natural transformations asso-
ciated to the universe U (we call a 2-category by its bimorphisms, and
not by its vertices, as usual). Its category of 1-morphisms |f)'(‘ is the ca-
tegory F of functors associated to U. Its transverse category is the sum
of the categories b 2, where = and 2’ are categories whose sets of mor-
phisms belong to U. The law of its category of bimorphisms is the lateral

composition of natural transformations: If
Tip—- @' Z 32 and Tiv -3 3

are natural transformations, their lateral composite, denoted by 7' *T or by

’ - .
T T is the natural transformation:
¢ mrvriveg-ov @ E 33,
T is representable and corepresentable, a representation of the ca-

tegory 2 being the lateral category HS of quartets of 2 and a corepresen-

tation of = being the product category 2 x2 (see [G1]).

Using N, we are going to define a representable and corepresentable

2-category, whose category of 1-morphisms is the category of morphisms
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between mixed cone-bearing categories.

DEFINITION. A bimorphism between mixed cone-bearing categories is de-

fined as a triple 7=(y', 7,0, where
J:’(OJ)‘#”O—) and @':(o—"\p"g)

. . - - L -
are morphisms between mixed cone-bearing categories and 7: Y ~ Y’ is

a natural transformation between the underlying functors.

We also say that 7 is a bimorphism from ¥ to ' defined by 7 ,

denoted by one of the following formulas:

Ty =Y, Tiozd, iy oYtio g0,

Let 0 and o’ be two mixed cone-bearing categories. We define the
longitudinal categorykg(cr',d) of bimorphisms between 0 and o' as the
set of bimorphisms Tio 30’ equipped with the longitudinal composition:
The longitudinal composite of (7",;) exists iff

T=( 7, ) ad T =($", T,
and it is then equal to the bimorphism, denoted by 7' o7,
TmTYy =Yoo 20,
defined by the natural transformation 7' o 7.
The category S(0',0) is trivially isomorphic with S(o’,0).
If 710 =o' and F': o' ~o" are bimorphisms, where
T= (\Z','r,kZ) and T =(v', 7", V),
the natural transformation 7" 7 defines a bimorphism
G:vy "' 0 20",

we call G the lateral composite of (7",7) and we denote it by T,

We consider still the set dm" of mixed cone-bearing neocategories
associated to the universe U and the corresponding category of morphisms
Sm". We denote by:

- Fm" the subset of Sm! formed by those o whose underlying neoca-

tegory is a category,
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- Fm" the full subcategory of Om" of morphisms between mixed cone-
bearing categories belonging to Fmj ,

- JFm" the 2-category of bimorphisms associated to U: its category
of bimorphisms is formed by the bimorphisms 7:0 30’ such that o and
o' belong to 3;“:; ,» the law of composition being the lateral composition;
the law of its transverse category is the longitudinal composition (cate-
gory sum of the categories &(0',0)). In particular, the category of 1-
morphisms is Fmn .

- JiFm' and NFm the 2-categories of bimorphisms between mixed pre=-
sketches and sketches on a category, i. e. the full sub-2-category of NFm"

whose sets of vertices are respectively
Fmh =FmINSmy and Fme = FmlN 8o .
- T Pm , .T((f'm, nggﬂ and )'(S"gﬂ, where § and ﬂ are U-sets of catego-

ries, the 2-categories of bimorphisms between mixed limit-bearing cate-
gories, prototypes, loose (g,ﬂ)-types and (9,5)-tybes, i. e. the full sub~
2-categories of JiFm" whose sets of vertices are respectively S)m'o, Pmo,
fgg and 3‘;?5

All these 2-categories are canonically equipped with a faithful 2-

furictor toward J .

PROPOSITION 17. The 2-category NFm" is representable and corepre-

sentable.
A. Let o be a mixed cone-bearing category (=,[",V ).

1° o admits as a representation the lateral mixed cone-bearing cate-
gory Ho of quartets of O, for any universe U such that o€ Fm? .
Indeed, let @ and b be the functors from HZ to = defined by the
mappings source and target of the longitudinal category 2. By defini-
tion (Example2-7), Ho is the category B equipped with the sets
- T of projective cones ; such that a—')7€ I and b;e r,
- V of inductive cones x such that ax €V and breV .

In particular, @ and b define morphisms

a: Ho - o and b: B0 -0o.
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To the identical morphism of Ho, Proposition 11 associates a bimorphism
do=(b,j,a):B0 30
(where j is the natural transformation from @ to b assigning the morphism

x of Z to the object x of BZ).

Let o' be a mixed cone-bearing category (2,1, V'Y and
T=(' )0’ 20
a bimorphism. The unique functor T:2' — BZ such that j T = 7 defines

a morphism from o' to Ho (Proposition 11), which is the unique morphism
T:o0' »Bo suchthat do0-T =7,
Hence Ji¥m" is representable, Ho being a representation of o .

2° We denote by:
- 5 the category >x2,
- v and V' the functors from = to > associating respectively (x,0)
and {x, 1) to the morphism x of 2,
- f the set of cones vy and 'y, where yel
- V the set of cones v« and V' k, where K€V .
Then (Z,f—' ,v) is a cone-bearing category o and v and v’ define mor
phisms Vv and v’ from O to O. By assigning (e,(1,0)) to an object
e of 2, we get a natural transformation &: v — v', and therefore a bimor
phism 0 = (;',9,;): o 20,
o is a corepresentation of 0 in JIFm" for any universe U such
that o € C.fm},' . Indeed, let
F, =($'7711¢) e :OJ
be a bimorphism, where o' is a mixed cone-bearing category (2',I"',V').
As 2 is a corepresentation of > in JU, there exists a unique functor
T':5 ~5' suchthat T'6=1".
This functor defines a morphism T:0 =o' , since
T'vy=yy and T'v'y=y¢'y,

for any distinguished cone ¥ in 0. Then T' is the unique morphism sa-
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tisfying T -6

ox2

The cone-bearing category O considered here above will be deno-

ted by oX2.

REMARK. 0X2 is not defined as the product of two cone-bearing catego-
ries. However, if § and J are given sets of categories, we can define a
prototype 2 by equipping 2 with the set of all «constant» projective cones
in 2 indexed by a category K €4, and with the set of all constant induc-
tive cones indexed by a category of 4. Then, for each (g,ﬂ)-cone-bearing

category O, the product 0 x2 in Fm" is identical with o X2.

PROPOSITION 18. Let X denote anyone of the symbols
Fu', Fnt, Fn, Pt , P, 99, S,

where § and § are U-sets of categories.

1° If X £ Fm', then RX is representable, a representation of a ver-
tex o being Ho.

2° If fx#ﬁgg and X # 3:95, then JX is corepresentable, a corepre-
sentation of O being o X2.

3° 313'95 is corepresentable, a corepresentation of o being a ($,9)-

type generated by o X2 .

A.1° A full sub-2-category JIX of the representable (resp. corepre-
sentable) 2-category NFm" to which belongs a representation (resp. a co-
representation) of each vertex o of JIX is representable (resp. corepre-

sentable). So assertions 1 and 2 result from the following facts.

a) If 0 is a mixed limit-bearing category, so is Ho . Since a constant
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functor toward 2 admits its unique value both as a projective limit and
as an inductive limit, 0 X2 is also a limit-bearing category. Hence NP
is representable and corepresentable.

b) If o is a mixed presketch (resp. prototype), o X2 is also one, so
that J1Fm' and N¥m are corepresentable.

c) Let o be a mixed prototype (2,I" ,V ). Then the mixed limit-bea-
ring category Ho is also a presketch, i.e. a prototype. Indeed, let ¥ be
a distinguished projective cone in Ho, with base T and vertex x .Objects
of HZ are identified with morphisms of 2 and we denote yet by @ and b
the functors from HZ to 2 determined by the mappings source and target
of M2 . By construction, a7y and b7y belong to [, so that ay and b y
are the only cones of I with bases aT and 47 (for ¢ is a presketch).
Moreover, b; being a projective limit-cone, x is the unique morphism of

2. such that
(by)x=0may, where G:aT ~6T

is the natural transformation canonically associated to the functor T to-
ward HZ . Hence ; is the unique distinguished projective cone in Ho,
with base 7T . Similarly, there is at most one distinguished inductive cone
of Ho with a given base. This proves that Ho is a mixed prototype. A
fortiori, J1Pm is representable.

d)If o is a (g,ﬂ)-type (resp. a loose (g,ﬂ)-type), so is Ho, which
implies that N‘fgﬂ and ?Lﬁgﬂ are representable.

e) Let 0 be a mixed sketch (2,I",V ), where 2 is a category; let

Il be the canonical morphism (7,11 ,0) from O to a prototype 7 gene-
rated by o .

Ho is a mixed sketch. Indeed, let II' be the canonical morphism

from Ho to a mixed prototype it generates. From Part c, it follows that

H7 is a prototype. The functor BII (assigning
((y ), I(x' ), T(y), ll(x)) to (y',x".x.y))
defines a morphism HII: Ho —~ B#. So there exists a unique morphism

T1” such that BT =T1" +1I'. Since Il is injective, BIl is alsoinjective
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X2

and the preceding equality implies the injectivity of 11’ . Therefore, Ho
is a mixed sketch, and lFm is representable.

Similarly, 0X2 is a mixed sketch, because the functor [T X2 de-
fines an injective morphism TIX2 from 0X2 to the prototype 77X 2 (Part

b). So Im is corepresentable.

20 Let o be a (4,9)-type. Then o X2 is not a (§,9)-type, but it
generates a (§,9) -type o. By transitivity of free structures, o is a free

structure generated by O relative to the composite insertion functor

F e Far Ty

A fortiori O is a corepresentation of O in the full sub-2-category ?-(3:95

of JFm" . V

o o X2
v

COROLLARY. NMFm' is not representable.

A . Let o be a mixed presketch (2,17 ,V), where = isa category.
I° Ho may not be a presketch. Indeed, we still denote by a and b
the functors from HZ to = determined by the mappings source and target
of 2. Let T:K —»HZ be a functor and 7: K 3 5 the corresponding
natural transformation. If ‘
v:e” =aT and ’}/': e'” = bT

are cones of [, for any morphism x:e —e’ in Z such that ' x = 73y,
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there exists a cone ¥, :x" =T in HBZ such that
- PR ]
ay, =y and by, =Y,
- . . . . . . . ..
and this cone is distinguished in Ho. As ¥ is not necessarily a limit-

cone, there may exist another
€ > a ! v = T
y . such that Y == mYy,

and so another distinguished cone ;y in Ho with base T. Then Ho is

not a presketch.

. . - . G
20 Let us suppose there exists a representation O of O in JFm' and

denote by :7‘ =(0,m ,&) the canonical bimorphism. Let
do =(b,j,a):Bo =o

be the canonical bimorphism defining Ho as a representation of o in the

2-category JFm" (Proposition 17). There exists a unique morphism

g = (EU,;[/,(AT) such that d0-y = 7).
We are going to show that ;/; is an isomorphism, which is impossible in
the case where H¢ is not a presketch.

a) Y is an isomorphism. Indeed, let 7: 2’ = 2 be any natural trans-
formation. It defines a bimorphism T:0' 3 o, where o' is the mixed pre-
sketch on Z' without any distinguished cone. There exists a unique mor-
phism T = (&, T,0") such that 7+T = 7, this means that T is the uni-
que functor satisfying 777 = 7. Hence 7) defines the underlying category
of o as a representation of S in . As ; defines HX as arepresenta-

tion of = in JU, the functor ¥ such that j\ = 7 is an isomorphism.

T

b) The inverse W™l of { defines a morphism from Bo to o. Indeed,
let 3/- be a distinguished cone of Ho. We get a mixed presketch & by
equipping HZ with ; as its only distinguished cone; j defines a morphism

7+ 5 — 0. So there exists a unique morphism
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' = (5’,#}',5) satisfying ny’ =7
in other words, Y’ is a functor such that 'y is a distinguished cone
of 0 and MY’ =j. It follows jYy' =j, which implies that Yy’ is an
identity functor. ) being an isomorphism, we have ' =y!. Hence,

(BO',H[’_I ,5') is a morphism, inverse of _l,E Y,

REMARK. The 2-category 315345 is not corepresentable, but it is weakly
corepresentable {G1], a vertex o admitting as a weak corepresentation
a loose (g,f])-type o generated by 0 X2. More precisely, let 0 be the
canonical bimorphism defining 0 X2 as a corepresentation of o in N Fm"
(Proposition 17, Part 2) and §:0X2 =0 the canonical morphism. If o'
is a loose (g,ﬂ)-:ype, o =o' a bimorphism, there exists a morphism

T', defined up to an equivalence, such that T'+(8+0) = 7".

If § and g are U-sets of categories, we denote by T(?m"gg the
full sub-2-category of T m" whose vertices are those (4, 9)-cone-bea-

ring categories belonging to S'ng .

PROPOSITION 19. In the /ollowingdiagram of 2-functors,

mmk iF " NFIC o NF ¥

where the 2-functors toward JU assign to a bimorphism (o', 0,0 ) the

natural transformation 6, all the 2 -functors admit 2 -adjoints.

A. All the 2-functors of the diagram are 2-functors between represen-
table 2-categories, which commute with the reﬁresentations by Proposition
18. Moreover their restrictions to the categories of l-morphisms admit left
adjoints. Indeed, this results from Corollary 1, Proposition 15, for the in-
sertion 2-functors. Now let py: JX =N be one of the 2-functors toward
7. Assigning to a category = the trivial mixed prototype = on S (without

any distinguished cone) and to a natural transformation 7: 2 3 2’ the bi-
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morphism Ty =3 defined by T, we get a 2-functor J9: U= NX; its res-
triction l]fx l ¥ - X is an adjoint of the restriction ]pfx | X ~F of Y- So

Proposition 19 follows from the lemma:

LeMMa. Let H be a representable 2-category and p:H —C a
2-functor satisfying the following conditions:

- Foreach vertex v of H, let dv: ov = v be a bimorphism which
defines OV as a representation of v, then p(0v) defines p(av) as
a representation of p(v) in C.

- The funcror Ipl “{! - l@l restriction of p admits an adjoint q.
Then q extends into a 2-adjoint of p.

a) The functor p: H° — €  underlying ¢ admits an adjoint Q ex-
tending g. More precisely, for each vertex o of €, the canonical mor-
phism & _: 0 = p(q(0)) corresponding to the pair of adjoint funcrors
{ |p| g) defines also g( o) as a free structure generated by O relative
to p . Indeed, let o be a vertex of  and v = g( o). If v' is a vertex
of { and 7: 0 3 p(v’) a bimorphism in C, there exists a unique I-mor-
phism T:0 —p(0v') such that p(Ov') T =7, since p(dv' ) de-

fines p(ov') as a representation of p(v'). To T is associated a uni-

p(m/')f’(v')

p(T)

p(v) %

a
que 1-morphism

T': v »ov’ suchthat p(T"):5, =T.
From the equalities
POV T )8 =p( W' ) p(T )8, =p(w') T=r,
it follows that 9 v’ * T" is the unique bimorphism
‘ :

7' v = v' such that [7(7")'50r = T.

Hence, V is a free structure generated by o relative to p .
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b) The map Q underlying the adjoint functor Q' of p' also defines

a 2-functor 0:C —~H, so that Q is a 2-adjoint [G] of p. Indeed, we
denote by;

.
- C(o',0) the subcategory of the transverse category C of € for-

med by the bimorphisms 6: ¢ =o',
- C(N,N), if \ip~ 0 and N': o' —=p’ are 1-morphisms of ©, the

functor from C(o’, o) o C(p’, p) assigning the composite A’ *&-\ to
6:0 zo'.

Let o and o' be vertices of C; we write
v=g(o) and v' =q(c’).
As p is a 2-functor, there exists a functor
by, N v) = Clp(v'),p(v))

defined by a restriction of p. The map g assigning p('T')'So to the

bimorphism 7':v = V' defines the functor
Eo=Clp(v'),8 )b ., : H(v' v) - C(p(v'), o).
Part a proves that g_ is a bijection; it follows that §_ is an isomorphism.

V! p(v') S,

\

Q'(9)

% p(v) §_ 7
The functor
g, 1€, ., 0):C(a’, o)~ H(v', v)
associates Q' (6) to 0: 0 30’ since O (0) is the unique bimorphism
O'-v = v' such that 17((9')'50r = 50_, - 0.
The category @-L being a sum of the categories C(o', o), we deduce

4 -+
that Q defines a functor from C to } , and also a 2-functor Q. V

REMARK. Proposition 19 gives a more axiomatic proof of Corollary 2,

Propositions 3 or 15.
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ill. MONOIDAL CLOSED CATEGORIES OF SKETCHED MORPHISMS

Let o be a projective limit-bearing category and 0 a symmetric
monoidal closed category [EK]. Under some conditions on o, the catego-
ry V7 of 0 -morphisms in the underlying category V of O admits a symme-
tric monoidal closed structure. This is applied to the category of functors

(or «category of category objects») in V.
10. Cartesian closed structures on J°.

. . .. . . o
After some notations, we give conditions on O , insuring that M

admits a cartesian closed structure.

If §:p —p': L 3K is a natural transformation, for any y: e — e’
in L, we denote by &(y) the morphism G(e'}).p(y)=p'(y). O(e).

Let P: K'XK —= C be a functor (of «two variables»). If p- L —K
is a functor, we denote by P(s,p-) the functor from L to C assigning
P(s,p(y)) to ye L, for each object s of K; we denote by P(x,p-) (or
by P(x,p), if this does not lead to any confusion) the natural transforma-
tion from P(s,p-) to P(s',p-} such that P(x,p-)(y)=P(x,p(y)),
for any ye L, if x: s = s’ is a morphism in K'.

If p=1Idy,wewrite P(x,-) instead of P(x,p-). If p is the dual
g* of a functor g, we write also P(x, g-) instead of P(x, g*-).

Similar notations are used relative to the other «variable», and for
functors of «more than two variables».

Let K be a category. The functor Homy : KXK* =N will often
be denoted by K(-,-), so that the set of morphisms x: e — e’ in K is
written K(e', e) (and not K(e, e') as usual).

We say that K admits a cartesian closed structure if there exists
a cartesian closed category K, whose underlying category is K. This
means that K admits finite products and that, for each object e of K,
the partial product functor - Xe: K - K (corresponding to a choice of fi-
nite products on K) admits a right adjoint. Then we call closure functor
on K a functor D: KXK* = K such that D(-, e) is a right adjoint of

-Xe, for any object e of K (such a functor is the internal Hom -functor
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for a closed category [EK] underlying a cartesian closed structure on
K). The product functor X and D are defined up to an equivalence, so

that K is determined up to an isomorphism of cartesian closed categories.

From now on, we denote by:

- O a projective limit-bearing category (2 ,1"),

- § the set of indexing categories of o,

- o the «dual of o », which is the inductive limit-bearing category
(=*,0% , whose distinguished inductive cones correspond by duality to
projective cones y €l |

- U a universe, to which belong 5 and I, for each €,

- M the category of maps between U-sets.

The functor Z(-.u): 2 =) commuting with projective limits,
it is a o -structure in M for each object u of 3. Hence the Yoneda im-
mersion ¥ from =¥ to mz takes its values in the category M7 of o-
morphisms (i. e. of morphisms between O -structures) in . We denote by
Y the functor from 3 to M7, restriction of Y.

This functor Y is in fact a 0 -structure in M, called the Yone-
da o structure. ( Indeed, this will result from Proposition 3-1[Lb],
if MO(F, Y-) is a o-structure in M for each object F of M7, i.e. for

each o -structure F; this holds since, by Yoneda Lemma, we get
MO(F, Y-)=M(F,-)y* =ME(F,-)Y*< F).

Let V be a category. The category V7 of o -morphisms in V is
a full subcategory of VZ, closed for equivalences (i.e. a functor equiva-
lent to a O -structure in V is also one). If V admits projective limits in-
dexed. by a category K, the category V¢ admits also projective limits in-
dexed by K, and the insertion functor from V? to v commutes with these
limits [E4] (since in VZJ these limits are computed evaluationwise and
projective limit functors commute with projective limits of any kind). In
other words, V7 is closed in V2 for projective limits indexed by K.

Since M admits F, -projective limits, where F, is the set of all
the categories whose sets of morphisms are U-sets, M7 admits also %, -

projective limits. In particular, ? admits finite products. From the ca-
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nonical product functor on M, we deduce the product functors X and X
on MZ and on M°. For each o -structure F in M, we denote by - XF the
canonical partial product functor from M% to MY, which assigns to a o -

structure F' in W the o-structure F'XF in M such that
(F'XF)(x)=F'(x)XF(x)

for each morphism x: u —~u’ in 2. It is a restriction of - X F: mE-m2

In particular, for any object # of X, we have the partial product
functor -X Y(u): M7 - M.

PROPOSITION 20. M7 admits a cartesian closed structure iff the functor
-X Y(u) commutes with §-inductive limits, for each object u of T. In
this case:
1° M® admits a closure functor M assigning to the pair (F', F)of
o-structures in M the functor MO(F', FXY-)=Mo(F’,-)( Fx-)*Y*,
2° For each o -structure F in M, the Junctor I—VI—(F, Y-): S =W is
a o -structure in W%, and M(F', F) = Mo M( F*, Y-),F).

A. 1f % admits a cartesian closed structure, the partial product
functor -XY(u) admits a right adjoint, so that it commutes with induc-
tive limits, for any object u of Z.

We suppose now that - X Y(z) commutes with §-inductive limits,
for each object u of X,

mz admits a cartesian closed structure whose closure functor M
associates MZ( 6’ ,-)(6x Y-)* to each pair ( 8',6) of morphisms of
fmz(see for example [GZ], Chapter 2-1). To show that I? admits a car-
tesian closed structure, it is sufficient to prove that ZI'I(F', F) is a -
structure when F and F' are o -structures, for this implies the existence
of a functor M : mUX(mU)* - M7 restriction of A:l, and M is a closure

functor on M 7. The proof will go in three steps.

1o Let F be a o-structure in M and «# an object of 2. Then, the

functor M(F, Y(u)) is a o-structure in ). Indeed, by definition,
M(F, Y(u)) =WEF, Y(u)X¥-): 2 =M.

As F and Y(u)XY(u'), for each object u' of 2, are objects of the full
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subcategory M7 of fmz, we also have
M(F,Y(u)) =W(F, Y(u)XY-),

so that this functor is the dual of the composite functor G-

s*_Y oyo _Y(u)X- yo WOCF, )% wy*

where
. *

- Y is a 0 -structure,

- the functor Y(u)X- commutes with J-inductive limits, since it is
equivalent to the functor - X Y(u) (the product functor being symmetrical)
which commutes with §-inductive limits according to the hypothesis,

- W°(F, - ) commutes with inductive limits

. * . * . Y .
Hence G is a O -structure in M and its dual M( F, Y(u)) is a O -struc-

ture in M .

20 Let F be a o-structure in M. From Part 1, it follows that the func-
tor M(F,-)Y*:Z = M% takes its values in M7. So it admits as a restric-
tion a functor L: S — %, This functor L is a o-structure in 9. Indeed
let us denote by 77, for each object u of 2 the «projection functor» from
M to M, which assigns &(u) to the o-morphism 0. Projective limits
being computed evaluationwise in M? (since the insertion functor from M7
to 3]12 commutes with projective limits), L is a o -structure in M7 iff 7, L

is a o-structure in M for each object u of 2. As
7 L(x)=M(F, Y(x))(u)=MO(F, Y(x)XY(u))
for each x€ 2, we get
7, L=MICF, (Y-)xY(u)).

The product being symmetrical, the functor (Y-)X Y(u) is equivalent to
Y(u)X(Y-); a fortiori TruL is equivalent to Mo(F, Y(u)XY-), which
is identical to the o-structure A;l(F, Y(u)). So 7TuL is a O - structure in

W for each u, and L is a O -structure in M denoted by M(F, Y-).

30 I.et F and F' be o -structures in M. Then M( F’, F) is a o-struc-

ture in M. Indeed, we have

M(F' ,F)=WE(F, FXY-).
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As M is a closure functor on mz, the functor ?IIE( F', FX-) is equivalent
o MEM(F',-), F) =ME(-, F)M(F’,-). It follows that the functor

M(F', F)=ME(F, FXy-)=ME(F, FX-)v*
is equivalent to the functor
MECM(F,-), F)Y*=ME(M(F", ¥-), F) =W(M(F, Y-), F).
This last functor is a o -structure in M, since it is the composite of the
o-structure M( F', Y-) in M7 with the functor M7(-, F) which commutes

with projective limits. Hence M( F', F) is a O -structure in M, and there

. - * .. iy
exists a functor M : MIx(M9)™ - M restriction of M. V

DEFINITION. With the hypothesis of Proposition 20, for each O -structure
F in M we call M(F, Y-) ( = M(F, .) Y*) the o -structure in M associa-
ted to F.

COROLLARY. If the insertion functor I from M s mZ commutes with

§-inductive limits, then WM° admits a cartesian closed structure.

A. Let u be an object of 2. The partial product functor SX Y(u)
from MZ to WE commutes with §-inductive limits, since it admits a right
adjoint M(-, Y(u)). It follows that the functor

P=(-Xy(u))r: M -N>
also commutes with §-inductive limits, As P takes its values in the full
subcategory Mo of sz, there exists a functor P’ from M7 to M7 res-
triction of P, and P’ commutes with §-inductive limits. P’ being the par-
tial product functor - X Y(u) on M, the hypothesis of Proposition 20 is

satisfied. So the Corollary results from this Proposition. V

REMARK. The insertion functor I from J? to mz always admits a left
adjoint and MY admits 3"0 -inductive limits ([]] or [Bt]). If I commutes
with F, -inductive limits, it admits a right adjoint (Theorem 2-1 [GZ]).
So the Corollary may then be deduced from the following result:

If V is a category admitting a cartesian closed.structure and if V’
is  a full subcategory of V such that the insertion functor from V' to V

admits both a left adjoint and a right adjoint, then V' admits a cartesian
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closed structure.

This last result proves also that, if o' is a mixed limit-bearing
category (2,1, V) and if the insertion functor from m’ o T)RZ admits
both a left adjoint and a right adjoint, then Mo’ admits a cartesian clo-

. .. P ..
sed structure. However this condition on O is very restrictive,

10. Monoidal closed categories.

A) The monoidal closed category 02.

Let 2 be a category. We recall here the definition and some pro-
perties of the symmetric monoidal closed category @2 constructed by Day
[D], where U is a symmetric monoidal closed category.

We denote by . 2 the subdivision category of =:

- its objects are the morphisms of =,
- for each morphism x:u — u' of 3 which does not belong to Z,,

there are in .. 2 two morphisms

xlu:u-’x and u'|x:u —x,

- there are no other morphisms in .2, and the only composites are

those of a morphism with its source and its target.

(Intuitively, x is replaced by «an abstract triangle» with vertex x).Na-
turally, .. 2 depends on the graph underlying the category > and not on

the law of composition of 3.

Let V be a category. We define as follows a functor .. from the

*
category VZ><E to the category V™" Z,

If v3SxST -2V isa functor, - (A): .2 — V isthe functor assi-
gning Mu,u) to u €2, and

Mx,u) to xlu, Mu',x) to u'|x, Mu',u) to x,

for each morphism x: u —u' in 2.
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Mu,u)

Mu',u)

NMu', x)
Mu',u')

SIf B: A~ N:Sx3* 2V is a nawral transformation, ..( &) is the
natural transformation from . (\) to .~ (A’') assigning O(u',u) to the
morphism x: z = u' in 2.

If the functor ..(A) admits a projective limit s, then s is called
an end of \: SXZ¥ o V.

We say that V admits S-ends if V admits - S-projective limits,
i.e. if each functor A: S x3° = V admits an end. In that case, if a choi-

z

ce of .. Z-projective limits is done in V and if L: V" ® =V is the cor-

responding canonical projective limit functor, we denote by 6 the mor-

. TXDF .
phism L(.(8)), foreach 6€V . We write also

fx,xe(x', x) linstead of f@
(the usual notation, which does not seem explicit enough, is [ O(uu)).
EXAMPLE. W admits Z-ends, when S €%, . Let Y and Y' be two func-
tors from 3 to 2'€ %, and consider the functor

SHY- ) ExET S
which assigns 2 (Y'(x'),¥(x)) to the pair (%', x) of morphisms of 2.

The canonical end of this functor is the set X’ E( Y',Y) of natural trans-

formations from  to ',

From now on, we denote by 0 a symmetric monoidal closed cate-
gory (V, r,i,a,b,c, m, D). In this notation:
- V is the underlying category,
- 7: VXV =V is the «tensor product functor» and we write

g7/ instead of T(g,f)},

- 1 is the «unit» (up to an equivalence) of =,

- the equivalénces defining i as a unit of 7 are
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a:ldy, =-7i and b:1d, ~irT-,
- the equivalence defining the «associativity» of 7 is

c:-7(-7-) = (-7-)7-. VXVXV 3V,
- the equivalence defining the «symmetry» of 7 is

m:(-7-) 2 (-T-}p VXV 3V,

where 1 is the symmetry functor from VXV to VXV, assigning

(g.f) to ([, gleVxV,

- D: VXV* -V is the closure functor, so that D(-, s) is a right ad-
joint of - 75, for each object s of V.

We suppose that V(s,7) belongs to the universe U for each ob-

ject s of V, and that V admits sums indexed by U-sets. Then the func-
tor V(-,i):V =M admits a left adjoint, which we denote by ¢ . If E
is a U-set, g(E) is a sum IEU in V ( of the family

(s,),ep Wwhere s, =i foreach z€E ).

In fact, g defines [K] a monoidal closed functor from the cano-

nical cartesian closed category over l to 0, so that the functors

q(-%X-) and

are canonically equivalent.

(g-,q-): MxM -V

Let £ be a category such that V admits S-ends. Then Day ([D],
example 5-3) has defined a symmetric monoidal closed category

O =(v% s, i a,b

as follows:

- If G and G’ are functors from 2 to V, the functor G' G : 2 = V
is the functor 7 [ G',G] which assigns G'(x)7G(x) to x€ 3. If
6: G2 F:Z =V and 8':G' - F'
are natural transformations, the natural transformation
'76:G'3G~F'?F:X 3V
assigns 8'(u) 7 6(u) to the object u of 3,
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- 7" is the constant functor from 2 to V, whose value is the unit 7,

- the natural equivalences 4 and b assign the natural transformations
aG and bG to the functor G: 2 =V,

- the natural equivalence ¢ assigns

c[G",G'"G]:Z 3V to (G",G",G),

where G", G' and G are functors from 2 to V,

- the equivalence 7 assigns m [G',G] :Z 3V to the pair (G’,G)
of functors from 2 to V,

- if G' and G are functors from = to V, then 5(6', G) is an end of

the functor from S X5* to V2 assigning the natural transformation
D(G'(x'),-)((G(x)7-)qZ(x,-)": S 2V
to the pair (%', x) of morphisms of . We will write:
D(G',G)= _fx,'x D(G'(x'), G(x)rq2(x,-)).

In fact, Day proves a stronger result: @E is a symmetric monoidal
closed category over (), which means that the functors and natural trans-
formations in the construction above underly O-functors or O-natural trans-
formations. From this, we will use only that, G and G’ being functors from

2 to V, the functors
S P (- G(x))D(G", -)(x") and [, D(G'(x'),~)(G#-)(x)*
from (V E)* to Vare equivalent. (This may be proved directly, using Fubini

Theorem on ends [ML] and the O-Yoneda Lemma [K] .)

B) Subcategories of a symmetric monoidal closed category.
We suppose here that O is a symmetric monoidal closed category
O=(vV,ri.ab,c,m, D),
and V' a full subcategory of V which is closed for D, i.e. such that it
exists a functor D' V!X V'™ = V' restriction of D . Then, under some
conditions, V' underlies a symmetric monoidal closed category having
D' as its closure functor. This will be applied in the next Section to

the subcategory V of vZ.

If V'’ is also closed for 7, i.e. if it exists a functor
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7' VXV = V' restriction of 7,
and if 7 is an object of V', then the natural equivalences a, b, ¢ and m
admit restrictions a', b', ¢' and m' such that
(V',+',i,a",b",c",m,D")

is a symmetric monoidal closed subcategory of U. More generally:
PROPOSITION 21. We suppose that V' is a full subcategory of V, such
that:

1° there exists a functor D': V' XV'* = V' restriction of D,

2° the insertion functor 1 from V'io V admits aleft adjoint |.
Then there exists a symmeltric monoidal closed category '

(V' 7', J(i),a’, b, c",m', D'}, where ['+'f=](f'7[).

A. We denote by &:1d,, = 1] the natural transformation defining J
as an adjoint of I, by 7’ the object J(i) of V' and by 7' the composite
functor J 7(I-,1-):

vixvr IXI yxy_ v I v

which assigns J{ [ 7f) to the pair (/', /) of morphisms of V'.

1° Let s’ be an object of V'. The functor -7's': V' = V' admits
D'(-,s") as a right adjoint. Indeed, as D( -, s') is a right adjoint of « 7 s’,
the functor D(-, s')l is a right adjoint of J(-7s’). As V'’ is a full sub-
category of V in which D(-, s’')I takes its values, the restriction

D'(-,s"): V' =2 V'" of D(-,s")I]
is also a right adjoint of the functor from V' to V' restriction of J(-7s"),
i. e. of the functor -7's’.
If 7' is a tensor-product functor on V'’ whose unit is 7', Proposi-

tion 21 will result from Theorem II-5-8 of [EK].

20 We will establish some facts to be used atterwards.

a)Let s’ and s” be objects of V' and e of V. Then the maps
V(s", 8(e)rs') and V(s",s'78(e))
are bijections. Indeed, we denote by:
- p(s",s"):D(s",s")rs" = s” the morphism defining D(s”,s’)
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as a cofree structure generated by s” relative to the functor - 75",
- P(s",s',e): V(D(s",s'),e) »V(s",ers’) the bijection assign-
ing p(s",s").(grs') to g:re - D(s",s").
Since V' is closed for D, the object D(s”,s’) belongs to V',
and, from the adjunction between I and ], we deduce that
V(D(s",5"),8(e)): V(D(s",s"),J(e)) 2 V(D(s",s"),¢e)
is a bijection. The composite bijection
P(s", s e) V(D(s",s'),8(e))P(s",s", ](e))!
assigns f'.(8(e)7s') to [':J(e)rs' =s"; so it is the map

V(s”, 8(e)rs'): V(s", J(e)rs') »V(s", ers’).

e

S(e)rs’

grs’ D(s”,s")

The map V(s",s'78(e)) is also a bijection, the equality

s'r8(e)=m(J(e).s').(6(e)rs').m(s", e)l.

implying that V(s",s"78(e)) is the composite bijection
V(s", m(s', e)'l) V(s",8(e)rs')V(s", m(J(e), s")).
b) ¢ is the natural transformation
Jr(IX8): Jr(l--) = 7' (=,J-): V'XV 2 V",
x1

V! 14 T V X ’

1><Idv

It is an equivalence, i.e. J(s'7]J(s)) is a free structure generated by
s’ 7s relative to I. Indeed, let s be an object of V and s’ of V'; we write

$§=]J(s); then (s’,s)=](s"r8(s)) is the unique f such that
[-8(s'rs)=08(s"75).(s"78(s)).
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J(s"rs)

From Part a, it follows that V(J(s'rs),s'78(s)) is a bijection, so that

there exists a unique morphism
g:s'78 = J(s'rs) satisfying g.(s'76(s)) = 8(s"rs).

There also exists a unique morphism g’ such that g'. 8(s'7§) = g. From

the equalities
g f S(s'rs)=g'. 8(s'78).(s'r8(s)) =g. (s't8(s))=08(s"rs),
we get g'.f = J(s's) and, from the equalities
[.g . 8(s'w3). (s'78(s))=/[.8(s"7s)=08(s"78).(s'78(s)),
we deduce successively '
[g. 8(s"73)=8(s"r3),
since V(s'r'$, s" 7 8(s)) is a bijection and /. g'= J( 5" 73).

This proves that ¢(s’, s) admits g’as an inverse, and ¢ is an e-

quivalence.
¢) Similarly,
@' =] (ExI): VXV 3V
is an equivalence. k

30 We are going to show that 7' is a tensor-product functor whose unit
is "= J(1). ‘
a) If s is an object of V', wedenote by @’( s) the morphism

S(sti').(s7d(i))a(s): s =>s+'i'.

We so define a natural transformation a’: Idv. = -7'{'" such that Ia’ is

the natural transformation
(S8(-+i")mm(-78(i))ma)l.
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The morphism a(s) being invertible and 8(s7i').(s78(i)) de-
fining s i’ as a free structure generated by s ri (Part 2-b), the mor-
phism a'(s) defines s+'i' as a free structure generated by the object s
of the full subcategory V' relative to the insertion functor I. Hence a'(s)
is invertible. So @' is an equivalence.

We define similarly the equivalence &':Idy, —i'7'-, which as-
signs 8(i'7s).(8(i)7s). b(s) to the object s of V'.

b) p: VXV »VXV and u': V'XV' = V'XV’ being the <symmetry
functors», we have wu(I-,I-)=(IxI)u'. The equivalence m: v = 7
defining the symmetry of 7 gives rise to the equivalence

m'=Jm(I-,1-): 7" = Jru(l-, 1),

which assigns the invertible morphism J(m( s, s')) to the pair (s’,s) of
objects of V'. As

Jru(l-,0-)=J-(1-,1-)p" =+ pu",
the equivalence m’ is a symmetry of +'.

c) We consider the functors
T:V'XV'XV' 2 V'XV and T':V'XV'XV' = VXV’

assigning to (x",x’,x) respectively (x",x'7x) and (x"7x’, x). With
the notations of Part 2, let ¢’ be the natural transformation

ST m]c(IXIXI)m(PT) L er'(-n"=) =(-7"-)7" -,

VXV

s .

T’

V'

VXV XV!

Vv’
which assigns
c’(s",s',s)=a¢ (s"rs’, s). Je(s",s', s).p(s", s'rs)l

to (s"”,s',s), where s", s’ and s are objects of V’.
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(s"Ts")Ts _c(s",s",s) s"r(s'rs)

s"r8(s'rs)
S(s"rs')Ts \
S(s"T(s'T s);’

sttt rsyrs) {3005t rs)
S(s"1(s'rs))

c'(s", s, s)

-

P (s"rs’, s) P(s", s'rs)

] c(s",s',s)

. i . - .
Since ¢, Jc and ¢’ are equivalences, ¢’ is also an equivalence.

To prove that
(V', s, i, a", b c",m, D)

is a symmetric monoidal closed category, we have yet to show that the three

coherence axioms are satisfied.

d) The coherence axiom on units asserts that, if s and s’ are ob-

jects of V', then
c'(s' i, s).(s'T'b(s))=a(s')7's.
Indeed, we have the following diagram, where
@ is a quartet, ¢ being a natural transformation,
@ is a quartet, by definition of ¢’,
® is commutative, since we have
a'(s')=8(s"7i').(s"78(i)). a(s'),
® is commutative, as a consequence of the equality
a'(s')r’'s=]J(a'(s')rs),
® is commutative, by definition of b',
® is commutative, by definition of 7 (similarly to @),
@ is commutative, the first coherence axiom being satisfied in the mono-

idal category (V, 7,7, a,b,c).
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s'Ts
S'rb(s) ) a(s')Ts
c(s',i,s)
N [srrescirs) i o /&
_\c‘ Y @A(s'r (i))Ts .\L’
= (s it s) :
- §(s"7s)
S(S"Ts)y ST8(i'rs) S(S'Ti')‘rs (s
@
©  lsrstr(itTs)) ® |
Y 8((s'7"i')Ts)
\
C'(S'li.ls)
s"r'b'(s) @ a'(s')T's
s'r's
From this diagram we deduce

s’ rs relative to I,

c'(s',i',s).(s't'b'(s)). 8(s"rs)=(a"(s')r"s).8(s"rs),

which implies, 8(s’'7s) defining s'7's as a free structure generated by

c'(s',i',s).(s'"7'b'(s))=a'(s")r’'s.
the following diagram commutes.

"

e) We consider the second coherence axiom (on associativity), called
axiom MC3 [EK], which says that, if s, s', s” and s

s"’ T’(S" T'(SI T'S))
c'(s™ s", s'"r's)

s”c'(s”,s',s)

C'(SMT'S", s

"9

(s™r's")r's')r's

Cr(sm, S"T,S', S)
c'(s”, s",s")r's
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This may be proved directly from the axiom MC3 satisfied by + and from
the definition of ¢’. But we can also use Proposition I[-2-1 [EK], since
D' and +' are in the «basic situation» of Chapter II-4 [EK]. So ' .satis-
fies the axiom MC3 iff D’ satisfies the axiom CC3 of [EK] (associativity
coherence axiom for closed categories). As D is a closure functoron V, it
satisfies CC3 and, V' being a full subcategory of V, the restriction D’
of D also verifies CC3 (which is independent of i and 7). Hence 7' is a

tensor-product functor on V'.

f) The coherence axiom on symmetry asserts that, if s, s’ and s” are

objects of V', the following diagram commutes:

m'(s'r's,s"”)

c'(s" s s) c’(s’,s,s")

(S" T’S') T"S
s (s T s")

m'(s’,s")7r's s'T'm'(s, s")

C'(S', S", S)

This diagram is the exterior border of the following diagram, where:

@, ® and @ commute, by definition of c’,

@ commutes, m being a natural transformation,

@, ® and ® commute, since m' = Jm(Il-,1-),

® and @ commute, as 7' = Jr(I-,1-),

@ commutes, (V, r,i,a,b,c,m) being a symmetric monoidal category,

the mapping

V((s"7's")7"s, 8(s"7(s7's")).{s'r8(sTs")))

is a bijection (Part 2-b).
From all these properties, we deduce that the exterior border of this diagram
commutes. Hence all the coherence axioms are satisfied, so that

(vV',r",i,a,b6,¢c",m',D")

is a symmetric monoidal closed category.
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m'(s'7Ts, s®)

S(s*r(s'rs))
Q@

(s, st s)

s’ m'(s,s")

m' (s, s"} s

S(S'T(S"T’S))

c'(s' 5" s)

COROLLARY. With the hypotheses of Section A on O, let o' be a mixed
limit-bearing category (2,1 ,V ) such that:

1° the insertion functor from v to VE admits a left adjoint,

20 V9 is closed for the closure functor D of the symmetric monoidal

closed category O

Then VO is underlying a symmeiric monoidal closed category whose closu-

re functor is a restriction of D.

A. This results from Proposition 21 applied to 0% and V. V

PROPOSITION 22. Let V' be a full subcategory of V such that:

1° i € V' and T admits a restriction v': V' XV*' =V,
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2° the insertion functor | from V' to V admits a right adjoint I'.

Then there exists a symmetric monoidal closed category
(V', 7", i,a,b',¢c",m', D), where D' =1I'D(I[-,1-).
A,' The first condition implies that V' defines a symmetric monoidal
subcategory (V', 7', i, a', b, ¢ ,m’) of (V,7,i,a,b,c,m).
Proposition 22 will result from Theorem II-5-8 [EK] if we prove
that, for each object s’ of V', the functor -7 s': V' = V' admits D*( -, s')
as a right adjoint. Indeed, I"D( -, s") is a right adjoint of (-+s")I. As V'
is a full subcategory of V, it follows that the functor D'(-, s"): V' = V7,

restriction of I'D(-, s"}, is a right adjoint of the functor - 7's’, restriction

of (-rs')I. V

COROLLARY 1. With the hypotheses of Section A on U, let o' be a mixed
limit-bearing category { 2,17,V ) such that:

1° the insertion functor from v o VZ admits a right adjoint,

20 V9 is closed for the tensor product T of R , and i"is a ¢'-struc-
ture in V.
Then VO is underlying a symmetric monoidal closed category whose tensor

product is a restriction of T.

COROLLARY 2. Let o be a§-limit-bearing category (2,1 ) and V a ca-
tegory admitiing §-projective limits, sums indexed by U-sets and ¥ -ends.
If 'V admits a cartesian closed structure, and if the insertion functor from
Ve to VT admits a right adjoini, then VY admits a cartesian closed struc-

ture (deduced from that of VZ).

A. V7 being closed for finite products in VL, this results from Co-

rollary 1, applied to a symmetric cartesian closed category U over V. V

11. Symmetric monoidal closed category (7.

If o is «cartesian», V7 is closed for the closure functor of @2
(section 10-A), so that the preceding corollaries give symmetric monoidal

closed structures on V7.
As in the sections 10 and 11, we still denote by o a projective

limit-bearing category (2,[" ) whose set of morphisms is a U-set, by §its
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set of indexing-categories, by Y the Yoneda o™*-structure in M.

DEFINITION. We say that O is cartesian if the functor -X Y(u): M7 = M
commutes with §-inductive limits, for each object z of <.

Proposition 20 says that O is cartesian iff MI° admits a cartesian
closed structure.

In all this Section, we will denote by V a category satisfying the
following condition

V(s',s) is a ‘U-set, for any pair {s',s) of objects of V.

V admits 2 -ends.

(L . . .
V admits sums indexed by l-sets (this property may be replaced by

a weaker one, as is shown in Remark 2, after Proposition 23).
Finally, 0 denotes a symmetric monoidal closed category
(V,r.i,a,b,¢,m,D),
g:M =V an adjoint of V(-,i) and OF the corresponding symmetric mo-
noidal closed category constructed by Day (Section 10-A):
0% =(v% 4i%4,6,é, 7, D).
PROPOSITION 23. We suppose o is cartesian. Then: there exists a functor
D' :VOX(VO)* = VO restriction of D; for each T-structure G in V, the
functor IS’(G, gY-) assigning 5(G, gY(x)) to x€2 is a O -structure in
V9. Finally, if G and G' are O -structures in V, we bhave
D'(G'.G) =~ [, D(-,G(x))D'(G', qY(x")).
A. 1° Let u be an object of = and G a O -structure in V. For each
object s of V, let G be the functor V(D(G, qgY(u)), s). We are going
to prove that the functors G _ are O -structures in M. This will imply [Lb]
that B(G, gY(u)) is a o-structure in V, so that the functor D'( G, ¢Y-)
from 2 to V7 exists. Indeed, as V( -, s) commutes with projective limits and
D(G,qY(u))= [, D(G(x"), qY(u)(x)rqS(x,-)),

the functor G is an end of the functor F: SxS* ML assigning
V(-,s)D(G(x"), -)(qY(u)(x)'qu(x,-))* to (x',x).

The functors V(D(G-,-),s) and V(D(G-,s),-), from =X V* to M
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are equivalent, U being a symmetric monoidal closed category, as wellas

the functors
(g-)r(q-) and g(-X-):MxM-v.
So F is equivalent to the functor F' assigning
V(D(G(x'),s), g-)(Y(u)(x)XZ(x,-)" o (x',x)
where x and x’ are morphisms of 2. Since ¢ is adjoint to V(-,i) and, by
definition of a symmetric monoidal closed category, V(D-,i) is equiva-
lent to V(-,-), the functor F’ is equivalent to the functor F” from Z xS*
to MZ assigning to (x’, x):
MVGx'), ), -)(Y(u)XY(-))(x)*: T2 M,

It follows that G is also an end of F".

As G is a o-structure in V and V(-,s) commutes with projective

limits, the functor G = V(G-,s) is a o-structure in M. We consider the

o-structure M( G, Y-) in M associated to E; (Proposition 20); we have
M(G,Y(u))=WM(G, Y(u)xY-)= [F",
by definition of the set of natural transformations between two functors as an

end. So G, is equivalent to the O -structure M(é, Y(u)) in M. A fortiori,

G is a O -structure in M, for any object s of V.

20 et G be ao- structure in V. Then D' (G qY-) is a O-structure
G in VO, equivalent to G:S - VY, where G(x ):2 3V is defined by
G(x')(y)=G(y)(x), for ye 5. The proof is similar to Part 2, Prop. 20.

30 If G and G’ are O -structures in V, then 5(6', G} is a O-structure

in V.Indeed, D(G’, G) is an end of the functor H: X S* = V> | assigning
D(G'(x"), -)(G(x)rq-)*z(x- ¥ =D(G(x'), - N GrqY(-))(x)*
to (x', x ). The functors
JoxD (- G(x))D(G", - )(x') and [ D(G'(x*),-)(G#-)(x)*

being equivalent (section 10-A), B(G', G) is also an end of the functor

H' from X 3% to V7 assigning

D(-,G(x))D'(G', qY(x')) to (x',x).
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If « and ' are objects of 2, the functor H’'(u’, u) is a o -struc-

ture in V, for it is the composite functor

s D(G,qY(u)iV D(-,G(ui

where b(G', qY(«’')) is a o -structure in V (Part 1) and D(-, G(u)) com-
mutes with projective limits. Hence, H' takes its values in V7. As V7 is
closed for Z-ends in v (the category V admitting 2 - ends), it follows that

the end D(G', G) of H' is a o -structure in V.

. . iy *
This proves the existence of a functor D': VIX(VI)" = V7, res-

triction of D. V

COROLLARY 1. If O is cartesian and if the insertion functor I from V7 to

VE admits a left adjoint |, it exists a symmetric monoidal closed category
O =(ve, &, &4, b, ¢, m,D),
where D' is a restriction of D and 7'a restriction of | 7.

A. By Proposition 23, V7 is closed for D. So this corollary results

from the corollary of Proposition 21. V

COROLLARY 2. Under the following conditions, V° defines a symmetric mo-
noidal closed subcategory U of U Z,

1° o is cartesian,

2° v commutes with §-projective limits,

3° i"is a o -structure in V (for example, if all the indexing-categories

of o are connected or if i is a final object of V).

A. Proposition 23 asserts that V7 is closed for D.
If G and G' are o -structures in V, the functor
G'+G=7[G,G]: 5~V
is a O -structure in V, since [G',G] is a o-structure in VXV and 7 is
commuting with §-projective limits. Hence V7 is also closed for #. Since

i” belongs to V7 (condition 3), V7 defines a symmetric monoidal closed

subcategory of ORIV,

COROLLARY 3. We suppose O is cartesian and V is a category admitting
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a cartesian closed structure. If V satisfies condition (L), then V° admits

a cartesian closed structure.

A. Let O be any symmetric cartesian closed category whose underly-
ing category is V (it is defined up to an isomorphism). Its tensor-product
functor T is in fact a product functor, so that it commutes with §-projective
limits. As 7 is then a final object of V, the constant functor /" commutes
with projective limits; a fortiori, it is a O -structure in V. Hence Corolla-
ry 2 asserts that V7 defines a symmetric monoidal closed subcategory 07

P Z . . A .
of 0. Since U is cartesian, 7 being a product functor, so is 07. V

EXAMPLE. Let V be a category admitting ¥, -projective limits and F, -in-

ductive limits; so it satisfies (L). If V satisfies also the condition:

™ { There exists an U-ordinal & such that §-projective limits commu-

te with inductive limits indexed by <& >, in V,

the insertion functor from V° to VZ admits a left adjoint [F1]. Then, by
Corollary 1, V7 underlies a symmetric monoidal closed category as soon as
O is cartesian. The condition (L') is verified, for instance, when V is lo-
cally & -presentable [GU], or when V is a fibred category over a catego-

ry satisfying (L') (see [(w]).

REMARKS. 1° The third property of Condition (I.) may be replaced every-

where by the less restrictive condition:

{ V admits sums indexed by the sets Z(u', u), where u and u' are ob-

jects of 2.

Indeed, in this case, let ' be the full subcategory of M whose objects
are the U-sets E such that there exists in V a sum IE—“ (of E exemplars
of 7), where 7 is still the unit of the symmetric monoidal closed category
0. Choosing such a sum ¢'(E) for each object E of M', we get a functor
q': m - V, which is a «partial adjoint» of V(-,i)}. The sets S(u',u) are
objects of W' . If E and E' are objects of N', then ¢'(E')rq'(E) is a sum
of E'XE exemplars of i, since -74'( E), being a left adjoint, commutes

with sums. Hence MU' is closed for finite products, and the functors
q'(-%x-): MxM -V and (g -, q"-)

491

1+



1+

82 EHRESMANN

are equivalent. The proofs of Proposition 23 and of its Corollaries using on-
ly the values of g on sets E'X E, where E and E’ are of the form 2(u', u),

they are also valid if we replace g by ¢'.

2° We have not used the general result of Day [D], but a very special
case of it (Example 5-3 of [D]). In fact, Day associates to any «premonoi-
dal symmetric structure» P: S*xS¥*XE -V a symmetric monocidal closed
category PZ whose underlying category is vEina forthcoming paper [FL]
Foltz and Lair prove that V7 is also closed for the closure functor of pt
when P defines a double O -costructure in V, i.e. when there exists a o*-

structure p in (VU)O* such that
p(y)(x")(x)=P(y,x",x), when x, x' and y belong to g .

So, in this case and if the insertion functor from V7 to yZ admits a left ad-
joint, V7 is underlying a symmetric monoidal closed category P7. Notice
that Proposition 23 and its corollaries cannot be deduced from this result
of [FL]. Indeed, the category @2 used here is the category pZ associated

to the premoncidal structure P such that
Ply,x",x) =(qY(y)7TqY(x"))(x),
and P does not define a double o -costructure, even if O is cartesian.

Application.
We denote by:

- & a sketch (definition p. 30) (AZ,IA_' ), where Z is a U-set, § its set
of indexing-categories and O a prototype (2,[" ) generated by &,

- o' af-type (V,I"'), where V is a category satisfying Condition (L),

- 8(0',&) the category of & -morphisms (i.e. of morphisms between &-
structures) in o',

- S(crm,é') the category of & -morphisms in the canonical d-type on=
(fm ,l—'m) on M.
PROPOSITION 24. We suppose that & is o' -regular and oy-regular (defi-
nition p. 47 ) and that S(Ojr(,b’) admits a cartesian closed structure. Then:

1° 8(0',&) is underlying a symmetric monoidal closed category if V

underlies a symmetric monoidal closed category 0 and if one of the following
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conditions is satisfied:

a) There exists an ordinal & in U such that the §-projective limits in V
commute with the inductive limits indexed by <& >.

b) v commutes with §-projective limits and i" is a o -structure in V.

2° §( o', &) admits a cartesian closed structure if V admits one.
?

A

A. 10 o is cartesian. Indeed, & being Oy -regular, the categories me
and S(Ofm,o’) are equivalent. By Proposition 7 (page 30), the prototype O
generated by & is also a limit-bearing category generated by &, so that e
is isomorphic to me . Hence, W7 is equivalent to S(O’m,é') and, S(Um'é)
admitting a cartesian closed structure, M7 also admits one. It follows (Pro-

position 20) that O is cartesian.

20 The categories S(U',&) and S(O’I,O') are isomorphic (Corollary
2, Proposition 6). As & is o'-regular, the Corollary of Proposition 16 as-
serts that the prototype O generated by & is also o’-regular. This implies
that the category V7 is equivalent to 8(o',0), and a fortiori to &(c',& ).
Hence 8(¢’,&) underlies a symmetric monoidal closed category iff V7 is
underlying one; so the proposition results from the corollaries of Proposi-

tion 23 and from the Example. V
12. Application to categories of structured functors.

Applying the preceding results to the «sketch of categories», we de-
duce, from a monoidal closed structure on V, a similar one on the category

of functors in V (or category of categories in V).

An integer n is considered as being the set {0,1,...,n-1} (i.e.
as a finite ordinal); we denote by n the category <n> defining the usual
order on 7.

Let A be the simplicial category: its objects are the integers, its
morphisms are the monotone maps between integers equipped with their usual
‘order. We denote by 2 the dual of the full subcategory of A whose objects
are I, 2, 3 and 4. A set of generators of 2 is formed by the morphisms
drawn in the following diagram and by three other morphisms from 3 to 4.

The denomination of the morphisms will result from the following properties:
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"
K
L S
2 3
a
’
K
In 2, we have the two pullbacks

v

a

and ¢ is a kernel of the pair (2, ¢. a).
We denote by:
- I the subdivision category of 2 and I’ the category with two objects

and two morphisms with the same source and the same target:

1 .
I (1,0)< I 1<:>o
0

- 7 and 7' the projective cones indexed by I defining respectively

the pullbacks ((a, v ), (B, v )) and ((v, v').(v', V)), so that
y(0)=v, y(1)=v', ¥'(0)=v', y(1)=v.

- " the projective cone indexed by I’ and defining ¢ as a kernel of
(2,c.a), so that 7"(0) =q.

- T theset {y,Y'} and [ the set {v,y",7"}.

- § the singleton {1} and T the set {1,1'}.

- o and O the pairs (2,1") and (=,7).

- o9y the canonical J-type (0N, I'y) on the category m.
PROPOSITION 25. O and o are regular prototypes, which are cartesian.

The category cS(O’m,g) is isomorphic to the category ¥ of functors and

M is equivalent to ¥ .

A. 100 isa prototype, ¥, ¥' and " being limit-cones. Let U be

the subcategory of 2 generated by the set of morphisms drawn in the dia-
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gram above and 0§ the presketch obtained by equipping U with the cones
(restrictions to U of) v, v’ and 7". Then o is the sketch of categories
considered in [E2] , and S(U‘m , Uf}‘) is isomorphic to ¥.

Each morphism y in = and not in U having the vertex 4 of 7' as
its target, it is the factor of 'y through ' ; so the construction of the
prototype generated by o'¢ (Proposition 6) stops at the first step and gives
o. Corollary 2, Proposition 6, asserts that S(Ufm ,;) is isomorphic to
5(01)]( ,OF). So there exists an isomorphism from S(U\m ,E) to F; it as-
signs to the o-structure F in oY the category whose set of morphisms is
F(2), the law of composition being F( x), the maps source and target
F(a) and F(pB).

As Oq is a regular sketch (Propositions 4 and 5 of [E2]), its pro-
totype o is also regular (Corollary, Proposition 16). In particular, im; is

equivalent to ¥.

2° For each category V, the categories V7 and V; are identical. In-
deed, a O -structure in V is also a o -structure in V. Now let F be a o-
structure in V. Since ¢ is a right inverse of @ in >, the morphism F( ()
is a right inverse of F( a); this implies that F( ) is a kernel of the pair

(F(2), F(().F(a)) in V. Hence F is a O -structure in V.
It follows that M7= M is equivalent to F. Since F admits a car-

tesian closed structure, M also, i.e. & and O are cartesian (p- 78). Y

REMARKS. 1° A O-structure F in O Correspondé to a category on F(2)
whose law of composition is F{ k), equipped with an injection F( t¢) de-
fining F(1) as a set of objects. So, S(O’m ,O) is isomorphic to the ca-
tegory of functors between categories with a given set of objects.

20 In [E2] the sketch of categories was in fact defined as a «pointed
sketch», i.e. the ( had to be mapped on a canonical injection. This con-
dition is expressed here by asking F(¢) to be a «canonical» kernel, so

that we have no need of pointed sketches.

DEFINITION. O is called the prototype of categories with objects and o
the prototype of categories. If V is a category, we define a category in V

. . . - .
as a O -structure in V, a functor in V as a 0 -morphism in V. If ¢ isa
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- - . . ! . .
g-type, the O -structures and O -morphisms in O are called categories in

? . 4
¢ and functors in o .

The categories in V are called generalized structured categories.
in [E2], category-objects in V in most papers. We denote by:

- F(V) the category V7 of functors in V: in particular F (M) =M.

- F(o') the category d(o' ,;) of functors in a g-type o',
PROPOSITION 26. We suppose that V is a category which admits pullbacks,
kemnels and sums of pairs.

1° If V admits a cartesian closed structure, (V) admits also one.

20 Let O0=(V,r,i,a,b,c,m,D) be a symmetric monoidal closed
Category.

a) If r commutes with pullbacks, (V) defines a symmetric monoidal clo-
sed subcategory F(0) of R (Section 10).

b) 1f the insertion functor from F (V) to vZ admits a left adjoint |, there
exists a symmetric monoidal closed category F(0) whose underlying ca-
tegory is F(V) and whose tensor product assigns Jr[G',G] to the pair
(G', G) of functors in V.

A. 0 is cartesian (Proposition 25) and the only category I belonging
to § is connected. So Proposition 26 will result from the Corollaries of Pro-
position 23, if we prove that V satisfies the condition (L) of page 78 (mo-
dified according to Remark 1, page 81).

We may choose a universe U to which belong the sets V(s',s),
where s and s’ are objects of V (since we suppose the axiom of universes
satisfied). As >(u',u), where u and u' are equal to 1,2,3 or4,isa
non void finite set, V admits sums indexed by (', u). Finally, the sub-
division category 2 of 2 is a finite connected category, so that the exis-

tence of 2 -ends in V follows from the

LEMMA. If V is a category admitting pullbacks and kernels of pairs, it ad-
mits projective limits indexed by any category generated by a sub-neocate-

gory which is finite and connected.

A. This (probably well-known) result is proved by induction on the num-

ber n of proper morphisms (i.e. different from an object) of the finite con-
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nected generating sub-neocategory. The assertion is evident if » = 1.. We
suppose it valid for » =7 and we take a functor F: C =V, where C ad-
mits a generating sub-neocategory B which is finite, connected, and has
i+ 1 proper morphisms. We can find a sub-neocategory B’ of B which is
connected and has 7 proper morphisms. We denote by:

- y:e —~u the unique proper morphism of B not in B',

- C’ the sub-category of C generated by B',

- F': C'" =V the functor, restriction of F.

By the induction hypothesis, there exists a limit-cone 8':s"* = F'.

a) If u is not an object of B', then s' is also a projective limit of F.
b) If u is an object of B’ and e is not in B’, there exists a pullback
6'(u 2 v’

F(u)
F(y) ]

and we get a limit-cone &: s” = F by defining
Ble)=v, 6 (u')=06"(u"). v if u'€B).

¢) If u and e are objects of B', let w be a kernel of the pair ( 6'(u) ,

14

' (u) 7 w

S

Fly) G'(e)

F(y).0'(e)). Assigning G(u')=0'(u'). w to u’' € B, we define a limit-
cone &:s*— F. This proves the Lemma by induction. V
COROLLARY. Let o' be a g‘-type (V.T'"), where V is a category admit-
ting sums of pairs. The properties 1 and 2 of Proposition 26 are also valid
if we replace T (V) by F(') (resp. by §(o',0) ).

A. This is deduced from Proposition 24 applied to o (resp. to ) by

an argument similar to the proof of Proposition 26. V

EXAMPLE. Let p be a saturated homomorphism functor [E1], i.e. p is
a faithful functor from V to the category M of maps and, if s is an object

of V and [ a bijection with source p(s), there exists one and only one
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invertible morphism [ of V with source s satisfying p(f ) =f. Let o'
be a g_-type (V,T"") such that p’;/ is a canonical limit-cone in W for any
cone ¥ of [''. A category in O is called a p-structured category and
F(o') is identified with the category F(p) of p-structured functors [E2].
The Corollary gives conditions for a symmetric monoidal (resp. a carte-
sian) closed structure O on V to determine asimilar structure on F(p).
This statement generalizes Proposition 10 [BE], relative to the case whe-
re p is equivalent to the base functor V(-,7) of U (this condition is ve-
ry restrictive, since p is supposed faithful). It implies for instance, if p
is the faithful functor pg :F =M, that the category ?(pg—") of double func-
tors admits a cartesian closed structure, since F admits one (this does
not result from [BE] , the base functor 3‘-(-, 1) of F being equivalent to

the not faithful functor p'ff which assigns to a functor ¢ its restriction @,).
13. Another construction of a closure functor on F( V).

We are going to give a direct construction of a closure functor of
F(0); this construction proves that such a functor may be defined even if
V admits pullbacks and kernels of pairs, but not sums of pairs.

A) Closure functor on F(M).

Let F: = - M be an object of F(M). In M, we have the pullbacks
F(2)

F(p) w’ F(f) F(v')
E QF(S)
F(a w F(a F(v)
F(2)
where the first one is the canonical one, i.e. E is the set of pairs
(y,x)€ F(2)XF(2) such that F(a)(y)=F([)(x).
So there exists a unique bijection f: E — F(3) satisfying
F(v).f=w and F(V').f=w".

The map F{ k). [ is the law of composition of a category C whose set of
morphisms is F(2). We say that C is the category determined by F , and

we denote it by n( FJ.
We get an equivalence 7): Fn -3 by assigning to a morphism
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B:F = F' of $(M) the functor M(B): n(F) = n( F') defined by the
map G(2).

We consider the category F(F(M)) of functors in F(M) and, for

each object u of 2, the «evaluation functors»
Plu): F(FM)) ~F(M) and P(u): F(M) =M,
which assign 6(u) to 6. If u’ is also an object of <, we write
P(u',u)=P(u')P(u): F(F(M)) - M.
F(FM)) ——F M) *

There exists an equivalence ; from ff(ff(fm)) to the category
ff(pg') of double functors, described as follows:
- Let G be an object of F(F(M)). Then G(2) =P2NG):T - M de-

termines a category K™ and the functor
P(2)G=G(-)(2): 2R assigning G(x)(2) to x€Z

determines a category K', since G(2) and G(-)(2) are objects of F ().
The categories K'and K~ have G(2)(2)=P(2,2)(G) as their sets of
morphisms, and their laws of composition are, respectively, G( x )(2)and
G(2)( k). The pair (K, K ) is a double category, called the double ca-
tegory determined by G. We denote it by 1( G ).
- If 8:G~G' is a morphism of F(F(M)), the map
P(2.2)(8)=6(2)(2):G(2)(2) = G'(2)(2)

defines the double functor ‘7;(5) from 7(G) to %(G')-
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G(1) GBI 1) G(2) G(3)
G(K)(1)
G(-)(1) -
SIBL Yersa
G(1)(a) G(2)(a)
G(k)(2)
G(-)(2) —
G(2)(2)
G(1)(k) G(2)(K) G(3)(K)
G(B)(3)
Go(- -
(-)(3) G(K)(3)

PROPOSITION 27. There exists a functor O:F (W) = F(F(M)) satis-
fying the following conditions:

1° If C is the category determined by an object F of F (M), the dou-
ble category determined by O( F) is isomorphic to the double category of
quartets of C. '

2° If u and u' are objects of 2, the functor P(u',.u)a is equiva-
lent to P(u,u')?, and P(u,])a is equivalent to P(u).

