Some Implications of the Curie Symmetry
Principle in Quantum Physics

John E. Gray and Allen D. Parks
Quantum Processing Group
Code B-10
Naval Surface Warfare Center Dahlgren Division
Dahlgren, VA
22448

Abstract

We discuss the concept of symmetry and its importance to under-
standing evolutionary processes that arise in dynamics. Using Curie’s
principle that the cause must be at least as symmetric as the effect,
along with Rosen’s generalizations, we arrive at a number of interest-
ing results. These principles prove very useful in classifying quantum
machine behavior as well as characterizing their entropy. The implica-
tions of this principle are also discussed relative to the problems of ma-
chine intelligence, symbolization of physical processes, and algorithms
as transformations on symbols.

1 Introduction: The Fundamental Role of Sym-
metry

!Symmetry, in the guise of group theory, has played a fundamental role in
physics and science for the last hundred years. In physics, it has played
a particularly significant role in the theoretical foundations of physics; a
general survey of physical applications of symmetry is Wigner [24]. Sym-
metry can be readily expressed in mathematical terms. Thus it is possible
to recognize new realms of application for symmetry arguments [20], [7].
An example of symmetry is exhibited by a one-to-one correspondence be-
tween the members of a collection of objects that preserves some particular

! This paper is dedicated to Charles Ehresmann on the occasion of the 100th anniversary
of his birth.



property or properties associated with the collection. For example, rotate
an n-gon about its center through a 360/n degree angle. Each point of the
n-gon other than its center is transformed into a point 360/n degrees away.
This rotation, which preserves the shape of the n-gon, is a symmetry of
the n-gon. A square, for example, has a total of eight symmetries: rota-
tions through 90°, 180°, or 270° degrees; reflection across one diagonal; a
reflection followed by rotations through 90°, 180°, or 270° and the identity
transformation which corresponds to a 360° rotation about the center.

In general, a symmetry is a 1-1 correspondence between elements in a set
which preserve some property associated with the set. All such symmetries
along with their bijective inverses and the identity map forms a group under
composition of maps. Thus, if f and g are symmetries taking points x and y
to points f(x) and g(y), respectively, then composition of f and g ( fog) is
the transformation taking = to f(g(z)) which is also a transformation sym-
metry. Furthermore, the inverse of symmetry f, which is the transformation
taking the point f(x) to the point z, is also a symmetry. The group of such
maps is commonly called the symmetry group for the set. Symmetry has
usually been associated with geometry (size and shape), but need not be
since other types of properties can be preserved by bijective maps: e.g., if a
and b are siblings, then so are b and a. Therefore the transformation taking
a to b and b to a preserves this form of kinship. Indeed, any bijective map
between the members of a family which preserves the sibling relationship
can be viewed as a "sibling symmetry".

In the sciences, symmetry arguments are often used to deduce equations
underlying a theory. A symmetry is proposed, the equations preserved by it
— or compatible with it in an appropriate sense— are identified as candidates.
Additional symmetries may further narrow the field of candidates. In art,
symmetry can be linked to the aesthetic nature of harmony and composi-
tion. It can be argued that the same applies to sciences, e. g. if an equation
or physical principle is considered beautiful, then probably an underlying
symmetry is the source of the appeal (Dirac’s principle of aesthetics). Ab-
straction of some principle from the natural world, such as symmetry, is
central to the exploration of properties of symbols as well as the machines
that manipulate the symbols. The nature of the symbolization process is
important in understanding the physical world, but is not widely recognized
as being so. Symbolization is an aspect of understanding the physics of com-
putation and generalizations of physical models of computation. Symmetry
plays an important role in symbolization.

The ability to abstract the world within language is perhaps the most
unique tool human beings have; it has enabled us to construct new universes



