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Abstract

Global actions were introduced by the first author to give a purely algebraic / combinatorial
approach to algebraic K-theory. Using the fact that group actions yield action groupoids, we present
here a variant of global actions that we call groupoid atlases. These consist of an interrelated family
of ‘locally defined’ groupoids on a set. We discuss some motivating examples and explore some of the
elementary theory.

1 Global actions

The motivation for the introduction of global actions by A. Bak was in part to provide an algebraic
setting in which to perform the homotopic operations needed in algebraic K-theory without the heavy
weight algebraic topology customarily used.

The motivating idea is of a family of interacting and overlapping local G-sets for varying G. The
prime example is the underlying set Gln(R) operated on by the family of subgroups Gln(R)α generated
by elementary matrices of a certain form. We will give the details shortly. First the definition of a global
action.

A global action A consists of a set XA together with a family

{(GA)α y (XA)α | α ∈ ΦA}

of group actions on subsets (XA)α ⊆ XA. The various local groups (GA)α and the corresponding
subsets (XA)α are indexed by the index set ΦA, called the coordinate system of A. This set ΦA is
equipped with a reflexive relation, written ≤, and it is required that

- if α ≤ β in ΦA, then (GA)α leaves (XA)α ∩ (XA)β invariant,
and

- there is given for each pair α ≤ β, a group homomorphism

(GA)α≤β : (GA)α → (GA)β

such that if σ ∈ (GA)α and x ∈ (XA)α ∩ (XA)β then

σx = (GA)α≤β(σ)x.

The diagram GA : ΦA → Groups is called the global group of A. The set XA is the enveloping
set or underlying set of A. The notation |XA| or |A| for XA is sometimes used for emphasis or to avoid
confusion since

XA : ΦA → P(XA)

is also a useful notation, where P(XA) is the powerset of XA.

Remarks
a) For technical reasons it is not assumed that the collection (XA)α ⊆ XA necessarily covers XA.

This is so in all the basic examples we will examine but is not a requirement.
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b) The relation ≤ is not assumed to be transitive on ΦA, so really GA is not a functor, however the
difference is minor as, if F (ΦA) denotes the free category on the graph of (ΦA,≤), then GA extends to
a functor GA : F (ΦA) → Groups. We will usually refer, as here, to GA as a diagram of groups and
will sometimes use ‘natural transformation’ to mean a generalised natural transformation defined on the
generating graphs, that yields an actual natural transformation on the corresponding extensions.

The simplest global actions come with just a single domain.
A global action A is said to be single domain if for each α ∈ ΦA, (XA)α = |A|.
Example
Let G be a group, H = {Hi : i ∈ Φ} a family of subgroups of G. For the moment Φ is just a set (that

is : α ≤ β in Φ if and only if α = β). Define A = A(G,H) to be the global action with

X = |XA| = |G|, the underlying set of G
ΦA = Φ

(XA)α = XA for all α ∈ Φ
Hi y X by left multiplication

(so the local orbits of the Hi-action are the left cosets of Hi).
Warning
Later on we will need to refine this construction, taking ΦA to be the family of finite non-empty

subsets of Φ ordered by opposite inclusion and with if α ∈ ΦA, (GA)α =
⋂

i∈αHi.
We will later look in some detail at certain specific such single domain global actions. The following

prime motivating example is similar to these, but the indexing set/coordinate system is slightly more
complex.

The General Linear Global Action Gln(R)
R will be an associative ring with identity and n a positive integer.
Let ∆ = {(i, j) | i 6= j, 1 ≤ i, j ≤ n} be the set of non-diagonal positions in a n × n array. Call a

subset α ⊆ ∆ closed if
(i, j) ∈ α and (j, k) ∈ α implies (i, k) ∈ α

Note if (i, j) ∈ α and α is closed then (j, i) /∈ α.
Let Φ = {α ⊆ ∆ : α is closed}. We put a reflexive relation ≤ on Φ by α ≤ β if α ⊆ β.
Now suppose (i, j) ∈ ∆ and r ∈ R. The elementary matrix εij(r) is the matrix obtained from the

identity n× n matrix by putting the element r in position (i, j),

i.e. εij(r)k,l =

 1 if k = l
r if (k, l) = (i, j)
0 otherwise .