3° F(M) admits a closure functor M such that

M(F'. F)(x)=FM)(O(F")(x), F),
for a pair { F', F) of objects of F (M) and a morphism x of =.

A. We denote by Y the Yoneda o*-structure in F(M). For an ob-
ject n of 2, the category C, determined by the object Y(n) of Fn) is

isomorphic to the category n; in particular:
C, ol C, L.,B.—-;——‘l.(l C; ¢Bk K tax

L. ﬂ.v’
The image of Y is isomorphic to the full subcategory of ¥ whose objects
are the categories 1,2, 3 and 4. (It follows that a category K is isomor-

phic to the category determined by the object F(K, nY-) of FMy

1o Lec M be the closure functor on ?(311) constructed in Proposition

20. For an object F of F(M), this proposition shows that M(F,Y-)is
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the o-structure in M7 (i.e. the category in F(M)) assigning the natural

transformation

FM(F, Y(x)XY-) to x€2.
Denoting M(F,Y-) by 9(F), Proposition 20 also proves that M satis-
fies the third condition.

To the functor M(-, Y-): F(Myx= -F(M) is canonically asso-
ciated the functor M': F(M) = F(M)Z such that M'(6) =M( 0, Y-) for
any O in F(M). This functor takes its values in the full subcategory
FF(M)) of FOMZ, since M'(F) = d(F) for each object F of F(M).
Hence M’ admits as a restriction a functor O : ET(DR) - 3:(.‘3"(3“)).

20 As Y(1) is a final object of ?(M), for each object u of Z the
functor
P(u,1)3=F(M)(-, Y(1)XY(u))
is equivalent to F(My(-, Y(u)), and therefore (by Yoneda Lemma) to P{u).
Let u and u' be objects of 2. We have:
P(u',u)9 ‘—‘?(m)(-, Y(u)xXY(u')).
If we consider the « symmetry equivalence»
mlu',u): Y(u' )XY(u) = Y(u)XY(u')
(such that the isomorphism
n(m(u',u)):C,H XC, = C XC .
assigns (y,x) to (x,y)), we get the equivalence
FM)(- 7w’ u)): P(u' u)d = Plu,u')0.
3 Let F be an object of F(J). We denote by C the category deter
mined by F.
a) K’ being the category determined by O(F )(-)(2), there exists an iso-

morphism @( F) from K to the longitudinal category T3 C of quartets of

C. Indeed, the functor
O(F)(-)2)=F(M(F,Y-XY(2))

is equivalent to the functor J(C, 7Y-XC,). So we get an isomorphism
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¢(F): K' = mC assigning the quartet
(M2 2,0.8), M2 B.2), M2) (0. a,2), NM2)(2,0.a))

to the natural transformation A: Y(2)XY(2) = F, element of K.

AM2)2,0.8) (2,0.3)
MN2)e. B2 & (.32 N2.2)(.a,2)
A 4
AM2H2, o (2’i'a)

b) ¢(F) definesa double functor from the double category M(A(F))=
(K',K") determined by 9(F) to the double category (m C,HC) of

quartets. Indeed, K™ is the category determined by

Q(F)N2)=FM)(F, Y(2)XY-).
From the symmetry of the product on F(M) we deduce that the functors
-XY(2} and Y(2)x- from F(M) to F(M) are equivalent and that there
exists an equivalence 7. Y-XY(2) - Y(2)X.- where w({u) is the equi-
valence 77(u,2) considered in Part 2, for any object u of 2. So, if 77*

is the equivalence dual of 77, we have the equivalence

T =FOM)(F, ) :(F)(2) »dF)N-)2),

(Y-XY(2))*

(Y(2)xY-)*
and I1(2) assigns Amm7(2,2) to A: Y(2)XY(2)} = F.The isomorphism

T =mn¢ll). K* = K' associates to A the natural transformation T{ M)} such

that, if x and y are morphisms of 2,
TOMN(2)y, x) =NM2)x,v).
If T' denotes the canonical isomorphism from M C to HC, it follows that

the isomorphism T ¢(F)T :

Hc o C K’ K>
Vi SO F) T

is defined by the same mép @ (F) as the isomorphism ¢(F). V
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COROLLARY. The functor P(2,2)9 is equivalent to the functor P', from
F(My to M assigning to 6: F ~ F' the canonical pullback P'(9) ., de-

fined by the following diagram, whose bases are canonical pullbacks in M :
z

P'(F')
F(k) ¥o(2) , Z [P @)
F( i) ety P'(F)
Q(I)M(K) 6(2) 2’
F'( k)

A. Let F be an object of F(M) and ¢ (F) the bijection considered
in the preceding proof, from K = P(2,2)0(F) to the set 0 C of quartets
of the category C determined by F. There exists a bi;'eciion ¢ "(F) from
g C to the canonical pullback P*'(F) of (F(«k),F( «)), assigning

((y'.x),(x",y)) to the quartet (x',y', y,x).
If we associate to F the composite bijection

W(F)=¢'(F)$(F): K =P'(F),

we get an equivalence Y : P(2,2)9 - P'. V
B) Closure functors on Fcv).
PROPOSITION 28. Let V be a category admitting pullbacks. There exists
a functor 3:%Fv) - F(F(V)) such that, if G is a category in V , then
§(G)(2) is equivalent to 76-(6)(-)(2) and, for s € V, and xXEZ,

(A) V(- s)3(G)(x) = 3(V(G-,s))(x).

A. We denote by £ the full subcategory of ?(m)v*whose objects
are the functors H such that the functor P(2)H = H(-)(2): V™~ N is
representable.

1° There exists an equivalence d: F( V) — £ . Indeed we have a func-
tor d': V*xF (V) »MZ such that

A'(f,8)=V(-, )0, for [eV, BeSF(V).

As V(-,s) commutes with pullbacks, d'(s,G)=V(G-,s) is an object
of iF(?ﬂ) for each object (s, G); hence there exists a functor 4", from
V*x (V) to S‘(DR), restriction of d’. The functor a;”': F(v) - ff(fm) v*
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canonically associated to d” is injective, and it takes its values in &
(since P(u)dﬂ"(G) is the representable functor V(G(u),-) for any ob-

ject u of 2). So it admits as a restriction a functor d from F(V) to £ ;

2

if OeF(V), then d(O): V¥ ¥ (M) is the natural transformation such
that d(8)([) = V(-,f) &, for any f€ V. It is known (see (Go] and [E3D)
that 4 is an equivalence; d1: 8 -~ F(v) will denote an equivalence.
2° We denote by:
- o": VxF(v) - ?(m)z the composite functor

”

9
VAIXF (V) = F (M) — F(F (M) F (M) 2
which assigns O(V(-,f)8) to(f.6).
- Q' the functor from ZXF(V) to S‘(DR)V* associated to Q".
If x:u~u'isin V and 8: G = G' in F(V), we have
Q" (u, G)(f) =3(V(G-, [)Nu) =P(u)3(V(G-,{)),
for any morphism f of V, and the natural transformation
Q'(x,0): Q(u,G) »Q'(u",G")
is such that, for any [ in V, we have
Q'(x, 0)(f)=3V(-.f) 8)(x) e F(M).
Let G be a category in V. We are going to show that the functor
Q'(-, G) takes its values in £. This will imply that Q' takes also its va-
lues in the category L.
a) Q'(-, G} is a category in ff(?R)V*. Indeed, for each object s of
V, the functor Q'(-.G)(s): Z = F (M) is the object A(V(G-,s)) of
F(F(M)). 1t follows that the cone Q'( -, G)’B/ , whose components in F()
are the limit-cones Q'(-, G)(s)’ﬁl , is a limit-cone in ff(m)"*, if ¥ is
*
equal to ¥ or to ' . Hence, Q'( -, G) is a category in FHv .
b) We denote by R the functor from 2 to mv* assigning
P(2)Q(x,G): V*3aM o any x€2.

The functor Q'(-, G) will take its values in £ if we prove that R(u) is

representable for each object u of 2. Indeed, for any f in V, we have
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R(u)(f)=P(2)Q (u,G)(f)=P(2)P(u)d(V(G-,[))=
=P(2,u)3(V(G-,[)).

- The functor P(2,1)79 being equivalent to P(2) (Proposition 27),

the functor R{ 1) is equivalent to the functor assigning
P(2)(V(G-,f))=V(G(2),[) to [,
so that it is representable by G(2).

- The functor P(2,2)90 being equivalent to the functor P’ considered
in the corollary of Proposition 27, the functor R(2) is equivalent to the
functor R’ assigning P'(V(G-,f)) to f€ V. By definition of P’ and pull-
backs being computed evaluationwise in ‘}(m)"*, the functor R’ is a pull-
back in MY of (V(G(k),-}), V(G(k),-)). Such a pullback is equiva-
lent to V(S,-), where S is a pullback of (G( k), G(k)) in V. So R(2)
is representable by §.

- 0'(3,G) is a pullback of (Q'(a,G), Q'( 5,G)) (Part a) and P(2)
commutes with pullbacks, so that R( 3) is a pullback of (R(a),R(53))
in MV*. We have just seen that R( a ) and R(,@) are natural transforma-
tions between representable functors; hence R{ 3) is representable.

- Q'(4,G) being a pullback of (Q'(v’, G), Q'(v,G)), we deduce
similarly that R(4) is representable, as a pullback of (R(v'),R(v)).

30 Q' taking its values in &£, there exists a functor Q: SxF(Vv) = £

restriction of Q'. We denote by 0’ the functor from F(V) to F( V)Z ca-

nonically associated to the composite functor 1 Q :

SxF(v) 0, e__d' _g.y).

a) 3’ takes its values in F(F(v)). Indeed, if G is a category in
V, we have 3'(G) = d10(-,G). As £ is closed for pullbacks in ?(T)H)V*

the functor Q(-,G): 2 — 53, restriction of the category Q'(-, G) in the

*

category FMY™, is also a category in £. The equivalence d! commu-
ting with pullbacks, 3(G) is a category in F(V ). It follows that there
exists a functor O: Fev) - F(F(Vv)), restriction of D' 1f G is a cate-

gory in V, if [ is a morphism of V and if x € 2, we get

V(- )3(G)x)=d(3(G)(x))(f) = Q(x,G)([)=3(V(G-,[))(x).
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A fortiori O satisfies the condition (A) (we take f=s).

b) Let G be a category in V. It remains to show that J(G)(2) is
equivalent to the functor B(G)(-)(2):Z =V assigning 9(G)(x)(2)
to x€2. Indeed, if F is an object of F(M) and C the category 7(F)
determined by F, there exists an equivalence

T(F) from (P(2)3)(F)=73(F)(2) to P(2)3(F)

such that 7( T( F)) is the canonical isomorphism from HC to oo C . This

defines an equivalence T from the functor P(2)9 to the functor

P(2)-9:FM) »F(M) assigning P(2)3(6) to 6.

ff(?ﬂ)<f.(2_)5‘"(§(f)ﬂ))<a_3'(m) m _P2) I
3(6)

A\s

We have the equivalence

Td(G): (P(2)3)d(G) = (P(2)-3)d(G),

P(2)0 o
d( G)
P(2)2

from A to A'. Since
A(f) =P(2)3d(G)(f)=3(V(G-,{))(2)
SV(-,f)3(G)(2) =d(3(G)(2))]),
for any / in V, it follows A = d( 3( G)(2) ). On the other hand,
A(f)(x) =P(2)3(d(G)([))(x)=P(2)I(V(G-.[)x)=

= (VG- fI(x)(2) = V(- f)GHx)2),

for any x€ 2 ; so
A'(f) = V(- f)O(G)-)(2) =d(d(G(-)(2))(])

for each { in V; this implies A’ =d(9(G)(-)(2)). Hence, Td(G) be-
longs to £ and &"1(Td(G): 3(G)(2)=3(G)(-)(2) is an equivalenceV

DEFINITION. With the notations of Proposition 28, we call —5(6) the dou-
ble category in V of quartets of G, while 9(G)(2) (resp. 9(G)(=)(2))

is called the lateral (resp. the longitudinal) category of quartets of G, and
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denoted by HG (resp. by m G).

The preceding proof shows that the categories determined by
V(-,s)HG and V(-,s)mG

are isomorphic to the lateral and to the longitudinal categories of quartets
of the category determined by V( G-, s), for any object s of V. Moreover,
- BG and mG are isomorphic,
- HG(1) and mG(1) are isomorphic to G(2),
- HG(2) and m G(2) are pullbacks of (G(k),G(K)}) in V.

REMARK. F(V) is the category of 1-morphisms of the 2-category Nv)
of natural transformations in V:1If 0: G = G' and 6': G = G’ are functors
in V, a natural transformation in V from & to &' is a functor ® in V,
from G to HG’, such that 9(G%(a)m® =6 and 9(G’)( B)rm® = &'
(by construction, we may clearly identify 5( G')( 1) with G'). When V ad-
mits pullbacks, it is known [G1] that JI(V) is a representable 2-category,
a representation of the category G in V being precisely the lateral catego-

ry BG in V of quartets of G.

PROPOSITION 29. Let O =(V,r,i,a, b,c,m,D) be a symmetric monoi-
dal closed category, where V admits pullbacks and kernels of pairs.

1° There exists a functor E: F(V)XF(V)* > F(V) such that, for
a pair ( G', G) of categories in V, we have:

E(G'.G)= [ D(-.G(x))3(G")(%).

2° If the conditions of Proposition 26 are satisfied, E is equivalent
to the closure functor D’ of $(0) and 3(G) is equivalent to the cate-
gory la'(G,qY-) in $(V), for any category G in V.

4. 1° The Lemma of Proposition 26 shows that the existence of pull-
backs and kemels in V implies there exist Z-ends in V. It follows that
there exist also Z-ends in F(V), which are computed evaluationwise. We
choose a 2 -end-functor f: fz:(V)2>< ¥ ?(V).

a) Let G and G' be categories in V. There exists a functor A from

ZX3ZXZ* to V which assigns

DI3(G' ) x')(y), G(x)) to (y,x', x).
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z

The corresponding functor A’: SX3¥ = V® which assigns

D(-,G(x)) 0(G')(x') to (x', %),

v
D

takes its values in F(V), since A'(u', u) is, for a pair (u«',u) of ob-
jects of 2, the composite of the category D(G')(u') in V with the func-
tor D(-, G(u)) which commutes with pullbacks. So, there exists a func-
tor H(G', G): SxZ* = F(V), restriction of A’. We denote by E(G’, G)
the canonical end [H(G',G) in F(V).

b) Let 6:G ~ G and 6': G’ — G’ be functors in V. If # and u’ are

objects of 2, we have the natural transformation

H(G',6)u' u)=D(-,6(u)) 3(8')(u'),

E(G',G) _ H(G"GXu'"u) V
v
E(8',0 ) H(B',8Xu"u) _ %
by

E(G', G)

from H(G',G)(u',u) to H(G', G)(u', u). Assigning this natural trans-
formation to (u’, u}, we get a natural transformation
H(6',6): H(G',G) ~H(G',G): SxZ* 2 F (V).
We write E(9',0) = [H(6', 6).
c) It is easily verified that we have so defined a functor

H: FvixFv)* = Fov)EXEY
and a fortiori a functor

E=[H:Fv)xFv)* -Fcv).

2° We suppose moreover that the conditions of Proposition 26 are sa-
tisfied, i.e. V admits sums of pairs and also either 7 commutes with pull-
backs or the insertion functor from (V) to vZ admits a lefe adjoint. Then
there exists a symmetric monoidal closed category F(V) whose closure
functor D’ is defined by 5'(6’, G) = fH'(G', G) (Proposition 23), the
functor H'(G', G): SxZ* - F(v) assigning
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D(-,G(x))D'(G', qY-)(x') to (x', x),

where g is a «partial adjoint» of V(-,7).
For any category G in V, we denote the category D'(G, qY-) in
F(v) by 6(G).

a) Let G be a category in V. Then 8(G) is equivalent to 9(G) .
Indeed, according to the proof of Proposition 23 (Part 1), for each object
u of 2, the category 8(G) is such that V(-,s)3(G)(u) is canonically
equivalent to 0 (V(G-,s))(u), for any object s of V.

V(G- s))(u) = V(- s)3(G)u),
by Proposition 28. Hence, denoting yet by d: F(V) — £ the isomorphism
defined in Part 1, Proposition 28, we deduce that
d(8(G)(u)) and d(3(G)(u))

are equivalent; a fortiori there exists an equivalence £(G)(u}: 6({ G)(u)—
5( G}{u). More precisely, we get an equivalence £(G): §(G) = (G
b) Let G and G' be categories in V. We define an equivalence
X(G',G) H (G,G) ~H(G,G): ZxZ = F(v)
assigning the equivalence
D(-,G(u"))E(G)u) to (u',uleyX2, .
Moreover, there exists
o @ T ¥ , : ;
- a functor H' : F(V)xF(v)™ - F(v)=**", defined as in Part I,
such that 13’(9', 6) is an end of H'( 6", 0), for each pair (8',8) of
functors in V;
- an equivalence X: H' — H assigning X(G',G) to (G', G ).

Hence [X: JH' = [H is an equivalence, and D’ is equivalent to E. V

The construction of E does not depend upon the existence of sums
in V. This suggests that E could always be a closure functor on F( V).

In fact, we have:
PROPOSITION 30. Let O be a symmetric monoidal closed category

(V,r,i,a,b,c,m,D).
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If V admits pullbacks and kernels of pairs and if = commutes with pull-

backs, then there exists a symmetric monoidal closed category
(F(v), 7%.i% a6, & m E),

where E is the functor defined in Proposition 29 and where 7' assigns the

category = [G', G to the pair (G', G) of categories in V.
A .Let 7 be the tensor-product functor on vZ such that
(0'+0)x)=6"(x)r0(x), for any x€Z,

if & and &' are natural transformations. As = commutes with pullbacks,
G'7 G is a category in V when such are G and G'. So, there exists a func-
tor 7 F(V)XF(V) >F(V), restriction of 7 and, F(V) being a full
subcategory of VZ, the canonical symmetric monoidal category on vZ ,

whose tensor-product is 7, admits a symmetric monoidal subcategory
(F(v), #',i%a, b, &, m')

since 7" is a category in V', the category I indexing pullbacks being con-
nected. Hence Proposition 30 will result from Theorem II-5-8 [EK] if we
know that E( G’, G) is a cofree structure generated by G’ relative to the
functor -7'G: F(V) = F(V), for each pair (G',G) of categories in V.
We will only sketch the proof of this assertion, omitting the purely techni-

cal computations.

1° The following remarks will be useful:

a) Let F and F' be categories in V and f: F(2) = F'(2) a mor-
phism of V. There exists a functor 6: F = F' in V such that (9(2):/‘
iff [ satisfies the equalities:

- [ F{e.a)=F'(c.a).{, f.F(t.,B):F'(L.,B).f.

- [ F(k)=F(«k).[", where [* is the «pullback» morphism such that
F'(v).ff=f F(v) and F'(v').f7=f.F(v') (it exists, the two first
equalities implying F'(a).f. F(v) =F"(8).{.F(v'), since F'(¢) is
a monomorphism and a.v = S.v ).

In this case, we have

(3)=14, O(1)=F'(a).{f.F(¢),

510



CATEGORIES OF SKETCHED STRUCTURES 101

F'( B) Frv')
— F'(k)
F,
(a) )
o(1)] ! r 8(4)]
F(B) F(v')
—~ Al
F(a) F(v)
and &(4) is defined by pullbacks. (The existence of & means that o ad-
mits an «idea» [E3], which is (k,¢.a,¢.8))

We will say that §: F — F’ is the functor in V defined by (.

b) Let B: SXZ* =V be a functor such that B(-,z) is a category
in V for each object # of 2, and S an end of B, with canonical projec-
tions p(u): S 2 B(u,u). If g: s 2B(2,2) is a morphism in V, there
exists a morphism g: s — § such that p(2). g = g iff:

- B(2,t.a).g=B(t.a,2).g, B(2,1.8).g=B(c.5.2). g,

B(2,x).g=B(«,3).g", where g’ is the unique morphism such that

B(2,v).g=B(v,3).g and B(2,v').g=B(v',3).¢

(its existence follows from the fact that B(-, 3) is a category in V).

It is easily proved that there exists a cone A:s” — .. B, where

NM2)=g, A(3)=g', A(1)=B(a,t).g,

B(B,3)
B(a,3)
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and A(4) is defined by pullback as being the morphism such that

B(3.v).g" =B(v,4). \(4),
B(3,7').g'=B(v',4). \(4).

Then & is the factor of -\ through the cone p:$" — .. B defining the end.

2> Let G and G’ be categories in V.
a) We consider:
- the longitudinal category m G’ = (G )(-)(2) of quartets of G,
denoted by G’ (definition page 97);

- the canonical projection p{2) from the end

E(G'G)(2) = [, D(G'(x),G(x)) wo D(G'(2),G(2));

X
- the morphism
p:D(G'(2),6G(2))7G(2) ~G'(2)
defining D(&'(Z), G(2)) as a cofree structure generated by é’(Z) rela-
tive to the functor -7G(2):V = V; _
- the canonical projections w: é'(Z) = G'(3) and w' defining G'(2)
as a pullback of (G'(k )}, G'( k)).

It may be shown that the composite morphism 7(2):

G'(2) r(2) E(G',G)(2)7rG(2)

G'( ) 5(2)7G(2)

D(G'(2),G(2))rG(2)

satisfies the hypothesis of Part 1-a, so it defines a functor:
r: E(G",G)7'G = G'.
b) r defines E(G', G) as a cofree structure generated by G' relative
to -7'G:F(V) 2F(V).Indeed, let §: G"7'G = G’ be a functor in V.
To define the unique functor in V:
0':G" ~E(G',G) suchthat rm(68'7°G)=0,
we are going to construct a morphism g: G"(2) — D( &’(2), G(2)) satis-

fying the hypothesis of Part 1-b, applied to the functor B assigning
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D(é'(x'),G(x)) to (x',x).
Then there exists a morphism
g§:G"(2) »E(G',G)(2) suchthat p(2).g =g,

and a technical argument proves that ¢ defines a functor &' in V, from
G" to E(G', G), satisfying the wanted property.
To construct g, we consider:
- the morphism 9(8)(2)(2): m(G"#'G)(2) ~G'(2),
- the morphisms G"(ia.)TG(jﬁ) and G"(j,B) 7G(j,) from G"(2)7 G(2)
to G"(3)7G(3),
- the projections @ and @’ of the pullback of

(G"(k)rG(k), G"(k)7G(k)) defining m(G"7'G)(2).
m(G"7'G)(2)

G"(k)TG(K)

G"(2)+G(2)
G"(1)7G(7g) (2)r

- the unique morphism b: G"(2)7G(2) > @ (G" 7'G)(2) such that

G"(3)7G(3)

W.h=G"(jglrG(j), @' h=GC"j)rG(jg);
it exists, since
(G"(K) TG(K)(G"(jg)rG(j )= G"(k.jg)rG(K.jg) =
G"(2)7G(2)=(G"(Kk)7G(Kk)-(GC"(f,)TG(jg)).

(For usual categories, this morphism corresponds to the map from the pro-

duct category C"XC to O( C"XC) assigning to (k”, k) the quartet

( BCk"). k)
(&, BCR))| (", a(k))

(a(k”), k) )

- the composite morphism 5’ = 3(0)2)(2).h.
gTG(2)

G"(2)7rG(2)

d(6X2(2)
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Then g is the unique morphism g: G"(2) = D(G'(2), G(2)) such that

0.(grG(2))=h". V

COROLLARY. If V admits pullbacks, kernels of pairs and a cartesian clo-

sed structure, then F( V) admits a cartesian closed structure. Y

REMARKS. 19 Proposition 30 (announced in [BE]) has been indicated by
the first of the authors in 1971, in a lecture at the Séminaire Ehresmann
(Paris). The proof given then was along the same arguments as above ex-
cept that ends were not explicitely used (the authors did not know them) but

constructed from kernels and pullbacks.

2¢ It may be asked whether Proposition 30 extends to more general
cone-bearing categories. This does not seem true. Indeed, we denote now
by o any projective cone-bearing category (2, ). As in Part 1 Propo-
sition 28, we prove that there exists an equivalence 4 from V7, for any
category V, to the full subcategory ' of (W")V* defined as follows:
the objects of £' are those functors H such that the functor H(-)(u)
is representable, for any object u of =
(in the case where O is the prototype of categories, £' is identical with
e , since I, 3 and 4 are constructed successively as projective limits).
But, even if O is cartesian, there is no way to prove that, G being

*

a o -structure in V, the functor from 2 to (mU)V associated to
M(d(G)-,Y-): VixZ =W°

takes its values in £'. However, if such is the case, we may extend the

construction of 3(G), and then the construction of E.
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BE.

DK.

Du.

El.

E2.

E3.

E4.

Es5.

E6.

EH.

EK.

F1.
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TENSOR PRODUCTS OF TOPOLOGICAL RINGOIDS
by Andrée and Charles EHRESMANN

INTRODUCTION.

A ropological ringoid A is an Ab-category ( category enriched in the
category of abelian groups) A equipped with a topology such that the under-
lying category be a topological category (in the sense category internal to
Top) and that the addition be also continuous. Topological ringoids arise
in several problems of Differential Geometry: for instance the category of
1-jets from a differentiable manifold into itself «is» a topological ringoid;
other topological ringoids are naturally associated to vector bundles.

If A and A' are topological ringoids and if ¢ is a «stable» set of
subsets of A, we construct a topological ringoid A'®, A whose underlying
Ab-category is the tensor product A’ A (it is known [10] that Ab-Cat ad-
mits a canonical monoidal closed structure). The continuous additive func-
tors from A'® A to a topological ringoid A" are in 1-1 correspondence
with the continuous additive functors from A' to the topological ringoid
HomU(A ,A") of continuous additive functors from A to A", equipped with
the o-open topology. This answers a question unsolved in f171.

One of the main results gives weak enough conditions on the sets
o and o' for the existence of an «associativity» morphism or equivalence
(-8 U.A' )@0 A~ -@O.QU(A'QU.A ). As a by-product, monoidal closed
structures are defined on the category Rd T of topological ringoids, on the
subcategory of Hausdorff ringoids and on the category T Ab-Cat (where TAb
is the category of topological abelian groups).

Several authors [11,12,16] have given general existence Theorems
for monoidal closed structures on a category. But these «global» structures
are rather scarce on categories related to Topology. So there is a need for
«partial» tensor products, more adapted to a prescribed geometrical or topo-

logical situation ; such problems were the motivation for this paper.
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1. TENSOR PRODUCTS OF TOPOLOGIES.

The category Top of topological spaces is not cartesian closed.
To remedy this hindrance several solutions have been proposed:
1° to extend Top into a cartesian closed category, e.g. the category
of Choquet pseudo-topologies [7], the category of limit spaces [2,8], the
category of Spanier quasi-topologies [21l;
2° to restrict Top, e.g. by considering the category of Kelley spaces
{13} which is cartesian closed but in which the product is different from
the product in Top.
On Top itself, there are monoidal closed structures, associated to
tensor product topologies defined on the product set. This is done in [1],

from which we gather here some results used in the sequel.

A. g-open topologies on functional spaces.
Let (E,T) be a topological space and ¢ a set of subsets X of £
satisfying the axiom:
(a) Each point of E belongs to at least one X €0 .
If (E',T') is a topological space, we denote by C_(T,T’) the
set C(T,T’) of continuous maps f: I'> T’ from T to T', equipped with

the o-open topology, which is generated by all the sets
S, US =1 [ T>T'| f(S)cU'},
where 2¢o and U’ is open in 7.

REMARK. In [1], C,(T,T') is denoted by C (T',T); we come back here

to the more usual notation.

There exists ([1], page 12) a functor C,(T,-): Top » Top asso-

ciating to g: I''> T" ‘the continuous map

C,(T,g): Cy(T,T') > Cy(T, T")
which sends [ T > T' to go f: T—LoT" 8T
B. o-product of topologies ([1], page 23).

With the same hypotheses, we define on the product set E'XFE a to-

pology, called the o-product of (T', T ), and denoted by T'x T (instead
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of T'®, T in[1]). It is the finest topology I' on E'XE such that:

1o For each x' in E' we have the continuous map
(x',-): T>T:x(x", x).

29 For each % €0, the insertion from E'X2 to E'XE is continuous

from T'X(T/%) into T (where T/% is the topology induced by T on ).

The open sets of T'X T are the subsets W of E'XE containing,
for each point (x",x) of W :
1° a set { '} XU, where U is a neighborhood of x in T,
20 for each 2 eo a set V!XV, where V is a neighborhood of x in 7/2
and V' a neighborhood of x' in T'.

T'XOT has the following «universal property»: If (E",T") is a
topological space, a map f: E'XE~ E" is continuous from T'X_ T to rr
iff it satisfies the two conditions:

1° For each x' in E', we have the continuous map
f(x',-): T>T": x—>f(x',x).
2° For each 2¢0, the restriction f/E NN T'x(T/%)-> T"is conti-
nuous.

In particular, T'X T is finer than the product topology T'XT, so

that it is Hausdorff if so are T and T'.

EXAMPLES. 1° If ¢ is the set s of all the subsets with one element of E ,
then T'X_T is the so-called asterisk topology, considered by several au-
thors [5,6, 20], and which renders continuous the «separately continuous»
maps. We get the same topology if we take for o the set of all finite sub-
sets of E.

20 If E €0, then T'XU T=T'%xT.

3° If o is the set ¢ of all (Hausdorff) compact subspaces of T, we

obtain the c-product T''X_ T . When T is locally compact, we have:
T'x,T=T'%T.

REMARK. In [22] other topologies are defined on E'XE by specifying not

only a set 0 of subsets of £ but also a set o' of subsets of E’.
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C. c-stable sets.
Let (£, T) be a topological space and ¢ a set of subsets of E .
We say o is c-stable (c¢( T )-stable in [1], page 14) if it satisfies the axi-
om (a) above and:
(b) for each Zeo , the topology T/% is compact and each x ¢ admits
a basis of neighborhoods in T/% formed by elements of o .

For example, s and ¢ are c-stable.

THEOREM 1([I], page 25-27). If 0 is c-stable, the functor G(T,-) from
Top to Top admits as a left adjoint the functor -X, T : Top » Top , associat-
ing gxXldp: "X, T>T"%X T tog:T">T".
In other words, there exists a canonical equivalence
CT', G (T,-)) — C(T'X, T,-)
between functors from Top to Set. More precisely:

THEOREM 2 ([1}, page 30 ). Suppose o is c-stable and o' is a c-stable
set of subsets of the topological space (E', T'). Then

g'Xg ={X'x3 | Z'o’, Seo}

is c-stable in (E'XE, T'Xg T} and the canonical equivalence above lifts

into an equivalence
Cor(T7 Cu(Ty-)) = Cong T X T,-)
between functors from Top to Top.
Theorems 1 and 2 imply the following «associativity» result:

THEOREM 3 (1], page 32). With the assumptions of Theorem 2 there exists

a canonical equivalence between functors from Top to Top :
(-xU,T')xaT — -xU,XU(T'xU T).
COROLLARY. There exist homeomorphisms :
(T*X TYXT > T"X (T'X . T) and (T"X,T')x T > T"X (T"X_T)

defined by ((x",x'), x )=(x",(x',x)) for any topological spaces (E, T ),
(E',T') and (E",T").
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D. Monoidal closed structures on Top and its subcategories.

Given a topological space (E,T) and a c-stable set ¢ on it, we
have constructed functors =X, T and C,(T,-) from Top to Top. Is it pos-
sible to «glue together» such functors to obtain a monoidal closed structure

on Top or on subcategories of Top ?

Suppose given a full subcategory S of Top containing at least a
one-point topological space, and a map o (-) associating to each object
(E,T) of S ac-stable set o( T) of subsets of £ such that

(c¢) Foreach f:T>T' in S, we have f(Z Jea(T"') for any Zeo(T) .
EXAMPLES. 1° The map s associating to each topological space the set
of its one-point subsets satisfies (c) with respect to Top .

2° The map ¢ associating to any topological space the set of its com-
pact subsets satisfies (c) with respect to the subcategory H Top of Haus-
dorff spaces, but not with respect to Top itself.

THEOREM 4. [f T'XU(T)T and C, (T)(T’ T') are in S for any objects T
and T' of S, then S admits a non associative (in general ) monoidal clos-
ed structure whose tensor product %5(-) extends the functors - Xo(T)T: S-S5

and whose internal Hom functor Ca(—) extends the functors
CG(T)(T,—): S~ S.
The tensor product always admits as a unit the one-point topology.

COROLLARY 1. Top is a symmetric monoidal closed category Top, when
equipped with the tensor product X and the intemal Hom C_.
COROLLARY 2. HTop becomes a monoidal closed category:
1o HTopg when equipped with - X - and C_(-,-);
2 HTop, when equipped with - X - and C_(-,-).
The tensor product - X - on HTop is not symmetric, while - X - is.
Let S satisfy the assumptions of Theorem 4 and let S* be a full co-

reflective subcategory of S containing a one-point topological space.

COROLLARY 3. [f T'XO(T)T isin S' when T and T' are in S', then S'

is a non associative monoidal closed category for the restriction of the ten-
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6 A, and C. EHRESMANN

sor product () and the internal Hom: S'X S N S" where

Corf(-)
k is the coreflector.
As an application of this last corollary, we consider the full sub-
category Ke of HTop whose objects are the Kelley spaces (also called

compactly generated spaces ) (see [13,15] ).

THEOREM 5. Ke is a cartesian closed category and the product of (T',T)

in Ke is identical with T'XC T.

PROOF. It is well-known that Ke is a coreflective subcategory of H Top
the coreflector being the Kelleyfication functor K: HTop » Ke . If we prove
that T'X_ T is a Kelley space for any Kelley spaces (E,T) and (E', T’),
it will result from Corollaries 2 and 3 that Ke is a monoidal closed category
for the tensor product -X,- and the internal Hom Ko C . In fact, we shall
prove that T'X_ T is identical with the product T'oT of (T',T) in Ke,
so that Ke is cartesian closed ( see also [13]).

- Indeed, a subspace W of T'X_T is open iff:
W, = WO({x"}xE) and Wg =WN(E'XB)

are open in the topology induced by the product topology T'X T, for each
point x' of E' and each compact B of T. Now, {x'}xT and T'XB are
Kelley spaces [13] so that W, and Wp are open iff their intersection with
each compact of { x’} X T and of 7'XB are open. Hence W is open in the
topology T"X_ T iff its intersection with any B'X B, where B'is a compact
of T', is open. But this is exactly the definition of the open sets for the

Kelley product T"oT. So T'X_ T'=T'oT.

2. TENSOR PRODUCTS OF TOPOLOGICAL RINGOIDS.

A. Monoidal closed structure on A% Cat.

The category Ab of abelian groups has a well-known monoidal clos-
ed structure. The tensor product G'®G of the abelian groups G’ and G is
their tensor product as Z-modules.

From general results [10], it follows that the category AbCat of Ab-
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categories admits a monoidal closed structure which we recollect briefly for
later use.

Ab-categories (i.e. categories enriched in Ab ) are variously nam-
ed; to keep the idea of «rings with several objects» [19] with a shorter na-
me, we call them ringoids (annoides in French [3]) and we reserve the
often used name «additive categories» for those ringoids admitting finite pro-
ducts (as in [3]). An Ab-category may be defined in several ways, the
simplest one being probably the data A4 of a category A  and of a lifting

of its Hom functor A*X A'» Set into a functor
A(-,-): A¥xX A" > Ab.

We denote by 4, the set of objects of 4, i.e. of 47, by A" the groupoid
coproduct (in Cat ) of the abelian groups A(e,e’'), for any objects e and
e’ of A, and by 0, the zero of A(e,e'). The couple (A',A+) entirely
determines the ringoid 4 .

We denote by Rd (shorter than Ab-Cat ) the category of ringoids.

To the ringoid 4 is associated [3] the horizontal ringoid MA of
commutative squares of A’ , whose multiplication is:

Y

7 y y'. 7

" r

y y vy
and the vertical ringoid B A ; their couple 04 is called the double ring-
oid of squares of A.

If A and A' are ringoids, we denote by Hom( A, A') the ringoid of
additive functors from A to A'. The morphisms of this ringoid, i.e. the nat-
ural transformations between additive functors from A to A’', are identified
[3] with additive functors from A to HA, by identifying

p: F=>F': 4 A'
with the additive functor ®: 4 > BHA' which sends a: e>u in 4 onto the

commutative square
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8 A. and C. EHRESMANN

p(u)
F'(a) F(a)

ple)

This defines the «internal» Hom of the closed category Rd.

The tensor product in Rd associates to the ringoids A and A’ the
ringoid A'®A4 whose set of objects is A, XA, , the abelian group from the
object (e',e) to(u’,u) being the tensor product group

A'fe’',u') @ Afe,u).
The canonical bi-additive functor /: (A', A) > A'®A4 is defined by
J(a',a)=a'®a for any morphisms a’' of A’ and a of 4.
The image J(A'X A4 ) «additively generates» the ringoid 4'@A.
The additive functors from A’'®4 to a ringoid A" are in 1-1 cor-

respondence with the bi-additive functors from(A’, A) to A", and also with

the additive functors from A’ to Hom(A,A"). The canonical isomorphism
Hom(A', Hom(A,A")) — Hom(A'®A,A")

maps F:A'>Hom(A,A") onto the additive functor sending a'®a onto

the diagonal of the square F(a')(a)=
F(a')(u)
Fru')(a) Fre')(a)

F(a')(e)

fora:e->u ind and a': e'>u' in A'.

B. Topological ringoids.

Ringoids may also be considered as sketched structures [4] : indeed
there exists a projective cone-bearing category, the skeich of ringoids, who-
se realizations into Set «are» the ringoids [18] . The realizations of this
sketch into Top are called topological ringoids.

A topological ringoid A is a couple (A, T} of a ringoid A and of
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a topology T on the set of morphisms of 4, such that:

1 (A", T) is a topological category (in the sense: category internal
to Top, i.e. the domain, codomain and composition maps are continuous
[8]1); let T, be the topology induced by T on A4, .

20 (AT, T) is a topological groupoid (hence the addition and the op-
posite map are continuous); let T;,*— be the topology induced by T on the
set Aj_ of objects of at , which is the set of O-morphisms of 4.

3° The continuous map O, . (e, e’) from T,,+ to T, XT, is a ho-
meomorphism. -

These conditions imply that A(e, e’) becomes a topological group

for the topology T(e,e') induced by T.

EXAMPLES. 1° A topological (unitary) ring is a topological ringoid, with
only one object.

20 If M is a differentiable manifold, the topological category /(M) of
1-jets from M to M underlies a topological ringoid [9].

3° To a vector bundle is associated the topological ringoid of homo-
morphisms from fibre to fibre.

4° If £ is a set, we have the ringoid A of couples of elements of £
whose set of objects is E, the group A(e,e’) being reduced to its zero
(e,e') for any pair of objects. If T is a topology on E, then (A, TXT)

is a topological ringoid, called the topological ringoid of pairs of T.

General results on sketched structures ( see also [18] ) assert that
the category of topological ringoids, denoted by RdT , admits both projec-
tive and inductive limits. The faithful functors from Rd7 to Rd and to Top
preserve projective limits, and the first one is an initial-structure functor
[23] (topological functor in the terminology of Herrlich [14] , which is con-

tradictory with ours). RdT is the category of l-morphisms of a 2-category.

Let A=(A,T) be a topological ringoid. If we equip the ringoids
of squares of A with the topology 07T induced by the product topology T4,
we get two topological ringoids [MA and BA, whose couple is the topo-

logical double ringoid of squares of A.
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10 A. and C. EHRESMANN

Let A=(A’, T') be a topological ringoid ; we denote by Hom (A ,A')
the subringoid of Hom( A, A') of continuous additive functors from A to
A'. Let 0 be a c-stable set of subsets of A. Identifying a morphism F of
Hom(A,A"), i.e. a continuous additive natural transformation, with the cor-
responding continuous additive functor F: A> HA', we equip Hom( A,A")
with the topology induced by C_(T, 0 T') and get the topological ringoid [17]
Hom, (A,A"). We have the endofunctor Hom (A ,-) of RdT such that

Hom (A ,F'): Hom, (A, A') > Hom_ (A,A"): F~F'oF,
if F': A'> A", where o is the total law of the 2-category on RdT.
C. Tensor products of topological rings.

Let A=(A,T) and A' =(A’,T') be topological ringoids and o be
a set of subsets of A whose union is 4.

If A" =(A", T") is a topological ringoid, we say that

F:(A',A), > A"
is a o -continuous bi-additive functor if it is a bi-additive functor from (4%, 4)
to A" which is continuous from T'x, T toT".
THEOREM 1. I¢ There exists a finest topology T on the ringoid A'@A4,
such that (A'@A,T) be a topological ringoid, denoted by A'®_ A, and
J: (A", A), ~ A'@oA:(a',a)l———a'@a
a o-continuous bi-additive functor.
20 The o-continuous bi-additive functors from (A’ yA), to A" arein
1-1 correspondence with the continuous additive functors from A'Q A to

A", for each topological ringoid A" .
PROOF. Let L be the class of all o -continuous bi-additive functors
F:(A',A), » A" =(A",T").
Each F in L determines the additive functor
F':A'8A -5 A":a'®at—F(a',a).

Let T be the initial topology associated to the family (F', T")p ; (i.e.

the coarser topology on A'®A such that F': T » T" be continuous for any
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ENSOR PRODUCTS OF TOPOLOGICAL RINGOIDS 11

in L). The forgetful functor RdT > Rd being an initial-structure functor,
ad the functor RdT > Top preserving initial-scructures, (A'€ 4, %) is a
spological ringoid, A'® A, which is the initial topological ringoid asso-
iated to the family (F',A")F - So by construction, each F in L de-

:rmines the continuous additive functor F': A' Q, A A",

T'x, T (A",

e e

- Let J:(A',A)> A’®A be the canonical bi-additive functor. Each F

1 L. being continuous from I''X, T to T" and factorizing through J, the
niversal property of the initial topology implies that /: T'X, T > T is con-
inuous; it follows that T is the finest ringoid topology such that

I (A‘,A)(7 - A'@oA

e a continuous bi-additive functor J. m

"OROLLARY 1. With the notations of Theorem 1, the topology :]‘1,, induced
n Ay =A; XA, by A'®_ Ais finer than the topology i"o' induced by T'XT
nd coarser than that T, induced by T'X T. Hence if T, and T, are Haus-

orff (resp. discrete ) topologies, sois T, .

>ROOF. [: T'™X, T > T being contmuous, its restriction to A,, which is the
dentity on Ao is continuous from T to T . On the other hand, let B be

he topological ringoid of pairs of T, (Example 4 above). There exists a
.i-additive functor G: (A', A)~ B which maps

(a'sa) onto ((u',u),(e'e)),
fa:e>u in A and a’re’'>u’ in A'. It is continuous from T'XT to
W X T, (since the maps domain and codomain are continuous in A' and
n A), and a fortiori o -continuous. Hence G factors through a continuous
.dditive functor G':A'8,  A> B the 1dent1ty of A bemg the restriction

f G' to A, , it is continuous from T to T' Finally, T,, > T > T’

IXAMPLE. If A and A' are topological rings, so is A'@_ A.
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12 A. and C. EHRESMANN

THEOREM 2 (Unitarity ). Let Z be the ring of integers, with the discrete
topology. Then

ZQ, A~ A - A Z.
PROOF. We shall construct a o ~continuous bi-additive functor

H:(Z,A o > A

and prove that each o ~continuous bi-additive functor from (Z,A )U factors
through it. From the universal property of Z®, A, it will follow that A is
isomorphic to this tensor product. Indeed, there exists a bi-additive functor

H:(Z,A)>A:(z,a)t~za.
Since Z is discrete, the topology ZX; T is the coproduct of the topologies
(fzix T)ze 7+ The addition on A being continuous, each map

H(z,-): T>T:atza

is continuous, so that H: ZX T - T is continuous.

- Let F:(Z,A), > A' be ao-continuous bi-additive functor. In particu-

lar, F(I,-): A> A' is a continuous additive functor. The composite

(Z7A)o- H A F(],‘) Al

maps (z,a) onto
F(l,za)=2zF(l,a)=F(z,a)
(we use the bi-additivity of F ), hence it is identical with F, and F fact-

ors through A.
(Z,4),

H

F(l,-)

- A similar method proves that A is isomorphic with AQ . Z. =

If F': A'> A" is a continuous additive functor, the map sending

(a',a) onto F'(a')8a defines a o -continuous bi-additive functor

(A", a), XM _can ay T ave 4,
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so that it factors through an additive functor
F'@,A: A'Q A A"Q_A.
This determines an endofunctor -®,A of RdT.

D. Some canonical isomorphisms.

THEOREM 3./f A=(A,T) is a topological ringoid and o a c-stable set
of subsets of A, then the functor -, A is aleft adjoint of the functor

Homa(A,-):RdT > RdT.
PROOF. We denote by J: (A',A); > A'@, A the canonical projection. Let
G:A'> Hom; (A,A"),

where A'=(A',T’) and A" =(A",T"), be a continuous additive functor.
Then G determines an additive functor from A' to Hom(A,A"), hence a
unique additive functor G’: A'®A4 > A" (universal property of the tensor

product) . The composite

Feea,A) . ae4 _C 4" (o', a)~C'(a'®0a)

defines a bi-additive functor. If we show that F is o -continuous, it follows
from Theorem 1 that G' defines a continuous additive functor from A’ @U A,

to A" , denoted by G'.

, I'x T
A‘@aA ] (A ’A)a F 0’
G' - T"LS T

All
Hom, (A, A'® A)
G e

HomU(AW [
CU(T,D T

Hom, (A,A") G Al

- Indeed, by construction of Hom,, (A,A"), we have the continuous map

G:T'> Cy(T,aT").

As o is c-stable, this implies that the map (a', a)>G(a')(a)} is contin-

uous from T'X T to 07" The diagonal map §: 0T" > T" is continuous so
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14 A. and C. EHRESMANN

the map

(a';a)~8G(a’')(a) =G'(a'Ba)
is also continuous from T'X, T to T" ; this map is F . Hence F is o -cont~
inuous. We have constructed a canonical bijection

Hom (A" ,HomO(A,A"))o - Hom(A'@UA,A")oI G—G',

whose inverse maps H: A'® ,A> A" onto

A2 Hom, (a,8'0,4) HomgAH) yo, (4 Ay,
where P is the «liberty morphism» defined by
P(a’'): A> A',A:at~a'@a. m
Now we lift the canonical isomorphisms into topological ones. Sup-
pose o' is a c-stable set of subsets of A'. For each topological ringoid A"
the o-continuous bi-additive functors F: (A' A Vg~ A" are objects of the

ringoid Hom ((A',A)U,A"), whose morphisms from F to G are identified

with the o-continuous bi-additive functors F : (A‘,A)U -> E}'A" such that

F(Ba',Ba)

Ffa',a) = G(a',a) F(a', a)

F(aa' aa)
(a and B being the domain and codomain maps). By this identification we
equip Hom ((A',A),,A") with the topology induced by Co'xa(T'XgT’ ol”).
As 0'x0 is c-stable (Section 1), so is constructed a topological ringoid
denoted by Homo.((A‘,A)G A" ).
We consider the set ¢'Q0 of subsets of A'®4 formed by the sets

S'RY = ](E'XZ), where 2'50',260,

and by the one-point sets { ¥}, where y is not in the image of the canonical

projection J: (A",A) > A'@; A.

THEOREM 4. If 0 and o' are c-stable, the 1-1 correspondence 1o between
the o-continuous bi-additive functors from (A',A), to A" and the conti-

nuous additive functors from A'@ A to A" extends into an isomorphism
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n : Hom 0'((A"A)a ,A") > Hom  1q, (A QOA,A" ).
PROOF. 1° There is clearly a ringoid isomorphism 7 . We have to show that
it is an homeomorphism from the topology
S induced by Gy, (T’ T,0T")
to the topology
S' induced by Co'@a(%’ al”).
This will imply that Hom(A‘@UA,A") equipped with S' is a topological

ringoid, yet denoted by Hom (A'®@,A,A"), and that 7 is a topological

o'Qc
isomorphism. (Remark that the existence of this topological ringoid is not
obvious a priori, since 0'®o¢ is not always c-stable, and the construction

of Hom (A ,-) uses the preservation of pullbacks by C,(T,-).)

20 7]'1:5'4 S:F'=F'o]
is continuous. Indeed, it is sufficient to see that the image by n of each
elementary open set of §,

<I'xZ,U>={F|FQE'x2)cU},
where U openin 07" and 2'ec', 2eo, is open in S' This is true, since:
(KX, U>)={F'| F J(E'xZ)cU}=<2'0%,U>.

3¢ 5:5-8' is continuous. Indeed, the elementary open sets of 5’ are

of the form
<Z'Q%,U> or <{y},U>with y{ J(A"xA).

It suffices to show that the image by 7]'1 of these sets are open sets in S.
From Pare 2:
77 H(<SQ2,U>)=<2 x2,U>
is open in S . We are going to show that 1]-1(<{ y},U>) is a neighborhood
of each of its elements F.As J(A4'XA ) additively generates A'®4 , there
(A", A),
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exist x;,..., %, € A"XA such that
y = J(x])+ +](xn).

Fenl(<ty}, U>) implies n(F)y)el. We have 7(F)oJ =F, so that:
n(F)y)=n(FEX] (% )+ +](x,)) = F(x)+...+F(x )el.
Since the addition of HA" is continuous, there exist open neighborhoods
Ui of i’(xl-} inof” {=1,...,n, such that U1+...+Un cU. Each %; is
contained in a Ei €0'%x0o . Since ¢' X0 is c-stable and F'](Ul.) is an open

neighborhood of Xy there exist

2/e0'xo  such that xifii’C I:“'Z(Ui)ﬂii.

no o= -
Therefore the set M <2;., U,> is an open neighborhood V of F in §. It

i=1]
is included in 7]']<{y§,U>, because GeV implies
G(xi)eé(i'i)c U;,
and so
n(G)y)=G(x;)+...+G(x,)elU;+...+U CU. =

A set 0 of subsets of A is called rc-stable for A if it is c-stable
and if the images of each £¢o by the maps domain a and codomain B of
A are in 0. For example such is the case if 0 =s, orif 0 = ¢ and T is
a Hausdorff space.

If A"=(A",T") and B =(B,S) are topological ringoids, we say
that F:((A" ,A')o. ,A)U—> B is a (0',0)continuous tri-additive functor,

if F is a tri-additive functor, continuous from ( T"X_T')X T to S.

THEOREM 5. Let o be rc-stable for A and o' be rc-stable for A'; then:
lo FEach (¢0',0)-continuous tri-additive functor factors through the ten-
sor product (A" ®0.A')@UA .
20 There exists a continuous additive «associativity» functor:
y:(A"@ A A > A'Q .. (A'@ A):
(a"Qa’')Qara" Q(a’'®a),

which is an isomorphism if o' Q0 is c-stable.
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TENSOR PRODUCTS OF TOPOLOGICAL RINGOIDS 17

PROOF. 1° Let F: ((A" ,A')a. ,A)U—> B=(B,S) be a (¢',0)-continuous
tri-additive functor. We want to show the existence of the broken line in the

diagram (*):

(A", AN, A), E B

4
!
(R =2l
| F
|
|

(A"@U.A‘)QGA
in which J' and J" are the canonical projections; the composite H:
((a",a’),a)r(a"Qa')Ra

is a (¢',0)-continuous tri-additive functor. Since F is tri-additive, it det-
ermines the bi-additive functor G:(A",A')> Hom(A,B), which maps
{a",a’) onto the additive functor G(a",a’'): A > BB:

F((a",a'), Ba)

a I_’F((Ba"96a’):a) F((aa",aa'),a)

F((a",a'),aa)

Suppose proven that G: ( A", A’ o1 > Hom,, (A,B) is o'-continuous. Then

it factors through a continuous additive functor
G': A“@U.A‘ - Hom,, (A,B),
to which is associated by Theorem 3 the continuous additive functor
F':(A"®,,AYQ A>B:(a"@a")Qat~F((a",a'),a).
- Hence it suffices to prove that G:T"XU.T'e CU (T,oS) is continuous.
Indeed, o' being stable by a , the map
. 3
lan. T XO"T’ > T XO.VT’
is continuous. As =X T and - %y T are endofunctors of Top, we have the

continuous map
fo (70 Tx, T LoXaXld_cpue 7oy T E g

((a”’ a’)a a) '—’F((aa"7 aa')’ a).
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18 A. and C. EHRESMANN

Using the stability of ¢ by a , we find that
gy ° (T’XU'T’)XU T JM’(T"XU'T')XOT —E——-»S:
(fa”,a')ya)~F((a" a’)aa)

is continuous. Let fB and 83 be the similar maps with respect to 3 . These

maps determine the continuous map
(fg: 8880 f i (T"%, T )%, T > oS 5%
((a”,a’),a)~G(a" a')(a),
from which follows the continuity of G: T*X T' > C, (T, oS).

2° We have the following diagram:

((A",A", 1, A), L (A" (A A) ), g
~
N Idx ]
H U

S (AT AR A) g,

N A

~N
~ J
S

(A"@, 1 AN@ A~~~ — = A"@ 1 (A'@ A)

in which ¢ is the homeomorphism (cf. Section 1)
w (T"XG‘T')XU T - T'XU,XG(T'XO T)

and ] and ] are the canonical projections; by definition, J maps o'Xxo¢ in-
to 0'®o, so that
T

dx J: 7% 0y (T'%,T) > T7x%,

o' xXo 'Qo

is continuous, where ?‘ is the topology of A'®_  A. Therefore H':
((a",a'),a)l~a"@(a'Qa)
is a (¢',0)-continuous tri-additive functor, and Part 1 implies that it factors
through H to give the continuous additive functor y .
30 Suppose that 0'®0 is c-stable. To prove that y is an isomorphism,
it suffices to prove that each (¢',0)-continuous tri-additive functor F as

above also factors through H'. Indeed, by a method similar to that used in

Part 1 we associate to F the continuous additive functor
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TENSOR PRODUCTS OF TOPOLOGICAL RINGOIDS 19

K:A" > Homa.((A',A)U »B)
such that K{a"): T’XUT—> oS maps (a',a) onto the square G(a",a')(a )
drawn in Part 1. As 0'&®o0 is supposed to be c-stable, Theorem 3 associates
to the continuous additive functor
" K 1 1]

A ——»Hom(,‘((A ’A)U’B)J‘-’Ho%'@(J'(A @0 A 7B)
(where 77 is defined in Theorem 4) a continuous additive functor

F": A"8 .q,(A'®@, A) > B: a"®(a'Qa)—~F((a",a'),a)

whose composite with H' is F. ®

COROLLARY 1. There exists an associativity isomorphism

y:(A"Q@ ARG A > A"Q_(A'Q_A).
PROOF. This follows from Theorem 5 applied in the case 0 = s and ¢' =5,
in which 0'®0 = s is c-stable. In this case there is a simple proof of Part

1 (and similarly of Part 3) .. Indeed, given the diagram (*) above, F defines

a bi-additive functor
L:(A"@A',A)»>B:(a"®a’,a)t+~F((a" a’),a).

L is s -continuous, since the (s, s)-continuity of F implies the continuity
of the maps:

foreach acd, L(-,a)=F(-,a): T'Xs T'-5 S,

foreach x e A"X A", L(]J(x),-)=F(x,-): T>S,

for each ye A"QA', L(y,-): T~ S, since there exist xieA'XA' with

y=J"(x;)+...+ (%, ), and L(y,-)= F(x;,-)+... + F(x ,~).
Hence L factors through H. m
COROLLARY 2.I/f 0 and o' are rc-stable, and if o'8o is c-stable, there
exist isomorphisms

w: Homa.(A‘ ,HomU(A LA » Homo.QU(A'@UA JAY Y,
' :Homgl(A',Homg(A,A"))» Homg.((A',A)o LAY,

E. g theyexistif o=s and o' = s.

PROOF. w is constructed from the identity of Hom .(A' ,Hom (A,A")) ,
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by repeated use of the adjunction and «associativity» maps. Then o' is the
composite 7)-1 ow (cf. Theorem 4). As 0'®0o is c-stable, w'l is deduced
(A'@,A,A"). =

in a similar way from the identity of Homa.®o

From Theorem 3 and Corollary 1 of Theorem 5, we obtain:
THEOREM 6. RAT admits a symmetric monoidal closed structure whose ten-

sor product @ extends the functors - @y A:RdT » RdT and whose internal

Hom extends the functors Homg (-, A).

3. HAUSDORFF RINGOIDS AND Top-RINGOIDS.

We study here two subcategories of RdT, a reflective one and aco-

reflective one.

A. Hausdorff ringoids.

A Hausdorff ringoid is defined as a. topological ringoid A whose to-
pology T is a Hausdorff topology.

We denote by RdH the full subcategory of RdT whose objects are
the Hausdorff ringoids. Itis complete and cocomplete, and the forgetful func-
tors toward Rd and Top preserve projective limits.

General existence theorems prove that RdH is a reflective subcat-
egory of RdT . Let A=(A,T) be a topological ringoid and P : A » A the
reflection morphism ; its restriction Po: 4, - ;Io 1s onto: otherwise the res-
triction P': A» A" of P to the full subringoid of A such that A4 = P(4,)
could not factor through P though A' be a Hausdorff ringoid.

THEOREM 1. If A =(4, T) is a topological ringoid such that T, be a Haus-
dorff topology, then:
1o P:A>A=(A,T) is onto and Po: Ty > T, is a homeomorphism.
20 If o is a c-stable set of subsets of A, for each Hausdorff ringoid
A' there is an isomorphism
¢ Hom(;(;\,A‘) » Hom, (A,A"):FFoP,
where & ={ P(2)]| Zeo }.
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TENSOR PRODUCTS OF TOPOLOGICAL RINGOIDS 21

PROOF. 1° Let B be the topological ringoid of pairs of 7, (Example 4-2 ).

Its topological space of objects is T, . The continuous additive functor:
G:A>B:a+(Ba,aa)
admits a factorization

G:A—P.a_G' |

(since B is Hausdorff) , and its restriction to the objects

Go: TD Po i"o——Gé—>T0

is an identity; hence the onto map P, : 7T, > i",, is an homeomorphism (and
P will be chosen so that P, be an identity). It follows that P(A) is a Haus-
dorff subringoid of A, hence P(A) = A.

2° The canonical 1-1 correspondence { deduced from the universal pro-
perty of the reflection is an isomorphism, since it maps the set of elementary

open sets
<P(2),U>, where X¢o and U open in HA',
of Homz (A, A") onto the set of elementary open sets of Hom  (A,A"):

<Z,0>= ¢ (<P(2),U>) =

Let A=(A,T) be a Hausdorff ringoid. Then HA is also a Haus-
dorff ringoid. If o is c-stable on A, the o -open topology CU(T, S) isa
Hausdorff topology if S is a Hausdorff topology. It follows that, for each
Hausdorff ringoid A", Homg (A, A') is a Hausdorff ringoid ; hence the func-

tor Hom (A,-) admits as a restriction an endofunctor of RdH.

On the other hand let & be a set of subsets of A whose union is A,
and let A' be a Hausdorff ringoid. The tensor product A'®, A is not ne-
cessarily a Hausdorff ringoid, but the set of its objects has a Hausdorff to-
pology (Corollary 1 Theorem 1-2 ). We denote by A’ éa A the Hausdorff ring-
oid associated with A'®_ A, and call it the Hausdorff o-tensor productof
A' and A. Theorem 1 asserts that the reflection morphism

P:A'€,A> A'®_A

is onto and that its restriction to the objects is a homeomorphism.
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22 A. and C. EHRESMANN

A'® A solves the universal problem to render continuous additive
the o -continuous bi-additive functors from (A¥,A )0 to Hausdorff ringoids.

We denote by -@UA the composite functor ( where p is the reflector) :

-Q, A p
RdHC__, RdT RdT RdH.

From Theorem 3-2 and transitivity of adjunctions, we get:

THEOREM 2. If o is c-stable, the functor -éUA is a left adjoint of the
functor HomU(A ,=): RdH > RdH .

Let ¢' be a c-stable set of subsets of A'. We denote by o' éo the

set formed by the P(2'QY), where 2¢0¢ and 2'co'.

THEOREM 3. Theorems 2, 4 and 5 of Section 2 are yet valid if we replace in
them by @ and topological ringoid by Hausdorff ringoid.

PROOF. From Theorems 4-2 and 1, we deduce the isomorphism
Hom,, (A", A), ,A") L Hom g (A'@, A, A")

~_

Homa.éU(A'@oA,A" ).
The other results are proved as in Section 2. ®

COROLLARY. ¢ RdH admits a symmetric monoidal closed structure whose
tensor product © extends the functors -® ;A and whose internal Hom is
a restriction of Homg .

20 RdH admits a semi-associative monoidal closed structure whose
tensor product ®, extends the functors -8, A and whose intemal Hom ex-

tends the functors Hom, (A,-):RdH > RdH.

B. Top-ringoids.

A Top-ringoid is the data consisting of a ringoid 4 and of a topolo-
gical group A(e,e’') on A(e,e') for each couple (e, e’) of objects of 4,
such that, for each triple (e, e’,e") of objects, the composition map:

Ale,e')xA(e"e”) > Afe,e”): (a,b)~b.a

be continuous.
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To each topological ringoid A = (A, T ) is associated the Top-ring-
oid obtained by taking A4 and on each group A(e,e') the topology induc-
ed by T; this Top-ringoid entirely determines A if the topology induced
by T on the set 4, of objects is discrete.

Conversely, if (4,A(e,e’')) is a Top-ringoid and if we equip 4
with the topology S coproduct of the topologies A(e, e’), we obtain a to-
pological ringoid in which the topological space S, of objects is discrete.
Hence we identify the Top-ringoids with the topological ringoids whose to-

pological space of objects is discrete.

We denote by T-Rd the full subcategory of RdT whose objects are
the Top-ringoids. It is a coreflective subcategory, the coreflection of A be-
ing the Top-ringoid associated above to A and the coreflection morphism

being defined by the identity of 4.

Let A be a Top-ringoid and o a set of subsets of A whose union
is A.
THEOREM 4. J© A'® A is a Top-ringoid, for each Top-ringoid A'.
20 If 0 is c-stable, the functor -8, A: T-Rd~> T-Rd admits as a right
adjoint the functor

H (A,-
oMo A7) RIT v TR,

H (A,-):T-Rd C_. RdT
where v is the coreflector.

PROOF. Corollary 1, Theorem 1-2 asserts that the topological space of ob-
jects of A'®_ A is discrete, so that A'@ A is a Top-ringoid. The second

assertion comes from the transitivity of adjunctions. ®

COROLLARY. T-Rd is a symmetric monoidal closed category for the ten-
sor product restriction of ®¢ and for an internal Hom extending the func-

tors Hg (A, -).

REMARK. The topological ringoids Hom,; (A,A') are not Top-ringoids (in
general) since even the simplest of them [ A is a Top-ringoid iff the topo-

logy of A is discrete.

Similar results for H Top-ringoids are deduced from A.
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24 A. and C. EHRESMANN

C. Examples.

1o The category of topological rings TR 1is a full subcategory of the
category I-Rd of Top-ringoids. If A is a topological ring and o a set of
subsets of A whose union is A, the functor -9, A admits as a restriction
an endofunctor of TR . In particular, TR admits a symmetric monoidal (not
closed) structure whose tensor product is a restriction of ® , and also a
semi-associative monoidal structure for the tensor product -® .- obtained

by taking on each A the set 7 of all its subsets.

20 A topological abelian group B may be identified with the Top-ring-
oid B admitting only two objects u and u’ and such that IAS(u, z')= B and

Bfu,u) and B(u',u’) are discrete groups with two elements.

Let 0 be a set of subsets of B whose union is B. If B' is a topo-
logical abelian group, by a method similar to that of Theorem 1-2 it is cons-
tructed a topological abelian group, denoted by B'®, B, such that each o-
continuous bi-homomorphism from (B',B) to a topological abelian group

B" factors through B'®, B into a continuous homomorphism toward B" .

So is defined an endofunctor -®, B on the category TAb of topo-

logical abelian groups.

If o is c-stable, -8, B admits a right adjoint Hom, (B,-) such
that Hom, (B,B") be the group of continuous homomorphisms from B to
B", equipped with the topology induced by the o-open topology C (B, B"),

for each topological abelian group B".

It follows that T Ab admits a symmetric monoidal closed structure
with tensor product -@S - and the internal Hom functor Hom (-,-).
It also admits @ symmetric semi-associative monoidal (not closed)

structure (TAb)ﬂ for the tensor product -®_ -, where 7 associates to B

7
the set of all its subsets. A bi-homomorphism from (B',B) is m-continuous
iff it is continuous for the product topology B'xB and it then factors through
B'® B. Hence, the Top-ringoids may be identified with the (TA4b) -cat

egories (categories enriched in (T'4b)_ ).
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TENSOR PRODUCTS OF TOPOLOGICAL RINGOIDS 25

4. RINGOIDS IN A CATEGORY,

A realization A of the sketch of ringoids in a category Xis called
a ringoid infternal to) X . Let RdX be the category of ringoids in X and
suppose X equipped with an intial-structure functor y : X » Set.

Then the methods and results of Section 2 may be generalized. More
precisely, let A be a ringoid in X ; it is entirely determined by the couple
(A,X), where 4 is the ringoid defined by the realization ¥ o A and where
X eX, is the «object of morphisms» ( see [18]).

1o If -& X is an endofunctor of X such that

X _“&X X X Set = X_X . Set _XX(X) g

we construct as in Theorem 1-2 an endofunctor -& A of RdX such that the
ringoid underlying A'&A be A'®4.