and describes the world around us. The origins of mathematics are lost in
antiquity. However, it is related to some "sense of number" and enumera-
tion (one-to-one correspondence between a marker system and a collection
of objects) that most higher animals seem to posses. Most mathematicians
agree that mathematics is not culture specific. Any sufficiently advanced
civilization has developed a mathematical system based on three specific
aspects of mathematics: numbers (accounting at a minimum, number the-
ory), measurement (measure, weight, length, and ultimately some form
of geometry), and abstract rule based systems (algebras or algorithms
of some type). The issue of science is more problematic: it requires the
ability to make comparisons—either by measurement or reduction to num-
bers. Thus, instrumentation plays a fundamental role. The use of scientific
instruments allows one to deconstruct reality in terms of measurements that
are based on some type of comparison. These instruments, while not typi-
cally thought to be abstractions, are ultimately the symbolizations that we
associate with "reduction to number" and are based on relativity few math-
ematical concepts. Primary among these are notions of proportion, angle,
length, similarity, correspondence, greater than, equality, and number. No
scientific instrument functions without usage of a variety constructs based
on strings of analogies using these concepts. An understanding of the ab-
stractions associated with instrumentation plays a fundamental role in the
limits of the imagination.

The essence of the physics model of reality has been to compute with
numbers. However, numbers don’t always capture the essence of reality;
instead a better thread is achieved with words, perceptions, and models [26].
This realization is what motivated Zadeh to propose "fuzzy logic". Some
applications require "computing with words" rather than computing with
numbers ([26], [27], [28], [29], [30]). A measurement process using numbers
and associated with perceptions by an individual or a poorly performing
instrument typically lack the clarity to capture an attribute. A less crisp
concept such as a "word descriptions" often works better in such cases.
The symbolic process that reduces an observation to a number amounts to
imposing the algebraic structure upon an observation. By saying that an
observation does not lead to the crisp concept of a number, implies that the
algebra associated with the measurement process has less structure than the
symbolic algebra associated with number. This has important consequences
that were first noted by Curie.

One hundred years ago Pierre Curie ([2],[18]) wrote a paper on symme-
try in physics that can be efficiently encoded as the koan "the effect is at
least as symmetric as the cause". The implications of this principle and its



extensions are of particular interest. In particular, we are interested in how
this notion of symmetry effects the behavior of finite state machines, as well
as the implications of behavior on the understanding of intelligence. Based
on the original Currie principle, Rosen [20] has expanded Currie’s notions to
argue that the relationship of symmetry to physics can be expressed in terms
of six core symmetry principles. Two such aspects of symmetry are of partic-
ular interest, namely Rosen’s Symmetry Principle for Processes, which
states: the "initial” symmetry group (that of the cause) is a subgroup of the
"final" symmetry group (that of the effect), and his Special Symmetry
Evolution Principle, which states: as a qausi-isolated system evolves, the
populations of the equivalence subspaces (equivalence classes) of the sequence
of the states through which it passes cannot decrease, but either remain con-
stant or increase. These principles have been used implicitly in physics over
the years, but largely without recognition of their importance—particularly
with reference to quantum machine operations and their implications, as
well as the importance of symbolization to symbolization and how it effects
computation. The most straightforward approach to understanding Rosen’s
symmetry principles is to first examine cyclic quantum state machines.

2 Finite Cyclic Quantum State Machines and Their
Symmetries

2.1 Introduction to FCQSMs

The notion of a quantum state machine (QSM) was first introduced by Gud-
der [9] who took the traditional formalism of state and transition function
and modified them appropriately for quantum mechanical systems based on
work by [15]. Gudder’s QSM is a simple quantum system which has no
inputs or outputs and evolves from one state to another in simple equally
spaced time steps. Parks [16] wrote a paper on finite cyclic quantum state
machines (FCQSM), which are a further simplification of QSM that they
evolve in a finite dimensional Hilbert space and return to their initial state
after a finite number of steps. Parks explored a number of properties of
such machines. and was able to show that FCQSMs always exhibit sym-
metries consistent with Curie’s Principle and Rosen’s Symmetry Evolution
Principle, but are often inconsistent with Rosen’s Symmetry Principle for
Processes. These symmetry preserving and breaking properties exhibited
by FCQSMs have some interesting implications about the nature of simula-
tion that relate to intelligence, and also raise some interesting philosophical



questions.

