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Synthetic Diceerential Geometry of Higher-Order Total Diccerentials

Abstract



Given microlinear spaces M, N with z € M and y € N, we have investigated in our previous paper
[Beitrge zur Algebra und Geometrie, 45 (2004), 677-696] a certain kind of mappings from the totality
TD" (M) of D"-microcubes on M at = to the totality TL" (N) of D"-microcubes on N at y, called
n”th order preconnections there and D™-tangentials here, as a germ-free generalization of n”th order
total diceerentials. In this paper, after studying the above germ-free generalization of n”th order total
diccerentials further, we propose a certain kind of mappings from the totality T2 (M) of D,,-microcubes
on M at z to the totality TL"(N) of D,-microcubes on N at y, called D,-tangentials, as another
germ-free generalization of n”th order total diceerentials. Then we study the relationship between D"-
tangentials and D,,-tangentials, grstly in case that coordinates are not available (i.e., M and N are
general microlinear spaces without further conditions imposed) and secondly in case that coordinates are
available (i.e., M and N are formal manifolds). In the former case we have a natural mapping from
D™-tangentials into D,,-tangentials, while in the latter case the natural mapping is shown to be injective.
Our ideas will be presented within our favorite framework of synthetic diceerential geometry, but they
are readily applicable to such generalizations of smooth manifolds as diceerentiable spaces and suitable
ingnite-dimensional manifolds with due modigcations. This paper is to be looked upon as a microlinear
generalization of Kock’s [1978] perspicacious considerations on Taylor series calculus.

Hirokazu Nishimura,

In teaching diceerential calculus of several variables, mathematicians are expected to exhort
freshmen or sophomores majoring in science, engineering etc. to understand that it is not partial
derivatives but total diceerentials that are of intrinsic meaning, while partial derivatives are used
for computational purposes. If we want to discuss not only grst-order total diceerentials but
higher-order ones, we have to resort to the theory of jets initiated by Ehresmann, though it is not
easy to generalize it beyond the scope of gnite-dimensional smooth manifolds so as to encompass
diceerentiable spaces and suitable ingnie-dimensional manifolds, for which the reader is referred,
e.g., to Navarro and Sancho de Salas [2003] and Libermann [1971].

The then moribund notion of nilpotent ingnitesimals in diceerential geometry was retrieved by
Lawvere in the middle of the preceding century, while Robinson revived invertible ingnitesimals
in analysis, and Grothendieck authenticated nilpotent ingnitesimals in algebraic geometry. Kock
[1977, 1978], following the new directions in diceerential geometry enunciated by Lawvere as syn-
thetic diceerential geometry (usually abbreviated to SDG), has investigated diceerential calculus
from this noble standpoint as the foundations of SDG. For readable textbooks on SDG, the reader

is referred to Kock [1981], Lavendhomme [1996] and Moerdijk and Reyes [1991].



Kock [1978] has shown that the ingnitesimal space D,, captures n-th order diceerential calculus.
To show this, he had to exploit the fact that another ingnitesimal space D" = D X ... x D (the
product of n copies of D) has a good grasp of n-th order diceerential calculus. In our previous
paper (Nishimura [2004]) we have demonstrated that, given microlinear spaces M, N with x € M
and y € N, n"th order total diceerentials can be captured as a certain kind of mappings from
the totality T2" (M) of D™-microcubes on M at x to the totality Tf” (N) of D"-microcubes on
N at y, which were called n”th order preconnections there and are to be called D™-tangentials
here. In this paper we propose another kind of n”th order total diceerentials as a certain kind
of mappings from the totality T2 (M) of D,-microcubes on M at = to the totality T (N) of
D,,-microcubes on N at y, which are to be called D,-tangentials. Then we study the relationship
between D"-tangentials and D,,-tangentials, grstly in case that coordinates are not available (i.e.,
M and N are general microlinear spaces without further conditions imposed) and secondly in
case that coordinates are available (i.e., M and N are formal manifolds). In the former case
we have a natural mapping from D™-tangentials into D, -tangentials, while in the latter case
the natural mapping is shown to be injective. Our ideas will be presented within our favorite
framework of synthetic diceerential geometry, but they are readily applicable to such generalizations
of smooth manifolds as diceerentiable spaces and suitable ingnite-dimensional manifolds with due
modigcations. This paper is to be looked upon as a microlinear generalization of Kock’s [1978]

perspicacious considerations on Taylor series calculus.

1 Preliminaries

1.1 Microcubes

Let R be the extended set of real numbers with cornucopia of nilpotent ingnitesimals, which is

expected to acquiesce in the so-called general Kock axiom (cf. Lavendhomme [1996, 2.1]). We



denote by D; or D the totality of elements of R whose squares vanish. More generally, given a

natural number n, we denote by D,, the set
{d € Rld"™" = 0}.
Given natural numbers m, n, we denote by D(m),, the set
{(di,...,dy,) € D™|d;,...d;, ., =0},

where i1, ..., 4,41 shall range over natural numbers between 1 and m including both ends. We will
often write D(m) for D(m);. By convention D° = Dy = {0}.

Simplicial ingnitesimal spaces are spaces of the form

D(m;S)

= {(dl, ...,dm) S Dm|di1...dik =0 for any (il, ,Zk) S S},

where S is a gnite set of sequences (i1, ..., i) of natural numbers with 1 < i; < ... < i < m. To
give an example, we have D(2) = D(2;(1,2)) and D(3) = D(3;(1,2), (1,3),(2,3)). The number m
is called the degree of D(m;S), in notation: m = degD(m; S), while the maximum number n such
that there exists a sequence (i1, ...,,) of natural numbers of length n with 1 <4y < ... <i, <m
containing no subsequence in S is called the dimension of D(m;S), in notation: n = dimD(m;S).
By way of example, degD(3) = degD(3;(1,2)) = degD(3;(1,2),(1,3)) = degD? = 3, while
dimD(3) = 1, dimD(3;(1,2)) = dimD(3;(1,2),(1,3)) = 2 and dimD? = 3. Ingnitesimal spaces
of the form D™ are called basic ingnitesimal spaces. Given two simplicial ingnitesimal spaces
D(m;8) and D(m/;S’), a mapping ¢ = (@1, ..., 0,,/) : D(m; S) — D(m/;8’) is called a monomial
mapping if every ¢; is a monomial in dy, ..., dy, with coe(Ecient 1.

Given a microlinear space M and an ingnitesimal space E, a mapping v from E to M is called
an E-microcube on M. D"-microcubes are often called n-microcubes. In particular, 1-microcubes

are usually called tangent vectors, and 2-microcubes are often referred to as microsquares. We



denote by TE(M) the totality of E-microcubes on M. Given = € M, we denote by TZ(M) the
totality of E-microcubes v on M with +(0,...,0) = .

