INTRODUCING ABSTRACT MATTER!

NILS A. BAAS

1. INTRODUCTION

In this paper we will introduce a new kind of structure which we will call
Abstract Matter (AM). It is an abstract mathematical structure which in many
ways will reflect and model the way in which matter — both organic and inor-
ganic - is being built. It is the starting point of a general theory of structure
and organization which will be useful in designing models and experiments of
how to synthesize various kinds of matter.

Abstract Matter is an extension and explication of our previous notion of a
hyperstructure for which we refer to [1 - 7]. In 1995 we introduced in [5, 6, 7]
the notion of Categorical Matter. This previous notion of Categorical Matter
is included in the new notion of Abstract Matter.

Hyperstructures were introduced as a framework to combine hierarchies,
higher order structures and emergence in a general way in order to include
example from physics, biology and other fields as well. In mathematics higher
order structures have mostly been studied in special forms in logic and set
theory. At the time we were developing the notion of hyperstructures, the
mathematical notion of higher categories (n-categories) was revived and a new
and very extensive development started [11, 13, 15, 16]. Our study and use
of higher categories in purely mathematical research [9] has been another mo-
tivation for introducing a somewhat more general and relaxed structure like
Abstract Matter.

What is the idea?

Any kind of complex system or structure is built up from some elementary
pieces and constructed layer by layer. The problem is to find a good frame-
work for describing this in a non-trivial way. In our opinion a good definition
is the clue to further progress in our understanding of such systems. In the
present approach we will emphasize the notion of bonds, interactions, relations
and relationship at one level and investigate how new levels and higher order
structures are being created. The next challenge is then to construct and de-
velop detailed examples of Hyperstructures, Abstract Matter and Dynamical
Hierarchies with the present definitions and framework as guidelines.

!The present paper is under revision and extension
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2. HYPERSTRUCTURES

We will here present a new version of hyperstructures and this will be done
in several steps.
Construction 1. We start with a set of objects Xy — our basic units.

To each subset
So C Xo
we assign a set of properties or states, £y(Sp), so
Qo : P(Xo) — Sets
where P(X) = {A|A C X} — the set of subsets — the power set, and Sets

denote a suitable set of sets. (In the language of category theory P(Xg) would
be considered as a category of subsets, Sets - some category of sets.)

Then we want to assign a set of bonds, relations, relationship or interactions
of each subset Sy — By(Sp) — depending on properties and states. In this
paper we will just call them bonds. Let us define

Lo = {(So,w0)[So € P(Xo), wo € Q0(So)}

BQ:FQ—> Sets

In our previous notion of hyperstructures the set Xg represents the systems
or agents (5;), Qo the observables (Obs), By the interactions (Int) and a specific
choice of by(So) € By(Sp) represents the resultant “bond” system giving rise to
the next level of objects — called R in previous papers, like S;, Obs, Int, see
[1-7].

In the case of categories there are no states and Sy consists of two ordered
elements (X,Y). The bond set B(Sp) = B(X,Y) is then the same as the set of
morphisms Mor(X,Y), see the Mathematical Appendix.

Now let us form the next level and define:

X1 = {bo’ bo € BQ(S(),WO), So € ?(Xo), wp € QQ(S())}

by definition the image set of By, and
X1
1 o
P(Xo)
mo(bo) = So

X represents the bonds of collections of elements or interactions in a dy-
namical context. But the bonds come along with the collection they bind like
morphisms in mathematics come along with sources and targets. Similarly at
this level we introduce properties and state spaces and sets of bonds as follows:



Ql ?(Xl) — Sets
I'y = {(S1,w1)|S1 € P(X1), w1 € 0 (S1)}

Bl : Fl — Sets

Then we form the next level set:

Xy = {bl‘bl < Bl(Sl,wl), 51 (S T(Xl), w1 € 91(51)}

and
Xo
L m
P(X1)
m1(b1) = S1.