We first explore the nature of the symmetries associated with FCQSM.
Recall that a quantum system, with normalized states |¥), belong to a
(n + 1)-dimensional Hilbert space C"*! (C is set of complex numbers with
n > 1) defined by the set H = {|¥) € C"*1: (¥, ¥) =1}. The set of
states H is homeomorphic to the unit sphere S?**! ie. there exists a
homeomorphism f such that f : H —S?"+1. Also, the sequential application
of U(At) m times to |¥o) produces a closed cycle of length m in H which
corresponds to the dynamic evolution of a FCQSM in H:

g g g U g
|Wo) = |U1) = [Pa) = oo = |Upo1) = |Un) = [To) . (1)
Thus, for a given integer k > 1, we have the state evolution rule:
UF(At) [Wo) = UF™ V™ (AL) [Wo) = [Whmodm) (2)

which implies that the group <U (At)> generated by U (At) is isomorphic
to the finite cyclic group Z,, of order m. There are two maps that define
the dynamics of the FCQSM: the map 6 : <(7(At)> x H — H defined by

0 (0’“(At), ]\Il)> = UF(AL) |®) for 1 < k < m describes the dynamics of

the FCQSM as well as the map ¢ = fofo (ax f)_l which provides the
communative diagram

A

<U(At)> «xH L
L(ax f) L f (Group & State Relabeling Diagram)
Zm % SQn+1 ﬁ) SQn+1

A

Here o : <U (At)> — Z, is the group isomorphism mentioned above. Thus,
the two maps relabel group elements and states in a manner that preserve
the group properties of <U (At)> and the topological properties of H. The
characteristics of the Group & State Relabeling Diagram allow us to char-
acterize the dynamics of FCQSMs using the properties of ¢. One can then
refer to all machines as (m,n) —FCQSM where m refers to the order of Z,,
and n refers to the dimension of S?"*1 and the machine is said to "be de-
fined by Z,,". Note that the (m,1) —FCQSMs are qubit machines—finite
cyclic processes in two dimensional Hilbert spaces.

It is shown in [16] that the map ¢ defines a continuous free left Z,, —action
on S?"*t1 As a consequence of this there exists an induced canonical pro-
jection p : S?"*1/7,, which is also a universal covering . Here, S?"*1/Z,, is



the quotient space generalized by the action . Each point x in $?"*1/7Z,,

is a process cycle and each fiber p~!(z) is the set of states in the cycle.
Definition: A (m,n) —FCQSM simulates an (m',n) —FCQSM if there

exists a surjective map 7 : S?"*1/Z,., — S?"*t1/7,. such that the diagram

S2n+1

7 N (FCQSM Simulation Diagram)

SQn—H/Zm/ L SQn—l—l/Zm

comimutes.

The usefulness of this concept of simulation is due to the following the-
orem (see [16] for proof). It allows one to consider the concept of self-
simulation via subgroups of Z,,.

Self Simulation Theorem (SST): Let M be a FCQSM defined by Z,,.
For every non-trivial subgroup of Z,,, there is a FCQSM that is simulated
by M.

Such simulations are called (m,n)/(m’,n) simulations and M is said
to be (m/,n) capable. The meaning of the (m,n) / (m’,n) simulation is that
[16]:

"the states of the process cycles for (m,n) —FCQSMs ’geo-
metrically register’ the states of the process cycles for (m’, n) —FCQSMs
such that each (m,n) —FCQSM cycle ‘registers’ m/m’ (m’,n) —-FCQSM
cycles."

This leads to the following definition and theorem:
Definition (simulation ratio): The simulation ratio o is defined as

the group index
_ |Zn) _m

— (3)

- |Zr | m

0= 1L : Lpy]

where |G| is the order of the group G (which implies the following theorem).
Short Exact Sequence Theorem: For every (m,n) /(m',n) simula-
tion for which m # m/, there exist short exact sequence

1> Zpy = Zom 2, Zy — 1 (Short Exact Sequence)

where ¢ is an injective homorphism and 9 is a surmorphism ((see [16] for
proof)).

One observes that the quotient group Z,,/Z,s ~ Z, in the short ex-
act sequence defines a (o,n) —FCQSM quotient machine when m # m’/. A



(m,n) / (m',n) —simulation for which m # m/' splits if its short exact se-
quence splits, i.e. when Z,, ~ Z, @® Zy, (here ~ "is isomorphic to" and &
denotes "direct sum of Abelian groups"), and an (m,n) —FCQSM which
exhibits a split simulation is said to a split FCQSM. It may therefore be con-
cluded from the following commutative diagram that "every split FCQSM
simulates an induced o—machine":

SQn—i—l
q s
/ 1P N\
S2n+1/Zm/ N S2n+1/Zm (t_ 52n+1/ZU

(Split Simulation Diagram)
Similar more complicated machine diagrams exist for any subset of machines
simulated by a FCQSM.

