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Abstract

We give here some examples of non pointed protomodular categories
C satisfying a property similar to the property of representation of actions
which holds for the pointed protomodular category Gp of groups : any
slice category of Gp, any category of groupoids with a fixed set of objects,
any essentially affine category. This property gives rise to an internal
construction of the center of any object X, and consequently to a specific
characterization of the abelian objects in C.

The motivations of this work are detailed in the announcement of the Charles
Ehresmann’s birthday Meeting [7].

1 Action groupoid.

From now on we shall consider a protomodular category C [5], see also [1] where
the fundamentals on this notion are collected. An internal groupoid Z• in C
will be presented (see [4]) as a reflexive graph endowed with an operation ζ2:

R2[z0]

R(ζ2)

��z2 //

z0
//

z1 // R[z0]

ζ2 //

z0
//

z1 // Z1

z1 //

z0
//
Z0

s0oo

making the previous diagram satisfy all the simplicial identities (including the
ones involving the degeneracies), where R[z0] is the kernel equivalence relation
of the map z0. In the set theoretical context, this operation ζ2 associates the
composite g.f−1 with any pair (f, g) of arrows with same domain. Actually,
when the category C is protomodular, and thus Mal’cev, we can even truncate
this diagram at level 2 [9].

Definition 1.1. An object X in C is said action representative, or to have an
action groupoid, when there is an internal groupoid D•(X):

R[d0]
δ2 //

d0

//
d1 // D1(X)

d1 //

d0

//
D(X)

s0oo
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endowed with a canonical discrete fibration j : ∇X → D•(X) :

R[p0]

R(j̃)
��

δ2 //

p0
//

p1 // X ×X

j̃
��

p1 //

p0
// X

j
��

s0oo

R[d0]
δ2 //

d0

//
d1 // D1(X)

d1 //

d0

//
D(X)

s0oo

where ∇X is the indiscrete equivalence relation associated with X, satisfying
the following property : given any other internal groupoid Z• endowed with a
discrete fibration k• = (k0, k1) : ∇X → Z•, there is a unique internal functor
ǩ• = (ǩ0, ǩ1) : Z• → D• such that ǩ•.k• = j•. The category C is said to be
action representative when any object X has an action groupoid.

This implies that ǩ• is itself a discrete fibration (C being protomodular).
When C = Gp, this action groupoid is just the internal groupoid associated
with the canonical crossed module X → AutX. In the pointed protomodular
case many examples are given in [3] and [2]. We have moreover :

Proposition 1.1. Let C be an action representative protomodular category.
Then the category C∗ of pointed objects in C is still action representative, and
then any object in C∗ has a split extension classifier [2].

Proof. The category C∗ is nothing but the coslice category 1\C of maps with
domain the terminal object. It has the same underlying products and pullbacks
as C. So it is straitforward that if (X, e), e : 1 → X is an object in C∗, we have
D(X, e) = (D(X), j.e) and D1(X, e) = (D1(X), s0.j.e).

Remark. The same result holds for any coslice category Y \C.

2 Slice categories in pointed case.

Suppose now C is an action representative pointed protomodular category. The
slice categories C/Y are no longer pointed.

Proposition 2.1. When C is an action representative pointed protomodular
category, the slice categories C/Y are still action representative. For any h :
Y ′ → Y , the change of base functor h∗ : C/Y → C/Y ′ preserves the action
groupoids.

Proof. Let f : X → Y be an object of C/Y . Consider the following diagram
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where K is the kernel of f :

K ×K //R(k) //

p1
��

p0
��

R[f ]
ǩ1 //

f1
��

f0
��

D1(K)
d1��d0 ��

K //
k

//

��

X

f
��

ǩ

// D(K)

0 //
αY

// Y

Then the upper left hand side part of this diagram determines a discrete fibration
and thus produces the internal functor ǩ• (actually a discrete fibration). Whence
the following diagram in C/Y :

R[f ]
(ǩ1,f.f0)//

f1

��
f0

��

D1(K)× Y

d1×Y
��

d0×Y
��

X

f ��8
88

88
8 (ǩ,f)

// D(K)× Y

pY||yy
yy

yy
y

Y

This is a discrete fibration since the composite with the projection towards
D•(K) is the discrete fibration ǩ•. We claim that the internal groupoid in C/Y
on the right is the action groupoid of the object f , the equivalence relation R[f ]
being, in the category C/Y , the indiscrete equivalence relation associated with
this object f . The second point of the statement comes from the fact that the
image h∗(f) of the object f in C/Y by the change of base functor h∗ has the
same kernel K (in C) as f .