We now continue iterating this procedure up to a general level NV:

Qn_q: T(XN_l) — Sets
By_1:T'ny_1 — Sets

XNy ={bn-1lbn—1 € Bn-1(Sn-1,wn-1), Sn—1 € P(XNn_1), wn—1 € Qy-1(Sn-1)}

This is not a recursive procedure since at each level new assignments take
place. The higher order bonds extend the notion of higher morphisms in higher
categories.

Let us write
x:{X(),‘-- 7XN}
Q={Q, -, _1}
B={By,---,By_1}

Further mathematical properties to be satisfied will be discussed elsewhere.

Definition: The system H = (X,,B) where the elements are related as
described, we call a hyperstructure of order N.

Construction 2.
In construction 1 we considered arbitrary subsets S;; C X; and assigned
Qi(Sj(i)) and Bj; to these. But in many situations one may want to consider
collections of special types of subsets like:

finite subsets

ordered subsets

simplicial subsets

families of indexed sets

ete.

Such collections may easily be obtained from the full subset collection by
bond-type structures. These bond-type structures we just suppress in order
not to make the construction too complicated and hiding the basic idea.



In conclusion we could pass from arbitrary subsets to collections of “struc-
tured” subsets:

and then define €; and B; on these.
This is just a useful refinement to be aware of.

Construction 3
There is another important extension of the fundamental idea in the previous
constructions.

The sets representing the objects of the various level were Xg, X1, -+, Xn.
The elements of these sets had no internal structure. However, we will see how
this situation fits into a more general construction scheme.

Let us be given a sequence of families of structure types.

8:807 817"' ,Sn:

The structure types could be of mathematical, physical, biological etc. type
depending on the context. Examples could be: categories, algebras, atoms,
molecules, cells, organisms, etc. The mathematical ones would include Bour-
baki’s structures and species of structures, see [12]. At this stage we will not
be more specific regarding structure types.

Extension:
The set Xy could be a set or family of structures of a type in the collection 8.
Furthermore Xy could also itself be organized into one of these structure
types. The property and state assignment (g may not just take values in sets,
but in sets with additional structure of type in 8¢ (for example categories).
However, the bond-assignment is lifting us up to a higher level where we
require that
By (S0, wo)

is of structural type in §;

X1 = {bo| bo € Bo(So,wp), So € P(Xo), wo € Q0(S0)}

is then a set of structures of type in 81 and may also itself be structured by one
of these types. We then continue in this way and end up with Xy of structure
type in Sy. In this way we obtain new structure types — hyperstructures of
order 1, 2,... and these may be added to the given structure types and hence
play a role in the further level constructions.

We include this in

Definition:
H=(X,Q,B,83)
we call a hyperstructure of order N and structure type 8.

This gives the design of the framework of hyperstructures, in essence it is
the architecture of general structure and organization. In addition there are
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mathematical and other context sensitive conditions to be satisfied. We will
return to this later.

Examples are hyperstructures in the old sense [1], higher categories (n-
categories, n-fold categories), multilevel systems like biological structures bound
together level by level — for example molecules, cells, tissues, organs, organ-
isms. More examples and details will be specified and given elsewhere, but we
will end with a geometric and topological example which illustrates the intuition
behind the present structure.

Example

In geometry and topology we consider a kind of generalized surfaces in ar-
bitrary dimensions called manifolds. These may be smooth and have various
additional structures. Among manifolds there is a very important notion of
cobordism:

Two manifolds A and B of dimension n are cobordant iff there exists an
(n + 1) dimensional manifold C such that

0C = A+ B, (disjoint union)

0 stands for boundary and we ignore orientation here. A and B may consist
of several components. C' is called a cobordism between A and B, and may
in our terminology be thought of as a bond of A + B or their components, see
Figure 1.

In this paper we are interested in structures of structures etc., so what about

cobordisms of cobordisms or more generally: bonds of bonds in their geometric
situation?

