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1 Introduction

Braidings for monoidal categories were introduced in [7] and its forerunners. The centre
ZX of a monoidal categoryX was introduced in [6] in the process of proving that the
free tortile monoidal category has another universal property. The centre of a monoidal
category is a braided monoidal category. What we now call lax braidings were considered
tangentially by Yetter [13]. What we now call the lax centreZlX of X was considered
under the name “weak centre” by P. Schauenburg [12]. The purpose of this work is to
highlight the notions of lax braiding and lax centre for monoidal categoriesX and more
generally for promonoidal categoriesC . Indeed we further generalize to theV -enriched
context. Lax centres turn out to be lax braided monoidal categories. Generally the centre is a
full subcategory of the lax centre, however it is sometimes the case that the two coincide. We
have two such theorems under different hypotheses, one in the case sufficient dual objects
exist in the additive context, and the other in the cartesian context. We examine when the
centre of[C ,V ] with a convolution monoidal structure (in the sense of [1]) is again a functor
category[D ,V ].

One reason for being interested in the lax centre ofX is that, if an objectX of X is
equipped with the structure of monoid inZlX , then tensoring withX defines a monoidal
endofunctor−⊗X of X ; this has applications in cases where the lax centre can be explicitly
identified.

2 Review of definitions

The context in which we work is enriched category theory in the sense of [10]. The base
monoidal categoryV is symmetric, closed, complete and cocomplete. The tensor product
of V is denoted by⊗ : V × V // V , the unit byI, and the associativity and unital
isomorphisms will be regarded as canonical (and so unnamed).
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A V -multicategoryis aV -categoryC equipped with a sequence ofV -functors

Pn : C op⊗ . . .⊗ C op︸ ︷︷ ︸
n

⊗C // V ,

where we writeJ for P0 : C // V , whereP1 is the homV -functorC (−,∼) : C op⊗C
// V , and where we writeP for P2. Furthermore, there aresubstitution operations,

which includeV -natural families∫ X

P (X,C;D)⊗ P (A,B;X)
µ1 // P3(A,B,C;D)

∫ Y

P (A, Y ;D)⊗ P (B,C;Y )
µ2oo

∫ X

P (X,A;B)⊗ JX
η1 // C (A,B)

∫ Y

P (A, Y ;B)⊗ JY,
η2oo

satisfying associativity and unital conditions. ForV = Set, this is a multicategory in the
sense of [11].

A promonoidalV -category[1] is a V -multicategoryC for which µ1, µ2, η1, η2 are
invertible. In this case,Pn is determined up to isomorphism byP0, P1, P2.

A monoidalV -categoryis a promonoidalV -categoryC for whichP andJ are repre-
sentable. That is, there areV -natural isomorphisms

P (A,B;C) ∼= C (A�B,C), JC ∼= C (U,C)

for someA � B (depending on the choice ofA andB) and someU . Monoidal structures
onC are in bijection with monoidal structures onC op.

For any small promonoidalV -categoryC , there is aconvolutionmonoidal structure on
theV -functorV -categoryF = [C ,V ] defined (following [1]) by

(F ∗G)C =
∫ A,B

P (A,B;C)⊗ FA⊗GB.

The unitJ andF is closed (by which we always mean “on both sides”):

F (F, [G,H]l) ∼= F (F ∗G,H) ∼= F (G, [F,H]r)

where

[G,H]lA =
∫

B,C

V (P (A,B;C)⊗GB,HC) and

[F,H]rB =
∫

A,C

V (P (A,B;C)⊗ FA,HC).