We thus get the following :

Corollary 2.1. Let C be an action representative pointed protomodular cate-
gory; and π : PtC → C [5] the associated fibration of pointed objects. Then
its fibers are action representative and its change of base functors preserve the
action groupoids and the split extension classifiers.

Proof. The fiber PtY C above Y is nothing but the category (C/Y )∗ of points
of C/Y (in other words : split epimorphisms with codomain Y ). Then by
Propositions 2.1 nad 1.1, it is action representative. The change of base functors
are given by pullbacks, so, by Proposition 2.1, they preserve the action groupoids
and consequently the split extension classifiers which are part of this structure,
see [2].
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3 The fibers of the fibration ()0 : Grd → Set.

Let Set and Grd be respectively the categories of sets and groupoids, and ()0 :
Grd → Set the forgetful functor associating the object of objects Z0 with any
groupoid Z•. This functor is a fibration whose fiber above the singleton 1 is
nothing but the category Gp of groups which is action representative. On the
other hand, any fiber GrdX above a set X is protomodular [5] and clearly non
pointed. We are going to show that it is still action representative. This fiber
has an initial object ∆X, namely the discrete equivalence relation on X, and
a final object ∇X the indiscrete equivalence relation on X. For any groupoid
Z• in GrdX , we shall need the subgroupoid defined by the following pullback in
GrdX (namely the subgroupoid of endomaps of Z•):

AutZ• // //

��

Z•

��
∆X // // ∇X

Let Z• be a groupoid such that Z0 = X. We shall denote by Z(x, x′) the
set of arrows from x to x′. Its action groupoid in GrdX , if ever it exists, must
be an internal groupoid in GrdX , which is nothing but a 2-groupoid with X as
object of objects. Let us denote by D(Z•) the groupoid whose object of objects
is X, and arrows φ : x→ x′ are the group isomorphisms φ : Z(x, x) → z(x′, x′).
There is a canonical bijective on objects functor j• : Z• → D(Z•) : given a map
f : x → x′ in Z• its image j(f) : x → x′ in D(Z•) is the group isomorphism
j(f) : Z(x, x) → z(x′, x′) given by j(f)(α) = f.α.f−1 , ∀α ∈ Z(x, x), i.e. such
that the following diagram commutes in the groupoid Z•:

x
f //

α
��

x′

j(f)(α)
��

x
f

// x′

This groupoid D(Z•) is actually underlying a 2-groupoid. A 2-cell ν : φ⇒ ψ is
given by a map ν ∈ Z(x′, x′) such that ∀α ∈ Z(x, x) we have ψ(α) = ν.φ(α).ν−1.
The ”vertical” composition is given by the composition in Z•, the ”horizontal”
one :

x

φ //

ψ
//

⇓ ν x′

φ′ //

ψ′
//

⇓ ν′ x′′ 7−→ x

φ′.φ //

ψ′.ψ

//
⇓ ν′.ν x′′

is defined by ν′.ν = ψ′(ν).ν′(= ν′.φ′(ν)). Accordingly, we define the groupoid
D1(Z•) as the groupoid whose object of objects is X, and arrows x → x′ are
the pairs (φ, ν), with φ : x → x′ an arrow of D(Z•) and ν ∈ z(x′, x′). The
composition is defined by (φ′, ν′).(φ, ν) = (φ′.φ, ν′.φ′(ν)). The bijective on
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objects functors di : D1(Z•) → D(Z•) are defined by d0(φ, ν) = φ and d1(φ, ν) =
ψ with ψ(α) = ν.α.ν−1. We have also a bijective on objects functor :

j̃• : Z• ×X Z• → D1(Z•)

where Z• ×X Z• denotes the product in the fiber GrdX , which is defined by
j̃(f, g) = (j(f), g.f−1), for any parallel pair of arrows (f, g) : x ⇒ x′ in Z•.
Whence the following commutative diagram which actually is underlying a dis-
crete fibration in GrdX :

R[p0]

R(j̃•)
��

p2 //

p0
//

p1 // Z• ×X Z•

j̃•
��

p1 //

p0
//
Z•

j•
��

s0oo

R[d0]
δ2 //

d0

//
d1 // D1(Z•)

d1 //

d0

//
D(Z•)

s0oo

Remark. Actually the definition of the lower groupoid depends uniquely on
AutZ•. The only comparison j depends on Z•. This observation will be essential
for the proof of the uniqueness in the following proposition:

Proposition 3.1. The diagram above determines the lower groupoid as the
action 2-groupoid D•(Z•) associated with the groupoid Z• in the protomodular
fiber GrdX . Accordingly the fibers GrdX are action representative.