2.2 Classification of symmetries

Since the dynamics of an (m,n) —FCQSM are represented by the group Z,,
and the global processing associated with these dynamics is represented by
the covering p : §?7+! — §2n+1/7 . then two types of symmetry can be
identified with the algebraic properties of machines: dynamic symmetries
(automorphism of Z,,) and process symmetries (covering space automor-
phism). An automorphism for the covering p : §?"+!1 — §2ntl/7  is a
homeomorphism 7 : $2"+1 — §27+1 guch that the diagram

§2n+1 N §2n+1
> { (FCQSM Curie’s Simulation Principle)
SQn—l—l/Zm

commutes. Note that each such 7 determines an immunity to change in
the topological structure of the covering, and therefore represents a distinct
symmetry for the covering. The set of all such homorphisims under composi-
tion is the group of processes symmetries C'ov (p) for the associated FCQSM
and |Cov (p)| is its order. Since Cov (p) & Zp,, it follows that every FCQSM
simulates its group of process symmetries.

A group automorphism for Z,, is an isomorphism (3 : Z,, — Z,,. The set
of all such isomorphisms under composition is the group of dynamical sym-
metries Aut (Zy,) for the machine and |Aut (Z,,)| is the order. A FCQSM is
said to be dynamically trivial if |Aut (Z,)| = 1, i.e. when m = 2. FCQSMs
have two types of symmetry principles that are relevant, a strong symmetry
principle which satisfies Rosen’s Principle for Symmetry Processes and a



weak version adheres to the Currie principle. The weak FCQSM symme-
try principle asserts for all FCQSMs: "a process is more symmetric than
the dynamics which performs it." This can be interpreted as a statement
about the relative cardinalities of the distinct sets of dynamic and process
symmetries and follows from the fact that |Aut (Z,,)| < |Cov (p)| (see [16]).
The strong FCQSM symmetry principle asserts that for all strongly
symmetric FCQSMs: "the group of dynamical symmetries is isomorphic to a
subgroup of the group of process symmetries." This strong version is a sym-
metry conservation principle for FCQSMs which requires that for a strongly
symmetric machine a faithful copy of the group of dynamic symmetries is
always contained within its group of process symmetries.

Using special machines with simulation ratios given by %, where
¢ is the Euler totient and the (¢(m),n) —FCQSM is referred to as the
¢—machine, one can deduce several classification theorems:

1. A dynamically non-trivial strongly symmetric FCQSM simulates its
associated ¢—machine.

2. If a dynamically non-trivial FCQSM is not capable of simulating its
associated ¢—machine, then it is strictly weak (FCQSM are strictly
weak when it is not strongly symmetric).

3. Every (m,n) —FCQSM for which m is odd is strictly weak.

It is shown in [16] that while every FCQSM is weakly symmetric, not all
FCQSM’s are strongly symmetric. Thus, we have the implication that

strong FCQSM symmetry principle = weak FCQSM symmetry principle

is valid but the converse isn’t. So that the set S of machines that satisfy the
strong principle are proper subsets of the set W of all FCQSM’s. Within this
context, such weak FCQSM’s in the set W — S violate Rosen’s Symmetry
Principle for Processes. Furthermore, from [16] we find:

Theorem 1 If a FCQSM adheres to Rosen’s Symmetry Principle for processes,
then m is even and Aut (Z,,) is cyclic.

Thus, one may classify FCQSMs according to whether they are in set S or
in set W — S . We pose the question "does this symmetry based dichotomy
indicate the existence of a fundamental difference between these machine
classes?" This question is difficult in general to answer. However, we can
provide further insight into the answer to the question by quantifying aspects
of these principles using the notions of efficiency and entropy.