20 To A is associated the double ringoid [JA in X, over O 4.

3° Let M( X, -) be an endofunctor of X preserving pullbacks. If A' is
a ringoid in X , the realization M(X,-Jo A' is a ringoid M{( X, A') in X .

Its object of morphisms is M( X, X*). We'll suppose moreover that

X MXs2) | X X . Set = Homy(X,-).

In this case, M( X, I A') admits a subringoid M(A,A') in X over the ring-
oid of morphisms from A to A' ( whose morphisms are the F: A > 8A' ).
40 It M(X,-) is a right adjoint of -&X , then -& A admits a right ad-
joint M(A,-). If (X ,&,M(-,-)) is a monoidal closed category, the func-
tors -& A and M (A ,-) extend to give a monoidal closed structure on RdX .
For instance, the ringoids in the cartesian closed category Ke (see
Section 1) of Kelley spaces form a monoidal closed category. (Remark that
a Kelley ringoid is not necessarily a topological ringoid, pullbacks in Ke
differing from pullbacks in Top ) The ringoids in the categories of limit-
spaces, or of pseudo-topologies, or of Spanier quasi-topologies,... form also

monoidal closed categories.
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MULTIPLE FUNCTORS
I. LIMITS RELATIVE TO DOUBLE CATEGORIES
by Andrée BASTIANI and Charles EHRESMANN

INTRODUCTION.

Double categories are sets equipped with two laws of categories
satisfying the «axiom of permutabilitys. This axiom was first exhibited in
[E7] for the two laws on the set of natural transformations from a catego-
ry C toitself and in [E8] for the two laws on the set of commutative squa-
res of C. The general definition of a double category (and by induction of
a multiple category) was given in [E2], as a category internal to the ca-
tegory F of categories or, more precisely, as a structured category relative
to the faithful functor from F to the category of sets. 2-categories are tho-
se double categories whose identities for the second law are also identities
for the first law (but they are most often defined as categories enriched in
the cartesian closed category ¥); they have been considered by many au-
thors [GZ,G1,G2,G3,Bo,S] as well as the double categories of squa-
res of a 2-category [GZ,Gl,Pa] . Benabou's bicategories [B2] are a
«laxification» of 2-categories (and double categories may be laxified in a
similar way, as done in [Ch,M] ).

While a substantial and extensive theory of 2-categories has been
given by Gray (G1 ,2 ,3] , no such theory exists for double categories. We
are going to generalize here some of the numerous fine results of Gray in
the frame of double categories, using a method outlined in [E2] and whose
main idea is to associate to a category A and to a double category D a ca-
tegory T(D, A) which plays the same role as the category of natural trans-
formations (to which it reduces if D is the double category of commutative

squares of a category).
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1 EHRESMANN

In chapter O are gathered some complements about sketched structu-
res (used in particular later on to construct internal multiple categories).
In chapter I we study the functor T(-, A) from the category of double func-
tors to J; it associates to D the category formed by the functors from A
to the first category underlying D, and whose law is deduced from the se-
cond law of D; it admits an adjoint - BA. Free objects relative to the ca-
nonical functor from the first category of 1-morphisms of D toward T(D,A)
are called D -wise limits. The main theorem, proved in chapter II, asserts
that, if D is representable (i.e. there exist D-wise limits indexed by 2)
and if the second category of 1-morphisms of D admits small limits, then
all small D-wise limits exist. If D is the double category of up-squares
of a representable 2-category, D is representable and the theorem reduces

to a theorem of Gray, D -wise limits being cartesian quasi-limits of [G1].

This paper is the first part of a work whose other parts will appear
in the following issues of the «Cahiers».

- In the second part, the present results are generalized to n-fold ca-
tegories: the category of all multiple categories is equipped with a monoi-
dal closed structure, whose internal Hom associates to the n+ m-fold cate-
gory M and to the m-fold category B the n-fold category T( M, B) of gene-
ralized transformations; the tensor product ‘B is only symmetrical «up to an
interchange of the laws». As before, M-wise limits are defined and there is
a similar theorem of existence of M-wise limits when there exist M-wise
limits indexed by 2®7=2m...m2 (this theorem is proved using a result
of Appelgate-Tierney [AT] and the fact that each n-fold category is gene-
rated from 2®” by inductive limits).

- In the third part, we will describe different monoidal closed structu-
res on the category of double functors: its cartesian closed structure (whose
existence is proved in [BE]), whose internal Hom maps (D', D) on the
double category of double functors from D to the 4-fold category of squa-
res of squares of D'; two monoidal closed structures non symmetrical which
occur when double natural transformations are laxified (and which generali-
ze the monoidal closed structure on the category of 2-functors considered
by Gray [G1]). These results will then be applied to the study of structures
defined as realizations or lax realizations of «double sketches».
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MULTIPLE FUNCTORS 1
0. COMPLEMENTS ABOUT SKETCHED STRUCTURES

A. Notations.

1. We denote by U a universe and a set is said small if it is an
element of this universe. The category of maps between small sets is de-
noted by m.

A small category is a category whose set of morphisms is small.

2. Since we will have to consider several categot-ies with the same
set of morphisms, we will often denote a category by a symbol A’, where
A is the set of its morphisms and «.» the symbol of its law of composition
(i. e. the composite of (y, x) is written y.x). Then:

a*, [’ and k' are its maps source, target and law of composition,
A is the set of its objects, A * A" the set of its composable pairs,

&
A" its dual category.

But often we also denote a category by a unique letter (an italic
or a greek letter or, for «bigr categories, a script letter). In thatcase, if C
is a category, its set of morphisms is denoted by C, its symbol of compo-
sition by «.», its set of objects by C,, the dual category by C*, and the
set of morphisms from e to e’ by C(e’,e) or by e’.C.e, and x: e —e'
isread x€e'.C.e. If the sets C(e', e) are small, the Hom functor from
CxC* to M is denoted by C(-,-): cxc* =M.

3. A functor [ from A to C is also denoted by (C, ¢,A), where
¢ is the map from A to C defining it (sometimes we put f=¢ ). If [ is

constant on an object e of C, we write f = e’

The category of functors between small categories (i.e. of small

functors) is denoted by F, the composite functor:

a—Lc L p

being written f'.f or, more often, ['f.
There are two «canonicals functors from F to M:
the faithful functor p§ which associates to f: A »C the map [ : A = C;
the functor p§ associating to f: A =C the map fo: A, =C, restric-

tion of f to the sets of objects.
547



2 EHRESMANN

The functor psz admits an adjoint functor, mapping the small set
M on the discrete category on M (each element of M is an identity) which
will be denoted by MO It also admits a coadjoint which associates to M

the groupoid of pairs (MXM)°,

The functor p§ has no coadjoint (since it does not preserve co-
equalizers). But it admits an adjoint functor, which associates to M the

category 2X MO, coproduct of M copies of the category 2, where

z
0

2 is 1

4. If A and C are categories, we denote by cA the category of
natural transformations between functors from A to C. If t=(f", ¢, [} is
the natural transformation from the functor f to f' defined by themap ¢ from

Ao to C, we write t{u) = t(u) for each object u of A, and
t:f=f:A3C, or t:A=C.
If ¢": f" =" is another natural transformation, then -
ttmtsf o
denotes their composite in C* . Identical natural transformations are iden-
tified with functors.

On the set of all small natural transformations we have two laws:

D s the category coproduct of the categories CA for all small ca-
tegories A and C;

JU is the category, admitting F as a sub-category, in which the com-

posite of ¢t: f~f':A3C and ¢': g—g': C 2D is

' t:gf—g'f': A3D, where » /
(1)) = (P (u)). glt(u)), DCA
for each object u of A. g /

This composite is sometimes written t’t, especially when t or ¢' is an

identical transformation. We have:
toe=(g't)m (' f)=(t'f)m(gt).

If h: B—~A is a functor, the functor t =th from C* to CBis de-
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noted by C?. In the same way, gA : €4 -DA s the functor associating

gt to t: A 3C. Finally, gb.' cA -DB is the composite functor P ch:

DBoe o —CA c A
gB CB Cb

5. Let f: A~C be a functor. A natural transformation ¢: e =/,
where e” is a constant functor, is called a projective cone indexed by A,
with vertex e and basis f. If y: ¢’ e is a morphism of C, we denote by

ty the cone with basis [ and vertex e’ such that
(ty)(u)=1t(u).y for each object u of A.

If t is a limit-cone and t’ a projective cone with basis f, the uni-

que y such that ¢ty = t' is called the factor of t' relative to t.

In particular, let us take for A the category

1

@ 0

and for [ the functor mapping 4 and a' onto .x and x’. If ¢ is a projec-

tive limit-cone with basis f, we also say that

x' t(1)
x t(0)

is a pullback P of (x,x"). If t' is a projective cone with basis f (i.e.

if x.2°(0)=x".1"(1)), the factor y of t' relative to ¢t is denoted by
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{t'¢(0),¢(1)] and called the factor of (t'(0),¢'(1)) relative to P.

Similar notations are used for inductive cones i: f—e".

B. Sketched structures.

1. We recall [BE] that a (projective) limit-bearing category © is
a category 2 equipped with a set [ of distinguished (projective) limit-
cones; the set of the indexing categories of the cones Y €[ is called
the set of indexing categories of O .

If 2' is a category, a O -structure in %' is a functor ¢: =2’
such that ¢y is a limit-cone for each Yy €. We denote by 2’7 the ca-
tegory of O -morphisms in 2, which is the full sub-category of stz whose
objects are the O -structures in 2.

If Y:2 =2 is a o-structure in the dual Z'* of ', then the
dual functor Y*: ¥ 25’ is called a o -costructure in 5'.

O -structures are called sketched structures (this .terminology is
justified by Proposition 8-1 [BE] ).

PROPOSITION 1. If 0 is a projective limit-bearing category (2,1 ) and
Z' a category, there exists a functor 0:5'7x3Z'* =7 associating toan

object (P, w ) the o -structure Z'(-, w )p: Z N .

A. We consider the following functors:

the insertion ¢: 2’9 2’ Z,
the Yoneda embedding Y’: =¥ =M%’
the «composition functor» A: S mE which associates to

- - - . ’
the pair (7, 7') of natural transformations their composite T .T.

The composite functor 8’ :
Stoy sk (XY s Eme' A mZ

- . - ’ '
maps the pair (¢,w ), where ¢ is a O -structure in 2’ and @ an object

of ', on the functor
N, Y(w))=Z'(-,w)p: 2N

. - . . ’ . . . .
which is a O -structure in 3!(, since 2'(-,w) preserves projective limits.
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Hence 6’ takes its values in M7 and it admits as a restriction
g5 xS MO,
If 7:¢—¢ isa o-morphism in =’ and 8: w 2w’ a morphism in 2",
then 6 (7,8)=2"(-,8).7:
¢
m ?'T'

4 v

z'( “ w’)
2. Let o be a projective limit-bearing category (2, ) and !
a category admitting projective limits indexed by the indexing categories
of o. For each object @ of 2, let v : M =M be the functor «alue in
@ », which maps T: z 3’“ onto 7(w).
i i
PROPOSITION 2. 1° (M) and (W= )° are isomorpbhic.

2° X'9 is equivalent to the full sub-category R of (M) E™ whose
objects are the functors y : Z'* =M such that v S SM is repre-

sentable, for each w €2, .
A . 1° We denote by . the canonical isomorphism
) ek
po (M2 2~ mZy 2z
' nr* . ' ' ot
and by v, : b - the functor value in @' €3 . Let ¢: 2 -
be a functor. We have V;,c,b =,u(¢)(w'), If ¥v:13% is a limit-cone,
. ok
limits in me being computed termwise, ¢ is a limit-cone iff
Voo @Y = p (PN @)y 13N
is a limit-cone for each @' €3, . Hence ¢ is a o -structure iff
(@) w") isa o-structure in M, for each w'e 3y,
i.e. iff u (@) takes its values in M. So /4 admits as a restriction an
L} 14
isomorphism  w':(MZ 7 ~(MH)Z ™"
]
20 Let Y7:3' =MZ " be the Yoneda embedding. It gives an iso-
[
morphism Y7 : SIT oy (She Yo( 2'9%) = sub-category of (3112 >‘C)U, the

. . [ o . . . .. . .
insertion Y7(X')SN preserving projective limits. The isomorphism
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¥
' maps Yu( 5'9) onto the full sub-category R' of (?R")E whose ob-
r
jects are the functors Y: ='* =M such that w' ey S - ME™ cakes

its values in Y"(Z'), i.e. such that
. *
p Iy (wy =y ZF
is an object of Y"(Z') for each w €2, . Hence 2'7 is isomorphic with
"%
R'. As Y"(Z') is equivalent to the full sub-category of ME™ whose ob-

jects are the representable functors, R' is equivalent to the category R

. v - .. to . .
defined in the Proposition. Se 2'7 is equivalent to R.

Y"O’
5o vy UGG
4 T
R R me)T*F vy

3. Projective closure of a set.

Let O be a limit-bearing category (2, ) and Q) a sub-set of 2, .
We define by induction a transfinite increasing sequence of full sub-cate-
gories 25 of 2 as follows:

zo is the full sub-category of b dadmitting Q as its set of objects;

Zf = gy_g ZQ , if £ is an ordinal without a predecessor;

if Zg is defined, then Z§+1 is the full sub-category of 5 whose ob-
jects are the vertices of the distinguished cones ¥ €I whose bases take

their values in 25 , and the objects of Zg .
DEFINITION. We say that 2 is the [ -closure of {1 if there exists an or-
dinal & such that = = 283 then (zf)fés is said to r-generate >,

If 2 is the ['-closure of {1, it is also the "' -closure of {1, for

each set I’ of limit-cones including r.

PROPOSITION 3. Let o be a projective limit-bearing category (2,1")
and Z' a category admitting projective limits indexed by the indexing ca-

tegories of o. If Z is the ' -closure of a sub-set {1 of 2., then '
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1
is equivalent to the full sub-category of (m")z * whose objects are the
functors b such that v\ is representable fo each w € (1, where v, is

the functor value in w from M7 to M.

A. Let (1, be the set of objects of the sub-category 2, of 2 de-
fined above and & the smallest ordinal such that £ = 23. Then the union
of the transfinite sequence of sets ‘(Qf)fgs is Z,. In view of Propo-
sition 2, it suffices to prove that, if Y: 2'* -M is a functor such that
v, be representable for each w € Q= QO , the set H‘of objects w' of
2 such that v+ be representable is equal to %, . This will be proved
by induction:

Q, is included in IT.

If £ has no predecessor and if QC is included in Il for each ordi-

dinal { < £, then the union Qf of (QZ)C<§ is included in IT.

Now let us suppose that {l. is included in II for some ordinal £< &
and that w'e Q§+1\ Qg Sow' is the vertex of a cone EI: whose basis
p takes its values in 25, Let ¢ be the O -structure in ?ﬂz * associated
to \ by the isomorphism '"! of Proposition 2. The cone ¢y is a li-
mit-cone in mz'* with vertex P(w') = v,y and the induction hypothesis
implies that its basis o takes its values in the sub-category of mz’*,
whose objects are the representable functors. A projective limit of repre-
sentable functors being a representable functor, this sub-category is closed
for projective limits, so that the vertex 1, ,\ of ¢y belongs to it. There-
fore w'€ll. It follows that Qg1 is included in II.

By induction this proves that [I =23, . v

DEFINITION. Let 2 be a category and {1 a sub-set of %, . We say that
2 is the projective (tesp. inductive, resp. connected projective) closure
of {1 if 2 is the L -closure of {), where L is the set of all small limit-
cones in 2 which are projective (resp. inductive, resp. projective and

indexed by a connected category).

PROPOSITION 4. Let o be a projective limit-bearing category (2, )
and Y: 5% -WE the Yoneda embedding.

1° Y admits as a restriction an injective O -costructure Y in M and
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each o -structure ¢ in M is equivalent to M( P, S)Y*,

2° M9 is the inductive closure of Y(3,).

3° If 3 is the "=closure of a sub-set Q) of Z,, then M7 is the induc-
tive closure of Y(£).

AL le For each w € 2. , the functor
Y(w)=2(-,0): Z-N,
which preserves projective limits, is a O -structure in m, so that Y(2Z)
is included in the full sub-category W% of MZ. The restriction
Y: B —M"  of Y
is a O -costructure, since Y sends projective limit-cones belonging to I

on inductive limit-cones in ma, according to a result of (Lm]. Hence Y

. N e
is a o-costructure in M.
20 Let ¢ be a O-structure in M. The Yoneda lemma asserts that ¢

is equivalent to

W, )y s X5 qEp M) g

which is equal to M”(cﬁ,-)Y* since M7 is a full sub-category of mE
On the other hand, in MZ the object ¢ is the inductive limit of the func-

tor Yh*:

H* A > 14 mE

where b: H =2 is the discrete fibration (or <hypermorphism functor» [E1D
associated to ¢: 2> —J. The functor Y »* admits as a restriction a func-
tor k:H*~J% which takes its values in Y(Z). The sub-category M<
being full, its object ¢ is also the inductive limit of k. Hence M7 is the
inductive closure of Y(Z,). (In fact, the closure operation takes only
one step in this case.)

3 Let S be the ["-closure of (). The restriction Y of Y maps in-
jectively a full sub-category of 2 onto a full sub-category of M and sends
each cone of [ onto an inductive limit-cone of M. Hence Y maps the -
closure 2 of (1 into the inductive closure of Y (£)) in M7, so that the induc-

tive closure M7 of Y(Z,) is also the inductive closure of Y(). V

554



MULTIPLE FUNCTORS 9

PROPOSITION 5. If 2 is the projective connected closure pof a sub-set
Q) of Z, and if Z' is a category which is the projective connected clo-
sure of a sub-set (' of 2, then 2'XZ is the projective connected clo-

sure of (1'%,

A, Let (25 degs and (Zé)fss: be the canonical increasing trans-

finite sequences of full sub-categories of £ and =’ where
2=3 and zl=zgo ;
we may suppose that & = ', Then we have an increasing transfinite se-
quence (Zé X 2¢)g g s of full sub-categories of 3! x 2 satisfying:
2'x3 = Zé xZs .
If (w', @) is an object of Zé+1 ><25+1 , there exist projective limit-cones
v'in 2 and ¥’ in X', with vertices @ and @', whose bases
p:1-Z and p:1I"=Z%'
take their values in 2, and 2 respectively, and whose indexing catego-
£ & P y 8 &
ries I and I’ are connected. The product functor
pXpI'xl - Z'x 2
takes its values in 5. x 2, and it admits (w',w) as its projective limit;
&7 _ )
its indexing category I'XI is connected, I and I’ being connected. This
proves that the connected projective closure II of 0'xQ in 2'xZ con-

. ' . . [ . . .
tains Z§+1 X Z§+1 as soon as. it contains 2gX Zg . By induction -it follows
that I contains Zg x 28 =2"x2Z; whence Il =2'xX, v

4. Tensor product of cone-bearing categories.

Let o =(Z,[") and o'=(Z',T"") be two projective cone-bearing
categories. Conduché [C] and Lair [L] have proved that there exists a
cone-bearing category 0'®0 on Z’'xZ satisfying the universal property:

Let H be a category admitting projective limits indexed by the index-
ing categories of 0 and of ¢'. Then the canonical isomorphism

(HE)E 2 pEXE

I ’
admits as a restriction an isomorphism from ( H” )% onto HZ ©°.
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They have given the following explicit construction of o'®o:
- The underlying category is >’ x 2.
If w' €2 andif Y€l is a cone with basis ¢: I =2 and vertex w,
let v be the cone [w’*,v]:I1=2'xZ, with basis [w'*, @], vertex

(@', ), and such that
Y'(i)=(w' y(i)) foreach i€l,.
If I is connected, this cone is a limit-cone, when 7Y is a limit-cone.
We define in a similar way the cone [ ', *], where
v el and weZ,.
- The set [''®I" of cones is formed by all the cones [w'",7¥] and
(v, w*],for yel, y' eI, w' €%, and w €2,
If all the indexing categories of O and of 0’ are connected, then
o'Q0 isa limit-bearing category, when so are 0 and o'.
DEFINITION. 0 ®0 is called the tensor product of (o',0).
If (o;),<, is a finite sequence of cone-bearing categories, their
tensor product, denoted by

i?ngi or 0,8...80 .,

is defined by induction from the formula:

@ o.=( 8 0.)0C for each m<n-1.
i<m+1 °t (i<m d m

n
If o, =0 for each i <n, then 6<3 O, is also written ®0 .
tn

The underlying category of ? 0; is the category )2 Zi, defined
rn tn
by induction from the formula:

i<3z(+12i = (,izim 2)x2 ~ for each m<n-1.

The word «tensor product» is well justified. Indeed, Lair proves in
[L] that the category of morphisms between cone-bearing categories is
equipped with a symmetrical monoidal closed structure, whose tensor pro-
duct maps (0',0) onto ' ®0. From the general properties of symmetri-

cal monoidal closed categories, we get:
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PROPOSITION 6. Let (0,),«, be a sequence of projective limit-bearing
categories and let H be a category admitting projective limits indexed by
the indexing categories of o, for each integer i<n. For each permutation

f of {0,...,n-1} and each sequence

0:n0<n1<.‘.<nm<n =n

m+1
of integers, there exists a canonical isomorphism
' ' '
HCfO@,..@on_I < ((HU"O)Un 1. )U m
¢

where U”j = O—/(”]‘)Q ng(nj+1-1) .
PROPOSITION 7. Let n be an integer, O :(Z, ') a projective limit-bea-
ring category whose indexing categories are connected, o' = (2" ["") = B
and 1 a sub-set of 2, .

1° If T is the connected projective closure of §1, then Z' is the con-
nected projective closure of (' =%Q.

20 1f 2 is the [ -closure of (1, then 3' is the I''-closure of (I and

M is the inductive closure of Y'(Q') where Y’ is the Yoneda embedding.

A . By induction, part 1 follows from Proposition S, part 2 from Propo-
sition 4, since (on ZO' ey g X ZO' ZxZ ., 2% Zg) s [ generating
2 for n=2, if (25)5$8 is ['-generating 2. V

C. Internal categories.

1. We denote by oq = (Zq,I'q) the sketch of categories [BE]
which is the following limit-bearing category:
fo is the dual of the full sub-category of the simplicial category A

whose objects are the natural integers 1,2,3 and 4; its main morphisms

are denoted according to the following diagram, where a=1.a, B =:.05:
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The only distinguished cones are the two pullbacks:

Since ¢ is a right inverse of &, it is an absolute equalizer of the

pairs (2, a ) and (B » 2), and we have the pullbacks

in 23:. We write ﬁgﬁ = {;1,’)/2. ’)/3} and ;ff = (Zf},ﬁg). Then 23: is
the ﬁf}: -closure of {2}. So Propositions 3,4,7 may be applied to 53: .

2. Let X be a category with pullbacks. A o -structure in K is cal-
led a category internal to (or in) H; other names: category object in H for
[Gr], «atégorie structurée généralisée dans K> for [E3].

A Oog-morphism in H is called a functor internal to (or in) H. We
T
denote by F(H) the category X 5 of the functors in H. It is equal to the
T
category H 3:; indeed, if ¢: er -X is a functor, 73 is a pullback, 3

being an absolute pullback, and, ¢(¢ ) being a monomorphism, Cffr};l is a
pullback iff ¢y, is a pullback in .
If  is a category in the dual of H, the dual functor \JJ*:Z;‘ - X

of Y is called a cocategory in H.

There exists a unique category & in 23: mapping ¢t and K on them-
selves and interchanging @ and B, v and v’ . If ¢ is a category in X,
then ¢ 8 is also a category in H; we denote it by ¢, and call it the dual
of ¢. We get the «duality isomorphism» from 3:(}() onto ff(}() by sending
¢ onto P« and the functor (', 7, ¢ )in H onto (P, T, Px).

3. The categories ¥ and S‘(?ﬂ) are equivalent [E3, BE]. We will

use the following canonical equivalences:
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a) If C is a small category, there exists a unique category in W,
denoted by 7);(C) and called the category in M associated to C, which
transforms the pullbacks 7; and 7, into canonical pullbacks in M and
which maps a, B, k and ¢ respectively onto the maps source, target, law
of composition of C, and insertion from C, into C.

If f+ A~C is a functor, 7;(f) will denote the unique natural trans-

formation (or functor internal to m)
M1(f): m(A) = n(C) such that 7;(f)(2) = {.

In this way, we get an equivalence 7;: F ~F(M). This equivalence
admits as a restriction an isomorphism from F onto the full sub-category
of F(M) whose objects are the categories in m mapping ¥; and Y, on

canonical pullbacks in M and ¢ on an insertion.
b) On the other hand, we have an equivalence ‘:I from F (M) onto

3", which maps:

the category ¢ in M on the category {1(¢), called the category
associated to ¢, whose underlying set is ¢(2) and whose law of compo-
sition if ¢(«k). g !, where g is the bijection:

x P (p(v)(x) d(V')(x))

from ¢(3) onto the canonical pullback of (¢(a), ¢(3)),

the functor 7: ¢ —oc;b' internal to WM on the functor from §1(¢) ‘to
Cl(gb') defined by the map 7(2): ¢(2) -~ (2).

d'(2) ’
[ ( [
¢'(1) T (3)
(1) T(2) Y7r(3)
(1) 2) Sk "3)
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In particular, if M is a small set, the constant functor M™: 23: -

is a category in M whose associated category is the discrete category MO,

4. The functor toward F associated to a category in }.
PROPOSITION 8. Let X be a category admitting pullbacks. The category

*
F(H) is equivalent to the full sub-category K of 3:}( whose objects are
the functors ¢: H*-F whose composite 2F ¢ with the forgetful functor
PF - F =M is representable.

— o
A . Since 2g is the [ -closure of {2} and S =X ?’ Proposi-

o v

tion 3 asserts that ?(}() =K 5 is isomorphic with the full sub-category
* *

R of ?(m)}{ whose objects are the functors i : X -i’r‘(9ﬂ) such that

vy is representable, v: ?(m) - denoting the functor value in 2 which

sends 7 onto 7(2).1f {;: F(M)~F is the equivalence constructed in

3 above, the composite functor

gL . *F .y

is equal to v, so that v is representable iff pF{; is representable.

The equivalence
dC. g - 1
associating §1 Y o ¢ H* —F (M), it admits as a restriction an equiva-
lence from R onto the full sub-category X of ?}(* Hence 3:(}() and X
are equivalent. V
5. The canonical cocategory in F.

If » is a natural integer, the composite functor

SqC A D(n,-) 9

is a category in N, since the pullbacks Y; and Y, in Z? are also pull-
backs in A*. Its associated category is the category n defining the ca-
nonical order of the ordinal » = {0,..., 71 }; the morphisms of n are the

pairs (m', m) of integers such that m<m' <n. \

If f:n~m is a morphism of 23-', i.e. if { defines an increasing

560



MULTIPLE FUNCTORS 15

map from (7.<) to (m, <), the composite natural transformation

sy Ty

is a functor internal to 311, to which is associated the functor §:
(7. i) = (f(j), f(i)) from n to m
(defined by the map A(f,2) ).
PROPOSITION 9. There exists a cocategory in ¥ admitting as a restric-
tion an isomorphism from Zg: onto the full sub-category —2*3*: of F whose
objects are 1,2,3 and 4. F is the inductive closure of {2}.
A . From Proposition 4, it follows that the Yoneda embedding Y, from
Z% to M 5 admits as a restriction a cocategory 71 in F(M) and that
o . .
FMy =M ¥ is the inductive closure of { Y, (2) }. As {;is an equivalen-
ce, F is the inductive closure of { 2;1 71 (2)} and the composite Cl Y,
v :
S —LF(M) —L - F

“ . ? . . . . . Z*
is a cocategory in J. It admits as a restriction an isomorphism from F

onto the full sub-category of § whose objects are the categories
QI?I(n), where ne {1,2,3,4}.
So, it remains only to prove that the category 51?1(”) is identical with
n. Indeed, this category is the category associated to the category in M:
Y (n)=Zg(-,n): Zq = N.
Since Zg is a full sub-category of A¥ | we have Y;(n)} equal to the compo-

site functor:
SgCwpt Dlno) oy,
to which is associated, by definition, the category n. v

REMARK. The above constructed cocategory in J is a restriction of the
canonical embedding of the simplicial category & into F, which defines
¥ as a category admitting as models the categories n, for all the integers

n. The corresponding «singular functors from F to the category & of sim-
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plicial maps sends a category C onto the corresponding simplicial object;
the homology of this simplicial object is called the homology of C [Gel
The singular functor admits an adjoint, the realization functor, which asso-
ciates to a simplicial object F the category canonically associated to F;
the groupoid projection of this category is the fundamental groupoid of F

(see [GZ]).

D. Internal discrete fibrations.

1. It is known [E1l] that the three following notions are equiva-
lent, where C is a category:
a) A functor from C to the category M of maps.
b) A discrete fibration (or hypermorphism functor [E1]) over C, which

is a functor p: H = C such that

H, e H
Po b
ct - C

is a pullback, where a and a' are the source maps of C and H and p,
the restriction of p to the objects; this means that, if s is an object of
H and x: p(s) e’ a morphism in C, there exists one and only one mor-
phism y in H admitting s as its source and satisfying p(y) = x.

c) A left action k' of C on a set A, also called a category action
(or an operator category on A, or a species of structures in [E1]): then
k' is a map (x,s) Fxs from a sub-set K’ of (XA to A satisfying the
following axioms: there exists a map po, - A 2 Co such that K’ is the ca-
nonical pullback of { &, p, ) and that:

es=s if seA and e =p,(s),

'(xs)=(x".x)s if x'. x exists in C and if (x,s)eK"'

N L
XS ot —% - « 8§

bo

I
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(the map po is uniquely determined by these conditions, which imply that
po(xs) is the target of x). The associated discrete fibration is the func-
tor p: CxA = C, where C#A is the category on K’ such that:

(x',s5").(x,s)=(x".x,s) iff x'.x exists in C and s'= xs.

2. We denote by m F the horizontal category of commutative squa-
res (or quartets [E1]) of the category F of small functors whoseobjects
are the small functors, the morphisms from p to p’ being the commutative

squares (p'. /. f'. p).

H' H

We denote by @ the full sub-category of mF whose objects are

the discrete fibrations; its morphisms are called morphisms between dis-
crete fibrations.

The category @ is equivalent to the category of covariant maps
between category actions (see [E1]).

We denote by p@} and p@ the functors from @ to M sending the
morphism (p’, [, f", p) respectively onto the map [ defining f and onto
the map f§: Hy 2 H{ restriction of ' to the objects.

F will be identified with the full sub-category of (f whose objects

are the identical fibrations.

Let C be a small category. (& admits as a «non-full» sub-category
the category &C of morphisms over C, whose elements are the morphisms
(p',f, ', p) such that { is the identity of C (such a morphism identifies
with the triangle (p', ', p)). There exists an equivalence from MC toward
@C which sends a functor ¢ : C =) onto the discrdte fibration b¢ , from

H¢ to C, associated to it (the morphisms of H(IS are the pairs
(x,s), where x€C and sep(a(x)),
and b¢(x,s)=x).

&C is also equivalent to the category of covariant maps over C.
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3. The sketch of discrete fibrations.

We denote by 2 the category

1 Z 0
as well as the limit-bearing category on 2 without any cone. The tensor

product 0§ ®2 is the category ng 2 equipped with the pullbacks

(v,i)

(V' i) (v' i)

(a1 (v, i) (v,i) (v'i)

for i =1 and i = 0.

.0 P
0 (1,0) (B (z,om(m))

(a,0) (2,7 (3,z)
z (1,z)
1 (B, 1)
(1,1) 1) 77 (3. 1)
(@, 1) |

PROPOSITION 10. There is a canonical equivalence which is surjective
! .-311"37@2 2. md.
AL Let Y :2gx2 -~ be a 0§ ®2-structure in M. Then
Y(-,1): zf}‘—' M and Y(-,0): Zc‘f—ﬁm
are categories in J; let C and H be the associated categories. The map

WY (2,z) defines a functor {' (Y ) from H to C.
If 7:p = Y’ is a 0oF@2-morphism, then
¢

U'(Y):H=C and  L{'(Y'):H —C’

are functors and the maps 7(2,1) and 7(2,0) define, respectively,

functors f: C =C' and f': H—H’'. Then {'(7) is the commutative square
(Lp 8.V

DEFINITION. We define the sketch of discrete fibrations as the limit-bea-
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ring category O 4 = (qu , Fqs) got by equipping the category Z¢ =2gx2
with the set rg:@ﬂ of the distinguished cones of 03-'@2 and the pullback

Yy (1,0) %) (2,0)
(1,z) (2,z)

1)
(1,1) L. (2,1)

Let ‘r_qs be the set (I:ff®¢)u{’y4} of 7 cones, among them the
absolute pullbacks [’)/3, 0°] and [')/3, 1°], and E¢ :(Z¢, 1=¢).Then zé
is the r¢-closute of {(21),(1,0)}, since 2? is the fg:-closure of {2}
and 7, is a pullback. Moreover mee = M.

[ .
PROPOSITION 11. The category @ is equivalent to M ® and it is the in-

ductive closure of {1, 2 }. where 2 is the void fibration from @ to 2.

Al 1o If :thx 2-N is a Ug@Z-structure in 311, itis a T4 -struc-
ture iff it maps ¥, on a pullback in M, i.e. iff the functor {'(yY) is a
discrete fibration, where C' is the equivalence defined in Proposition 10.

] . . . . "
Hence (" admits as a restriction an equivalence {" fromthe full sub-cate-

Q2
% of M onto the full sub-category @ of m¥.
2 Since M°% =M°® and qu is the ﬁ¢-closure of {(1,0),(2,1)},

gory bt

o
by Proposition 4, the category M % is the inductive closure of
{Y(1,0), ¥(2,1)}, where Y:Z% =N'¢
is the Yoneda embedding. Using the equivalence {“, we deduce that Q is

the inductive closure of { {"Y(1,0), L"Y(2,1)}.
As (1,0) is an initial object of Z¢, it is mapped by Y on a final

object of M°?, and by {"Y on a final object of (1. Hence {"Y(1,0) is
isomorphic with the identical fibration 1.

The category associated to Y(2,1)(-,1):2q =M is 2x{1}, for
Y(2,1)0(m,1)=24((m,1),(2,1))=Zq(m,2)x {1}

for each me {1,2,3,4}. In the same way, the category associated to
Y(2,1)(-,0): 2¢ =N is void. Therefore, ("Y(2,1) is the discrete

fibration from the void category to 2X { I} (isomorphic to 2). This fibra-
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tion is isomorphic in @ with the fibration 2.

If follows that @ is the inductive closure of {1,2}. V

4. Discrete fibrations in a category H.
We suppose that H is a category admitting pullbacks. A O 4 -struc-

ture in H is called a discrete fibration in K. we denote by @(}() the ca-
tegory of O¢-morphisms in X, which is equal to He.
proposiTioN 12. 1° Q(H) is equivalent to the full sub-category R of
* *

@}( whose objects are the functors p : H =@ such that p@ L and p&p
are representable (where p{ and pO@ are the forgetful functors from @ to
W defined in 2).

2° If Y and ' are two discrete fibrations in H such that

Y-, 1) =y'(-,1): 23: ~-K, 50'74 = ‘,/J’)’4, Y(B,0)=y"(B,0),
then b and ' are isomorphic in @(¥H).

A, 10 As &(}()=}(0¢ and 5, is the [ , ~closure of {(1,0),(2,1)},

(] ¢

Proposition 3 asserts that @ (X) is equivalent to the full sub-category R'

K
of (f(fm)}( whose objects are the functors o }(*—'(f(m) such that q,O'
and ¢° 0’ are representable, where ¢° and g are the value functors from
@My o M associating to T respectively 7(1,0) and 7(2,1). If ("

is the canonical equivalence (Proposition 11), then

q is the composite functor @(m) " Q @ w,
g P8y

q° is the composite functor @(SR)

It follows that a functor p’: H* =@(M) is an object of R' iff the functor
{“p" is such that pgL"p’ and péé"p' are representable, i.e. iff ("p’

is an object of the category R defined in the Proposition. Hence the equi-

wH* W* J* .. .
valence { : @(m) =@ admits as a restriction an equivalence from

R o R. Finally, A(H) is equivalent to R.
2° Let i and ' be discrete fibrations in } satisfying
Sb("l)z\p'(’: 1); l/’74=l/"')’4 ’ "b(,Blo):l/J'(ﬁlo)'

Since

566



MULTIPLE FUNCTORS 21

Y(B,0) wiv',0)

Yla,o Y(v,0) Yla, 0 (v .0)

are two pullbacks, there exists an unique isomorphism g of H such that:

P(v;.0). g = ‘/J'(Vi,o) for vy=v and VI:V"

Y3, z)

From the equalities
(v;,1).(3,2)=(2,2).(v;,0)
for i = 0 and i = I, we deduce
Yv, 1) (3,2) =" (2,2) V' (4, 0) =" (2,2) . Y(v;,0). g =
=Y(2,2).9(v;,0). g ='(v;, 1).y(3,2). g

for 7 equal to 0 and I. This implies (unicity of the factor relative to a
pullback):

Y'(3,2) =y(3,2).g.
In the same way, from
(a,0).(k,0)=(a,0).(v,0) and (2,2z). (kK 0)=(k,1).(3.2),
weget
Yi(k,0)=y(k,0).g,

the functors i and ' taking the same values on (a,0), on (2,z) and
on (k,1). It follows that the categories (-,0) and ¥'(-,0) in H are

equivalent, whence ¥ and ' are equivalent, i.e. isomorphic in @(H). V
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The preceding proof shows that o, admits as its «idea»

(B8.,0)

Hence a discrete fibration Y in H is determined up to an isomorphism by

(Y(-,1), Y(1,2z), y(B,0)). This leads to the following definition:

(1,z)

DEFINITION. We say that (¢, b, k') is a category action in H if:
1° ¢ is a category in X,
2° b and &' are morphisms of X,
30 there exists a discrete fibration Y in X such that
Yl-,1)=¢, Y(l,z)=h, Y(B,0)=k".
If ¢ is a category in H, let ¢* be its dual (section C-2). If we

have a category action (¢, b, k') in H, we also say that (k', b, ) is
a right category action in X. '

EXEMPLE. Category actions were introduced in [E4] as an axiomatiza-
tion of the notion of a fiber-bundle. Indeed, topological (resp. r-differen-
tiable) fiber-bundles correspond exactly to the category actions in the ca-
tegory J of continuous maps (resp. D7 of r-differentiable maps between
manifolds) such that the operating topological (resp. differentiable) cate-

gory be a locally trivial groupoid [E4,5].

5. Distributors in K.

If B and C are categories, the following notions are equivalent:
a) A distributor from B to C, which is defined [B1] as a functor
from C*X B to WM.

b) A pair of category actions on a set (introduced in [E1] under the

name of «ouple de catégories d'opérateurs»), i.e. a pair
((B,A, k'), (C* A, «"))

of category actions such that
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(xs)x" = x(sx') whenever the composites

xs=k'(x,s) and sx' = K"(x', s) are defined.

This last notion is easily «internalized» in a category X admitting
pullbacks by defining a limit-bearing category 05 whose realizations in
M are pairs of category actions on a set. We will not formally construct
05 here; its description is given in [V]. Intuitively, it is got by gluing
together along (1,0) the sketch of a discrete fibration and the sketch of
a discrete fibration over the dual of a category (in which (i, y) is replaced

by (ii.¥)), and by adding the pullback

(5.0)

and the factors

= [(2,2).4",(4,0).u] and t= [(B.0).u'.(2.2).u]

2,2) (B'O)
(a,0) (B, 1)

of ((a,1),(1,2)) and ((1.2),(B.1)),
the axiom (&,0).t =(f,0).¢".

relative to the pullbacks
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The realizations of Oy in H are called [B1] distributors in K.

DEFINITION. Let H be a category admitting pullbacks. A distributor in
X is defined as a sextuple (@', b', k", k", b, ¢), where:

1o (@', b', k") is a category action in X,

20 (k', b, @) is a right category action in },

30 k”.I'"=k'.1], where

I = [/e".m',p.m] and ' = [[J'.m', kE'.m]

are the factors relative to the pullbacks respectively P of (5, ¢(f)) and
P’ of (¢'(a ), h'), where we have the pullbacks:

b b’

#(B) 14

. o . .. .
) denoting the category M8 of morphisms between distributors, it

follows from Propositions 2 and 12 that K3 s equivalent 'to the full sub-
t 3

category of @K whose objects are the : H*~9 such that Y(-)w) is

representable, for w € {(2,1),(2,1),(1,0) }.

REMARKS. 1° To a distributor & : C*X B ~M is associated a functor &,
from B to ?IIC* and, since mC* and &C* are equivalent, a functor from B
to @C* . More generally, problems in Differential Geometry and in Analysis
led to consider functors from a category B to (. Such a functor associates
to each e € B, a category action (C_, A_, k_); then B operates on the ca-
tegory sum of the C_ and on the set A sum of the A_. This situation is
easily internalized in } and enriched by giving supplementary structures
on the A_. In fact, it was this more general notion (suggested by that of
a sheaf of operators on a sheaf) which was first introduced (in [AB] to de-
fine distributions on infinite dimensional vector spaces) under the name
of «catégorie de catégories d'opérateurs» and which is studied in [EL,5]
(and called espéce de structures dominée par des applications covariantes).
20 Distributors are the 1-morphisms of a bicategory (see (B1] ), for a
law which can be suggested by that of the category of atlases of a catego-

ry defined in [EG].
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1. THE CATEGORY OF DOUBLE FUNCTORS

A. Double categories.

1. In this section, we recall the initial «naive» definition of double
categories, as it is given in [E2].
DEFINITION. A double category is defined as a pair (2°,2") of catego-
ries with the same set of morphisms, satisfying the following conditions:

1 The maps source and target of 2  define functors from 2° onto

a sub-category of 2° .
2° The law of composition of 2 defines a functor toward =° from

the sub-category of 2° x 2° formed by the pairs of morphisms composable

in the category 2.

(2°,Z) is then called a double category on S, and the categories
2° and ¥ are respectively its first category and its second category. A

double category on = is said small if £ is a small ser.

In [E2] it is shown that the axioms 1 and 2 are equivalent to the
following ones, where a, B and a°, [° denote the maps source and tar-
getin 2 and in 2° respectively:

1° For each d€ 2, we have
a(a’(d))=d(a(d)), a(p(d)=p(a(d)),
B(a’(d))=a(B(d)), B(B(d))=/5(B(d)).
2¢ If the composite d'o d exists in 2°, then
a(d'ed)=oa(d)oa(d) and B(d'od)=/[(d")e[5(d);
if the composite d.d exists in =, then
a®d.d)=a°(d).a°(d) and B°(d.d)=p[B°d). B°(d).

32 Permutability axiom: If the composites d'od, d'od, d.d, d&.d"

are defined, then the composites
(dod).(d'od) and (d'.d') o(d.d)

are defined and both are equal.
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B°(d) ]
d’ d’
B(d) d ald)
d d
a’(d)

This set of axioms being symmetrical relative to 2° and to 2° |
it follows that (2°,Z") is a double category iff (Z,2°) is a double ca-

tegory; these two double categories are said symmetrical.

2. Notations.

A double category (2°,%") is generally denoted by a unique ita-
lic letter, for example D . In that case:

The underlying set 2 is denoted by D.

The first category 2° is also denoted by DI, its symbol of composi-
tion by o; (instead of o}, its mappings source, target and law of composi-
tion by al, B! and «!.

The second category 2 is denoted by D? , its symbol -of composition
by o, (instead of .), its mappings source, target and law of composition
by a?, A and «2.

The set of objects of D! defines a sub-category of D?, which is de-
noted by D! and called the second category of 1 -morpbz’sm& of D.

The set of objects of D? defines a sub-category of Dl, which is de-
noted by DZ and called the first category of 1-morphisms of D.

The categories D(I) and DOZ have the same set of objects, which is
written Do, and called the set of vertices of D. The elements of D which
are not objects for D! nor D? are called 2 -blocks of D.

Let d be a 2-block of D. As a morphism of D!, it admits a source
x=al(d) and a target x' = ,BI(d) and we write d: x 2x’. As a mor-
phism of DZ, it admits a source y = a?(d) and a target ¥y’ = ,52( d) and

we write d:y 3 y'.

e’ X é
’

y d y
’

e M e
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3. Examples.

a) 2-categories are defined as the double categories D such that the
objects of D? are also objects of pl , so that Dy, =D§ CDg; a 2-block
of D is then called a 2-cell. For example, we have the 2-category of na-
tural transformations (between small categories), denoted by (fnm,?l'),

or N, whose second category of 1-morphisms is .

b) If 2° is a category and 50 the discrete category on 2, then the
pair (2°,2%) is a double category, called the discrete double category
on 2°. Similarly, (ZO,ZO) is a 2-category, called the discrete 2-cate-
gory on. Z°.

¢) If A is a category, (A, A) is a double category iff A is a commu-
tative category, i.e. a category coproduct of commutative monoids.
If D is a double category such that D! and DZ are discrete cate-

gories, then pl =p2,

d) Let A be a category. We denote by (A the double category of com-
mutative squares of A. Its underlying set is the set of commutative squa-
res (or quartets) of A, which are the 4-tuples (y', x', x, ¥) such that the
composites ¥'. x and x'.y are defined and equal.

Its first category, denoted by H A, is called the vertical category
of squares; its law of composition is:

oy

(3. 2. %, 3)B(y . x" x,y) = (5. y", % x, 5. y) iff x'=%.

£I
N R BC' x'
y y
x’ y ¥ y
¥ vy .
X X
X

Its second category, denoted by 3 A, is called the bhorizontal
category of squares; its law of composition is:
(&l,f',&,j{)m(y"x"x,y) :()',")Z"xr,&.x’y) iff )',:yr.
There is an isomorphism (¥',x',x,y) ~(x',y',y,x) from mMA

onto Ha.
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With similar laws, the set of all(non commutative) squares of A al-

so becomes a double category.
e) Let D be a double category. If C is a sub-set of D which defines

a sub-category C! of D! and a sub-category C2 of D2, then (C1,C?)
is a double category C, called the double sub-category of D defined by
C (or by ¢l or by c2y.

In particular, among all the double sub-categories of D which are
2 -categories, there is a greatest one, namely that defined by the full sub-
category of D? whose objects are the vertices of D.

The full sub-category of D! whose objects are all the vertices of
D also defines a double sub-category of D, whose symmetrical double ca-

tegory is the greatest sub-2-category of the symmetrical of D.
f) Let D be a double category. Then,
(1%, p2), (D!, D?*) and (D!* D?¥)

are double categories, called respectively the first dual, the second dual

and the dual of D.

4. Double functors.

DEFINITION. We say that (D, ¢, C) is a double functor if C and D are
double categories and if ¢ is a map from C to D defining a functor from
¢! to D! and a functor from C2 to D2.
A double functor (D, ¢, C) will often be denoted by an italic letter

[. In that case:

the map ¢ is also denoted by f,

the functor (D1, ¢, C1) by [

the functor (D2, ¢, C2) by f2.
Moreover, we say that

f: C=D is adouble functor,

or that ¢ defines a double functor from C to D.

EXAMPLES. a) The double functors between 2-categories are called 2-

functors.
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by Let 2° and =’ ° be categories. Amap ¢ : = — 3’ defines a func-
tor f: 2% =3"° iff it defines a double functor from the discrete double ca-
tegory (3°,2% on 5° toward the discrete double category on 2. ° . In
that case, there exists a double functor from the double category of com-
mutative squares 02° to (02 ° defined by the restriction « to the commu-
tative squares» of the product map dxpxpxd . This double functor is
denoted by OOf.

The double functors between small double categories are the mor-
phisms of the category 3:2 of (small) double functors, whose objects are
the small double categories.

This category is equipped with the following forgetful functors:

p?: ffz —F . which associates to the double functor [ the functor /1,
Pg:ffz -¥, which associates /2 to f,

pF,: F, M, which associates to f the underlying map f.

71
¥ g
2 ¢)2
p? P?Z
n

Moreover, there is an isomorphism ¢2.‘ ?2 —‘3:2, which is its own
inverse, mapping the double category D on its symmetrical one (denoted

D21) and associating
(D21, ¢,C?l) to (D,¢p,C)edF,.

We have the equality piqbz = pg .
B. Double categories as sketched structures.

Double categories may be considered both as categories in F or

as 03:@0’3:-structutes in W (called double categories in DR).

1. Categories in ¥.

Let F(¥) be the category of functors in(ternal to) F (this catego-
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ry has been defined in 0-C).

PROPOSITION 1. The category .cfz of double functors is equivalent to the
category F(F) and isomorphic to a full sub-category of F(F).

A . We are going to conmstruct two canonical equivalences, which will
be used later on.

1° a) Let D be a small double category. There exists a unique func-
tor ,,(D): Zg ~ ¥ mapping the two distinguished cones 7, and 7, of
OF on canonical pullbacks in F and associating to the morphisms ¢,Q,
B and K of o respectively:

the insertion from the sub-category DZ of D! into DI,

the functors from D! to DZ defined by the mappings source and tar-
get a? and B2 of D-

the functor defined by the law of composition k2 of D? from the sub-ca-

tegory (D2%xD2)1 of DIx D1 on the set of composable pairs of D2 o DI
2
B 4
Nl k2
W

1/'_,5\2 kK_ 3 D?
\ﬁ/

Hence, 7);;(D) is the unique category in ¥ such that M11(D)(2) is the

first category D! and that #F M 1;(D) is the category 771('D2) in M as-

sociated to the second category D? (cf. 0-C-3).

b) If f: C =D is a double functor, we have a unique functor
Npa(/): M7 (€)= (D)
internal to F such that My, (F(2)= fL
c) We have so defined a functor 7;;:
frmng(f) from F, w F(F).
¥

o o
It satisfies pg.ﬂ: Mp1 = Mp» where pF* is the functor:

T Ppg T from ?(3:) to 3‘(311) .
Since 77, admits as a restriction an isomorphism from ¥ onto a full sub-
category of ?(MI) , the functor 11 admits as a restriction an isomorphism

from 3:2 onto the full sub-category 3:(93:) of F(F) whose objects are
the categories ¢ in F such that pg:qb is the category T)I(Z) in M asso-
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ciated to a category 2 (sucha category in ¥ is called a pF-structured ca-

tegory in [E2]).

20 We define now a functor C“ from ff(g") onto ?2.

a) Let ¢: 2 =¥ be a category in F. Then ¢(2) is a category 2°
and p§ ¢ is a category in M the associated category L (pF ) (defi-
ned in 0-C-3) is denoted by 2. The pair (2°,%°) is a double category,
whose image by 7);; is a category in ¥ equivalent to @ (by its construc-
tion). In particular, noting (2°,Z") by &1 (¢ ), we have

§“(7711(C)) = C for each double category C.

B)If 7: ¢ —~¢' is a functor in F, then

L)y =(8y1 (), 7(2), {11 (P))

is a double functor; in this way we have defined a surjective functor {,

from 3:(?) to F . The composite functor
i 5 M1 F($) 0 ¥,

is an identity functor, while
Ny Ly FE)—F(F)
is equivalent to an identity. V
COROLLARY. F, is equivalent to the category 7!105803: .
A . From Proposition 6-0, we know that ch@“f

ECICE

to ffz , according to the Proposition. V

is isomorphic with

this last category is equivalent to 3:0? =% (F), and therefore

DEFINITION. If D is a double category, 7;,(D) is called the category

in  associated to D.If ¢ is a category in J, then §11(¢) is called
the double category associated to .

2. The sketch of double categories.

®
Since ¥, is equivalent to m ¥ 03:, it is natural to give the

DEFINITION. The tensor product 0F®0q is called the sketch of double
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categories; it is denoted by O, and its underlying category by 252 .- A
O, -structure (resp. -morphism) in a category H is called a double ca-

tegory (resp. a double functor) in .

The category }(73:2 of double functors in H is denoted by Fo (3.
oo Tq ot oq o .
It is equal to H ¥ 5’ since (}( 3:) l3:=(}( ?) c‘f. Proposition 7-0
asserts that foz is the T—g @T'-ff-closure of {(2,2)}.

PROPOSITION 2. There exist a surjective equivalence CchrZ(m) —'3:2

and an equivalence 7),: 3:2 "3:2 (MY such that L, M, be an identity.

A. From Proposition 1 and from 0-C-3, we get the equivalence 7),:

32 i1 F(F) "r’]‘zyffr (m"f}:)"?_@_’ m"?e"?:gz(m)‘

which is constructed as follows:

If D is a small double category, 7),(D) is the unique double catego-
ry in M mapping the distinguished cones of 0F, on canonical pullbacks
in W, mapping the morphisms (¢, 7) and (n,¢), for n€ {1,2,3,4}, on

insertions and such that

ny (D) =my(D)(2,-): Zg =M,

2,0/ \2, 8)
,2
(5.2) (K,2)

(a2)
(2, k)

If f: C~—D is a double functor, 7),(f) is the unique double functor

p2%p? up (D?)

T:m,(C) = my(D) in W
such that 7(2,2) is the map [ defining f.

We construct now a surjective equivalence CZ" 52(3“) —’3:2:

If qﬁ:zgzz - is a double category in M, then
$;=P(2,-): Zg M and ¢,=p(-,2): Zg -N

are categories in M, and the pair of their associated categories
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L) =(L,(pp) Li( ¢, ))
is a double category on ¢(2,2).
If 7:¢ —¢" is a double functor in M, the map 7(2,2) defines a
double functor L,(7): {,(p) = C2(¢')-
We have so defined the functor §2: 3:2 (m) —*52 .

Since {7 ,: F ~F is an identity, the functor {, 7,:
M2 4
5, - F,0n) —2—F,

is an identity, and 772(52) defines a full sub-category of 3:2(3“), iso-
morphic with 3:2 .V

3. General results about O-structures in N may be applied to the

category 3:2 , according to Proposition 2. In particular:

PROPOSITION 3. 1° F, is a category admitting small projective limits
and small inductive limits.
2° The forgetful functor toward M as well as the two forgetful functors
p? and Pg toward § preserve projective limits and filtered inductive limits.
3° The forgetful functor toward W admits quasi-quotient structures,
i.e. [El] if D is a small double category on D and r an equivalence on

the set D, there exists a small double category quasi-quotient of D by r.

These results are deduced in [BE1] from general theorems about

internal categories (which would also apply to 3:2(}()).

C. Categories of generalized natural transformations.

If D is a double category and A a category, the functors from A
to the first category of 1-morphisms of D are the objects of a category,
denoted by T(D, A), whose law is deduced from that of the second cate-
gory D? underlying D. Functors from a category B to T(D,A) may be

identified with double functors toward D from the «square product» BEA.

1. The functor T,.

PROPOSITION 4. There exists a functor T;;: ?2 x F* ~F mapping the ob-
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ject (D, A) onto the category T(D,A) got by equipping the set of func-
tors from A to D! with the law:

t'o,t is defined iff alr’ = ,82_t_ and is then equal to the functor
a = t'(a)o,t(a) from A to pl.
A . 1° From Proposition 1-0 there exists a functor
G:F(F)yxF*— F(m)
mapping (7, g) € F(F)xF onto the natural transformation F(-, g). 7:

I

-,B)

¢ Fe-,4)
(where g:B —A). We denote by T;; the composite functor:

F e 1 gg) g0 O gmy tL .5

2° Let D be a small double category and A a small category. Then
T,;(D,A) is the category T(D,A) associated to F(-,A4) ¢ :Zq — N,
where & is the category in § associated to D:

- Its set of morphisms is F((2), A) = F(pl,Aa)=L.

- Its law F(p(x )., A is defined on the pullback

FHVAVF(HBLA) = {(t',t)e LXL | a?s’ = 5% },

and it maps (t', t) onto the functor ¢(k). [, ¢]:

at t'(a)o,t(a) from A to DI

30 Let b: D—~E be a double functor and g: B—A a functor. T;, (b, g)
is the functor from T(D,A) to T(E, B) defined by the map

F-og)m, (h)(2)=F (-, g)(p1)=F (b, g),
which associates bltg o te F(D1, 4). V
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DEFINITION. The category T(D, A) defined above is called the category
of D-wise transformations from A to D. A functor t: A -D! s called a
D -wise transformation from f to [’, if { is its source and f' its target in

T(D,A).

t(d') a'

['(a) t{a) f(a) a

F(D2,A) is the set of objects of T(D, A). This definition, given
in [(E2] (where T(D, A) was constructed directly), has been inspired by

the following example:

EXAMPLES. 1° Let B be a category, (OB the double category of its com-
mutative squares. If A is a category, T(OB, A) is identified with the ca-
tegory BA of natural transformations, by identifying a functor from A to
HB (i.e. a OB-wise transformation) with a natural transformation bet-

ween functors from A to B.
2° For any double category D, the category T(D,2) is isomorphic
with D2.
2. The square product of categories.
We are going to construct an adjoint to the «partial» functor -
T,,(-,4): F, = F, for each small category A.

DEFINITION. Let A and B be categories. We call the square product of
(B,A), denoted by BmA, the double category (Qo XA, BXA%) (where
éo and _B_O are the discrete categories on the sets of morphisms of A and

B respectively).

BmA is a double category, since it is the product in ffz of the

double categories (B%,B) and (A.éo). Its laws are:
(b',a')o,(b,a)=(b,a’.a) iff b’ = b and a'. a exists in A4,

(b',a')o,(b,a) =(b'.b,a) iff a’ = a and b'. b exists in B.
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(b',8(a')) (b,f(a))

(B(b’),a’) {a(b),a") a’
(b',a’) (b,a')

(6°.58(a) (b,B(a))

a
(B(b'),a) (b’ a) (b, a) (a(b),a)
(b', ala) (bya(a)) A
B
b’ b

REMARK. If we identify the block (b, a) (sometimes written b ®a) with

its frame
(B(b)ma, bm B(a) baa(a), al(b)ma),

we get an isomorphism from B M A onto adouble sub-category of the double

category O( BXA).

DEFINITION. We say that (D, ¢, (B, A)) is an alternative double functor,
or that ¢ defines an alternative double functor from (B, A) to D if:

1° A and B are categories on A and B;

2° D is a double category on D and ¢: BXA —D a map;

30 the partial map B(b,-): A =D defines a functor from 4 to D! for
every b in B;

49 the partial map @(-,a): B~ D defines a functor from B to D? for

every a in A.

PROPOSITION 5. Let A and B be categories on A and B. The double
category B WA is characterized by each of the following conditions:

1° If D is a double category, a map ¢:BXA =D defines an alterna-
tive double functor from (B, A) to D iff ¢ defines a double functor from
BmA to D.

2° BRA is a free object associated to B relative to the partial func-
(- A):F, T
A. 1° Let D be a double category and ¢: BXA =D a map.
a) The category §0 X A being the coproduct category bgB{ b}XA,the

tor T
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map ¢ defines a functor from B®X A to D! iff the map
d(b,-):at ¢(b,a) from A to D

defines a functor from A to DI , for each b in B. In the same way, since

Bx Al = HABX {a}, the map ¢ defines a functor from B X A? to D? iff
ae

@(-,a) defines a functor from B to D? for each a in A. Hence BmA

satisfies the first property.

b) Suppose that ¢(b,-) defines a functor f'(b): A -D! for each &

in B. The map
[f:b v f(b) from B to (D!, A)

defines a functor from B to T(D, A) iff:

- For each object e of B, ['(e) is an object of T(D,A), which
means that ["(e)(a) = ¢(e, a) is an object of D? for any @ in A.

- For each composite b'. b in B, we have ['(b'.b) = (' )o,f'(b),
ie. P(b'.b,a)=q(b,a)o,¢(b,a) for each a in A.
These conditions are equivalent to say that ¢(-, @) defines a functor from
B to D? for each a in A. In view of Part a , they are verified iff ¢ defines

a double functor from BWA to D.

2° By the preceding method, we associate to the identity of B®#A a
functor v: B~T(BwmA, A) such that v( %) be the functor

at(b,a) from A to (BmA)!, for each beB.

BumA

D //"l;/,/—

T(BwA,A) v

T(D,A) f

If //: B=T(D,A) is a functor, it follows from Part 1-b that the map ¢:

(b,a) = ["(b)(a) from BXA to D

defines a double functor /- B@A ~D. Then, the functor T;,(f, A). v

3

from B to T(D,A), maps b onto the functor
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Ty 1 (f, A)(v(b))=flu(b): A~DL.
which associates f( b, a) = f'(b)(a) to a€ A, and hence is equal to f'( b).
So v defines BWA as a free object associated to B relative to the func-
tor T, ,(-,A). Y
COROLLARY 1. Let A, B and C be categories. There are bijections
F,coc.BmA)—~F(ct, B)~F(C,BxA).
A. This results from Proposition S, since cA is isomorphic with the

category T([JC, A). The canonical composite bijection maps f- BmA—~0OC

onto the functor g:

(b,a) = f(b,B(a)). [(a(b),a) from BXA to C. V
COROLLARY 2. Let A and B be categories. If D is a double category,
there are canonical bijections:

F(r(p?1,B), A)>F,(D?!, AwB) =5 ,(D, BwA)SF(T(D, A), B).
A. Since (BmAPI1=(BxA%, BOxA), there exists an isomorphism

b: (b,a)v(a,b) from (BmwAP! onto AmB,

and
F,0021,5):F,(p21, AwB) X F, (D21, (BmA 2l

is a bijection /. Now, by sending a double functor from ( B mwA)?l o D?!
onto the functor from B ®A to D defined by the same map we get a bijection
1':5,(p?1,(BwAPT) ZF,(D,BuA).

From Proposition 5, there are canonical bijections
1":F(r(p?’,B),A) =~ F,(p?1,AmB),
I":¥,(D,BmA) = F(T(D,A),B).
Composing all these bijections, we get the bijection
Vg, a= 1" 1107 F(T(D?1,B), A) xF(T(D,A),B),
which sends the functor f': A -T(D?1,B) onto the functor f", from B

to T(D, A), such that f"(&4) be the functor
abr f(a)(b) from A to DI. V

COROLLARY 3. T;;(D,-):F*~F is coadjoint to the dual of Ty;(D?1,-)
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for each double category D.
A. The canonical bijections ¥y 4 defined above determine an equi-

valence v: F(T,;(D?L,=),-) = F¥=,T;;(D,-)): F*xF*-M. V

3. The functor m: FxF - 3"2-

PROPOSITION 6. There exists a functor ® from FXF to 3"2 such that the
partial functor -wA be an adjoint of T, ;(-,A) for each small category
A If ﬂ:c denotes the full sub-category of § whose objects are the small

connected categories, then W maps ?cx ?c onto a full sdbocategory of .?2-

A.1° If g:A~A" and h: B —B’ are functors, the product map hXg

defines a double functor hmg: BmA ~B'mA’. We so define the functor
w: (b,g)hbmg from xF to cfZ .

2° The «canonical» adjoint of T; ; (-, A): 3:2—’3: maps bh: B =B’ onto

the double functor b': BmA - B'®BA associated to the functor v'h, where

v:B—-T(BmA,A) and v':B'~T(B'ad ,A),
are the functors defining BmA and B'mA as free objects. As v'h maps
b€ B onto the functor

at(h(b),a) from A to BIXA,

the functor »' maps (b, a) onto (h(b),a), and h' = hmA. Hence the par-

tial functor -mA: F —‘ffz is the canonical adjoint of T;; (-, A).

B'mA T(B'uwA,A) v’ B’
hmA T(hmA,A) b
BmA T(BmA,A) v B

3° Let A, B, A’ and B’ be small connected categories and suppose
that /- BmA —~B'"®A’' is a double functor. Since A and A’ are connected,
the components

- of QOXA are the sets {5 }XA, where b€ B,

- of B'OXA’ are the sets {4’ }XA’, where b'€ B’.

The functor fI : QO XA -*LB'O X A' mapping a component into a component,
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for each b€ B, there exists a unique b; € B' such that
f({v¥xa) c {e;rxa".
In the same way [ defining a functor fz: BXQO —~B' Xé'o , for each a€ A
there exists a unique @ € A’ such that
f(Bx{a}) c B'x{aj}.
Hence
f(b.a)=(by,a,) foreach (b,a)eBXA,
which implies f = b X g , where the map
b : B =B’ associates b, to b€B,
g: A —A’ associates a4, to a€A.

These maps define functors h:B =B’ and g:- A 2A’,and f=hmg. V

D. Some applications.

1. The canonical double cocategory in 32.
PROPOSITION 7. 1° There exists a double cocategory 1, in 3:2 which de-
. —
[ines an isomorphism from 232 onto the full sub-category Z§:2 of 3:2 who-
se objects are the double categories m®n, for m and n in {1,2,3,4}.

2° 3:2 is the inductive closure of {2m2},

A, 1° From Proposition 4-0, the restriction 72 : Z§:2 -'?2(3“) of the
Yoneda embedding is a double cocategory in 51:2 (M), The composite

ta? z?fz

where {,2 is the canonical equivalence (Proposition 2), is a double cocat-

2 3‘2(311)—&—»?

2t

egory in 3:2, and 72 defines an isomorphism from 2%2 onto a full sub-
category of 3:2(3“) which is mapped by the surjective equivalence §2 on-

to a full sub-category of ¥, . The equivalence {, being faithful, so is ¢,.
2° We are going to prove that
mun= (,(m,n), for m and 7 in {1,2,3,4}.
Indeed, 23:2 = Zgrng, so that ?z(m, n): 23:2 - maps the pair
(p,v)eZg, onto
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Sq,((p,v) (myn)) =ZF(pu, m)X2g(v,n)=
=Y, (m)(pu)XY(n)(v),

z
whete Y, : Z’%: - 3 is the Yoneda embedding. From the construction of

L, it follows that «,(m, n) is the double category
(L (Y, (m)(2)X Y, (n)(=)), L (Y, (m)(-)XY (n)(2))),

where {;: F (M) —=F is the canonical equivalence (Proposition 8-0). The
set Y, (m)(2) is the set m underlying m and {;(Y;(n)) is the catego-
ty n (see 0-C), so that

L (Y (m)(2)XY, (n)(-))=m®Xn:
In the same way
L (Y, (m)(-)XY, (n)(2)) =mxn0.