Let Gln(R)α, for α ∈ Φ, denote the subgroup of Gln(R) generated by

{εij(r) | (i, j) ∈ α, r ∈ R}.

It is easy to see that (akl) ∈ Gln(R)α if and only if

ak,l =

 1 if k = l
arbitrary if (i, j) ∈ α
0 if (i, j) ∈ ∆\α.

For α ≤ β there is an inclusion of Gln(R)α into Gln(R)β . This will give the homomorphism

Gln(R)α≤β : Gln(R)α → Gln(R)β .

Let Gln(R)α act by left multiplication on Gln(R).
This completes the description of the single domain global action Gln(R). Later we will see how to

define the homotopy groups of a global action. The (i− 1)th-homotopy group of Gln(R) is the algebraic
K-theory group Ki(n,R) and the usual algebraic K-group, Ki(R) is the direct limit of Ki(n,R)s by the
obvious maps induced from the inclusions Gln(R) → Gln+1(R).
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The way that a global action extends local information to become global information can be observed
from the simplest cases of the A(G,H).

If H has just a single group H in it, then the global action is just the collection of orbits, i.e. right
cosets. There is no interaction between them.

If H = {H1,H2}, then any H1-orbit intersects with any H2-orbit, so now orbits do interact. How they
interact can be very influential on the homotopy properties of the situation. As an example consider the
symmetric group

S3 ≡ 〈a, b | a3 = b2 = (ab)2 = 1〉,

with a denoting the 3-cycle (1 2 3) and b the transposition (1 2). Take H1 = 〈a〉 = {1, (1 2 3), (1 3 2)}
yielding two orbits for its left action on S3,H1 and H1b. Similarly take H2 = 〈b〉 giving local orbits
H2,H2a,H2a

2. Any H1-orbit intersects with any H2-orbit, but of course they do not overlap themselves.
This gives an intersection diagram:
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This graph makes it clear that, even in such a simple case, it is possible to find loops and circuits within
the global action, following an element through a local orbit and then, within an intersection, crossing to
the next orbit, eventually getting back to the starting position.

The element 1 ∈ H2 multiplying again on the left by b ∈ H2 ends up in H2 ∩H1b, multiplied on the
left by a ∈ H1 yields ab ∈ H1b ∩H2a

2 and so on. The circuit

H2
// H1b // H2a

2 // H1
// H2

I
b× // b

a× // ab
b× // bab

a× // abab = 1

relates the structure of the single domain global action with the combinatorial information encoded in
the presentation. This will be examined in more detail later.

Morphisms
Morphisms between global actions come in various strengths depending on what part of the data is

preserved. Preservation of just the local orbit information corresponds to a “morphism”, compatibility
with the whole of the data then yields a “regular morphism”.

First we introduce a subsidiary notion which will be important at several points in the later develop-
ment.

Definition
Let A be a global action. Let x ∈ (XA)α be some point in a local set of A.
A local frame at x in α or α-frame at x is a sequence x = x0, · · · , xp of points in the local orbit of

the (GA)α-action on (XA)α determined by x. Thus for each i, 1 ≤ i ≤ p, there is some gi ∈ (GA)α with
gix = xi.

Note that in extreme cases, such as a trivial action, all the xi may be equal, but if the action is
faithful, each α-frame at x essentially consists of x and a sequence g1, · · · , gp of elements of (GA)α. For
some of the homotopy theoretic side of the development this may be of use as g1, g2g−1

1 , · · · yields a
(p− 1)-simplex in the nerve of the group (GA)α.

Definition
If A and B are global actions, a morphism f : A → B of global actions is a function f : |A| → |B|

on their underlying sets, which preserves local frames. More precisely:
if x0, · · · , xp is an α-frame at x0 for some α ∈ ΦA, then f(x0), · · · , f(xp) is a β-frame at f(x0) for some
β ∈ ΦB .