2.3 Efficiency and Entropy

In the language of categories, the homotopy functor can be employed to
define an induced topological complexity index Iy, , associated with FCQSM
processing. In particular, this index can be defined as [16]

Fm,n _ ‘Hl (52n+1/Zm) _ Hl (5271-&-1)}
= ||~ 1
= m-—1 (4)

where II; (X) is the fundamental group for the topological space X. Note
that I',,, measures differences in the number of one dimensional holes
found in the quotient space and S?"*1 (i.e., between the "processed" space
S2n+l )7, and the "unprocessed" space S?"t1). But |Aut (Z,,)| = ¢(m),
where ¢ the Euler totient function [25]. This is the number of dynamic
symmetries for a FCQSM of order m. Also, since p(m) < m —1 = T’y p,
then

|Aut (Z)| < T (5)

which states that the number of dynamic symmetries for a FCQSM can
never exceed the increase the number of one dimensional holes induced by
its processing. Note, there are two possibilities for m:

Case 1: When m is a prime, then ¢(m) =m—1= |Aut (Zy,)| = T -

Case 2: When m is not a prime, then ¢(m) < m — 1= |Aut (Z,,)| <
Lonne

This can be interpreted as saying something about the "dynamic effi-
ciency" of a machine in terms of processing induced holes. Specifically, if
dynamic symmetries are viewed as "tokens" which are "spent" producing
holes during processing, then FCQSM'’s can be classified according to

"a prime FCQSM (for which m is a prime number) uses
all of its tokens during processing to make the holes, whereas a
non-prime FCQSM (for which m is not a prime number) doesn’t,
i.e. mnon-prime FCQSM’s are more efficient than prime FC-
QSM’s."

Thus we can say, that —excluding the prime machines of order m = 2-
even machines of order m’ = 2m are more efficient than machines of order
m. To see this, let the distinct prime divisors of m be p1,po,...,pr. Since

wn()-(8)

9



and

then
p(m) = p(m). (7)
The m' machine produces 2m — 1 holes in the quotient space using ¢(m)
tokens, whereas the m machines produces m—1 holes using the same number
of tokens. Thus m/—machines are more efficient than the m—machine with
its token usage. An amusing way to think about this is to imagine them
as Pacmen that consume spheres and produce from them new topological
spaces with even more holes than the sphere. Each hole has a cost requiring
the expenditure of tokens by a FCQSM Pacman. The efficiency of the
process of consumption is measured by the number of tokens it takes to
produce a hole. The fewer the tokens, the more efficient the machine, the
more tokens it takes, the less efficient the machine.
We can relate efficiency to the concept of entropy as well by using the
definition of thermodynamic efficiency [6]. If we denote the least work rate

required by an actual task as the rate WS, and the actual energy source
=

consumption rate Wmost, then the thermodynamic efficiency or effectiveness
€ is .
€ = VVI:%
Wi

ost

(8)

The effectiveness measures the degree to which processes being carried out
are reversible (¢ = 1) or irreversible (¢ < 1). Effectiveness can also be
expressed as .
=1 Lnd ()
M/I;;st
where Si.; is the total rate of entropy generation by an irreversible source
and T} RSirr is the lost work rate. Thus we can define the entropy in terms of

the efficiency as

TrSiuw = (1 — €) Wiy, (10)
For the Pacman eating the sphere, make the replacement
Wigs — WS = w(m), (11)

10



and

[[ most H rﬁf)ol;in m— 17 (12)
so the efficiency is
w(m)
= 13
«(m) m—1 (13)

Now since we are discussing FCQSM’s, define TrSyr = Stoken (1) so that
the token entropy is

Stoken(m) = m — 1 — p(m). (14)

The definition of token entropy and efficiency are consistent with our dis-
cussion from above.

Two observations about this entropy can be made from this expression
for the entropy given the properties of the Fuler totient function:

1. The entropy is always greater than or equal to zero (it is zero when
p(m) =m — 1, e.g. m prime.

2. Since, for m # 2,6, ¢(m) > /m and m — \/m > ¢(m), then
Stokenmy > /m. (15)
so the entropy growth is a function for all machines with m # 6.

Some additional comments can be made about the token entropy that
are related to the symmetry evolution principle. Rosen has noted the cor-
respondence

degree of symmetry < entropy (16)

which suggests that there should be an equivalence between the symmetry
evolution principle and the second law of thermodynamics. Within the con-
text of dynamical symmetries and their number, what we have shown above
is consistent with the more general result that a fundamental relation exists
between entropy and symmetry.

