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Introduction

Charles Ehresmann [8] introduced local structures in the 1950’s mainly for two
reasons, as he explains in [9]. The first was that, as he observed, it is not
the points of a space which are important in arguments involving localization,
but its open parts. The second reason was that, for infinitesimal structures of
various kinds, there is always an underlying local structure.

Central in the algebraic topology for toposes is the notion of a set of con-
nected components of a topos. In topos theory over a base topos ., any locally
connected topos .Z bounded over .% with structure morphism f : & — % has
a (discrete, localic) topos TIg(.#) of connected components, to wit, the topos
[ fi(1). The purpose of this paper is to discuss (non-discrete) localic general-
izations of Iy (.#) in the absence of local connectedness.

The first generalization of TIy(.#) (section 1) is the topos P (.Z) of path
components of .Z. It was presented at the Workshop in the Ramifications of
Category Theory, Firenze, 2003 [3]. The construction of Z7,(.#) is obtained as
an instance of a general pushout construction of collapsing paths to a point, first
used in Synthetic Differential Geometry [17] in the case of infinitesimal paths.

The totally disconnected topos Z24(.Z) leads in turn to a natural definition of

the paths fundamental groupoid H(lpath)(,?) of .Z, and to a simple comparison

map from it to its coverings fundamental groupoid H(lcov) (F). Tt is of particular
interest when Hl(ﬁ')(path) is a totally disconnected localic groupoid.

The second generalization to Ty () (section 2) is the zero-dimensional topos
T, (Z) of quasicomponents of .Z. It presents results obtained in joint work with
Jonathon Funk and included, with proofs and additional material, in [5]. We
view the construction of T, (.#) as an instance of a new factorization of a geo-
metric morphism into a hyperpure geometric morphism followed by a complete
spread. This new factorization generalizes a result of [4], established for the
case when the domain topos is locally connected. In order to achieve it without
local connectedness, we follow the lead of Fox [10] and Michael [14] in topology.
The topos I, (.Z) is localic and zero-dimensional.



1 The topos of path components

The results of this section were presented at the Workshop in the Ramifications
of Category Theory, Firenze, 2003 [3].

A topos Z over .¥ is said to be totally disconnected if the “constant paths”
geometric morphism ¢z : . #F — .Z! is a surjection, where I denotes the topos
of sheaves on the unit interval regarded as a locale. As shown in [12], cg is
an inclusion, so that in effect, for a totally paths disconnected topos, ¢z is an
equivalence.

Recall also that a topos .Z is said to be path-connected if f : . F — .
and the evaluation-at-the-endpoints map ¢ : ! — .F x o .Z are both open
surjections. The following is shown in [12], using also the main result from [16].

Lemma 1.1 Any path-connected geometric morphism is orthogonal to any to-
tally disconnected geometric morphism. Any connected locally connected geo-
metric morphism s path-connected.

The bipushout (*) below is an instance of a general construction having as
a notable example the topos of A-discrete objects in a given topos .Z, where
Ais an A.T.0. [13]. Tt was investigated in [17]. We apply it in the 2-category
Top.» of .¥-bounded toposes, geometric morphisms and 2-cells of such, with
the object I of sheaves on the unit interval locale, which i1s exponentiable as
well as connected (an A.T.0. is furthermore projective).

We take the bipushout in Top »:

Fly | L 1 ()

lev l(g
T —5 Py (F)
and call 2,(.Z) the topos of paths components of Z.

The construction of the topos of paths components of a topos Z leads to a
definition of its paths fundamental groupoid without any assumptions.

Proposition 1.2 The diagram (xx) given by

Po(eo)
90(,?1) X@D(g) 90(,?1) —— 90(,?1) e e@o(y)

Po(er)

1s a groupoid in Top.s, with operations induced by the usual operations of com-
position and inversion of paths.

Proof. An argument to show that it is a groupoid as indicated can be made
analogously to that of [12] (Proposition 4.3). o



Definition 1.3 The colimit of the groupoid topos given in Proposition 1.2 is
said to be the paths fundamental groupoid of Z and denoted Hl(path)(,?).

The pushout (%) is also the basis for the paths totally disconnected reflection
under suitable assumptions.

Definition 1.4 A topos .# bounded over .¥ is said to be paths-tight if the

evaluation morphism Z' x I - Z is locally connected. We say that .F is
homotopies-tight if .Z7! is paths-tight.

Theorem 1.5 Let Z be paths-tight. Then in the bipushout (), the following
hold:

1. The unit ng 1s connected and locally connected.

2. For any totally disconnected topos Z, ng induces a bijection

Topy (#o(Z), Z) = Tops (Z, Z).

3. Py(F) is a totally disconnected topos.
4. Po(F) is paths-tight.

5. If Z is also homotopies-tight, then the groupoid (%) of Proposition 1.2 is
totally disconnected.

Proof.