Conversely, every closed monoidal structure∗, J on F = [C ,V ] for a smallV -
categoryC defines a promonoidal structure onC where

Pn(A1, . . . , An;B) = Pn(C (A1,−), . . . ,C (An,−);C (B,−)).
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That is, we restrict the promonoidal structure along the Yoneda embeddingY : C //F op.
A lax braidingfor a promonoidalV -categoryC is aV -natural family of morphisms

cA,B;C : P (A,B;C) // P (B,A;C)

such that the following diagrams commute.∫ U

P (U,C;D)⊗ P (A,B;U)
∫ U

P (C,U ;D)⊗ P (A,B;U)
R U c⊗1 //

∫ V

P (A, V ;D)⊗ P (B,C;V )

∼=
��

∫ V

P (A, V ;D)⊗ P (C,B;V )

R V 1⊗c

�� ∫ W

P (W,B;D)⊗ P (A,C;W )
∼= //

∫ W

P (W,B;D)⊗ P (C,A;W )

RW 1⊗c

OO

∼=

OO

∫ V

P (A, V ;D)⊗ P (B,C;V )
∫ V

P (V,A;D)⊗ P (B,C;V )
R V c⊗1 //

∫ U

P (U,C;D)⊗ P (A,B;U)

∼=
��

∫ U

P (U,C;D)⊗ P (B,A;U)

R U 1⊗c

�� ∫ W

P (B,W ;D)⊗ P (A,C;W )
∼= //

∫ W

P (B,W ;D)⊗ P (C,A;W )

RW 1⊗c

OO

∼=

OO

∫ U

P (U,A;B)⊗ JU

∫ U

P (A,U ;B)⊗ JU

R U c⊗1 //

C (A,B)

∼=
{{ww

ww
ww

ww
ww

w

∼=
##G

GG
GG

GG
GG

GG

∫ U

P (A,U ;B)⊗ JU

∫ U

P (U,A;B)⊗ JU

R U c⊗1 //

C (A,B)

∼=
{{ww

ww
ww

ww
ww

w

∼=
##G

GG
GG

GG
GG

GG
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WhenC is monoidal, the lax braiding is induced by aV -natural family of morphisms

cA,B : A�B //B �A

which we also call the lax braiding in this case. For general promonoidalC , lax braidings
on the convolution monoidalV -categoryF = [C ,V ] are in bijection with lax braidings on
C : the Yoneda embeddingY : C //F op is a lax-braided promonoidal functor.

A braiding is a lax braiding for which eachcA,B;C (and hence eachcA,B in the monoidal
case) is invertible. The third and fourth conditions on a lax braiding are automatic in this
case.

In the presence of duals in a monoidalC (more precisely,C should be right autonomous
in the sense of [7]),every lax braiding is automatically a braiding(see [8, Section 10,
Proposition 8], [13, Proposition 7.1], [7, Propositions 7.1 and 7.4]).

3 Lax centres

The lax centreZlC of a monoidalV -categoryC is the lax-braided monoidalV -category
defined as follows. The objects are pairs(A, u) whereA is an object ofC andu is a
V -natural family of morphisms

uB : A�B //B �A

such that the following two diagrams commute:

(A�B) � C (B �A) � C
uB�1 //

B � (A� C)

∼=

&&MMMMMMMMM

B � (C �A)

1�uC

��

A� (B � C)

∼=

xxqqqqqqqqq

(B � C) �A)

uB�C

��

∼=
//

A� U U �A
uU //

A

∼=
~~}}

}}
}}

}}
}}

∼=
  A

AA
AA

AA
AA

A

(where the marked isomorphisms are induced by the substitution operationsµ andη and
their inverses). The hom objectZlC ((A, u), (A′, u′)) is defined to be the equalizer inV of
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the two composed paths around the following square.

C (A,A′) C (A�B,A′ �B)
−�B //

C (A�B,B �A′)

C (1,u′
B)

��
C (B �A,B �A′)

B�−

��

C (uB ,1)
//

Composition inZlC is defined so that we have the obvious faithfulV -functorZlC // C
taking(A, u) toA.