We denote by &,, the symmetric group of the set {1, ...,n}, which is well known to be generated
by n — 1 transpositions < 7,7+ 1 > exchanging ¢ and i + 1(1 <4 < n — 1) while keeping the other

elements gxed. Given o € &,, and v € T2" (M), we degne ¥, (y) € TP" (M) to be

EO’(A/)(dla 7dn) = A/(do(l)7 ) do(n))

for any (dy,...,d,) € D™. Given o € R and v € T?" (M), we degne a - v € TP" (M) (1 <i < n)
to be

(Oé i’}/)(dl, ceey dn) = ’y(dl, ceey di—h Ozdi, d1'+1; ceey dn)

for any (dy,...,d,) € D". Given o € R and v € TP~ (M), we degne ary € TP~ (M) (1 <i < n) to
be

(a)(d) = v(ad)
for any d € D,,. The restriction mapping v € T4+ (M) +— ~|p, € TP»(M) is often denoted by
Tn+i,n-

Between T2 (M) and Tfn+1 (M) there are 2n+ 2 canonical mappings:

d; N
TO(M) T TPN(M) (1<i<n+t1)

—
Si

x

For any v € TP" (M), we degne s;(v) € TP""" (M) to be
si(V)(d1, ..., dny1) = y(d1, oy dim1, dig1y ooy dpy1)
for any (dy, ..., dps1) € D"*L. For any v € TP"" (M), we degne d;(y) € T2" (M) to be
d;(v)(d1y ..oy dp) = y(d1, ..., di—1,0,d;, ..., dy,)

for any (di,...,d,) € D™. These operations satisfy the so-called simplicial identities (cf. Goerss

and Jardine [1999, p.4]).



For any v € TP+ (M) and any d € D,,, we degne iq(y) € TL"+ (M) to be

ia(7)(d") = y(dd')

for any d’ € Dy, 41.

1.2 Quasi-Colimit Diagrams

Proposition 1  The diagram

Dn X Dn my, Dn
Dn ldD Dn

is a quasi-colimit diagram, where m,,(d;,ds) = dids for any (dy,ds) € D,, x D,, and idp, is the
identity mapping of D,,. In other words, R believes that the multiplication m,, : D,, x D,, — D,

is surjective.

Proof. By the same token as in the proof of Proposition 1 of Lavendhomme [1996, 2.2]. =

Proposition 2 The diagram

D" an D"
an | lidp,
D, idp D,

is a quasi-colimit diagram, where a,(d1,...,d,) = di + ... + d,, for any (dy,...,d,) € D™ and idp,
is the identity mapping of D,,. In other words, R believes that the addition a, : D™ — D, is

surjective.

Proof. By the same token as in the proof of Proposition 2 of Lavendhomme [1996, 2.2]. m



Corollary 3 The diagram

Dn x D" may, D"
ma, | lidp,

is a quasi-colimit diagram, where ma,(d,d,....,d,) = d(d1 + ... + d,) for any (d,ds,...,d,) €
D, x D" and idp, is the identity mapping of D,,. In other words, R believes that the mapping

ma, : D, x D™ — D, is surjective.
Proof. This follows from Propositions 1 and 2. m

Proposition 4 The diagram
idpn
T1

D’n, — DTL an D'n,

Tn—1
—_—

is a quasi-colimit diagram, where 7; : D™ — D" is the mapping permuting the i-th and (i 4+ 1)-th

components of D™ while gxing the other components.
Proof. By the same token as in the proof of Proposition 3 of Lavendhomme [1996, 2.2]. =

Proposition 5 The diagram

mn,’l’LJrl X ian+1
-
D, x Dn+1 X Dn+1 D, x Dn+l My nt1 D,
- ’
ian X My 41

is a quasi-colimit diagram, where m,, ,,11(dy,d2) = d1dp for any (di,d2) € Dy, X Dy 1.

Proof. By the same token as in the proof of Proposition 5 of Lavendhomme [1996, 2.2]. m

The following theorem will play a predominant role in this paper.



Figure 1:

Theorem 6 Any simplicial ingnitesimal space D of dimension n is the quasi-colimit of a gnite

diagram whose objects are of the form D*’s (0 < k < n) and whose arrows are natural injections.

Proof. Here we deal only with D =D(3), as an illustration, leaving the general proof to the
reader. The diagram

is the desired quasi-colimit representation of D(3)2, where

1. the j-th and k-th components of i,;(d1,d2) € D(3)2 are di and dy respectively, while the

remaining component is 0;

2. the j-th component of i;(d) € D? is d, while the other component is 0.

In the proof of the above theorem we have represented D(3)2 as an overlapping family of three
copies of D?. Generally speaking, there are multiple ways of representation of a given simplicially
ingnitesimal space as an overlapping family of basic ingnitesimal spaces. By way of example,
two representations of D(3;(2,3)) (= (D x D) VvV D) were given in Lavendhomme [1996, pp.92-
93]. The above choice of representation of D(3)s as an overlapping family of basic ingnitesimal

spaces might be called the standard respresentaion. An interesting nonstandard representation



of D(6;(1,2),(3,4),(5,6)) as an overlapping family of basic ingnitesimal spaces is obtained from
the standard one (as the overlapping family of eight copies of D?) by taking into account the

automorphism of D(6;(1,2),(3,4), (5,6))

(d17d27d37d47d57d6) S D(67(172)7(374)7(576))'_>

(dlad2_d17d3ad4_d37d57d6_d5) € D(6>(172)7(374)7(576))7
whose inverse automorphism is

(d17d27d3;d4;d57d6) € D(67(1a2)7(354)7(556))'_>

(dladl+d27d3ad3+d47d57d5+d6) € D(6>(172)7(374)7(576))

The reader should note that the nonstandard representation of D(6;(1,2),(3,4),(5,6)) as an
overlapping family of basic ingnitesimal spaces obtained from the standard one via the latter

automorphism contains

(d17d25d3) S DBH

(dl, dl, dg, dg, d3, d3) S D(G, (1, 2), (3,4), (5, 6))

Kock and Lavendhomme [1984] have provided a synthetic rendering of the notion of strong
diceerence for microsquares, a good exposition of which can be seen in Lavendhomme [1996, 3.4].
Given two microsquares v, and y_ on M, their strong diceerence vy +477 is degned exactly
when v, |p2) = v_|p(2), and it is a tangent vector to M with (v, —v_)(0) =~,(0,0) =~_(0,0).
Given t € TP?(M) and v € T? 2(M ), the strong addition t++ is degned to be a microsquare on
M with (t4+7)|p2) = 7¥|p2). With respect to these operations Kock and Lavendhomme [1984]

have shown that

Theorem 7 The canonical projection TQQ (M) — T2 (M) is an a(Ene bundle over the trivial

vector bundle T2 (M) x Tf(z)(M) —TP® (M).