Proof. Suppose we are given a discrete fibration in GrdX :

R[p0]

R(k•,1)
��

p2 //

p0
//

p1 // Z• ×X Z•

k•,1

��

p1 //

p0
//
Z•

k•,0

��

s0oo

R[w0]
w2 //

w0
//

w1 // W•,1

w1 //

w0
//
W•,0

s0oo

The fact that this is a fibration means that any 2-cell in the 2-groupoid W• :

x

k(f) //

h
//

⇓ ν x′

determines a unique arrow g : x → x′ in the groupoid Z• such that k(g) = h.
In particular any 2-cell in W•:

x

1x //

h
//

⇓ ν x
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produces a unique arrow g : x→ x in the groupoid Z• such that k(g) = h. We
must now define a 2-functor:

R[w0]

R(ǩ•,1)
��

w2 //

w0
//

w1 // W•,1

ǩ•,1
��

w1 //

w0
//
W•,0

ǩ•,0
��

s0oo

R[d0]
δ2 //

d0

//
d1 // D1(Z•)

d1 //

d0

//
D(Z•)

s0oo

Let h : x → x′ be an arrow in W•; let us define ǩ(h) : Z(x, x) → Z(x′, x′).
So consider α : x → x in Z•. We have a 2-cell k(1x, α) in W•. Consider the
following diagram:

x

1x //

k(α)
//

h

��

⇓ k(1x, α) x

h

��
x′

1x′ //

h.k(α).h−1
//

⇓ h.k(1x, α).h−1 x′

Then there is a unique arrow ǩ(h)(α) : x′ → x′ in Z• such that k(ǩ(h)(α)) =
h.k(α).h−1. The unicity of this map assures that ǩ(h) is a group homomorphism,
and the last equation that ǩ•,0.k•,0 = j•. It is easy to check that the construction
ǩ• : W•,0 → D(Z•) is functorial.

We must now extend ǩ to the 2-cells. So let ν : h ⇒ h′ be a 2-cell in W•.
Then ν.h−1 : 1x′ ⇒ h′.h−1 is a 2-cell in W• which determines a unique map
ν̌ : x′ → x′ in Z• such that k(ν̌) = h′.h−1. We define ǩ(ν) as the 2-cell (ǩ(h), ν̌)
in D(Z•). This completes the 2-functor ǩ•,• we were looking for.

To prove the unicity of this factorization, let us look at the following diagram:

R[p0]

��

p2 //

p0
//

p1 // AutZ• ×X AutZ•

��

p1 //

p0
//
AutZ•

��

s0oo

R[p0]

R(k•,1)
��

p2 //

p0
//

p1 // Z• ×X Z•

k•,1

��

p1 //

p0
//
Z•

k•,0

��

s0oo

R[w0]

R(ǩ•,1)
��

w2 //

w0
//

w1 // W•,1

ǩ•,1
��

w1 //

w0
//
W•,0

ǩ•,0
��

s0oo

R[d0]
δ2 //

d0

//
d1 // D1(Z•)

d1 //

d0

//
D(Z•)

s0oo

The upper part of this diagram produced from the inclusion AutZ• � Z• is
actually a discrete fibration. Moreover, as we noticed in the previous remark
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the lower 2-groupoid is also the action 2-groupoid associated with AutZ•. So
the unicity of the factoriation ǩ• can be equally checked from AutZ•. This is
relatively easy, since AutZ• is nothing but a family of ordinary groups.

Remark. As in any protomodular category, there is, in the fibers GrdX , an
intrinsic notion of normal subobject which is explicited in [6] (Theorem 3). The
normal subobjects are closely related to the action groupoids, see [2]. Let us
quickly mention here, that a subgroupoid V• � Z• in GrdX is normal if and
only if, given any map f : x → x′ in Z• the restriction of the isomorphism
j(f) : Z(x, x) → Z(x′, x′) to V (x, x) takes its values in V (x′, x′).

4 Action groupoid and centrality.

In any protomodular category C, there is an intrinsic notion of abelian objects,
see for instance [8] or [1]. The existence of action groupoids allows us to measure
the obstruction to abelianity:

Proposition 4.1. Suppose the object X in C admits an action groupoid. The
kernel relation R[j] of the map j : X → D(X) is the centre of X, i.e. the
greatest central equivalence relation on X.