Note that not all α-frames may lead to the same β, so this notion is not saying that the whole of
the local orbit of the (GA)α-action corresponding to x0 must end up within a single local orbit, merely
that given x0, · · · , xp, there is some β such that f(x0), · · · , f(xp) form a β-frame. This is of course only
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significant when there are infinitely many co-ordinates, as larger frames may lead to different “larger”
βs.

Intuitively a path in a global action A is a sequence of points a0, · · · , an in |A| so that each ai, ai+1, i =
0, · · ·n − 1 is a α-frame for some (varying) α ∈ ΦA. This idea can be captured using a morphism from
a global action model of a line, and this is done in the initial papers on global actions, [1, 2]. Here we
postpone this until the third section as there is a certain technical advantage in considering the line with
a groupoid atlas structure and that will be introduced there.

Definition
A regular morphism η : A→ B of global actions is a triple (ηΦ, ηG, ηX) satisfying the following

−ηΦ : ΦA → ΦB is a relation preserving function :
if α ≤ α′, then ηΦ(α) ≤ ηΦ(α′),

−ηG : GA → (GA)ηΦ is a natural transformation of group diagrams over ηΦ,

i.e. for each α ∈ ΦA,
ηG(α) : (GA)α → (GB)ηΦ(α)

is a group homomorphism such that if α ≤ α′ in ΦA, the diagram

(GA)α

��

ηG(α)// (GB)ηΦ(α)

��
(GA)α′

ηG(α′)

// (GB)ηΦ(α′)

commutes, where the vertical maps are the structure maps of the respective diagrams;
- ηX : |A| → |B| is a function such that ηX((XA)α) ⊆ (XB)ηΦ(α) for all α ∈ ΦA;
- for each α ∈ ΦA, the pair

(ηG, ηX) : (GA)α y (XA)α → (GB)ηΦ(α) y (XB)ηΦ(α)

is a morphism of group actions.
Remarks:
If η is a regular morphism, it is clear that ηX preserves local frames and so is a morphism in the

weaker sense.
Composition of both types of morphism is defined in the obvious way and so one obtains categories

of global actions and morphisms and of global actions and regular morphisms.
It is perhaps necessary to underline the meaning of a morphism of group actions: if G y X and

H y Y are group actions of G on X and H on Y , respectively, a morphism from G y X to H y Y is a
pair (ϕ : G→ H,ψ : X → Y ) with ϕ a homomorphism and ψ a function such that for g ∈ G, x ∈ X,

ϕ(g).ψ(x) = ψ(g.x).

We need to note that, if x and x′ are in the same orbit of G y X then ψ(x) and ψ(x′) are in the same
orbit of H y Y .

2 Actions as groupoids and groupoid atlases.

If G y X is a group action then we can construct an action groupoid from it. (By a groupoid we mean
a small category in which every arrow is an isomorphism.)

Act(G,X) or G n X will denote the category with X as its set of objects and G × X as its set of
arrows. Given an arrow (g, x), its source is x and its target g.x. We write s(g, x) = x, t(g, x) = g.x and
represent this diagrammatically by

x
(g,x) // g.x .
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The composite of (g, x) and (g′, x′) is defined only if the target of (g, x) is the source of (g′, x′) so x′ = g.x,
then

x
(g,x) // g.x

(g′,gx)// g′gx

gives a composite (g′g, x). The identity at x is (1, x). The inverse of (g, x) is (g−1, gx), so G n X is a
groupoid.

Example
Let X = {0, 1}, G = C2 with the obvious action on X interchanging 0 and 1. If we write C2 = {1, c},

we have Obj(GnX) = X = {0, 1},

Arr(GnX) = {(1, 0) : 0 → 0, (1, 1) : 1 → 1, (c, 0) : 0 → 1, (c, 1) : 1 → 0}

Thus diagrammatically the groupoid is just

GnX := .
0::

(c,0)

** ·
1

(c,1)

jj dd

i.e. it is the groupoid often written as I, the unit interval.

Back to the general situation:
Suppose (ϕ,ψ) : G y X → H y Y is a morphism of group actions, then define a morphism of

groupoids by
ϕn ψ : GnX → H n Y
(ϕn ψ)(x) = ψ(x) on objects
(ϕn ψ)(g, x) = (ϕ(g), ψ(x)) on arrows.