Hence

ty(m,n) =(_|1_|O><n, m><|_1_0) = mun.

3° The preceding results imply that ¢, maps 23!2 onto the full sub-

category of 52 whose objects are the double categories m®n. As
muEn=—m'sn’ iff m=m" and n = n’,
the faithful functor ¢, is injective on the objects, whence injective.
40 Zg—' being the l:ff-closure of {2} (see 0-C), Proposition 7-0
oo o @; )
asserts that 52(911) =M ¥ ?=m ¥ ¥ is the inductive closure of the

set {72(2. 2)}. The image ?2 of 3:2(3]'() by the equivalence CZ is then

the inductive closure of the set whose unique element is
(,(Y,(2,2))= ,(2,2)=2m2. V
2. Generalized limits.

By analogy with the usual definition of a limit for a functor we de-
fine limits relative to D for functors toward the first category of l-mor-

phisms of the double category D.

Let D be a double category and A a category. The category T (D, A)

of D-wise transformations (see C-1) admits for objects the functors from
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A to the first category D% of 1-morphisms of D.

The alternative double functor
(x,a) »x from (DI,A) to D

determines a functor dp 4 ¢ Dg —=T(D,A) (Proposition 5-C). This functor
maps

- the vertex e of D onto the constant functor e™: A —'DOZ R

- the morphism x: e 3 e’ of D.f onto the constant functor x : A -'DI,
which is a D -wise transformation form e to e’ ",

As for natural transformations, we will use a more «geometrical» lan-

guage: Let /: A = DZ be a functor.

- If t: f{—e” is a D-wise transformation toward a constant functor,
we say that ¢t is an inductive D-wise cone, indexed by A, with vertex e
and basis |.

- A D-wise transformation t': e’"=[ is called a projective D -wise

cone with vertex e' and basis f.

[

- Let x: e =3¢’ be a morphism of DI . If t: [—e” is én inductive D -
wise cone, we denote by xt the inductive D-wise cone
x"0,t: f—e'" such that xt(a) = xo,t(a) for each a€ A.
Dually, if t':e’"—f is a projective D-wise cone, then t'x: e"—f is the
projective D -wise cone t'°,x" such that
(t'x)(a)=1t'(a)o,x for each acA.

DEFINITION. Let f: A —»DOZ be a functor. If t: f—e” (resp. t: e"—f) is
a D-wise cone defining ¢ as a free (resp. a cofree) object generated by f
relative to the functor dp,, then e is called an inductive {resp. a projec-
tive) D -wise limit of { and t is called an inductive (resp. a projective) D -

wise limit-cone.

REMARKS. Limits relative to a double category were introduced by Ehres-

mann in [E2] and some general properties of these limits are given in [Le].
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Quasi-limits of Gray [G1], analimits and catalimits of Bourn [Bo] are ex-

amples of such limits which will be studied later on.

Let /: 4 —~D? be a functor. The inductive D-wise cone t with ver-
tex e and basis [ is a D -wise limit-cone iff, for each inductive D-wise co-
ne t with basis [, there exists a unique morphism x in Dj , called the fac-
tor of t relative to t, such that £=xt.

The projective D -wise cone t' with basis [ is a D-wise limit-cone

iff, for each projective D-wise ¢one ¢’ with basis f, there exists a unique

1 - -
morphism x’in D, , called the factor of t' relative to t', such that ¢’ =t'x".

t(u')

[

£(u') u

The terminology is justified by the following examples.

EXAMPLES. 1° If B is a category and [1B the double category of its com-
mutative squares, a functor f: A @B admits a projective (resp. an .induc-
tive) [JB-wise limit e iff e is a (usual) projective (resp. inductive) limit
of f. Indeed, if we identify T( OB, A) with BA and B with the second
category of 1-morphisms of OB, the functor dyp, is identified with the
«diagonal» functor from B to BA.

20 If 19 is the discrete category on I, a projective D-wise cone ¢ in-
dexed by 10 and with vertex e is identified with the family (t(i));¢; of
1-morphisms t(i): e 3e; of D; hence ¢ is a D-wise limit-cone iff eis a
product of (e;); . in DI, the t(i)'s being the projections.

30 If D* is the double category (D!, D?*) which is the second dual
of D;_ then T(D*, A) is the dual of T(D,A), so that a D-wise cone ¢ is

an inductive D-wise limit-cone iff ¢ is a projective D*-wise limit-cone.

DEFINITION. We say that Df admits inductive (resp. projective) D -wise
A-limits if dp, admits an adjoint (resp. a coadjoint), which is then called
a D-wise A-limit functor. 1f D°2 admits inductive (resp. projective) D -wise
limits for each small (or finite,...) category A, we say that Df admits in-
ductive (resp. projective) D -wise small (or finite,...) limits.
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2. REPRESENTABLE DOUBLE CATEGORIES

We are going to study the double categories D whose first catego-
ry of 1-morphisms Df admits D-wise 2-limits. For them, the existence of
D -wise limits reduces to the existence of «enough» usual limits in D! . Fun-
damental examples of such double categories are the double categories of

squares of a representable (in the sense of Gray) 2 -category.

In all this chapter, we denote by D a double category, by « ©» and

«.» respectively its first and its second law.

A. Representation of a 1 -morphism.

DEFINITION. The double category D is said representable (resp. corepre-

sentable) if DQ,2 admits projective (resp. inductive) D -wise 2-limits.

D is corepresentable iff its second dual is representable.
Let v: T(D,2) »D? be the canonical isomorphism mapping ¢ on-
to t(z), where z always denotes the morphism from 0 to I in 2. The com-

posite functor

pl T(D,2)—%p?

is the insertion into D? of its sub-category DI . Hence D is representable
(resp. corepresentable) iff the insertion Dl “~D? admits a coadjoint (resp.
an adjoint). In particular, for 2-categories, these definitions are equivalent

to that given by Gray [G2].

Let D be a representable double category. If y: e 2e’ is a mor-
phism of DZ and if r: s 3y is a 2-block of D defining s as a cofree ob-
ject generated by y relative to the insertion D!, D2 wecall ra repre-
sentation of y in D. If d: s' =y is a 2-block, there exists a unique 1-
morphism x: s'3s such that 7. x = d; this .x is denoted by /d/ and cal-

led the factor of d relative to r.

el

y

e
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If r,: s, 3e is a representation of a vertex ¢ in D, it is also the
representation of e in the greatest sub-2-category C of D; it follows that
C is also representable. From Gray's results {G2] , we know that, if DOI
(which is the category of 1-morphisms of C) admits pullbacks, there exists
a category ¢, in DI mapping the morphisms @, 5, ¢, v, V', kK of 3F res-
pectively on:

ae:al(re), be:,BI(Te); e

the factor /e/ relative to Tgs

the canonical projections v, and v, of the pullback in Di :

ﬁl (re)

al(re)

the factor k, = /(r_.v_)o(r, .v; )/ relative to 7.

Indeed, let D( e, -) be the functor from the dual of D{, to ¥ which maps:
the vertex s of D on the sub-category of D! defined by D?(e,s),
the morphism x: s 3s' of D! on the functor ¢ » c.x from D(e,s’)

to D(e,s).

The functor pFD(e,-) is equal to D?(e,-) which, as r, is a represen-

tation of e in D, is equivalent to Dg (se, -), whence representable. Then

Proposition 8-0 associates to D( e, -) a category in D! , which is’ ¢,-

PROPOSITION 1. Let D be a representable double category such that DJl
admits pullbacks. If y: e ~e' is a morphism of D? and if ¢e and ¢e. are
the categories in Di assoctated above to e and e', there exists a distri-
butor in Di :
N p— ” ’
Sy _(¢€" by’k rk 'ay’¢e)’

where r: a, —‘by s, 3y is a representation of y.

A. 1° We get a right category action (%', a,, ¢,) in D! by considering

the factor relative to r:

k' =/(r.b")o(r,.p)/
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and the pullbacks in D!

a) This action k' is unitary. Indeed, if i’ is the factor [Sy, Je/. ay]

relative to the pullback P, then k&’. i’=sy follows from the equalities
r. k. [sy,/e/.ay] =((r.b")o(r,.p)) [sy,/e/.ay] =

:ro(re./e/.ay) :roay =r

and from the unicity of the factor relative to r.

b) To show the associativity of the action, we consider the factors

c= [b'.u',ke.u] and ¢’ = [k'.u',ve'.u]

relative to the pullback P, and we have to prove that &£'.c = k’. c¢’'. This

is deduced from the equalities:
PR e=((rb)o(r . p)) [bu k]
:(r.b’,u')O(re.k cu)

e

=(r.b'.u')°((re-ue)°(r v ))ou

e e

=(r.b'.u')°(re.ue.u)°(re.ve’.u)),
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roklet=((r. b )o(r, . p)). (k" u’ vt . u]
:(r.k'.u')o(re.v'e.u)
Z(((r.b')O(re.p)).u')O(re.ve' su)
:(r.b'.u')o(re.ve.u)o(re.ve'.u)=r.k'.c,

since p.u' =v .u.
2° A similar proof shows that (¢ ., by,k") is a category action in
Dg,where k" is the factor
k" =/(rp.p')o(r.a")/

relative to 7 and where we have the pullback P’ in pl.

3° For (d)e., by'.k",k',ay

the «compatibility» of the two actions, i.e. &".I' = &'.1, where

. ¢, ) to be a distributor, it remains to prove

S ., %S %S
e y e

is a pullback and where

I'=[p'.m k.m] and 1= [k".m",p.m]
are the factors relative to the pullbacks P'and P . Indeed, we get the equa-
lities:

r k"I =((re. ptlo(r.a”)) [pt.m’ k. m]
:(fe.-P'-m')O(r.k'.m)
=(r,.p".m')o(((r.8")o(r,.p)). m)
=(re.-P'-m')°(r.b'.m)o(re.p._m),
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r k.1 :((r.b')O(re.p)).[k".m',p.m]
=(r.k".m')o(r .p.m)
=(((r,-p')e(r.a")).m)o(r, . p.m)
=(r,.pm)o(r.a".m)o(r .p.m)=r. k" 1",

since . m=a".m'. V

REMARK. Sy may be defined as the distributor in Dl associated (p.24)
to the canonical functor V¥ from the dual of Dg to the category M7s which
maps the vertex s on the distributor { D(e’,s), /3},'5, Kl KL a, s Dles)),

where /«f:_ and K'; are restrictions of the law of pl and where ay's: and
B, ¢ are the maps from D2(y, s) to Dg(e, s} and D‘; (e’ ,s) restrictions
of al apd BY. Indeed, V(-)(1,0) is represented by s, Y(~)(Z 1) and

Yl=)(21) by s

y k]

e and s, respectively.

B. Existence of limits relative 16 o representable double category.

PROPOSITION 2. if D is arepresentable double category and if Dl admits

pullbacks, f%en“Dfl{admiis projective D -wise 3 -limits.

A, We denote by z, z' and 2" the morphisms of the caregory 3:

, I
z '/\
2 e . 0
z

Functors from 3 to a category 4 are in bijection with pairs of composable
morphisms of A. Let /- 3 = D? be a functor.
1° Let r:a=b and r': @' = b’ be representations of f(z) and f(z")

in D. By hypothesis there exists a pullback

P of (a’,b) in DOI. We put
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t(z)=r.v:s=f(z) and t(2')=r".0v':s2f(2').
Since

al ez =al(r v)=al(r) v =a" v =b.v=L8(r.v) = Bletz))

f(z')

f(z)

there exists a composite t(z") = t(2')ei(z} in D!, We have so defined

a D-wise cone ¢t with vertex s and basis /.

2° ¢ is a limit-cone. Indeed, let ¢t be a projective D -wise cone with
basis / and vertex s'. The 2-block t'(z): s’ =f(z) admits a factor x re-

lative to 7 and " (z'): s" =3f(2') admits a factor x' relative to #'. Since
a5 =al(r).xt=al (v x)=al ('(z)) = B1'(2)) = b.x,
there exists a factor b = [ x’, x] relative to P. From the equalities
tlz)obh=r.v.b=r.x=10t(z),
tz'). b= v b= =2,
t(z") b =(t{z")ot(z)) . h=(t{z"). h)o(tlz). h)=
=tz ) et (z)=1"(2"),
we deduce that b is the unique morphism of D satisfying th = t'. V

COROLLARY. If D is a corepresentable double category and if DI admits

2 , . , , -
pushouts, then Dy admits D-wise inductive 3-limits.

. This results from Proposition 2 applied to the second dual of D,

which is representable. V

PROPOSITION 3. Let D be a representable double category and A a small
(resp. a finite) category. If Dl admits small (resp. [inite) projective limits,

then DZ admits projective D -wise A -limits.
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A. 1° Some notations.

a) The category H: Let Y 4: 29 M be the category in M associa-
ted to A and y its restriction to the sub-category 2 of 23: generated
by {a, 5t K U v'}. We denote by H the source of the discrete fibration
n:H =2 associated to Y. Then H is generated by the morphisms:

(v,x',x), (V' x",x), (K,x',x) from (3,x",x) to: (2,x'),
(2,x) an;i {2, x'. x) respectively, where (x', x) is any pair of composa-
ble morphisms of A,

(a,x) and (B,x) from (2,x) to (I,u) and (1,u"), where «x

is any morphism in A4, from u to #’,
(v, u):(1,u)=(2,u), for any object u of A.

(3, %", x)

(uu)

Since fo is a finite category, H is small or finite when so is 4.
. . 2 . .
b) For each morphism y in Dy , we choose a representation of ¥ in D:
b

a
b4

and for each pair { ", y) of composable morphisms of D!, we choose a
-
pullback Py',y of (ay. , by) in Dg :

S,
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(This pullback exists, pullbacks being finite projective limits.) Since

1 ’ — prl ’ - ’ ~-a =l
ﬁ (ry.vy.'y) ﬁ (ry)-Uy',y by-Uy"y y"vy',y (7yv~‘Uy:'y)i

there exists a composite

v KM N =y’
(Ty ‘Uyt'y)o(fy va’y) s}":y y oy

in p! , and it admits a factor relative to Tyroy which will be denoted by

20 Let f: A —'Df be a functor. We are going to construct a projective
D -wise cone t with basis f.
a) There exists a functor p: H = D! defined as follows: it maps
{a,x) and (B, x) on By and on b/(x), for each x in A,
(¢, u) on the factor /f(u)/ relative to Th(u) for each u € 4, ,

(k,x",x) on ky.'y, (v,x',x) on Uy and (', x’, x) on v;.'y,

for each pair (x', x) of composable morphisms of A, where y = f(x) and
y =)
Since H is small (resp. finite), there exists a projective limit-cone / with

basis p and vertex s (in the usual meaning).

b) For each morphism x: u —u' in A, we define t(x) = Tr(x)" I(2,x).
The map associating t(x) to x in A defines a functor ¢: A #D! . Indeed,

if u is an object of A, we get
t(u)=r,(u).l(2,u)=r/(u).//(u)/.l(z,u)=1(1,u)eog,
since, ! being a cone with basis p, we have
U2, u)=p(eu) l(l,u)=/f(u)/ 1(1,u).

On the other hand, if x: # ~«' and x': u’ ~u" are morphisms of A and if
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flu) 7007

y=f(x) and y' = f(x"), the equalities
ol (t(x'))=a1(ry.).l(2,x'):ay,.l(2,x')=p(a,x').l(Z,x'):l(I.u')
and
Blex)) =b, 1(2,x) =p(Bx).1(2,x) = 1(1,u') = od (%)

imply that the composite #(x’)ot(x) is defined in D . From
12,x")=p(v &' %) 13, %" x) = v, 1(3,x"x),
12,%) = p( v o %) (3, " x) = v, 1(3,x",2),
H2,x . x)=p(r,x",x).1(3,x",x)= ky,'y. 1(3,x", x)

and from the definition of ky. yasa factor relative to Tyt y» We deduce

t(x")ot(x) =(ry..l(2,x’))°(ry.l(2,x)) =

=((ry-. y)O(ry-v;,.,y)).l(B,x',x)=ry I(3,x',x)=

roy Ryt y
A(2,x".x) = t(xf.x).

Uy"
T Tytoy

Hence t: A =D! js a D-wise cone. As
t(x) =1y 1(2,%): 52 f(x),

this D -wise cone admits [ as its basis.
flur) (2D
f(x)

f(u)

3° We are going to prove that t is a D-wise limit-cone. For this, we
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suppose that ¢’ is a projective D -wise cone with vertex s’ and basis f.
a) We first construct a (usual) cone !’ with vertex s’ and basis p as
follows:
for each object u of A, we define ['(1, u) as the 1-morphism
IU'(l,u) =t'"(u):s"sf(u);
1'(2,x), for each morphism x of A, is the factor of the 2-block
t'(x):s"3f(x) relative to Ti(x)"

flu")

flu)

’

—u”

If x:u—u' and x': u are composable morphisms of A and if
y=f(x) and y' = f(x"), we have
a, . 1'(2,x")=d (.. 1'(2,%')) = al (£(x')) =
=Bl (elx))=b,.1'(2,%),

so that there exists a factor I'(3,x',x)= [1'(2,%"), I(2,x)] relative

to the pullback Py.’y .

b) We prove now that in this way we get a cone I’ with vertex s’ and
basis p . Indeed:

If x: u ~u' in A, then
pla,x). 1'(2,x) = ay,,. 1'(2,x) =al (¢'(x) = t'(u) = I'(1,u),
P(B %) I(2,x) = by 1(2,x) = Bl (=)= v (w) = "(1,u) .
If u is an object of 4, we get
plou)l'(Liu)=/f(u)/ ' (u)=/f(u). t'(u) =/t (u)/ = 1"(2,u)

_the factors being relative to i)
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Let x: uz =% and x': u’ ~u" be composable morphisms of A and

write ¥y = f(x) and y'= f(x'). By definition of 1'( 3, x’, x), we have
P(V'.x',x)-l'(3,x'.x)=v)',.y.l'(B,x'.x)=l(2,x).
plv,x",x).I'"(3,x",x) = Uy y-l'(3.x',x) =1(2,x").

Finally, p(k,x",x).0'(3,x',x) and I'(2,x'.x) are equal, since both

are factors relative to Ty'oy of

plxyx" x). I'(3,x',x) = kye oy 1703, x) =

Ty oy Tytoy Cy,
= ((ry..vy.ly)O(ry.v}'l.’y)).l'(3,x',x) =
=(ry,.l'(2,x'))0(ry.l'(2,x)) =t (x")ot'(x) =

=¢t'(x'.x)= (2, x'.x).

fyroy
I'(2,x".x)
,x',x)

¢) The projective usual cone !’ with basis p admits a factor d: s’ 3s

relative to the limit-cone [, so that I' = /d. For x in A, we have

t{x).d= Tix) I(2,x).d= (e I'(2,x) = t'(‘x)-

Hence d is the unique morphism of D<1, satisfying the equality ¢t = td .
This ends the proof. V

More precisely, we have proved:

COROLLARY 1. If D is a representable double category, A a category,
and if D! admits pullbacks and projective H -limits (where H is the cate-
gory defined in the preceding proof), then Df admits projective D -wise A-

limits.

COROLLARY 2. If D is a representable double category and if Dol admits
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small connected projective limits (resp. pullbacks and equalizers), then

DZ admits small (resp. finite) connected projective D -wise limits.

A. If A is connected, Zg being connected it is easily seen that H -
is also connected. Now a category admitting pullbacks and equalizershas

connected finite projective limits. So Corollary 1 implies Corollary 2. V
By duality, it follows from Proposition 3:

PROPOSITION 4. If D is a corepresentable double category and if pl ad-
mits small (resp. finite) inductive limits, then Di admits small (resp. finite)

inductive D -wise limits.

COROLLARY. If D is a corepresentable double category and if Dl admits

pushouts and cokernels, Dg admits finite connected inductive D -wise limits.

REMARK. 1° In the proof of Proposition 3, instead of H we could have used
the source A of the discrete fibration associated to the category in M as-
sociated to A. Indeed, the functor p constructed in this proof extends in
a functor f: 2 —'Dé . As ‘H is a cofinal sub-category of a , the functor p
has the same limit as §, and this limit is the D -wise limit of f.

29 The preceding remark leads to a more abstract proof of Proposition
3 (which will be explicited later on for multiple categories). This proof pro-
ceeds as follows: Let ! be the set of categories A such that Df admits
D -wise A -limits. As F is the inductive closure of {2} and as 2 belongs
to {1 (by definition of a representable double category), we will have 0 = F
if B belongs to £) when B is the vertex of an inductive limit-cone c: [ = F

whose basis w satisfies:
w(i)eSl for each object i of I.

Indeed, the functor T, ,(D,-): F* -F, coadjoint to T, 1(D2 L -)=|= , trams-
forms ¢ into a projective limit-cone ¢ with basis w=T; (D, w-): I* -F and
vertex T(D, B). The canonical functor dpppz is the factor relative to c of
the projective cone ¢’ with basis w defined by:

c'(i) =dp ;) for each object i of I.
Since c'(i) admits a coadjoint for each i, a theorem of Appelgate-Tierney

[ AT] asserts that the factor of ¢’ also has a coadjoint; hence B € ).
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C. The double category of squares of a 2-category.

In this section we give a fundamental example of a representable
double category.
We denote by C a 2-category, by «o» and by «.» the symbols of the

laws of the categories ¢l and C2.

1. The double category of up-squares of C is [GZ] the following
double category, which is denoted by Q( C):

- Its 2-blocks, called up-squares of C, are the 5-tuples

x
=(y",x",c,x,y), wh 'x', x, i ‘

q (yxcxy)were(};xxy)lsa '/c’ y

(non-commutative) square of C; and c:y'.x =2x'.y y

a 2-cell of C. X

- The first law, said vertical composition and denoted by H , 18

(v, x5, c.xy)Bly 2 cox,y) =(y .y, & (c.y)o(y'. chx,y.y)

— iff x=x'.
x

T_
"/r: Ly ;'W

’
X Yy . x

- The second law, the horizontal composition, denoted by O, is:

(5, 8,8, %,5)m(y, 2 cox.y) =(§, 25" (2" c)o(é. x), #. %, y)

£r x' iff 5" = y'.
Pz e
b i y y
% x

The first and the second categories underlying Q(C) will be deno-
ted by Q(C )8 and Q( C)™. Both admit as objects the l-morphisms of
C . The identity of Q(C)B (resp. of @( C)™) corresponding to the 1-mor-

phism z will be denoted by zE (resp. by z™), or sometimes even by z.
Hence we write
q: xE -‘x'B , q:ym:»y'm, or more simply g: x —x', g:y 3y°’.
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We may identify C with the greatest sub-2-category of G(C) by
’

identifying 3
e €
c:x—x'":e3e’ with (e, x",c,x,¢e). "

The double category DCID of commutative squares of C(I, is identi-
fied with the double sub-category of Q(C) formed by the up-squares of the
form (y',x',y'.x,x",y) (i.e. the up-squares ¢ such that ¢ be a 1-mor-
phism of C). In particular, this double sub-category is equal to Q(C) iff
C<1J =l i.e. iff C is the discrete 2 -category on c?.

2. The double category of down-squares of C.

This double category, denoted by Q‘(C) , is defined as the double
category of up-squares of the first dual ( C1% C?) of C . Hence its 2-blocks,
called down-squares of C, are the S-tuples (y’,x’, ¢, x,y), where

(y',x",x,y) is a (non-commutative) square of C‘I, s

c':x".y—2y'.x its a 2-cell of C.

2

x'y

= y'x
The two laws, expressed with the laws of C only, are:
(¥, %" c %, By . x" et y) = (39" % (5" c"olcy) x, ;.y)
iff x"=x,
(9. %, 8, %2, 9)m(y,x",c,x,y) =(9, 2.« (¢"x)o(x".c"), .x,y)

iff $=y".

. ny ,
- % x

- A/C'

‘/E' »/C’

=
|

% x

The double category OCL is also identified with a double sub-ca-
tegory of Q‘(C)-

The bijection:
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(y'.x"vc,x,y) = (x", ¥, c,y, x)

from the set of up-squares of C onto the set of down-squares of C defines
a canonical isomorphism from Q( C}, to the double category symmetri;:al of

the double category Q&( C).

3. Let f: € =K be a 2-functor. We have double functors
Q(f): Q(C)=Q(K) and Q(f): QC) ~QiK)
associating (f(y'), f(x"), f(c). f(x). f(y)) to (¥, x",c,x,y).

In this way are defined two functors Q(-) and Q‘(-) from the ca-

tegory of small 2-functors into the category .‘}2 of small double functors.

4. Limits in Q( C)™.
PROPOSITION 5. If C(I, admits projective A-limits preserved by the inser-
tion i: CL <= C?, then EDCZ, admits projective A-limits which are preser-
ved by the insertions j and j' into Q(C)™ and Q‘(C)m.

A . We denote by o and ,E the functors from the category K = D cl
to Cd defined by the maps source and target of the vertical category HCOI
(whose objects are identified with 1-morphisms of C). Let F be a functor
from A to K. We write:

[ZEF and f:BF.
Since K is isomorphic with the category (Co)2, there exists a projective
limit-cone T with basis F and the cones

t=aT and £=8T
are limit-cones with bases [ and f.

1° jT is a limit-cone. Indeed, let T': A = Q(C)™ be a projective
cone with basis jF. As t' = aT’ is a projective cone with basis [, there
exists a factor x of ' relative to t. There also exists a factor # of £’ re-
lative to £, where {' = -,B-T'. We have T'(u)=(y,, £lu), c, s t"(u),y"), for
each u€ A, , where ¢, ry,. t'(u) ~{'(u).y is a 2-cell. The equality

F(a)mT'(u) =T'(u') implies f(a).c,=c,.

for each morphism @: z —u' in A. Hence, there exists a projective cone
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/a/
ul

y
fr(u)
N
» ) u A
{(a yu t(”) )C *
t(u')
Yy f(a) Qay Y
t (u9

t": A 2C? with basis if such that
t"(u) = c, for each object u of A.
Since f is a limit-cone, the hypothesis asserts that 77 is a projective li-
mit-cone and there exists a factor ¢ of t” relative to i¢. From
tu). al(c)=al(i(u). c)= al(cu) =y, t'u) =
= yu.t(u).x: tCu). y.x,
we deduce, ¢ being a limit-cone, al(c)=y.x. Similarly, Blic)=%. y'.
It follows that (y, £, ¢, x,y') is an up-square ¢ and, by its construction,
it is the unique up-square satisfying
T(u)oog = T'(u) for each object u of A.
2° The category Q‘( c)m being identical with Q(C*)m, where C*
is the first dual of C, the preceding proof applied to this dual shows that

i'T is also a limit-cone. V

COROLLARY 1. If C{, admits projective A-limits preserved by the inser-
tion into C?, then H C(I, admits projective A -limits which are preserved by

the insertions into Q(C)B and Q‘(C)B .

A . This corollary is deduced from the proposition, via the canonical
isomorphism from Q(C)EEl onto Q (C)" (resp. from Q&( C )™ onto Q‘(C)B)
which maps EDC‘I, onto BCIO . \Y
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COROLLARY 2. If cl admits inductive A-limits preserved by the insertion

into C2, then 0 C{d admits inductive A-limits preserved by the insertions
into Q(C )™ and Q‘(C)m.

A . This resules from Prbposition 5 applied to the second dual of C. \Y
COROLLARY 2. If cl admits I-products (resp. 1-sums) preserved by the
insertion into C2, then Q(C)™, Q(C) D, 0(c)8 and gc) B admit
I-products (resp. I -sums).

A. This comes from Proposition 5 and its corollaries, applied to the
discrete category ©onl. V

REMARK. Q( C)™ does not always admit pullbacks, for up-squares which

are not commutative squares.

S. Representability of Q(C).

PROPOSITION 6. If C is a representable 2-category and if Cl admits pull-

backs, then Q(C) is a representable double category.

A . We consider an object of O C)™, identified with a 1 -morphism y

of C, where y: e 3e’. In the 2-category C, there exists a representation

r’: a’ =2b’ of e'; there exists also in Cg a pullback P

of (a’',y). Then g=(y, b".p", r'.p', p,s) is an up-square of C. We
are going to prove that ¢ is a representation of ¥ in Q( C). Indeed, let
9" =(y,x",c,x,s") be an up-square of C, where s’ is a vertex of C.
Since c¢: s" 3¢’ is a 2-cell of C, it admits a factor /c/ relative to the

representation 7' of e’ in C; we have
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a'./c/=al(r)./c/ =al(r./e/)=al(c) =y.x,

so that there exists a factor b of (/c/.x) relative to P . As

b.p b=b"sc/ =B e/ )= B c)=x,

r.p'.h=r./¢c/ =c and p.b = x,

we get

qule =(y,b".p" b, p . h,p.h,s")=4q".
The unicity of the factors asserts the unicity of the 1-morphism b satis-
fying qr:DbB: g. V

COROLLARY. If C is arepresentable 2-category and if COI admits pull-

backs, then Q‘(C) is a representable double category.

A. Since C is representable, so is its first dual. This dual admitting
also Col as its category of 1-morphisms, the double category of its up-squa-
res, which is Q) C) by definition, is representable. More precisely, a re-
presentation of y: e 3e’ is constructed as follows: Let 7': @’ =b' be a
representation of e’ in C; then 7' is also a representation of e’ in the first
dual of C, but its source in cl* is b'. Let

b

U

y 1

e
be a pullback in CI. The down-square (y, a'. ', 7. 1',1,3) of C is a

representation of y in Q;(C) .

v

123

PROPOSITION 7. If C is a corepresentable 2-category and if cl  admits
pushouts, then Q(C) and Q‘(C) are corepresentable double categories.

A. A proof similar to that of Proposition 6 and of its Corollary shows

that the 1-morphism y: e S3e’ of C admits:

- as a corepresentation in Q(C) the up-square (s,v,d.7,7.a,y),
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- as a corepresentation in Q| C) the down-square (s', v',0'.7,0'. b, y)

where r: @ b is a corepresentation of e in C and

v, Y

<
Qv

are pushouts in cl. v

6. Limits relative to the double category Q(C).

PROPOSITION 8. If C is a representable 2-category such that CL admits
connected (resp. small, resp. finite) projective limits, then Cgl admits con-
nected (resp. small, resp. finite) projective Q( C)-wise and Q‘(C)-wise

limits.

A . This follows from Proposition 3, since Q(C) and Q‘(C) are both
representable double categories (Proposition 7) whose second categories of

1-morphisms are isomorphic to cl. v

COROLLARY. If C is a corepresenzdble 2-category such that cl  admits
connected (resp. small, resp. finite) iﬁductive limits, then Cg admits con-
nected (resp. small, resp. finite) inductive Q( C)-wise and Q‘( C)wise
limits. V

We are going to look more closely to O(C)-wise limits and to com-
pare them with generalized limits introduced by Gray.

Let A be a category. The category T(Q(C), A) of Q(C) -wise
transformations indexed by A admits as objects the functors from A to ' cl,
since Cl is canonically isomorphic with the first category of 1-morph-

isms of the double category Q(C). So a Q(C)-wise transformation ¢: f = [’
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is equivalent to the following data:
1° Functors { and [’ from A to cl.
2° For each object u of A a 1-morphism ¢, f(u) =f(u) of C.
39 For each x:u —u' in A, a 2-cell ¢, f'(x).c, ~c . [(x) such

—“u” in A, then Cot x Z(Cx'.f(x))O(/'(x').cx).

that, if x": «'

Indeed, these conditions mean that there exists a functor ¢ from A
to Q(C)B such that

t(x)=(f'"(x),¢c,c,r6,,f(x)) foreach x:u—u"in A.

Cun Zl" Cun

f(x") /cx (=) At () /x' f(x")

u u" L u
7'(x) A, [ gx prgpe” f(x)
C C
u u u
o(C) A Q) C)

We have a similar description for Ql(C)-wise transformations, ex-
cept that ¢, goes «down» instead of «up».

In other words, if f and f" are the 2-functors from the discrete 2-
category on A toward C defined by f and [’, the Q‘(C)-transformations
from [ to [’ correspond to the quasi-natural transformations from [ to f'
defined by Gray [G1] , called anadeses by Bourn [Bo] , while the O( C)-wi-
se transformations from [ to [° correspond to the quasi -natural transfor
mations from f to f" of Gray or to the catadeses of Bourn. (The way the
diagrams are drawn explains why we call wp» what these authors consider

as being «down».)

Let /:A = Cl be a functor considered as an object of T(Q(C), A).

An inductive Q( C)-wise cone ¢ with basis { and vertex e corresponds to
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a family (c ), .4 of 2-cells of C such that:
c,: f(u) =e is a 1-morphism of C, for each object u of A,
c. ¢, 2cye f(x) isa2-cell, for x:u—u"in A,
Cor = (cx.. f(x))e c, » if x":u'—u" in A

(the corresponding cone ¢ associates to x: u —u' the up-square:

t(x)=(e,c e.cpric,, f(x))).

This family corresponds to an inductive Q( C)-wise limit-cone if,
for each family (c, ), .4 satisfying the same conditions, there exists one

and only one 1-morphism y of C such that y.c, = c, foreach x in A.

With this formulation, we see that the inductive (resp. projective)
Q(C)-wise limits «are» the cartesian quasi-colimits (resp. quasi-limits) of
Gray [G1] and also the inductive (resp. projective) catalimits of Bourn
[Bo], for 2-functors from a discrete 2-category. Hence Proposition 8 has
been announced by Gray [G2] and proved by Bourn [Bol (in a more gene-

ral case which will be considered later on).

D. Examples and Applications to sketched structures.
1. Limits relative to the double category of quintets.

The 2-category JU of small natural transformations admits the cat-
egory F of functors as its category of 1-morphisms. It is representable
and corepresentable, a small category A admitting:

as a representation the natural transformation 74 : HA 34 associa-
ted to the identity functor of Ha s
as a corepresentation the natural transformation rj A 3A X2, from

v=[-,0"1 to [-,17] such that rulu)=(u,z) for each u€ 4, .

An up-square of JU is called a guintet and we denote by 2 the dou-
ble category 2(J1) of quintets (following [E2], where this double categ-
ory was introduced, as well as its sub-2-category JO). Let 9‘ be the double

category of down-squares of .

As F admits small projective and inductive limits, preserved by ,

the insertion into JU' (which admits an adjoint and a coadjoint), Pro-
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position 5 asserts that 0 F admits small projective and inductive limits
preserved by the insertions into 2™ and into Qim .
REMARK. The category N is cartesian closed; it may be shown that 9m
is «partially» cartesian closed. More precisely:

Let f: A =B be a small functor and K a small category; if there ex-
ist left Kan extensions along [ for functors from A to K, each small func-
tor g: H =K admits a cofree object G relative to the partial product func-

tor -Xf: 9m .9m,

Indeed, G is the composite functor:

HA & KA __ L kB

El

where L is the left Kan extension functor (adjoint to K'Y, There is a si-
milar result replacing 2 by 9* and left Kan extensions by right Kan exten-

sions.
From Propositions 6 and 8, it follows:

PROPOSITION 9. The double category 9Q is representable and corepre-

sentable and ¥ admits small projective and inductive Q-wise limits.

In fact, Gray has given in [G1] an explicit construction of Q -wise

limits: Let F: A =¥ be a functor, where A is a small category.

1° F admits as an inductive Q-wise limit the source K(F) ( denoted
by [1, F] in Gray) of the fibration kp: K(F)—A associated to F. (The
category K(F) is called in [E1] the «catégorie produit croisé associée
a l'espéce de morphismes» F.) The category F(u), for each object u of
A, is identified to a sub-category of K( F). From a general result of Gray
(the Yoneda-like lemma [G11]), it follows that, if F': A »F is a functor,
the 2-wise transformations from F to F' are in a one-to-one correspon-
dence (a restriction of the adjoint K of dg,: F-1(2,A) ) with the
functors h: K(F) »K(F’') such that kpoh = kp .

20 F admits as a projective 2-wise limit the sub-category L( F) of
K( F)A formed by the natural transformations ¢:A 3 K( F) such that ket
is an identity. L( F) is isomorphic with the category of crossed transfor-

mations, whose objects are the crossed homomorphisms (defined in [E1]);
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the set of components of its greatest sub-groupoid is called in [E1] the .
first non-abelian cobomology class of F, by analogy with the case where
A is a group and F a A-module. This remark might be helpful to define
the higher order non-abelian cohomology classes of F (see also the Appen--
dix of Bourn [Bo] ).

2. Limits relative to a sub-2-category.

The following criterium is often useful in applications, for example

we will use it in the next section.

PROPOSITION 10. Let C be a 2-category and H a full sub-2-category
(i.e. H! and H? are full sub-categories of C1 and C? ). If the insertion
j: Hl C—'Cf, admits an adjoint (resp. a coadjoint) and if CL admits Q(C )-
wise inductive (resp. projective) A-limits, then H{, admits Q( H)-wise in-

ductive (resp. projective) A -limits.

A. Since H is a full sub-2-category of C, the double category Q(H)
of the up-squares of H is a full double sub-category of Q(C), and the ca-
tegory T(Q(H),A) is identified with a full sub-category of T(Q(C), A).

The hypotheses imply that the composite functor:

Hl . cl ~orc)® M_.T(Q(C),A)

admits an adjoint (resp. a coadjoint). This functor taking its values into the
full sub-category T(Q(H), A), we deduce that its restriction from Hg to
T(Q(H),A) also admits an adjoint (resp. a coadjoint). Hence H{ admits

inductive {resp. projective) Q( H)-wise A-limits. Y

3. Limits relative to 2 -categories of bimorphisms between sketches.

In [BE] we have defined the category Fm" of morphisms between
small mixed cone-bearing categories, and its full sub-categories:
Fm', whose objects are the presketches O (i.e. two distinguished co-
nes of o have different bases),
Pm', whose objects are the limit-bearing categories,

Pm = Fm' N Pm', whose objects are the prototypes,

S:m..gj (resp. ‘fgg), whose objects are the (g,ﬂ)-cone-bearing catego-
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ries (resp. the (g,ﬂ)-types), where § and f] are small sets of small cat-

egories.

These different categories X admit small projective and inductive

limits, and the following insertion functors admit adjoints:

Pent

?m/ ~ Fon g9 g5
\ 5. —

X is the category of 1-morphisms of a 2-category X, whose dou-
ble category of up-squares will be denoted by 92X.

Proposition 18-2 [BE] asserts that NA isa representable (except
for X = Fm') and corepresentable 2 -category, so that we deduce from Pro-
position 8: ’

PROPOSITION 11. X admits small projective (resp. inductive) X -wise

limits, for X = Fm", Pm', Pm, Fm" Qf], f;ﬁﬂ (resp. S:QS and Fm").

A . Using the preceding results, we may give an explicit construction
of some of these limits. Let S: A =X be a functor, where A is a small ca-
tegory. We denote by F the functor from A to J got by composing § with
the forgetful functor from XtoF. 1t Xisa proper sub-category of Fenr,

we consider the composite functor §
A ) X ¢ Fm".
1°If X =Fm" or ffm"gg, then § admits:

as an inductive 2X-wise limit the cone-bearing category K(S) got
by equipping K( F) (the inductive 9-wise limit of F) with all the cones
i,¥,, where i : F(u) 2K(F) is the insertion and where ¥, 1is a distin-
guished cone of S(u), for each object u of A;

as a projective QX -wise limit the cone-bearing category L(S§) got by
equipping L ( F) (the 2-wise projective limit of F) with the cones T such
that v, T be a distinguished cone of .S;(u) for each object u of A, where
v, L(F)=F(u) is the valuation functor, which maps the natural trans-

formation t: A 3K(F) onto t(u).
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20 If X\ =Fm', then K($) is a presketch, which is the 9 X-wise in-
ductive limit of S. If X =Pm or Pm' (resp. = ?ﬂﬂ ), it follows from part
1 and Proposition 10 that S admits as an inductive 2X-wise limit the li-
mit-bearing category (resp. the (g,ﬂ)-type) freely associated to K(§).

3° The insertion functors 7, , for u€ A, , preserve connected limits;
if A defines a preorder on the set of its objects, they preserve all limits.
Using these facts we deduce:

a) Let us suppose that X =Pm (resp. Pm) and that the indexing ca-
tegories of S{u) are connected for each object u of A, or that A defines
a preorder. Then K($)isa limit-bearing category (resp. a prototype), so
that it is the inductive 2X-wise limit of S. Moreover the insertion from the
category L(F) into K(F)4 reflecting limits, L($§) is also a limit-bea-
ring category (resp. a prototype), projective 9 -wise limit of S.

b) Finally, if X = 3:55 and if § and § are sets of connected catego-
ries, or if A defines a preorder, L(S:) is a (g,fj)-type, which is the 2X-

wise projective limit of S. V

4. Lax morphisms between skeiched structures.
In this section o will be a projective limit-bearing category (Z,I)
and 4 is the set of its indexing categories.

DEFINITION. If D is a double category and if ¢ and @' are O -structures
in the first category D¢ of 1-morphisms of D, a D-wise O -morphism from

¢ to @' is defined as a O -structure T in D! such that
é=0a?T and ¢'=pB2T.
EXAMPLE. If B is a category and OB the double category of its commu-

tative squates, the 0 B-wise O -morphisms are identified with o-morphisms

in B (by identifying a functor to Hs with a natural transformation to B).
PROPOSITION 12. If D is a double category and if the functors

a?: p! =p2, p2:p! -p2 and «2: (D% D?)! ~p!
preserve projective limits indexed by elements of §, then the D-wise O-

morphisms define a sub-category of T(D,Z}.

A. Let T be a D-wise 0 -morphism from @ to ¢’ and 7' a D-wise

614



MULTIPLE FUNCTORS 69

o -morphism from @' to ¢" . They have a composite m"=k? [7',7])in
T(D,Z), which is a D-wise transformation from ¢ to ¢”. Let vel a
cone with basis f: [ —Z; the cone 7"y = KZ‘ [7',7] v is the image by
k2 of the cone ', with basis [ 7'f, 7f]: 1+ D?*D?)! such that

v'(i)=(1"y(i), Ty(i)) for each i€l,.

N L o s . . « . .
Since Ty and T % are limit-cones in p! , the cone ¥ is a limit-cone in

the category (D?% D? )1 which is the pullback of (a?,B?)y;its image by

. . " . - . - "o, .
/<2, which is 7 77, is a limit-cone in D! . Hence 7" is a O -structure in

pl , i.e. a D-wise O -morphism from ¢ to qb".

7' (u) T(u)
u
/\ 7 v (i) Ty(i) v(i') i
. Y (i) \\
T [(y) T/(y) ' ¢
fly)

We consider now the case where D is the double category of up-

squares of a 2-category C.

DEFINITION. Let C be a 2-category, ¢ and @' two & -struztures in COI.
A C-lax o -morphism from & to ¢' is defined as a Q( C)-wise o-morphism
T from ¢ to @' such that Tf(y) be a commutative square for any morphism
yof I,if f: 1 =Z is the basis of a cone Y el .

PROPOSITION 13. If C is 2-category and if Cg admits projective limits
indexed by elements of § and preserved by the insertion into C2, then the

C-lax o -morphisms define a sub-category of T(Q(C),Z).

A. Let Tand 7' be C-lax o -morphisms from ¢ to ¢’ and from @'
to @", and 7" their composite in T(Q(C),2). If f: I =Z is the basis
of a cone yel', since 7f(y) and 7'f(y) are commutative squares, so is

T'f(y) =7 f(y)maT{(y) foreach y in I.
Cg admitting projective I[-limits preserved by the insertion into C?, the
functor from I to BCI restriction of T/ admits a projective limit which

is also a projective limit of 7/ (Prop. 5); hence the limit-cone 77 takes
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its values in BCOI , as well as 7'7y. The composite
T'y(i)=7"y(i)mTy(i), foreach i€l,,

is a commutative square, so that 7"y takes its values in BCg and, con-
sidered as a cone in HCJ, it is a limit-cone (limits in BC, = (C1)? be-
ing computed pointwise). Hence (Proposition 5) 7”7 is alimit-cone in the
category Q( C)P. This proves that 7" is a O(C)-wise O -morphism, i. e.

a C-lax o -morphism from ¢ to ¢". V

5. Lax double functors.

We apply here the preceding results to the sketch o g = (Zc}, Iy

of categories.

DEFINITION. Let A and B be double categories, ¢, and ¢g the cor-
responding categories in . A Jl-lax og -morphism from ¢4 to Pp is
called a lax double functor from A to B.

The lax double functors from A to B are exactly the Q-wise trans-
formations (where 2 is always the double category of quintets) 7 such
that 7(u) be a commutative square for w€ {a,B3,v,v',v,v " }.In

deed, these conditions imply that

and

are pullbacks in HF (and therefore in SZB ), since pullbacks in HF = 3:2
are computed pointwise and ¢A and ¢B are O -structures.

It follows from Proposition 13 that the lax double functors between
small double categories define a sub-category of T( 2, 2q).

Let A and B be double categories, ¢A and ¢B the associated
categories in ¥ we denote by «o» the laws of Al and BI, by «-» those
of AZ and B?, by a,b,i,k and a', b’,i', k" respectively the images of
a,fB,t, Kk by ¢A and (]53.

PROPOSITION 14. The lax double functors from A to B are in one-to-
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one correspondence with the 4-tuples (go, g, t,t'), where
1° g: Al - Bl and 8o Ag —"Bf are functors such that
a'g=goa and b'g =gob.
This implies the existence of a functor g':
(x',x)P(g(x'), g(x)) from (A%xAZ2)! 10 (B2xB2)L,
2° t:i'go —gi and t': k'g' — gk are natural transformations.
3° The following coberence axioms are satisfied:
(u) t'(x,e).(g(x)ot(e))=glx)=t'(e',x).(t(e')og(x})
for each x: e ~e' in Af.
(a) t'(x",x"ox). (g(x")ot'(x',x))=¢t'"(x"ox",x). (t'(x",x"Jog(x))
for each path (x",x',x) in Af .
A, Let T be a lax double functor from A to B. We take for g and for
go the functors 7(2) and 7(1), for ¢t and t' the natural transformations
arising in the quintets T(L Yand 7{x). Condition 1 is satisfied, 7{a ) and

7 (B ) being commutative squares. The two coherence axioms are respecti-

vely deduced by pointwise computation from the axioms
Tl )m7lg)=7(2) =7« Jm7lg),

Tk )m7rk" )=7lk )T &")

(B?+B? ) = (A%%4%)!
k? k
t'
AN o
t
by e m bl {7 Va
BS 8o Az

20 If (go. g, t, ") is given, we construct as follows a lax double func-
tor T:

7(a) and 7(B) «are» the commutative squares
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(a',go,g,a) and (b',80.8,56),
and g’ is their canonical pullback in BF (and aiso in QB),
T{e)=(i', g+t, go,1) and T(K):(k’,g,z,'g’,kL
As 24 is «generated» by a,f3, (¢, «, the other quintets 7(A), for A in

fo, are then deduced as composites or factors relative to the pullbacks:

T(8) (')

r{a T{v )

(in HF). The axioms () and (@) imply that we have so defined a functor
T 23: - QB .V

REMARKS. 10 Let A and B be 2-categories. The 4-tuples considered in
Proposition 14 are then the morphisms of bicategories from the bicategory
A to B defined by Bénabou [B2] (called pseudo-functors in [Gl]); as
a natural transformation toward the discrete category A is an identity, any

Q-wise og-morphism from P4 to @5 is a lax double functor.

2° By a process of «axification» similar to that leading from 2-cate-
gories to bicategories and from 2-functors to morphisms of bicategories,
Moreau [M] defines lax double functors between dicategories, i.e. cate-
gories equipped with a second law which is unitary and associative «p to
isomorphisms» which reduce for double categories to those considered here;

he generalizes Proposition 14 to the case where A and B are dicategories.

3o The O'Cf-morphisms are identical to the Uff—morphisms (see Part

C-0), where gg is the sketch (Zgi,l—:'g:) in which the pullbacks are

But J(-lax Eg:-morphisms are only those lax double functors 7 correspon-
ding to 4-tuples (go,g,t,t") such that t is an identity (since the factors

T(jo) and T(jg) must be commutative squares); they are said unitary.
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Let A and B be double categories. We denote by

kA: K(A) -"ZS: and kB: K(B) -’Zg
the fibrations corresponding to c]SA and <,‘bB . With the notations of [E1] ,
a morphism of K(A) is a triple m =(z, i, s), where p:w ~w’ is a mor-
phism of ¢, where s is an object of ¢, (@) and

z: 8" 2s" in QSA(CU' ), if s’ = ¢A(,u Xs).

Identifying ¢4 (@ ) to a sub-category of K(A) and the «cartesian» morph-
ism (s', u,s) o (p,s), weget m=z.(u,s) in K(A).
PROPOSITION 15. There is a bijection from the set of lax double functors
from A to B onto the set of functors h: K(A) =K (B) such that:

(1) kph=ky and b(p,s)=(u, b(s)),
for each cartesian morphism (i, s), where e {a, B, v, v, v , v .

. This bijection is a restriction of the bijection K' (considered after
Proposition 9) from the set of 9-wise transformations from dJA to ¢>B onto
the set of functors from K(A) to K(B) commuting with the fibrations to
fo. Indeed K' maps 7 onto the functor » whose restriction to ¢A (w) is
7{w ) for each object @ of fo and such that

b(p,s) —’—(t)u(S), Hib(s)),

if ¢, is the natural transformation arising in the quintec 7(u ). Hence, 4
satisfies the condition (1) iff t, is an identity (i.e. iff T(w) is a commu-

tative square) for e {a,B,v,v' ,v,v'}. V

This proposition reduces the study of lax double functors to that

of ordinary functors.
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MULTIPLE FUNCTORS
{i. THE MONOIDAL CLOSED CATEGORY OF MULTIPLE CATEGORIES
by Andrée and Charles EHRESMANN

This paper is the Part II of our work on multiple functors, which was
announced in Part 1 [5].

In this Part IT we define directly (i. e., without reference to sketched
structures) and study the category MCat of multiple categories. M Cat is par-
tially monoidal closed, for the «square product» which associates to an m-
fold category A and an n-fold category B an (n+m )-fold category BmA
and for a closure functor Hom such that Hom(A,B), the (n-m )-fold categ-
ory of «generalized natural transformations», is the set of multiple functors
from A to B with compositions deduced «pointwise» from the (n-m) last
compositions of B .

One application is a criterium for the existence of colimits in MCat,
which suggests the introduction of «infinite-fold» categories to embed M Cat
into a complete and cocomplete category. Another one is an existence theo-
rem for generalized limits in n-fold categories, which admits as a particular
case a result of Gray [13] and Bourn [3] on representable 2-categories ( ge-
neralized in Part I to double categories); however the proof given here is
more «structural» ( and much shorter! ).

Other applications are the descriptions of the cartesian closed struc-
ture of the category of n-fold categories, and of a monoidal closed structure
which «laxifies» it. Part III (to appear in Vol. XIX -4) is devoted to them.

In an Appendix, the constructions of B A and of Hom(A,B) are
translated in terms of sketched structures. This leads to similar results on
intemal multiple sketched structures (in particular internal multiple categ-
ories), which will be given in a subsequent paper.

Notations for Hom have been «inversed» relatively to Part I, in order

to conform to more usual conventions.
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0. Motivating examples.

n-fold categories were introduced in [ 7 1 by induction, as categories
internal to the category of (n-I )-fold categories. They are also defined as
realizations in the category of sets of the sketch of n-fold categories, which
is the n-th tensor power of the sketch of categories (seel 51). In this Part,
we define and study them directly (i.e., without using the theory of sketch-
ed structures ).

Double categories introduce themselves very naturally as soon as

natural transformations are considered. Indeed, if B is a category, its com-

mutative squares

b
b’ = b
b

form a double category T8 for the «vertical and horizontal» compositions :

A - natural transformation t: f~» f’: A> B may be seen as a functor from 4
to the vertical category of squares of B, while the composition of natural

transformations is deduced from the horizontal composition:

e” t(e”)
a’ fita’)  t(a) f(a')
e' tie')
a f"(a) | t"(a) {a) f(a)
e L tle)
By induction, one defines (see [ 7], page 398) the multiple categ-
ory of squares of squares..., which intervene to define transformations bet-
ween natural transformations and so on... . We will generalize this construc-
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tion in Part 2.

Other «usual» double categories are the 2-categories (considered
by many authors), which are those double categories in which the objects
for the second composition are also objects for the first one. For exanple,

natural transformations between small categories form a 2-category, Nat.

There is also the 2-category of homotopy classes of continuous mappings,
very useful in Algebraic Topology.
To a 2-category M is canenically associated the double category

QM) of its ('lax-)squareé, with the vertical and horizontal compositions:

/

(see [ 8], where @ (Nat) is introduced in 1963 under the name of double
category of «quintets», and [ 11,21 ); such double categories are character-
ized in [15] .

More generally, n-categories are special n-fold categories, in which
objects for some of the compositions are also objects for the other ones,

and the lax-squares will be generalized in Part IV,

A. The category of n-fold categories.

Let n be a positive integer.
An n-fold category A (on the set A ) is a sequence of n categories
(A%, ...,A™1) with the same set A of morphisms, satisfying the pemuta-
bility axiom:
(Py (A%, A7) is a double category for each pair (i,]) of integers,
such that i #j, 0<i<n, 0<j<n (seelsl). ‘
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An element of A is called a block of A, and A’ is the i-th category of A.

We also say that A is a multiple category, of multiplicity n.

The axiom (P ) means that, for each i, 0 i n-1,the maps source
(or domain), target {(or codomain) and composition of A! define functors
with respect to the {n-1) other categories Al In particular, it follows that
the set of objects of A’ defines a subcategory of A7, for each j #i.More-
over two of the categories A’ and A/ for j #i are identical iff A= A7 is
a commutative category (1i.e., a coproduct of commutative monoids). For

example, if C is a commutative monoid, then (C, ..., C) is an n-fold cat-
e/

egory. ntimes
In the definition of the n-fold category A, the sequence of categ-
ories (Ao Y ,A"'I) is well given. If y is a permutation of the set

-n={0,1,...,n-li,

then (AY(9) . AY("1)y ig also an n-fold category on A, buc it is differ-
ent from A as an n-fold category and we denote it AY . If (i;,...,i, ) is
a sequence of m distinct elements of n, then (ALI y s ,Alm) is an m~fold

.

category, denoted more simply by Al L If Adis denotes the  discrete

category on the set A (there are only objects ), then
(AO ) An-l Adis 3 AdiS)
m times

is an (n+m )-fold category, whatever be the integer m.

If A and B are n-fold categories, an n-fold functor f: A > B from

A to B is defined by amap f: A > B defining a functor
f: A*> B® for each i <n.

Let Cat, be the category whose objects are the small n-fold categ-
ories (i.e., the n-fold categories on small sets, small meaning that they
belong to a given universe), and whose morphisms are the n-fold functors
between them. By convention, a 0-fold categofy is a set, a I-fold category
is a category. So Cat, is the category Set of (small) sets and Cat; , the

category of ( small ) categories.
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For a permutation y of the set n, we denote by y: Cat_ ~ Cat, the

tsomorphism «permutation of the compositions»:
(f:A>B)r——(f:AY5>BY ).
These isomorphisms will be useful, since they permit to change the order
of compositions when necessary.
PROPOSITION 1. Cat, is complete and, for each i < n, limits are preserv-
ed by the functor Ut Cat, > Cat :
(f:A>B)r—(f:A'>B)
fbrgetting the compositions other than the i-th one.

PROOF. Let F: K~ Cat, be a functor indexed by a small category K. For

each ¢ the composite functor

i
Kk £ Cat, U Cat
admits a (projective) limit A on the set A of families (a,), indexed by

the objects e of K, such that:

a,cF(e) and F(k)(a,)=a, foreach k:e- e’ in K.

er€F(e’)
kf aI ewp(ek)\A
e aeeF(e)/’

It is easily seen that (A%, ... A1) is an n-fold category A, which is
the limit of F. V

The following proposition will be used to prove Proposition 3.

PROPOSITION 2. Let A be an n-fold category and M an infinite subset of
A. Then the n-fold subcategory M of A generated by M is such that M is
equipotent with M.

PROOF. M is constructed as the union of the increasing sequence of sets
My, [ ¢ N, defined by induction as follows: My =M ; if M; is defined, then
M;,, is obtained by adding to M, for each i<n :
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- the source and target in A’ of the blocks m in My,

- the composites in A’ of all the couples (m', m) of blocks in M; ad-
mitting a composite in A,
Since M is infinite, it is seen by induction that M;,; is equipotent to M,

hence to M . It follows that M = lUNMl is also equipotent to M. V
€

Let m be an integer, m < n. There is a faithful functor

U : Catn N Catm ,

n,m

which «forgets the (n-m ) first compositions»: it maps A onto A%+ > 1

and f: A= B onto f: U, (A)>U B).

From Proposition 1, it follows that the functors Un n Preserve limits.
s

n,m(

We shall prove in Section D that they admit left adjoints.
By composing Un,m with the isomorphism y:Cat, » Cat, corres-
ponding to a permutation y of the set n (see before Proposition 1), we

obtain faithful functors Cat, » Cat, mapping A onto the m-fold category

Tyseaist . . . i
Al " for every sequence (i;,..., i, ) of m distinct elements of n .

In particular, the functor U, ,: Cat, - Set-is defined by:
(f:A->B) ——(f:A>B).

PROPOSITION 3. This faithful functor U, ,: Cat, » Set admits quasi-quo-

tient objects.

PROOF. This assertion is deduced from the general existence theorem of
quasi-quotient objects of [ 9], whose hypotheses are satisfied due to Pro-
positions 1 and 2. In fact, we deduce from it the more precise result (used
later on):

Let r be a relation on a set H and suppose given a sequence H of n
structures of neocategories (i.e., we do not impose unitarity nor associa-
tivity) B’ on H. Then there exists a universal solution to the problem of
finding an n-fold category A and a map f: H~> A compatible with r and
defining a neofunctor f: Hi5 A? for each i<n.If 7: H> B is such a uni-
versal solution (i.e., every other solution factors through it uniquely), B is

an n-fold category quasi-quotient of H by r. 'V
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PROPOSITION 4. Cat, is cocomplete. The functor Un’m: Catn» Cdtm

preserves coproducts ( but not every colimit ).

PROOF. 1° A family (A)\)Ae/\ of n-fold categories admits as a coproduct

the n-fold category A on the set
{(a,\)] aeAy, el }
such that A’ is the category coproduct of the categories A)i, AeA .

20 Let F': K~ Catn be a functor indexed by a small category K, and
let A be the n-fold category coproduct of the n-fold categories F(e), for

all objects ¢ of K. Let r be the relation on A defined by:
(a,e)~(F(k)a),e') foreach k:e-e' in K and acF(e).

According to Proposition 3, there exists an n-fold category B quasi-quo-

tient of A by r. From the general construction of colimits from coproducts

e’ F(k)a)eF(e')- - tle')
—W
k l Fk) # A—I B

_JM
aeckF(e) tie)

and quasi-quotients [9] it follows that B is a colimit of F, the -colimit

cone being ¢t: F => B, where

t(e)=(F(ej—L2€¢) A_T _.B) V

REMARK. Since the functor U, = does not preserve all colimits, it does

not admit a right adjoint.

B. The monoidal category of multiple categories.

In this section, we consider the category MCat of multiple categ-
ories, defined as follows:
- Its objects are all the small n-fold categories, for every integer n
(hence sets, categories, double categories, ... are objects);
-Let A be an m-fold category and B an n-fold category. If m { n, the
morphisms f: A » B, called multiple functors, are the m-fold functors f,
m-1

from A to the m-fold category B (in which the (n-m ) last compo-

629



8 A.& C. EHRESMANN

sitions of B are forgotten). If m > n, there is no morphism from A to B.

- The composition is trivially deduced from the composition of maps.

For each integer n, the category Cat, is a full subcategory of the

category M Cat.

PROPOSITION 5. 19 MCat is complete and the faithful funcior
U:MCat > Set: (f:A>B)—(f:A->B)

admits quasi-quotient objects.
2 For each integer n, the insertion Cat, _, MCat preserves limits,

colimits and quasi-quotient objects.

P ROOF, 1° Let F: K-> MCat be a functor indexed by a small category K.
For each object e of K, let n, be the multiplicity of the multiple category
F(e). Let n be the least of the integers n,, for all objects e of K. By
the definition of the multiple functors, we have, for each m { n, a functor

F,: K- Cat  such that
(k e e') I~~>F(iﬁ): F(e)O,...,m—]_) F(er)O,...,m-] .

It follows from Proposition 1 that F, is the basis of a limit cone in Cat, ,

say l: A => F_ and that AO>->m-L is the limit of F,, foreach m<n.

a) We prove that A is also the limit of F in #Cat. Indeed, for each
object eof K, I(e): A~ F(e)is a multiple functor, the multiplicity n of
o so that [: A => F is also a cone in MCat. Let

t: B> F be a cone in MCat. Since t(e): B> F(e) is a multiple func-

A being lesser than n

tor, the multiplicity m of B is lesser than each n, ; hence m {n and

t: B =>F_ is aconein Cat, . There is a unique f: B> A%mol gych

that
(1:B=>F, )=(B—fa0m = Fp )
e' Fre') lie') A
k F(k) f
e F(e) B

t(e)
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and f: A > B is the unique morphism such that

!
(t:B=>F)=(B—twA=F)

b) Consider now the case where n, = n for each object e of K, so
that F' takes its values in Cat, . According to Proposition 4, there exists
a colimit cone I': F, =>H in Cat, . Then I': F => H is a colimit co-
ne in MCat. Indeed, let t': F => B' be an inductive cone, with vertex
the p-fold category B'. Then n<p, and ¢t": F, = B'0:--»m1 {5 an induc-

tive cone which factorizes through H :

(t’.‘ Fn > B'O""’n_l ) :(Fn é H J' B|0,...,TL'] ).

So f': H > B' is the unique morphism such that
l’ '
(t':F:B‘)I(Fﬁﬂ—L'B’).

30 Let A be an n-fold category, r a relation on A and A the n-fold
category quasi-quotient of A by r (which exists, Proposition 3). Then TA
is also an object quasi-quotient of A by r with respect to the functor U .
Indeed, let A: A > B be a multiple functoér compatible with r ; the muleipli-
city of B must be greater than n, so that there exists in Cat, a factoriza-
tion:

(h: A > B0l ) :(A__F.>K LBO:---,N'Z)

A B

where 7+ A > A is the canonical multiple functor. Then A': A>B is the

unique morphism factorizing A through AinMCar. V

REMARK. MCat is not cocomplete. In Proposition 10 we shall prove that
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a functor F: K > MCat admits a colimit iff the multiplicities of all the F(e)

for e object of K are bounded.

There is a partial monoidal structure on ¥ Cat, whose tensor product
extends the square product B ® 4 of two categories defined in [ 5] as being
the double category { B x4, BX A9 ) where B%® denotes the discrete

category on B.

DEFINITION. Let A be an m-fold category and B an n-fold category. We
call square product of (B, A), denoted by B®A , the (n+m)-fold category
on the product of sets B xA | defined as follows:
-if 0 <i<m, itsi-th category is the product B¥Sx A’
-if 0 < j<n, its (m+j)-th category is the product B/ x A%
This defines an (n+m )-fold category, which is the product of the

(n+m )-fold categories:

(B, BYs B, . B"1) and (AC,.. A™T AdES L Adis),

m times ~ n times

EXAMPLE. If £ is a set, B®E is the n-fold category whose j-th category
is BIxE%S  for0<j<n. )
If H is a p-fold category, a map g: BXA - H defines a multiple
functor g: Bm A > H iff the following conditions are satisfied:
(Alym+ngp.
(A2) For each block b of B,
glb,-);A-H: at~ g(b,a)
is a multiple functor.
(A3) For each block a of A,
g(-,a): B - HrooPl p o g(b,a)
is a multiple functor.
In this case we say that g: (B,A) > H is an altemative functor.
In particular, the identity of B xA defines an alternative functor
id: (B,A)>Bw®A, and any alternative functor g: (B,A)>H factors

through it.
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(B,A)

H g BmA

In other words, B® A is the solution of the universal problem «to transform

an alternative functor into a multiple functor».

P ROPOSITION 6. There is a functor m: M Cat X (Cat, ) > M Cat extending
n
the square product,  with a restriction giving to I Cat a monoidal structure
symmetric «up to an interchange of the compositions». (We say that MCat
is partially monoidal. )
PROOF. 1° We define a functor m: M CatX(]ﬁI Cat, )» M Cat as follows:
If f:A> A" and g: B> B' are multiple functors with A and A' of the same
multiplicity (this last condition is essential), then
gxf:BWA-B A" (b,a) —~ (g(b), f(a))

is a multiple functor g®mf. The map (g,f)t~ g®f defines the required
functor m .

2° The square product admits as a unit the set ] ={0}, the «unitarity
isomorphisms» being:

A-Aml:at—~(a,0) and A> 1mA:at>(0,a),

for each multiple category A . It is associative up to the «associativity iso-
morphisms»:

(B'muB)mA-B'w(BmA): ((b,b),a)—~ (b,(ba))

for any multiple categories A, B, B'.
3° The square product is not symmetric in the usual sense, but there

is, if A. is an m-fold category and B an n-fold category, the isomorphism:
BuAs(AmB)Y:(b,a) (a,b),

where (A @ B)Y is deduced from A mB by the interchange of compositions

corresponding to the permutation

y:i(0,...,mtn-1)— (n,..,n+m-1,0,...,n-1). 'V

The square product being associative «up to an isomorphism», a
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12 A.& C. EHRESMANN

sequence (Aq""’AI) of multiple categories admits several composites,

depending on the position of the parentheses. Any two of these composites

are related by a canonical isomorphism, since (Il Cat, , W) is monoidal. In
n

particular, all these composites are canonically isomorphic with
(...((Aq mA, EL)mA)EA, L

This composite will be denoted by A™ " if Aq =...=A;=A; it is then

also defined by induction:

1 -1
A" A, A" AmT gy

C. The internal Hom on ¥ Cat.

Now we define an «internal Hom functor» on the category of multiple
categories, so that #Cat becomes partially monoidal closed. In particular
this Hom associates to a category 4 and to a double category B the cat-
egory of B-wise transformations from 4 (denoted by T(B, 4) in [5]), i.e.
the set of functors f: 4 » BY equipped with the composition deduced «point-

wise from B »:
frlo f:A-B% a— [(ajo,[(a).