These considerations can be generalized easily to n-microcubes for any natural number n. More
specigcally, given two n-microcubes v, and v_ on M, their strong diceerence ~y +4’yfis degned
exactly when v |p(), . = Y_|D(n)._.» and it is a tangent vector to M with (y,—v_)(0) =
74(0,...,0) = _(0,...,0). Given t € TP(M) and v € TP" (v), the strong addition ¢+ is degned
to be an n-microcube on M with (t4+9)|pn), . = VIbp(n),_ .- S0 as to degne — and +, we
need the following two lemmas. Their proofs are akin to their counterparts of microsquares (cf.

Lavendhomme [1996, pp.92-93]).

Lemma 8 (cf. Nishimura [1997. Lemma 5.1] and Lavendhomme and Nishimura [1998, Proposi-

tion 3]). The diagram
D(n)n,1 ) D"

i,

il Ly

D" ¢ D"VD
—

is a quasi-colimit diagram, where ¢ : D(n;n) — D™ is the canonical injection, D" V D = D(n +
L (L,n+1),..,(n,n+1)), o(di,....,dn) = (d1,...,dn,0) and ¥(ds,...,d,) = (d1,...,dn,d1...dy,) for

any (di,...,d,) € D".

Given two n-microsquares v, and y_ on M with v, |p@),_, = Y_|p(n),_,, there exists a
unique function § : D"V D — M with Fov¢ =, and Fop = v_. We degne (v, —y_)(d) =

3(0,...,0,d) for any d € D.

Lemma 9 The diagram
1 i D
il 1€
D" ¢ D"VvD
—
is a quasi-colimit diagram, where ¢ : 1 — D™ and i : 1 — D are the canonical injections and

&(d) = (0,...,0,d) for any d € D.



Given t € TP (M) and v € TD" (M), there exists a unique function & : D™ vV D — M with

Boyp = v and Bof = t. We degne (t+7)(d1, ...,dn) = &(dy, ..., dy, d1...d,) for any (dy, ...,d,) € D™.

We proceed as in the case of microsquares to get

Theorem 10 The canonical projection T2" (M) — Tf(")"‘l(M ) is an a(Ene bundle over the

trivial vector bundle T2 (M) x Tf(n)"fl(M) - Tf(n)nfl(M)-

Now we are going to discuss D,, versions of Lemmas 8 and 9 and Theorem 10. The following

two lemmas can be established by the same token as in Lavendhomme [1996, pp.92-93].

Lemma 11 The diagram

il 1y
D, ¢ D,VD
—

is a quasi-colimit diagram, where i : D,,_; — D" is the canonical injection, D, V D = {(d,d’) €

D,, x D|dd’' =0}, ¢(d) = (d,0) and ¢ (d) = (d,d") for any d € D,,.

Given two D,-microcubes v, and v_ on M with v, |p,_, = v_|p,_,, there exists a unique
function §: D"V D — M with Fo) =~ and Fop =~_. We degne (v, —v_)(d) = F(0,d) for

any d € D.

Lemma 12 The diagram
1 i D
il 1€
D, ¢ D,VvD
—

is a quasi-colimit diagram, where ¢ : 1 — D,, and ¢ : 1 — D are the canonical injections and

&(d) = (0,d) for any d € D.

10



Given t € TP (M) and v € TP»(M), there exists a unique function & : D" v D — M with

Gop=r+and &of =t Wedegne (t+7)(d1,...,d,) = &(d,d") for any d € D,,.

We can proceed as in the proof of Proposition 4 of Lavendhomme [1996, 3.4] to get

Theorem 13  The canonical projection T2 (M) — T%"~" (M) is an a(Ene bundle over the trivial

vector bundle TP (M) x TE"~* (M) — TP~ (M),

1.3 Forms

A D"-form from (M,z) to (N,y) is a mapping n from T2" (M) to TD(N) such that for any

v € TP" (M), any v € TP" "' (M), any a € R and any o € &,,, we have

n(a:v) = anly) (1<i<n) (f1)
nE(v) = n(v) (f2)
ﬁ((dl, ceey dn) e D"+— ’y’(dl, ey dnfg, dnfldn) S M) =0 (f3)

We denote by F*(M, z; N, y) the totality of D"-forms from (M, z) to (N,y).
A D,-form from (M,z) to (N,y) is a mapping 7 from T2 (M) to T2 (N) such that for any

v € TP (M), any o € R, any natural number m < n and any v € T2/ (M) with [ = [Z] ([]

7

stands for Gauss’s symbol), we have

n(ay) = a"n(v) (f4)

nd € Dp+—'(d™)eM)=0 (f5)

We denote by F*(M, z; N,y) the totality of D,-forms from (M, z) to (N,y).

11



1.4 Convention

Unless stated to the contrary, M and N are microlinear spaces with =z € M and y € N.

2 The First Kind of Tangentials

Let n be a natural number. A D"-pseudotangential from (M,z) to (N,y) is a mapping f :
TL" (M) — TD"(N) such that for any v € TP" (M), any o € R and any o € &,, we have the

following;:

We denote by J™(M, z; N,y) the totality of D"-pseudotangentials from (M, z) to (N, y).

The following lemma and two propositions have been established in Nishimura [2004].

Lemma 14 Let f be a D"*'-pseudotangential from (M,z) to (N,y). Let v € TP"(M) and
(di,...;dny1) € D" Then f(s,+1(7))(d1, ..., dn, dny1) is independent of d,, 11, so that we can put

down f(sn41(y)) at TY"(N).

Proposition 15 The assignment v € T2" (M) — f(sp41(7)) € TY"(N) in the above lemma is

a D™-pseudotangential from (M, z) to (N,y).

By the above proposition we have the canonical projection @41, : j”“(M,x;N, y) —

J"(M, z; N,y), so that

f(Sn_H (’}/)) = Spn+1 (ﬁ'n—i-l,n (f) (7))

12



for any f € J*1 (M, 2; N,y) and any v € T2" (M). For any natural numbers n, m with m < n,

we degne 7, o, : j”(M,x;N, y) — jm(M,x;N, y) to be Tpq1.m © ... 0Ty 1.

Proposition 16  Let f be a D"*!-pseudotangential from (M, ) to (N,y). Let i be a natural

number with 1 <147 < n + 1.Then the following diagrams are commutative:

2" (M) f D" (N)
si T T s
T (M) ftnt1n(f) TD"(N)

2" (M) f )" (N)
d; | | d;
T (M) ftnt1n(f) D" (N)

Interestingly enough, any D™-pseudotangential naturally gives rise to what might be called a

®-pseudotangential for any simplicial ingnitesimal space © of dimension less than or equal to n.

Proposition 17  Let n be a natural number. Let © be a simplicial ingnitesimal space ® of dimen-
sion less than or equal to n. Any D"-pseudotangential f from (M, ) to (IV,y) naturally induces
a mapping T3 (M) — T} (N) abiding by the following condition:

f(a-v) = a - f(y) for any a € R and any vy € T2 (M).
In particular, given a natural number m, f gives rise to a mapping T5 ™" (M) — T, (M) ()

abiding by the following condition besides the above one:

for any o € 6,, and any v € Tf(m)"(M).