We check:

s(ϕ(g), ψ(x)) = ψ(x) = ψ(s(g, x)),
t(ϕ(g), ψ(x)) = ϕ(g).ψ(x) = ψ(g, x)

= ψt(g, x).

so ϕn ψ preserves source and target. It also preserves identities and composition as is easily checked.
The “language” of group actions thus translates well into the language of groupoids. The notion of

an orbit of a group action becomes a connected component of a groupoid, so what is the analogue of a
global action? The translation is not difficult, but the obvious term “global groupoid” does not seem to
give the right intuition about the concept, so instead we will use the term “groupoid atlas”.

First a bit of notation: if G is a groupoid with object set X and X ′ ⊂ X is a subset of X then G�X′

will denote the groupoid with object set X ′ having

G�X′ (x, y) = G(x, y),

if x, y ∈ X ′ and with the same composition and identities as G, when this makes sense. This groupoid
G �X′ is the full sub-groupoid of G determined by the objects in X ′ or more simply, the
restriction of G to X ′.

Definition
A groupoid atlas A on a set XA consists of a family of groupoids (GA)α defined with object sets

(XA)α, which are subsets of XA. These local groupoids are indexed by an index set ΦA, called the
coordinate system of A, which is equipped with a reflexive relation, written ≤. This data is required
to satisfy:

(i) if α ≤ β in ΦA, then (XA)α ∩ (XA)β is a union of components of (GA)α,
i.e. if x ∈ (XA)α ∩ (XA)β and g ∈ (GA)α is such that s(g) = x, then t(g) ∈ (XA)α ∩ (XA)β ;

and
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(ii) if α ≤ β in ΦA, there is given a groupoid morphism

(GA)α�(XA)α∩(XA)β
// (GA)β�(XA)α∩(XA)β ,

which is the identity map on objects.

The notation we will use for this morphism will usually be ϕα
β but the more detailed (GA)α≤β may be

used where more precision is needed. As before we write |A| for XA, the underlying set of A.
A morphism of groupoid atlases comes in several strengths as with the special case of global actions.
A local frame in a groupoid atlas, A, is a set {x0, · · · , xp} in a connected component of some (GA)α,

i.e. there is some α ∈ ΦA, x0, · · · , xp ∈ (XA)α and arrows gi : x0 → xi, i = 1, · · · , p.
A function f : |A| → |B| supports a weak morphism structure if it preserves local frames. Similar

comments apply to those made above about morphisms of global actions.
The stronger form of morphism of groupoid atlases will just be called a (strong) morphism.
A strong morphism η : A→ B of groupoid atlases is a pair (ηΦ, ηg) satisfying the following

−ηΦ : ΦA → ΦB is a relation preserving function;
−ηG : GA → (GB)ηΦ is a (generalised) natural transformation of diagrams of groupoids over the function
ηΦ.

To illustrate the difference between global actions and groupoid atlases, we consider some simple
examples.

Example 1
Let X = {0, 1, 2}, G = C3 = {1, a, a2} (and of course a3 = 1), the cyclic group of order 3, acting by

a.0 = 1, a.1 = 2, on X. This gives us C3 nX with 9 arrows. We set B = C3 nX as groupoid or C3 y X
as C3-set. We also have the example A = C2 n {0, 1} = I considered earlier.

Both A and B will be considered initially as global actions having ΦA and ΦB a single element.
Any function f : {0, 1} → {0, 1, 2} supports the structure of a morphism of global actions since the

only non-trivial frame in A is based on the set x0 = 0, x = 1 and this must get mapped to a frame in B,
since any non-empty subset of X is a frame in B. On the other hand, a regular morphism η : A → B
must contain the information on a group homomorphism

ηG : C2 → C3

which must, of course, be trivial. Hence the only regular morphism η must map all of A to a single point
in B. There are thus 9 morphisms from A to B, but only 3 regular morphisms. The regular morphisms
are very rigid.