DEFINITION. Let A be an m-fold category and B an n-fold category. We
call multiple category of multiple functors from A to B, and we denote by
Hom(A,B) :

- if m> n, the void set;

-if m< n, the {n-m)-fold category, on the set of the multiple functors

f: A > B, whose j-th composition, for 0 { j<n-m, is
(Ff) = ( flof: A=Brar=f"(a)or,  f(a)),

iff the composite f'(a)o.,. [f(a) exists in B/*™ for each block a of A.

jtm
a’ ]('r(ar) f(a')
a fita) fta)
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So, for each pair
(iyj), 0<i<m, 0<j<n-m,
the category Hom(A,B) is a subcategory of the category of (B!, B™T/)-
wise transformations from A’ to (B?,B™%/) . The permutability axiom is

satisfied by Hom(A,B) since it is satisfied by B and the compositions

are defined «pointwise» from that of B .

EXAMPLES. 1° If £ is a set, Hom{E,B) is the n-fold category BF , pro-
duct of £ copies of B (i.e., product in Cat, of the family (Be)eeE , with
B, =B for each e in E).

20 1f A is a category and B is the double category of squares of a cat-
egory C, then Hom(A,B) is the category C* of natural transformations
between functors from 4 to C.

REMARK. In fact, Example 2 motivated the introduction of Hom(A,B),
which was generally defined in 1963 [ 7], under the name «multiple categ-
ory of generalized transformations», represented by F(B,A). We interchan-

ge here A and B in the notation to adopt 2 more usual convention.
If g: A'> A is an m-fold functor and h: B > B’ a multiple functor,
(f:A-B)— (A'—8.A_f.B h.B")
defines a multiple functor
Hom(g,h): Hom(A,B) > Hom(A',B’).
This determines the functor
Hom: (IﬁICatn)apXMCat > MCat: (g, h)+ Hom(g,h).
P ROPOSITION 7. The partial functor -w A : M Cat > M Cat, for each multiple
category A, admits Hom{A,-): M Cat > M Cat as a right adjoint. (We say
that (MCat, m,Hom) is a partial monoidal closed category. ) In particular

Ihl Catn, equipped with restrictions of M and Hom, is a monoidal closed

category.

PROOF. Let 0 be a p-fold category.

1o The evaluation ev:(f,a)r~ f(a) defines an alternative functor
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ev: (Hom(A,H),A) >R since:
- for each block a of A,

ev(-,a): Hom(A,H) > U™ Pl f s fra)
is a multiple functor, by the «pointwise» definition of the compositions of
Hom(A,H) ,
- for each f in Hom(A ,H),
ev(f,-)=1: A"—>H
is a multiple functor.

From the universal property of the square product, it follows that
ev: Hom(A,H)mA > H

is a multiple functor, which will be the coliberty morphism which defines
Hom(A,H) as the cofree object generated by H .

20 Let B be an n-fold category. Then g: B®m A - H is a multiple func-
tor iff g: {B,A) > H is an altemative functor, i.e., iff:

-m+ngp (condition Al),

- there is a map )

g:br—g(b,-):A-H

from B to the set of multiple functors from A to H (condition (A2)),

- for each block @ of A, the composite

g(-, a) :(B_g.Hom(A,H)_e_U_(;la_)_Hm,...p-l)

is a multiple functor (condition (A3));

Hom(A,H) Hom(A,H)m A
g gmA &
B Bs A z H
M Cat -=A MCat

this is equivalent to say that Z: B> Hom(A,H) is a multiple functor, due

to the pointwise definition of the compositions of Hom(A,H). V

COROLLARY 1. Let A be an m-fold category; then the «partial> functor
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-mA: Cat, > Cat, . admits the functor Hom(A,-): Cat, , - Cat, as a

right adjoint. V
REMARK. For m =] and n =1, this Corollary has been proved in [5].

COROLLARY 2. Let A, B, H be multiple categories of multiplicities m, n

and p. There exists a canonical isomorphism
A:Hom(BwA,B) 5 Hom(B, Hom(A,H)).

If p >m+n, there is also a canonical isomorphism
Hom(B, Hom(A,H)) 3 Hom(A, Hom(B,H")),

where H™ is deduced from H by the interchange of compositions corresp-

onding to the permutation
7:(0,...,p-1)—~(m,...,m+n-1,0,...,m-1,m+n,...,p-1).

P ROOF. 1° It is well-known for monoidal closed categories [10] that the
one-one correspondence

(g:BwA-H)—~(z:B>Hom(A,H): bt=g(b,-): A-H)
resulting from the adjunction (see Proof Proposition 7) defines an isomor-
phism

AM:Hom(BeA,H) 5 Hom(B, Hom(A,H)) .

(This is also expressed by saying that Hom(A,-) is a right MCat-adjoint
of -m A .) This result extends here { with the same proof).

20 Assume p 2 m +n . We have the «semi-symmetry » isomorphism
oc:BwA>(AmBY:(b,a)~(a,b)
(Proposition 6), where y is the permutation
y:(0,...,m+n-1)> (n,..,m+n-1,0,...,n-1).
For each (m+n)-fold category K we have the identification
Hom(KY,H) = Hom(K, H7),

which comes from the definition of Hom and from the fact that the inverse of
y is a restriction of 7 and that 7 is the identity on (m+n,...,p-1). So,

we get the following string of isomorphisms:
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Hom(B,Hom(A,H)) Hom(A, Hom{(B,R"))
A A

-1
Hom(BlA,H)—liﬂn—ﬁg’—ID»Ham((AlB)y,H)zHom(AlB, H7) .V

The existence of this composite canonical isomorphism can yet be
expressed in the following form, if p =m+tn.
COROLLARY 3. Let H be a p-fold category, with p = m+n, and H" the
p-fold category deduced from H as in Corollary 2. Then the partial functor
Hom(-,B):Cat 2P > Cat, admits as aleft adjoint the opposite of the func-
tor Hom(-,H7 ): Cat,’P > Caz,, .
P ROOF. The liberty morphism corresponding to the n-fold category B is

[: B> Hom(Hom(B,H"), H): b= [ft+f(b)].

Hom(B,H™) Hom(Hom (B, H"), H)
gr// Hom(g’,H) // l
A Hom(A,H) g
Cat?F Hom(-, H) Cat, .V

COROLLARY 4. Let B be an n-fold category, p = m+n and n the permu-
tation (0,...,p-1)+(m,...,p-1,0,...,m-1). Then the partial functor

Bmw-: Cat, - Catp is a left adjoint of the functor

Hom(B,-") = ( Cat, —— Cat, —Hom(B.=) _co; ).
PROOF. The liberty morphism corresponding to the m-fold category A is
U'"A->Hom(B,(BmAY):a>[bt(b,a)].
BmA Hom(B,(BmA)")

h/ Hom(B,h'"%\

H Hom(B,H7) h
Hom(B,-7) Catm

P\/ v

Bw-

A

Cat
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EXAMPLES.

a) Let E be a set and E, the n-fold category on £ whose categories
are all discrete. The partial square product functor -® E: Cat, » Cat, is
identical with the partial product functor =X E_: Cat, » Cat, . So Corollary
1 implies that the functor -X E,_ admits as a right adjoint the «power func-

tor» -F Cat, » Cat,: mapping f: B> B’ onto
ff:B*>B " (be)eeE = (f(be))eeE )
More generally, we shall prove in Part III that the partial product functor

-xB: Cat, » Cat, admits a right adjoint for each n-fold category B, i.e.,

that Catn is cartesian closed.

b) Functors « forgeiting some compositions»:

We denote by 2 the category

1 (]70) 0’

m
by 2" the m-fold category defined by induction ( see end of Section B):

1 -1
2"~ 2, 2.q=2-q ® 2 for each integer ¢ > 1.

If B is an n-fold category, a multiple functor f: 2 > B is identified
with a block f(1,0) of B, and Hom(2,B) is identified with Bl-»n-l
So Hom(2,-): MCat > MCat «is» the functor U, «forgetting the 0-th com-
position» (and mapping a set on the void set). By Proposition 7, this func-
tor U, admits as a left adjoint the functor -® 2: MCat » U Cat.

Let U, : MCat~> MCat be the composite of U, by itself m times:
it maps the p-fold category H on:

- the void set if p < m,

-H™ Pl i psm.
It admits as a left adjoint the composite of -®2: MCat > MCat by itself m
times, and this functor maps the n-fold category B onto the (n+m )-fold cat-
egory (...(B= 2)m...2) w2, which is canonically isomorphic ( end of Sec-
tion B) with B m Z.m . Hence U, also admits as a left adjoint the functor

m,
-m2"": MCat - MCat, and U, may be identified with the functor

Hom(2™",-): MCat > MCat.
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Taking restrictions of these functors, we get the first assertion of :

Cat

first compositions admits as a left adjoint the partial functor

PROPOSITION 8. The functor U » Cat, forgetting the m

mtn,n’ m+n

.m
-a2% : Cat, ~ Cat, , .

The functor U Cat, ..~

admits as e left adjoint the partial functor

mtn,n’ Cat, forgetting the m last compositions

2" w .. ¢
m-:Cat, > Cat, ., .
P ROOF. We prove the second assertion. From Corollary 4, Proposition 7, it

m
follows that the functor 2™ ® -: Cat, > Cat,, . is a left adjoint of

~ |an
Hom(2®" ,-T) = ( Cat, , v Car , Mom(27 .2) Car )

where 7 is the isomorphism associated to the permutation
7:(0,....,m¥n-1)—~{(n,...,m+n-1,0,...,n-1),
and this composite functor identifies with

~ v
’ - 24 min,n
Um+n,n ( Cat, ,,—*Cat, ——2">Cat ). \Y

c)«Objects - functors»:
Let I, be the «unique» m-fold category on the set I ={0}.A mul-
tiple functor f: I~ B, where B is an n-fold category, is identified with
a block f(0) of B which is moreover an object for the m first categories

B®. Hence the functor Hom(1,,-): MCat > MCat maps B onto:

- the void set if n < m ,
- if n>m, the (n-m )-fold subcategory of B™ ™1 formed by the blocks
of B which are objects for each category B?, for 0< i< m ; we will denote

it by |B!m,...,n-l .

The functor Hom( I ,-) admits as a left adjoint-®] :MCat-> MCat
which maps the n-fold category B onto the (n+m )-fold category Bw I,
wich is identified with the (n+m j-fold category on B whose m first categ-

ories are discrete and whose ( m+j }-th category is B/, for 0 <j<n.

P ROPOSITION 9. The funcior IUn+m,nl : Cat > Cat,, restriction of .the

m+tn
functor Hom(1_,-) admits both a left and a right adjoint.
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PROOF. The left adjoint is the restriction of the functor -® ]m , described

above. Since | U is equal to the composite

rH—m,nt
|U |U

n+m,n+m-1l n+l,nl
Caty 7o — 222 Cat,

Cat

ntm
it suffices to prove the existence of a right adjoint for
‘ Un+],nl 2 Catn +1 7 Catn ’

For this, let B be an n-fold category. There is an (n+1] )-fold category B!
on the product B xB whose 0-th category is the groupoid of couples; of B,
and whose (i+] )-th category is the product category BixBi for0gi<n.
The image | B'{7=>" of B! by |U, . .| is identified with B by identify-
ing B with the set of objects for the groupoid of its couples. We say that
B' is the cofree object generated by B . Indeed, if A is an(n+1)-fold cat-

egory, a¥ and BY the source and target of A, then a map g defines an n-

B' ]B'[I""’n
g/ g&
N (AT & B
Cat, ., W ra| Cat,

fold functor g: lAil""’n» B iff the map
g:at~(g(B%), g(a%a))

Boa' (QOap)

al
B’a g g(B%") _ g(p%a)
a” a
2¥a g(aa") g(2%a)
defines an (n+1)-fold functor g: A -~ B'. \%

In particular, the «object-functor» Cat - Set which maps a category
on the set of its objects has a left adjoint mapping the set E onto the dis-
crete category Edis , and a right adjoint mapping E onto the groupoid of

its couples.
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D. Some applications to the existence of colimits.

1. Construction of colimits in MCat.

We have seen (Proposition 5) that MCat is complete. It is not co-
complete; however, using Proposition 8, we are going to prove:
PROPOSITION 10. Let F: K> MCat be a functor, where K is a small cat-
egory. Then F admits a colimit iff the multiplicities of the multiple categ-
ories F(e), for all objects e of K, are bounded.

PROOF. The condition is clearly necessary. On the other hand, if there
exists a coproduct A of the multiple categories F(e) for all objects e of
K, then F' will admit as a colimit the multiple category A quasi-quotient of
A by the relation r:

u (a)~u, (F(k)(a)) if k:e-e' inK and aeF(e),
where u,: F(e)- A isthe canonical injection into the coproduct:

e’ F(k)(a)eF(e')

e aeF(e)

So it suffices to prove the existence of a coproduct for a family (A)\)As/\

such that A)\ is an my-fold category and that there exists n = sup m, .
AeA
n-m
For this, let By = o" m A, be the free object generated by Ay with
respect to the functor U]  : Cat, - Catmh forgetting the (n-my ) last com-

m
)\ .,mA-I

0,..
positions (see Proposition 8); let lA : Ay - By be the liberty mor-
phism. The family (BA)AEA admits as a coproduct in MCat its coproduct

B in Cat, (by Proposition 5), the canonical injection being
v :By>B:rb— (b,A)

We say that B is also the coproduct of (By )?\EA in MCat, the canonical

injection being

l v
(U)“.'A)‘—’B) = (AA_)\>B)\_A“B).
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Indeed, let H be a p-fold category and fy: Ay » H a multiple functor for

each AeA. Then my <p for each A implies n< p, and by definition of a

., n-1

free object generated by A, , there exists a unique g, : By - HO- with

!
(A -H) = (A —2-B, B q).

The factor g: B> H of the family (g, J, A through the coproduct B is the

unique morphism rendering commutative the diagram

i.e., factorizing (fy j A through B. v

2. Generalized limits,

Motivated by the example of the category of natural transformations
from a category A to a category C, which is identified with the category
Hom(A,nC), the following terminology was generally introduced in [ 71,
and precised in [ 5] for double categories.

In this section, B denotes an m-fold category and B an (m+1)-fold
category such that B is the m-fold subcategory | B|% ==L of HO>-+s m-!
formed by those blocks of H ‘which are objects for the last category H™ .
Let |H|™ be the subcategory of H™ formed by those blocks of H which
are objects for the m first categories H?. The objects of |H|™ (hence the
blocks of H which are objects for all the categories R/ ) are called ver
tices of H .

Let A be anm-fold category. The objects of the category Hom(A ,H)
are the multiple functors f: A-H taking their values in |H |0""""'1 =B ;
they are identified with the m-fold functors f: A'> B. Then, if g:A - H is

a multiple functor, its source in Hom(A,H) is
. m
amg___(A g HO,...,m-I a TB),

and its target is
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Bmg:(A g HO,...,m-l @m B),

where a™ and B™ are the maps source and target of H™ . We say that g

is a B-wise transformation from a™g to B™g, denoted by g:a™ g~ B"g.
There is a canonical functor, called the diagonal funcior,
dAH: |H|m - Hom(A,R)
(which is the functor associated to the alternative functor
(JHI™,A)>H:(u,a) u).
This functor maps an object u of |H|™, i.e., a vertex of H, onto the cons-
tant functor
uA->Brat-u,

and ir maps the morphism x: u > u' of |H|™ onto the H-wise transformation

pa

«constant on % », denoted by x™: u"> u

DEFINITION. Let f:A > B = H[O""’m'l be an m-fold functor. If u is a
free (resp. cofree) object generated by [ with respect to the diagonal func-
tor dppy: |H|™ > Hom(A,H), then u is called an H-wise colimit (resp.
Limit) of f.

If u is a vertex of H and g: u”>f an H-wise transformation, we
also say (by reference with the case of natural transformations) that g:u = f
is a projective cone. Then u is a limit of f: A > B iff there exists a proj-
ective cone l:u3f, called a limit-cone, such that each projective cone
g: u'3 f factors in a unique way through [, i.e., there exists a unique mor-
phism x: s’ > u of |H|™ satisfying:

da(*) . 1)

(this means g(a)=1{{a)o, x for each block a of A ).

al| f(a) u

u

g=(u"
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If the diagonal functor dAH admits a right (resp. left) adjoint, so
that each m-fold functor f: A > B admits a limit (resp. a colimit), we say
that B admits H-wise A-limits (resp. A-colimits ). If B admits H-wise A-
limits for each small (resp. finite) m-fold category A, we say that B is
H-wise complete (resp. finitely‘complete )..Similarly is defined the notion:

H-wise (finitely) cocomplete.

EXAMPLES. 1o If H is a double category (H?,H!) and B is the categ-
ory of 1-morphisms obtained by equipping the set of objects of B! with the
composition induced by H? (denoted by H{ in [ 5] ), these definitions co-
incide with those given in [5].

20 1f B= lHlo""’m'I admits H-wise ‘2.m-limits, we also say that H
is a representable (m+1)-fold category, by extension of the notion of are-
presentable 2-category introduced by Gray [13] and generalized in [ 5] to
double categories. This means that the insertion functor |H|™ C_, H™ ad-
mits a right adjoint (since Hom(2™",H) is identified with H™ ). In other
words, for each object ¢ of H™, there exists a vertex u of H, called the
representant of e, and a block n of H with a™p=u, B™n = e, such that,
for each block 7' of H with

B™n'=e and a™p'=u'= vertex of H,
there exists a unique

y:u'»u in [H|™ with n'=no_ y.

1 U

S
e Y
Jfl

uV

Dually, H is corepresentable if the insertion |H|™ C, H™ admits a left
adjoint.

The next proposition gives an existence theorem for H-wise limits.
It utilizes the following Lemma, whose proof is given in the Appendix (since

it considers multiple categories as sketched structures).
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m
LEMMA. Cat, is the inductive closure of } 2" (ie., Cat,, is the small-

est subcategory of Cat, containing 28" 4nd closed by colimits ).

P ROPOSITION 11. Let H be a representable (m+1 )-fold category and let
B =|H|% ™I [f |H|™ is complete (resp. finitely complete), then B

is H-wise complete (resp. finitely complete ).

PROOF. Let 2 be the full subcategory of Cat, whose objects are the m-
fold categories P such that B is H-wise P-complete. To say that H is re-
presentable means that Z.m is an object of . Let A be an m-fold cat-
egory which is the colimit of a functor F': K> Q , where K is small (resp.
finite); if we prove that such an A is an object of @, it will follow that
B is H-wise complete (resp. finitely complete), since Cat,, is the induc-
tive closure of { Z.m} by the preceding Lemma. For this, let [': F = A
be the colimit cone. Since the functor Hom(-?H): ( Cat,, )P 5 Cat admits
a left adjoint (by Corollary 3, Proposition 7), it transforms the colimit cone

l" in Cat,, into a limit cone
l: Hom(A ,H) = Hom(F-,H).
We have a cone d: |H|™ = Hom(F-,H) such that
d(e):dF(e)H:iH‘meHom(F(e},H),

for each object e of K. The factor of this cone with respect to the limit

cone [ is the diagonal functor dpyy: |H|™ > Hom(A,H). By hypothesis,

e' Hom(F(e'),H) lfe') Hom(A,H)
Kl Hom(F(k)H) M\ day
1 dF(e')H
e Hom(F(e)R) dF(e)H Tk

F(e) belonging to Q, each diagonal functor d(e) admits a right adjoint,
and |H|™ admits K-limits. Hence a theorem of Appelgate-Tiemey [ 1]
asserts that the factor d 4y, also admits a right adjoint, i.e., B admits H-
wise A-limits. Therefore A is also an object of , and a fortiori B is H-
wise complete (resp. finitely complete). In fact, if f: A>B is an m-fold

functor, its H-wise limit u is constructed as follows [1]: let u, be a H-
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wise limit of the m-fold functor
le)(f)=(Fre)-tlel a Tl p)
By the universal property of the limit, there exists a unique functor
G: K-> |H|™ suchthat Gfe)=u,

for each object e of K. This functor G admits a limit u, which is aH-

wise limit of f: A > B. \

Dually, we prove by a similar method :

PROPOSITION 12. If H is a corepresentable (m+1 )-fold category and if
[H|™ is (finitely) cocomplete, then the m-fold category B = |H |0 >m-]
is H-wise ( finitely ) cocomplete. 'V

EXAMPLES.

a) If H is a double category, we find anew Proposit.ion 3-2 [5] (with
a much simpler proof). So if H is the double category Q(K) of up-squares
of a 2-category K, it reduces to Gray's Theorem of existence of cartesian

quasi-limits {13] , as explained in [ 5], page 64.

b) Let K be a 2-category. There is a triple category H, called the ¢ri-
ple category of squares of Q{K), such that H?>? is the double category of
squares of the vertical category Q(K ) B and that the composition of H is
deduced pointwise from that of the horizontal category Q(K)m ; its great-

est 3-category is the 3-category of cylinders of K, defined in [2] :

9 7 07

If K is representable, so is Q(K) (by Proposition 6-2 [ 5]), and also H

(this will be proved in Part III, where we construct more generally the mul-

tiple category of squares of an n-fold category). If A is a 2-category, an
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object of Hom(A, H) is identified with a 2-functor f:A->K ; a H-wise limit
of f is then a catalimit of f in the sense of Bourmn [3]. Analimits are ob-
tained by taking down-squares instead of up-squares. So Proposition 11 then
reduces to Proposition 7 of Bourn [3], whose proof, of the same type than

that of Proposition 3-2 151, is less «structural» and therefore longer.

E. Infinite-fold categories.

MCat does not admit coproducts for families (A)\))\e/\ such that
the mulciplicities of the multiple categories A/\ are not bounded; indeed,
such a coproduct should have «an infinity» of compositions. This leads to
extend as follows MCat into a complete and cocomplete category VMCat
which is partially monoidal closed.

DEFINITION. An N-fold category X on the set X is an infinite sequence
(Xi)ieN of categories with the same set of morphisms X , such that, for
each pair (Z,j) of distinct integers, (X4, X/) is a double category. If X'
is also an N-fold category, h: X > X' is an N-fold functor i h:XEs X s

a functor for each integer 1.

EXAMPLES.
a) If A is an m-fold category, there is an N-fold category X on A with
X‘= A for 0gi<m,
X/ = _Adis (discrete category on A) for m<ieN.
b) Let (Cn )ne N be a sequence of categories; we define an N-fold cat-
egory on the set product of the sets (, of morphisms of C by taking as

i-th category the product category

I K, whee K;=C; and K, =% ifn £

In particular, if C_ =2 for each integer n, we so obtain the N-fold categ-
P n 4

ory, denoted by 2y, whose i-th category is

24is x| %295 9 x24I 5  (with 2=10,1,(1,0)});

. / . .
i-th position

its unique non-degenerate «block» is (u, )ﬂE N Where u =(1,0) for each
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integer n. Hence, an N-fold functor A: ZN » X, where X is an N-fold cat-
egory, may be identified with the block h((u, )neN) of X, image by & of

the unique non-degenerate block (u, )ne N -

The N-fold functors between small N-fold categories form a categ-

ory CatN . For each integer m, there is the faithful functor
UI’\I,m" Catpy » Cat,,

which maps the N-fold category X onto the m-fold category X0sm=l o

tained by «keeping only the m first compositions».
REMARK. CatN may also be defined as the limit of the functor:
(n,m) !—>Ur'“m: Cat, » Cat,,

(where U’

v m is the functor «forgetting the (n-m) last compositions» def-

ined in Proposition 8), from the category of couples defihing the order of N
toward the category of categories associated to a universe containing the

universe of small sets (if the existence of such a universe is assumed! ).

P ROPOSITION 13, CatN is complete, cocomplete, and the faithful functor
U],'\],O" Caty~ Set «forgetting all the compositions» admits quasi-quotient

objects.

P ROOF. 1° From Proposition 1, it follows that, if F: K- CatN is a func-
tor, where K is small, it admits as a limit the N-fold category X such that

X0--»m=I o the limit of the functor

K-E. Carg YN Cat,, ,
for each integer m .

20 1f (X, )y A is a family of N-fold categories, it admits as a copro-
duct in Caty the N-fold category X such that X' is the coproduct of the

family of categories (X)i\ MeA -

3° The existence of quasi-quotient objects, and then of colimits, is
proved by a method analogous to that used in Propositions 2, 3, 4 to prove
similar results with respect to Cat, , showing first by the same construc-

tion the following assertion:
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The N-fold subcategory of an N-fold category X generated by an infi-

nite subset M of X is equipotent with M. V

Let VMCat be the category whose objects are the small multiple
categories and the small N-fold categories, and of which MCat and Caty
are full subcategories, the only other morphisms being the g: A > X, where

.,m-1

A is an m-fold category and g: A > X0 an m-fold functor. We shall

extend «partially» to ¥MCat the square product and the internal Hom func-

tor of MCat.

DEFINITION. If X is an N-fold category and A an m-fold category, the
square product X mA of (X,A) will be the N-fold category on the product
set X XA whose i-th category is

XdisXAi f0gi<m, Xi'mX_Adis if m<ieN.

So X®m A is the N-fold category such that, for each integer i > m :
(X m A)O,...,i - XO,...,i. A

It follows that a map g: X XA > P defines a morphism g: X mA » P iff:
P is an N-fold category,

glx,-):A-P:abg(x,a)
is a morphism for each block x of X , and for each block @ of A,
P
gl-,a): X > P™ ik t-g(x,a)

is a functor for each integer {. Then we say that g: (X,A) > P is an al-
ternative morphism.

In particular, the alternative morphism id: (X,A)>X®A gives
the universal solution of the problem of transforming alternative morphisms
into N-fold fuactors.

(X,A)
g id

P P XmA

DEFINITION. If X is an N-fold category and A an m-fold category, we de-
note by Hom(A,X) the N-fold category on the set of morphisms from A to
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Xm+i

X, whose i-th composition is deduced «pointwise» from that of , SO

that, for each integer i :
Hom(A,X)0 1 = gom(A, X0 -mti-ly
PROPOSITION 14. The square product functor and the internal Hom func-
tor of MCat extend into functors, still denoted:
m: VU CarX gCatn» VMCat and Hom:(llCat, )°P X VY Cat~ Vi Cat.
For each multiple category A the partial functor
Hom(A,-): VMCat > VM Cat
is right adjoint to - A: VM Cat > VHCat.

PROOF. The proof is similar to that of Proposition 7. The extended functor
™ maps (h: X > X', f: A>A') onto the N-fold functor

EXf: XmA-X'mWA': (x,a)~(h(x), f(a)).

The extended functor Hom maps (f': B> A, A: X > X') onto the morphism
Hom(f',h): Hom(A,X) > Hom(B,X") defined by

(g:A->X)~(B_L A _& X b x)

If A is an m-fold category and X an N-fold category, Hom(A,X) is the
cofree object generated by X with respect to the partial functor
-mA: VMCat » VMCat,

the coliberty morphism being

ev: Hom(A,X)wA->X:(f,a)t~f(a).

Hom(A,X) Hom(A,X)m A
X X wA— X
VMCas —=BA VMCat v

COROLLARY. The functor Ul’\l,m" Caty » Cat, <keeping only the m first

compositions» admits as a left adjoint the functor 2™ -: Cat_ - Caty .

PROOF. Let A be an m-fold category; then 2Nl A (where 2N is defined
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in Example b) is a free object generated by A with respect to Ul'\l,m , the
liberty morphism being:

LA yeA) gy ) voa),
where u, =(1,0):0~ 1 for each integer n. Indeed, let X be an N-fold
category. By the proposition, there is a canonical 1-1 correspondence bet-
ween N-fold functors A: 2N m A - X and N-fold functors PN Hom(A,X),
which are identified with blocks of Hom(A,X), i.e., with m-fold functors

f:A > X% m-I The morphism associated to h: 2y®mA-X s
0, ...m-1.
ftA-X m rabh((u, ), n>a)

and h if the unique factor of f through [.

2N-A (2N.A)0,...,m-1
h/ h&
0,...,m-1 A
X X f
Caty UI,\],m Catm . \%

This Corollary, similar to Proposition 8, is used to prove:

PROPOSITION 15. VMCat is complete, cocomplete, and the functor «for

getting all the compositions» U: VMCat > Set admits quasi-quotient objects.

PROOF. The proof is analogous to that of Propositions 5 and 10, using the
fact that CatN and Cat, , for each integer m , are complete and cocomplete.
More precisely:

1© The functor F: K- VMCat, where K is small, admits as a limit
in VMCat :

- if F takes its values in CatN , the limit in CatN of the restriction
F:K- CatN ,

- otherwise, let n be the least of the multiplicities (finite or infinite)
of the objects F(e), for all objects e of K ; then the limit of ¥ in VMCat

is the limit of the composite functor:
?

U
K LVMCat —Non Cat,.
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2° F admits as a colimit the quasi-quotient of the coproduct P of the
objects F(e), e object of K, in VMCat, this quasi-quotient being com-
puted in Caty if P is an N-fold category, in MCat otherwise.

3° A family (P?\)/\e/\ of objects of VMCat admits as a coproduct:

- its coproduct in MCat if the multiplicities of the objects P, are all
finite and bounded;

- and otherwise the coproduct of (XA)AeA in Caty , where X, = Py
if Py is an N-fold category, and X) =2\ ® Py if Py is an n)-fold categ-

ory for some integer ny. V

REMARK. |

The functor X W -:];‘ICatn» VMCat, where X is an N-fold category,
cannot be extended into a functor from VMCat, since to define X WA we
have first considered «all the compositions of A ». In the same way, the
functor Hom(-,X): (gCatn)OP » VMCat cannot be extended trivially into
a functor from { VMCat)°P . However, we may define as follows an internal
Hom functor

Homy: (CatN)OPX Caty - Caty
and a functor ¢: CatyyXCaty~ Caty such that the partial functors
-4 X, HomN(X, -): Catyy » CatN

are adjoint, for each N-fold category X . If X' is also an N-fold category:
X'¢X is the N-fold category whose 2i-th category is _X‘dis xX*¢ and

whose (2{ +1 )-th category is X« _Xdis :
X.odd

X.even

denoting by and respectively the N-fold categories

xreven _ (X.Zi)ieN and ded: (X.2i+1)i€N ,

we take for Homy(X,X') the N-fold category on the set of N-fold functors

h: X »X"®Y" whose compositions are deduced «pointwise» from that of

X199 <o that

h'oh: X > X'®¥M: g peh'(%) o0y, h(x) iff this is defined.

But this does not give a monoidal closed structure on CatN . It is not as-

sociative nor unitary (up to isomorphisms or interchange of compositions).
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APPENDIX

In this paper, we have defined multiple categories directly, but they
can also be considered (in several ways) as sketched structiures. Here we
interpret the constructions of the square product and of Hom in terms of

«multiple internal categories».

A. Multiple categories as sketched structures.

For the notations and results on sketched structures and internal
categories, we refer to Section 0 [S]. We only recall that the category under-
lying the sketch s§ of categories (denoted more simply o = (2,)) is
the full subcategory 2 of the opposite of the simplicial category whose ob-

tects are the integers 1,2, 3,4 . The «idea» of this sketch is

1<P2_'<—3.

This means that a realization F': o > K, or «category in(ternal to) K» is

uniquely determined by F(a ), F(8), F(«x ), whatever be the category K.

If C is a category, the realization ¢ » Set canonically associated
to C maps a, B, k respectively on the maps source, target and composi-

tion of C .

Multiple categories appear as sketched structures in three differ-

ent ways:

1o The category Cat, of n-fold categories is equivalent to the categ-
ory Cat? , of categories in Cat,_;.

Indeed, if B is an n-fold category, the realization o ~» Cat,_; cano-
nically associated to B maps a, 3, x on the maps source a1l target
B™ ! and composition «"1 of B*! | considered as (n-1 )-fold functors with
respect to the (n-1) first compositions of B, so that:

n-1

= a
2 0,...,n-2 BO,...,n-2 n-1
1€ %53 = |B|" " ET > — KI S

B Bn-]
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where (B*n_lB)o""’"'Z is the (n-1)-fold subcategory of the product ( n-1 )-
fold category B%+72xB0> 72 formed by the couples (b’, b) having

a composite b'c, ;b in B,

o
2° Cat, is equivalent to the category Set " of realizations in Set of
the «sketch of n-fold categories» o .
' n
Indeed, o, is the n-th tensor power @0 of o (see [51) defined

inductively by:
o;=0 and o,=0,;,80.
Its underlying category X, is:
3,22, xZ=((ExZ)x. .. xZ)xZ

a morphism of Zn will be more simply written as a sequence (x,,...,%, ;)
of morphisms of & (i.e., we omit the parentheses).

For 0K i<n, there is a one-one functor 6:; :% > %, which maps
x onto the sequence (2,...,2,%,2,...,2) in which all the factors are 2
except the i-th one, which is x . This functor defines a morphism of sketches
5; o-0,.1f F:o,> K is a realization in a category K, also called an
n-fold category in K, then F is uniquely determined by the n categories
F! in X such that ;

F

F"Z(o-—-—'L—»an——»K), for 0<i<nm.

If B is an n-fold category, the realization B: o, » Set (canonical-
ly) associated to B is such that
, 12
B'=(o ——"*an——B—>Set)
is the realization in Set associated to the category B?, for each i < n. This

o
. . n
determines an equivalence 7,: Cat, > Set

3o For each integer m < n, the category Cat, is equivalent to the cat-
o, O o
egory (Set ™) "™, and to the category (Cat, ) "™ of (n-m)-fold cat-
egories in Cat,, .
Indeed, from the universal property of the tensor product of 'sketches

(which equips the category of sketches of a monoidal closed structure, see
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associativity
0,8

[4,14]), we deduce the canonical isomorphisms Trim i d

T
Tn Tm ®Un-m ~ %m %n-m
Set " 3 Set 3 (Set ™) .

More precisely, let B be an n-fold category; then the realization

B:o, .~ Cat,  (canonically) associated to B maps (2,...,2) onto the

m-fold category BO->m-1 454 it is determined by the fact that for j<n-m,
the composite ]
81 7
n-m B
o Chem Cat,

is the category in Cat, associated (as in 1 above) to the (m+] )-fold cat-

egory BO>-sm-Lim¥j o thae it is defined by:
m+j .
a B 0. w1 BO»--.om-1 k™"
T S SN MNP o
g (Bx_, .B)U-
B Bm+] m+j

- o
The realization B: o, - Set ™ associated to B is the composite
- o
of B with the equivalence 7,,: Cat, » Set ™ (defined in 2), so that
j —_-
O om B .,°

m
0 ——"> g, ~—=—=Set ",

o .
for 0<j< n-m, is the category in Set ™ associated to BO»-»m-Lm*i

B. Realizations associated o Bw A and to Hom(A,B).

In this section, we denote by A an m-fold category, by B an n-fold

category, by
A:o, > Set and B:o, - Set
the associated realizations in Set.
PROPOSITION 1. The realization in Set associated to BwA is

BxA

P=(0n+m———)-\—>on®arm SetX Set =22+ Set ),
where A is the isomomphism
(2gs e Xy 1 )i (( %y sy %y 1 b5 e % 1))

and where the last functor is the ( cartesian ) product functor.

P ROOF. We will use the following facts:
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- If K and X' are categories with associated realizations K, K’ from

o in Set, then the realization associated to the product category K x K' is
(K,K'): o Set: x = K(x)XK'(x).

-If £ is a set, the discrete category E®S admits as its associated
realization £ 0 » Set, where E” is the functor «constant on E ».

Now, we have the functor P: 2n+m - Set defined by:
(xO"" ’xn+m-1) '—»B(xm"" ’xn+m-1)xA(x0"" ! xm-I)'

The composite pi.

Onim p) «LSet
n+m

Y

is defined by:
10 % = B(2,..., 2)XA( 2,0y 5,..., 2) = BXA(8}, (%)),

i-th position
if 0<i<m, so that pi is then the realization from o associated to the
product category Bdisx Al
20 % t=B(2, 2, 2)XA(2,00,2) = B8] (x)) XA,
j-th position
ifmgi=j+m<n+tm, so that pitm is the realization associated to the
product category B/ xAdis

Hence, the realization associated to BB A is P Opim ™ Set. V
COROLLARY. The (n+m)-fold category K whose associated realization is

BXxA4

ass.

ntm 2 Setx Set —X=+ Set

o

0,0,
is deduced from A B by the «symmetry isomorphism» (a,b) (b, a).
If X is a category, for each object ¢ of K we denote the partial

Hom functor by K(e,-): K > Set.

PROPOSITION 2. If m <n, the realization in Set ‘associated to the (n-m )-

fold category Hom(A,B) is

> Cat_(A,-)
B Cat,, %m

H=(g, Set),

-m
where B is the (n-m )-fold category in Cat, associated to B (by A-3); it
is equivalent to the realization

- o
H =(0o, . B Cat,, Tm Ses’m _Set "(4,-) Set )
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(where 7, is the equivalence defined in A-2).

P ROOF. Z? is a realization and a partial Hom functor preserves limits, so
that # and H’ are realizations.
1° Since é(.?, ey 2) = BO:..-sm-1 , the functor H maps (2,...,2) onto
Catm(A, BO>---om-ly , which is the set of multiple functors from A to B.
For 0 < j<n-m, let us consider the category H/ whose associated real-
ization is: )
o Onom o B Cat,

n-m

Cat (A,-)

Set.

The composite of the two first functors is defined by :

am+j

<a><’<— — ‘Blo""’m'OBO"”’m-l (i
(Bx__ .B)?s-m-1

/8 Bm+j

It follows that the composition map of H/ is

Cat,, (A, k™ *1): Cat, (A, (Bx, , B >"1) 5 Car (A,BO o™y
an element of Catm(A,(B*m+].B)0""’m'1) is identified with a couple
(f'.f) of multiple functors from A to B such that ™ /f"=B™%if; by
Catm(A,Km+j) , it is mapped onto

K" Ho(f' f): AsBrat-f'(a)o, . f(a),

which is equal to the composite f’ojf in Hom(A,B) . Therefore, we have
H/ = Hom(A,B)j for each j, and H is the realization associated to the
( n=-m )-fold category Hom(A ,B).

20 H' is equivalent to H . Indeed, let A' be an m-fold category and

A':o - Set the associated realization. The composite

o
Cat,, Im Setam Set "(A,-) Set

o
maps A' onto the set Set ™( A, A') of natural transformations from A4 to
A’, which is in 1-1 correspondence with the set Cat, (A,A') of m-fold

functors from A to A'. Hence the above composite is equivalent to
Catm(A, -): Catm > Set.

It follows that H' is equivalent to H. \%
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REMARK. The reason for introducing H' in the above proposition is that
it is constructed by using only realizations associated to A and B (while
A itself remains in H ). Propositions 1 and 2 suggest definitions of;fhe
square product and of the functor Hom for general internal multiple sketched
structures; in this way all the results of the present paper may be extended,

as will be shown in a subsequent paper.

C. An application.
n
This Section is devoted to prove that Cat, is «generated from 2"

by colimits»,

We denote by Y : ZZP > Set " (= category of natural transforma-
tions from En into Set ) the Yoneda embedding, which maps an object u
of 3 onto the partial Hom functor X (u,-): £ - Set. It is known [6,5]

. . o . . .
that ¥, defines a o -costructure in Set " (i.e., a realization

Y - o, (Seton)OP ),

n

o
called the Yoneda o, -costructure, denotedby Y :0oP » Set ". Since Cat,

o
is equivalent to Set ", there is also a canonical ¢, -costructure in Cat_,

defined by:

Y ¢
Y! = (0% —2-Set " "+ Caz_),

where gn is the canonical equivalence ( see A-2).

In particular, if n = I, the o-costructure Y; in Cat maps the in-
teger q, for ¢ =1, 2,3, 4, onto the category q defining the usual order on
g=10,...,¢-1} (see Proposition 9-0 [5] ).

More generally, we have the following result, used in Proposition 4.
PROPOSITION 3. The canonical o, -costructure Y| in Cat, maps an 0b-
ject (qpsevisqy.) of 2" onto an n-fold category isomorphic with

q,.;M(...m 9 ) -
PROOF. The proof is by induction. As said above, the assertion is true for

n=1. Let us assume it is true for (n-I1)-fold categories. Let u be an ob-

ject (qpsees Gy g) of 3, ; by Y, it is mapped onto the n-fold category
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whose associated realization is En(u, “)io, > Set. As Zn = Zn-l x % , the

partial Hom functor Zn {u,-) is equal to the composite

2 yave s >~ XE s 7
n-10{99 Tn-2) ) X208y )SetXSet —X=s Set.

2n = 2'n-] X2
The induction hypothesis indicates that

En-l((q()""='qn-.2)’ -):on.y > Set

is the realization associated to an (n-I)-fold category isomorphic with

qn_2l( .. mq,),
and X(q, ;,-):0~> Set is associated to q,_; . Then Corollary, Proposition
1 asserts that the n-fold category whose associated realization is the above

composite (equal to % (u,-)) is isomorphic with

9, 8(q, (... mq,)).

This achieves the proof by induction. V

n

P ROPOSITION 4. Cat is the inductive closure of | 2™y

PROOF. In C-0 [5], it is proved that X is the ['-closure of {2} (where
[ is the set of distinguished cones of ¢ ), so that by Proposition 7-0 [5]

n

o
it follows that Set is the inductive closure of { Yn(2,...,2)§ . Since

Yy = (09— Ser"n 20 Cay ),
where Cn is an equivalence, Catn is the inductive closure of
{ (Y, (2,...,2))=Y(2,...,2)}.
By Proposition 3, Y/(2,...,2) is isomorphic with 2@ (... m2), which is

. . . n times
isomorphic with
-n
25 =(2m...)m2.
D B
n times

More precisely, it is shown that the subcategory image of Y! is the pushout
closure of {2'n¥ , because q]-, for q; = 1,2,3,4, is deduced from 2 by
pushouts [5], q;®- preserve pushouts and Y’ (q,,....,q, ;) is isomor-
phic to ¢, ;@ (...® g,). Then an n-fold category B is the colimit of the
composite of ¥ with the opposite of the discrete fibration Kg - 3, corres-
ponding to the realization B: o, > Set associatedto B. V
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MULTIPLE FUNCTORS
11l. THE CARTESIAN CLOSED CATEGORY Cat,,
by Andrée and Charles EHRESMANN

INTRODUCTION.

This paper is Part III of our work on multiple functors {4,5] and it
is\ a direct continuation of Part Il. It is devoted to an explicit description
of the cartesian closed structure on Cat, ( = category of n-fold categories)
which will be «laxified» in the Part IV [6] (this is a much more general
result than that announced in Part I). The existence of such structures
might be deduced from general theorems on sketched structures [7,14], but
this does not lead to concrete definitions. Here the construction uses the
monoidal closed category (yCatn,l ,Hom ) of multiple categories defined
in Part II.

In the cartesian closed category Cat, the internal Hom functor maps
(A,C) onto the category of natural transformations from A to C, which
is identified with the category Hom ( A,0C), where 0 C is the double cat-
egory of squares of C.

To generalize this situation, the idea is to construct a functor 0O
from Cat, to Cat, (which reduces for n = I to the functor O: Cat > Cat, ),
whose composite with the functor Hom('A,-): Cat, - Cat, gives, for each
n-fold category A , the partial internal Hom functor of the cartesian closed
structure of Cat, . In fact, we first define a pair of adjoint functors Square
and Link between Cat, and Cat,,;, which has also some interest of its
own; iteration of this process leads to a functor O, : Cat, » Caty, whose
left adjoint maps B mA onto the product B xA, for each n-fold category

B . Hence the functor
Hom(A,o,-): Cat, » Cat,

is a right adjoint of the product functor -xA , as desired.
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2 A.& C. EHRESMANN

The delicate point is the explicit construction of Link , which «is»
a left inverse of Square. The category of components of a 2-category, as
well as the crossed product category associated to the action [8] of a
category on a category, appear as examples of LinkA .

Finally Cat, is «embedded» as the category of 1-morphisms in the
(n+1)-category Nat, of hypertransformations (or «natural transformation
between natural transformations, between...»), whose n first categories
form the n-fold category coproduct of Hom,(A,B), for any n-fold categ-
ories A, B. The construction of Nat, uses the equivalence (see Appen-
dix) betweeén categories enriched in a category V with commuting copro-
ducts (in the sense of [21]) and categories internal to V whose object

of objects is a coproduct of copies of the final object.

NOTATIONS.

The notations are those introduced in Part II. In particular, if B

is an n-fold category, B’ denotes its i-th category for each integer i<n,

SN
and B? Pl for each sequence (ij,..., ip-l) <_)f distinct integers
i]. <n, is the p-fold category whose j-th category is B’/ . »

Let A be an m-fold category. The square product B® A is the
(n+m)-fold category on the product set B xA (where B always denotes

the set of blocks of B ) whose i-th category is:
B xA? for i<m, B xAYS for m i<n+m

(B?% is the discrete category on B ).

If m<n, then Hom(A,B) is the (n-m )-fold category on the set
of multiple functors f: A > B (i.e., on the set of m-fold functors f from
A to B 1y ghose j-th composition is deduced «pointwise» from
that of B™*7 | for each integer j < n-m.

The category gCatn of (all small) multiple categories, equipped
with ® and Hom is monoidal closed (Proposition 7 [5] ), i.e., the partial

functor Hom(A,-): Cat, . - Cat, is right adjoint to - @A : Cat, ~Cat,,, .
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MULTIPLE FUNCTORS Iii 3

A. The adjoint functors Square and Link.

This Section is devoted to the construction of the functor Square
from Cat, to Catn+q , and of its left adjoint, the functor Link . Forn =1,
the functor Square reduces to the functor 0O : Cat » Caty , whose definition

is first recalled to fix the notations.

2 is always the category

1 (1,0) 0

so that 2 x2 is represented by the commutative diagram :

(1,1) (2,1) (0,1)
(1,z) (% 2) (0,z) (where z =(0, 1) ).
(1L,0) 757 (0,0)

Let C be a category. A functor f: 2 x2 > C :

(2. 1)  fa1)
o YT 0 - f (0,2
720) 775,0)
is entirely determined by the (commutative) square of C :
f(z,1)
Lz = i0,s)
7,0)

(since f(z,z) is the «diagonal» of this square:

flz,1)f(0,z)=f(1,2)f(z,0));

and every square (¢',¢',¢,¢c)

¢
of C is obtained in this way. So we shall identify the set Hom(2 x2 ,C) of
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4 A.& C. EHRESMANN

functors from 2 x2 to C with the set of squares of C.
On this set, the «vertical» and the «horizontal» compositions:
(¢',é", ¢',c)s(c',¢',¢,¢c)=(C'c’, ¢",¢,¢c),

(c"’ E,’ ’C-,C,) m(c,’ 6"6)0) :(C”’ E,a" 5870)7

ar
c

c'! c

o
[}

¢

define categories 8 C and m C {which are both isomorphic, and also called
by some authors category of arrows of C), The couple (8C,mnC) is the
double category 0 C of squares of C.

The functor ©: Cat~ Cat, maps g: C- C' onto
ng:oC>uC':(c',é",6,c)(gl(c’)gl(é'), g(¢),g(c)).

Now let n be an integer, n> I . Let B be an n-fold category. Tak-
ing for C above the 0-th category B% of B , we have, on the set of squares
of BY (to which are identified the functors 2 x2 - BY ), not only the double
category oBO , but also the (n-1)-fold category Hom (2 x2,B), whose i-th
composition (deduced pointwise from that of Bi*! ) is written with squares:
(b1, b7, 65,67)0;(b", 0% b,b) = (bjo,, 15", bjo, 16", b0, ,b,by0,,;b),

iff the four composites are defined in Bitl,
DEFINITION. The multiple category of squares of B, denoted by S¢B, is
the (n+1 )-fold category on the set of squares of B’ such that:

(SqB )% +m2= Hom(2x2,B), (SqB)"! =8BY, ($4B)" = oB?

(the (n-1) first compositions are those of Hom(2 x2,B), the two last ones

being the vertical and the horizontal compositions of squares).

To «visualize» this multiple category S¢B, we shall also represent

a square l:' 1;’
P == \
b’ b of BO by b X 1o s
A b
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MULTIPLE FUNCTORS III 5

then the compositions of S¢B are represented by:

bj b . .
= -—“———-b b b'

b b, i tn-1 ’ b

b n

REMARK (not used afterwards). The construction of S¢B may be interpret-
ed in terms of sketched structures. To each category ¢ :0 > V internal to
a category V with pullbacks, it is associated a category 9 : o » V intern-
al to V? (Proposition 28 [71). If ¢ :0 > Cat,_; is the category in Caz,_;
canonically associated to Bl:-osn-1,0 (Appendix, Part I1 [ 5]), then

c s Catg_l —_ Cat,
is the category in Cat, associated to S¢B.

There is a functor from Cat, to Catn+1 , called the functor Square
and denoted by

Catn -» Cat

Sqn,n+1: n+l?

which maps an n-fold functor g: B - B' onto the (n+1 )-fold functor

Sqg: SqB > SqB':(b',b',b,b) ~(g(b’),g(b’), g(b),g(b))
(defined by o g: oB%» oB?).

PROPOSITION 1. The functor Sqn,m_l: Cat, » Cat, , ; admits a left adjoint

Lkn+1’n: Cat 1> Cat, .

n+
PROOF. The proof, quite long, will be decomposed in several steps. Let
A be an (n+1)-fold category, a’ and Bi the maps source and target of Al

for each integer i< n.

1°We define an n-fold category, called the multiple category of (n-1,n )-

links of A, denoted by LkA (later on, it will be proved that LEA is the
free object generated by A with respect to the functor Square ).

a) Consider the graph G whose vertices are those blocks e of A

which are objects for the two last categories A™! and A™, and whose edges

a:e-> e’ from e to e’ are the blocks a of A such that:
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a®a®(a)=e and B"B"I(a)=c¢".
4 e' /i

e
X a tart
e e
in G An
b) Let PO be the set P of all paths of the graph G (i.e. sequences

(ay,....ap), where a;:e; > e, ; in G),
equipped with the concatenation :
(a]s-esay)ogl(@psesag) =(aj,...,ap,a;,,...,a5)

iff a"a"'l(a(’)) = BnB"'I(ak).

€t 1 /—

e' ’
I+]1a ’
! el al
. R |
~ e VAR
da) AN
Qer+1 ==
ap k 1
)

2 e
lg
0 | e
\eo 0

P? is an associative but non-unitary category (called a quasi-category in
[10], where P? is shown to be the free quasi-category generated by G ).

c) For each integer { with (0 i<n-1, thereis a category pitl

on P whose composition is deduced «pointwise» from that of A’, which
means:
(c'il,...,a'o)oHI(ak,...,aO) =(8y0,0;,...,850;a,)

iff Il = k& and the composites &]- o;a; are defined in A%, for j< k.

I
ak ak

REMARK. It is to be able to define P? that we had to take all the paths of

G, and not only the reduced ones (i.e., those without objects) which form

the free category generated by G .
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MULTIPLE FUNCTORS III 7
d) Consider on the set P of all the paths of G the relation r de-

fined as follows:

(R1) (a)~(Bna,a”'1a)~(B”'1a,ana) for each block @ of A .

Bn-la
a ~ Bta ~ a’a
gn-la

(R2) (u' u)~(u'o, ;u) iff (u',u) is a couple of objects of A"

whose composite exists in the category A™L,
(R3) (d',i)~(@'o, &) iff (i',i) is a couple of objects of A"

whose composite exists in the category A”.

u , i’ i . @l d
~ ulo, qu e e—— "
" R2 R3

e) According to the proof of Proposition 3 [5], there exists an n-
fold category (called the multiple category of (n-1,n)-links of A, denoted
by LkA) quasi-quotient of P = (po,pI,...,Pp*1) by r and such that
the canonical morphism 7 : P » LkA defines a quasi-functor 7: P¥ > LEA?
and a functor 7: Pi»> LkA* for I<i<n. The image 7( @, ... »a,) is de-

noted by [ak,,.. , ao] ; those blocks generate LLA (7 may not be onto).

20 There is an (n+1 )-fold functor 1: A > Sq(LEA ) which maps a block
a of A onto the square l(a) of (LkA)O such that

<[_Bn-la]
l(a)= [B"al 4 p|la”al

<Lan-l a)

(intuitively, [{a) «is» the frame of a in the double category (A™1 A™) ).
a) The map ! is well-defined: The relation (R1) has been intro-

duced so that I(a) be a commutative square of { LEA )¢, since

[B™1alo,la™al=[(B"1a,a"a)] El[(B”a,a"'la)] = [B"aloyla™al.
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8 A.& C. EHRESMANN

b) For 0 <i<n-] the map | defines a functor {: A% Sq(LkA)i :
The i-th composition of Sq( LkA ) is deduced «pointwise» from the (i+1 )-th
composition of LkA , which is itself deduced «pointwise» from the compo-
sition of A’. Suppose the composite a'c a defined in Ai; as a”: Al Al
is a functor, we have
[a"(a’o0,a)l={(a"a")o,(a"a)]= [a"a’lo,y [a"al;

similar equalities are valid if we replace 2" by 8", by a™? or by Bn'l.

Hence:
[B"'I(a'oia)]
lfa'o,a)= [B"(a'ol.a)] [a"(a'ob.a)] =
[an'l(a'oia)]
[Bn—lar] [Bn-la]
=[B8"all [a"a']l o, [B"a] la"al
O—
[a”'la'] [an-l al

= Ilfa')o, l(a).
¢) The relation (R2) implies that [: A™! 5 (Sq(LkA))* ! is a
functor: By definition,
(Sq(LkA))™! = s(LEA ).

Suppose a" o, _;a defined in A"l As o™ AMT 5 AT s a functor,

la"(a", ;a)l=[a"(a")o, ;a"(a)] - [(a™a”,a™a)] =

=[a"a"]oyla"al ;

and similarly with a" replaced by 8" . Moreover:

[an-](anon-la)] - [an-l a]’ [Bn-l(anon-la)] = [Bn-l an] .

[Bn-l a’]
a” An- [B"a"] lfa") [a"a"]
a [B"al I(a) [a"al
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It follows that
l(a" , ja)=1l(a")el(a).

d) Using the relation (R 3) instead of (R 2) it is proved analogously
that 1: A" > (Sq(LkA))" = mLkA is a functor.

30 [: A Sq(LkA) is the liberty morphism defining LEA as the free
object generated by A with respect to Sq, . ,: Cat, > Cat_ ;.
Indeed, let B be an n-fold category and g: A - S¢gB an (n+1)-fold
functor. .
a) The «diagonal map» d sending a square s of B? onto its diag-

onal defines an (n-1 )-fold functor
d: (SqB)O,.‘.,n-2 N B],...,n-] .

This map d sends the square

-
bl
e

”’w il

of B? onto

d(s)=b',b =b'o,b.
For each integer i < n-1, the composition of (SqB)i is deduced pointwise
from that of B*Y! . As B is an n-fold category, the O-th and ({+] )-th com-
positions of B satisfy the permutability axiom (P ). Hence, if s;0,s is

defined in (SgB)?, then

‘r r
b1°i+1b

b’

19415 broyrb = 870;8,

- -

brojrb
d(sjo;s)= (b]'°i+lg')°0(b1°i+1 b) P (b1ogby)oiri(blogb)

=dfs; ), d(s).

b) There is a unique morphism A: P - B extending the composite
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(n-1)-fold functor
AO,...,n-2_g>(SqB)O,..‘,n-Z__d__»BZ,...,n-] .
The edge a: e > e’ of the graph G is mapped by dg onto the morphism
dg(a): dg(e)~>dg(e') of BY.

There is a unique quasi-functor h: po. BY extending dg (by the universal

property of P?%) and b sends the path p =(a;,...,a,) onto the composite:
h(p)= dg(ak)oo... oodg(ao).

Cr+1 %ak @g(ak) %dg(ak)
3 N N
.. N

N
N N

25 S\

For 0 i< n-1, the composition of Pt is deduced pointwise from that

of At and dg: AY5 B! s a functor; it follows that h: Pi+1 5> BT s

N

a functor. Hence, A: P > B is a morphism.

¢) h: P> B is compatible with the relation r used to define LEA :

If @ is a block of A, the square gfa) of B? will be denoted by :
b’

a
—

—
—
o~

gla)= b))

———

b

a

- As g: A1, aBY is a functor, g(an'l a) is the vertical source of
the square g(a), and its diagonal h(a"'za) is equal to b, . Similarly,

h(B"a) =15, since g: A" > mB? is a functor. Therefore,

h(a) =blogb, = h(B"a)oyh(a" a)=h(B" a,a" " a).

Bn-Ia h(B"-I a)
B"a a a"1a h( B"a) W h(a"a) =g(a)
a"la h(an-l a)
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In an analogous way, we get
h(a)=bloyb, =h(B " a,a"a).
This proves that A is compatible with (R1).
- Let the composite u'o,_;u be defined in A™! | with u and u’ ob-
jects of A™ . Applying the functor g: A" 15 aB?, we have
glu'o, yu)=g(u')Bg(u).
As g: A" oB? is a functor, it maps the objects u and u’ of A" onto

objects of mB? whose diagonals are

h(u)=0b, and h(u')=5b,..

u

g(w) a b loyb
E (u) H glu's, 4| 00
glu .

The composite gfu'o, ;u)=g(u’)eg(u) is also an object of 2 B? whose

diagonal is b, .0, b, . It follows that

hiu'o, u) =d(g(u')sg(u))=">b,0p5b, =h(u')ogh(u)="h{u,u).
Hence h is compatible with (R2). The compatibility with (R3) is proved

by a similar method.

d) By the universal property of the quasi-quotient LkA of P by r,
there -exists a unique n-fold functor §: LkA > B factorizing the morphism

h:P > B compatible with 7 through the canonical morphism 7: P > LkA :
B

LEA P

=
It maps the block [ay,...,a)] of LkA onto k(aj )o,...04h(a,). In par-
ticular, for each block @ of A, we have
g(la™al)=h(a"a)=15,, g([B"al)=1b,,
§(la™lal)=b,, g(1g"1al)=5,.
These equalities imply that Sqg: Sq(LkA )> S¢B maps
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(8"l by
(grall  ifa)  Wlaal onto b 8&(a) Wb,
[a"!a] b,
Therefore
(g:A>SgB)=(A—toSqrLkA)S9E. 548 ).
B S¢B
g/ ng/\
LEA Sq(LKA) 1 A
Cat, Sqn,n+1 CatnH
e) Suppose that g': LEA » B is an n-fold functor such that
(Sqg')(l(a))=gla) for each block a of A .
[@j_'fa].
a L [grallt l(a) b {a”al
[a"al
Lf Sqg’
5 g1 a)
bé? gla) Wb, = z'[ B alt Y g'a"al
73@ g'la"1a)

In particular, this implies that §'(u) = b, for each object u of A", and

g'(i)="b; for each object & of A" Then: ‘
g'F(a);l g'[B"a,a"al = g'[B"a]oog'[a"'l al = B(;OO b,=h(a),
i.e., the two morphisms
h:P>B and (P_I.LkA £ B)

have the same «restriction» to the graph G . By the unicity of £ (see b), it
~

follows that they are equal, and g: LAA > B is their unique factor through
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F.Hence, §' = §.
f) This proves that LA is the free object generated by A . The cor-

responding left adjoint of Sqn’n+1: Cat, » Cat, , ;, denoted by

Lkn+1,n" Cat,,; » Cat, ,
maps the (n+1)-fold functor f: A > A" onto Lkf: LkA » LkA' such that
(Lkf)lag,...,a0) =0 f(a,)see,f(ap)]. \%

DEFINITION. The functor Lk, ,; .: Cat,, , » Cat, defined above is called
the Link functor from Cat, , ; to Cat,.

COROLLARY L The functor o: Cat-> Cat, admits as a left adjoint the Link
functor from Caty to Cat. V

By iteration, for each integer m , we define the functor Sg, ntm =
b4

S S
. (.Catnw—q—"—’lu> Cat,,q - Cat Intm-1,n+m Cat

n+m-1 n+m)'

COROLLARY 2. The functor Sq, .. admits as a left adjoint the functor
Lk =

nt+m,n

Lk
(Catn-!-m

ntm,ntm=-1

Lkn%—] n \v}
Cat, .1 - Caty, ,———==Cat )

DEFINITION. Sq, ... will be called the Square functor, from Cat, to

Cat and Lk the Link functor from Cat, ., to Cat,.

n+tm? n+m,n

These functors (for n =m ) will be used as essential tools in Sec-

tion C to describe the cartesian closed structure on Catn .

B. Some examples concerning double categories.
1° The category of links of a double category.

By Corollary 1, Proposition 1, the functor 0: Cat > Cat, admits as
a left adjoint the functor Link from Cat, to Cat.If A is a double category

(A?,ADy, the category of its links LA may also be described as follows:

Let G be the graph associated to A in Proposition 1, whose ver-

tices are the vertices ¢ of A and whose edges a: e > e’ are the blocks
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of A 'such that

G Al
Let L be the free category generated by this graph; its objects are the
vertices of A and its other morphisms are the «reduced» (i.e., with no fac-
tor a vertex) paths (ak,... 5 ao) of G. Let R be the equivalence relation
compatible with the composition of L. generated by the relation r (intro-

duced in Proposition 1):
(a)-(B%, ala) ~(Bla, a%),
for each block @ of A which is not a vertex,
(u',u)~u'oyu, foru’ and u objects of AI,

(i',4)~t'o i, for &' and @ objects of AQ.

e —— 04
1 1
a ~ Q- a ~ B a
e T

ala
u’

14 4‘\——0-4—-—"— ~ ——

Uopgt, u'’ i i'o;d

u

As distinct objects of L are not identified by r, and a fortiori by R, there
exists a category L/ R, quotient of L. by R, whose morphisms are the equi-
valence classes modulo R, denoted by [ak e ao] . The category L may be
identified with LEA .

Indeed, as we have remarked in the proof of Proposition 1, the quasi-
cate gory PO of all paths of G was iniroduced to insure that the composi-
tions of A other than the last two ones give rise to categories p? ; here,
there are only two compositions on A, so that it is equivalent to consider

the «smallest» category L instead of PU.

A morphism of L will be called a simple path if it is of the form

(vl, ...» Vo), where the factors v; are objects of one and only one category
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A% or Al and ewo successive factors are not objects of the same category.
Any morphism (ay,...,a,;) of L is equivalent modulo R to at least one

simple path. Indeed,

ay Blak

N ~

~ a ak \\\

1 ]
@y ’8 ) aoao

(ap,....,ap) ~ (Blak, aoak,..‘,ﬁlao,aaal))

if this path is reduced; otherwise, there exist successive factors of this
path, (Uj+m’ v, vj) , which are objects of the same category Ai; in this
case, we replace (v]-+m, cees vj) by its composite VigmOirr0 V) The se-
quence thus obtained is a simple path, equivalent to (a;,..., ay) modulo
R. Hence the morphisms of L =~ LkA are of the form [v,..., vo] , where
(v},...,v5) is a simple path. Remark that two different simple paths may
be equivalent modulo R, as shows the example of the double category 2 m 2

which has only one non-degenerate block a :
Ba
Bla a ala

aoa

and in which
(Bla, aoa) and (Boa, ala)

are two simple paths which are equivalent modulo R .
REMARK. With the general hypotheses of Proposition 1, to each path p of
G is also associated a «simple path» defined as above (with A9 and A!
replaced by A™I apd A™), and which is mapped by 7: P+ LEA onto the
same block than p. But the compositions of LLA other than the O-th one
are not expressed easily on these simple paths.

2° Fibrations as categories of links,

Let F: C~ Cat be a functor, where C is a small category (F is

also called «une espéce de morphismes» [8] ).
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a) F determines an action «' of the category C on the category S

coproduct of the categories F(u), for all objects u of C, defined by:
k'(c,s)=F(c)(s) (written cs)

iff c:u>u' in C and s in F(u).

Conversely, each action of a (small) category on a (small) category cor-

responds in this way to a functor toward Cat ( see Chapter IT [8] ).

b) To F (or to the action k' of C on S) is also associated a double
functor h: 2 (_Cdis,C) defined as follows:
- Let h: 215 C be the discrete fibration (or «foncteur d'hypermor-
phisme» in the terminology of [8]) associated to the action k' of C on the
set S of morphisms of 3 : the morphisms of =1 are the couples (¢, s) such

. . . .. 1 .
that the composite «'(c,s) = cs is defined; the composition of 2° is:

(C',S')OZ(Css):(C’C,S) i s'=cs.

21
(c,§8) |3
by tx0
c's'| (e,s') cs (e,s) s
h
C u' c' u’ c “

The object (u, s ) of 57 is identified with the morphism s of S. The func-
tor h: 215 C maps (¢, s) onto ¢
- There is another category 30 with the same set Z of morphisms than
3!, whose composition is:
(é,8)0p(c,s)=(c,8s) iff ¢ =2¢ and §s defined in S.

The couple (209,31) is a double category 2, and h: 2 » (_Cdis,C) is a

double functor.

¢) By the construction of b, we obtain every double functor f: T »K
satisfying the two conditions :

(F1) The 0-th category of K is discrete;
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(F 2) The functor f: T! 5 K! is a discrete fibration.