2.4 Implications for Machine Intelligence

We suggest that the ability of a system to internally simulate aspects of its
internal dynamics has implications for machine intelligence (internal simula-
tion of external behavior of the world being a form of intelligence) as well as
possibly for other forms of intelligence. One observation related to entropy

11



is that the FCQSM’s of prime order have zero entropy and non-prime ma-
chines have positive entropy. Included in this class of machines with positive
entropy are dynamically non-trivial strongly symmetric machines (Theorem
1 above) which can simulate their dynamic symmetries. Perhaps the associ-
ated non-zero entropy is necessary condition that must be satisfied in order
for systems to construct internal dynamical simulations (and other forms
of self knowledge). The ability to predict dynamical behavior is centrally
important to survival in the real world (e. g. kill it, eat it, rob it, or have
sex with it; the usual human preoccupations).

If an agent can model its environment (construct an internal simulation),
then it can exploit it to its advantage. This is almost a principle of ontology
that explains some aspects Darwin’s survival of the fittest by removing the
tautology. It can also be deduced that successful models that enable one to
predict have the following attributes:

1. An internal model for an agent must capture some significant (statisti-
cally significant effect on probability of survival) aspect of the external
world.

2. The processing speed for the internal model must synchronize with
the external behavior of the world (clock symmetry) in a manner that
makes prediction meaningful and useful.

3. The model of the external world’s environmental features must have a
finite length description that has a useful approximation in raw form
or is compressible to a form that is storable.

4. The reward for expending effort to model the external world exceeds
the effort required to accomplish it.

5. Change occurs on a time scale that makes agent modeling useful.

6. Abstraction to finite symbols to model the external world can be ac-
complished at a reasonable error transcription rate.

7. The agent’s model correction mechanism exists and is effective.

Because the types of machines we have talked about are so simple, we
have made an inductive leap in asserting more general properties of "intelli-
gent behavior" for agents and perhaps needs further justification. To more
fully discuss these matters, we consider machines that manipulate symbols
in light of what the impact of what we have learned from the symmetry
properties of FCQSMs.

12



3 Symbolization

As part of the process of abstraction, we don’t have to deal with numbers.
Instead we model process as collections of symbols. With structures which
are interpreted as words, we can produce models which employ transfor-
mational process on symbols rather than numerical procedures employing
numbers. These modeling structures resemble that of an automata ([10],
[11], [17]) so "computation" can be considered to be processes that engage
in translations of one word into another. Note computation can always be
cast in terms of symbolization. Classical computability theory is structured
around the formal notion of a classical Turing machine in terms of effective
processes, i.e. those processes which can be performed in a determinate and
precisely specified manner using steps which can only be executed by finite
mechanical means. Thus, in order that a process be effective, it must pos-
sess the following properties: mechanistic- it consists of a finite sequence
of instructions each of which can be carried out without insight, ingenuity
or guesswork; deterministic- when presented with an input string, it al-
ways produces the same result. Besides the Turing machine, one can discuss
computation in terms of algorithms that operate directly on symbols. With
a viewpoint of the symbolic in mind, computation can be viewed as the ex-
ecution of an algorithm. An algorithm can be viewed as a finite set of rules
that solve a specific type of problem. Informally, there are five important
features of an algorithm that characterize it completely [11]:

1. Finiteness: The algorithm must terminate after a finite number of
steps. (A procedure that has all the other characteristics of an algo-
rithm except finiteness is a computational method.)

2. Definiteness: Each step must be precisely defined, so actions can
be both unambiguously and rigorously specified. (This implies the
requirement for formal programing languages that are designed so that
each step in an algorithm has a definite meaning. An execution of an
algorithm in a programing language is termed a program.)

3. Inputs: An algorithm has zero or more quantities that are provided to
it before the algorithm starts execution that are taken from a specified
set of objects.

4. Outputs: An algorithm has quantities termed outputs that have a
specified relationship to the inputs to the algorithm that are also to be
taken from the same collection of objects responsible for the inputs.

13



5. Effectiveness: An algorithm should be sufficiently basic that all its
operations can be carried out exactly in a finite length of time by
someone using a pen and paper. (An algorithm cannot be stated in
terms of a property that is not already algorithmic or in terms of non-
defined objects, infinite decimals or a typical cooking book recipe for
example.)

While these capture what naturally meant by an algorithm, one can adapt a
more formal specification of an algorithm based on the model of algorithms
proposed by Markov [11]. One must also have a notion of the problem
formulated in the proper language relative to the symbol set.