Remark
It is not always the case that there are fewer regular morphisms than (general) morphisms. If A is

a global action with one point and a group acting on that point and B is similar with group H, there
is only one general morphism from A to B, but the set of regular morphism is ‘the same as’ the set of
group homomorphisms from G to H.

Example 1 continued
Now consider A and B as groupoid atlases. The element (c, 0) : 0 → 1 in the single groupoid

determining A, must be sent to some arrow in B. The inverse of (c, 0) is (c, 1), so as soon as a morphism,
ηG is specified on (c, 0), it is determined on (c, 1) since ηG(c, 1) = (ηG(c, 0))−1. Thus if we pick an arrow
in B, say,

(a2, 0) : 0 → 2,

we can define a morphism
ηG : A→ B

by specifying ηG(c, 0) = (a2, 0), so ηG(0) = 0, ηG(1) = 2, etc. In other words the fact that A uses an
action by C2 and B by C3 does not inhibit the existence of morphisms from A to B. Any morphism of
global actions from A to B in this case will support the structure of a morphism of the corresponding
groupoid atlases, yet the extra structure of a “regularity condition” is supported in this latter setting.
Of course the relationship between morphisms of global actions and morphisms of the corresponding
groupoid atlases can be expected to be more subtle in general.
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Problem/Question 1
If A and B are global actions and f : A → B is a morphism, does f support the structure of a

morphism of the corresponding groupoid atlases?
In general the answer would seem to be ‘no’, since, if A is a global action with ΦA = {a, b : a ≤ b} with

both Xa and Xb singlepoints, and B is similar but with ΦA discrete, then the general morphism which
corresponds to the identity does not support the structure of a (strong) morphism of the corresponding
groupoid atlases because of the need for a relation function η : ΦA → ΦB . Refining the question therefore,
suppose we have a general morphism of global actions together with a relation preserving function between
the coordinate systems, which is compatible with the morphism. In that case the question is related to
the following question about groupoids:
if we have two groupoids A and B and a function f from the objects of A to the objects of B and which
sends connected components of A to connected components of B, what obstructions are there for there
to exist a functor F from A to B such that F restricted to the objects is the given f?

Clearly any global action determines a corresponding groupoid atlas as we have used above. As there
are morphisms of action groupoids that do not come from regular morphisms of actions, the groupoid
morphisms give a new notion of morphism of global actions. Similarly one can ask: are there “useful”
groupoid atlases other than those coming from global actions? The answer is most definitely: yes.

Example 2
Let X be a set. It is well known that any equivalence relation R on X determines a groupoid with

object set X. We will denote this groupoid by R as well. It is specified by

R(x, y) =

{
{(x, y)} if xRy
∅ if x is not related to y.

Now suppose R1, · · · , Rn are a family of equivalence relations on X. Then define A to have coordinate
system

ΦA = {1, · · · , n} with discrete ≤

and (GA)i = Ri. This gives a groupoid atlas that will not in general be one from a global action, at least
not in a natural unique way.

Example 3
Let G be a group, X a G-set and R an equivalence relation on X. Let Φ = {1, 2}, with ≤ still

to be specified. Take G1 = G n X, G2 = R and X1 = X2 = X. Assume we have a groupoid atlas
structure with this as partial data. If ≤ is discrete, there is no interaction between the two structures
and no compatibility requirement. If 1 ≤ 2, each G-orbit is contained in an equivalence class with
ϕ1

2(x, g) = (x, gx), i.e. the G-orbit structure is finer than the partition into equivalence classes. If 2 ≤ 1,
the partition is finer than the orbit structure (the connected components of the groupoid G1) and if xRy
then there is some gx,y ∈ G such that gx,yx = y.

This last case is closely related to a useful construction on global actions.

Example 4
Let A = (XA, GA,ΦA) be a global action. Let α ∈ ΦA and (GA)α y (XA)α be the corresponding

action. Set Rα to be the equivalence relation determined by the (GA)α-action. Thus xRαx
′ if and only

if there is some g ∈ (GA)α with gx = x′. Of course the partition of (XA)α into Rα-equivalence classes
is exactly that given by the (GA)α-orbits (or the (GA)α-components where (GA)α is the corresponding
groupoid).