A double functor f: T » K satisfies (F2) iff it is a discrete fibra-
tion internal to Cat (i.e., a realization in Cat of the sketch of discrete
fibrations given in 0-D[4]), and then it is in 1-1 correspondence with a
category action in Cat (in the sense of [4], page 22).

The category actions in Cat have been introduced in 1963 [9] under
the name «catégories F-structurées d'opérateurs » or «?-espéces de morphis-
mes»; in this Note, it was also indicated that the actions of a category on a
category (or the functors toward Cat ) are in 1-1 correspondence with the
discrete fibrations internal to Cat¢ over a double category whose 0-th cat-

egory is discrete.

d) To F (or to the action «' of C on S)is also associated the
(non-discrete ) fibration h': X » C, where X is the crossed product category
defined as follows ( see Chapter 11 [8]);

- The morphisms of X are the triples (s, ¢, ¢) such that ¢ is an ob-
ject of S, the composite ce =k'(c, e} is defined and s: ce » e’ is a mor-

phism of S. The composition of X is:

(s',c',e').(s,c,e)=(s"(c's), c'c,e) iff s:cence’.

s'
c’,e') e’
c's X
e
(c’,ce) ce (c,e)
h'
-
u c’' w’ c u C

- The category X is generated by the morphisms of one of the forms:
(e',s,é), where s: €~ e’ in S, identified with s,
(ce,c,e), denoted by (c,e).
The functor A': X+ C maps (s, c,e) onto c.
Different characterizations of X have been indicated [15,16,17] ,
and fibrations are of a great actuality [20,2]. Another characterization of X

is given now:
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PROPOSITION 2. Let h: 3 > (_Cdis ,C) be the discrete fibration intemnal to
Cat associated (in b) to the action «* of C on the category S. Then LEkX

is tsomorphic with the crossed preduct category X.

PROOF. 1° Each momphism of the category LkZ is of the form [s,(c,e)],
where (s, c,e) is a morphism of X :
Indeed, the objects of 31 are the morphisms of S, those of 30 are the
couples (¢, e ), where e is an object of S. So a simple path p is of the form
P=(sps(cp.epr)sssys(chsen))s

where s, c,e; > €, ; in S, for each i { k. We have

((eivpreipg)ssi) ~(eippssi) ~(egiysis(egpyseie))

(€ivpr€ivy) (¢iy1>€41)
€iv1
CivrSi| (CivprSi) Si - ;v |Ci+1S;
C.€e.
(¢iips¢;¢;) b Civpr €8

in the equivalence relation R defining L2 as a quotient of the category
of paths (we use the «simplified» construction of Lk3 given in 1-B above).
Moreover, in R, we have also:

(SH.]a Ci+Zsi’(Ci+Z’ ¢; ei)’(ci’ei))"(si+1(ci+1‘si)’(ci+1 Ci» ei))-

By iteration it follows that p ~(s,(c, €y )) where

s =
skl

~
~
~

splepspg)lepocy)sy, c©=cpecy.

* )

Sit1

Civ15; e.

(cirpeiey) (cpe)  ~~~_

(c,e) 801 (cprep)

Since each morphism of LkX is of the form [p] for some simple path p ,

it is also of the form [ s,( ¢, e )], as announced.

2° There is a double functor g: % » O X mapping( ¢, s) onto the square
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(C,B') e!
cs s of X,
(C,e) e

whose diagonal d(g(c,s)) is (e¢s,c,e). Since Lk3 is a free object ge-
nerated by X with respect to 0O: Cat~ Caty , there corresponds to g a uni-

que functor g: LEZ » X which maps [s,(c, e)] onto
d(gls)). d(glc,e))=s.(c,e)=(s,c,e):

X oX
% /L
LES aLks ] z

This functor is 1-1 and onto, hence it is an isomorphism, whose inverse

g'l:X»LkE maps (s, c,e) onto [s,(c,e})l. V

COROLLARY. With the hypotheses of Proposition 2, X is a free object
generated by 3 with respect to 0: Cat- Caty. V

REMARK. The category of links of ((_Z_dis ,C) is identified with C, so that
Lkh: LkS > LE(CP ,C)=C

is a fibration isomorphic with £': X » C. This suggests the following gene-
ralization of Chapter II [8]: Let f: T > K be any discrete fibration intern-
al to Cat. The functor Lkf: LET > LEK «plays the role» of the fibration
associated to the action of a category on a category. In particular, the equi-
valence classes of the sections of the functor Lkf could be called «classes

of cohomology of f of order 1».

3° The multiple category of links of an (n+] )-category.

An (n+])-fold category is called an (n+1)-category A if the ob-
jects of A" are also objects of A™!  Forn = I, this reduces to the usual
notion of a 2-category. For n = 2, an example of a 3-category is provided
by the 3-category of cylinders of a 2-category [1].

Let A be an (n+] )-category. Those blocks of A which are objects

Lan-2,n

for A" define an n-fold subcategory of A¥ , denoted by
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AP0 5m=2n o0 more simply | AP .

There exists (Proposition 3 [5]) an n-fold category quasi-quotient of [A""]
by the relation:

a"la ~B”'Z a for each block a of A ;

An

it will be called the n-fold category of components of A, denoted by I'A .
The canonical n-fold functor g lA”']] +T"A may not be onto, but its image
generates the n-fold category I'A . Remark that two objects of A™! which

are in the same component of A™ ! have the same image by 0§ .

EXAMPLE. Let A be a 2-category; then |A%|7 = |A%] is the category of
1-morphisms of A ; the equivalence relation p generated on it by the re-

lation ( considered above):

2’a -B% for each block (or 2-cell) a of A

is defined by:

’

v ~v' iff v and v' are in the same component of A? .

Since p is compatible with the composition of | A?|!, the category ['A of
components of A is then the category quotient of [AOI by p . So its mor-
phisms are the components of A?, and 5:1A% > A is onto. It is this-

example which explains the name given to I'A ©

PROPOSITION 3. Let A be an (n+l1)-category, I'A then-fold category of

its components. Then LkA is isomomphic to (FA)”'I’O""’"'Z, which is

deduced from I' A by a permutation of the compositions.

PROOF. 1° The n-fold category LEkA is generated by those blocks [v ],
where v is an object of A™!. With the notations of Proposition 1, Proof,

1o, LkA is generated by the blocks [al, where a is a block of A, and

(a) R‘_l (Bna’an-la)R_3(Bnaonan-]a) - (an-l a)’
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since B"a is also an object of A1 iso [a] = [an-l al .

/ ey

20 There exists an n-fold functor §:LkA » (DA) ™10 on2gy0p
that glvl=p5(v) for each object v of A" where § AT S TA s
the canonical n-fold functor.

a) For each n-fold category B, the n-fold subcategory of the n-fold
category (SqB)o""’"'2’” formed by the objects of (SqB)n'] = 8B? (which
are degenerate squares) is isomorphic with B»-sn-1,0 by the isomorphism

mapping b: e > e’ in BY onto the degenerate square

{ since the composition of (SqB)i , for i< mn-1,is deduced pointwise from
that of B! and (SqB)" = o B? ).

n-l_ .Rno
% /Bt = =|(5¢B) Y
tt i
A-\\ - e
BY (SgB)" = oBY

In particular, let B be the n-fold category (DA)Y1.0.0n-2

B],...,n-1,0= CA and B0= (FA)”‘I ,

; then

so that the map

b bB= e’ e
b
( where b: e e’ in (I'A)"1) defines an n-fold functor
-B:TA > (SgB)0rom2em,
b) There is an (n+])-fold functor g: A » SgB: al>5(a"1a)®

Indeed, the composite n-fold functor
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0,...,n-2,n é A B (SqB)O,,..,n-Z,n
-]

AOs--m=2,n an_l IAn—]

is defined by the map g: a »—vﬁ(an'l a)EI

. The map ﬁa" is constant on

=]

each component of Al {by definition of § ) and -7 takes its values in

the set of objects of (SqB)n'l =a(lA)rl ); whence the functor
g: Arl (SqB)n_Z .

¢)To g: A > SgB is canonically associated ( by the adjunction bet-
ween the Square and Link functors) the n-fold functor Z: LkA > B which
maps [ v] onto the diagonal g(v) of gfv)= 5(1})5 for each object v of
A™ 1 (Proof, Proposition 1).

B S¢B

“ - g

g/ ng/\
LEkA Sq(LEA) ! A

30 g2: LEA > B is an isomomhism and its inverse is constructed as
follows, using the universal property of ['A :

a) There is an n-fold functor
g’ IAn-Z;O,‘..,n-Z,n_) (L/cA)I""’"_I’O.' v l__,[v] .

the (i+] )-th composition of LkA being deduced pointwise from that of A’
the map g’: v > v] defines a functor from the i-th category \A"'l]i of
A1 05eon=2on o (LEA )Y for i< n-2; it defines also a functor from
A1) o (LEA )? | since

[v'] frLEA)iH!
At
K s
An (TEA )°

(vy, v)R~3 (vjo,v) for v and v; objects of Al
implies
g'(vio,v) =lvjo,vl=lv loplvl=g'(v;)op8'(v).
b) There is an n-fold functor 3': B » LEA such that g'6(v)=[v]
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where W = ujo; vy 0;... 07Uy 0V, ; hence [sk,... , so] =[wP].
2° a) There is a functor g: Q(A) > ol"'A ;

v <v'>

s = u'—/a u = <u'> = <u>

v <v>

where <u> denotes the component of u in A? ; indeed, u'ol v and v'o U,

being the source and target of a in AY, are in the same component of Af s

so that, in A,
<u'><v>=< u'011)>=< v’olu>=<v'><u>.

b) To g: Q(A) » ol"A corresponds ( by the adjunction between the

functors Link and T) the functor

g: LEQ(A) > TA: [v5] f=<v> .
rA al'A
T
LEQ(A) oLkQCA) Q(A)

This functor is onto, each morphism of I'A being of the form <v> for some
1-morphism v of A (by Example 3“B). It is also 1-1, since g[v%] = Z[v'F]
means <v> = <v">, which implies (%) ~(v'"®) modulo R , hence [v5]=[v'E].

This proves that §: LEQ(A) » TCA is an isomorphism. V

COROLLARY. [f C is a category, Lk(0 C) is isomorphic to C.

PROOF. OC is the double category of up-squares of the (trivial) 2-categ-
ory (Qdis ,C), whose category of components is (identified with) C. So,

the corollary is a particular case of the Proposition 4. V

This Corollary means that each double functor g: 0 C -~ g C', where
C and C' are categories, is of the form Of, for a unique functor f: C > C'.

We use this result to generalize the Corollary as follows:
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PROPOSITION 5. Let B be an n-fold category; then Lk({SqB) is isomor
phic to B.

P ROOF. It suffices to prove that B is also a free object generated by S¢B

with respect to the functor
Sqn’nJrl: Catn - CatnJrZ s

the liberty morphism being id: SgB > SgB . For this, let H be an n-fold
category and g: S¢B » SqgH an (n+I)-fold functor.

a) As g defines a double functor
g: (SgB )1 = aB0 5 (SqH )1 = RO,
by the Corollary there exists a unique functor f: B? 5 HY such that

g=0of:coB% oRO,

b’ fb")
by s (b e frby| grs)  |f(b)
b 5]

In particular, g( %) = f(b)E for each block b of B .

b) Let us prove that f: B> H is an n-fold functor. Indeed, denote
by |(SgB)" 1| the n-fold subcategory of (SqB )% " 2" formed by the
objects of (SqB)"'I =8BY (i.e., formed by the degenerate squares b° ).

There is an isomorphism
(_E)B . Bl,...,n-I,O = l(SqB)n-] l A }—'bE

( see Proof, Proposition 2). The composite functor

(

-1
I n-1,0 'E)B n-1 | gl n-1 ('E)H I,...,n-1,0
Bion b0 tB G B | ——— |(S¢R )" | ———+H

where | gl| is arestriction of g, maps b onto f(b), since g(b)B=frb)" .
Hence it is defined by f, and this implies ( after a permutation of composi-

tions) that f: B> H is an n-fold functor. It is the unique n-fold functor such

H SqH
g
B S¢B S¢B
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where w = 2} oy v, 0;... 078} 0 v, ; hence [sk,...,so] =[w®].

2¢ a) There is a functor g: Q(A) > ol"A ;

v' <vp'>

s = u'~/a u b <u'> = <u>

v <v>

where <u> denotes the component of u in A indeed, u'o ;v and v'o ju,

being the source and target of a in A”, are in the same component of A? |

so that, in ["A
<u™><v>=< u'olv>=< v'olu>=<v'><u>.

b) To g: Q(A) > oM A corresponds (by the adjunction between the

functors Link and O) the functor
g: LEQIA) > TA: [v8] f=<ov> .
A ol A

g/ i g&

LkQ(A) = oLkQ(A) 0(A)

This functor is onto, each morphism of I'A being of the form <v> for some
1-morphism v of A (by Example 3<B). It is also 1-1, since Z[v®] = g[v'®]
means <v> = <v'>, which implies (v%) ~(v'®) modulo R, hence [v5]=[v 5],

This proves that §: LEQ(A) > "'A is an isomorphism. V

COROLLARY. If C is a category, Lk( 0 C) is isomorphic to C.

PROOF. 0C is the double category of up-squares of the (trivial) 2-categ-
ory (_gdis,C), whose category of components is (identified with) C. So,

the corollary is a particular case of the Proposition 4. V

This Corollary means that each double functor g: o C > o C', where
C and C' are categories, is of the form O f, for a unique functor [: C~ C'.

We use this result to generalize the Corollary as follows:
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P ROPOSITION 5. Let B be an n-fold category; then Lk(SqB) is isomor-
phic to B.

PROOF. It suffices to prove that B is also a free object generated by SgB

with respect to the functor
54y n41° Cat, > Catyyq s

the liberty morphism being id: SgB » S¢B . For this, lett H be an n-fold
category and g: SqB - SqgH an (n+1 )-fold functor.

a) As g defines a double functor
g: (S¢B )" 1m = 0B 5 (SqH)"Im = gRO,
by the Corollary there exists a unique functor f: BY 5 HY such that

g=of:oB?%s ogHY,

b f(b")
by s b g f(b| gl(s) |f(b)
b 5]

In particular, g( b%) = f(b)® for each block b of B .

b) Let us prove that f: B> H .is an n-fold functor. Indeed, denote
by | (SgB)"!| the n-fold subcategory of {SqB )% ~"2" formed by the
objects of (SqB)n’I = aB? (i.e., formed by the degenerate squares b%).
There is an isomorphism

(_E)B . Bl,...,n-I,O 3 I(SqB)n'I * b i_'bE
{ see Proof, Proposition 3). The composite functor .
(-%) g gl B :
BI""’"'1’0~—B>|(SqB)" 11__> l(qu)n 1 | —— H,.pl.on-10
where | g| is a restriction of g, maps b onto f(b), since g(b)B=f(b)® .

Hence it is defined by f, and this implies (after a permutation of composi-

tions) that f: B> H is ann-fold functor. It is the unique n-fold functor such

H SqH
g
B S¢B S¢B
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that Sqf = g: S¢B~ SqH. V

COROLL ARY. Whatever be the integers n and m, the Link functor from
Cat

n+m to Cat, is equivalent to a left inverse of Sqp nim: Cat, - Caty .

P ROOF. Proposition 4 implies that the composite functor

Sqn ntl Lkn+1 n

——— vttt ———— e e e
Cat, Ca;n+1 Cat,

is equivalent to the identity. By iteration, the same result is valid for the

functors Lk and Sgq, n+m due to their definition.(end of Section A)

n+tm,n

as composites of functors Lk

p+1,p and qu,p+1 respectively. V

C. The cartesian closed structure of Cat, .

Let n be an integer, n> 1. In this section we are going to show
that the category Catn of n-fold categories is cartesian closed, by cons-
tructing the partial internal Hom functor Hom,(A,-) , for an n-fold categ-

ory A , as the composite

S ~
Cat, —Im:2n _ Car, ¥ . Cas, -~Mom(A.) o

where Hom(A,-) is the Hom functor associated to the partial monoidal
closed structure of M Cat (defined in'[5] and recalléd on page 2) and where
y is the isomorphism «permutation of compositions» associated to the per-

mutation y:
(0,...,2n-1)—(0,2,...,2n-2,1,3,...,2n-1)
(which maps g: H> K onto g: HY > KY | where
HY = H0,2,...,2n-2,1,3,...,2n-1 .

The necessity of introducing this isomorphism ¥ is best understood on the

Example here after and on the following Proposition.

EXAMPLE: The 4-fold category SqSqB, where B is a double category.

By definition, S¢B is the 3-fold category whose I-st and 2-nd cat-
egories are the vertical and horizontal categories aB? and wBY of squares
of the 0-th category BY of B, and whose 0-th composition is «deduced

pointwise» from that of BZ.
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1B (5qB)” (SgB)!

'/

f f

B! _(SqB )°

-

The 4-fold ca/tegory Sq2,4(B) is constructed as follows:
- The set of its blocks is D(SqB)o , i.e., the blocks are the squares
S3
Sy s; of (SqB)o ,

so that

is a square of BY fori=1,2,3,4,and

-~ P

N biog b

830051: bgozblf = 2840032.

- The O-th and I-st compositions are deduced «pointwise» from that of
(SqgB)! =8B? and (S¢B)?=aB?,

so that they consist in putting «one frame behind the other» and «one frame
inside the other».

- The 2-nd and 3-rd compositions are the vertical and horizontal com-
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positions of squares of (SqB)O { whose composition is deduced from that of
BI) so that they consist in putting «one frame above the other» and «one

frame beside the other» (the common border being «erased»).

N \\
~ LN 1
(SqSqgB )0 \(S‘]S‘IB)
R\ _
Ly
1 Sq54B )2 AN
Sl f
(Sq5¢B)°

- The sources and targets of (s, s3,5,,s;) are respectively the de-

generate frames:

b by
b7 b and b7 bi®
bg] b ’g]
for the 0-th category,
b2 bre-
I;E l‘)\? and 8'45 I;'E
b2 b8

for the I-st category,

s? and s? for the 2-nd category,
s? and sg] for the 3-rd category.

Hence, the two first compositions are deduced from that of B? , the
two last ones being deduced from that of B .

More generally, if we consider Sqn,Zn(B) for an n-fold category B,
its (2i)-th and (2i+I)-th compositions are deduced from that of B?, for

each i < n . Therefore, Sq, 2n(B)y has its compositions deduced respecti-
vely of that of B?,...,B*»1 B0 . B,
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The following proposition will be an essential tool to describe the

cartesian closed structure of Cat, .

PROPOSITION 6. Let A and B be two n-fold categories; then the n-fold
category product BXA is isomorphic to LE((Bm A)y_l), where BwA is

the square product and y™! the permutation
(0,....2n-1)(0,n,...,i,n+i,...,n-1,2n-1).

PROOF. Remark firstly that y'l is the permutation inverse of the permuta-

tion ( considered above) y:
(0,0, 2n-1)~(0,2,...,2n-2,1,3,...,2n-1).
We denote by H the (2n)-fold category (B = Ay , so that:
H2i- B9 x Ai and HZY 1 2 Bix A% | for each i < n.
1o LER is isomomphic to the ( 2n-1 )-fold category K on BXA such that
KO =B IxA"! gpnd Kit1_qi for 0<j< 2n-2.
(hence K = (BP-Ix AR~ Bdisx A0 BOx Adis  Bdisygn-2 pn-2,adis))
a) There exists a( 2n )-fold functor g: H - SqK :
(b.8%'a)

(boa)i=  (BE'ba) (2"%'b,a)

(b,anA'l a)

where axl and BnA'Z denote the source and target maps of AnT
(1) g(b,a) is a square of KO =Bl XA”'Z, for any blocks a of A and
b of B.
(ii) For 0 € j< 2n-2, the j-th composition of S¢K is deduced pointwise
from that of K/TI=H/ : to prove that g: H > (SqK)j is a functor, it suf-
fices to show that the four maps:
BEIXidy: (b, a)b=(allb,a), BYIXidy: (b, a)l=(BE b, a),
idgXal:(b,a)t=(b,a} T a), idgxBR:(b,a)l(b,Bx a)

define functors from H/ to H/. This comes from the following facts:
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- H/=B%sxAl if j=2i and H/ = BixA%S if j=2i+1,
- az‘l and Bf{l define functors A/ >A/ and Adis > _Adis ,

- a"B'Z and ,8%'1 define functors B/ > B/ and _Bdis>< _Bdis .

H2¥ 7 5qK)2i
%ﬁ@”@ i)
»Q
“H2i+1 (S‘q‘K)ziH ) I

(iii) g,'Hzn'2=l_3dis>< An']%(SqK)2n'2= 5K% is a functor. Indeed, if

a:x>x' anda’:x'>x" in A" and b: y >y in B! | then
(b,a')o2n_2(b,a)=(b, a'o, ;@)

and g(b,a’)sg(b,a)=

(b, x") (b,x")
(y',a') (y,a')
(b,x’) - ’ ’O ro —
(y' a) (v, a) 75" n-1% ¥ @ong @
(b, x) _(b.x)

= g(b, a'on_la).
(iv) A similar method gives the functor
g: H2n-1 B”'2></_\dis R (SqK)Zn-I = pK?

(b,x') (blon_16,%")
(b',a)|(ba)] | (y",a) |g(b'a) | g(b,a) |(y,a) = | g(b'o, ;b,a) |(y,a)

(bx) (b,x) (b'o, ;b %)
(b':y'> y" in B7-1 Yy,

b) To g: H- SgK is canonically associated (by the adjunction bet-
ween the Link and Square functors) a( 2n-1)-fold functor g: LkH - K such
that [ b,al =(b,a) for any (b,a) in. BxA, since (b,a) is the diag-
onal of the square g( b, a) of KO =B IxAr-l (Proof, Proposition 1).

¢) There exists a( 2n-1 )-fold functor
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32 A. & C. EHRESMANN

K SqK
y
;) ) g
‘j/ Sq8
LEH Sq(LEH) l H

2 :Ko>LkH:(b,a)[b,al.
(i) For 0¢j< 2n-2, since K/t W and the composition of (Lkﬂ)iﬂ
is deduced pointwise from that of H/ | it follows that §': K/t s (LEH)/ !
is a functor.
(ii) It remains to prove that g': K95 (LEkH)? is a functor. For this, let
the composite
(b',a')oy(b,a)=(blo, ;b,as, ;a)

be defined in K= B"Ix A" | so that

a:x->x' and a':x'> %" in AT, b y>v" and b'; ¥ > y" in B!

Since H272 < BdisXA”'Z and H2"! = B"‘IX[_\dis , in the relation on paths

" ’

a
(b,x") (b',a’)
(y',a') (y',a) T HQn-Q
(b,x") (b,a’) (b,a)
b,x’
) [y
H2n-1

used to define LLH (Proof, Proposition 1), we have successively

(b'a’) (6%,x")

~ a

(b,a)

—_— . =

(b'on_lb,x") - (b'on_lb,a'on_la) .

()”, aron_l J
This implies

gl(éfx,a')oog'(ba a)=[b'7a,]°0[b> a] = [(b'aa’),(ba a)] =
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={b'o, ;b, a'o, jal = g'((bya')o,(b,a)).
Hence §': K0 (LkH)O is also a functor.
d) £’ is the inverse of §: LEH » K . Indeed,
gg'(b,a)=¢lb,al=(b,a)
for each block (b, a) of K, so that §5' is an identity. On the other hand,
the equalities
g'2lb,al =3'(b,a)=1b,al
imply that 2'Z is also an identity, the blocks [ b, a] generating (by defi-
nition) the (2n-1)-fold category LEH . So g: LEH - K is an isomorphism.
2° Let us suppose proven that Lky , H, for I{mgn-1, is iso-
morphic to the (2n-m )-fold category K = such that
(B mxAP™ Br-lyan-l gdisypl BdisXAn-m-] Bn-m-lediS)'
Then a proof similar to the preceding one proves that LkK , and a fortiori
Lk(Lk2n’ on-mB) = Lkyy op 0 H

is isomorphic to the ( 2n-m-1 )-fold category K . ;. By induction, it follows

that Lk

H is isomorphic to

BxA =(BOxAC, . Brixanly, Vv

2n,n

COROLLARY, For each n-fold category A, the «partial> product functor

-xXA: Cat, » Cat, is equivalent to the composite functor

Lk
Cat. — A Cat, ¥, Cat, —2mn, Cqr .V
n 2n 2n n

DEFINITION. The composite functor
Cat —9m2n _ Cap T Cat
at, Agp Atan

will be called the n-square functor, denoted by O, : Cat, » Cat,, .

PROPOSITION 7. Cat, is a cartesian closed category whose internal Hom
functor Hom,: ( Cat, )°P X Cat, » Cat, is such that, for any n-fold category
A, the partial functor Hom, (A ,-) is equal to the composite:

]
Cat, z Caty, ——H"—’"C"‘—:—‘J—»Catn.
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P ROOF. 1° Since Catn admits ( finite ) products, to prove that it is cartesian
closed it suffices to show that the partial product functor -xA: Cat > Cat,
admits a right adjoint [13]. By the Corollary of Proposition G, this functor
is equivalent to the composite of three functors:

- A Cat, > Cat, who has a right adjoint Hom(A,-) (due to the
partial monoidal closed structure of M Cat, Proposition 7 {sh,

)7'1: Cat,y, » Cat, whose inverse y is a right adjoint,

Lky, ,: Caty, ~ Cat, who admits Sg, ,, as a right adjoint.
By transitivity of adjunctions, this implies that -xA admits as a right ad-

joint the composite Hom (A, -) =

s _
Cat, 2220 C 7, Caty, Mom(A:-) o .

Dn

2° The corresponding internal Hom functor (or closure functor)
Hom, : (Cat, )°P X Cat, - Cat,

maps the couple of n-fold functors ( f: A'> A, g: B> B’) onto the n-fold
functor
Hom (f, g): Homn(A,B) =Hom(A,o,B) - Hom (A',B’)
mapping A: A > 0, B onto
AL oAk

o0, B_"% o B
30 Let us describe more explicitly the adjunction between -xA and
Hom (A,-): Cat, > Cat . Let B be ann-fold category.
a) There is a map d: DnB > B (it is not a multiple functor, but a
map between the sets of blocks) which maps an n-square of B onto «its

diagonal» defined as follows: For each i <n, there is the diagonal map

0 59n ns i4 1B = 59054 4 B) > 59, 44 B

which maps the square

s' s of (Sqn’nHB)o

onto its diagonal §'0ys = s'0,§. Then J is the composite map d,...d ;-
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DnB=Sqn 2nB dn-l 'Sqn 2n-lB;)"'_)S B dO.;B.

b) The 1-1 correspondence due to the adjunction between -xA and
Hom, (A,-) maps the n-fold functor h: A’ Hom (A,B) onto the n-fold

functor
h:A'xA>B:(a' a)d(h(a")(a)).

Indeed, the adjunction berween Hom(A,-) and -® A associates to h the

n-fold functor

h)é: A'mA->o B:(a',e)b hia' )l a),
and therefore the n-fold funcror

-1 -1 .
hy: (A'm AY 5 (g,BY = Sqn’2nB ;
-1
we write H instead of (A’®mA)Y . By induction, we define
hivyiLhyy gn 0= Lk(Lky, 0 ;B) > Sq 5, B,
for each i< n, as the (2n-i-1)-fold functor associated (by the adjunction
between Lk2n-i,2n-i-1 and Sg?n-i-l,Zn-i" Caty, ;. 1~ Caty, ) to
h;: Lk?n,Zn-iH - Sqn,2n-iB = Sq(sqn,Zn-i-IB) ;

by construction, h; ; maps a block of Lk, o . ;H of the form [a’, a]

( see Proof, Proposition 6) onto the diagonal d hi[ a’, al of the square

n-i-1
}‘L' Bh Sqn,2n-i-1 B Sqn,z'l‘iB A

A'XA g’ Lan,nH Lk?n,Zn-i-IH S li Lk2n,2”'i

Cat, ~-——mmmm - ~ Caty, ;g —— 2021l Car,

Sqn,2nB //ﬁomn(A,B) 4
7/
Nlo 7 Hom, (A, hy) A’
/
, l
H, Homn(A ,H)

Ca'tgn yHom(A,-) Cat,

=~

;la’sal of (Sq, o .4 B’ . It follows that to A is associated

h=(A'xA—g—Lhky, H—F—B),

n

697



36 A.& C. EHRESMANN

where £' is the canonical isomorphism (a',a) b= [ a’, al (see Proof, Pro-

position 6); }; maps (a’,a) onto
dy...d, ;h(a")(a)=0k(a')(a).

) The coliberty morphism defining Hom,(A,B) as a cofree object

generated by B is the «evaluation»:
ev: Hom,(A,BYxA > B:(f,a)>df(a),

since it corresponds to the identity of Hom, (A,B). In particular, if A is

Homn(A,B) Homn(A,B)XA
o/ hxid/ v
A’ A’'XA h B
n
the n-fold category 2" (see [5] ), with only one non-degenerate block z,
then
u” u’”
Homn(2 ,BY=Hom(2 ,DnB)
is identified with (o, B yooa2n-l 04 the evaluation becomes the n-fold

functor ev: (0 B)®- - 2n-l 0" . B such that the ma
n P
ev(-,z): 0, B->B:s k95

is the diagonal map d defined ina. V

COROLLARY 1. The vertices of Hom, (A ,B) are identified with the n-fold
functors from A to B .

P ROOF. The final object I, of Cat, is the unique n-fold category on the
set 1 ={0}. The vertices of Hom,(A,B) are identified [5] with the n-
fold functors I, - Hom, (A,B), which are in 1-1 correspondence (by ad-
junction) with the n-fold functors from I, XA ~A to B. To f: A> B cor-
responds the vertex of Homn(A, B) mapping a onto the degenerate n-square

(vertex of 0, B ) determined by f(a ). V
COROLL ARY 2. There is a canonical isomorphism
A Homn(A’, Homn(A,B)) 3 Homn(A'XA,B)

extending the 1-1 correspondence ( Proof above ):
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(h:A’>Hom (A,B)) b=(h: A'XA>B:(a',a)=dh(a')(a)).

P ROOF. It is a general result on cartesian (as well as monoidal) closed
categories [13]; it means that Hom, (A, -): Cat, ~» Cat, is a Cat -right

adjoint of -xA. V
COROLLARY 3.There is a canonical n-fold « composition» functor
KAB,B' Homn(A,B) Xﬂomn(B,B') > Homn(A,B') .
(fsf' ) (f:A>0,B") with g " =95 [ dgf: A>B.

PROOF. This is also a general result on cartesian closed categories; in

fact, kp g g+ corresponds to the composite n-fold functor:
3 bt

(Hom, (A,B) X Hom (B,B')) xA 3 Hom (B,B")x(Hom (A,B)XA)
idx evA Bl
Homn(B,B')XB —-é—a—BT-»B'

B|
mapping (f,f',a) onto dg.f'(df(a)). V
This Corollary 3 means that Cat, is a Cat -category (i.e., a cat-

egory enriched in the cartesian closed category Cat, ) and it will be used

in Proposition 8.

REMARK. The existence of a cartesian closed structure on Catn may also
be deduced, by induction, from Corollary 3, Proposition 23 [7], as follows:
since Cat is cartesian closed, the sketch o of categories is cartesian [7] ;
so, if Cat; is cartesian closed, the category Catia of categories in Cat,
is cartesian closed by this Corollary, as well as the equivalent category
Cat;, ; (see Appendix [5]). However the explicit constructionof Hom can-

not be deduced from this (or from another) existence result.

EXAMPLE. The cartesian closed category Cat,:

Let A and B be double categories. Then D2B is the 4-fold cat-
egory deduced from SqSqB (described in the Example above) by permuta-
tion of the I-st and 2-nd compositions. Hence, Hom,(A,B) is constructed
as follows:

- Its blocks are the double functors from A to the double category
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(SqSqB )%2 of «frames» whose compositions are «one frame behind the
the other» and «one frame above the other».

- Its compositions are deduced pointwise from the compositions «one
frame inside the other» and «one frame beside the other».

- Its vertices «are» the double functors f: A->B.

- The 3-fold subcategory |(Sq3qB)3|0’2’1 of (SquB)0’2’I formed by
the objects of ( SqSgB)? is identified with (S¢B)**%2 by the isomorphism

-0 (S¢B )02 5 {(SqSqB)?|: s T

Then an object of H0m2(A, B)! ( which is a double functor A » ( Sg SqB)0’2
taking its values in I(SquB)gl ) will be identified with a double functor

b :A-(SgB)Y and the subcategory of HomQ(A,B)O formed by these
objects «is» Hom(A,(SgB)?:%2) . The objects of this last category are

a2 (e
YAl (Sq B)OT
a (SqB)l ¢'(a)
A? -

(S4BJ)L 574
themselves identified with the double functors f: A - B . With the termino-
logy of [7], a double functor ¢ :A - (SqB )10 is called a double natural
transformation (i.e., a natural transformation intemal to Cat ) from f to f',
if g:f->f" in Hom(A,(SqB)Z’O’z). This may suggest to call the block
®:A-0,B of Homy(A,B) a hypertransformation from ¢ to ¢ ' where
0:¢- 6" in Homy(A,B).

a ?'(a)ix

- If h:A'> Hom2(A,B) is a double functor, the double functor ca-
nonically associated (by adjunction) h: A’XA > B maps (a', a) onto the

diagonal of the frame h(a')(a), which is equal to

(540034)01(52'°ob2)

700



MULTIPLE FUNCTORS III 39

if

3 b’
NN N i
~N—
h(a')(a) = sy where s, = b] b,

13
APPLICATION. The (n+] )—category. Nat, of hypertransformations.
The following Proposition 8 shows that Cat, is the category of 1-
morphisms of an (n+l])-category Nat, which, for n =1, is the 2-category
of natural transformations. It is based on the Lemma, whose proof is given

in the Appendix:

LEMMA. Let V denote @ cartesian category with commuting coproducts
(in the sense of Penon [211) and A be a V-category. If V admits copro-
ducts indexed by the class of objects of A, then there is a category in V
whose object of morphisms is the coproduct of Afe,e’'), for any objects
e and e’ of A, and whose composition «glues together» the composition

morphisms

K .e":A(e,e')xA(e',e")»A(e,e").

e,e

PROPOSITION 8. There is an (n+l)-fold category Nat, satisfying the fol-
lowing conditions:

Io (Natn)o’“""'l is the n-fold category coproduct of the n-fold cat-
egories Hom (A,B), for any (small) n-fold categories A,B.

2 Its n-th composition x, is (notations Corollary 3, Proposition 7):

(f.f') }"KA,B,B|(f, f') iff f in Hom (A,B) and f' in Homn(B, B').

30 Cat, is the category of I-morphisms of Nat,,.
PROOF. 1° Let Cat, be the category of n-fold categories associated to
a universe IAJ to which‘belongs the universe U of small sets, and a fortiori
the class of objects of Cat, . Then Cat, is also cartesian closed. The
faithful functor «forgetting all the compositions» from Cat, toward the cat-
egory Sét (of sets associated to the universe fl) preserves coproducts and

limits, and it reflects isomorphisms (an r-fold functor defined by a 1-1 and

onto map is an isomorphism); hence Corollary 1, Proposition 1-6 of Penon
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[21] asserts that C&tn has commuting coproducts (in [21] «small» is now
to be replaced by: belonging to U ).

2° As Catn is cartesian closed, it «is» a Catn-category [3], and it
determines also a Cat,-category, the insertion functor Cat, C. Cat, pre-
serving the cartesian closed structure. More precisely, we bave the Caz -
category H, defined as follows:

- its objects are the small n-fold categories A, B, ..., and
H,(A,B) = Hom,(A,B) ;

- the «unitarity» morphisms are of the form jao: I, > H (A,A), where
ial0) is the vertex of Hom, (A ,A) identified with id: A > A ;

- the «composition» morphisms KA BB are those defined in Corollary
3, Proposition 7.

309 The Lemma associates to H_ a category Hn in C&tn defined as

- ‘
1 <>T_"”3 Cat s an(2)<_’<_ri_ H,(3)
B

follows:

- its object of morphisms (2 ) is the n-fold category AHBHomn(A, B)

coproduct of the n-fold categories Homn(A, B), for any (small) n-fold cat-
egories A, B (as the sets Hom, (A ,B) are disjoint, this coproduct is on
their union);
- its object of objects H (1) is the «discrete» n-fold category on
Cat, (since it is the coproduct of gi”ﬂ_ copies of the final object I, );
- the morphisms source a” and target 8" send a block f:A- o, B
of Hom,(A,B) onto A and B respectively;

- the composition morphism x” "is the union of the n-fold «composi-

tion» functors KA B.B' (Corollary 3, Proposition 7).

4° By the equivalence between categories in Cat, and (n+l)-fold cat-
categories (see Appendix [S]), H,: 0 > Cét, is the realization associated

to the (n+1)-fold category Nat, such that:
O,.oon — _
(Nat,) "_Hn(2)—AI’IBHomn(A,B),
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if Sg i;;
~N—
h(a')(a) = 8y where s; = bi’ bi

|2
APPLICATION. The (n+] )-category Nat, of hypertransformations.

The following Proposition 8 shows that Cat, is the category of 1-
morphisms of an (n+])-category Nat, which, for n =1, is the 2-category
of natural transformations. It is based on the Lemma, whose proof is given

in the Appendix:

LEMMA. Let V denote a cartesian category with commuting coproducts
(in the sense of Penon [21]1) and A be a V-category. If V admits copro-
ducts indexed by the class of objects of A, then there is a category in V
whose object of morphisms is the coproduct of Afe,e'), for any objects
e and e’ of A, and whose composition «glues together» the composition

morphisms

Ke gron: Ale,e')xAle',e")> Ale, e").

e’e 2

PROPOSITION 8. There is an (ntl)-fold category Nat, satisfying the fol-
lowing conditions:

Io (Natn)o""’"'] is the n-fold category coproduct of the n-fold cat-
egories Hom, (A,B), for any ( small) n-fold categories A,B.

2 Its n-th composition «, is (notations Corollary 3, Proposition 7):

(fsf') }—’KA,B,B'(f, f') iff f in Hom,(A,B) and f' in Hom,(B,B’).

30 Cat, is the category of I-morphisms of Nat,, .
PROOF. 1° Let Cat, be the category of n-fold categories associated to
a universe IAJ to which belongs the universe U of small sets, and a fortiori
the class of objects of Cat, . Then Cdt, is also cartesian closed. The
faithful functor «forgetting all the compositions» from Cat, toward the cat-
egory Sét (of sets associated to the universe {J) preserves coproducts and
limits, and it reflects isomorphisms (an n-fold functor defined by a 1-1 and

onto map is an isomorphism); hence Corollary 1, Proposition 1-6 of Penon
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[21] asserts that Cﬁtn has commuting coproducts (in [21] «small» is now
to be replaced by: belonging to U ).

20 As Cat, is cartesian closed, it «is» a Cat,-category [3], and it
determines also a Cﬁtn-category, the insertion functor Cat, C. Cat, pre-
serving the cartesian closed structure. More precisely, we have the Cat, -
category H, defined as follows:

- its objects are the small n-fold categories A,B, ..., and
Hn(A,B) = Homn(A,B) :

- the «unitarity» morphisms are of the form jo: 1 - H (A,A), where
Jal0) is the vertex of Hom,(A,A) identified with id: A > A ;

- the «composition» morphisms KA BB are those defined in Corollary
3, Proposition 7.

3° The Lemma associates to H  a category H, in Cat, defined as

1@—7—3 %dis.yn(g);&i H (3)
B

follows:

- its object of morphisms H (2 ) is the n-fold category AHBHomn(A, B)

coproduct of the n-fold categories Hom, (A,B), for any (small) n-fold cat-
egories A, B (as the sets Hom (A ,B) are disjoint, this coproduct is on
their union); a
- its object of objects H (1) is the «discrete» n-fold category on
Cat, (since it is the coproduct of Cat, copies of the final object I );
- the morphisms source a” and target B” send a block f: A-» o, B
of Homn(A,B) onto A and B respectively;

- the composition morphism k" is the union of the n-fold «composi-

tion» functors KA B.B' (Corollary 3, Proposition 7).

4° By the equivalence between categories in Cat, and (ntl)-fold cat-
categories ( see Appendix [51), Hn PO C&tn is the realization associated

to the (n+1)-fold category Nat, such that:
(Nat, )0seeeon = H (2)= AHBHomn(A,B) ,
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between coproducts such that, for each Ae¢A, the diagram

oy v ny
peM M AeA' A
I A

14 v)\ 'V

Vox A

commutes, where jy and j¢/\ always denote the injections into the co-
products. Indeed, v, called the factor of (v, )y with respect to ¢, is

defined as follows:

~ / v
v=(HV oC o, »W)—#% ___ _1r ),
()\ A I /\egﬁl(u) A o K
where v#; Aegl(y) Vy - V,l is the factor of (v) )y through the copro-
d | Vs
S N A

20 Construction of the category I' A in V, for a V-category A such

that there exist in V coproducts indexed by the class A, of objects of A.
a) Since A, is finite or equipotent with A,x A, and A x Agx A, ,

there exist in V coproducts:

S1 of the family (I, ), indexed by A, , where [, is equal to the final
object [ of V for each object ¢ of A,

S2 of the family (A(e,e’))e,e, indexed by Aox A, , where A(e,e’)
is the «object of morphisms from € to e’ in A»,

S3 of the family (Afe,e')X Ale’, e"))e’e e

b) (i) There exist unique morphisms Sa, S8, Sv; rendering com-

» indexed by Agx Ayx A, .

mutative the «cube»:

S
51 S3
je' /e,e',e”
) 2 Ale,e’)XA(e'e")

”
€

A(e’,e")pe’e'
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where pi’e,,e,, are the projections of the product, a, nen and ﬁe’e, are
the unique morphisms toward the final object I (the name of such a mor-
phism will often be omitted). Indeed, Sa, SB, Sv; are respectively the
factors of :

(a, e «) with respect to the projection AgX A, > Ay :(ehe”)l=e’,

(Be’e,) with respect to the map AZ=A (e, e')b-e’,

(pi,e ,,e,,) with respect to the maps ¢;: AgX Agx Ag » Ayx A, with

q;(e,e'ye”)=(e,e’') and qz(e,e',e") =(e'ye").
Since the down face of the cube commutes (there is only one morphism

I »: Ale,e’)X Afe’,e" )~ 1), by unicity of the factor of ([

e,e’,e
with respect to the projection A;x A x A, > Ag:(e,e’,e”)}~e', the up

face of the cube also commutes.

(ii) The square

S
SB 2 SVI
S Sv
a 5 2

is a pullback. Indeed, for each object e’ of A we have the pullback
HA(C € ) e’

®, ) Q(ﬂm e)x( U ateter))

e,,A(e e’

where pf " are projections of the product, since [ is a final object. V hav-
ing commuting coproducts, the theorem of commutation of Penon (Corol-
lary 3, Proposition 1-8 [21] ) asserts that the square (D') coproduct of the

squares (D, ,) is also a pullback. Now (D') is the down face of the cube
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The vertical edges of this cube are canonical isomorphisms between co-
products (the existence of § follows from the preservation of coproducts
by the partial product functors in V ). By construction of the factors Sa ,
SB, Sv;, this cube commutes, so that its up face (D) is also a pullback.

(1iii) There exist unique morphisms S¢ and Sk rendering commutative
the squares

SJ St S2 S2 Sk S3

je je,e je’en je,e’,e"
! u, Afe,e) Afe,e") Ke,e,’e,,A(e,e')XA(e',e")

where u, and « « are the «identity» morphisms and the «composi-~

e,e’,e
tion» morphisms of the V-category A. Indeed, S: and Sk are respective-
ly the factors of

(u, ), with respect to the map A, » A;x Ay : e b~(e,e),

(Ke’e,,e,.) with respect to AgX Ao X Ag » A, X Ay : (e, e’y e") (e,e”).

c) This defines a category S in V, i.e., a realization S: 0 > V of

the sketch o of categories (see [4] and [5] Appendix):

zm 3 S]y/s_t\sm S3
S~ w

(i) For a couple (e, e’) of objects of A, let Uy o be equal to

Ale,e')—— I X Afe, ') —He X204 | ace ¢ )x Afe, e’)

and Sua be the factor of (ue,e +), . with respect to the map

e,e
AoxAg > AgxAgxAp:(e,e') (e, e, e’).
Then
Svy.Su, =Sc.Sa, Sv,y.Su, =idg, = Sk.Su,

(«source» unitarity axiom of an internal category). Indeed, by unicity of

the factors and by definition of u for every objects e and e’ of A

e,e’?
the two following diagrams commute, so that the two first equalities are

valid.
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52 Su S3 S2

a

Sv S1

]e,e" u

53

e,e’ ]e,e,e’

2 Ale,e)XA(le,e’)

pe,e,e'

]e,e,e’

Ale,e’)
A(e3 e)XA(e’e ')"
u ,
‘ Afee’) ©°

The validity of the third equation is deduced from the commutativity of

the diagram

S2 Sk 53
Su .
je,e' Je,e,e’
e,e,e’

Afe,e)X Afe, e')
Afe,e’)

(whose down triangle commutes due to the unitarity axiom satisfied by A).
(ii) A similar proof shows that S satisfies the «target» unitarity ax-
iom of an internal category. '
(iii) S also satisfies the associativity axiom of an internal category.

Indeed, for objects ¢, e’, e”, e™ of A, there exists a commutative cube

e',e” e A(e',e"‘)XA(e",e”')

where j, a2 » is the injection roward the coproduct S4 of the family

e"’e

(Afe,e'JX Ale’, e )X A(e",e'"))e’e e

Sv] is the factor of the family (pfa ¢! en gm) of projections with respect
? » »

"gm indexed by Ai{ , and where

to the map ¢}: A% > A3 defined by
qll(e’ e”e”,eﬂl) —_-(6,6’,6"), qé(e’e" e"’eﬂ') - (e I’e"’ el").

As the down face of this cube is a pullback, a proof analogous to that of

Part b proves that the up face of this cube is a pullback. Now, let us de-
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note by Kel,e,’e,.,e,., the composite

Ale,;e')x Ale', e")x A", e™) — (Ale, e")XA(e’ e)x Ae",e")
K ' nXid
A(e, C")X A(e ”,6") e,e e

Sk; factor of the family (Kél,e e e » ) -with respectto the projection
A3 > A3: (e el e (e, e e™)

renders commutative the cubes

S4 Sv, 53 Sk S4
— F Sv );T/L ‘
L T 2 Sud
S2I ]e’en,emjr 2 2
]e,e ete e Kelﬁ,F,:e »€ ]e,e’,e "ot
,e".em
2

Pe ,e’,e", e

', e ﬂ) A(e "’e ﬂ') pe"e ",e'" A(e ”e ")XA(e", e'i’)

1

! ”
e,e', e’ e

(by definition of » and of the different factors ), so that
Svy .SKJ = SK.SV} and SV2.SK1 = SVZ.SVé.

In the same way, there is a factor Sk,: S4- S3 of the family of compo-

sites Kg’e,’e",em =
Ale,eYx Ale’,e")x Ae™, e™) — Ae,e’)X(Ale",e")xAle",e™))
/idx
Kyt " "
A(e,e')XA(e',e”’) e',e ,e

with respect to the projection
A3 Bli(e,e’semem ) br(e el e™),
and SK2 satisfies the equalities
Sv;.Sky =Sv;.Sv] and Sy, .Sk, = Sk.Svg .

The associativity axiom Sk.Sk; = Sk. Sk, then follows from the unicity
of factors and from the following cube, whose down face commutes due
to the associativity axiom satisfied by the V-category A :rd whose lat-
eral faces are commutative, by definition of the different factors. Hence,

S defines a realization S: 0> V of ¢ in V, i.e., a category internal to

V, which will be denoted by " A .
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A(e,e™ Ale,e')XAfe',e")XA(e",e™)

"
€

“Ale,e!)xAfele™) ©°

20 a)Let F: A-» A' be a V-functor, Fo: Ao » A(‘,:ef"Fe the map
between objects and F(e,e’): A(e,e’)> A(Fe,Fe') the canonical mor-
phism, for every couple (e, e’) of objects of A. There exist factors
Fr2): T A(2)-T AY(2) of (F(e,e'))e’e, with respect to Fo xF, ,
D'Fr1): T A(1)-T A(1) of (I, =1), with respect to F,,
D'F(3):TA(3)-T A(3) of (F(e,e’)XF(e',e")), .+ n With respect

to Fox Fox Fq . o

These factors render commutative the diagrams

"AvT) A MA'(2) I"'aA' (k) r
oI F(3)
FF% " AQ) ,FQ} I'Fr2) " Alx)
‘ ] : IFe,Fe| : .
JFe ].e Fe,Fe Te e e, e ].e o IFe,Fe ,F?
’ ]8,8',6"
KFe.,Fe',Fe”'
14 ? }
Fle,en)F(e,e JXF(e',e
Ke,e:,en

whose down faces commute by definition of a V-functor. This proves that

I'F:TA->T A" is a functorin V.

CA'Y() A (k)
I'F(1) I'Fr2) I"F(3)
|0 T Alx)

b) This defines a functor [': V-Cat » CatV : F ~T"F, due to the
unicity of the factors defining I'F(i),i=1,2,3. V

PROPOSITION B. The functor I": V-Cat » CatV constructed above admits

a right adjoint.

PROOF. Let B be a category in V.
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1° We define a V-category B =I""B . The class B, of its objects is
the set of morphisms e:[-> B].1If e:I~> B] and e':[-> Bl are such
objects, B(e,e’) is defined by the pullback

[Ba’BB] B2 te,er
@, ) BZxBloB(e,er)
' [e’e’] !

where [e,e’] and [Ba,BB] are the factors of (e,e') and (Ba,BB)
through the product BIXB]. There exists a factor u,: /> B(e,e),
through the pullback (D, ), of the diagram

[Ba,BB] B2B. 5,

B]xB]Q/l
le, e] 7

(which commutes, since Ba.B: and BB. B are identities). Let ¢" be

another «object» ¢”: [ » B 1. The commutative diagram

£, ,
BB B2 e;¢' Bfe,e )pro]'
B1 g L ~B(e, e’ )X Ble', ")
B.a r _n o]
Bé/te’e" Beh e

factors uniquely through the pullback

BB B2 By,

B]Qm
B B

a B2 Va
into te’

rent B(e,e’)XB(e’,e")» B3, and the diagram

[Ba, BBl _B2p,. p.,

BIXBI e:¢e”
@ B(e,e')XB(e',e")
[e, e"]

commutes (this uses the equalities

Ba.BK=Ba.BV1 and BB.Bk = Bf.Bv,

e

of an internal category, and the commutativity of (D, e') and (D, e"))'

Hence this diagram factors uniquely through the pullback (D, «) into
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Ke

E B(e, e’ )X B(e',e")> Ble,e").

,e
b) This defines a V-category B.

(1) Let us denote by u, . the composite
bd

e
ueXLd

B(e,e’)—;[XB/e,e') Ble,e )XBfe,e’).

In the diagrams

B1i

all the faces commute, except perhaps the back one; as By, are projec-
tions of a pullback, it follows that this last face also commutes. So, we

have the commutative diagram

Blee') k. .., u, o Bfe,e’)
te,e’ lte,e,e’ Jte,e'
id

and the unicity of the factor through the pullback B(e,e’) implies that

K

U
e,e,e’

¢ ¢+ is anidentity. Therefore, B satisfies the unitarity axiom.
2
(i1) A similar method proves that B satisfies the associativity ax-

iom. It uses the fact that there is a cube

K
B(e,e"’ )

e"e":y,

Ble,e")XB(e",e™) Ke.

e

e ’en’e "

Bk

B2

Bk B

3

in which all the vertical edges are projections of pullbacks and all faces,

except perhaps the up face commute ; so this up face also commutes,
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20 There is an internal functor £: [ B> B . Indeed, let t(2) be the

factor through the coproduct [' B(2) (constructed in Proposition A) of the

family(te’e': Ble,e')- B2)e’e, indexed by B, x B, , so that:
I'Br2) ]‘e’e,
Ble, e’
02) (e, ¢e’)
t ’
e,e
B2

commutes. Let ¢(1): " B(1)-» Bl be the factor through the coproduct
I"B(1) of the family (e), indexed by B, so that
CBr1) J.
¢(1)
1

commutes. Then the back face of the diagram

I"'B(1) rse(.)

je,e
‘mue ‘\B(e’e)
t(1) e t(2) :,
B1

B¢ B2

commutes, because all the other faces commute and I'B(I) is a copro-

duct. Similarly, the back face of the diagram

IBr2) TI'Bk) FB(3)]~
e’el’e”
: (e,e”) | B{e,e)xBle)e”)
e,e',e"
(2) ,, \trsu
B2 Bk B3

commutes, where £(3) is the factor of (¢t ») through the coproduct

e,e'e
I'B(3). We have so defined an internal to V functor t: "B~ B.

30 t: "B~ B is the coliberty morphism defining B as a cofree ob-
ject generated by B. Indeed, let A be a V-category and ¢':I"A > B be
a functor in V. We are going to construct a V-functor T: A» B.

b) For each object a of A, let Ta be the object of B:
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Ta=(l-Ja_.rar1)_t'(d) gy
where j, is always the injection into the coproduct; this defines a map
To: Ao~ B,. If o and a’ are objects of A, the two small squares of the

diagram

] Ala,a’)

A
BIxBI [Ba,BBl B2

are commutative (by definition of I" A and ¢’ being an internal functor).
Hence the exterior square is commutative, and it factors through the pull-

back (D, 1,/) into a unique T(a,a’): A(a,a’)> B(Ta, Ta').

B(Ta, Ta') T(a,a’') Ala,a’)

ja a'

>

tTa,Ta’
BY t'(2) TA(2)

b) This defines a V-functor T: A-> B. Indeed, for each object a

of A, the up face of the diagram

B (Ta,Ta) T(a,a) Ala,a)
Y1 ! Yy
tTa,Ta Ta Ta £'(2) Ja,a
B2 ["Ar2)
Be BT t7T) rat)

commutes, since all the other faces commute and B(Ta, Ta') is a pull-

back. Similarly, the up face of the following cube

B(Ta,’[a”) KTG,TG',T(Z'

- T(a,a')XT(a',a")
Ka,a",a\ :
l
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commutes, all the other faces commuting and B(Ta ,Ta") being a pull-
back. Hence, T: A-» B is a V-functor.

¢) The down face of the diagram

B(Ta, Ta") T(a,a’) Ala,a’)

commutes, whatever be the objects @', @ of A since the other faces com-
?

mute and I" A( 2 ) is the coproduct of (A(a,a’) . It follows that

)a,a'

(¢:TA-B)=(TA_LT prp_t B

B s
12
T 'y
: ry B
A I"A
Finally, the unicity of the V-functor T satisfying this equality results

from the unicity of the morphisms T(a,a’'). So B is a cofree object ge-
P ject g

nerated by B with respectto I': V-Cat > Cat V. V

DEFINITION. A category in V is called pseudo-discrete if its object of

objects is a coproduct of copies of the final object /.

By the construction of the functor I' (Proposition A), it takes its
values into the full subcategory PsCatV of CatV whose objects are the
pseudo-discrete categories in V. Hence it admits as a restriction a func-
tor, also denoted by I': V-Cat > PsCatV . Remark that the existence of
this functor is conjectured (without precise hypotheses) in the Appen-
dix I of the book [8].

PROPOSITION C. Let V be a category with commuting coproducts, [ its
final object. If the functor Hom(I,-): V> V preserves coproducts, then
the functor I' : V-Cat > PsCatV is an equivalence.

PROOF. Let I'': PsCat V> V-Cat be the right adjoint of I constructed

in Proposition B.
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1o The composite

PsCatVv ——L—-‘V-Cat L PsCatVv

is equivalent to the ideniity :

Indeed, it suffices to prove that, for each pseudo-discrete category
B in V, the coliberty morphism ¢:I'["'B » B is an isomorphism. By hy-
pothesis, BI is the coproduct of a family ([/\ =l)/\€A and

Hom(l,B1)= &Ii]om([,[h)z/\

since Hom([,1) is reduced to the identity of / ; hence B1 is also a ce-
product of the family (/,=1), indexed by the set B, =Hom([,B]) of
morphisms e: [ -> B1, the e-th injection being e itself. As the partial
product functors preserve coproducts, BIXB] is the coproduct of the
family (le’e =1)
tor [e,e'l:I» BIXB1 into the product. We take the pullback

ee’ indexed by BoXx B, , the injections being the fac-

! Ble,e')

[e,e'] be e

BIxBI 1[Ba,BBl B2

used to define B =I1"B. The category V admitting commuting copro-
ducts, by pulling back along [ Ba, BB] the coproduct BIXB1I, we get
B2 as a coproduct of (B(e, e'))e’e, , the injections being the morphisms
bo o B(e,e’)> B2.So the factor t(2): I'B(2)~> B2 of (¢,

an isomorphism. This implies that ¢t: 1" B~ B is an isomorphism.

i
,e’)e,e' s

20 The composite

V-Cat L PsCatVv —F—'——-V-Cat

is also equivalent to the itdentity, so that PsCatV and V-Cat are equiva-
lent. Indeed, let A be a V-category; by adjunction, there is a V-func-
tor T: A-1"'I" A such that Ta is the injection j,:{->T"A(I) for each
object @ of A and that the following diagram commutes, for each couple
{a,a’) of objects of A (we take up the notations of Proposition B, in

which we choose B =1"A).
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D'TA(Te,Te') T(a,a’') Ala,a’)

\
tTG,Tai\,/]‘a,a:
I"a(2)

We are going to prove that T is an isomorphism.

a) To: Ay »(I''I"A), is 1-1 and onto: I"A(1) is the coproduct
of the family (/= 1,), indexed by the set A, of objects of A ;since
Hom(l,-): V- V preserves coproducts, we have

Hom(1, T A(1))~ WHom(I,1,)~ A, ,

so that T, is an isomorphism.

b) For every objects a, a’ of A, there is a pullback

! 'TCA(Ta,Ta')

[ja’ja'] tTa,Ta'

TA(1)xUA(1) [TAa,TAR] T A(2)

defining I''T"A(Ta,Ta'). We deduce as in Part 1 that ['A(2) is the
coproduct of (I—"FA(Ta,Ta’))a’a, with injections trq g+ BU (by
definition) I' A(2) is also the coproduct of (Afa, a’))a,a, , and the com-
mutativity of the diagrams defining T({a, a’) implies that the identity of
I"A(2) is the coproduct of (T {(a, a'))a’a .. So, by definition of a categ~
ory with commuting coproducts, each T(a,a’) is an isomorphism. Hence

T: A>D"'T"A is an isomorphism. V

COROLLARY, If V is a category with commuting coproducts, the func-
tor I': V-Cat » PsCatV is an equivalence iff the endofunctor Hom(l, )

preserves coproducts of copies of the final object [,

PROOF. The preceding proof shows that the condition is sufficient. On
the other hand, let us suppose that I : V-Cat » PsCatV is an equival-
ence and let S be the coproduct of a family (/) =1)y (A - There exists
a V-category A (the «V-groupoid of pairs of A») such that A is the set
of its objects and A(A,A') =1 for each couple (A,A') of objects. The
canonical V-functor

T:AMA)Y->T'TA(TA,TAY)
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being an isomorphism by hypothesis, its «restriction to the objects»:
To:(A; =AY > (I"'T"A)Y, =Hom(I,S)
is an isomorphism, and Hom([,S)=A ~ 1 Hom(/,[/\). \Y
AeA

EXAMPLES.

1° There are many examples of categories V with commuting copro-
ducts (see Penon [21] ):

- the elementary topoi admitting coproducts,

- the categories admitting finite limits and coproducts and equip-
ped with a faithful functor toward Set preserving pullbacks and coproducts
and reflecting isomorphisms; in particular, the initialstructure categories
{(Wischnewsky [221, or topological categories in the sense of Herrlich
[18]), the categories Cat, for any integer n .

The condition that Hom([,-): V> V preserves coproducts means
that / is connected (in the sense of Hoffmann [19]}, see also Proposition
3-12 of Penon [21]). It is satisfied in the categories of a «topological
nature», as well as in Cat, . Remark that an (n +1)-fold category H (con-

sidered as a category in Cat , see Appendix [5]) is pseudo-discrete,

n
and therefore «is» a Cat -category, by Proposition C, iff the objects of
the last category H" are also objects for the n first categories H’ (in
an (n+] )-category, the objects of H" are only supposed to be objects
for H*1). The (n+l)-category Nat, constructed in Proposition 8 «is»
pseudo-discrete.

2° Proposition C is also valid if V is the category of r-differentiable
manifolds (modelled on Banach spaces ), though only some pullbacks exist
in it (the pullbacks used in the proof will exist). Hence categories whose
Hom are equipped with «compatible » r-differentiable structures «are» those
r-differentiable categories (in the sense of [12]) in which the topology

induced on the class of objects is discrete.
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MULTIPLE FUNCTORS
IV. MONOIDAL CLOSED STRUCTURES ON Cat,
by Andrée and Charles EHRESMANN

INTRODUCTION.

This paper is Part IV of our work on multiple categories whose
Parts I, IT and Il are published in [3, 4, 5S]. Here we «laxify» the cons-
tructions of Part III (replacing equalities by cells) in order to describe
monoidal closed structures on the category Cat, of n-fold categories, for
which the internal Hom functors associate to (A,B) an n-fold category
of «lax hypertransformations» between n-fold funcfors fro.m A to B.

As an application, we prove that all double categories are (ca-
nonically embedded as) double sub-categories of the double category of
squares of a 2-category; by iteration this gives a complete characteriza-
tion of multiple categories in terms of 2-categories. Hence the study of
multiple categories reduces «for most purposes» to that of 2-categories
and of their squares, and generalized limits of multiple .functors [4, 5]
are just lax limits (in the sense of Gray [7], Boum [2], Street[l\O],...),

taking somewhat restricted values.

More precisely, if C is a category, the double category Q (C) of

its (up-)squares

A
y'/c y

g

x

is a laxification of the double category of commutative squares of the cat-
egory of l-morphisms of C ; a lax transformation ® between two func-

tors from a category A to || I (is» a double functor ® : A> Q(C):
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e' Dre’)
a] b f'(a) /:(a) [f(u}
€ Dre)

(® «is» a natural transformation iff ¢(a@) is an identity for each a in A)-
Similarly, to an n-fold category A, we associate in Section A the (n+] )-
fold category CubB (of cubes of B), which is a laxification of the (n+] -
fold category SgB (of squares of B ) used in Part [II to explicit the carte-
sian closure funcror of Cat, .

In Section B, the construction ( given in Part III) of the left adjoint
Link of the functor Square from Cat, to Cat, ,; is laxified in order to
get the left adjoint LaxLink of the functor Cube: Cat, - Cat, . ;. While
Link A, for an (n+] )-fold category A , is generated by classes of strings
of objects of the two last categories A" and A", the n-fold category
LaxLink A is generated by classes of strings of strings of objects of «al-
temately» A""2 and A" or A" (so we introduce objects of A"? ins-
tead of equalities).

LaxLink is a left inverse (Section C) of the functor Cylinder from
n-Cat to (n+])-Cat associating to an n-category B the greatest (n+])-
category included in CubB. '

The functor Cub, ., from Cat, to Cat, is defined by iteration
as well as its left adjoint. They give rise to a closure functor LaxHom
on Cat, mapping the couple (A,B) of n-fold categories onto the n-fold

category Hom ( A, ( Cub B)Y), where ;

n,2n
- Hom is the internal Hom of the monoidal closed category (consi-

dered in Part 1) (ICat, , w , Hom ),
n

- (Cubn, an

the permutation of the compositions y :

B)Y is the 2n-fold category deduced from Cub, ,, B by

(0,0 2n-1) 1> (0,2,00,20-2, 1, 3,00, 2n-1).

The corresponding tensor product on Cat, admits as a unit the n-fold cat-

egory on 1.

«Less laxified» monoidal closed structures on Catn are defined

722



MULTIPLE FUNCTORS IV

by replacing at some steps the functor Cube by the functor Square ; the
«most rigid» one is the cartesian closed structure ( where only functors
Square are considered [S]). For 2-categories, Gray's monoidal structure
is also obtained.

Existence theorems for the «lax limits» corresponding to these
closure functors are given in Section D. In fact, we prove that, if B is
an n-fold category whose category \‘B‘"'I of objects for the (n-1)-th
first compositions admits (finite) usual limits, then the representability
of B implies that of the (n +1 )-fold categories K = S¢ B, CubB, CylB;
therefore, according to the theorem of existence of generalized limits giv-
en in Part II, Proposition 11, all (finite ) n-fold functors toward B admit
K-wise limits. In particular, the existence theorem for lax limits of 2-
functors given by Gray [7], Bourn [2], Street {10] is found anew, with
a more structural (and shorter) proof (already sketched in Part I, Remark

page 271, and exposed in our talk at the Amiens Colloquium in 1975) *.

The notations are those of Parts Il and III. If B is an n-fold cat-
egory, B is the set of its blocks and, for each sequence (ipseees ip-l) of

distinct integers lesser than n, the p-fold category whose j-th category

i [P S
is B/ is denoted by B? p-l

* NOTE ADDEDIN PROOFS. We have just received a mimeographed text
of J.W. Gray, The existence and construction of lax limits, in which a
very similar proof is given for this particular theorem. The only differénce
is that Cat is considered as the inductive closure of {1,2,3] (instead
of {2} ) and that the proof is not split in two parts:
1° existence of generalized limits (those limits are not used by Gray),
29 representability of @ (C) and CylC for a 2-category C (though

this result is implicitly proved).
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A. The cubes of a multiple category.

The aim is to give to Cat, a monoidal closed structure whose tensor
product «laxifies» the (cartesian) product (by introducing non-d;:generate
blocks in place of some identities). The method is the same as that used
in Part IlI to construct the cartesian closed structure of Cat,, .