Any notion of what constitutes a problem starts with a formulation that
is expressed in a particular language. Being a language, it is by necessity
an expression of a sequence of symbols within that language (with the un-
derstanding that a blank, which is used to separate words is a symbol in
its own right.) An alphabet ¥ is a non-empty finite collection of words.
We also require that sequences formed from the alphabet be a denumerable
sequence. One can then define a word in ¥ to be any finite sequence of
symbols in ¥. (One also needs an empty word Y.) For a word P that is
denoted 5}, ...5;, and a word @ denoted S,,...S,,,, the juxtaposition PQ is
Sy .85, Sry...Sp,, of the two words. Note that juxtaposition has the prop-
erties PY = TP = P, and (PyP2)P; = P;(P,P3). An alphabet A is an
extension of an alphabet B iff B C A. If an alphabet is an extension of
another alphabet, then any word in the second alphabet is in the extension
of the alphabet. An algorithm in an alphabet A is a computation £ that
has the properties previously described whose domain is a sub-collection of
the words of A and values are also in A. If P is a word in A, £ is applicable
to P if P is in the domain of £; if £ is applicable to P, we denote its value by
£(P). An algorithm over an alphabet A means that £ is in an extension
B of A. One can then use a single operation, substitution of one word for
another as the basis for construction of all algorithms. These simple defi-
nitions provide all that is necessary to construct a theory of computation
where the algorithms are rules for transformation of one word into another.

4 Implications of Rosen’s Principle for Symboliza-
tion

Given a dynamic model, it is always possible to arrive at a symbolic model
that is entirely equivalent to the dynamic model ([3] and [13]) by using a

14



sensor as the (symbolic) transformation device that translates measurements
into a finite alphabet which spans the space of possible descriptions. (Note
that this observation is implicit in all of Shannon’s work on information the-
ory [21].) Using a finite alphabet of N symbols, one can define a ‘symbolic
space’ associated with a dynamics model. For our purposes, the elements of
>y are all finite strings of symbols. (Note in other applications the strings
can be infinite.) A process that takes measurements and maps them into
observations, e.g. the mapping transforms of analog sensor information into
symbols that can be concatenated into strings drawn from a model based
symbol set. The reduction to a symbol alphabet has symmetry issues [§]
that can be associated with either dynamic or process symmetries:

1. Model Typing (process symmetry): How many symbols are sufficient
to characterize the measurements?

2. Model Association (both): How does one associate a measurement
vector |M) with the symbol set?

3. Model Genotype (dynamic symmetry): A genotype for a measurement
is an assignment or association of the measurements | M) to the vector
of possible model types

[AT21, A5 @2, oo A, ATYL, AQY2, oo Ay AT 21, Ad22, o, Anzn] - (17)

where the Ag)ls represent the degree of belief that the symbol is repre-
sentative of measurement. Note, by exhaustion, we require

SV =1 (18)
=1

For convenience, it is useful to adjoin the additional symbol 0 to the
set so we can deal simply with the case )\5-) = 0.

4. Model Clarity (process symmetry): A model has clarity if we have a
high degree of confidence that a single symbol represents it, while it is

O — L where n is the number of symbols.

maximally unclear if A=

5. Model Age (dynamic symmetry): The age of a genotype is the number
of data updates k that have lead to the present genotype, for example
this would be represented in a genotype as:

(M z1(k), Ay (k), Al z1(K))] (19)
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6. Transcription Accuracy (Noise Effects) (both): The effect of noise is
to determines the model algebra behavior.

7. Model Algebras (both): There are several different algebras associated
with the dynamics of mapping of the data into model type. By algebra
we mean that there are mappings associated with the data transcrip-
tion to model type (measurement algebra), the algebra associated with
updating a genotype from one update to the next (transition algebra),
and if the genotype has limited clarity, only a sub-algebra of the model
symbols may be in play rather than all of them for small age differ-
ences (clarity algebra). The subgroups of the permutation group are
a means for discussing these models.

8. Model Typing or Identification (process symmetry): If we have a se-
ries of model genotypes and have been able to infer a model algebra
associated with that genotype, then an additional inference can be
formed that allows one assign an additional symbol drawn from a new
symbol set [19]. This typing symbol set is a higher level alphabet that
is largely non-dynamic. It has the specific characteristics of what we
might term— as drawn from biological nomenclature— a species. Draw-
ing the inference of a species from model typing sources can be also
termed identification.