If α ≤ β then the compatibility conditions are satisfied between Rα and Rβ making (XA, RA,ΦA)
with RA = {Rα : α ∈ ΦA} into a groupoid atlas which will be denoted Equiv(A).

The functions (GA)α → Rα mapping the groupoid of the (GA)α-action to the corresponding equiva-
lence relation yield a natural transformation of groupoid diagrams and hence a strong morphism

A→ Equiv(A)

with obvious universal properties. Of course the same construction works if A is an arbitrary groupoid
atlas, that is, one not necessarily arising from a global action. The result gives a left adjoint to the
inclusion of the full subcategory of atlases of equivalence relations into that of groupoid atlases. The
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usefulness of this construction is another reason for extending our view beyond global actions to include
groupoid atlases. The notion of morphism of global actions, f : A→ B, translates to the notion of strong
morphism, f : Equiv(A) → Equiv(B) of the corresponding groupoid atlases, at least for examples with
finite orbits.

The Line.
We have seen that the simple action with G = C2, X = {0, 1} gives the groupoid I (also sometimes

written [1] as it is the groupoid version of the 1-simplex). We want an analogue of a line so as to describe
paths and loops. The line, L, is obtained by placing infinitely many copies of I end to end. It is a
global action, but, as the morphisms that give paths in a global action, A, will need to be non-regular
morphisms in general, it is often expedient to think of it as a groupoid atlas.

The set, |L|, of points of L is Z, the set of integers; ΦL = Z ∪ {�}, where � is an element satisfying
� < n for all n ∈ Z, and otherwise the relation ≤ is equality. (Thus � ≤ �, for all n ∈ Z, � < n and
n ≤ n, but that gives all related pairs.) If n ∈ ΦL, (XL)n = {n, n+ 1}, whilst (XL)� = |L| itself.

The groupoid (GL)n is a copy of I, whilst (GL)� is discrete with trivial vertex groups.
The underlying structure of L rests firmly on the locally finite simplicial complex structure of the

ordinary real line. There the (abstract) simplicial complex structure is given by:

Vertices = Z, the set of integers;
Set of 1-simplices = {{n, n+ 1} : n ∈ Z}, the set of adjacent pairs in Z.

We will see shortly that there is a close link between simplicial complexes and this context of global
actions/ groupoid atlases.

3 Curves, paths and connected components

Suppose A is a global action or more generally a groupoid atlas. A curve in A is simply a (weak) morphism

f : L→ A

where L is the line groupoid atlas introduced above.
This implies that f : |L| → |A| is a function so that local frames are preserved. In L the local frames

are simply the adjacent pairs {n, n+ 1} and the singleton sets {n}. Thus the condition that f : L → A
be a path is that the sequence of points

· · · , f(n), f(n+ 1), · · ·

is such that for each n, there is a β ∈ ΦA and gβ : f(n) → f(n+ 1) in (GA)β . (If you prefer global action
notation gβ ∈ (GA)β and gβf(n) = f(n+ 1).)

Note that f does not specify β and gβ , merely requiring their existence. This observation leads to a
notion of a strong curve in A which is a morphism of groupoid atlases

f : L→ A

so for each n one gets a β ∈ ΦA, β = ηΦ(n) and ηG : GL → (GA)ηΦ is a natural transformation of groupoid
diagrams. This condition only amounts to specifying ηG(n,L) = g : f(n) → f(n + 1), but this time the
data is part of the specification of the curve. We can thus write a strong curve as (· · · , f(n), gn, f(n +
1), · · · ), that is a sequence of points of |A| together with locally defined arrows

gn : f(n) → f(n+ 1)

in the chosen local groupoid (GA)β . Changing the β or the gn changes the morphism. We will later see
the rôle of strong curves, strong paths, etc.

A (free) path in A will be a curve that stabilises to a constant value on both its left and right ends.
More precisely it is a curve f : L→ A such that there are integers N− ≤ N+ with the property that

for all n ≤ N−, f(n) = f(N−);
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for all n ≥ N+, f(n) = f(N+).