13



Proof. For the sake of simplicity, we deal only with the case that © =D(3),, for which
the standard quasi-colimit representation was given in the proof of Theorem . Therefore, giving
D(3)2

v € Ty 7?(M) is equivalent to giving ;5,713,723 € sz (M) with da(7v12) = d2(713), di1(712) =

da(v43) and di(y13) = di(73). By Proposition, we have

da2(f(v12)) = f(d2(712)) = f(d2(r13)) = d2(f(113)),
di(f(vi2)) = f(di(712)) = f(da(7v23)) = d2(f(723)), and
dl(f(’hs)) = f(dl(’hs)) = f(dy (723)) =d; (f(’st)):

which determines a unique f(7) € T5®?(N) with di(f(7)) = f(74s), da(f(7)) = f(7,5) and
ds(f(y)) = f(712)- The proof that f(v) acquiesces in the desired two properties is safely left to the

reader. m

Remark 18 It is very important to note that in the above proposition, the D™-pseudotangential
f from (M,x) to (N,y) gives rise to the same mapping for all nonstandard representations of a
given simplicial ingnitesimal space as an overlapping family of basic ingnitesimal spaces as well

as the standard one.

The notion of a D"-tangential from (M, x) to (IV, y) is degned inductively on n. The notion of a
DY-tangential from (M, z) to (IV,y) and that of a D!-tangential from (M, z) to (N, y) shall be iden-
tical with that of a DY-pseudotangential from (M, x) to (IV,y) and that of a D!-pseudotangential
from (M,x) to (N,y) respectively. Now we proceed by induction. A D"*l-pseudotangential
f: TP (M) — T5n+1(N) from (M,x) to (N,y) is called a D"*!-tangential from (M,z) to

(N, y) if it acquiesces in the following two conditions:

1. Fpy1n(f) is a D"-tangential from (M, z) to (I, y).

14



2. For any v € TP" (M), we have

f((dl,...,dn+1) S Dn+1 l—>’}/(d1,...,dn_1,dndn+1) EM)

= (dl, ...,dn+1) c Dn+1 — ﬁn—i—l,n(f)(’y)(dl; ...,dn_l,dndn+1) S ]\(34)

We denote by J"(M,z; N,y) the totality of D"-tangentials from (M, z) to (NV,y). By the
very degnition of a D"-tangential, the projection 7,41, : j"“(M,x;N, y) — j”(M,x;N, Y)
is naturally restricted to a mapping 41, : J"TH (M, 2z; N,y) — J*(M,x; N,y). Similarly for

Tnm = I (M, 2; N,y) — IJ™(M,z; N,y) with m <n.

Proposition 19 Let L, M, N be microlinear spaces with z € L,y € M and z € N. If f is
a D"-tangential from (L,z) to (M,y) and g is a D™-tangential from (M,y) to (N, z), then the
composition g o f is a D"-tangential from (L, x) to (N, z), and 7, n—1(gof) = mpn—1(8)omn n—1(f)

provided that n > 1.

Proof. In case of n = 0, there is nothing to prove. It is easy to see that if f is a D"-tangential
from (L,x) to (M,y) and g is a D™-tangential from (M,y) to (N, z), then the composition go f
satisges conditions ?? and ??. For any v € TP" (M), if f is a D"*'-tangential from (L,z) to

(M,y) and g is a D" *!-tangential from (M,y) to (IV, z), we have

gof(sni1(7))
= g(f(snt1(7)))
= g(snt1(mnr1n(f)(7))

= Su1(Tn41,n(8) © Tt (F) (7)),

which implies that m,41,,(g 0 f) = Tp4+1,n(8) © Tp41,n(f). Therefore we have

15



gof((dy,...,dnt1) € D" s y(dy,...;dp_1,dndni1) € L)
= g(f((dy,....dns1) € D" — y(dy, ..., dp_1,dndniq) € L))
= g((di, -y dny1) € D" w1 W () (V) (d1y ooy dn1, dpdpyr) € M)
= (diy.ydny1) € D" e w10 (8) o M1 n () (V) (d1, ooy dn—1,dndpyi1) € N

= (dh '~'7dn+l) € DnJrl — 7rn+l7n(go f)(’\/)(dla “wdnfladndnJrl) S N;

which implies that the composition g o f satisges condition ?? . Now we can prove by induction on

n that 7,41,(gof) is a D"-tangential from (L, z) to (IV, z), so that it is a D""!-tangential from

(L,z) to (N,z). =

The following simple proposition may help the reader understand where our locution of D"-

tangential has originated.

Proposition 20 Let M, N be microlinear spaces with x € M and y € N. If f is a mapping
from (M, ) to (N,y), then the assignment of f o~y € T} (N) to each v € T} (M), denoted by
D" f and called the D"-prolongation of f, is a D"-tangential from (M, x) to (N,y). We have
D"f = mp41.,(D" ). If L is another microlinear space with z € L and g is a mapping from

(N,y) to (L, z), then we have D™(go f) = (D"g) o (D™f).

Proof. It is easy to see that D™ f abides by conditions ?? and ??. Trivially D"f =

Tos1,0(D"Hf) and D" (g o f) = (D"g) o (D" f). For any y € T(M), we have
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Dn+1f((d17---7dn+1) S Dn+1 — 'Y(dla---adn—ladndn+l))

(dla "'adn-i-l) € Dn+1 = f(’Y(dlv "'7dn—17dndn+1))

(dh ---7dn+1) S Dn+1 — D"f(’Y)(dl, ---7dn—1; dndn+1)

= (dla (23 dnJrl) € Dn+1 = 7rn+17n(Dn+1f)(7)(dla SE) dnfla dndnJrl);

which implies that D"*! f abides by condition ?? for any natural number n. By dint of D" f =
Tnt1,,(D" 1 f) again, we can prove by induction on n that #,41,(D"" f) is a D"-tangential

from (M, ) to (N,y), so that D" f is a D"*!-tangential from (M, z) to (N,y). =

We have established the following proposition in Nishimura [2004]:

Proposition 21  Let m,n be natural numbers with m < n. Let k4, ..., k,, be positive integers with

Ei+ ... +kp = n. For any f € J*(M,z; N,y), any v € TP" (M) and any o € &,,, we have

f((dl, ...7dn) e D"+— ’y(dg(l)...dg(kl),do(k1+1)...do(kl+k2), ceey

dd(k1+...+km_1+1)'~'do'(n)))
= (dl, ...,dn) € D" — Wn’m(f)("/)(dg(l)...dg(kl),

dd(k1+1) -~'do'(k1+k2)7 ceey dd(k1+...+km_1+1) '~'d0(n))

Remark 22 This proposition not only derives from ?? and ?? but also subsumes them.

