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1 Introduction

Braidings for monoidal categories were introduced in [7] and its forerunners. The centre
Z%Z of a monoidal category?” was introduced in [6] in the process of proving that the
free tortile monoidal category has another universal property. The centre of a monoidal
category is a braided monoidal category. What we now call lax braidings were considered
tangentially by Yetter [13]. What we now call the lax cenggZ” of 2~ was considered
under the name “weak centre” by P. Schauenburg [12]. The purpose of this work is to
highlight the notions of lax braiding and lax centre for monoidal categafieand more
generally for promonoidal categori&s. Indeed we further generalize to thé-enriched
context. Lax centres turn out to be lax braided monoidal categories. Generally the centre is a
full subcategory of the lax centre, however it is sometimes the case that the two coincide. We
have two such theorems under different hypotheses, one in the case sufficient dual objects
exist in the additive context, and the other in the cartesian context. We examine when the
centre of¢, ¥'] with a convolution monoidal structure (in the sense of [1]) is again a functor
category{Z, ¥].

One reason for being interested in the lax centre?dis that, if an objectX of 2" is
equipped with the structure of monoid #}.2", then tensoring withX' defines a monoidal
endofunctor-® X of Z7; this has applications in cases where the lax centre can be explicitly
identified.

2 Review of definitions

The context in which we work is enriched category theory in the sense of [10]. The base
monoidal category” is symmetric, closed, complete and cocomplete. The tensor product
of ¥ is denoted byw : ¥ x ¥ ——= ¥, the unit byI, and the associativity and unital
isomorphisms will be regarded as canonical (and so unnamed).
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A ¥ -multicategoryis a ¥ -categoryé equipped with a sequence Bf-functors
P, 6P®.. CPRE¢ ——7,
—_— ————

where we writeJ for Py : € —— ¥/, whereP; is the hom¥ -functor¢(—,~) : €°*® ¢
—— 7, and where we write? for P,. Furthermore, there asubstitution operations
which include? -natural families

X Y
/P(X, C:D)® P(A, B; X) —— Ps(A, B,C; D) <"— /P(A, Y;D)® P(B,C;Y)

X - na Y
/ P(X,A;B)@JX%%(A,B)\L/ P(A,Y;B)® JY,

satisfying associativity and unital conditions. E6r= Set, this is a multicategory in the
sense of [11].

A promonoidal ¥'-category[1] is a ¥ -multicategoryé for which p1, po,n1,72 are
invertible. In this caseP, is determined up to isomorphism B8y, Py, Ps.

A monoidal ¥ -categoryis a promonoidat/ -categoryé for which P and.J are repre-
sentable. That is, there a¥é-natural isomorphisms

P(A,B;C)=€¢(ARB,C), JC=%(U,C)

for someA X B (depending on the choice of and B) and soméd/. Monoidal structures
on % are in bijection with monoidal structures @ff®.

For any small promonoidat’-category#’, there is aconvolutionmonoidal structure on
the ¥’-functor ¥ -category.# = [¥¢, ¥] defined (following [1]) by

A,B
(F*G)C’:/ P(A,B;C)® FA® GB.

The unitJ and.# is closed (by which we always mean “on both sides”):
F(F,[G,H|)) 27 (F+G,H) = Z%(G,|F, H|)
where
[G,H;A = Vv (P(A,B;C)®GB,HC) and
B,C

[F,H,B= [ ¥(P(AB;C)® FA,HC).
AC

Conversely, every closed monoidal structwreJ on % = [¢, 7] for a small ¥-
category? defines a promonoidal structure @hwhere

P'IL(A17 .. -,An;B) = Pn(%(Ala _)7 e 7%(147” _);(K(Bv _))



That s, we restrict the promonoidal structure along the Yoneda embeHdirg)—— .7 °P.
A lax braidingfor a promonoidal/’-category#’ is a’#’-natural family of morphisms

CA,B;C - 1D(A7 B; C)HP(B, A; C)
such that the following diagrams commute.

U JUeo1 v
/ PU,C;D)® P(A,B;U) —> P(C,U;D)® P(A,B;U)

o

1R

1% w
/ P(A,V:D)® P(B,C:V) / P(W,B; D) ® P(C, A; W)

fv 1®c fW1®c

1% w
/ P(A,ViD)® P(C, B; V) / P(W, B; D) @ P(A,C; W)

14 fv c®1 v
P(A.ViD) & P(B,C;V) ————= [ P(V.A:D) & P(B,CSV)

9 Tg

U w
/ P(U,C; D) ® P(A, B;U) / P(B,W;D) @ P(C, A; W)

fU 1®cl TIW 1®c

U f (.®1 U

/ P(U,A;B)® JU ——— | P(A,U;B)® JU
U f p®1 U

/ P(A, P(U,A; B)® JU

\/



When% is monoidal, the lax braiding is induced byfanatural family of morphisms
cap:AXB——=BKXKA

which we also call the lax braiding in this case. For general promon@idédx braidings
on the convolution monoidat’-category.# = [¢, ¥] are in bijection with lax braidings on
¢: the Yoneda embedding : ¥ —— %P is a lax-braided promonoidal functor.