We will call (N−, N+) a stabilisation pair for f .
A “based path” can be defined if A has a distinguished base point. This occurs naturally in such cases

as A = Gln(R) or A = A(G,H) for H a family of subgroups of a group G, but is also defined abstractly
by adding the specification of the chosen base point explicitly to the data. This situation is well known
from topology where a notation such as (A, a0) would be used. We will adopt similar conventions.

If (A, a0) is based groupoid atlas, a based path in (A, a0) is a free path that stabilises to a0 on the
left, i.e., in the notation above, f(N−) = a0.

A loop in (A, a0) is a based path that stabilises to a0 on both the left and the right so f(N−) =
f(N+) = a0.

The analogue in this setting of concepts such as “connected component” should now be clear. We say
that points p and q of A, a global action or groupoid atlas, are free path equivalent if there is a free
path in A which stabilises to p on the left and to q on the right.

Clearly free path equivalence is reflexive. It is also symmetric since if gn : f(n) → f(n+ 1) in a local
patch then g−1

n : f(n + 1) → f(n). Once a free path from p to q has reached q (i.e. has stabilised at q)
then it can be concatenated with a path from q to r, say, hence free path equivalence is also transitive.
The equivalence classes for free path equivalence will be called connected components, with π0(A)
denoting the set of connected components of A. If A has just one connected compent then it is said
to be connected.

Examples

1. The prime and motivating example is the set of connected components π0Gln(R) of the general
linear global action.

Suppose x, y ∈ Gln(R). Suppose f : L→ Gln(R) is a free path from x to y, so there are N− ≤ N+

as above with

if n ≤ N−, f(n) = f(N−) = x,

if n ≥ N+, f(n) = f(N+) = y.

For each i ∈ [N−, N+], there is some local arrow

gi : f(n) → f(i+ 1)

and since Gln(R) is a global action, this means there is some αi ∈ Φ and εi ∈ Gln(R)αi
such that

εif(i) = f(i + 1). (The specification of f gives the existence of such an εi but does not actually
specify which of possibly many εis to take, so we choose one. The choice will make no difference.)
We thus have

εN+εN+−1 · · · εN−x = y.

If En(R) is the subgroup of elementary matrices of Gln(R), this is the subgroup generated by all
the Gln(R)α for α ∈ Φ and so if x and y are free path equivalent

y ∈ En(R)x,

i.e., x and y are in the same right coset of En(R).

Conversely if y ∈ En(R)x, there is an element ε ∈ EN (R) such that y = εx, but ε can be written
(in possibly many ways) as a product of elementary matrices

ε = εN · · · ε1

with εi = Gln(R)αi , say. Then defining

f : L→ Gln(R)

by

f(n) =


x n ≤ 0
εn · · · ε1x 1 ≤ n ≤ N

y n ≥ N

9



gives a free path from x to y in Gln(R).

Thus π0(Gln(R)) = Gln(R)/En(R), the set of right cosets of Gln(R) modulo elementary matrices.
This is, of course, the algebraic K-group K1(n,R) if R is a commutative ring.

We can naturally ask the question: ‘is K2(n,R) ∼= π1(Gln(R))?’ even if we have not yet defined
the righthand side of this.

Note the use of the strong rather than the weak version of paths would not change the resulting π0.

2. Suppose A = A(G,H). Can one calculate π0(A)? A similar argument to that in 1 above shows
that if x, y ∈ |A| = |G|, then they are free path equivalent if and only if there are indices αi ∈ Φ
and elements hαi

∈ Hαi
, such that

hαn
· · ·hα0x = y

for some n. Thus writing 〈H〉 = 〈Hi : i ∈ Φ〉 for the subgroup of G generated by the family
H = {Hi : i ∈ Φ}, we clearly have

π0(A(G,H)) = G/〈H〉.

Again the question arises as to π1(A(G,H)): what is it and what does it tell us?

4 Conclusion

In such a short paper we can not do more than scratch the surface of the theory. A much more
extensive set of notes is in preparation with a preliminary version available, (see preprint 99.27 at
www.informatics.bangor.ac.uk/public/mathematics/research/preprints/99/algtop99.html).
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