Proof. Recall that an equivalence relation (r0, r1) : R ⇒ X on X is central when
there is a ”connector” between the equivalence realtion R and ∇X , which is a
map p : R ×X → X, satisfying internally the Mal’cev equations p(x, y, y) = x
and p(x, x, y) = y, see [8]. Now let us consider the following diagram:

R[j̃]

R(p0)
��

R(p1)
��

p0
//

p1 //
X ×X
p0

��

j̃ //

p1

��

D1(X)

d0
��

d1
��

R[j]
p0

//
p1 //

X
j

// D(X)

Since the downward right hand side square is a pullback (as a part of a discrete
fibration), the downward left hand side squares are pullbacks, R[j̃] is isomorphic
then to R ×X and consequently the map p0.R(p1) : R[j̃] → X is a connector.
This make R[j] central.

If R is another central relation, the connector p makes the following central
squares commute and determine internal functors:

X ×X
s0×X //

p0

��
p1

��

R×X
pR

��
(p,pX)

��

(r0,p)
//

r1×X//
X ×X
p0

��
p1

��

j̃ // D1(X)

d0
��

d1
��

X s0
// R

r0
//

r1 //
X

j
// D(X)
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On the other hand, the dotted arrows on the left determine a discrete fibration,
while the composition by s0 (resp. by s0 ×X) equalizes the horizontal arrows.
Accordingly both maps j.r0 and j.r1 are the classifier of this dotted discrete
fibration, and are consequently equal. Accordingly R ≤ R[j].

In this way we obtain a characterization of abelian objects in C, where,
classically an object is called abelian when the indiscrete equivalence relation
∇X is central:

Corollary 4.1. Let the object X have an action groupoid. Then the following
conditions are equivalent:
1) the object X is abelian in C
2) d0 = d1 (in other words the action groupoid D•(X) is absolutely disconnected)

Proof. Suppose X abelian. Then its centre is the coarse relation ∇X , and
according to the previous proposition R[j] = ∇X . It is the case if and only if
j.p0 = j.p1 : X ×X ⇒ X → D(X). Now, considering the following diagram:

X ×X
p0

��

j̃ //

p1

��

D1(X)

d0
��

d1
��

X
j

// D(X)

we have always di.j̃ = pi.j. So that X is abelian if and only if d0.j̃ = d1.j̃. But
the pair (s0, j̃) is jointly strongly epic. Since d0 and d1 are clearly equalized by
s0, this last equality holds if and only if d0 = d1.

5 Essentially affine categories.

A category C is essentially affine [5] when it admits pullbacks of split epimor-
phisms, pushouts of split monomorphisms and is such that, given any commu-
tative square of split epimorphisms:

X
u //

f
��

X ′

f ′

��
Y v

//

s

OO

Y ′

s′

OO

the downward square is a pullback if and only if the upward square is a pushout.
A pointed finitely complete category C is essentially affine if and only if it is
additive. The slice categories of any finitely complete category are essentially
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affine. On the other hand, any essentially affine category is necessarily pro-
tomodular and Naturally Mal’cev in the sense of [10]. In the protomodular
context, this last condition exactly means that any object is abelian.

We showed in [2] that when the category C is additive, then, for each object
X, the action groupoid structure is nothing but the canonical (internal) abelian
group structure on X, namely:

X ×X
d //

p0
//

p1 // X τX

// 0
αXoo

where d = p1 − p0. In the same order of ideas, we have:

Proposition 5.1. Any essentially affine category C with a terminal object 1 is
action representative.

Proof. Given any object X let us consider the following pushout of the split
monomorphism s0 along the terminal map:

X ×X d //

p0
��

p1
��

X̄

��
X //

s0

OO

1

e

OO

The object X̄ being pointed by e (and abelian), it is canonically endowed with
an internal (abelian) group structure, and the map d determines an internal
functor d• : ∇X → X̄. Moreover the downward squares are pullbacks and this
functor is a dicrete fibration. Let us show that this dicrete fibration makes the
group strucure on X̄ be the action groupoid of X. So consider any other discrete
fibration k•:

X ×X
d //

k1

//

p0

��
p1

��

W1
ǩ1

//

w0

��
w1

��

X̄

��
X

k0

//

OO

W0 τ
//

OO

1

e

OO

We must explicit a unique dotted factorization. Clearly ǩ0 is the terminal map
τ . Since k• is a discrete fibration, the downward left hand side squares are
pullbacks, and consequently the upward left hand side square is a pushout.
Accordingly there is a unique map ǩ1 such that ǩ1.k1 = d and ǩ1.s0 = e.τ .
It is easy to check that this diagram is actually underlying an internal functor
ǩ• : W• → X̄.
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