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Université de Louvain, Belgium, borceux@math.ucl.ac.be

Abstract

La notion de jet au sens d’Ehresmann est rappelée et il est ob-
servé que l’axiome de Kock–Lawvere de la géométrie différentielle
synthétique revient essentiellement à assurer la représentabilité du
foncteur jets.

Let us make our life easy and let us consider first a surface V in the three
dimensional real space R

3: a sphere, a cylinder, a torus, whatever you like.
Provided the equation (of whatever type) of that surface is sufficiently differen-
tiable, all of us know how to define the tangent plane to V at some point P ∈ V .
This tangent plane is some plane in R

3, which “touches soflty” V at the point
P , a property that we can express precisely in terms of derivatives. Of course,
the tangent plane at P does not live in the surface V : it lives outside of it, in
the surrounding space R

3.
So, the tangent plane to the surface is something that we describe a pri-

ori using the embedding of the 2-dimensional surface V in the 3-dimensional
surrounding space R

3. But the development of modern differential geometry
has rapidly led to consider surfaces as objects “existing on their own” and not
necessarily as subsets of some space R

n. For example, all of us have studied
the projective plane P2(R) and certainly, we consider it as a very decent and
interesting two-dimensional space. But I am sure that very few of us have ever
considered the possible presentation of the projective plane as – for example –
a 2-dimensional surface embedded in the six dimensional space R

6. The pro-
jective plane exists by itself, is worth to be studied for itself, independently of
whatever more or less natural or artificial embedding in some space R

n. All of
us agree on this.

In modern differential geometry, a surface is thus simply a space which, lo-
cally, looks like a piece of the ordinary plane R

2. More precisely, a 2-dimensional
manifold – or a presentation of it – is a topological space V provided with an
open covering V =

⋃

i∈I Vi, and for each piece Vi of that covering, a homeomor-
phism

ϕi : Vi
qqq
qqq
qqq
qqq
qq
qq
qq

qqqqqqqqqqqqqqqqqq Ui ⊆ R
2

∗I thank F.W. Lawvere and A. Kock for their suggestions while I was preparing this text.
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where Ui is now an open subset of the plane R
2. For example, the sphere can be

reconstructed by deforming two open discs of the real plane and glueing them
together along some neighbourhood of the equator. The “quality of this glueing”
is known as the class of differentiability of the manifold. More precisely, given
two pieces Vi and Vj of the covering, we get a composite function

R
2 ⊇ Ui ⊇ ϕi(Vi ∩ Vj)

ϕ−1

i
qq
qqq
qqq
qqq
qqq
qq
qq

qqqqqqqqqqqqqqqqqq Vi ∩ Vj

ϕj
qq
qqq
qqq
qqq
qqq
qq
qq

qqqqqqqqqqqqqqqqqq ϕj(Vi ∩ Vj) ⊆ Uj ⊆ R
2;

when all these “transitions functions” are k times continuously differentiable,
the manifold V is said to be of class Ck. In this note, I shall only consider
manifolds of class C∞. In an analogous way, switching back to the open subsets
Ui ⊆ R

2, one defines the class of differentiability of a function f : V qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq W
between two manifolds – and again in this note, I shall only be interested in
functions of class C∞.

Of course, in what has just been said, there is no problem at all to replace
the open subsets of R

2 by open subsets of R
n, for an arbitrary integer n 6= 0: one

obtains in that way the notion of n-dimensional manifold. The 1-dimensional
manifolds are simply called curves and as already indicated, the 2-dimensional
manifolds are called surfaces.

All right! But now that surfaces are defined on their own, not via an embed-
ding in some surrounding space R

n, we have lost the notion of tangent plane,
which should precisely be a plane of R

n, somewhere “outside the surface”. In
fact, the problem is much richer than that. Let us come back to the case of an
ordinary surface embedded in R

3. The tangent plane varies when we pass from
one point to another one and the way this tangent plane varies gives us very
important information concerning the shape of the surface. In fact, all the tan-
gent planes to the surface can be glued together to produce now a 4-dimensional
manifold which gives us full information on the way the tangent plane varies
from one point to another one, and thus gives us a lot of interesting information
on the shape of the surface. This is the so-called tangent bundle of the surface.

All that is nice, but we are still faced with the question: what is the tangent
plane at a point P of a surface V , if the surface is defined as a 2-dimensional
manifold, independently of any embedding in some surrounding space R

n? Well,
in the classical case of a surface embedded in R

3, the tangent plane at P is the
set of all tangent vectors to V at P . Clearly, every tangent vector to V is also
the tangent vector to some curve on V , passing through the point P . But of
course, different curves on V through P can have the same tangent vector at P .
A tangent vector to V at P can thus be defined as an equivalence class of curves
on V passing through P : it suffices to declare two curves equivalent when they
have the same tangent vector at P . Good idea . . . except that this definition
does not make any sense since it uses the notion of tangent vector at P to define
the notion of tangent vector at P !