Let Cy be a bond (cobordism) between A; and B, and Cs correspondingly
between Ay and By. Then D is a bond of C and Cy iff

D = (C1 + Cy) U (Cy + Cy)

~

where U means glued together along common boundary: d(Cy +Cs) = 9(Cy +
C3) and D of dimension n 4 1, see Figure 2.

Furthermore a third order bond between D and Dy would be given by an
(n + 2) dimensional manifold E such that

OFE = (D) + D2) U (D + Dy)

etc, see Figure 3.
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In the framework we have introduced these geometric examples in the figures
correspond to:

X = { the set of circles in some high dimensional space}

no states, 2o = 0.
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So € P(Xp) means that Sy is a disjoint union of circles. by € B(Sp) is then
given by a surface having the circles of Sy as its boundary

X1 = {the set of surfaces with boundary equal the union of circles}
S1 € P(X)) is a disjoint union of such surfaces.

B1(5S1) is then given by a 3 dimensional manifold having the surfaces of Sy
as parts of its boundary, but possibly glued together along common boundaries
with additional parts - the Cs.

And in this way it goes on up to a desired dimension. If in addition we may
add states in the form of letting the €;’s take vector spaces (Hilbert spaces) as
values we enter the situation of topological quantum field theory which we will
not pursue here.

3. ABSTRACT MATTER

Our point of view is that hyperstructures represent an efficient and useful
way of describing the basic structure of complex matter — both organic and
inorganic, as well as other organizational structures. Let X be the set of ba-
sic elements, building blocks or agents in a certain context (the “atoms” or
“elementary particles” of the situation). Then we put

X =Xy
and proceed by developing a hyperstructure H(X) of order N.

Definition. A hyperstructure H(X) of order N on a basic set or structure X
is called a piece of Abstract Matter of order N.

We may have situations where at each level only some of the possible bonds,
states and properties are being taken into account or realized. Such a structure
we call a substructure or an instance of the actual hyperstructure H(X) — but
considered a piece of abstract matter. X may already have a structure like that
of a group, algebra, manifold, etc.

Abstract matter represent entities organized in a specific way. Intuitively
one may think of the bonds as forming a kind of “membranes” around the
entities they are binding. The higher bonds then form “membranes” around
the previously formed “membrane” systems taking into account acquired and
observed properties and states, see the following figure 1.



Figure 4.

Let us again emphasize here that we think of bonds representing: binding
mechanisms, interactions, relations, relationships, connections, etc. The point
is to find a framework for their higher order versions. Abstract Matter should
provide a useful modelling and simulation tool for a series of physical, chemical,
biological and social and economical systems. The basic idea being that they
are all governed by a bond-type structure as described in the definition of
hyperstructures. In addition one should also note that advanced technological
systems (cars, computers, etc.) are non-trivial higher order bond systems. But
the nature of the hyperstructures in the different examples will reflect their
special properties. The hyperstructures in physics will depend on the laws of
physics likewise in biology, etec. But in other Abstract Matter one may of course
introduce freely one’s favorite rules and laws.

4. DYNAMICS

In a hyperstructure H of order N the “global” type elements are represented
as bonds by in

Bn(Sn,wn)

and at each level we have families of bonds and states. These may also depend
on time:

bonds: by (t), - ,bi(t), -+, bo(t)
states: wy(t), - ,wi(t), - ,wolt).

When such time dependence is present, it gives rise to dynamics of hyper-
structures and abstract matter. Whether the dynamics is discrete or continuous
does not matter from the point of view of abstract matter, the principles are
the same. So we consider here the discrete case.

Definition.
A dynamics on a hyperstructure H with time dependent bonds and states is



given by families of rules

R ={R;}
where
bi(t) — bi(t +1)

Ry wi(t) — wi(t + 1)

in such a way that the change of bonds and states are compatible with the
general bond and state-structure (B and ). This is the basic principle for
updating the system. Even the rules could be organized as hyperstructures,
and hence be of AM-type, but we will not pursue this aspect here.