A braidingis a lax braiding for which eacty p.c (and hence eaaty g in the monoidal
case) is invertible. The third and fourth conditions on a lax braiding are automatic in this
case.

In the presence of duals in a monoi@a(more preciselys” should be right autonomous
in the sense of [7])every lax braiding is automatically a braidin¢see [8, Section 10,
Proposition 8], [13, Proposition 7.1], [7, Propositions 7.1 and 7.4]).

3 Laxcentres

Thelax centreZ;% of a monoidal?-category%’ is the lax-braided monoidaft’-category
defined as follows. The objects are pafrs, u) where A is an object of¢ andu is a
¥ -natural family of morphisms

ug: AXB——=BKXA
such that the following two diagrams commute:

’U,Bxl

(ARB)RC (BRARC
AR (BRC) BR(ARC)
’U,BgC IIXUC
(BRC)K A) - BR(CK A)
ARU “ UK A
A

(where the marked isomorphisms are induced by the substitution operatimmd», and
their inverses). The hom objegy € ((A, u), (A’,v')) is defined to be the equalizer it of



the two composed paths around the following square.

@(A, A —up “(AX B, A' X B)
BR-— E(1uly)
F(BRABRA) ——>¢(AK B, BE A)

Composition inZ;% is defined so that we have the obvious faithftfunctor 2,4 —— %
taking (A, u) to A.
The monoidal structure of;% is defined on objects by

(A4, u) K (B,v) = (AKX B, w)
wherewe : (AK B) X C——C K (AKX B) is the composite

1Xve

o

11,0@1

AR (BRC) AR (CK B)

(ARC)X B (CRA)KRB

conjugated by canonical isomorphisms. The unit objeéf isquipped with the family of
canonical isomorphism8 X C = C K U. The faithful ¥-functor 2,4 —— % is strong
monoidal.

The lax braiding orZ; % is defined to be the family of morphisms

C(Au),(Bw) * (A X B, w) —_— (B XA, 1[))

lifting up : AXB—— BX Ato Z;%.

The centre Z¢ of ¢ is the full monoidal sub¥-category ofZ;¢ consisting of the
objects(A, u) with eachup invertible. ClearlyZ% is a braided monoidal’-category.

There are interesting cases where the ceftee is actually equal to the lax centre.
Much as a lax braiding in the presence of duals is a braiding, we have tl@tisifright
autonomous, the@¢ = Z,% (see [2, Proposition 3.1]).

It is worth noting that for a closed monoidal with a dense full sub¥-category, the
objects(A, u) of Z,% are determined by the restriction@f; to thoseB in the dense sub-
¥ -category (see [2, Proposition 3.1 and 3.3]).

We can generalize the lax centre construction to promonoidabtegoriess. It is
defined as & -multicategory to be the pullback;%

N4

(Z2:%) (21.7)°%
€ FOoP

Y

of ¥'-categories and’-functors. The multicategory structure is defined by restriction along
the fully faithful ¥ (where.# = [¥¢, 7] with convolution).



Similarly Z% is defined by replacing;.# by Z.% in the pullback.

Itis frequently the case thaf; ¢ is promonoidal, not merely a multicategory; moreover,
the forgetful ¥'-functor Z;¢ —— ¢ is strong promonoidal. I¥ is monoidal, thisZ;¢
agrees with the definition in Section 2.

The objects o, % are pairg A, o) whereA is an object of¢ and« is a¥’-natural fam-
ily of morphismsax.y : P(A,X;Y)—— P(X, A;Y') such that the paif¢' (A, —),u) is
an object of( Z;.% )P, whereu is determined by

u‘f(X,f) =0ox;— %(Av _) * %(Xv _> H%(‘XZ _) * %(A7 _)'
If Z,% is promonoidal, it has a lax braiding
C(A,a),(B.ﬂ);(C,’y) : P(<A7 Oé), <B7 ﬁ)7 (07 ’7)) Hf)<(Ba B)7 (A7 Oé); (07 ’Y))

obtained by restriction akp.c : P(4, B; C) —— P(B, A; C) to the equalizers.
The ¥ -functor ¥ induces an adjunctiowr 4 ¥:
17
ZE, V)~ (2,6, 7]
7

where

(A@)
\I/(G):/A G(A,a)@¥(A,a) and U(F,0)(A a)= Z[€, V](¥(A,a), (F,0)).