But this difficulty is very easy to overcome. Two curves defined on the
surface have the same tangent vector at P precisely when their Taylor develop-
ments at P coincide at the order one. So declare equivalent two curves through
P on V which admit the same Taylor development limited at the order 1: the
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equivalence classes for that equivalence relation are in bijection with the tan-
gent vectors to V at P . Thus formally, a tangent vector can be defined as being
such an equivalence class. Elementary isn’t it? Yes, like the egg of Christopher
Columbus! But this is the egg – or more precisely the jet – of Charles Ehres-
mann. In the early ’50s, Charles Ehresmann introduced the notion of r-jet
between two manifolds; the case in which I am mainly interested here is that of
a 1-jet. Let me thus explain this general notion of jet in the case of a manifold,
independently of any embedding in some space R

n.
First, a special case. Consider two functions of class C∞

f, g : R
n

qq
qq
qq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq

qq
qqq
qq
qq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq

R
m

defined on a neighbourhood of a point P ∈ R
n. The functions f and g are called

1-equivalent at P when their Taylor developments at P , limited at the order 1,
are equal. That is

f(P ) = g(P ),
∂fi

∂xj

(P ) =
∂gi

∂xj

(P ) i = 1, . . . , m, j = 1, . . . , n.

This is clearly an equivalence relation and a corresponding equivalence class of
C∞-functions is called a 1-jet at P . Why this prefix 1? Simply because we
have used a Taylor development limited at the order 1: limiting the Taylor
development at the order r yields the notion of r-jet.

Let us now switch to the general case and consider two C∞-functions

f, g : V qq
qq
qqq
qqq
qqq
qqq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qqq
qqq
qqq
qqq
qq

qqqqqqqqqqqqqqqqqq

W

between two C∞-manifolds of respective dimensions n and m. Suppose furhter
that these two functions f , g coincide at some point P ∈ V :

f(P ) = Q = g(P ) ∈ W .

In the presentations of V and W as manifolds, let us choose open neighbour-
hoods V of P and W of Q, homeomorphic to open subsets U ⊆ R

n and U ′ ⊆ R
m.

The following composites are correctly defined on some sufficiently small neigh-
bourhood of ϕ(P )

R
n ⊇ U

ϕ−1

qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq V
f

qq
qqq
qqq
qqq
qq
qqq
qq

qqqqqqqqqqqqqqqqqq

qqq
qqq
qqq
qqq
qqq
qq
q

qqqqqqqqqqqqqqqqqq

g
W

ϕ′

qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq U ′ ⊆ R
m

and we say that f and g are 1-equivalent at P when this is the case of these two
composites, which are now C∞-functions from R

n to R
m. It is easily seen that

this definition is independent of the various choices which have been made.

A corresponding equivalence class of C∞-functions is called a 1-jet
from V to W, with domain P and target Q.

The definition of a tangent vector is now easy. The real line is trivially a
1-dimensional manifold and we define – or more precisely, Ehresmann defines –
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A tangent vector at a point P of a manifold V is a 1-jet from R to

V, with source 0 and target P .

Notice that somehow “dually”, one can consider the jets from V to R with
source P and target 0: they are called the covectors of the manifold and play a
very important role in the study of differential forms.

The notion of r-jet between manifolds, obtained thus when working with
Taylor developments limited at the order r, allows in particular a very elegant
and simple way to define the successive derivatives of a C∞-function between
manifolds and has been largely used by many authors, in particular by René
Thom and Andr Weil – for example to study the singularities of manifolds.

But let me switch now to the more recent idea of synthetic differential geom-
etry, which essentially assumes that the notion of jet is representable by some
adequate manifold. What does this “representability condition” intend to say?

There exists some manifold D and a point Q ∈ D, such that, for

every manifold V and every point P ∈ V, there is a natural bijection

between

• the 1-jets from D to V, with source Q and target P ;

• the C∞-functions f : D qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq V such that f(Q) = P .

Categorically, this expresses indeed the representabilty of the functor which
associates to a pointed manifold the set of its tangent vectors at the base point.

What is the idea hidden behind such a property? What could such a “rep-
resenting manifold D” possibly be? Well, when we study a jet

R qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq V

with source 0 and target P , the only thing which counts is what happens at the
neighbourhood of 0. And thus two functions giving rise to the same jet become
closer and closer when we consider smaller and smaller neighbourhoods of 0; as
one often says “they become infinitely close to each other when we restrict our
attention to infinitely small neighbourhoods of 0”. Intuitively – if these were
existing – the two functions would eventually become equal on the infinitesimal
real numbers, that is, on those numbers which are infinitely close to 0.