The first step is the description of a functor Cube from Cat, to
Cat, . ;, admitting a left adjoint which maps an (n+ 1 )-fold category A onto

an n-fold category LaxLkA , obtained by «laxification» of the construc-

tion of LkA .

1° The «model» double category M.

To define the Square functor, we used as a basic tool the double
category of squares of a category C, whose blocks «are» the functors from
2 x2 to C. The analogous tool will be here the triple category of cubes
of a double category, obtained by replacing the category 2 x2 by the «mo-

del» double category M described as follows:
Consider the 2-category () with four vertices, six l-morphisms
Yo ¥'s Fo 3 Flogy, yloy¥

and only one non-degenerate 2-cell x: y'o ;7> §'0,y in Qo :

> ‘ 7
/= ¥ |y (also represented by y'| = * y

(Intuitively, Q0 consists of a square «only commutative up to a 2-cell».)

The model double category M is the double category @ X(Z,Zdisv ),
product of () with the double category (2,2‘“8) :

0 (}7"2)
M;\ (701-%2/ -
;" ‘ t{(>2)
W 7 PR TP IANZE) A S IR\ YOI
0 7 (3,2) £ o
0
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It is generated by the blocks forming the non-commutative square

(y'2)

(y'z)} H iy 2) of M = Q1 x24is

77,2

and those forming the commutative square («cylinder») of vl = QO X2

(5' '01}’:2/\

(5"01)”3) .

(x,0) (x’ 1)

}"015’, Z)
whose diagonal is (x, z ).

2° The multiple category of cubes of an n-fold category.
Let n be an integer such that n > 2. We denote by B an n-fold cat-

egory, by a’ and Bi the source and target maps of B? , for. i< mn.

DEFINITION. A double functor c¢: M B* 1'% from the model double cat-

egory M to the double category B"1>0 (whose compositions are the ( n-1 -

th and 0-th compositions of B )} is called a cube of B .

'9"\/\ (z:,z) bt

i\ Swf fBo

o) [t v w7 e
(G2) |/ =—

—

(y',z)

The cube ¢ will be identified with the G-uple (b', b', w', w, b, b)

where : '

b=cly,z), b'=c(y'z), bsecl(§z2), b'=c(§,2),
w=c{x,0}, w'=c(x,1)

( which determines the cube ¢ uniquely).

In other words, a cube ¢ of B may also be defined as a G-uple
c=(b", b w', w, b, b)

of blocks of B such that
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br
—
. . 0
b’f b is a non-commutative square of B,
—5
b’ ,b
’ : . Bn-l
w w is a commutative square of .
7
bloyb

The diagonal of this last square:
(b'oab)on_lw = w'on_l(b'oob)
is called the diagonal of the cube ¢, and denoted by dc.
Remark that w and w' are 2-cells of the greatest 2-category con-

Bn-],O

tained iIn , and that in the cube ¢ (represented by a «geometric»

cube), the «front» and «back» faces are up-squares of this 2-category:

an-Z[;; n-Zg;
an-l br w/ an-lb Bn-lbr y‘ Bn-]b
S
an-Zl; Bn—][;

On the set CubB of cubes of B, we have the (n-2)-fold category
Horn(M,B"'I’O’]""’"'2), whose i-th composition is deduced pointwise
from the (i+1)-th composition of B, for i < n-2. With the notations above

(we add everywhere indices if necessary), the i-th composition is written:
—_ ’ ’ AI " ’ 4 . 7
cp e =(bhoy blbios b wio qwhwpe, jw biog b byoyy b)),
iff the six composites are defined.

Now, we define three other compositions on CubB so that, by add-
ing these new compositions, we obtain an (n+] )-fold category CubB :
- We denote by (CubB)"? the category whose composition is deduced

. . -]
«laterally pointwise» from that of B"™* :

€90,.9¢ = (byo, b, bho, 1B wiyw,byo, 1b, byo, 1b)

iff wy= w' and the four composites are defined.
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b /Bn-l

/w f“

The source and target of ¢ are the degenerate cubes determined by the front

and back faces of c.

- Let (CubB)™ 7 be the category whose composition is the «vertical»

composition of cubes (also denoted by 8):
€30, 467 (béoob', bé,&;"&), l;, b3°0b) iff b= b3’

where W and @' are the 2-cells of the vertical composites of the front and

back up-squares:

an-lbé /w3 /{b ‘! S
s 7
(bence: ,
LZ‘:(wsooan'lb)on_i(a"'lb:;,oow), = (who B 1b Jo (B bho,w’) ).
<_1;§
W’% ! bs Ypo
e 10

- Finally, (CubB)" is the category whose composition is the «hori-

zontal» composition of cubes (also denoted by m) :

€40, = (bl bho,b' W' v, byoyb, b) iff b'=b,,

b b,
b} ~//4Z4 1«//42 e
41 _

where w and w' are the 2-cells of the horizontal composites of the front

and back up-squares:
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/"4/"0 ~/'w A;A'-/{vr

REMARK. (CubB)" 1" is the double category of up-squares of the 2-cat-
egory of cylinders (Cle)"’”'I, which is the greatest 2-category contained

in the double category (Sq(B™7:9))2:0 (with the notations of Section C).

From the permutability axiom satisfied by B it follows that we
have an (n+1)-fold category on the set of cubes of B, denoted by Cub B .
such that:

- (CubB)O""’”"? — HOm(M,B"']’O’I""’n'Z) ,

- the(n-2)-th, {n-1)-th and n-th compositions are those defined above.
DEFINITION. This (n+])-fold category CubB 1is called the (nt+])-fold
category of cubes of B . ’

Summing up, the i-th category (CubB)’ is deduced pointwise from
Bi*! for i <n-2 and «laterally pointwise» from B""! for i = n-2, while
(CubB)"'] and (CubB)" are the «vertical» and «horizental» categories

of cubes.

EXAMPLE. If B is a double category, CubB is a triple category whose 0-th

composttion is deduced laterally pointwise from B!.

If a square s of BY,

bl
s = b'f } b
~b
is identified with the cube
[;‘,
4

(with the same «lateral» faces) in which w and w' are the degenerate 2-

cells a”'l(b'oo I;) and B"'I(l;'oo b), then the (n+l )-fold category S¢B
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of squares of B (seePart Il {5]) becomes an (n+l )-fold subcategory of
CubB , which has the same objects than CubB for the {n-1)-th and n-th

categories. It follows that we may still consider the isomorphisms

(2 BLeonL,0 5 | (CupBYL|0eon-2in L8

-0, BLeenoL,0 5 | (CypBY| 0oL, b fr 0
from B1>>m 1.0 oneo the n-fold categories defined from CubB by taking
the objects of (CubB)* 1 and (CubB)" respectively.
B. The adjoint functors Cube and LaxLink.

If f: B> B’ is an n-fold functor, the (n-2 J-fold functor
Hom(M, f): Hom(M,B) > Hom(M,B"): c I~ f¢c

underlies an (n+1 )-fold functor Cubf: CubB > CubB’ defined by:
c:(b',g’,w”w,i)‘,b)}’"fc:(fb',fi;',fw',fw,fl;,fb)-

b | fb'
0:5'14/1‘05 oo mfe= gt p f{ fo

This determines the functor Cubn’m” : Cat, - Catn+1 :
(f:B>B")~( Cubf: CubB - CubB’ ),

called the functor Cube from Cat, to Cat, ;.

PROPOSITION 1. The functor Cubn,n,”: Cat, - Cat, , , admits a left ad-
joint LaxlerH_],n: Cat,, ,~ Cat, .
PROOF. Let A be an (n+1)-fold category, a’ and Bi the maps source and
target of the i-th category Al

1o We define an n-fold category A , which will be the free object ge-
nerated by A, as follows:

a) Let G be the graph whose vertices are those blocks e of A which

are objects for both A" and A™, the arrows v from e to e’ being the

objects of either A", A" or A™? such that
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a"a"lv=¢ and B"B"'IV =e'.
Hence the arrows of G are of one of the three forms:

Bn-lu Bn-ZBnt
B"@"” ~¢ ’
n-1_n

an-lu a ‘a’'t

where u, v, t will always denote objects of A", A" An'z, respectively.

b) If K is an n-fold category, we say that f: G- K is an admissible

morphism if f: G > K is a map satisfying the 8 following‘conditions:

()M v:e-e' in G, then f(v): f(e)~>f(e’') in K?.

(i) [A"" 1 6 L K% and (A" G _[.K® are funcrors
( where | Ai[j is the subcategory of A/ formed by the objects of Ab).

(1i1) !A”iC_.G _f,KHI is a functor, for

i<n-2 and j=n, n-l or n-2.
(iv) For each arrow v of G,

f(v):f(B"a" Doy f(a"Ta"2) » f(B" 18" 20) 0y f(a" B2 )
0 0

in the category K" .

f(B™ %) B 1)
fra2u)| A |8 u) [t iftamy)
n-2v

f(a ) f(lln-lt)

(v) |[A"|"2 C_,G__f_,K"'I and |A™1|""2 C_,GLK"'Z are functors.
(vi) For each block a of A,
. - -2
[(B" 2 a)o, 4 f(B"a)ogf(a"a)) = (f(B" Ta)opf(a"a))o, 1f(a"?a)
(these composites are well-defined, due to conditions (i-iv-v) and to the

fact that K is an n-fold category). This condition (vi) is equivalent to:
(vi') cra =(fB"a, fB”'Ia, fB" “a, fa"'za, fa n'la, fa"a)
{(B"1a)

f(B"2a) = f(a"a)

na f(an-2a)
f(8"a) f(a"1a)
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is a cube of K for each block @ of A .
(vii) If t'o ;¢ is defined in |A™?|™ | then
fltlo, st) = (f(t')oof(flnt))o,,_I(f(ﬁnl')Oof(t))-

With (iv) this means that f(t'on_l t) is the 2-cell of the vertical composite

up-square of K71:0.

f(@"‘lt'!
fgre) ey Ticare V4

(™) /f(z) f(a™) = |f(t'o,_;t)
fa™1t)

(viii) If t"o ¢ is defined, then
f(t7e ) = (f(B" 1 t")o of(t) )0, 1 (f(t")o, fla" " t)).

Hence, with (iv), in the horizontal category of up-squares of K*1-0 .

f/Bn-ltn)
T e = Pliete )
f(an-ll)

¢) By the general existence theorem of « universal solutions» [6],

there exist: an n-fold category A and an admissible morphism p: G > A
such that any admissible morphism f: G > K factors uniquely through p

into an n-fold functor f: A - K.

Indeed, if we take the set of all admissible morphisms ¢: G - qu with K¢

a small n-fold category, there exists an n-{old category gK(}S product in the

category of n-fold categories associated to a universe to which belongs the

universe of small sets. The factor
d: G —’qub rv }—>(¢(V))¢

of the family of maps ¢ is an admissible morphism, as well as its restric-

tion ®': G » K' to the n-fold subcategory K' of quS generated by the image
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®(G). As®(G) and K' are equipotent ( by Proposition 2 [4]) and ®(G)
is of lesser cardinality than the small set G, it follows that there exists

an isomorphism ¢y : K' - A onto a small n-fold category A . Then

is a «universal» admissible morphism, since each admissible morphism

b: G- K¢’ factors uniquely into
6=(G_P.A _@,Kq_,)) ,

where .
projection

- -1
a=(A YK c,gK¢ Ky )

Remark that the blocks p(v), for any arrow v of G, generate A .

d) An explicit construction of the universal admissible morphism
p: G~ A is sketched now (it will not be used later on).

(i) Let P(G)? be the free quasi-category of paths (v, ,...,v,) of
the graph G ; an arrow v is identified to the path (). On the same set
P(G) of paths, there is a category P(G)HI , whose composition is de-
duced pointwise from that of Al , for each i< n-2.1If r is the relation on

P(G) defined by:

(u'su)~u'o, ;ju if u and u' are objects of A",

(v'yv)-v'o v if v and v’ are objects of A"l

there exists an (n-1)-fold category Il quasi-quotient (Proposition 3 [4])
of P(G) = (P(G)o, ,P(G)”'2) by r ; the canonical morphism is denoted
by F: P(G)-1I.

(ii) We define a graph on [l : Consider the morphism

&' v |—>F(B"a"'2u, an-lan-2u)

from the graph G to the graph (II,a”, B8%) underlying the category I17.
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By the universal property of P(G), d' extends into a quasi-functor a”

from P(G)o to N7, and §": P(G)»> I is also a morphism, due ‘to the

pointwise definition of P(G)H'I . Moreover, @" is seen to be compatible

with r. Hence it factors uniquely into an (n-1 )-fold functor g : 1> II. The

equality da@f= &7 implies dd = @ . Similarly, there is an (n-] )-fold func-
tor B :11 1 such that
éf(v) = f(ﬁ"'lﬁn'2v , anB"'2V)
for each arrow v of G, and we have
é=ad, aB=8.
These equalities mean that Z‘}) is a graph, in which a block 7 of
Il is an arrow 7 :6{(m) ~ B(n) .

(iii) Let P(I1)"! be the free quasi-category of all paths PN 7%
of the graph (LI,&,B) (equipped with the concatenation). A block 7 of
[l is identified to the path <7>. On the set P(II) of these paths, we con-
sider the relation r’ defined by:

<Flu'), flu)> ~F(u'on_2u ), if u and u' are objects of A",
<f(v'), f(v)>~Ff(v'e, 5v>, if v and v’ are objects of AL
<F(B™2a), 7(B"a)oy i a"la)> - <7(B"a)o,F(a"a), F( a"2a)>
for each block a of A,
Fltlo, 1t) ~<F(t')oyflat), 7( B "t )o,f(t)>,
if t'o,_;t is defined in |A™Z|" s
(1", t) = <f( Bt )oyi(t), F(t" )o,f( a™1t)>,
if t"o t is defined in |A"'2l" .

(iv) For i <n-2, there is also a category P(II)! on P(II) whose

composition is deduced pointwise from that of [I’. There exists an n-fold

category A quasi-quotient of P(I) = (P(ID?, ..., P2, P(IH"*!)
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by r', the canonical morphism being 7': P (II) -» A . The composite map p:
¢P(6)—Lepc P -L-3

gives an admissible morphism p: G >A due to the construction of 7 and 7'.

(v) p: G A is a universal admissible morphism. Indeed, let f: G- K
be an admissible morphism. As f satisfies (i), it extends into a ( quasi-)
funceor f': P(G)o—» KO . by (iii), f:P(G)~ K%-m2 sa morphism
which is compatible with r (according to (ii)). By the universal property
of I, there exists a factor f": 1> K% "2 of f' through 7. The con-

dition (iv) implies that f" is a morphism of graphs
fr:(M,a,B) » (K1, qm 1, gmT)

so that it extends into a (quasi-)functor ™ P!, Kol defining a
morphism f™: P(II) » K (the composition of P(I)? being deduced pointwise
from that of [I°). The conditions (v,vi,vii,viii) mean that " is compa-
tible with r’. Hence f" factors through /' into an n-fold functor f AsK ;

and f is the unique n-fold functor rendering commutative the diagram

20 There exists an (n+1 )-fold functor 1: A » CubA :
al~1(a)=(pB"a, pB"a, pB"2a, pa"?a, pa"la, pda)

08" a

n
a - /r“pan-za pa-a

where p: G - A is a fixed universal admissible morphism.
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a) As p satisfies (vi') and as [{a) is the cube cp(a) considered
in this condition, the map [ is well-defined.

b) Suppose i< n-2. The composition of (Cubx)i being deduced
pointwise from that of TAHZ , for L: Al Cubx)i to be a functor, it suf-
fices that the maps

pa™ pB" pa™l, pp™1, pa™2, ppn?
sending @ onto each of the six factors of the cube [(a) define functors
Ais AiTI . Since a":A'> ! A"li is a functor and axiom (iii) is satisfied,
pa" defines the composite functor:
Ai_a” | AR At
~,

and similarly for the five other maps.

o) 1: A2 (Cub;‘ J"2 is a functor. Indeed, suppose a’o, ,a de-
fined in A™?. The composition of (CubX)nQ being deduced «laterally
pointwise» from that of A" | there exists l(a')o, ,l(a) =

(an(Z 'On_lana: an°1arOn-1an-la’ an-Zar’ pan-Za’ Pan-lalon_l P!Zn-la,

paa’o, ipa "a).

Now, by (v),
pa'a'o, ;pata=plata’o, ,a"a)=pa"(a'o, _,a),
which is also the right lateral face of the cube {{a'o n_2a). Same proof for
the other lateral faces. Finally, .
pa"%a = pa"'z(a’o e @/

is the front face of both l(a')on_zl(a) and Ifa’o n~2a) , whose back face
is pB™2a’. Hence, l(a'o, ,a)=1(a')o, ,l(a).

d LA L( CubA)™! is a functor. Indeed, suppose a'o, ;@ de-
fined. The composition of (Cubx )"’1 being the «vertical» composition, the

composite
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I(a)al(a)=(pB"a's,p B a, pB"la’, &', w,pa"la, pata'y pa’a)
an-Ial

a' A pa’a’

a A pa’a

1An-1

is defined; W is the 2-cell of the vertical composite up~square

/pa"'ga' )1‘0

which, by (vii), is equal to

p(a"'za'o a™24) = pan-2(a'0n_1a),

n-1
and this is the 2-cell of the front face of [{a'c _;a). Similarly, w' is the

2-cell of the back face of {{a’o,_;a).

/Pan-Za: ja"
7

Using (ii), we get
pa"a’o pa”a = pla" a'o,_ja"a)=pa"(a'o,_;a)
and idem with 3 instead of a . Hence I(a')8l(a)=1(a'c, _;a).
e) The same proof (using (viii) instead of (vii)) shows that [ de-
fines the functor [: A" > (CubA)" : if a'o a is defined,

pBMa’ pBe S S
S

l(a’)ml(a)=ﬁgan-2a, /pa"'ga = pa"'z(a'ona) =1l(a’s a).

30 1: A> CubA is the liberty momhism defining A asa free object
generated by A : Let B be an n-fold category and g: A » CubB an(nt+l)-
fold functor. The cube gfa) of B, for any block a of A, is written

gla)=(b", b}, w,w,,b,,b,).
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b’
77“—7
a bbulVuw, - f) ba

In particular,
gla"a) = b2, g(a"Ta)=0b2, g(B"a)=b", g(B"la)=1b'",

g(a"?a) and g(B"%a) are the degenerate cubes determined by

a"'ll;' BH-IB'
a 1A
n-lpr n-1 , n-ly: n-1
a ba /wa a ba and f3 ba /w; B""b, .
an-Jba Bn-lba

a) There is an admissible morphism f: G > B mapping v onro the
diagonal dg (v) of the cube g(v).
(i) As 6g(a)=(b;ooba)on_1 w, , we have
fla®a)=dg(a"a)=b,, f(a"la)=b,, f(a"%a)=uw,
ft"a)=by, f(B"a)= by, f(B"%a)=w,
so that
cf(a) =(fB"a, fB" la, {B"2a, fa " %, fa" la, fa"a) =
= (ba'y bt;’ w;> W, ba’ ba) = g(a)

is a cube, and [ satisfies (vi). It also satisfies (i) and (iv), because it

is more precisely defined by
flu)=1b,, f(v)=5b, f(t)=w,,
where u, v, t always denote objects of A", A , A2 respectively.
(i) |A?{" 1, 6 L. BY is a functor. Indeed, if u'o, ju is defined,
gluto, u) = g(u')mglu) = BB V0 = (b, 00b,)7
so that
flu'o, ju)=0dglu's, ju) =b,wopb, =flu')oyflu).
Similarly, [A"'I " C_.G—L>Bo is a functor, since
g(v%0,v) = g(v')ug(v)=(b,00b, % ,
S0 f(v'onv)=bv.oobv =f(v')oof(v).
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That IA"I"'2C...C—L>B"'1 and |A"’1|”'2C_.G L. B™! are functors
is deduced from the equalities
glu"o, u) = g(u")o, pg(u) = byvo, yby = (b w, 15,0,
8(v%0,.20) = g(v")o, p8(v) = 6w,y BT = (b,u 0,1 6,)%,
giving
flu"o, qu)= byropoy by, =f(u")o, ;flu)
and f(v"0, ,v) =f(v")o, ;f{v). Hence, f verifies (ii) and (v).

ﬂ BO? ﬂ v’ Av" Bn-f]
T R L 77 [t
(iii) For i< n-2, there is a functor 6:(CubB)i-* Bit! , since the

pointwise deduction of the composition of ( CubB) ! from that of Bi*! ,

and the permutability axiom in B imply:
d(egoye) =((bfo; 1b")op(bro,41b))o, w0y w) =
=((bjopbyJopgwy)opy ((blogb)o, qw)=0dcpo,  de,
if ¢c;o;c is defined in (CubB)i, with c=(b'",b",w', w, b,b) and idem
for ¢; with indices. The composite functor
|A/) &~ (CubB)! 2 B!

is defined by a restriction of f, for j = n, n-1 or n-2. So [ satisfies (iii).

(iv) If to ;¢ is defined in |A"'2|”'] , then g(t'o )= g(t')mg(t)

is the degenerate cube determined by the vertical composite up-square
-~

b,

o[ ey o, 12

b! /f(t) t B

o

so that its diagonal f(t'o,_;t) is the 2-cell @ of this composite, Therefore

[ satisfies (vii) and (by a similar proof) (wviii).

o) e | = Mo e
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b) This proves that f: G > B is an admissible morphism; so it fac-
tors uniquely through the universal admissible morphism p: G~> A into an

n-fold functor §: A>B.

B f CubB
g uo g
— p - A
A CubA {
(i) For each block a of A, the cube
gpp"a
pd ~—
gl(a) = /gpa"'2a
ngna A n-l
gpa""a

is identical to cf(a) =g(a) (see a), since f=gp ; so

(g:A>CubB)=(A_LocubA Cub& _cu1B).

(ii) Let g': A > B be an n-fold functor, rendering commurarive the dia-

gram

CubB
Cubg)
CubA

g
i A

We are going to prove that g'p = f ; the unicity of the factor of f through

p then implies §'= 2. Indeed, for an object u of A", from the equalities
lu)=p(u)® and glu)=g'l(u)=(§p(u))®
we deduce f(u)=dg(u)=g'p(u). If v is an object of A™L | then
Uv)=p(v)® glv)=(gp(v))% and f(v)=§p(v).

If ¢t is an object of A", the degenerate cubes [(t) and gft) = g'l(t)are
) 8 g g

determined by the up-squares

-1
pB ¢
T .
pB%t /P(t) pa™ and /g p(t) g'pa”t
n-1
pa” ¢,
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sothat f(t)=0dg(t)=§'p(t). Hence, §'p = f, and §' = §.
REMARK. To prove that g’'p = f, we could have used the relations

8Cub§'=§'5 and 5l(v)=p(u) for each v in G,
where 9 is the diagonal map from CubA to A .

4° For each (n+1] )-fold’small category A, we choose a universal ad-
missible morphism p4: GA > -/i ( where GA is the graph G above), for ex-
ample the canonical one constructed in 1-c; by the preceding proof, A is
a free object generated by A with respect to the Cube functor. A will be
called the multiple category of lax links of A, denoted by LaxLkA . The

corresponding left adjoint

LaxLk : Cat,, ;» Cat, of Cub : Cat, » Cat

n+l,n’ n,n+l1

maps £: A > A’ onto the unique n-fold functor
LaxLkh: LaxLkA > LaxLEA'

satisfying

deLkh(pAV) = pArh(V)

for each object v of A", A™T or A™2, \%

By iteration, for each integer m > n, we define the functors

Cub
-1 __.i_mﬂ.Caz ),

LaxLk LaxLk
LaxLk, =( Cat,~——"mm-lCap .. Cat,,, —"2tLiCar ).

Cub ‘
Cub, . =( Cat, ——"'ﬂl—-—Cat 412> Cat,

DEFINITION. Cub,  is called the Cube functor from Cat, to Cat, and
LaxLk, , the LaxLink functor from Cat, to Cat,.

COROLLARY. The Cube functor from Cat, to Cat, admits asa left adjoint
the LaxLink functor from Cat, to Cat, for any integer m>n > 1.
This results from Proposition 1, since a composite of left adjoint

functors is a left adjoint functor of the composite. V

REMARK. If B is an n-fold category, in the 2n -fold category Cu,bn,an the
2i-th and (2i+1)-th compositions are deduced respectively «verticaly» and

«horizontaly» from the composition of B*.
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C. Cylinders of a multiple category.

We recall that an n-category is an n-fold category K whose objects
for the last category K" are also objects for K"*2,

The full subcategory of Cat, whose objects are the (small) n-
categories is denoted by n-Cat . It is reflective and coreflective in Cat, .
More precisely, the insertion functor n-Cat C, Cat, admits:

- A right adjoint p,: Cat, » n-Cat mapping the n-fold category B
onto the greatest n-category included in B, which is the n-fold subcat-
egory of B formed by those blocks b of B such that "1 b and g™ b

are also objects of B"? (those blocks are called n-cells of B ).

<_Bn-l

- A left adjoint A Cat, » n-Cat , whose existence follows from the
general existence Theorem of free objects (6] (ies hypotheses are sa-
tisfied, n-Cat being complete and each infinite subcategory of an n-cat-
egory K generating an equipotent subm-category of K ). In fact, A,(B)
is the n-category quasi-quotient of B by the relation:

u ~a"?u for each object u of B,

1° The multiple category CylB.

Let n be an integer, n > 2, and B be an n-fold category.
DEFINITION. The greatest (n+] )-category included in the (n+] )-fold
category CubB of cubes of B is called the (n+l -category of cylinders
of B, denoted by Cyl B .

So a cylinder of B is a cube of the form

g, =(Bby, by wh,w, bya%,)

&>
TS

its front and back faces «reduce» to the 2-cells wy and w; of the double
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category B" 1,0, Wwe will write more briefly
q; =[bi, wi, wy, bI]'
The composition of { Cyl B), for i <n-2, is deduced pointwise
from that of B** 1 The (n-2)-th composition of Cyl B is:
9900291 = [bhon 1 by whwy, byo, ;1 by iff wy =wy,
so that the objects of (Cle)"'2 are the degenerate cylinders «reduced

to their front face» [B" 1w, w,w,a”1w], denoted by we, for any 2-

cell w of B*1:0,

;Cle)n-z A Cyl B!

(CylB)"
The (n-1)-th composition of Cyl B is the vertical one:
gpeq; =lbj,wp, ;w), wyo, Jw;, b1 iff b} =bg,
and its objects are the degenerate squares b2, for any block b of B.

The n-th composition of Cyl B is the horizontal one:

gumq; =Lbyogby, wyopw!, weoqwy, byoyb,l ittt b1 =alb,
(which is deduced pointwise from the composition of B? ); its objects

are the degenerate squares e®, for any object e of BY.

REMARKS. 1° The cylinder ¢; of B may be identified with the square
14
Wi

b1i N;

ey 1

Bn-I,O

of B"*! | in which w; and w; are 2-cells of ; in this way, CylB

is identified with the greatest (n+] )-category included in

Sq( Bn-l,l,..l.,n-2,0)0,. s, n=3,n-1,n,n-2

20 (CubB)"'I’” is identified with the double category of up-squares
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of the 2-category ( Cyl B)™*Is™ by identifying the cube

c=(b’,b',w',w,l;,b) of B

with the up-square

b8\ g bE where ¢ = [b%0yb,w’,w, b’ yb].
be |

2° The functor Cylinder,

If f: B> B’ is an n-fold functor, there is an (n+] )-fold functor
Cylf: CylB »> CylB": [ b}, wy,w;, b1 L1y, fwy, fw,, fb,]
restriction of Cub f . This determines a functor

Cyln’rH_]: Cat, > Cat, , ,: [~ Cylf,
called the Cylinder functor from Cat, to Cat, ;. Remark that this func-

tor is equal to the composite

Cub w
+1 ‘ C
Cat, —— 2240 Car  —2 L, (n+] fCat ¢ Cat,

where p, ., is the right adjoint of the insertion.

PROPOSITION 2. The functor LaxLk Cat, ., » Cat, is equivalent

n+l,n’
to a left inverse of Cyly, iy Caty > Caty .

PROOF. We are going to prove that, for each n-fold category B, the n-
fold category LaxLk(CylB) is canonically isomorphic with B . It fol-
lows that, in the construction of the Lax Link functor (Proof, Proposition
1), we may choose B as the free object generated by CylB, for each
n-fold category B (remark that Cy/ B determines uniquely B ); in this

way, we obtain the identity as the composite

Cyl Lax Lk

n,n+] n+l,n
Cat, ———"— Cat, » Cat, .

To prove the assertion, we take up the notations of Proposition 1, Proof,
with A = Cyl B, A =LaxLkA and p: G->A the universal admissible
morphism.

10 A s generated by the blocks p(b%), for any block b of B .In-

deed, the arrows of the graph G are the objecfs b® of the vertical cat-
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egory of cylinders A"l and the objects w® of the category A™"? (each
object of A" being also an object of A" ); the n-fold category A is ge-
nerated by the blocks

o(b%) for any block b of B and

p{we) for any 2-cell w of the double category B"-1.0,

o] =

Now, given the 2-cell w, there is a cylinder ¢ =[x x',w,w)] of B,
where x'= 8" Iw:e-e' in BY. Applying to ¢ (considered as a cube)

the axiom (vi) satisfied by the admissible morphism p , we get

o(x'8) °n-1‘(p(e’s)°op(w°)) = (p(e'E)oop( wE))on_Ip(x"") ;
as p(x'®) is an object of A" and p(e®) an object of Al (axioms (i)
and (iv)), this equality gives p(w°)=p(wE). Hence A is generated
by the sole blocks p (5%).

20 a) To the insertion Cyl B ¢, CubB is associated (by the adjunc-
tion between the Cube and Lax Link functors, Proposition 1) the n-fold
functor §: A » B such that

Ep(b%)=09b%=b foreach block b of B

(this determines uniquely § by 1).

B CubB
ép &' Cubg ~

- - > Cy[ B
A CubA !

b) There is also an n-fold functor
g':BoA:blp(bE).
Indeed, &' is the composite functor

8 ’ -
B - ‘(C lB)n-l'n,O,...,n-2 o A
—— Y \G/p'

=}

where -F is the canonical isomorphism b | b% onto the n-fold category
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of objects of (CubB)"'I (Section A-3) and where p' is a functor accord-
ing to the axioms (ii,iii,v) satisfied by p .

¢) £' is the inverse of §. Indeed, for each block b of B we have
BE8'(b)=§p(b%)=b and §'E(p(b%))=8'(b)=p(b").

These equalities mean that §g' is an identity, as well as §'gZ, since the

blocks p(b%) generate A by1l.S0 g'= g'l .
30 Let f: B > B’ be an n-fold functor, and
gp:B'> LaxLk(CylB'): b’ i—»pB.(b’E)

the isomorphism similar to g'. The square

LaxLk(CylB'j—_SB' B
LaxLkf f
A g’ B

is commutative, since, for each block bof B,
LaxLEf(§'(b))= LaxLkf(o(b%)) = ppu(f(b)3) = 8 f(b)

(by the construction of LaxLink , Proposition 1). This proves that the

functor

LaxLk

Cyln n+tl nt+l,n

Catn ———d Catn +7 Catn

is equivalent to an identity. V

COROLLARY 1.If h: CylB~ CylB'is an (n+l1)-fold functor, there exists
a unique n-fold functor f: B » B’ such that h = Cylf.

Indeed, this expresses the fact that B is a free object generated

by CylB (Proof above) with respect to the Lax Link functor. V

COROLLARY 2. For each integer m > n> 1, the LaxLink functor from

Cat, to Cat, is equivalent to a left inverse of the functor Cyl, , =

Cyl Cyl
(Catnm—}’—'iﬂi—l—» Cat,,; » se > Catm_l_ZﬂﬂAL”-—Catm ). v

REMARK. Proposition 1 may be compared with the fact that the Link func-

tor is equivalent to a left inverse of the Square functor (Proposition 5
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[51). However the Laxlink functor is not equivalent to a left inverse
of the Cube functor. Indeed, B and LaxLk(CubB) are isomorphic iff
each {n+] )«fold functor A: CubB » CubB' is of the form Cubf. A coun-
ter example is obtained as follows, Let B be the double category (2,29%%)
so thar CubB = (g2 dis =9, m2) , where 2= ]+%-0,

18 20 z 1
‘i"/q o ' / s
822 zE<\Jz o2 s zl s |0 1l s' jz
s e B 08
0 1 z Q 1. z

Let B' be the 2-category (Z5,Z,), where Z, is the group {e, &} of
unit £ . The unique triple functor A: CubB - CubB' mapping s and s’

onto the degenerate cube

<]
Jd e e

is not of the form Cubf: CubB » CubB' for any double functor f: B- B,

3° The functor n-Cyl.
The Cylinder functor from Cat, to Cat, ., taking its values in

(n+] )-Cat, it admits as a restriction a functor

n-Cyl;: n-Cat » (n+1 )-Cat .

P ROPOSITION 3, The functor n-Cyl: n-Cat » (n+1 }~Cat admits d left ad-

Joint which is equivalent to a left inverse of n-Cyl.

PROOF. By definition of the Cylinder functor, n=(yl is equal to the
composite functor

Cub
n-Cat C_.Catn——u—’-‘-&-”—i'—L» Cat, . —ﬁ-ﬂ——(nﬁ-l J=Cat,

where p,,; is the right adjoint of the insertion. So this functor admits

as a left adjoint the composite functor

A
(n+l1)-Cat C, Cat, +1-~--—--—«——'3_+—li> Cat, -~—L—+n-Cat,

where A, isa left adjoint of the insertion (which exists, as seen above).

The free object K generated by an (n+l])-category K with respect to
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n-Cyl is the n-category reflection of the n-fold category LaxLkK . In par-
ticular, if K = CylB for some n-category B, then LaxLkK is isomorphic
with B! (by Proposition 2), hence is an n-category, and K is also iso-

morphic with B.  V

COROLLARY. The composite functor (n,m )-Cyl =

( n-Cat n=Cyl, (n+1)-Cat > ... »(m-1}Cat Lm-1}Cyl | m-Cat )

admits a left adjoint equivalent to a left inverse of (n,m )-Cyl. 'V

D. Some applications.

1° Existence of generalized limits.

An (n+] )~fold category H is representable (Section C-2 [4] )if
the insertion functor |H|{" C. H" admits a right adjoint, where |H|" is
the subcategory of H" formed by those blocks of H which are objects
for the n first categories H ; in this case, the greatest (n+/ )-categ-
ory inciuded in H is also representable.

Remark that the order of the n first compositions of H does not
intervene: H is representable iff so is HY(0)seesy(rel)on ¢4, any permu-
tation vy of {0,...,n-1}. More generally:

DEFINITION. For each i <n, we denote by H ol the (n+1)-fold cat-

egory HO,...,i-I,i+1,‘..,n i

obtained by «putting the i-th composition at
the last place», by [H[L the subcategory of H formed by the blocks of
H which are objects for each B/, i# < n.We say that H is represent-
able for the i-th composition if the insertion functor |H|L <. H' admits
i

a right adjoint (i.e., if H***" is representable).

So, H is representable for the i-th composition iff, for each ob-

ject e of H*, there exists a morphism ne:u-»e in H with u a vertex

of H, through which factors uniquely any morphism n:u'-> e of Hi with
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u' a vertex of H, so that
n=neo;/n/, where /n/:u'>u in TH|E.
ne is called an i-representing block for e.

From Proposition 11 [4], we deduce thar, if H is representable
for the i-th composition and if |H|? is (finitely) complete, then the n-
fold category IHilo,-.-,i‘l,i+],...,n f'ormed by thE Objects of Hl is H...,i-

wise (finitely) complete.

Let B be an n-fold category, for an integer n > ] . The three fol-
lowing propositions are concemed with the representability of S¢B, CylB

and CubB for the three last compositions. From the isomorphism
B 0-2i(cubB)*-! |0"--’”'2’"=|(SqB)"'1 Ose2esm=2:7, p 4w p©

it follows that:
- | CubB|"=18¢B|" is isomorphic with |B1?,
- | CubB|**? and | SqB|"? are isomorphic with | B|""! .
- the vertices of CubB, SgB and Cy/B are the degenerate cubes

ua, where u is a vertex of B,

P ROPOSITION 4. ]9 [f B is representable for the 0-th composition, then
SqB is representable for the n-th and (n-1 )-th compositions.
2 If B is representable, then CylB is representable for the (n-2 }-th

composition.

PROOF. 1° As thecategories
(S¢B)"= wBY? and (S¢B)"!=gB?

are isomorphic as well as [SgB|" and |SqB|"'1 (isomorphic with |B | 0,
the (n+1 )-fold categories S¢B and (SqB)“""'I are simultaneously re-
presentable. Suppose that B0 s representable and that b® is an ob-
ject of (SgB )" ; let n:u-»e be the O-representing block for e =a%,

B is a ver-

Then sb =(b, boyn, n,u) is a square and aPrsb)=uP=u
tex of SqB. If s =(b,b",b,u') is a square of B with u' a vertex of
B, and if /b/ is the unique factor of b through 7, then /b/%:u'8 u®

is the unique morphism of | SgB|"™ such that sb [13/1‘)‘/E = s, since
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Hence sb is an n-representing square for b7,
2° Suppose that B is representable and that w© is an object of the
category (Cle)"'2 (so that w is a 2-cell of B*"1+0 ). The same method
proves that there exists an (n-2 )-representing cylinder for w?, which is
quw =[w°07]’3 w, i, 77,] ?

where n':ru- e is the n-representing block for e =a"w. (This can

' u
n
-y
é :/bl/
b] u,
also be deduced from 1 using Remark 1-C, by a proof similar to that which

will be used in Proposition G.) \Y

COROLLARY. Jo If B0 is representable and if | B|? admits ( finite)
limits, then B9 admits SqB -wise ( finite ) limits.

2 If B is representable and if |B|"! admits ( finite ) limits, then
the greatest n-category included in B0 is (CylB )" 2-wise ( finite-
ly } complete.
PROOF. The first assertion comes from Proposition 4, and the remarks
preceding it. The second one uses the fact that 1CleI"'2 is isomor-
phic with |B|{? and that | (Cle)"'2|0""’"'3’"'l’" is isomorphic with
the greatest n-category included in B0, V
REMARKS. 1° CylB is not representable for the (n-1 )-th composition.

20 If C is a representable 2-category, the double category @ (C) of

its up-squares is also representable [3] and Part 2 of the preceding co-
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rollary applied to B = Q(C) gives Bourn's Proposition 7 [2], since a
(CylB) " 2.wise limit is an analimit in the sense of Bourn, | B|! «is»
the category of l-morphisms of C and C «is» the greatest 2-category in-
cluded in Q (C)T' 8,

PROPOSITION 5. If B is representable and if |B|""! admits pullbacks,
then CubB and S¢B are representable for the (n-2 )th composition.

PROOF. For each object e of B" ! we denote by ne:re-»e an{n-1)-
representing block for e. '
1o If by:u;»e and b, u,~ e are morphisms of B™! with Uy, Uy

vertices of B, there exists a «universal» square

of B™! with p; and p, in \B|1™! (called a | B|" I-pullback). Indeed,
by hypothesis, there exists in | B|®"! a pullback

/bl/ p.l
‘ /by P
of the factors / b,/ of b, through ne, and
b2on_1p2 = 77e°n-1/b2/ On-1p2 = b]°n-1P1‘

If

€]
u'

A

is a square of B""! with e; and ey in lB{n'l, then /b;/0, ;e; and
/by/ o, ;€4 are both equal to the factor of bjo, ;e = bgo, ;e, through

ne, so that there exists a unique

751



A.& C. EHRESMANN

lepel:u">u in |B|™1
factorizing (€;,€,) through the pullback, i.e. satisfying
Prong lepesl =e; and pyo, ;lejen]=ce,.
20 Let k be an object of (CubB)™ "2, which is a degenerate cube

«reduced to its front face»

a) Construction of the (n-2 )-representing cube for. k. By 1, there

exist | B|"-pullbacks

ki 4

As p,p',p,p' are in particular objects of B, the composites ¢ and

é* are defined and admit a | B|" ! -pullback

@'= (775'0,1-1[3')00(7760,,_157)

-1
’Bn w poed ' ’ -~
b = 0ol (o, 1p"Jog(née, 15)) .

The construction has been done so that ck =

(neo, ;po, 1P néo, 1B, 1P w,u,néo, sho, 1P, meo, jPoy 1P')
be a cube of B .
b) Universal property of cx. Let ¢ =(b’, 5',w,u', l;,b) be a
cube with z' a vertex of B and B"'2c = K, (this means:
B R TS TR
If /b/ and /5’/ are the factors of b and b through ne and né’ there

is a square 0 -
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whose diagonal is
a®né’e, /b =a%(né'e, ; /b)) =a% =B =B%nec, ,/b/.
By the universal property of the }Bln'l-pullback P1, there is a unique
(6, b]:u"> an-lp in !BI"'I
such that
ﬁ'on_l[ b',b]=/b'/ and po,_; L&', b1=/b/.
In the same way, using the equality b= B, the factors /b'/of b’
through ne' and /b/ of b through né factorize through the |B[”'1-pull-
back P2 into a unique
[b',5]: u’ ™1 in |B|™T.
Using the permutability axiom in B and the fact that p’ and p are ob-

jects of B? | we find the square

2 (5, 5]
[67,5]

6o 15" b1 = ((né'o, 1B"Jog(neo, 1pJjo, 16", b] =

since

= (né'o, ;B0 ;16" 610, (neo, pJo, L 6% b1) =
= (&0, / 6"/ Yoglneoy, ;/b/) = b'ogh,

and similarly
d)on_l[b',b]= won_l(b'oob)= de = b'oob.

This square factorizes through the | B ]"'1 -pullback P3 into a unique

e”:u'»>u in |B|™T,
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We have ck on_2e"5 = ¢ , since

neo,_jPo, P o, z€” =neon_1pon_1[l;’, bl =neo, ,/b/ =b,
and idem for the other lateral faces. The unicity of the different factors.
implies that e¢”® is the unique cube /¢/: u'P>u® in | CubB|" 2 (iso-
morphic with | B|*) such that cko, o/ ¢/ = c. This proves that ck is

an (n-2)-representing cube for « .
30 Let k be an object of (SqB)"'z. Then k is of the form consi-
dered in 2 except that now
w=2é,e=e'o,é.
The (n-2 )-representing cube ¢k «reduces» to a square ( w being an ob-

ject of B™"1 ), and it is also the (n-2 )-representing square for «. V
] g sq

COROLLARY. [f B is representable and if | B ["'1 admits ( finite ) limits,
then L(CubB)""?[a""’n"?’”'l’" and Sq({B"11%"2) admit respec-
tively ( CubB )" 2wise and (SqB)""n'2-wise ( finite ) Limits.

PROOF. This results from Proposition 5 and the remarks preceding Pro-
position 4. In fact, |{(CubB)?2|0:+»r=3:n-Lin (is formed» by the up-
squares of the greatest 2-category included in B™1:0 | its two last com-
positions are the vertical and horizontal compositions of up-squares, and

its i-th composition, for i < n-2, is deduced pointwise from that of Bit!,

PROPOSITION 6. If B is representable for the 0-th composition and if
IB|? admits pullbacks, then CylB, CubB and (CubB ) ™1 are re-

presentable.

PROOF. 1° Let B' denote the n-fold category B**I»1ss"2,0 gedyced

from B0 by the permutation

(l,e.0,n-1,0)~(n-1,1,...,0-2,0)
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on the order of compositions. There is a canonical isomorphism
f: CleSK:[b},wi,wl,bI] s> (wy, by, b wy)

I

57
w}f 1 Hw;

TR J

(Remark 1-C) onto the greatest (n-i;] )-category K included in the (n+1 j

fold category (SqB')"""'Z. As B0 s representable, so is B', and
|B'{"1=|B|% admits pullbacks. By Proposition 5, SgB' is represen-
table for the (n-2)-th composition, as well as its greatest (n+])-categ-
ory K, and also the isomorphic (n+1 )-category Cyl B . More precisely,
let ¢® be an object of (CylB)" (so that e is an object of BY? Y3 then
e®=freT) is an object of (SqB‘)”'2 which admits an (n-2 )-represen-
ting square
ceE=(bé,g;,£e, b,): 25 e® in K"2,

the cylinder of B :

-

firce®)=1b1,b0,b,,5,)

e

is the n-representing cylinder ge for e®. If g: u'™> ¢T in (CylB)" with
»3

14

u' a vertex of B, its unique factor e¢"® through ge is such that "% be

the factor of f(q) through ce®.

20 Let b® be an object of (CubB)" , b ¢B . We are going to cons-
truct an n-representing cube for bT . Suppose b:e’» e in BY.
a) By 1, there exists an n-representing cylinder
qe =[5;, wl, w,, 85] for T,
Applying Part 1 of the proof of Proposition 5 to B***? instead of B (we
interchange the (-th and (n-])-th compositions), there exists a IB]O-
pullback P of the following form, where ne’ denotes the O-representing

block for e’
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bogne’
cb = (b, bloyp’, wio,p’, w,o,p’s ne'o,p,u)

is a cube, since its diagonal dcb is:

4

(b;:o()l;’)on-l(weooﬁ') = (be'on-lwe)oop

r —

=dqe op
= (w0, ; be )ooﬁ' = (wéooﬁ')on_l(boone'ooﬁ).

by Let ¢ =(b,b",w',w,b,u’) be a cube with u' a vertex of B.

Then the factor /q/ of the cylinder ¢ =[b',w’,w, bo ,b] through ge and

the factor / b/ of b through ne' determine the square

be /a/

“

bogne’ 7b/

because
boone'oo/b/ = boob = be oo/q/ .

This square factors uniyquely through the | B lo-pullback P into a morphism

{g,bl:u"»u in lBlO :

It follows from the construction that cbm[ ¢, 1% = ¢, since
ne'oypoyly, bl=ne'o,/b/ = b, weooﬁ’oo[q, bl =w,o,/q/ =w,
and idem for the other terms of ¢ . Moreover, the unicity of the successive

factors implies that [ ¢, b]® is the unique*morphism / ¢/ of |CubB|" sa-




MULTIPLE FUNCTORS IV

tisfying ¢b @/ ¢/ = c. Hence cb is a representing cube for 5%,

¢) (CubB)--"1 is representable. Indeed, let B’P, be the n-
fold category obtained from B by replacing the (n-I1 )-th category B™-!
by its opposite. Bg{’l and B being simultaneously representable for the
0-th composition (B"*! and (B""1)°P have the same objects), Cub(Bs’_jl)
s representable by Part 2. There is a canonical isomorphism «reversing

the cubes» F:( CubB)* 5 ( CubB2P, J":
(b b whw, b,b) (b b w,w',b,b),

0 :
BTL-]/ ‘J‘_ - |y<_L ~
b e Wb bﬁf//b i (BDyor
=5 =7

which maps | CubB|**1 onto ]CubB;’f}Z]” . Hence (CubB)~"1 is also

representable. V

REMARK. F defines an isomorphism (CubB ;"1 — (Cub B:F])gf)g .
The (n+1)-fold category Cub(B?P)) might be called the multiple categ-
ory of down-cubes of B (by analogy with the notion of a down-square

of a 2-category ), denoted by Cub‘B.

COROLLARY. [f B is representable for the 0-th composition and if 1B1Y
admits ( finite ) limits, then B0 admits CubB-wise ( finite ) limits.
n-1

This results from Proposition 6, since |{ CubB)™|% "] is iso-

morphic with B¢, ¥V

2° A laxified internal Hom on Catn .
Imitating the construction of the cartesian closed structure on
Catn given in Section C [5], we define a «closure» functor on Catn by
replacing the Square functor and the Link functor respectively by the

Cube functor and by the LaxLink functor.

Let LaxHom, : Catl¥? X Cat, » Cat, be the composite functor

idX Cub o -
— T M2r | CatP X Cat _tdXy, Cat’P X Cat
n 2n n 2n

Cat, Hom(-,-)

Catg? xCat,
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where :
-y CaiQn—» Caty, is the isomorphism «permutation of the compo-

sitions» associated to the permutation
y: (0,0, 2m-1)b+(0,2,...,2n-2,1,3,...,2n-1),

which associates to the 2n-fold category H the 2n-fold category HY in
which the i-th category is H?? and the (i+n)-th category is HZ! %I
for eachi<n.

- Hom(-,-) is the restriction of the internal Hom functor of the mo-

noidal closed category (HCat ®, Hom ) (defined in [4]); it maps the

n?
couple (A, H) of an n-fold category A and a 2n-fold category H onto the
n-fold category Hom(A ,H) formed by the n-fold functors f:A - HO»---»n-1

the i-th composition being deduced pointwise from that of H*1? for i< n.

DEFINITION. The functor LaxHom, : Cat;;pXCatn » Cat, is called the

laxified internal Hom on Cat, .
If A and B are n-fold categories, then
LaxHom, (A,B) = Hom(A,(CubB)Y)
is formed by the n-fold functors

h:A -(Cub B)O’Z;---,2ﬂ'2,

n,2n
the i-th composition being deduced pointwise from the (2i +] )-th compo-

sition of Cub B (itself deduced chorizontaly» from the composition

n,2n
of BY, as remarked at the end of Section B).

PROPOSITION 7. For each n-fold category A, the partial functor
LaxHom, (A,-): Cat, - Cat,

admits a left adjoint -QA: Cat_ - Cat, The corresponding tensor pro-
duct functor @: Cat, X Cat, » Cat, admits as a unit the n-fold category
1, on the set 1 =101.

n
PROOF. 1° a) Since LaxHom, (A, -) is equal to the composite

Cub

Cat, n,2n Catzn y Cath Hom(A")ACazn,
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it admits as a left adjoint, denoted by -®A : Cat, ~ Cat, , the composite

functor
~-] LaxLk
Cat, -mA Caty, Y Cat, 2n,n Cat,,

n?

where -®A is the partial square product functor, left adjoint of Hom (A, -)

(see [4]) and LaxL/rgn’n is the left adjoint of Cub, , (Proposition 1,

Corollary 1). So, if B is an n-fold category, we have
) -1
BOA = LaxLk,, (BwA) |
-1
where (B ®A) s the 2n-fold category in which
- the 2i-th category is BYiS x AT
- the(2i+])-th category is B! X;Adis Jfor i< n.
b) There exists a functor '
@: Cat, x Cat, -~ Cat,
extending the functors -@A | for any n-fold categorv A . This comes from
the fact that the right adjoints Laxflom (A,-) of -QA are all restric-
tions of the functor Laxf/lom, . The functor @ maps the couple
ff:A->A", g:B-B")

of n-fold functors onto the n-fold functor g®f: BQA » B'®A’ corresp-

onding by adjunction to the composite n-fold functor:

[ ! L2
B_E.B' . lom(A’,B'@A") Hom([.B'®A") 1omeA B'@A")

where [ is the liberty morphism defining B'®A' as a free object gene-
rated by B’ with respect to Hom(A',-).
20 @ admits 1, as a unit (up to isomorphisms): We have to cons-
truct, for each n-fold category A , canonical isomorphisms
I,@A 3 A3 Ael ,
where

-1 -1
1,0A = LaxLk (1,wA) and AR, = L“"Lan,n(A LI SR

2n,n
Now, there are isomorphisms:
-1
-(0,a)t~a from (1, @A)  onto the 2n-fold category
A=(A0, A, AT, A%Ee)
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such that A2 = A’ and AZit1_ )_\dis ,fori<n,
-1
-(e,0)>a from (Am] )~ onto the 2n-fold category

A= (Adis A0, . Adis an-ly

such that A2 = A95S ang AZHT LAY g0 j<n,

Hence, it suffices to construct isomorphisms

A5 LaxLhy, A and A 5 LaxLk,,  A.

2n,n
For this, we first prove the assertions 2 and b:
a) If B is an (m+1)-fold category such that B™ is the discrete
category on B, then LaxLkH = Hm-1,05..0m=2
Indeed, an (m+] j-fold functor g: H > CubK , where K is an m-
fold category, takes its values into the objects of { CubK )™ (we use that

H™ is discrete), so that it admits a restriction

g,: HO,...,m-] 5 j(CubK)’”lo’""”"I .
Then,

g=(H0""’m-1 g' |(CubK)m‘0,...,M-I (_ﬂ])-l

Kis-eesm-1,0 )

is an m-fold functor, as well as
g:Hm-J'O"“’m-2"K,‘7]""k if g(n):km

This determines a 1-1 correspondence g}~ ¢ from the set of (m+] )-fold
functors g: H- CubK onto the set of m-fold functors H™1:0>---»m=2 L K
It follows that H™ 1:0>--sm-2 s 5 free object generated by H with res-
pect to the functor Cubm,m_H: Cat,, - Cath , and we can choose it

as LaxLkH (Proposition 1).
b) If H is an (m+1 )-fold category such that H™ "1 is discrete,

then LaxLkH ~H™:0r-om2 The proof is similar, using the isomorphism
|(CubK)™1|0seem=2im__(-B)  gl,oim-1,0

c) Applying a to the 2n-fold category A whose last composition
is the discrete one, we find an isomorphism
LaxLkA ~ (A™T,A0, Adis,  AP-2 Adis),

-

and by iteration, 1, ®A ~ LaxLk A may be identified with A . Simi-

2n,n

760



MULTIPLE FUNCTORS IV

larly, we deduce from b that
LakaA ~ (An-I’AdiS’AO’". ’Adis’ An-Z) ,

and by iteration A @1 =~ LaxLk A may be identified with A. V

2n,n
COROLLARY. The vertices of LaxHomn(A,B) are identified with the
n-fold functors from A to B.

PROOF. These vertices are identified [4] with the n-fold functors

f: 1, » LaxHom,(A,B),

which by adjunction (Proposition 7) are in 1-1 correspondence with the

n-fold functors A 3 1, QA ->B. \%

EXAMPLES.
-1
1o Let A and B be n-fold categories. Then L = Lax Lk((B ®A)Y Jis
generated by the blocks

p(u;a)) p(b,U), p(taa),
where a and b are blocks of A and B, where u, v, ¢ are objects of
B™I, A™1 apq B"-? respectively, and where p is the universal admis-

sible morphism used in the construction of LaxLink (Proof, Proposition

1). In particular, for any couple (b,a ), there exist blocks of L

p(an'2b,a), p(Bn'zb,a), <b,a>=p(b,'8”']a)oop(a”'1b,a).

p (4 B a)——
dis n-Zt . n-]b a
B <A p(a”zb,a) pla sa)

’Bn-2xAdi.s

Bn-] « Adis

So L may be seen as an cenrichment» of B xA by the blocks p(¢,a),
for each object t of B"?. By iteration, B ®A is an «enrichment», or
a « laxification» of B xA .

2° For n = 2, the 4-fold category (Cub, ,A) is defined in a si-
milar way as the 4-fold category of frames (Sq2,4A)y (Example, Sec-
tion C [5]), by replacing the frames, which are «squares of squares» by

«full frames», which are «cubes of cubes». Then LaxHom2(A,B) has
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a description analogous to that given for Hom,(A,B), except that frames
e «

7T

.

are replaced by full frames; the vertices remain the double functors A - B
(Corollary, Proposition 7). In particular, if A and B are 2-categories,
the greatest 2-category included in LaxHom,(A,B) is the 2-category
Fun(A,B) introduced by Gray [7 1, and the tensor product B @A admits

as a reflection the 2-category tensor product constructed by Gray [8].

COMPLEMENTS. Other closure functors.,

1o A closure functor on the category n-Cat of n-categories is de-
fined by the same method as above, replacing the Cube functor Cubn,,b,n
by the Cylinder functor (n, 2n Cyl (Section C), and there is also asso-
ciated a tensor product on n-Cat.

20 In the last Remark of 1-I), we have defined the {n+] )-fold category

of down-cubes of B ; it gives rise to a functor « Down-cube» Cub from

n,2n
Cat, to Cat,, , and as above to a «laxified» internal Hom functor on Cat,,
denoted by Lax Hom,t, for which Proposition 7 is also valid, with a ten-
sor product functor o having I, as unit. '

39 The tensor product functors & and 9‘ on Cat, are not symme-
tric, one being in some sense the symmetric of the other. More generally,

we may replace the cubes by «laxified cubes» in which the 2-cells w'

and w of B*1'¥ would be replaced by «strings of 2-cells of B*-1.0,
P

n 13
\--_~ Wit %\w!

(with respect to the category B™*1 ), .

«
b ’
——

=
Wa

hmme

This gives rise to an (n+] )-fold category LaxCubB, containing both

b'y

4
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CubB and Cub‘B as (n+1 )-fold subcategories. The constructions of
this paper may be generalized in this setting.
4° «Less-laxified» intemal Hom functors on Cat, are defined by re-

placing in Proposition 7 the composite Cub, , ~of Cube functors by a

n
composite in which at some steps Cubm’mH is replaced by Sqm,erI .
Then Proposition 7 remains valid, so that we obtain different tensor pro-
ducts of the couple (B,A) of n-folci categories, the «smallest» one being
the cartesian product B xA (corresponding to the internal Hom functor
constructed in [5], where only Square functors are ta'ken), the «great-
est» one being B® A (where only Cube functors are used); all admit 1,
as a unit up to isomorphisms. In Part {II, we have constructed an(n+1])-
category Nat, «gluing together» the n-fold categories Hom, (A,B), for
any n-fold categories A and B . If i is an internal Hom functor other than
the «cartesian closure functor» Hom, , there is no (n-@])-fold category
on the n-fold category coproduct of the multiple categories H(A,B), the

canonical composition functor
#:H(A,B)@H(B,K) > H(A,K)

admitting as its domain a tensor product and not a cartesian product.

50 The constructions of Square, Link, Cube, LaxLink , and so the
results given in Parts Il and IV may be «intemalized» (without essen-
tial changes) for multiple categories inftemal to ) a category V with com-
muting coproducts (see Penon [8] and Part ITI, Appendix ) and cokemels.
Indeed there exist then free categories in V generated by a graph in V

and quasi-quotient categories in V.

3° Characterization of multiple categories in terms of 2-categories.,
The construction of Lax Link will be used now to prove that each
double category «is» a double sub-category of a double category of squares

of a 2-category.

PROPOSITION 8. Let Q: 2-Cat > Cat, be the functor mapping a 2-cat-
egory C onto the double category Q(C) of its (up-)squares. Then Q ad-
mits a left adjoint String: Cat,~ 2-Cat .
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PROOF. ) may be seen as the composite of the four functors

~1,0 i 1,2
2-Cat C_,.Caty X, Cat, Cub_ Cat, -1 » Cat, ,

where )71’0 is the isomorphism «interchanging the two compositions» and
where | ~|1:2 is the functor mapping a triple category T onto the double
category formed by the objects of the O-th category TY . These four func-
tors admitting left adjoints, their composite ( admits a left adjoint, cons-
tructed as follows:

Let A be a double category and A be the triple category with the
same blocks (A%S,A0,Al) whose 0-th category is the discrete categ-
ory on A (it is the free object generated by A with respect to | —|1*Z, by
Proposition 9, Part II). The free object (LakaI\)I’o generated by A

with respect to
51,0
Cat2 .Z.—.» Cat2 ..QE_b»Cat‘g

is a 2-category whose l-morphisms are equivalence classes of strings of
objects of alternately A’ and Al and whose 2-cells from e to ¢’ are

classes of strings of blocks of A :

e v
’r.
LLP ap up
vp ~\\\
~. ,
s vp
4
uj a; Uy '
) 1}0
! u
uo ao 0
’UO e

This 2-category is the free object generated by A with respectto Q. It
will be called the 2-category of strings of A , denoted by StA. V

COROLLARY. The functor String: Caty > 2-Cat is equivalent to a left

inverse of the inclusion: 2-Cat ", Cat, .

PROOF. It suffices to prove that, if C is a 2-category, St C is isomorphic
to C. Indeed, let I: C» Q(StC) be the liberty double functor. As C is
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a 2-category, | takes its values into the greatest sub-2-category St C of

Q(StC), and its restriction [: C~» 5t C admits as an inverse the 2-func-

b oC 0(1') RO
V4 Q(Stc)Q
SiC l

C
tor I': StC » C associated by adjunction to the inclusion CGuQ(C). V

REMARK. If A is the double category ¢ (C) of squares of a 2-category C

then C is not isomorphic to St A; counter example: C is the 2-category

(2% 2,

PROPOSITION 9. /f A is a double category, then it is canonically iso-
momhic to a double sub-category of the double category Q(StA ) of squa~
res of the 2-category StA .

P ROOF. The liberty double functor [; A > Q(StA) is injective. Indeed,
let @ and a’ be blocks of A such that [(a)=1{a’'). By definition of
the equivalence relation used to define Lax LkA (and therefore StA ),
there exists a family (bi) of «smaller» blocks of A admitting both a and
a' as double composites. More precisely, let A be the free double non-
associative category generated by the double graph underlying A, and
A:A > A be the canonical non-associative double functor (for its exis-

tence, see L6]); then there exist blocks 7 and 7' of A constructed on

the family (b;) and such that
a=Ax(n)=A(g') =a’,

(Example:

bs by

bs by b;

a= (b500 54)01(1)3001)200171) = (b501b3)00(b401(b200[)1)) =a'.)

So [ is injective, and its image [(A ) is isomorphicto A. V

Hence all double categories «are» double sub-categories of double
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categories of squares of a 2-category. This explains why it was difficult
to find natural examples of double categories other than 2-categories and
their squares! (Spencer [9] has characterized double categories of squa-
res of a 2-category as those double categories admitting a special connec-
tion in the sense of Brown.)

It follows that, if A is a double category and f: K A%’ a func-
tor, an A -wise limit of [ is simply a lax-limit (in the sense of Gray-Bourn-
Street) of f considered as a 2-functor from (Iﬁdis,K) into the greatest
2-category included in A, such that the 2-cells projections of the lax-
limir rake their values in A ; this is a restrictive condition, since A is
only a double sub-category of JfStA ). Hence generalized limits ( defined

in Parc IT) are just lax-limits «relativized to a double sub-category».
From Proposition 9, we deduce:

PROPOSITION 10. Let A be an n-fold category, with n> 2. Then there
exists o canonical embedding from A inte an n-fold category of the form
Cuby n()(C), where C is a 2-category.

P ROOF. The functor
Cub

9
L Cain

2-Cat QA Catg

admits a left adjoint which associates to A the 2-category
C=St(LaxLk, 5A ).

Remark that the corresponding liberty morphism L : A - CubQ’nQ(C)is
generally not injective, since it factors through the liberty morphism [
from A to Cub{LaxLkA ) which identifies (Proof, Proposition 1) two
blocks of A having the same sources and targets for the last three com-

positions. V

COMPLEMENT. Proposition 10 does not give a complete characterization
of n-fold categories, for n> 2, in terms of 2-categories, since the embed-
ding L is generally not injective. However there is such a characteriza-
tion (which will be given elsewhere), obtained by laxifying at each step
the construction of the functor Cube , in a2 way similar to that used to pro-

ceed from the functor Square to the functor Cube.
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COLLOQUE SUR L'ALGEBRE DES CATEGORIES
AMIENS - 1973
RESUMES DES CONFERENCES

INTRODUCTION

Ce Colloque, organisé par l'équipe de recherche «Théorie et Appli-
cations des Catégories» (T.A.C.), s'est déroulé 2 la Faculté des Scien-
ces d'Amiens, du 9 au 13 Juillet 1973. Il a réuni une cinquantaine de par-
ticipants, venus des pays les plus divers: Australie, Canada, Etats-Unis,
Europe.

En 5 jours, 28 conférences ont eu lieu; comme elles ont souvent du-
ré plus que le temps prévu (une demi-heure & une heure), 5 chercheurs de
I'équipe T.A.C., dont les conférences étaient inscrites au programme ini-
tial, ont renoncé & parler. Enfin, deux conférenciers attendus, M. Kock et
M™€ Preller, n'ont pu venir & Amiens par suite d'empéchements de derniére
heure.

On trouvera dans les pages suivantes les résumés de ces conféren-
ces, et deux fascicules ultérieurs des «Cahiers» seront consacrés & la pu-
blication de textes développés (y compris les articles promis par MM. Joyal,

Kock et Ulmer, dont les résumés ne sont pas parvenus a temps).

Le dynamisme actuel de la Théorie des Catégories s'est manifesté
par la variété des sujets abordés. Bien qu'une telle classification soit trés
contestable, nous essayons de regrouper ci-dessous les conférences d'aprés

leurs thémes principaux.

Topoi.
- Topoi élémentaires: Joyal, Wraith, Mikkelsen, Tierney, Osius.

- Généralisations: Barthélémy, Penon.
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Catégories enrichies.
Catégories internes: Joyal, Wraith, Bastiani - Ehresmann, Tierney.
Catégories monoidales: Voréadou, Kelly, Chartrelle, Variot.
Y -catégories: Borceux, Lindner, Lavendhomme.
2-catégories: Kelly, Bourn, Gray, A, Burroni, Kock, Variot.

Catégories additives: Baumgartner, Dartois.

Structures algébriques.
Esquisses: Bastiani - Ehresmann, Lair,
Structures 2 -algébriques: Kelly, Gray, A. Burroni.

Autres notions: E. Burroni, Guitart, Coppey, Wischnewsky.

Catégories et notions topologiques.
Objets connexes: Hoffmann, Tanré,
Faisceaux: Ulmer,

Catégories topologiques: Lengagne, Ehresmann.

Applications des Catégories
a la Logique: Joyal, Barthélémy, Osius.
aux Automates: E. Burroni, Guitart,

a 1'Algébre homologique: Kleisli, Hilton.

W

la Théorie de la mesure: Riguet, Lengagne.

la Géométrie différentielle: Ehresmann.