The measurement process lends itself to the speciation of the continuum
by reducing all possible measurements to a finite symbol alphabet. The
simplest alphabet, which is used in classical logic gates, is based on voltage
signals which are reduced to the symbolic level by a measurement /conversion
process to the symbols 1 and 0. For example, the simplest case of a universal
symbolization is the conversion of an analog signal into a digital signal set,
specifically the analog-to-digital (A-to-D) converter [14]. Formally, an A-
to-D converter takes a continuous real time signal ¢ — z(¢) (¢ > 0) and
generates an output sequence {Tj : k € Z1} from a finite alphabet J. The
A-to-D converter produces a symbol Z at a time k7, where T is a prescribed
sampling interval for 7 > 0. Note, this process is inherently nonlinear as are
most symbolic conversion processes, though this is not widely acknowledged.
Thus a digital symbol set consists of the two symbol alphabet {0, 1} so that
>, is in the set of all finite strings of 0's and 1’s. When dealing with
communication or digital encoding, words or messages consist of long strings
of ones and zeros which are elements in ) .

Without numbers, we do not have a precise grammar which can be in-
terpreted additional degrees of freedom (in physics parlance). This allows
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multiple deconstruction in terms of symbolic models rather than a single
deconstruction. Reduction of signals to symbols exhibit a variety of symme-
tries that are associated with the process. Because the alphabet of symbols
is finite, they represent classes that have a degree of invariance because of
the inability to distinguish between them (an example of this is translational
invariance). At least one form of invariance that is necessarily required for
any type of symbolization is the identity. Also, one can define an equiva-
lence relation upon a set of signals using a mapping S from signals v onto
symbols, i.e.

v— > S(v). (20)

If v and v are arbitrary signals, then one can write u ~ v if S(u) = S(v).
With an alphabet, there is an inherent uncertainty in the assignment of
signal to symbol which can be symbolized as P(s/v) which is the probability
that the symbol s is the correct representation of some part of the signal
space spanned by a signal set provided the corresponding signal is v. A
further explanation for the symbolic basis for measurement [23].

5 Conclusions

Curie’s principle has appeared in a number of unexpected regimes. Physics
based modeling indicates that there are a variety of algebraic considera-
tions that arise from symmetry considerations which suggest that there are
physics based algebras awaiting our discovery. The interesting thing about
these physical algebras is that they could motivate new forms of syntax as
well as semantics. Thus, as practitioners of measurement, we can use mea-
surement algebras as a means of providing insights into new mathematical
objects, as well as new forms of syntax for use by mathematicians. By re-
moving semantic assumptions from the objects, mathematicians can achieve
clarity with regard to the syntax. This increases the rigor of usage by those
engaged in the external world. Practical issues associated with the sym-
bolization perspective force us to re-examine communication theory issues
such as sampling, bandwidth, noise, and representation which arise from
the symbolic rather than the numeric perspective. Issues such as require
reformulation from the transformational perspective and lends itself to the
discussion of the transformations of symbol sets by machines or algorithms.

There are several problematic observations that arise from consideration
of the symbolic and simulation perspective that raise questions that cate-
gory theory perhaps, can help answer. When converting a signal to a finite
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string of symbols, it is not always possible to distinguish between analog
features with low probability of occurrence. Thus, some features can arise
in time series data that are ambiguous with respect to symbolic characteri-
zation. We pose the following question: Is it possible to develop categorical
descriptions of ambiguity and the allied notion of entropy and study func-
torial relationships between these categories and the category of groups in
order to provide insight into new symmetry based approaches to ambiguity
reduction?

There is a hierarchical classification of machines that is naturally in-
duced by the grammatical properties of the associated families of languages
accepted by machines. We pose the following questions: Can functorial re-
lationships be established between categories of machines and languages that
suggest further refinements of and relationships between these classification
schemes? and Can functorial relationships between a category of algorithms
and the category of digraphs yield new and meaningful measures of algorith-
mic complexity?

There are many insights yet to be found by examining physical models
from the symmetry perspective suggested by Rosen’s generalization of the
Curie principle.
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