The monoidal structure onZlC is defined on objects by

(A, u) � (B, v) = (A�B,w)

wherewC : (A�B) � C //C � (A�B) is the composite

A� (B � C)
1�vC //A� (C �B)

∼= //(A� C) �B
uC�1 //(C �A) �B

conjugated by canonical isomorphisms. The unit object isU equipped with the family of
canonical isomorphismsU � C ∼= C � U . The faithfulV -functorZlC // C is strong
monoidal.

The lax braiding onZlC is defined to be the family of morphisms

c(A,u),(B,v) : (A�B,w) // (B �A, w̃)

lifting uB : A�B //B �A toZlC .
The centreZC of C is the full monoidal sub-V -category ofZlC consisting of the

objects(A, u) with eachuB invertible. ClearlyZC is a braided monoidalV -category.
There are interesting cases where the centreZC is actually equal to the lax centre.

Much as a lax braiding in the presence of duals is a braiding, we have that, ifC is right
autonomous, thenZC = ZlC (see [2, Proposition 3.1]).

It is worth noting that for a closed monoidalC with a dense full sub-V -category, the
objects(A, u) of ZlC are determined by the restriction ofuB to thoseB in the dense sub-
V -category (see [2, Proposition 3.1 and 3.3]).

We can generalize the lax centre construction to promonoidalV -categoriesC . It is
defined as aV -multicategory to be the pullbackZlC

(ZlC ) (ZlF )opΨ //

F op
��

C
��

Y
//

of V -categories andV -functors. The multicategory structure is defined by restriction along
the fully faithful Ψ (whereF = [C ,V ] with convolution).
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SimilarlyZC is defined by replacingZlF byZF in the pullback.
It is frequently the case thatZlC is promonoidal, not merely a multicategory; moreover,

the forgetfulV -functorZlC // C is strong promonoidal. IfC is monoidal, thisZlC
agrees with the definition in Section 2.

The objects ofZlC are pairs(A,α) whereA is an object ofC andα is aV -natural fam-
ily of morphismsαX;Y : P (A,X;Y ) // P (X,A;Y ) such that the pair(C (A,−), u) is
an object of(ZlF )op, whereu is determined by

uC (X,−) = αX;− : C (A,−) ∗ C (X,−) // C (X,−) ∗ C (A,−).

If ZlC is promonoidal, it has a lax braiding

c(A,α),(B,β);(C,γ) : P ((A,α), (B, β); (C, γ)) // P ((B, β), (A,α); (C, γ))

obtained by restriction ofαB;C : P (A,B;C) // P (B,A;C) to the equalizers.

TheV -functorΨ induces an adjunction̂Ψ a Ψ̃:

Zl[C ,V ]
Ψ̃

// [ZlC ,V ]
Ψ̂oo

where

Ψ̂(G) =
∫ (A,α)

G(A,α)⊗Ψ(A,α) and Ψ̃(F, θ)(A,α) = Zl[C ,V ](Ψ(A,α), (F, θ)).

The last object can be obtained as the equalizer of two morphisms out ofFA. If ZlC
is promonoidal, this is a lax-braided monoidal adjunction. We shall see that the adjunction
can be an equivalence of lax-braided monoidalV -categories.

Similar remarks apply toZC .

4 The cartesian case

For this section, supposeV = Set with cartesian monoidal structure. Our concern is
with the lax centre of cartesian monoidal categoriesC : that is,C is a category with finite
products regarded as a monoidal category whose tensor is product.

It is an easy exercise to see that an object(A, u) of ZlC is such thatuX : A × X
//X ×A is determined by its first projectionA×X //X. In fact, every family of

morphismsθX : A×X //X determines an object(A, u) of ZlC via

uX = (θX ,pr1).

So we identify objects ofZlC with pairs(A, θ).
We therefore see that thecoreCC of the categoryC in the sense of [5] is precisely a

terminal object ofZlC . If this core exists, we have the identification of the lax centre with
a slice category

ZlC ∼= C /CC .
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The monoidal structure onC /CC arises from a monoidal structure onCC in C : the mul-
tiplication CC × CC

//CC in C is the unique morphism into the terminal object in
ZlC .