One will often search for abstract matter represented by stable equilibria
or fixed points, in other cases one may want periodic cycles to subsist in the
hyperstructure at one or several levels at the same time. General dynamical
systems of the input/output type may be considered as a kind of reactors (or
processes). The “reactors” may just be thought of as bonds between inputs
and outputs. In our setting of hyperstructures and abstract matter we are then
able to discuss higher order dynamics like reactors of reactors,...., processes of
processes,...., dynamics of dynamics......

Therefore in our view the ultimate notion of a Dynamical Hierarchy is a
hyperstructure with a dynamics. But hyperstructures are more profound than
hierarchies since the properties or states (Observer mechanisms) of lower levels
are determining factors of the higher levels and the emphasis is on bonds rather
than objects.

Our basic illustration and examples of dynamics in this paper is Higher Order
Cellular Automata in section 7, with a detailed discussion in [10].

5. DESIGN AND MODELLING

What is the purpose of general schemes like hyperstructures and abstract
matter? In mathematics, physics, chemistry, biology and many other sciences
one studies systems of great complexity and at several levels. In order to under-
stand, study and synthesize such systems it is important to have abstract models
exhibiting their essential features. This is precisely the purpose of hyperstruc-
tures and abstract matter, namely to provide a general construction and design
principle of models and synthetic systems, emphasizing the essential features.
This will facilitate computer simulations of real systems of complex matter like
new materials and biological structures. The idea is that extracting the basic
features of some systems and formalizing them in Abstract Matter one should
be able to make predictions about real matter.

In the artificial world or universe of Abstract Matter one can then freely
regulate the rules and laws. But also the laws, prescriptions, rules, processes,
programs, dynamics, etc. in these abstract worlds will in general be hyperstruc-
tural and hence pieces of Abstract Matter as well ! The idea is that all kinds
of matter and energy are in some way built up according to a hyperstructure
principle. Hence our world — both physical and mental — is governed by hy-
perstructures realized as Abstract Matter. The important thing is to identify
or introduce the relevant hyperstructures in order to manipulate both the real
and abstract worlds.
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In the picture of AM reactors production of AM may require AM descriptions
and processes. For example something analogous to the photosynthetic process
in biology — possibly in simplified form may be needed. Also genetic instruc-
tions in the genome and DNA should be viewed as AM and thought processes
and consciousness as “mental” AM. One may use DNA-type AM to code not
only for biological instructions, but general “materials”. The new “genome” in
this case being a piece of AM in the sense described.

When one describes the coustruction of a piece of AM, the description should
itself be a piece of AM — like DNA. This should then be put into a “seed” of
AM in order to produce the piece of AM in a reactor. Such production seeds
of AM generalize basically the genome.

The reactor needs AM building blocks and “energy” via rules and dynamics.
It seems like an interesting task via hyperstructured AM to give a “genetic”
production description (of AM type) of all kinds of materials and matter.

6. MATHEMATICAL ASPECTS

A mathematical theory of hyperstructure should be developed — a daunting
task. Hyperstructures extend n-categories, n-fold categories and multisimplicial
sets. For n-categories the general theory is now being rapidly developed and
applied both to mathematics and physics. This theory gives some indications
of where to go, but also totally new aspects appear in our context. Certainly
a calculus of bonds and their compositions should be developed specifying the
rules and equations or relations they should obey. The bond structure we have
introduced loosens up the morphism structure in higher categories and this may
give several advantages. One may for example study geometric bonds without
having sources and targets and this will be developed elsewhere. Geometric
glueing is important in geometric topology and may be considered as a bond
structure in our sense. The higher order glueing which is necessary in Topo-
logical Quantum Field Theory [11] is well taken care of in the hyperstructure
context, see the geometric example in 1.

In mathematics as in other fields it is important to have a framework for
forming totalities of totalities, etc. For example the totality of all surfaces of
a certain kind are parametrized or represented by points in another space —
commonly called the moduli space. This is a deep construction and the study
of moduli spaces is a profound piece of mathematics.