1. That ng is locally connected follows from the fact that in the bipushout
defining 22,(.Z), both ev and py are locally connected. Furthermore, pg
is connected (since the locale T is connected) hence so is 1.4.

2. Given F —> Z, there is a commutative diagram

Flx [ g (1)

7
with top horizontal connected and locally connected, and bottom hori-
zontal paths totally disconnected hence, by Lemma 1.1,there is a unique
diagonal fill-in .Z! . % . From the bipushout property now follows the

existence of a unique Zy(F) L7 % such that P kg Nz

3. One shows first that co,(#7)(z = nz!. By aresult of [15] nz' is a stable
(in fact, an open) surjection. It follows that cs,(#) is a surjection.



4. We wish to show that the evaluation morphism
90(,?)1 X I$ e@o(y)
is locally connected. This follows from the commutativity of the square

ngIXI

Tl | —= 2y(Z) x I (2)
Z Rk 970(,97)

and the facts that the composite of the left vertical with the bottom hor-
1zontal is locally connected, while the top horizontal 1s an open surjection
as it 1s the bipullback of an I-exponential of a connected locally connected
morphism.

5. Basic properties of totally disconnected geometric morphisms imply that
the structure maps in the diagram () are totally disconnected.

[m]

Definition 1.6 We say that a topos .F has a locale of paths components if the
topos Po(F) — . is localic.

Corollary 1.7 Let .Z and Z' be both paths-tight and have a locale of paths
components. Then, Hl(path)(,?) is the classifying topos of a totally disconnected
localic groupoid.

Let us revisit briefly the coverings fundamental groupoid of a topos in the
locally connected case. First note that if Z is locally connected and paths-
tight over .¥, then necessarily 22, (%) = .%/fi(1), since any locally connected
geometric morphism which is at the same time totally disconnected must be a
local homeomorphism. In that case, the totally disconnected groupoid () is
discrete. We record the following fact from [2].

Proposition 1.8 If Z is locally connected and locally stmply connected with
Galois object A, there is an isomorphism

Aut(A) = fi(A x A)

of discrete groupoids, with the right-hand side the Galois groupoid in the sense
of Janelidze [11].

Lemma 1.9 Let .Z be locally connected and locally simply connected with Ga-
lois object A. Then, the induced geometric morphism

Poy(F[A) — Py(F)

15 an equivalence.



Proof. If A is a Galois object then . /A — .Z is connected locally connected,
hence orthogonal to totally disconnected. o

In view of Lemma 1.9, we shall regard the Galois topos of a locally con-
nected and locally simply connected topos .# with Galois object A as the col-
imit Hl(wv)(ﬁ') of the totally disconnected (in fact, discrete) localic groupoid
in Top.», with object of objects P (F /A x » F [A).

Definition 1.10 We say that .Z has the unique paths-lifting property if the

geometric morphism Z1 —» F x » F is connected locally connected.

Proposition 1.11 Let .Z be a locally connected and locally simply connected
topos over . with Galois object A. Then, the following hold.

1. There is a canonical groupotd homomorphism
1,040 (2) 22 11 ) ()
mn Top ..

2. If in addition .F is assumed paths-tight, homotopies-tight, and to have the
unique paths-lifting property, then the groupoid topos homomorphism oz
15 an equivalence.

Proof. The homomorphism o# is given by the following diagram in Top .

@0((y/A)I) X @0 (FA) @0((,?/14)[) R —— e@o(y/A X y/A) X o (F[A) e@o(y/A X y/A)) .

] ]

Zol fA)I) «%(3“/11 T Z[4)
P(F | A) — Po(F/4)

It follows easily that if .Z has the unique paths-lifting property in the sense of
Definition 1.10, the homomorphism of groupoids in Top » 1s an equivalence. o

2 The topos of quasicomponents

The results from this section are joint with J. Funk and are all contained in [5].

For a geometric morphism .Z v & with a locally connected domain f :
F — .7 there is [4] a unique factorization F — # — & into a pure (dense)
geometric morphism followed by a complete spread (with a locally connected

domain). The middle geometric morphism # —25 & associated with (¢, f) is



the topos of cogerms of components of the image of ¥* in .Z. This is the topos-
theoretic version of the complete spreads in the sense of Fox [10]. If & is equal
to . and ¢ = f, then this topos is just Io(.#) = %/ f (1) and it is therefore
discrete.

We now seek to generalize this to the non-locally connected case. In topology,
E. Michael [14] has shown how to do this by considering cogerms of quasicom-
ponents instead of cogerms of components, and then by identifying the first
factor in order to establish uniqueness. We begin by recalling the notion of a
definable morphism from [1]. Tt is the constructive version of the notion of (sum
of) clopen in topology. The notion of a definable dominance is from [6].

Definition 2.1 A morphism X —=Y in a topos .Z is definable if it can be put
mn a pullback square as follows.

X — =V

|

f*A W) f*B
A definable subobject is a monomorphism that is definable.