If C is cartesian closed (with internal hom written as [X,Y]), we have the formula

CC
∼=

∫
X

[X,X]

provided the end exists; it does whenC has a small dense subcategory and is complete.
Now supposeC is any small category and we shall apply the considerations of this

section to the cartesian monoidal categoryF = [C ,Set].
The promonoidal structure onC that leads to the cartesian structure onF via convolu-

tion is defined by
P (A,B;C) = C (A,C)× C (B,C).

(This is monoidal if and only ifC has finite coproducts.) We can obtain the following
explict descriptions ofZlC andZC in this case. The objects ofZlC are pairs(A,φ) where
A is an objectC andφ is a family of morphisms

φX : C (A,X) // C (X,X)

dinatural inX in the sense of [4]; that is,

f ◦ φX(u) = φY (f ◦ u) ◦ f

for f : X // Y . A morphismg : (A,φ) // (A′, φ′) in ZlC is a morphismg :
A //A′ in C such thatφX(v ◦ g) = φ′X(v). The promonoidal structure onZlC is
defined by

P ((A,φ), (B,ψ); (C,χ)) ={
A

u // C oo
v

B | χX(f) = φX(f ◦ u) ◦ ψX(f ◦ v) for all C
f // X

}
.

The lax braiding onZlC is defined by

P ((A,φ), (B,ψ); (C,χ))
c(A,φ),(B,ψ);(C,χ) // P ((B,ψ), (A,φ); (C,χ))

(A u // C oo
v

B) 7−→ ( B
αC(u)◦v // C oo

u
A ).

An object(A,φ) of ZlC is inZC if and only if the function

C (A,C)× C (B,C) // C (B,C)× C (A,C) ; (u, v) 7−→ (αC(u) ◦ v, u)

is bijection for allB,C.

Theorem 4.1. Let C denote a small category with promonoidal structure such that the
convolution structure on[C ,Set] is cartesian product.
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(a). The adjunction̂Ψ a Ψ̃ defines an equivalence of lax-braided monoidal categories

Zl[C ,Set] ' [ZlC ,Set]

which restricts to a braided monoidal equivalence

Z[C ,Set] ' [ZC ,Set].

(b). If every endomorphism in the categoryC is invertible thenZlC = ZC .

(c). If C is a groupoid then
ZC = ZlC = [ΣZ,C ]

(whereΣZ is the additive group of the integers as a one-object groupoid).

5 The autonomous case

SupposeC is a closed monoidalV -category with tensor product� and unitU . We write
[Y, Z]l for the left internal hom. PutX l = [X,U ]l. We have a canonical isomorphism
U l ∼= U and a canonical morphismY l �X l // (X � Y )l.

Define aV -functorM : C // C by

M(A) =
∫ X

X l �A�X

when the coend exists (which it does whenC is cocomplete and has a small dense sub-
V -category). Using the canonical isomorphism and morphism just mentioned, we obtain a
monad structure onM . Notice thatM preserves colimits.

Proposition 5.1. If C has a small dense sub-V -category of objects with left duals thenZlC
is isomorphic to theV -categoryC M of Eilenberg-Moore algebras for the monadM .

We can apply this in the case whereC is replaced byF .

Theorem 5.2. (V = Vectk) SupposeC is a promonoidalk-linear category with finite-
dimensional homs. LetF = [C ,V ] have the convolution monoidal structure. Then

ZF = ZlF ∼= FM ' [CM ,V ]

whereCM is the Kleisli category for the promonadM onC .

6 Monoids in the lax centre

Let C be a monoidalV -category. Each monoid(A, u) in ZlC determines a canonical
enrichment of theV -functor

−�A : C // C
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to a monoidal functor:

X �A� Y �A
1�uY �1 // X � Y �A�A

1�1�µ // X � Y �A

U
η // A ∼= U �A.

This becomes useful whenZlC can be explicitly identified as in the last two sections.
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