But is it possible to express in a rigorous way this idea of being “infinitesi-
mal”? Well, a 1-jet is defined via a Taylor development limited at the order 1.
Thus in particular, a 1-jet

[f ] : R qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq R

with source 0 and target 0 is also the jet corresponding to the function

R qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq R, t 7→ f(0) + tf ′(0) = tf ′(0).

Now look at the square of this jet, that is, the jet corresponding to the square
of that function

R qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq R, t 7→
(

tf ′(0)
)2

.
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This squared jet is simply 0, because the first two terms of its Taylor develop-
ment are 0. Thus the notion of jet provides us with a very natural and important
situation where definitely non-zero elements – the 1-jets from R to R with source
0 and target 0 – turn out to have zero squares. These 1-jets are nilpotents.

So if we take seriously the intuitive idea that a tangent vector at P ∈ V
should simply be a function

f : D qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq V

where D is the set of infinitesimal real numbers, we are forced to conclude that
in the case of 1-jets from R to R, with source 0 and target 0 as studied above,
we must necessarily have

(

tf ′(0
)2

= 0

for every infinitesimal number t ∈ D. Since this must be the case for every
C∞-function f , let us simply choose f(t) = t, the identity function, so that
f ′(t) = 1. This leaves us with the condition that necessarily, t2 = 0 for every
infinitesimal real number t ∈ D.

This is the idea of an infinitesimal number in synthetic differential geometry:
when a number is small, its square is even smaller; when a number is very very
small, its square becomes almost neglectable; and a number is infinitesimally
small when its square becomes equal to zero. Moreover, as we have seen, the
definition of a 1-jet forces two functions defining the same 1-jet to be equal
on these infinitesimal numbers, that is, to have the same Taylor development
limited at the order 1. In other words, every function must be linear on the set
of infinitesimals numbers. This is the so-called Kock-Lawvere axiom of synthetic
differential geometry.

There exists a ring R, containing the rational numbers, and such

that putting

D = {r ∈ R|r2 = 0},

every function f : D qq
qq
qqq
qqq
qqq
qqq
qq

qqqqqqqqqqqqqqqqqq R is linear, in a unique way:

∃!b ∈ R ∀t ∈ D f(t) = f(0) + tb.

Of course, the element b is called the derivative b = f ′(0) of f at 0. And the
elements of D are called the infinitesimals.

Does such an axiom really make sense? At a first look, not really. Simply
choose the function

f(t) =

{

0 if t = 0
1 if t 6= 0

and then trivially, the Kock–Lawvere axiom cannot hold, except if D = {0}. So
there are no infinitesimal numbers at all, except of course 0 itself. Moreover,
if the only infinitesimal number is 0, the uniqueness of b in the Kock–Lawvere
axiom forces the existence of a unique element in R: thus R itself is {0}. So
the whole idea of working with infinitesimals vanishes at once.
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But not quite! Because observe that in the trivial argument above, the
construction of the counter-example function f uses in an essential way the law
of excluded middle:

|= (t = 0) or (t 6= 0).

And it is well-known that there are very natural universes, particularly well
adapted to the study of geometry, whose internal logic does not satisfy the law
of excluded middle. Think of the Grothendieck toposes, of the categories of
sheaves, of the theory of schemes in algebraic geometry. In all these situations,
one no longer handles fixed objects, but – for example – objects which vary
continuously along the points of a topological space, like a sheaf of rings instead
of a single ring. And two varying elements of such varying objects can very well
be equal at the neighbourhood of some point of the space, but different at the
neighbourhood of another point. Thus, in the internal logic of such continuously
varying situations, the law of excluded middle no longer holds: two elements can
be equal from some local point of view, but different from another local point
of view. In such contexts, our counter-example to the Kock–Lawvere axiom
no longer holds . . . and certainly cannot be adapted, because there are very
important and natural situations where the Kock–Lawvere axiom holds!

Let me sketch such an example. A ring is a set A provided with some
operations, like

+: A2
qq
qq
qqq
qqq
qqq
qqq
qq

qqqqqqqqqqqqqqqqqq A, − : A1
qq
qq
qqq
qqq
qqq
qqq
qq

qqqqqqqqqqqqqqqqqq A, × : A2
qq
qq
qqq
qqq
qqq
qqq
qq

qqqqqqqqqqqqqqqqqq A.

Analogously, a C∞-algebra is a set A provided with an operation

τf : An
qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq A

for every n ∈ N and every C∞-function f : R
n

qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq R; the axioms for the opera-
tions τf are all the equalities valid between C∞-funtions on R. One defines easily
a Grothendieck topology on the category A of finitely presentable C∞-algebras
– or more precisely, on its dual – and one works now in the topos of sheaves on
this site. Among all the sheaves, we have a very trivial one: the sheaf whose
value at a point A ∈ A is simply the algebra A itself.