With due regard to Proposition 17, the above proposition has the following far- Hung general-

ization:
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Proposition 23  Let f be a D"-tangential from (M, z) to (N,y). Let © and D’ be simplicially
ingnitesimal spaces of dimension less than or equal to n with deg® = k and deg®’ = m. Let x
be a monomial mapping from D to D’. Let v € Tf/(M ). For simplicity we denote the induced
mappings T3 (M) — T3 (N) and T2 (M) — T?(N) in Proposition 17 by the same symbol f.
Then we have

f(yox) =f(v)ox

Remark 24 The reader should note that the above far-Aung generalization of Proposition 22

subsumes not only Proposition 22 (subsuming ?? and ??) but also Proposition 16.

Proof. In place of giving a general proof with formidable notation, we satisfy ourselves with
an illustration. Here we deal only with the case that ® = D3, ®' = D(3) and x(di,ds,d3) =
(d1dg, dyds, dads) for any (di,ds,ds) € D?, assuming that n > 3. We note grst that the mono-
mial mapping x : D?® — D(3) is the composition of two monomial mappings y; : D3 —
D(6;(1,2),(3,4), (5,6)) and x5 : D(6; (1,2), (3,4), (5,6)) — D(3) with x,(d1, da, d3) = (d1, d1, da, d3, d3, d3)
for any (dy,ds, d3) € D3 and x5 (dy, d2,ds, ds, ds, ds) = (d1ds, dads, dsds) for any (dy, da, d3, dy, ds, dg) €

D(6;(1,2),(3,4),(5,6)). Therefore it su(Eces to prove that

f(y oxy) =f(7") o xy

(6;(1,2),(3,4),(5,6)) (M)

for any 7/ € TS and

f(7" o xa2) =f(7") o xa
D(3)

for any 4" € Ty ' (M). The grst identity is merely the degnition of f(y’) (cf. Remark 24). In

order to prove the second identity, it su(Eces to note that
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f(7" 0 x2) 04135
f(7" 0 xy) 01136
f(v" o x2) 0145
(7" 0 x2) 0146
f(7" o xy) © 1235
f(7" 0 x2) 0236
(7" 0 x2) 0 i245

f(7" 0 x3) 0 i246

f(7") 0 X3 0135
f(") 0 x2 04136
f(7") 0 x2 04145
f(7") 0 X2 04146
f(7") 0 X 04235
f(7") 0 X2 0 236
f(7") 0 X 0 245

f(7") o X3 © i246,

where iz : D® — D(6;(1,2),(3,4), (5,6)) (1 <j < k <1< 6)is a mapping with i (d1,d2,d3) =

(ceydy,..eyday ...y ds, ...) (d1, da and d3 are inserted at the j-th, k-th and I-th positions respectively,
j k l

while the other components are gxed at 0). Here we deal only with the grst identity among the

eight similar ones. Since

f(7" 0 Xa) 0135 = f(7" 0 X3 0 i135),
it su(Eces to show that
(7" 0 xg 0d135) = (") 0 x5 © i135.
However the last identity follows at once by simply observing that the mapping x5 04135 : D3 —
D(3) is the mapping
(d1,ds,d3) € D* — (did»,0,0) € D(3),

which is the successive composition of the following three mappings:

(dl,dg,dg) S D3 — (dl,dg) S D2
(dl,dg) S D?— didy € D
d € Dr+—(d,0,0) € D(3).
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We have established the following proposition and theorem in our previous paper [Nishimura,

2004].

Proposition 25  Let f € J"(M,z; N,y), t € TP (M) and v, v, v_ € TP (M) with v, | p(n(1,....n)) =
Y_|p(n:1,...n))- Then we have
fr)=fr-) = mualf)yi—7-)

mna(f)(t)H() = f(t+y)

Theorem 26 1. Let fT,f~ € "™ (M, z; N,y) with 7,41,(f") = #nq1..(f7). Then the as-

signment v € TP (M) — f+(+)=f(7), to be denoted by f+--f~, belongs to F"1(M, z; N, y).

2. Let f € J"*1(M, z; N,y) and n € F**1(M, z; N, y). Then the assignment f € T2"" (M) —
n(v)+f(7), to be denoted by n-+f, belongs to J"+1 (M, x; N, y).

3. The bundle 7,11, : J"" (M, 2;N,y) — J*(M,z; N,y) is an a(Ene bundle over the trivial
vector bundle J*(M, x; N,y) x F**Y(M,z; N,y) — J*(M,z; N,y) with respect to the above

two operations.

3 The Second Kind of Tangentials

Let n be a natural number. A D,-pseudotangential from (M, z) to (N,y) is a mapping § :

TP (M) — T}~ (N) such that for any v € T2 (M) and any a € R, we have the following:

flay) = af(v) (b1)
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We denote by J™(M,z; N,y) the totality of D,-pseudotangentials from (M, z) to (N, y).

Lemma 27 Let f be a D, i-pseudotangential from (M, z) to (N,y) and v € TP~(M). Then

there exists a unique 7' € Tf” (N) such that for any d € D,,, we have

f(ia(7)) = 1a(?)

Proof. For any d’' € D,,,1, we have

fdara(y))
= f(d'(ia(v)))
= d'(f(ia(v)))

so that the lemma, follows from Proposition 5. m

Proposition 28  The assignment y € T2 (M) — +' € T)"(N) in the above lemma is a D,,-

pseudotangential from (M, z) to (N,y).

Proof. For any a € R, we have

ia((@ni1,n(f)()))
= a(ia(fnr1n(f)()))
= a(f(ia()))
= fle(ia()))

= flia(a)),

which establishes the proposition. m
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By the above proposition we have the canonical projection 7,11, : j”“(M,x;N, y) —

J"(M,x; N,y), so that

fia(7)) = a(Tnt1n(H)(7))

for any f € j"“(M,x;N, y), any d € D,, and any v € TP»(M). For any natural numbers n, m

with m < n, we degne 7, ,, : j”(M,x; N,y) — j’”(M,x; N,y) to be Fpmi1m © .. 0 Fpp—1-

Proposition 29  Let f be a D,,11-pseudotangential from (M, z) to (N,y) and d € D,,. Then the

following diagrams are commutative:

T (M) f T, (N)
ig 1 T ig
T+ (M) i) T (N)
T+ (M) j T, (N)
Tntin | L Tntin
T+ (M) fns1n(f) T (N)

Proof. The commutativity of the grst diagram is exactly the degnition of 7,11, (f). For the
sake of commutativity of the second diagram, it su(Eces to note by dint of Proposition 1 that for

any d € D, we have

ia(Tnt1,n(F)(Tnt1,0(7)))
= f(id(ﬂ'nJan ('7)))

= f(dv)



Corollary 30  Let f be a D,,1-pseudotangential from (M, x) to (N, y). For any v,v" € T (M),

if v[p, = '|p,., then §(v)|p, = f(7")Ip,,-

Proof. By the above proposition, we have

Tnt1,n(F(7))
= 7Arn+1’n(f)(77n+l7n(ﬂ/))
= 7ArnJrl,n(f)(71-”JF177Z(A’/))

= Tn+ln (f(’)/))a

which establishes the desired proposition. m

The notion of a D,,-tangential from (M, z) to (N, y) is degned inductively on n. The notion of a
Dy-tangential from (M, z) to (N, y) and that of a D;-tangential from (M, x) to (IV,y) shall be iden-
tical with that of a Dy-pseudotangential from (M, z) to (NN, y) and that of a D;-pseudotangential
from (M, z) to (N,y) respectively. Now we proceed by induction. A D, i1-pseudotangential
foTE (M) — Tf"“(N) from (M, z) to (N,y) is called a D,1i-tangential from (M,z) to

(N, y) if it acquiesces in the following two conditions:
1. Tp41,n(f) is a Dy -tangential from (M, z) to (N,y).