The last object can be obtained as the equalizer of two morphisms éutioff 7;¢
is promonoidal, this is a lax-braided monoidal adjunction. We shall see that the adjunction
can be an equivalence of lax-braided monoidatategories.

Similar remarks apply t&%’.

4 The cartesian case

For this section, supposg = Set with cartesian monoidal structure. Our concern is
with the lax centre of cartesian monoidal categofiésthat is,% is a category with finite
products regarded as a monoidal category whose tensor is product.

It is an easy exercise to see that an objetiu) of Z,% is such thatuy : A x X
—— X x Ais determined by its first projectiod x X —— X. In fact, every family of
morphismdx : A x X —— X determines an obje¢t, u) of Z,% via

ux = (9)(, prl).

So we identify objects of;% with pairs(A, 9).

We therefore see that tlwmre C of the category# in the sense of [5] is precisely a
terminal object ofZ;%. If this core exists, we have the identification of the lax centre with
a slice category

76 26 /Cs.



The monoidal structure o#/C arises from a monoidal structure 6iy in ¢: the mul-
tiplication C¢ x Cyy ——C in € is the unique morphism into the terminal object in
Z6.

If ¢ is cartesian closed (with internal hom written as [X,Y]), we have the formula

Coy = /X[X,X]

provided the end exists; it does whehhas a small dense subcategory and is complete.
Now supposes” is any small category and we shall apply the considerations of this
section to the cartesian monoidal categgfy= [¢, Set].
The promonoidal structure o that leads to the cartesian structure#rvia convolu-
tion is defined by
P(A,B;C)=%(A,C) x € (B,C).

(This is monoidal if and only if6 has finite coproducts.) We can obtain the following
explict descriptions of;¢ andZ% in this case. The objects &f ¢ are pairg A4, ¢) where
Ais an objects and¢ is a family of morphisms

ox :C(A,X)—=F (X, X)
dinatural inX in the sense of [4]; that is,
foox(u)=oy(fou)of
for f : X——=Y. A morphismg : (A,¢)——(A4',¢') in Z;€ is a morphismg :

A——=A'"in € such thatpx (v o g) = ¢'x(v). The promonoidal structure of;% is
defined by

P((A,¢),(B,v); (C,x)) =
{A—u>C<U—B | xx(f) = éx(fou) ovx(fou) forall c$x}.

The lax braiding orZ; % is defined by

P((A, ), (B, 1); (C, x)) — =220 . p((B, ), (A, 6): (C, X))

ac(u)ov W

(A>~c<"-B) — (B C

A).
An object(A4, ¢) of Z;% is in Z% if and only if the function
C(A,C)x€(B,C)——=%(B,C) x € (A,C); (u,v) — (ac(u) ov,u)
is bijection for all B, C.

Theorem 4.1. Let ¥ denote a small category with promonoidal structure such that the
convolution structure of¢’, Set] is cartesian product.



(a). The adjunctionl 4 ¥ defines an equivalence of lax-braided monoidal categories
Zl [Cf, Set] ~ [Zl%, Set]
which restricts to a braided monoidal equivalence

Z|%,Set] ~ [Z¥, Set)].

(b). If every endomorphism in the categ@fiis invertible thenZ; ¢ = Z¢'.

(c). If € is a groupoid then
7€ = 2)¢ = X7,

(whereX.Z is the additive group of the integers as a one-object groupoid).

5 The autonomous case

Suppose?’ is a closed monoidal -category with tensor produéf and unitU. We write
[Y, Z], for the left internal hom. Puk’ = [X,U];. We have a canonical isomorphism
U' = U and a canonical morphisii' X X! —— (X X Y)'.

Define a¥’-functor M : ¥ —— % by

X
M(A):/ X'RARX

when the coend exists (which it does whéhis cocomplete and has a small dense sub-
¥ -category). Using the canonical isomorphism and morphism just mentioned, we obtain a
monad structure of/. Notice that)\/ preserves colimits.

Proposition 5.1. If ¥ has a small dense sup-category of objects with left duals thef¢’
is isomorphic to the/ -categorys™ of Eilenberg-Moore algebras for the monad.

We can apply this in the case whefes replaced byZ.

Theorem 5.2. (¥ = Vect,) Supposer’ is a promonoidalk-linear category with finite-
dimensional homs. Le¥ = [¢, 7| have the convolution monoidal structure. Then

IF =70, F = FM ~ (G, V]

where%), is the Kleisli category for the promonad on%’.

6 Monoids in the lax centre

Let ¥ be a monoidal¥ -category. Each monoidA, u) in Z;% determines a canonical
enrichment of the/ -functor
—XA:C——%F



to a monoidal functor:

1Xuy X1 1X1X
XAKARYXA———XKYNKAXNA———XXY XA

U—1>A~UKA.

This becomes useful whefy ¢ can be explicitly identified as in the last two sections.
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