R(A) = A.

This is easily seen to be a sheaf of rings, that is, a ring which varies “continu-
ously” along the objects of the site A. This sheaf admits the more sophisticated
description

R(A) = Hom
(

C∞(R, R), A
)

∼= A.

Via this description, it is now easy to compute that the corresponding subsheaf
of infinitesimals

D = {r ∈ R|r2 = 0},

at some point A ∈ A, is simply given by

D(A) = Hom
(

C∞(R, R)/x2, A
)

∼= {a ∈ A|a2 = 0}.
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The quotient by x2 is thus the classical external operation which, interpreted in
the internal logic of our sheaves, yields the nilpotent elements of R. And that
ring R satisfies the Kock–Lawvere axiom, in an even stronger form that what I
have explained above, a form which is reminiscent of the notion of Weil algebra.

But there is much more than that! In the presence of the Kock–Lawvere
axiom, one can develop synthetic differential geometry, that is, a differential
geometry based on the consideration of these elements t such that t2 = 0, the
so-called infinitesimals.

Given an arbitrary object M in our universe, we can consider the object MD

of all functions from D to M , which we think thus as the “tangent vectors to
M”. This set MD, together with the natural projection

π : MD
qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq M, π(v) = v(0)

is called the tangent bundle of M . The “fibre” of this bundle at a point P ∈ M

πP (M) = {v ∈ MD|π(v) = P} = {v : D → M |v(0) = P}

is called the tangent space to M at the point P .
Being a synthetic manifold – also called an infinitesimally linear object – is

now defined in terms of the properties of the tangent bundle. Of course, the
product of two infinitesimals is an infinitesimal

t2 = 0 and s2 = 0 ⇒ (ts)2 = 0

but in general, there is no reason to have also ts = 0. Let us put

D2 =
{

(t, s) ∈ D × D
∣

∣ts = 0
}

.

In D2, we find certainly the two axis and the two diagonals:

(t, 0) ∈ D2, (0, t) ∈ D2, (t, t) ∈ D2, (t,−t) ∈ D2.

More generally, one defines, for every n ∈ N

Dn =
{

(t1, . . . , tn) ∈ Dn
∣

∣t1 · t2 · · · tn = 0
}

.

We are now ready to define the synthetic manifolds:

An object M is a synthetic manifold when given tangent vectors at

a point P ∈ M
v1, . . . , vn ∈ πP (M)

there exists a unique function

f : Dn
qq
qq
qqq
qqq
qqq
qqq
qq

qqqqqqqqqqqqqqqqqq M

which for every index i, coincides with vi on the i-th axis.
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It follows then quite easily that the tangent space πP (M) is naturally provided
with the structure of an R-module: given two tangent vectors v, w ∈ πP (M) and
the corresponding function f : D2

qq
qq
qqq
qqq
qqq
qqq
qq

qqqqqqqqqqqqqqqqqq M given by the definition of a synthetic
manifold, the tangent vector v + w is defined as the composite

D ∆
qq
qqq
qqq
qqq
qq
qqq
qq

qqqqqqqqqqqqqqqqqq

qq
qqq
qqq
qqq
qq
qqq
qq

qqqqqqqqqqqqqqqqqq D2

f
qq
qqq
qqq
qqq
qq
qqq
qq

qqqqqqqqqqqqqqqqqq M

where ∆ indicates the first diagonal. This generalizes the classical fact that the
tangent space to a manifold is naturally provided with the structure of a real
vector space.

Most notions and results valid in classical differential geometry can now be
translated in this “synthetic” context and generally, the proofs become now very
intuitive and simple. For example, a vector field on M is, as you can expect, a
section of the tangent bundle: in synthetic differential geometry, this becomes
simply a function

σ : M qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq MD

such that π ◦ σ = idM . And so on.
But a very striking result is the fact that most intuitive proofs, in terms

of infinitesimals, constitute also actual proofs of the corresponding classical
results in classical differential geometry. Why? Simply because there exists
a very good embedding of the category of paracompact C∞-manifolds in the
category of manifolds à la Kock–Lawvere, considered in the topos of sheaves
that I have indicated. This embedding preserves and reflects numerous notions
and properties concerning manifolds and thus, when a theorem using these
notions can be proved in synthetic differential geometry, it is automatically
also a theorem in classical differential geometry.

Synthetic differential geometry is thus somehow based on the fundamental
idea of a jet, due to Ehresmann, transposed in categorical terms in the conve-
nient context of topos theory. From differential geometry to category theory: a
slogan which also characterizes the mathematical career of Charles Ehresmann.
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