2. For any natural number m < n+ 1 and any v € T, (M) with | = [%£1], where [] stands for

Gauss’s symbol, we have

f(d € Dpyp+— V(dm) S M)

= d€ Dnpr— mna(f)(V)(d™) € N (b3)

23



We denote by J"(M,x; N,y) the totality of D, -tangentials from (M,x) to (N,y). By the
very degnition of a D,-tangential, the projection 41,y : j"“(M,x;N, y) — jI"(M,x;N, Y)
is naturally restricted to a mapping 7,11, : J"T(M,z;N,y) — J"(M,z; N,y). Similarly for
Tnm = I (M, x; N,y) — J™(M,z; N,y) with m < n.

The proofs of the following two propositions are similar to those of the corresponding Propo-

sitions but simpler, so they are safely left to the reader.

Proposition 31 Let L, M, N be microlinear spaces with x € L,y € M and z € N. If f§
is a D,-tangential from (L,z) to (M,y) and g is a D,-tangential from (M,y) to (N,z), then
the composition go f is an D,-tangential from (L,z) to (N, z), and 7, n—1(g0f) = mTpn-1(g) ©

Tnn—1(f), provided that n > 1.

Proposition 32 Let M, N be microlinear spaces with x € M and y € N. If f is a mapping
from (M, x) to (IV,y), then the assignment of fo~ € Tfﬂ (N) to each v € TD» (M), denoted by
DP» f and called the D,,-prolongation of f, is a D, -tangential from (M,z) to (N,y). We have
DPn f = m,11.,(DPr+1 f). If L is another microlinear space with z € L and g is a mapping from

(N,y) to (L, z), then we have D" (go f) = (DP»g) o (DP~ f).

Proposition 33 Let f € J"* (M, 2; N,y), t € T2 (M) and v, v, v_ € T5"" (M) with v, |p, =

~v_|p,- Then we have

f('YJr);f('Yf) = Tn+l,1 (f) ('Y+ ;77)

7T7L+1,1(ﬂ (t)+f(7) f(t+7)

Proof. It is an easy exercise of a(Ene geometry to show that these two statements are equiv-

alent. Therefore it su(Eces to deal only with the former statement. Apply the discussion in the
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proof of Proposition to the quasi-colimit diagram so as to guarantee that there exists what is to

be denoted by f(7) € Tf"HVD(N) such that

f(y)(d) f()(d,d"*!) and

f(v-)(d) f(7)(d,0)

for any d € D,, ;1. Then we apply the discussion in the proof of Proposition to the mapping
deD+— (O,d) €Dpi1VD

so as to get the desired conclusion. m

The proof of the following theorem is similar to that of Theorem, which has been given in our

previous paper [Nishimura, 2004], so that it is completely omitted.

Theorem 34 1. Let f,§~ € J""1(M,2; N,y) with #,41.,(f7) = Fnt1..(f). Then the as-

signment y € TE™ (M) — §7(7)=f (v), to be denoted by j+—§~, belongs to F"*1(M, z; N, y).

2. Let f € " (M, z; N,y) and n € F**' (M, z; N, y). Then the assignment § € T5"+ (M) —

n(v)+i(7), to be denoted by 1(v)+f, belongs to J**1(M,z; N, y).

3. The bundle 7,41, : J"™ (M, 2;N,y) — J"(M,z; N,y) is an a(Ene bundle over the trivial

vector bundle J*(M, z; N,y) x F** (M, z; N,y) — J*(M,z; N,y).

4 The Relationship between the Two Kinds of Tangentials

without Coordinates

Lemma 35 Let f be a D"-pseudotangential from (M, ) to (N,y) and v € T2~ (M). Then there

exists a unique 7' € T (N) such that
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f((dy,...,dn) € D"+—~(di+...+d,) €M)

= (di,...,dp) €D" —+'(dy + ... +d,) EN

Proof. By Proposition 4. =

We will denote by ¢,,(f)(v) the unique +' in the above lemma, thereby getting a function

Pp(f) : T2 (M) — TP (N).

Corollary 36 Let © be a simplicial ingnitesimal space of dimension n and degree m. Let f be a

D"-pseudotangential from (M, z) to (N,y) and v € T2 (M). Then we have

f((di,....dm) € Dr—y(di+...+dn)eM)

= (d1,.ydm) €D — @, (F)(di + ... +dm) €N

Proposition 37  For any f € J"(M,x; N,y), we have ¢, (f) € J*(M, z; N, ).

Proof. It su(Eces to note that for any a € R and any v € TP (M), we have
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(di,...,dn) €

which implies that

D" — ¢, (H)(ay)(d1 + ... +dp) €N
f((d1,...,dn) € D" — (avy)(dy + ... + dy,) € M)
f((dl, ,dn) € D" — ’y(()&dl + ...+ Oédn) S M)

fla: ..«

1 n

(A1, ey dy) € D™ — y(dy + ... + dy) € M))
Qs (f((dy, o dn) € D" = 3(dy + 4 dy) € M))
Qe ((drssdy) € D" 3, ()(7)(dy + . + dy) € N)
(d1,....dn) € D" — @, (F)(7)(ady + ... + ady,) € N

(di, ..., dy) € D" — (@, (F)(1))(d1 + ... + dn) € N,

Pn(f)(ar) = (@, (F)(7))

Proposition 38  The diagram

jnJrl(va;va) ¢n+1 jnJrl(Mam;Nay)
ﬁn+1,n l l 7?rn+1,n
jn(va;va) P jn(M,x;N,y)

is commutative.

Proof. For any d € D,,, we have
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(dr, ey dn) € D™ — ig(Fopy1n (Pt () (1))(d1 + ... +dy) € N
= dns1((d, s dng1) € D" = 14T, (@n 1 () (1)) (1 + oo + dngr) € N)
=dpt1((d1y .oy dng1) € D" — @, (F)(1a(7))(d1 + ... + dny1) € N)
=du1(f((dy, ..., dpy1) € D" —ig(7)(dy + ... + dpi1) € M))
= Fpp1n(E)(d1,s oy dn) € D" — ig(y)(dy + ... + dy) € M)
= T 10 (E)((d1y -y d) € D™ — (dy)(dy + ... +dy) € M)
= (dy, ey dy) € D" — @, (Fnp1n()(dY)(dy + ... + dy) € N
= (d1, .y dy) € D" — (@ (Frni1.0(E) (M) (d1 + . +dy) € N

= (d1,...,dpn) € D" — i4(®,,(Fnt1.n())(y))(d1 + ... + dn) € N,

which implies by Proposition 2 that

Tnt1,n(Pn1 () = 5 (Fnp1,n(f))

Theorem 39 For any f € J"(M,z; N,y), we have ¢, (f) € I™(M,z; N, y).