Definable morphisms do not compose in general, not even over a Boolean topos.
Denote the characteristic map of f*(T) : f*1 — f*(Qs) by 7: f*Qo» — Qz.

Definition 2.2 f is said to be a definable dominance if 7 is ¢ monomorphism
(subopen), and if definable morphisms compose.

We shall assume in the rest of this section that ¢ : . Z — & is an arbitrary
geometric morphism over .%, with f : . Z — . a definable dominance. Any
locally connected topos is a definable dominance.

The notion of a ¢-cover was introduced in [7]. We need the notion of a weak
w-cover in order to describe our main construction here.

Definition 2.3 A -cover is a diagram

V———U

|

Y E (e
JrA B
in . Z, where V >—= ¢* I/ and U >—= ¢*C are definable subobjects. If the square
E C

|

eA——¢*B



coming from & 1s a pullback, then we call the diagram a weak 1 -cover.

Suppose that & = Sh(J,C). Let H denote the category of pairs (C,U),
such that U >— ¢*(hc) is a definable subobject in #, where h : C —= &
denotes the Yoneda functor (plus sheafification). Let H denote ¢.(f*Q%) in

&. A morphism h¢ L Hine corresponds to such an object (C,U). We have

a geometric morphism Z s P(H) such that {*(h(cv)) = U, where again
h : H—— P(H) denotes another Yoneda functor.

If .Z is locally connected, there is a category of components Y, whose ob-
jects are pairs (C, «) such that a>—= ¢*(h¢) is a connected component, and
which is a full subcategory of H. In the absence of local connectedness there is
no category of components Y. Nevertheless, there is a subtopos % >—= P(H)
(generalizing P(Y)) of sheaves for the topology in H generated by the weak
h-covers,

Form the bipullback to & producing the following diagram of geometric
morphisms.

Z & 3
P
o\ ETT P(H)
7
& P(C) (3)

Thus, we have a factorization ¢ = ¢ - p, where ¢ denotes the composite
X > & — s & We shall refer to the middle topos 2 as the Michael
topos of ¥ and to the factorization as the Michael factorization of .

Next, we identify the first factors in the Michael factorization of ¢b. We do
this by translating into topos theory a condition (B) from [14], itself replacing
a condition (A) from [10].

Definition 2.4 .7 —2= & is said to be hyperpure if every diagram

‘]/\
prE e
j N

frA B




in which V > p*F is definable is given locally by a diagram

N
Ll

from &, where W >—= E 1is definable, subject to a uniqueness requirement.

Remark 2.5 We have the implications

connected => hyperpure = direct image preserves .¥-coproducts
= pure (dense) = dense.

The key result in this section is the following. We state it without proof,
but see [5] as for everything else in this section.

Proposition 2.6 The first factor of the Michael factorization is hyperpure.

It remains to identify the second factors in the Michael factorization. They
are best described by means of a cover refinement property in a manner anal-
ogous to that of [7]. This description is not as transparent as in the locally
connected case, but in topology it amounts to the property that cogerms of
quasicomponents converge. They will be called complete spreads.

Theorem 2.7 The Michael factorization of a geometric morphism ¢ . F — &
(whose domain [ : F — % is a definable dominance) into a hyperpure geo-
metric morphism p followed by a complete spread ¢ (with domain a definable
dominance) is unique up to equivalence.

Proof. The assumption that p is hyperpure, hence pure (dense) implies that
it induces an equivalence between H. 4~ and He; 5, which we may simply
denote by H. Next, we need to know that there is also an equivalence between
the topology on H determined by the weak t-covers, and that determined by
the weak ¢-covers. This needs the full import of Definition 2.4 and it 1s straight-
forward. o

We end with an analysis of the special case where the codomain topos &
and the base topos .% agree, with ¢ = f. This particular case gives the locale
of quasicomponents of a topos.



The object classifier 2.5 serves as a site for .%, and H = f, f*Q». We have
the following topos pullbacks.

e

>
¢\ P(H)>—— P(H)
o
F P(Qs)

For example, if . = Set, then H is the lattice of all complemented subobjects
U > 1z plus an extra object (0,0) that is below the complemented subobject
0> 1. H is the same lattice as H, except without the extra object (0,0). The
coverage in H giving the locale X is simply the .Z-join coverage: {U, > U}
covers just when \/ U, = U in the lattice of subobjects of 1z in .Z.

The frame &(X) can be identified as the lattice of subobjects V > 12
that are joins of complemented ones U >—= 14. It follows that X is a zero-
dimensional locale in the sense that Sh(X) — .7 is a spread [4]. Moreover,
this construction is a reflection (left adjoint) of locales into zero-dimensional
locales. Completeness is not an issue here — the structure map of a topos is
automatically complete.

A point 1 — X is a filter (upclosed and closed under finite meets) of com-
plemented subobjects of 1& that is inaccessible by the .#-joins. We interpret
such a filter as a quasicomponent of .Z. In topology, this agrees with the usual
notion of quasicomponent.
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