0

Avant de terminer cette introduction, nous tenons a remercier:

- Les participants, qui ont accepté de venir, bien que nous n'ayions pu

envoyer les invitations que trés tardivement,

- Tous ceux qui nous ont aidés & recevoir les invités: M™®® Bednarz

et Leblond, MM. Cordier et Largillier, et plus particuliérement, MM. Char-
trelle, Boidin et Tanré (qui ont été tous les trois sans cesse sur la bréche
avant, pendant et aprés le Colloque, pour toutes sortes de tiches), M. Lair
(qui a organisé un pique-nique & Faucoucourt le 14 Juillet) et aussi melle
Normand et M. Schimel (deux jeunes étudiants qui, avec beaucoup de gen-

tillesse, nous ont rendu d'innombrables services pendant toute la durée du

Colloque).
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- L'Université de Picardie, qui a enti®rement et généreusement finan-
cé ce Colloque, en particulier M. le Président D. Taddéi ainsi que M. A.
Chevalier, Directeur du Département de Mathématiques, qui a offert de com-

pléter les crédits de recherche de 1'équipe T.A.C. pour faciliter I'orga-

nisation de ce Colloque.

- Enfin, M. Bonvalet, Recteur de 1'Académie d'Amiens, qui nous a en-
couragés et qui a accueilli lui-méme les participants 4 la réception qu'il
a offerte au Rectorat,

A. et C. Ehresmann
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/143/

DEUXIEME COLLOQUE SUR L'ALGEBRE DES CATEGORIES
AMIENS - 1975

RESUMES DES CONFERENCES

INTRODUCTION
par Andrée et Charles EHRESMANN

C'est du 7 au 12 Juillet 1975 que nous avons organisé & Amiens un
deuxiéme Colloque sur 1'Algeébre des Catégories (annoncé & la fin du pre-
mier Colloque sur I'Algébre des Catégories qui s'était déroulé 2 Amiens en
Juillet 1973). Ce Colloque a réuni une cinquantaine de mathématiciens, par-
mi lesquels la plupart des participants du premier Colloque. En particulier,
une trentaine de catégoristes étrangers sont venus d'Australie, des Etats-
Unis, du Canada, d'Afrique, d'Europe. Il y aurait_eu sans doute plus de par-
ticipants si des difficultés matérielles ne nous avaient empéchés d'envoyer

assez tot les invitations.

Ci-aprés, on trouvera les résumés de la plupart des conférences don-
nées 4 ce Colloque (ainsi que trois résumés d'articles qui n'ont pu étre
exposés faute de temps). En comparant avec les exposés du Colloque de
1973 (voir Cabiers de Topologie et Géométrie différentielle XIV-2, 1973),
on constate qu'en ces deux années la Théorie des Catégories s*est dévelop-
pée dans diverses directions, surtout en vue d'applications dans des domai-

nes variés. Grosso modo, les sujets traités peuvent se répartir comme suit:

Structures algébriques et généralisations: Diers, Gray, Kelly, Kock,
Lair, Meisen, Ulmer.

Catégories enrichies ( catégories doubles, 2-catégories, V-catégories):
Bastiani - Ehresmann, Borceux, Bourn, Lindner, Linton.

Topos élémentaires et généralisations: Bourn, Diaconescu, Fourman,

Guitart, Sols, Stout.
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Applications des catégories en

Logique : Blanc, Joyal, Mijoule, Reyes;

Théorie des groupes : Hilton, Kleisli, Wischnewsky;

Algebre homologique : Baumgartner, Duskin, Lavendhomme, Mac
Donald;

Topologie et Géométrie différentielle: Brimmer, Guitart, Hoff,
Porter, Pradines, Tanré;

Combinatoire et Théorie des Jeux: Leroux, Riguet;

Théorie des Automates : Meseguer-Pfender, Sols.

Huit conférences ne sont pas résumées ici:
celles de Brimmer, Diaconescu, Duskin, LLavendhomme, Linton, Meisen,
qui ne nous ont malheureusement pas envoyé de texte,
celle de Riguet, faite & Chantilly le Samedi, qui paraitra dans le fasci-
cule 4 (avec les résumés des exposés faits 4 Chantilly en Septembre ),
la nétre, qui est résumée dans I'introduction de notre article: Multiple

functors, Part 1, Cabiers de Topologie et Géométrie différentielle XV-3,

‘Enfin, nous désirons remercier vivement tous ceux qui nous ont ai-
dés dans l'organisation de ce Colloque: M. BONVALET, alors Recteur de
I'Académie d'Amiens, qui a bien voulu présider le diner officiel du Lundi,
I'Université de Picardie, qui a financé ce Colloque, et avant tout son Pré-
sident M. Roland PEREZ, qui a eu la gentillesse d'ouvrir ce Collogue etde
venir & plusieurs reprises se joindre aux participants; les chercheurs de no-
tre équipe de recherche T.A.C., et plus particuliérement Bernard FERRIF
et Anne-Marie KEMPF, qui se sont chargés de nombreuses tiches matériel-
les pendant tout le Colloque; le Pére BOUTRY qui a accueilli les partici-

pants au Centre «Les Fontaines» 8 Chantilly le Samedi.
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/144 /
JOURNEES T.A.C. DE CHANTILLY

RESUMES DES CONFERENCES

INTRODUCTION

C'est au Centre «Les Fontaines» de Chantilly, au milieu d'un magni-
fique parc, que s'est déroulée en Septembre 1975 la Semaine de 1'Université
de Picardie ( sous les auspices du C.E.R.[.C., association créée par le Cen-
tre «<Les Fontaines» et ['Université de Picardie).

Dans le cadre de cette Semaine culturelle ont eu lieu, le Lundi 15 et
le Mardi 16 Septembre, deux journées «Théorie et Applications des Catégo-
ries» (T.A.C.). Les conférences dqrmées A cette occasion sont résumées
ci-aprés, & l'exclusion de celle de C. Auderset dont nous n'avons pas requ
le résumé ; les textes développés paraitront ultérieurement.’

Déja la derniére journée du deuxiéme Colloque sur I'Algébre des Ca-
tégories (Amiens 1975) s'était passée a Chantilly, le Samedi 12 Juillet; on
trouvera également ici le résumé de l'exposé de J. Riguet, fait ce jour-la au

Centre «Les Fontaines» ( celui de F. Linton n'a pas été résumé).

Nous tenons a remercier les Peéres Jésuites du Centre «Les Fontai-
nes», et en particulier le Pére Boutry, pour leur chaleureuse hospitalité.
Nous espérons que d'autres mathématiciens auront 1'tdée d'organiser des
Colloques dans ce lieu si propice & la discussion et a la méditation mathé-
matique, non seulement dans les nombreuses salles de réunion, mais aussi

dans les sentiers sous les arbres et au bord de ['étang.

A. et C. Fhresmann

772



CAHIERS DE TOPOLOGIE Vol. XVIII-4{1977)
ET GEOMETRIE DIFFERENTIELLE

/139/

DEJA VINGT ANS...
par Charles et Andrée EHRESMANN

A l'occasion du vingtiéme anniversaire de notre publication, nous
voudrions remercier tous ceux qui rendent possible la réalisation des «Ca-
hiers», a4 savoir les auteurs qui envoient des articles intéressants et les
abonnés sans lesquels ce périodique ne pourrait subsister.

C'est en effet en 1957-58 que le Volume [ a été publié *; il s'in-
sérait alors dans la série des «Séminaires de 1'Institut Henri Poincaré»;
le principe strict de cette intéressante série est que les textes sont des ré-
dactions d'exposés faits dans des Séminaires. C'est pour avoir plus de li-
berté dans le choix des articles, par exemple pour pouvoir publier des the-
ses (la publication dans le Volume I de la thése de troisiéme cycle de A.
Bastiani - actuellement A. Ehresmann - avait soulevé des difficultés), que
nous avons désiré créer une publication indépendante. La rencontre fortuite
d'une machine Vari-Typer inutilisée a permis la réalisation de ce projet.

Jusqu'en 1966, les volumes ont paru sans périodicité stricte (envi-
ron un volume par an) et le titre initial de «Séminaire de Topologie et Géo-
métrie Différentielle» s'est modifié peu & peu pour aboutir en 1966 au titre
de : «Cahiers de Topologie et Géométrie Différentielle».

C'est depuis 1967 que les «Cahiers» paraissent sous leur présenta-
tion actuelle et qu'ils sont déclarés légalement comme périodique trimes-
triel. De 1967 & 1972, ils ont été édités par la Maison Dunod ; en 1972, nous
avons décidé de les éditer nous-mémes, & Paris jusqu'en 1975, ensuite a
Amiens.

Jusqu'en 1975, une grande partie de la composition des textes a été
effectuée par une Varitypiste mise & la disposition des «Cahiers» par le

Centre National de la Recherche Scientifique. Lorsque nous nous sommes

* 11 a écé précédé de trois recueils d'articles publiés par Charles Ehresmann ( seul)
sous le titre « Colloque de Topologie de Strasbourgs.
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installés & Amiens fin 1975, nous avons di renoncer & cette aide matérielle,
dont le maintien aurait été subordonné & des conditions inacceptables pour
nous.

Au cours des années, le contenu des «Cahiers» s'est un peu modi-
fié, par suite du développement de la Théorie des Catégories et d'une évo-
lution dans notre conception des Mathématiques. Aujourd'hui un titre mieux
adapté serait sans doute «Théorie et Applications des Catégories», mais
nous tenons a garder le titre actuel, marque de la continuité dans le chan-
gement.

Encore une fois merci 4 tous ceux qui s'intéressent aux «Cahiers»
et nous permettent ainsi de poursuivre cette publication qui tient une place

si importante dans notre vie depuis vingt ans.

Amiens, 1°F Janvier 1978
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COMMENTS ON PART IV-2

by Andrée CHARLES EHRESMANN

INTRODUCTION

The motivations and conventions of these comments are the same
as in Part IV~ 1. Their characteristics, fewer but often longer, commentar-
ies, stem from the specificity of the articles reproduced here :

- Technical remarks, which were numerous in the volumes containing
more sketchy papers, are very few for three reasons:

a) the style and notations are almost standard;

b) the proofs are explicitly written ;

c) since the papers have been published in our «Cahiers», I have cor-

rected the small remaining typographical errors before reproduction.

- All the articles consist of a few main theorems with extensive proofs
using notions already studied in older papers, and so commented upon in
g y ,

Parts III or IV-1.

- As the works are relatively recent (72-79), further developments
only begin to appear and it is difficult to get a synthetical view of actual
research on the subject. Hence the comments are centered on what I think
to be the most promising domains for applications (mixed sketches and fig-
urative algebras; completions and lax limits; homotopy theory and coher-

ence via multiple categories).

The following Synopsis summarizes the main results.

CONVENTIONS. The Y'® comment of the X*® page is denoted by X.Y and
+ indicates more  substantial addenda. Numbers between / / refer to
Chatles' list of publications (in Part IV-1) and numbers between [ | to the

Bibliography of Part IV-1 (up to 130) and of Part IV-2 (from 131 to 200).
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GENERAL COMMENTS

ON /115/: CATEGOR!ES OF SKETCHED STRUCTURES.

The first part of this paper may be seen as a sequel and a general-
ization of /102 /. In the late sixties we realized that the notations used
in the preceding papers made the reading uneasy for most of the categor-
icians; it explained Charles's results were often ignored and found anew
later on. In the present article, we tried to adopt a more standard term-
inology, as in Mac Lane [174]. The only exception is the set of morphisms
e > ¢’ in a category C still denoted by C(e’, ¢) (and not yet by C( e, e'),
as it is usual).

Comments on sketched structures and on completions have already
been given in O, III-2 and IV-1; we refer to them and here we just add

some more specific or more recent results.

418.1. The formulation of the proposition stresses the fact that the cons-
truction does not depend upon a universe U and that it is universal |
with respect to all universes, If we restrict durselves to U, then the
result means existence of a suitable adjoint; it is indicated in the
Remarks 1 and 3, pages 426~ 427.

428.1. Same comment as above.

436.1+ Other constructions of a loose type.

Ie In [165], Kelly gives the following construction of the loose §-type
of a sketch o ={(X,I"), which he calls the $-theory of o : Take the
category Set? of models of ¢ in the category of sets, and identify
Y to its image via the Yoneda embedding & » Set?. Let T be the
closure of & into Set” under $-colimits; then the opposite T°P of
T is a loose §-type of 5. Notice that this construction still requires
a transfinite induction, to give an explicit description of T ; and it
does not generalize to the case of mixed sketches (asdoes the cons-
truction of this paper; cf. Section III). However it is interesting to
obtain a similar result for enriched sketches, as it is done by Kelly

in [ 87 1.
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436.1... A similar construction is given by Adamek [131] in a slightly more
general situation : he does not necessarily add «all» the limits indexed
by §, but only some kinds of such limits for each category.

If § is the class Cato of all small categories, the §-loose type
of g (which is now in a larger universe) becomes ( Set? )°P itself.
This type had been considered by Gabriel& Ulmer [50] and by Lair
in his specifiability Theorem [64, 170]; but these authors did not

mention the universal property of this type.

2. Free completions: If § is void, the §-loose type of ¢ = (2,0 )
reduces to a free Q-completion of %.1In O, IV-1, Comment 199.1, sev-
eral other constructions of such a completion 3 have been recalled:
in particular, it may be obtained as the category Progz of §-pro-ob-
jects of % (Grothendieck [3S|, Vincent [129], Deleanu & Hilton
{33]). In a just published paper [ 193], Tholen generalizes this cons-
truction to get a theorem which unifies both the free completion of
a category and the universal completion of a concrete functor. More
precisely, he proves the following result:

Let § be an admissible class of categories in the sense: 1 is in
§ and the class of all final functors with source in § is closed under
§-colimits ; let B be a §-complete category and U: K » B any given
functor (eventually not faithful). Then U may be universally extended
(up to an equivalence) into a functor U:K-»B such that K s %-com-
plete and U preserves §-limits.

If B=1, then K is the free §-completion (or loose §-type) of K. If
K is a concrete category via U, then f( is equivalent to the universal
f-completion of U (constructed in [40]); for instance, if § = Cat,,
then K is the universal initial completion of K, in the sense of Herr-

lich [68].

K may be described as follows (we slightly modify Tholen's cons-
truction by using the atlases defined in Comment 199.1). Let V: C»> B
be the projection functor of the comma category IdgjU and ProgC
the category of §-pro-objects of C; its objects are the functors F in-

dexed by elements of §, and its morphisms F » F' are the atlases
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436.1... from F to F' (cf. Comment 199.1 in O, IV-1).
I ®:1-K is a functor and £: Bfa U.® a cone in B, there is
a functor (I){": I C defined by

b (& B§»U<I>(I).<I>(1)),
&
(k:1s1") b {Bg UB(k), ®(R)).
<1

Then K is the subcategory of Pro§C whose objects are the func-
tors (I)f such that £ be a limit-cone, and whose morphisms d)é:» ‘I’n
are the atlases A such that V(A) is reduced to a unique morphism a

of B. The functor E] sends ‘I’f to Brf and A to a.

3. In [191] Street extends the free completion Theorem to the case

of «variable categories».

449.1+ Mixed sketches and figurative algebras:

While projective sketches have been widely used, mixed sketches
seemed too general a notion and were only used by a few authors (cf.
0O, IV-1, Comment 31.2). Even «mixed comi)letion Theorems» (add-
ing both limits and colimits) are scatce in the literature, because ex-
plicit constructions are not easy.

In the last years, Guitart & Lair {63, 65] have succeeded in dev-
eloping a powerful theory of mixed sketched structures; it generalizes
most of the results known for algebraic structures and also encomp-
asses such structures as fields; topologies (Burroni [19]), local rings
and Banach spaces, ... (Diers [34]), first-order logic theories [65]

(cf, Comments 31.2, 31.3, 31.4). Here are some new results on them.
1. The locally free diagram Theorem: Let ¢ be a mixed sketch on

Y and F: X > Set a functor; then there exists a small diagram, say

DF : IF > Set? , in the category of Set-models of ¢ and a cone from
F to Dy in Set2 which is sent to a colimit-cone by the functor

Setz(-, M), for each model M of ¢ ; hence

Set=(F, M) = Lim Set®(Dp -, M).
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449.1... Set may be replaced by a suitable category H.

If o is a projective sketch, Ip =1 and Dp(0) is the associated
to F sheaf (cf. Comment 413.1). If the cocones of ¢ are discrete, the
theorem has been obtained by Diers [34]. If the cocones of ¢ are
monomorphic, the existence of this locally free diagram D is proved
in [63] and, by different methods, in Guitart & Lair [163,I] and in
Kelly [166]. The general case is given by Guitart- Lair [163,1I} who
work with concrete sketches (cf. Comment 31.3), and by Lair [170],

who characterizes «mixed-sketchable» categories.

2. Applications to ultraproducts (Guitart [160]). The locally free
diagram Theorem may be looked at as the existence of a multiadjoint
to the functor Iim from the category Prolconne”ed}X to Y, where
X=S5et9 and Y= Setz. It has suggested to Guitart the following
definition : If (Xa)aeA is a family of objects of a category X and
if U is an ultrafileer on A, the ultraproduct of (Xa)ae A Wwith respect
to U is the object W obtained through a reflection into the represent-

ables:

Cglj’{j(”"ex("’(xa)aeu)) - X(-,W).

The generalized ultraproduct of Monk [168] is a reflection into co-

products of representables :
clngiIrjn(C(fneX(-,(Xa)an)) > cIEJCX(-’wC)'

Hence the construction of ultraproducts is englobed in that of locally
free diagrams.
In [160], there is defined a notion of «local concept» such that

an ultraproduct derives from a «local concept of cone».

3. Figurative algebras (Guitart [ 159, 162]). The theory of mixed
sketches is an analytic approach to a geometrical model theory. There
is a corresponding synthetic approach, namely the (equivalent) theory
of figurative algebras, based on calculus of contacts, incidence re-

lations and motjons. It leads to easy descriptions of concrete situa-
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449.1... tions, such as computer programs [161], puzzles [162], problems
in Biology (as I'll prove elsewhere).

A figuration [159] T consists of the following data:a category F
of figures, a category S of supports, a functor D: FOP xS Set (the
«drawing» functor) and a functor L : F » C which is 1-1 onto the ob-
jects (the morphisms of C\L (F) are the composition laws). A figur-
ative algebra (S, A) of type T (or T-algebra) is a support § and a
functor A: C°P - Set such that

LopP

Fop cop

D(-;5) A

Set

commutes. A figure F such that D( F,-): S~ Set is not representable
is called a paradox.

If there is no paradox for T, the T-algebras are the algebras of
a monad on S; in this case, the arities of laws and thé sets on which
these laws act are symbolized by resp. the figures and the supports ;
for each support S, the possible domain of a wlaw c: F'» F is given
a priori as the set D( F, 5) of drawings, and the action of ¢ becomes
the map:

A(c)g: D(F,S) > D(F',S):d b dc.

This is well explained in the paper [162], where Guitart vividly ana-
lyzes his motivations for introducing figurations (I regret mathemati-
cians scarcely dare to write such direct papers).

The theory of sketched structures and the theory of figurative al-
gebras are equivalent. Given the figuration T, a mixed sketch ¢
is constructed, whose Set-models correspond to Talgebras: its under-
lying category contains F°P, C and the drawings D(F,S) as mor-
phisms from F to § ; its distinguished cones describe the «contacts»
between figures and its distinguished cocones describe the potential
«motions of figures»; generally ¢ is a large sketch with large index-
ed cocones.

Conversely, if ¢ is a mixed sketch, its Set-models are» the T-
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449.1... algebras for suitable figurations T ; the proof of this result relies
on the following remarks:
- There is a concrete sketch Cg associated to ¢ (cf. [63] and O,
IV-1 Comment 32.3) such that M: X » Set is a model of ¢ iff, for

each formula

X G Y
Q\? Q'
(Setz)"p
of C,, the composite
X
G"/” é 0
I/'
y Q( (SerZ)op — M2 g

is an isomorphism, where G -/ G° in the bicategory of distributors.

- To any figuration T, we associate the distributors
L'=C(L-,L.): FPxXF » Set and P =D@L’

(tensor product of distributors). Then T is also determined by the
2-cell

F fu S
p
and a T-algebra on § is identified with a natural transformation
a: P(-,S)>D(-,S) satisfying a.u(-,5) =1d.
Such an algebra may be interpreted as a cosection of
TS'oQu;"s'@®@D s S°@P
(where "S' is the distributor 1+ S «w@aming»r §), which extends the ab-

ove notion of satisfaction of a formula.

455.14 Completions of categories:
The corollaries may be translated in terms of completions and co~

completions of categories :

(a) The loose type is the universal, up to an equivalence, solution
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1... of the problem: to embed a category X into a category admitting
all § (-indexed) limits and all S(—indexed) colimits, with preservation
of some given distinguished limits and colimits.

{b) The type is the universal, up to an isomorphism, solution of the
problem: to embed a category & with a partial choice of §-limics and
9-colimits into a category equipped with a total choice of -limits and
g-colimits, so that this total choice extends the given partial choice.

(c) The solution of Problem (b) is also a solution of Problem (a).

1. A proof is given in /114/.

1+ Models of a sketch which send the distinguished (co) cones to dis-
tinguished (co)limit-cones and not to any (co)limit-cones were intro-
duced in /93 / ; the motivation was to get Cat as «the» category of
models of the sketch Oc,, Of categories into Set equipped with can-

onical pullbacks; the category Sei Cat of models of o ., into Set
is only equivalent, not isomorphic, to Cat. In fact, the «canonical»
models give a better description of concrete structures. But general
theorems are more easily proved for the categories HY of allmodels
of o in a category H. Regular sketches cumulate both advantages,
since the category of canonical models is equivalent to HY, Usual
sketches are regular.

In [ 98], Lair proves that each mixed cone-bearing neocategory

is universally embedded into a regular presketch over an associative

neocategory with monomorphic cones and epimorphic cocones.

1. It is proved in / 114/, Theorem 3 (O, IV-1).

1. P' commutes with §-inductive limits because M7 is cocomplete
(cf. e.g. /114/, Theorem 3) and M? mz preserves inductive
limits by hypothesis.

1+ At about the same time, Day [151] obtained a slightly stronger re-
sult: Let V' be a reflective subcategory of the symmetric monoidal
closed category V and J: V'> V the reflection functor; let A be a
dense subcategory of V and A' a strongly cogenerating class in V' ;

then V' admits a monoidal closed structure for which V' C_V is
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1... enriched iff the following condition is satisfied: for all objects
s of A and s' of A', there exists an object D(s’',s) of V' and a

natural isomorphism
Hom(](e®s),s'")—=—s Hom(]J(e),D (s',s)})

for each object e of V. If V is cartesian closed, this condition is
also equivalent to: the reflection | preserves finite products. Day

applies his results to construct cartesian closed categories of topolo-

gical spaces.

1. To ask for V¥ V2 to admit a right adjoint is a very strong

condition. It will be relaxed in Section 11.

1+ This corollary and Proposition 21 have been refined by Street. In
[123], Theorem 3.11, he proves the equivalence of the conditions:

1. Set? is cartesian closed (or equivalently, by Proposition 21, ¢
is cartesian);

2. V7 is cartesian closed for a complete cartesian closed, locally
small category V ;

3. The left adjoint to the inclusion V7 C__,V2 preserves finite
products for any cartesian closed and locally presentable category V.

4. For any category V as in 2 and any model F of ¢ in V, the func-
tor D(s,F-) is amodel of ¢ in V, where D is the internal Hom-
functor in V and s an object of V.

5. Condition 3 (resp. 4) is just satisfied for V = Set.

492.1% On monoidal closed structures :

The conditions given in Foltz & Lair's paper [ 46} do not insure
that V7 be monoidal closed; they have corrected this paper in [ 99 ]:
From a double costructure C in VY (that is, a model in V7 of the

opposite of the tensor product g @ ¢ ), there is deduced an internal Hom

functor
Vo(-,-):VIxylopr , yo

whose partial functors V9 (-,s) and V9 (s,-) admit adjoints for

each object s of V. This biclosed structure is a monoidal closed
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492.1... one iff C satisfies some symmetry, associativity, and unitarity
conditions.

These conditions are analyzed with some detail in [101], thanks to
the notion of a virtual morphism ¢ » o' between sketches (it is a morphism
g: V? 5 V). They express the fact that ¢ is a virtual commutative
monoid,: for the composition £: 0 ®¢ » ¢ deduced from C ; hence %k is
defined by

E(F)(x,y) :sz(C(x.y)(Z). F(z))
for each model F: g » V and each (x,y)e EXX.

Applications are given in [46, 47]; in particular: the categories of
groups, of monoids, of rings admit no monoidal biclosed structures; the
categories of abelian groups and abelian monoids admit none but the clas-
sical one. (The absence of a symmetric monoidal closed structure on
groups and monoids is aiso shown by Rosi¢ky [ 182].) Cat admits two mon-
oidal biclosed structures. The categories of non-commutative Lawvere
algebraic structures do not admit a symmetric monoidal closed structure
with the free object on 1 as a unit. This last result strengthens Linton's
[173] who has proved that a category of Lawvere algebraic structures has
a symmetric monoidal closed structure in which the tensor product repre-
sents the bihomomorphisms iff the theory is commutative.

For other generalizations of tensor products, cf. O, IV- 1; Comment
160.1.
497.1. Read: B’ and e¢ B{ i.0. of B' .
498.1. The internal Hom functor on the cartesian closed category of multiple
categories is described in /120/.
503.1. This equivalence, constructed in /93/, means that an internal categ-
ory in V is an object of category in th‘e sense of Grothendieck.

506.1. The internal category of quartets is also constructed in /113/.

507.1. The construction of E was suggested by the «concrete» construction
of the internal Hom between structured (i. e., concrete internal) categories

given in /109/.
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ON / 118/ : TENSOR PRODUCTS OF TOPOLOGICAL RINGOIDS.

In [172], Lellahi asked for a construction of tensor products in the

category of topological ringoids. The present paper gives an answer; it was

published in the same issue of the Cabiers as [172].

519.1. These examples are developed in Lellahi's paper [172]. In his Thesis

[106] he defined the sketch of ringoids whose models in Set are theaddi-
tive categories (= Ab-categories); its models ina concrete category H are
the internal ringoids in H; topological ringoids are the concrete internal

ringoids in Top .

519.2. Cf. O, IV-1, Comment 160.1.

520.1+ Monoidal closed structures on Top:

We first refer to: O, II-2, Comment 672.2, to O, III- 2, Comment 703.1
and to Comment 521.1 hereafter.

In [128], Greve proves that each partial monoidal closed structure on
Top may be extended into a global one, and that there are as many mon-
oidal closed structures on Top as there are functors Top » Set.

In [184], Schwarz precises the fact that Top is not cartesian closed
thanks to the following characterization of exponentiable topological spa-
ces: If T is a topological space, the product functor TX-: Top » Top
bas a right adjoint iff, for each topological space T', the quasi-topology
of local convergence A(T,T') on the space of continuous maps T~ T’
(cf. /81, 92/) is a topology. In particular, if T is completely regular or
is Ty, then T is exponentiable iff T is locally compact. The theorem is
deduced from a characterization of exponentiable objects in initialstruc-

tured categories which generalizes Herrlich [167] and Nel's [ 179] result

on cartesian closedness.

521.1. T"X_T has been defined by Brown [142].
521.2 + Other topologies on E'XE :

The ropology T', »X, T defined by Tanré [190] is the final topology

with respect to all the insertions
TrxE o, E'XE, XI'XT C_, E'XE, where 2 e¢o0, S'¢o’.
Booth and Tillotson [135] consider another topology: they replace the
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521.2... data of a class g of subspaces of T by the data of a class. K of top-

532.

538.

ological spaces. Then the topology T'XygT on E'XE is defined as the

final topology with respect to all maps of the form:

Idpxf: T'"XA > E'XE, where [: A>T, Ac¢K,

and {x'}xX T C_, E'XE, where x'¢E'.

They prove the analogues of Theorem 3 and 4 for T'Xg T (the assertions
are simplified thanks to the independence of K on T):

- If K is a class of locally compact spaces closed under finite cartesian
products, the K -product xg on Top is associative up to homeomorphism.
- X is regular (which corresponds to c-stable) if, for each A ¢ K, every
neighborhood of a¢ A contains a closed neighbothood C with a surjec-
tive map B> C fora Be¢K.Let K be aregular class of compact spaces;
then the functor - Xg T: Top » Top has a right adjoint Cg(T,-); a basis
of open neighborhoods of g: T » T' in Cg (T, T") is generated by the

Wi, U)=1{h:T>T" | bhf(A)CU}

such that gf(A)C U, where [+ A>T, A¢K, and U is open in T'.
Moreover, if K is closed under finite cartesian products, then Top has
a monoidal closed structure with X as its tensor and Ckg(-,-) as its
internal Hom.

If K is reduced to the one-point compactification of N with the dis-
crete topology, the reflective hull of K in Top is the category Seq of
sequential spaces; it is the category of metrizable spaces and their quo-
tients. It is deduced from above that Seq is the smallest cartesian closed
category which contains all CW-complexes, all differentiable manifolds
and metric spaces; hence Seq is the smallest convenient category of to-
pological spaces, in Steenrod's sense [189].
1. The definition of A'® A has been suggested by the construction of
the tensor product of topological vector spaces in [154] and the defini-
tion of Homa(A,A') mimicks the construction of the internal Hom in the
categories of concrete internal categories described in /109/.
1+ Another monoidal closed structure on RdT :

With the notations of Comment 521.2, let K be a regular class of com-
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538.1... pact spaces closed under cartesian products. The results of Section
2 remain valid (with similar proofs) if everywhere we replace the topology
T'X,T by T'XgT. We associate in this way, to a pair of topological
ringoids A=(A,T) and A' =(A", T'):

- a topological ringoid A'@g A on A'P A,
- a topological ringoid HomK(A?A‘) on Hom(A, A'), whose topology
is induced by the topology Cyg (T, T'4),

The same proof gives:

THEOREM. The category RAT of topological ringoids admits a monoidal

closed structure whose tensor is ®K and whose internal Hom is Homy .

541.1. The equivalence between the notions of Top-ringoids and of topological
ringoids with discrete objects is deduced from the equivalence between
categories enriched in a cartesian category H with commuting coproducts
(in Penon's sense [180}), and intemal categories in H with a discrete
(i. e., coproduct of 1) object of objects; cf. /120/ Appendix and for a

generalization, Proposition B-G, Synopsis of O, III-2.

543.1. Theorem of Comment 538.1 is also obtained as an application of 4

to the monoidal closed category (Top, Xg,Cg)-

ON /117/: MULTIPLE FUNCTORS |,

This paper is the first paper of a 4 parts work. It was written in 74, as
well as most of Part II, and we also obtained same intricate enough results
related to monoidal closed structures on the category of double categories,
However personal and professional problems, linked to Charles' retirement of
the University Paris 7 and his subsequent teaching and administrative function
in Amiens, prevented us to do much research work in 75-77. When we came
back to the writing of the following parts in 1978, new ideas completely mod-
ified our initial project, and led us to a general study of multiple cate gories
published in /119, 120, 121/.

545.1. At the time this paper was written, there was some scepticism about

the usefulness of double categories, except for 2-categories. Later on
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double categories and even n-fold categories were studied in connection

with Homotopy Theory (cf. Comments 562.1, 603.1, 619.1, 648.1, 729.1).

1. The informations given here on the third part do not correspond to the
published Parts IIl and IV. Indeed, a better understanding of the situation
led us to an explicit description of the internal Hom of the cartesian clos-
ed category Cat, of n-fold categories for any n (not only n = 2) via the
Link functor and the category of multiple categories /120/. It suggested
how to laxify the construction for getting monoidal closed structures on
Cat, . As a by-product, we characterized all double categories as being
the double subcategories of the double category of squares of a 2-category.

But we did not publish the applications to double-sketched structures.

1. It is the last paper where the notation C(e’, e) is used, instead of
the standard one C(e,e’).

1. We often use this symbol, because it is both standard and adapted to
the right-to-left notation we favored for morphisms.

1. Propositions 2 and 3 were suggested by Propositions 1.9 and 4.9 of
/ 93/ (summarized in Proposition 9 hereafter), which take the category
case. Charles exposed them in his late sixties lectures.

1. Condition 1 «is» the Yoneda Lemma for sketched structures.

555.14 Tensor products of sketches :

The tensor product sketch g'® o, introduced by Conduché [26] and
Lair [ 95|, is used by Lair in [98] to equip categories of sketches with
a monoidal closed structure. More precisely, he proves:

- The category @95]' of (4,9")-cone bearing neocategories admits a mon-
oidal closed structure whose tensor is the above @ and whose internal
Hom D is such that the underlying neocategory of D(s,0') is the neo-
category of morphisms o > ¢'.

- An object ¢ of @QQ' is strict if its underlying neocategory X is asso-
ciative, if irs distinguished cones are monomorphic, its cocones epimor-
phic, and if there is at most one distinguished (co)cone with a given bas-
is (whence o is 1-1 embedded in its type); it is complete if & is an as-
sociative neocategory with a good definition of invertible morphisms and
if every (cojcone isomorphic to a distinguished one is distinguished. Let
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1... ygg' and ZQQ' be the full subcategories of @gg- whose objects are
resp., the complete and the strict cone-bearing neocategories. Both are
reflective subcategories, and they admit a monoidal closed structure in
which the internal Hom is a restriction of D and the tensor product of

(g,0') is the reflection of v Qo' .

1. Internal categories are studied in /113/, which contains the results

of this Section C.

1+ Homotopy type of a category :

The singular functor N from Cat to the category Simp of simplicial
sets, generally called the nerve functor, is useful in Algebraic Topology.
(Cf. e.g. Gabriel & Zisman [51].) Its adjoint R_: Simp » Cat sends a
simplicial set X to the category obtained as follows: GX is the graph
with vertices the O-simplices and arrows the I-simplices x, looked at
as x:d; x> dyx ; then R.X is the quotient category of the free category
on GX by the equivalence generated by:

dy& - (dyé, d £) for each 2-simplex ¢ of X.

Simp is a closed model category in the sense of Quillen [182] ; its

weak equivalences are those maps whose image by the geometric realiza-

tion functor R: Simp » Top is a homotopy equivalence. The composite :

B = (Cat —N— Simp —R ., Top)

is called the classifying space functor; the homotopy type of BC, for
a category C, is the homotopy type of C (cp. with the homotopy of C
defined by Evrard [155] and Hoff [169]).

A functor f is called a weak homotopy equivalence if Bf is a homo-
topy equivalence. These functors are part of a closed model structure on
Cat, which is constructed as follows by Thomason [195]: He considers
the functor

2
Ex?N = (Cat —N s simp —EX"_, Simp )

and its adjoint R, Sd? , where $d2 is the iterated «subdivision functory,
and Ex? its right adjoint; the unit and counit of this adjunction are weak

homotopy equivalences. The closed model structure of Simp is lifted by
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562.1... this adjoint pair to the required model closed structure on Cat. In

particular, the corresponding cofibrant categories are posets.

562.2. The terminology is different according to the papers.In earlier articles
/57, 122/, C is called an operator category on A only if the projection
A > C, is onto; and it is a species of structures if it exists any subcat-
egory C' of C which acts on A (while here C' must contain the [ with
their source in the image of A). Cf. Comment 206.1 in O, II- 1.

568.1. Comments on internal category actions are given in O, III-1, Comment
25.1 and in O, III-2, Comments 475.1 and 478.3.

570.1. Cf. O,III- 2, Comments 490.1, 490.2 and 470.3.

570.2. Cf. O, III-2, Comment 491.1 and O, 1I-2, Comment 449.2.

581.1. The definition by Charles of the square product of two categories was
an essential step toward our understanding of lax transformations. It led
to the definition of the (n+m)-fold category square product of an n-fold
category and an m-fold category, which is the tensor of a monoidal closed
structure on the category of all multiple categories /119/; the correspond-
ing internal Hom is used to describe the internal Hom of the cartesian
closed structure, and of its laxified monoidal closed structures, on the
category of n-fold categories in /120, 121/.

Cf. Appendix of / 119/ for a more abstract definition of Am B.

585.1. m and T,, are restrictions of the tensor product and of the internal
Hom of a monoidal closed structure on the category of all multiple categ-
ories (cf. / 119/, Proposition 7).

590.1+ Representable 2-categories were introduced by Gray, and the defini-
tion given here is a generalization to the case of double categories.

The category of l-morphisms of a representable 2-category is often
monoidal closed. The converse assertion is studied by Variot in his thesis
[197]. In particular, he proves the following theorem: Let V be a cart-
esian closed category equipped with a cocategory in V whose object of
objects is the final object. Then V is the category of l-morphisms of
a representable and corepresentable 2-category.

601.1. This «structural» proof is generalized to obtain a lax-completeness

theorem for multiple categories in Proposition 11 of /119/. Cf also 648.1.
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603.1+ Connections in double categories:

Further results on the double categories of up-squares (or of «quintets »
in the primitive terminology /64 /) are recalled in O, III-1, Comment
105.1, in particular Spencer's characterization [187] of those double cat-
egories as the double categories with a «special» connection; hence the
category D C of double categories with a connection is equivalent to
the category of 2-categories. Cf. also Comment 766.1.

Connections on a double category are introduced by Brown [147} for
generalizing homotopy theory; they are an abstraction of the path-connec~
tions defined by Virsik [198] in Differential Geometry.

It is proved in [147] that D C admits a full subcategory D G’ equival-
ent to the category of crossed modules; its objects are the double group-
oids with a connection and only one vertex. Later papers of Brown and
Higgins give generalizations to higher order and applications in Algebraic
Topology (cf. Comments 649.1 and 727.1).

610.1+ Lax completion of a category :

Proposition 8 implies the existence of quasi-limits (also called lax
limits) for 2-functors from a discrete 2-category. This theorem had been
exposed by Gray in 1971 (e. g., in his Paris lectures) and it has triggered
much research afterwards, all the more since the sketchy proof given by
Gray at that time was not easily understandable. It has been extended to
2-functors with domain any 2-category by Bourn [13G| and, independently,
by Street [190] and Gray [156]; the general case will also follow from
Proposition 11 of /119/ (cf. Example b, page 647), and more comments
will be indicated there (Comment G48.1).

The problem of embedding a category A into a 2-category which admits
lax colimits indexed by some types § of categories is universally solved
by Guitart & Van den Bril [66] ; the §-lax cocompletion of A is the (full)
sub-2-category DgA of the 2-category of diagrams of A whose objects
are the diagrams with domain in § (cf. O, IV- 1, Comment 199.1).

612.1. The problem of defining a general cohomology has been tackled by many
authors (cf. O, III~2, Comments 450.6, 579.3, and II-2, Comment 499.3),
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I have recently heard of a series of letters from Grothendieck to Brynn in
which he stresses the interest to develop a theory of multiple categories
to study this problem. In [164] Guitart & Van den Bril suggest a solution
via their satellisation process.

1. Lax morphisms between sketched structures are studied by Guitart &
Lair in [64]; their idea is summarized in O, IV~ 1, Comment 32.1.

1. Dicategories realize the idea of a homotopy associative category.lIn
[175], Malraison stressed the interest of such a structure for studying

higher order homotopy.

1+ Laxification and coberence problems :

Proposition 15 replaces a lax double functor A~ B by a cartesian
functor K(A)-> K(B); in this way, both the domain and codomain are
modified. If A and B are 2-categories, a lax functor A - B may be re-
placed by a 2-functor with the same codomain B. More precisely, Gray
s3] (and Bénabou, unpublished) associate to a 2-category A a universal
2-category A A such that, for any 2-category B, there is an isomorphism
between the categories of lax functors A » B and of 2-functors A A~ B.
Explicit constructions of A A are given by Vaugelade [128], Penon and
Bourn [136G]| (via the 2-sketch of adjoint functors), Street [190] (using
the notion of a computad), Van den Bril in his Thesis [196].

Street's consttuction pasts together the 2-cells of A. If A is a categ-

ory (looked at as a discrete 2-category), the l-morphisms of A A are the

paths in A, and the 2-morphisms

(g v 8g) > ([rees fg)

correspond to the sequences z'O =0< <o <ip<ntl =i, such that
g =1 v I for each j< k.
i /L].+1-1 /L]- 1>

A A is called the laxification of A.

Let N be the functor from the category Cat-Cat of 2-categories to.the
Category Simp-Cat of categories enriched in the monoidal closed category
of simplicial sets, deduced from the nerve functor N: Cat > Simp (cf.
Comment 562.1). In [148] Cordier compares N«(A A) with the simplicial
Ca‘egofy SCA) associated to a category A by Dwyer & Kan[153]. He

792



COMMENTSON /117, 119/

619.1... uses this comparison to prove that the simplicial functors from S(A’)
to the simplicial category Top. on Top are in 1-1 correspondence with
the bomotopically coberent diagrams A > Top considered by Vogt [ 199].

Applications to the homotopy limits are given in [149] (cf. Comment 648.1).

ON /119/ : MULTIPLE FUNCTORS II.

This paper is the sequel of /117 /, though it may be read independent-
ly of it. Its final version has been written four years later. To help the reader

we decided to adopt standard notations, in particular for the [H{om sets.

623.1. A primitive version directly dealt with multiple internal sketched struc-
tures, but Charles thought it was too abstract (cf. Comment 659.1).

625.1, Other «topological» examples of double categories are given by Brown
and Spencer [147].

633.1. ® does not extend into a tensor product on M Cat itself: Indeed, if
f: A-> A' is a multiple functor in which A has a smaller multiplicity than
A', then g X[ does not define a multiple functor BmA > B'm A"

635.1. This functor does not extend into an internal Hom in M Cat, because
Hom (g, ) does not define a multiple functor Hom(A,B) » Hom(A',B")if
A' has a smaller multiplicity than A.

647.1. Here, KO is the total category of the 2-category K and K! the copro-
duct of the Hom categories. The two compositions are inverted with res-
pect to the convention adopted in /117, 120, 121/.

647.2. Cf. / 121/, Proposition 4 and Remark ’2, page 750.

648.1+ Lax limits and homotopy limits:

1o Construction of lax limits. Bourn [136] proves that a representable 2-
category is (finitely) lax complete iff its category of I-morphisms is (fin-
itely) complete; his explicit construction of the lax limit has suggested
the proof of Proposition 8 in /117 /. At the same time, Gray did a similar
construction to generalize his 1971 result (the ancestor of all those theo-
rems) on the existence of lax limits for 2-functors with domain a (discrete
2-) category. (Cf. Comment 610.1.)

The idea of the more structural proof given here (in Proposition 11 for
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648.1... multiple categories) is sketched in /117 /, Remark 2, Page 601. In-
dependently, Street [190] gave an abstract existence proof, and more gen-
erally he showed that a finitely lax complete 2-category admits all J-ind-
exed limits for any finitary 2-functor J: A> Cat; the indexed limit is
explicitly constructed thanks to a presentation via computads of the 2-
category cone of J.

Street's paper led Gray to about the same existence proof as ours; when
we received the first version of Gray's paper [156], we were finishing
/ 121/, so we added a Note in it (page 723) to compare both methods. In
{156 Gray also gives the following algorithm for constructing lax limits:
Let K be a representable 2-category ; the lax-limit of a 2-functor [: A > K
is the (ordinary) limit of the functor PR(I): Prol A » KZ constructed in
3 steps: a) the representability of K is used to define a lax functor /
from K to the bicategory SpanK; of spans of K; ( = category of l-mor-
phisms of XK); b) To a 2-category A there is (functorially) associated
a category Prol A and a functor R from the category of lax functors
A SpanKZ to the category of left exact funcrors Prol A » KI ; if A «is»
a category, Prol A is the discrete fibration associated to the correspond-
ing Set-model of the sketch of categories; c¢) the functor PR(1) is the
image by R of the lax functor

Al x L spank, .

Gray applies this algorithm to describe indexed limits, lax ends (which
have also been studied in the Theses of Bozapalides [141] and Sirot {187]
under the name of cartesian ends). In [140], Bozapalides constructs lax
( = quasi-) limits in the bicategory of profunctors (or distributors) Dist,
and in the category of V-profunctors, when V is a monoidal category. For
limits in Dist, cf. also Vaugelade's Thesis [127].

2. Homotopy limits. There is a clear analogy between the notions of
lax limits and of homotopy limits, which were introduced: by Puppe, in
special cases [181], by Bousfield & Kan [139] and by Vogt [199] for
homotopically coherent diagrams. In [194], Thomason proved that the
Nerve functor carries the lax limits in Catf to homotopy limits in the cat-

egory Simp of simplicial sets, up to homotopy. His paper led Gray [159] to
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648.1... define homotopy (co)limits for simplicial functors A - B, where

A is a small simplicial category and B a complete and cocomplete sim-
plicial category by means of indexed limits; they are calculated via
the replacement scheme. The Bousfield & Kan notion is found anew if
A is the free simplicial category on a small category, and the relations
between homotopy limits and lax limits are exhaustively treated.

Gray's definition cuts off the coherence at level 2 and does not lead
to an analogue of the Bousfield-Kan spectral sequences. Bourn and
Cordier [138] propose a definition which remedies theée defects (a spe-
cial case of it appears in Segal [185]); they still define the homotopy
limit of a simplicial functor as an indexed limit, but in the context of
simplicial profunctors (instead of simplicial functors). They show how
coherence in homotopy limits corresponds to the intuitive geometric
idea of a homotopy cone, and how their definition «is» the replacement
scheme. Gray's homotopy limits, and lax limits (in the case of 2-cat-
egories) are examples of this situation.

Vogt's definition is more topologically flavored, since it is given
for homotopically coherent diagrams F: A - Top. Cordier, who was
motivated by strong shape theory, has proved in [148] that F may be
replaced by a simplicial functor S(A)» Top_ (cf. Comment 619.1). In
[149] he constructs a simplicial functor ®: S(A) > Simp (thanks to
Artin & Mazur's total object of a bisimplicial space [133]) such that
Vogt's homotopy limit of F appear as a ®-indexed limit; thus the dif-
ferent definitions are unified.

In [137], Bourn shows that, if V is a monoidal category, and if
®: A> V is a V-functor, there is a V-monoid which acts on each ®-
indexed limits. In the case V is Simp and @ is Gray's :indexation of
homotopy limits, it follows each homotopy limit is acted upon by the
canonical simplicial monoid with one object % , generated by a l-mor-
phism ¢ and a 2-cell £ . A consequence is that coberent homotopy
idempotents split in the category Ho-Top (although homotopy idempot-
ents may not split).

Homotopy pullbacks and pushouts have been studied by several au-

795



649.

COMMENTS ON / 119/

thors, in particular Mather and Walkers [176, 177], Spencer and Wong
1188, 200} (cf. Comment 729.1).

1+ -categories and Van Kampen Theorems :

~-categories are those N-fold categories X such that the objects
of the n-th category be also objects of the (n+4 1)-th category, for each
integer n. The »-groupoids considered by Brown and iliggins in several
papers are the ~-categories X such that all the categories X" be group-
oids and X be the union of their objects. They are used as an essential
tool for getting an algebraisation of geometric constructions in higher
order homotopy theory, and an n-dimensional Van Kampen Theorem.

A version of this theorem for » = 2 was proved by Brown & Spencer

[147] by means of the equivalence:
crossed modules <+ double groupoids with 1 vertex and a connection.

The generalization to any n lies on the equivalence of the 6 following

categories :

a
co-groupoids <3 w-groupoids <t cubical T-complexes

c

crossed complexes «d simplicial T-complexes.

w-groupoids are cubical complexes whose n-cubes form an n-fold group-
oid with (n-1) commuting connections, and T-complexes are special
Kan complexes. The equivalence a is proved in [146], b in [17], ¢ in
[144| and 4 in Ashley's Thesis [134]. (Cf. Brown [ 143] for an introd-
uction to the simplicial T-complexes, defined by Dakin [150].)

The main results of [145] are the following ones: Let X be a filter-
ed space such that each loop in X, is contractible in X;. A new homo-
topy invariant, the homotopy w-groupoid pX, is defined; the homotopy
crossed complex 7X, image of p X by the equivalence ¢, plays the
role of the fundamental group for a topological space. The n-dimensional
Seifert-Van Kampen Theorem describes 5 X as, under certain circum-
stances, the colimit of the homotopy crossed complexes of some filtered
subspaces of X. As special cases, this theorem includes the Brouwer

degree Theorem and the relative Hutewicz Theorem.
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659.

COMMENTS ON /119, 120/

1. A first version of the intended paper was written in 78, but it was
not completed because of Charles' illness. Essentially, it contained
a generalization of the square product and of the internal «object of
natural transformations» to g-structures in a monoidal closed categ-

roy V, for any sketch ¢ ; whence the monoidal closed category of mul-

tiple g~-structures in V, if V is complete enough.

ON /120/: MULTIPLE FUNCTORS III.

This paper is entirely devoted to the construction of the internal

Hom of the cartesian closed category of n-fold categories. There are few

Comments, because all the notions have already been introduced in the pre-

cedent papers, and commented upon there.

663.
681.

690.

695.

704.

704.

1. Cf. /115/, Part III, Propositions 26 and 29.

1. An n-category A is often defined more restrictively, requiring that
the objects of At! be objects of Al for each 7 <n (or with the in-
verse order on the compositions, so that the definition extends to the
case of w-categories; cf. Comment 649.1).

1. This multiple category of frames has recently been used by Cordier
to study coherence problems.

1. Another construction of the internal Hom on Cat, (lookedas the cat-
egory of internal categories in Cat ;) may be deduced by iteration
from / 115/, Part III, Proposition 29.

1. The results of this Appendix are both generalized and simplified in
the Synopsis of O, HI-2, Section 6; cf. also the two following com-
ments.

2. The following shorter and less computational construction is ded-
uced from Corollary of Proposition B.G, Synopsis of O. III-2:

Let w: 1A, > % be the discrete fibration corresponding to the Set
model of the sketch of categories which defines the groupoid of pairs
of A, ; the V-category A looked at as an A,-polyspan (in Bénabou's
sense) determines a functor a@: /A, > V (cf. O, lII-2, page 857), then
the left extension of a2 along r is the model of the internal category

"Ain V.
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COMMENTS ON / 120, 121/

710.1. A «structural» proof is obtained from the more general Proposition
A.6 and Corollary, Proposition B.G of the Synopsis, O, III-2: the V-cat-
egory [''B is a «relative» right Kan extension. This proof is valid as
soon as V is cartesian (commuting coproducts are necessary to define

the functor [, but not for [*).

ON /121/ : MULTIPLE FUNCTORS IV,

The last part of this paper was written at the hospital, during the

final illness of Charles.

723.1. Cf. Comment 648.1.

729.1+ Homotopy commutative cubes:

Cubes in a double category with connection (hence in the double
category of squares of a 2-category C {147]) are used by Spencer-Wong
[188] to develop the abstract theory of homotopy pullbacks and push-
outs introduced by Spencer in [187].

The usual notion of a homotopy commutative cube in the topological
setting is found back if C is the 2-category of topological spaces (the
2-cells being homotopy classes); Leitch's generalization [171] also
enters this frame.

Thanks to these (homotopy commutative) cubes, Mather's cube The-
eorems [176] linking topological homotopy pullbacks and pushouts are
transposed by Wong to chain homotopy pullbacks and pushouts [200],
and by Miiller in the frame of abelian categories with a homotopy sys-
tem [178].

733.1. A quasi-category, or category without identities /93, 100/, is a
graph equipped with an associative composition defined for adjacent
atrrows. The free quasi-category of paths of a graph G consists of all
the paths of G, and not only paths without identities in them as the
free category of paths of G.

751.1. This particular case (Bourn's Proposition) states that a representable
2-category whose category of l-morphisms is (ﬁnitely) complete is lax
(finitely) complete. Commentaries on this theorem and on lax limits

are given in Comments 610.1 and 648.1.
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762.

COMMENTS ON / 121/

1+ The tensor product of 2-categories :

The category 2-Cat of 2-categories admits a non-symmetrical mon-
oidal closed structure: the tensor product B®A of the 2-categories
B and A is the reflection in 2-Cat of the double category B® A, and
the internal Hom is Fun(A,B) CLaxHom2(A,B). This monoidal
closed category on 2-Cat has been introduced by Gray; in [53], he
gives two constructions of BéA : an explicit one in terms of cells and
relations, and another one, using fibred categories (which he says was
inspired by a more general unpublished assertion of Bénabou); he also
examines the relations between the two internal Hom.

Note that the method of Proposition 7 leads to yet another expli-
cit construction of BOA as the 2-category reflection of B A. In fact,
our study of monoidal closed structures on categories of n-fold categ-

ories stemmed from a desire to generalize Gray's results on 2-categories

to double categories.

762.2. Laxified cubes were introduced in the hope of getting a notion of lax

764.

766.

funcrors such that a composition be defined on them.

1+ Lax bimodules :
The String functor is used by Guitart and Van den Bril in a recent
paper [164]. They prove that a lax bimodule W: X--->Y between 2-

categories is in 1-1 correspondence with a 2-functor
W: C = String((AX)2°P @A (Y°P)) - Cat,

where AX is the laxification of X (cf. Comment 619.1); hence C
solves the coherence problems for lax bimodules.

If X=1Y, they construct the glueing GW of W (or: lax crossed
product) as the lax colimit of W. The fibration (crossed product) asso-
ciated to a Cat-valued functor and the Kleisli constructions on a monad
or a comonad are examples of glueings. This construction leads to a
presentation of a bimodule Cat-}» Car which is used to define a non-

abelian cohomology of any order in Cat, via satellisation [164].

1. Another characterization of double categories may also be deduced

from Proposition 9: Any double category is isomorphic to a double sub

799



COMMENTS ON /121/

766.1... category of the double category Q(Cat) of quintets (= squares
of the 2-category Cat); in other terms, Q( Cat) is a «universal double

category». For the proof, cf. O, III- 1, Comment 105.1.

766.2. The alluded to characterization is intricate enough; we have not
published it at that time because of Charles' illness. Now I think it
could be simplified if one used Brown & Higgins homotopy w-groupoids
(cf. [145] and Comment 649.1). These authors are working on explicit

constructions of the tensor product of wo-groupoids (private communi-

cation).

ON /142, 143, 144 /.

/ 142/ and /143 / are Introductions to the Proceedings of the two
«Colloques sur 1'Algébre des Catégories» which we organized in Amiens
in 1973 and 1975 (a third one, dedicated to Charles, was held in 1980).

/144 / is an Introduction to the «Journées Théorie et Applications

des Catégories» at Chantilly, which completed the 75 Amiens Conference.

ON /139/: DEJA 20 ANS.

This Note was written to commemorate the 20tD anniversary of the

creation of the «Cahiers de Topologie et Géométrie Différentielle ».
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COMMENTS ON PART IV-2

SYNOPSIS

The 6 papers reproduced in this volume, which represent Charles's
last works (72-79), are devoted to the theory of sketched structures and
its applications; they are long articles, with explicit proofs and standard
terminology.

Parts I and II of /115/ refine the completion theorems of /102,
106/ ; Part Il gives existence theorems for monoidal closed structures
on categories of sketched structures, with applications to categories of
internal categories.

The 5 other papers deal with concrete constructions of such mon-
oidal closed structures: on categories of topological ringoids in /118/,
and specially on categories of multiple categories in the series /117, 119,
120, 121/ which contains the more important results.

In the following summary, numbers between brackets refer to the

main comments.

1. SKETCHES, TYPES AND COMPLETIONS /115/.

Sketches are intended to offer one presentation of a general alge-
braic structure, while types correspond to its theory. A sketch was defined
in / 106/ as a neocategory equipped with a partial choice of cones and
cocones (= inductive cones), and it was proved that a sketch is universal-
ly embedded into a prototype and into a type (cf. Synopsis of Part [V-1).
The existence proof of /106/ required the unicity of the distinguished
(co)cone with a given basis. In /115/ we succeed in deleting this res-
trictive, and often cumbersome, condition, thanks to a more constructive
approach.

More precisely, a mixed cone-bearing neocategory o is a neocat-
egory & equipped with a set I of (projective) cones and a set A of co-
cones. It is a limit-bearing category if L is a category and if the (co)cones
are (co)limit-cones, a loose (I, ] )-type (or theory) if moreover each func-

tor with its domain in the given class [ (resp. J) is the basis of at least
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SYNOPSIS 2

one distinguished cone (resp. cocone). Morphisms between cone-bearing

neocategories are neofunctors which preserve the distinguished (co)cones.

In Parts I and II of / 115/, we construct by transfinite induction
an embedding of a cone-bearing neocategory ¢ into:

- & limit-bearing category &, a sketch &, a prototype 7 , an (1,])-type
r, which are universally defined up to an isomorphism,

- a loose (I, J )J-type 7' which is universally defined up to an equi
valence.

If the embedding ¢ »# is 1-1, it is proved that # and & are iso-
morphic, while the type r and the loose type r' are equivalent.

If the distinguished (co)cones on the category & are (co)limitcones
the loose type r' affords a universal, up to equivalence, (I, ] )-completion
of 3 with preservation of the given (co)limits; the type r is a universal,
up to isomorphism, (I, J )-completion of ¥ with preservation of a given
partial choice of (co)limits.

Recently, more direct constructions of the loose projective I-type
of a limit-bearing category ¢ (there are no distinguished cocones) have

been given by several authors (436.1); they don't extend to the mixed case.

From these mixed completion theorems, we deduce a 2-adjunction
between the representable and corepresentable 2-category of cone-bearing

categories and some of its full sub-2-categories /115/.

2. CATEGORIES OF SKETCHED STRUCTURES (/ 115/, Part III).

Let ¢ be a cone-bearing category on & ; a model of o in a categ
ory V (or g-structure in V) is a functor X » V which sends the distin-
guished (co)cones on (co)limit cones; the category of models of ¢ in V
is denoted by V7.

The theory of mixed sketched structures, which has recently been
developed by Guitart-Lair (449.1) is equivalent to Guitart's theory of fig-

urative algebras, more adapted to concrete situations (449.1).

In /115/, Part IIl, we only consider the projective case, that is g

is a category % equipped with a set of (projective) cones. Then, if V is
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SYNOP SIS 3

monoidal closed category with «enough» limits, VO admits a monoidal
closed structure as soon as SetY is cartesian closed. This structure is
deduced from the monoidal closed structure on VS‘ defined by Day - Kelly,
thanks to a theorem on reflective subcategories of a monoidal closed cat-
egory (479.1). Other conditions for V? to be monoidal closed have been

given by Foltz-Lair and by Street (491.1, 492.1).

If o is the sketch of categories, there is deduced a monoidal clos-
ed structure on the category Cat(V) of internal categories in V. An ex-
plicit construction of its internal Hom is given at the end of /115/; the
method directly generalizes that used in / 109/ in the case V is a con-

crete cartesian closed category.

3. MULTIPLE CATEGORIES /117, 119/.

The category of sketches is a monoidal closed category (555.1).If

7
o is a sketch, the models of its n-th tensor product ® ¢ in a category V
are called n-fold g-structures in V. In particular, n-fold categories are ob-

tained if g is the sketch OCar of categories.

n-fold categories were introduced by Charles in 1963 as the intern-
al categories in the category of ( n-1 )-fold categories, or equivalently,
as sequences A = (Ai )i<n of n pairwise commuting categories on the

same set A. Let Caz, be the category of n-fold categories.

The categories Cat, for all n are subcategories of the category
M Cat of multiple categories, whose morphisms A > B from an n-fold cat-
egory A to an m-fold category B are the n-fold functors A -~ (Bi)i<n ,

if » < m ; otherwise, there are no morphisms.

MCat is studied in / 119/ ; its subcategory coproduct of the Car,
is equipped with a monoidal closed structure as follows:

- the tensor product of (B, A) is the (n+m)-fold category Bm A,
in which the n first categories are B%S x Al and the (n+j)th category
is B/ x A%5 for j<m ;

- if C is an (n+p )-fold category, the internal Hom Hom(A,C) is

the p-fold category on the set of multiple functors A » C whose compo-
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SYNOPSIS 4

tions are pointwise deduced from the p last compositions of C,

These constructions ate given in / 117/ in the case A and B are
categories and C is a double category; then the category Hom(A,C) had
been defined in /63 / as a generalization of the category of functors A D
to which it reduces if D is the double category of commutative squares

of the category D.

M Car is a complete category, but it does not admit coproducts of
families of multiple categories whose multiplicities are not bounded. So,
it is embedded in the complete and cocomplete category VM Cat, which
also admits as objects the infinite-fold categories. VM Cat is equipped
with a partial monoidal closed non-symmetrical structure defined as above.

Examples of infinite-fold categories are the co-groupoids which
have been studied by Brown and Higgins to get an n-dimensional Seifert-

van Kampen Theorem (649.1).

4. GENERALIZED LIMITS /117, 119, 121/.

IL.et A be an n-fold category and C an (n+ [ )-fold category. We
denote by |C| the n-fold category of objects of the last category C” on C.
Motivated by the n = I case (cf. above), we call a multiple func
tor T: A~ C a C-wise transformation between the n-fold functors F and
F' from A to [Ci which are its domain and codomain in Hom(A,C). If

F is constant, T is called a C-wise cone with basis F';

b

a C-wise limit
of F’is a universal C-wise cone with basis F’.

An important theorem (Proposition 8 of /119/) srates that [CI
admits all {finite]) C-wise limits if | C| admits C-wise limits indexed by
% 2 and if the subcategory of C' consisting of the objects for the n first
compositions is (finitely) complete.

The short existence proof uses the fact that (ar is the inductive
closure if {21, and an Appelgate-Tiemey theorem [132]. Forn =1, a
more constructive proof is given 1n /117 /.

In the case A is a 2-category and C is the 3-category of cylinders

of a 2-category D, a Cowise limit of F: A+ D is usually called alax
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limit of F. The above theorem reduces /119, 121/ to the Gray - Bourn -
Street result which says that a representable 2-category D whose category
of 1-morphisms is (finitely) complete is also (finitely) lax-complete (648.1).
It leads to applications in Algebraic Topology, since lax limits may be

related to homotopy limits and coherence problems (648.1, 619.1).

Existence theorems for several kinds of generalized limits are con-

sidered in /121 /.

5. MONOIDAL CLOSED STRUCTURES ON Cat, /120, 121/.

It follows from the general results of /115/ that Cat, is a cart-
esian closed category. In / 120/ we give an explicit construction of its

internal Hom functor Hom : If A is an n-fold category, then

Square Y Hom (A, -)
Homn (A,-) = (Catn —q—ﬂiﬁl—» Catgn-}f—» Cat:)n

Catn,
where :
- Hom(A,-) is a restriction of the internal Hom of M Cat (cf. n°o 3),

- ¥ is deduced from the permutation of the compositions :
(0,...,2n-1) l-) (0,2,...,2n-2,1,3,...,2n-1),
- Squaren 9, is obtained by iteration of the Square functor

Square : Cat, — Cat, ;.

The (n+ 1 )-category Square( A) consists of the commutative squares of
AV its n-1 first compositions are pointwise deduced from the composi-
tions of A%, i> 0, its 2 last compositions are the horizontal and vertical
compositions of squares.
The difficult points of the proof are :

- the construction of the adjoint Link: Cat, , ;> Cat, of the Square
functor; in particular, it sends an (n+1)-category to the n-category of
its components ;

- the proof that the functor O, = y. Square, 5 maps the 2n-fold cat-
egory Bm A on the n-fold category BXx A, for any n-fold category B.

As an application, Cat, is embedded in the (n+ I )-category Naz,
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of «hypertransformations», using the fact that a V-category in a cartesian
category V with commuting coproducts «is» an internal category in V (Ap-

pendix / 120/ and O, III-2, Synopsis (704.2, 710.1)).

The construction of Hom, is laxified in /121/ to get non-sym-
metrical monoidal closed structures on Cat,, . The same method is used,
but the Square functor is replaced by the Cube functor; a cube consists
of 6 faces which «commute up to an (n-1)-cell». For n = 2, these cubes
generalize the notion of a homotopy commutative cube used in Algebraic
Topology (729.1).

Here again, the main difficulty is the construction of the adjoint,
LaxLink, to Cube: Cat, > Cat, ,,. While Link A is generated by classes
of strings of objects of the two last categories A" and A™1 the n-fold
category LaxLink A is generated by classes of strings of strings of ob-
jects taken alternatively in A™? and in A™! or A™ (i.e., objects of

-2 . I
A""< replace identities).

An important application is the following characterization of double
categories: any double category D is isomorphic to a double subcategory
of the double category Q(StringD) , where Q: 2-Cat>Cat, sends a 2-cat-

egory on the double category of its squares, and
String: Cat,y - 2-Cat

is the adjoint of Q (deduced from Lax Link). It follows that D is also iso-
morphic to a double subcategory of the double category Q( Cat) of quin-
tets (766.1). The double categories Q(C) are the double categories with
connections (C a 2-category), which provide a convenient setting for homo-
topy theory (603.1). The String functor is used by Guitart- van den Bril to
study lax bimodules and non-abelian cohomology (764.1).

6. TOPOLOGICAL RINGOIDS /118/.

The paper / 118/ was written to complete Lellahi's paper [172].
A ringoid is an Ab-category, looked at as a ring with several ob-
jects. A topological ringoid is an internal ringoid in the category Top of

topological spaces.
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In /118/, monoidal closed structures on the category of topolo-
gical ringoids and some of its subcategories are deduced from partial mon-
oidal closed structures on Top- as follows.

Let A and A' be topological ringoids; let S be a covering of A
by compact subspaces S such that each x ¢ § admits a basis of neigh-
borhood in § consisting of elements of S. We construct a topological ring-
oid A'®g A which is a universal solution of the problem: for each topolo-
gical ringoid A", the morphisms A'®gA » A" are in 1-1 correspondence
with the biadditive continuous functors A'xgA » A", where A'xgAis
the topological ringoid on the product ringoid, equipped with the S-product
topology [154]; or equivalently, they are in 1-1 correspondence with the
morphisms A' > Homg(A,A"), to the ringoid of morphisms A » A", equip-
ped with the S-open topology on the set of morphisms A > A" 2,

The S-product topology may be replaced by the topology on products
of topological spaces associated by Booth - Tillotson to the data of a class

K of topological spaces (i.o. subspaces of A, cf. 538.1).
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