Proof. In view of Proposition 37, it su(Eces to show that

pn(f)(d € Dnr—~r(d") e M)

= d € Dpr— mni(@,(f)(7)(d™) € N

for any natural number m < n and any v € T, (M) with [ = [2]. Here we deal only with the case

that n = 3 and m = 2, leaving the general treatment to the reader. Since
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(dy 4 do + d3)* = 2(d1do + dyd3 + dads)
(d1,ds,d3) € D* +— @4(f)(d € Dy — y(d*) € M)(d1 +da +d3) € N
= f((d1,da, d) € D* — ((d1 + d3 + d3)?) € M)
= f(((d1, da, ds, da, ds, dg) € D(6) — y(dy + d + d3 + da + d5 +
((d1,dz,ds) € D3 — (dids, d1da, d1d3, d1ds, dads, dods) € D(6))
=m3.1(F)((d1,d2,ds, da, ds5,dg) € D(6) — y(d1 + d2 + d3 + da + «
for any (di,dz,ds) € D?, we have ((dy,d2,d3) € D? — (dydy, dydy, dids, dids, dads, dads) € D(6))
= ((d1,das s, s, ds. ds) € D(6) +— 1 (73,1 (7)) (7)(d + o+ s +
N) o ((dy,da,ds) € D* — (didy, dida, d1ds, dids, dads, dads) € I
= ((d1,dz, d3, da,d5, dg) € D(6) — 3,1 (#3(f))(7)(d1 + dz + d5 +
N)o ((d1,ds,ds) € D3 — (dids, d1d2, d1ds, d1ds, dads, dads) €

= (d1,d2,d3) € D* — 731(p3(f))(v)((dy 4 da + d3)*) € N,
which implies the desired identity. m

Thus the mapping ¢,, : J*(M,z; N,y) — J"(M, z; N,y) is naturally restricted to a mapping

o, J"(M,z; N,y) — J"(M,z; N, y).

5 The Relationship between the Two Kinds of Tangentials

with Coordinates

The principal objective in this section is to show that the mapping ¢, : J"(M,z;N,y) —
J*(M,xz; N,y) is bijective for any natural number n in case that coordinates are available. We
will assume that M and N are formal manifolds of dimensions p and ¢ respectively. Since our
considerations to follow are always ingnitesimal, this means that we can assume without any loss

of generality that M = RP and N = R?. We will let ¢ with or without subscripts range over
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natural numbers between 1 and p (including endpoints), while we will let j with or without sub-
scripts range over natural numbers between 1 and ¢ (including endpoints). Let x = (2%) and

y = (y7). For any natural number n, we denote by J"(p, q) the totality of (a{, a{m, Lol s

11 ...lm

of pq + p?q+ ... +p"q elements of R such that ai;.. ;'S are symmetric with respect to subscripts,

2

ie., o Wiy a{lmik for any 0 € & (2 < k < n). Therefore the number of independent
. j j j . k—1 .
components in (af,af ;. ...ad, ;)€ T"(p,q) is ¢Si_o(2T7) — ¢ = q(3*™) — q. The canonical
projection
, , )
(agv ag1i27 ey agl...z‘nv agl...in_,.l) € jn+ (p, Q) —

(o, 1'11'2,...7&31“%) e J"(p,q)

is denoted by 7y, 41,n,. We will use Einstein’s summation convention to suppress .
Now we degne mappings 0,, : J™(p,q) — J*(M,z; N,y) and @, : J"(p,q) — J*(M,z; N,y).

For the former, we grstly degne 0 : 7'(p,q) — J*(M,x; N, y) to be
0i((a]))(d € D+ (2')+d(a’) € R?)
= de D+ (y)+d(a'al) e RY
We degne 05 : J2(p,q) — J*(M,x; N,y) to be

02((c, o ;))((d1, d2) € D? — (27) + da(al) + da(ad) + dida(aly) € RP)

) Tidg

= (dy,da) € D? — (y7) 4+ dy(a})) + da(aba?) + dida(alta2al . + alyal) € RY

1112
Generally we degne 0,, : 7" (p,q) — J"(M,z; N,y) to be

On((a], iy s iy i, ) (A1 ey d) € D™ (27) + 27y S <.k, <ndi i, (0, _1,) € RY)

9 41190 ) Yiq 0.y

= (dl, . dn) c D" — (yj) + 2?2121§k1<__<krgndkl...dkr(zagjl”

where the last ¥ is taken over all partitions of the set {ky, ..., k- } into nonempty subsets {J1,...,Js},
and if J = {kq, ..., k:} is a set of natural numbers with k; < ... < k¢, then a? denotes afjlmk

e

We have already established the following theorem in Nishimura [2004]:
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Theorem 40 For any natural number n, the mapping 6, is a bijective correspondence from

J"(p,q) onto J"(M,z; N,y).

Now we would like to degne mappings @, : J"(p,q) — J*"(M,z;N,y). We grstly degne

w1:J'(p,q) — J'(M,z; N, y) to be

Zi(ad))d € D (@) +da}) € R?)

2

de D— () +d(alal) e R

We degne w5 : J2(p,q) — J*(M,x; N,y) to be

o , 42
@o((of, o)A € Dy (a') +d(a}) + 5 (a) € RY)
2

J i1 42 J i q
(ad,:,01' 0y +ajay) €R

. - d
= deDy+— (yj)—l—d(aga?l)-i-g

Generally we degne W,, : 7" (p,q) — J"(M,z; N,y) to be

. . . . . dr .
wn((agﬂagﬂw""ag1i2...in))(d € DTL (xl) +E?:1F(ai) € Rp)
n d” r! J i1 ik q
= deD,r— Er:lFZlSﬁS--STkSn(Tlgmrk!ail...ikan'“ark) eR ,

where the last X is taken over all partitions of the positive integer r into positive integers 71, ..., 7%
(so that r =71 + ... + 1) with r; < ... < 7.
Certainly it remains to show that we have wn((af, o ., ) € J"(M, z; N, y) for any (a{, . aglm‘

11...2

J"™(p,q). First of all it is easy to see that

Lemma 41 For any (o?,....ad . )€ J™(p,q), we have @, (), ..., , )) € J"(M,x; N, y).

e QG i S i
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wn((aj od Ll i )a(d € Dy — () + Elei—?(ai) €

19 Tiyin) 1112 r
= wn((agao‘glizv "'vagliz...in))(d €D, — (xl)
= wn((agﬂagligv "'7agli2...in))(d € Dpr— (xl)

Proof. It su(Eces to note that for any o € R, we have

d” ! ;
=d e Dy — X1 Ghicn < <m<n(Gra®,

T1....’r‘k!a1

e
=d €Dy — I7 O < crsn (5

rll...rk

da" |
=a(d € Dy — X1 GY1<m <. <rm<n (G

It is easy to see that

Proposition 42  The following diagram is commutative:

T (p,q) Wnt1 I UM, z; N, y)
7Tn+1’nl l ﬁ-nJan
J"(p:a) ©n I"(M,; N, y)

Proof. It su(Eces to note that for any d’ € D,,, we have m

Ont1((0d,a ;0] ))(d € Dy — (2%) + 31, 4 (al) € R?) o (d € Dypyr — d'd € Dy,))

9192041

r

= @nga((ad,ad, ). )(d € Dnyr — (o) + 37, L9 (af) € RP)

[t SR I S}

= Busr((0], 0,y e 0y o (A € Dy > (a) + S, % ((d')al) € R)

’ ilig...in+1

_ n+1d" r! J INTY 0 INTE Ak
=d € Dpp1 — 0 G81cm < <msn (G @, () ag - (d) v ah)

(d'd)"”
r!

_ n T J i1 i q
=de€Dpy1 — X, T O ak) ER

= O (M1, 0,4y 0] ))(d € Dy — (2*) + T7_; & (ay) € RP)o

P Ti1d2? T T i1i2.in gl !

(d c Dn+1 —d'd e Dn)

Proposition 43  For any (o, ..., o i) € I"(p,q), we have Tn((a?, ..., i) €M (M, z; N, y).

11.en

Proof. In view of Lemma 41, it su(Eces to note that for any natural number m with [ = [>], we
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wn((a{,a{m, e )(d € Dy (d € Dy — (2°) + Eizli—?(ai) € RP)(d™) € RP)

) 19 i
= En((af, azliz, s ozgmmin))(d € D, — (2%) + Eizlg(aﬁ) € RP)
— j j j i mro(mr)! 4
= wn((ag7 ag1i27 e ag1i2...in))(d € Dn — (x ) + E’lr:l%(%ar) € R;D)
mr mr)! j mry)! g mrg)! g

=de D, r— er:l—(;jnr)!Elﬁrlﬁmﬁrkgl(7(mrlg!...()mrk)!O‘%...ik (mry)t Tl!l) at}l...—( mj) ar’jc) € R?
have

=deD,+— Elrzldr—";rzlgrlS,,,Srkgl(ﬁaglmikaz}l...CLz,’Z) € R4

=de Dn L wl((agﬂ agué’ ""ag1i2...il))(d € Dn — (xz) + EiZl%(ai) € Rp)(dm)

=d € Dy —wi(mpi((ad, 0l 00l 5 )A€ Dy — () + 21 % (a}) € RP)(d™)

=d€ Dy +— 7rn7z(wn((ai-} azmv o aglig...in)))(d € Dy — (2') + Elr:l%(ai) € RP)(d™).
]

Now we have the following fundamental theorem, though its proof is easy:

Theorem 44 The following diagram is commutative:

J™(p,q)
0,/ N\ @Wn

J"(M,x; N, y) Pn J"(M,z; N, y)

Proof. We note the following well-known identity of ingnitesimals:

dy + ...+ dy)*
Wrerd) o

1<l <...<lp<n

for any natural number k and any dy, ...,d, € D, for which the reader is referred to Lavendhomme
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On((ed,al . .. al N((d € D,, — (z) + ¥7_, % (a’) € RP)o

19 i1 ) 119 i r=171
((d1,....dn) € D" — dy + ... + d,, € Dy,))
=0n((al ol oyl i ) (A1, e dn) € D s (2%) + Bp_ LDbbdn)” (41 ¢

=0n((cd sl i o N((dry ey di) € D™ — (%) + 0 D<oy <ndl

[1996;p.10]. In view of this, we have

= (d1,...,dp) € D" — (yj) + 27 X<k <...<kp<nQiy - Ai,. 2

( r!
ri+...Frs=r ril...r
1<r <...<rs;<n

n i n di+...4dy)" 7l i
= (dla 7dn) € D (yj) + Er:l( . 7«!+ ) E r14...trs=r (rl!,,',rs!agl...isarll"
1<rm<..<rs<n
= wn((af, 0‘511‘2, "-7O‘zli2...in))(d €Dy — (331) + Z?:l%(ai) € RP) o ((d1, .., dn)

D"+—di+..+d, € Dy)

In view of Theorems 40 and 44, in order to establish that the mapping ¢,, : J*(M,z; N,y) —
J*"(M,x; N,y) is injective for any natural number n, it su(Eces to demonstrate the following the-

orem:

Theorem 45 For any natural number n, the mapping @,, : J"(p,q) — J" (M, z; N, y) is injective.

The rest of this section is devoted to a proof of the above theorem. Now we are going to degne

mappings w,, : J*(M,z; N,y) — J"(p,q) by induction on n such that the diagram

I (M, z; N, y) Wt J"(p,q)
Tn+1,n J, l Tn+l,n
J"(M,z;N,y) w, JT"(p,q)

is commutative. The mapping w, : JO(M, z; N,y) — J°(p, q) shall be the trivial one. Assuming
that w, : J"(M,z; N,y) — J"(p,q) is degned, we are going to degne w,; : J"T(M,z; N,y) —
J"1(p,q), for which it su(Eces, by the required commutativity of the above diagram, only to give
afl__.inﬂ’s to each f € J"*Y(M, z; N,y). Let e; denote (0,...,0,1,0,...,0) € RP, where 1 is inserted

at the i-th position, while the other p — 1 elements are gxed zero. By the general Kock axiom

(cf. Lavendhomme [1996, 2.1.3)), §(d € Dpq1 — (2%) + d(d1e;, + ... + dni1€i,,,) € M) should
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be a polynomial of d, dy, ..., d,+1, in which the coe(Bcient of d"t'd;...d,1 should be of the form

m1!...mp!(a}1min+l, wwaf o) € RY, where m; is the number of i;’s with i = i;. We choose

’s as our desired o’ ’

these o] .
1o int1

i1 lng1 S.

Now we have

Proposition 46  For any § € J"(M,x; N,y), we have w, (f) € J"(p, q)-

Proof. Trivial. m

It is easy to see that

Proposition 47  The composition w,, o @, is the identity mapping of J"(p, q).

Proof. Using the commutative diagram

I (p,q) Wnt1 I (M, 2; N, y) Wit T (p,q)
Tn41,n ! ! Tn4+1,n ! Tn41,n
_ R
J"(p,q) Wn J"(M,z;N,y) w, J"(p,q)

we can easily establish the desired result by induction on n. =

Now Theorem 45 follows readily from Proposition 47.
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