Hyperstructures actually do the same thing, forming totalities via bond struc-
tures and observed states and properties, which again are organized into new
totalities. A totality is a bond-mechanism of its constituents and vice versa.
From a mathematical point of view it is interesting to think of hyperstructures
as higher order moduli-structures. This means that we have a family of struc-
tures which we parametrize or organize into another kind of structure, a moduli
structure being a hyperstructure of order 1. Then different such structures may
again be parametrized or organized into another kind of structure, a second-
order moduli-structure which is then a hyperstructure of order 2. So this goes
on to moduli-structures of order N.
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In the same way as we introduced dynamics on hyperstructures we can now
introduce dynamics on higher order moduli structures. This seems quite inter-
esting looking at some examples coming from 2-level structures:

i) Dynamics of dynamics, correspond to “renormalization” in physics and
dynamics and the second order dynamics - renormalization - represent
interesting universal dynamics (Feigenbaum map, etc.)

ii) Renormalization flow on the “Space of quantum field theories”. Here
the fixed points are conformal field theories.

iii) In the subtle study of geometries of 3-manifolds all the Thurston-geometries
appear as flow fixed points [14].

This is just meant to illustrate the versatility of the hyperstructure idea, but
it also illustrates the idea of constructing AM with special desired properties
as for example fixed points of dynamics at a higher level.

In addition to develop a calculus of bonds one should classify hyperstructures,
study dynamics and their fixed points, cycles, attractors etc. There seems to
be an ocean of interesting unexplored territory.

7. HIGHER ORDER CELLULAR AUTOMATA

In [10] we introduce the notion Higher Order Cellular Automata along the
lines of hyperstructures. So this is a concrete example of this kind of higher
order structures. We carefully and detailly introduce second order cellular au-
tomata (2-CA). In 2-CA we “bind” cells to families of cells which we call organs.
In our terminology an organ is a bond structure of its cells. This means that By
picks out the subsets of cells (S) forming aggregates called organs. Therefore

Bo(S)={S} if S is an organ

and
By(S) = ¢ = the empty set if S is not an organ.

In the simplest case here 2(S) = ¢.

In the same way states bind to families of states, neighbourhoods to families
of neighbourhoods and rules to families of rules. These bonds or totalities then
represent the higher order notion. The dynamics involves all levels. 2-CA are
important examples of dynamical hierarchies.

Explicit examples are given in [10] and 2-CA show new and interesting dy-
namical behavior, and certainly deserve further attention. The same ideas
may easily be applied to more general graph-automata and network-dynamics.
We think that second order cellular automata (2-CA) and the development of
second order K-theory (2-K), see [9], are interesting mathematical examples
showing the potential for novelty in hyperstructure type constructions. Hence
we conclude in (10): Take your favorite concept and put 2 in front of it and see
what happens. If something new and interesting shows up, continue!
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8. HIGHER ORDER UNIVERSES

In science one often constructs various kinds of universes or worlds — real
or abstract — in order to study certain phenomena.

This could be universes of sets, categories, vector spaces, atoms, molecules,
cells, societies, etc. Often new situations arise when families of universes occur
(sets of sets, categories of categories, societies of societies, etc.). Then we are in
the setting of forming hyperstructures and Abstract Matter as described, and
they form second order universes, third order universes, etc. Also concepts lifts
from lower order universes to higher order universes.

Our general claim is that these new universes — when introduced correctly
— are useful and interesting objects of study bringing forward genuinely new
properties.

9. CONCLUSION

We have here introduced a revised form of hyperstructures more suitable for
both theory and applications. It clearly shows what in our opinion is the basic
structure of all types of dynamical hierarchies. This is just meant to be the
beginning of a vast new area of research, where already some examples show
profoundly new results. The notion of Abstract Matter should be useful in
performing computer experiments and simulations of many complex real world
systems. It gives a freedom and flexibility which is not present in ordinary
matter and hence more easy to manipulate for desired purposes. In addition it
is an ideal universe for creative experimentation and design.

Finally be aware of: outside any 1-world (or universe) there is a
2-world, a 3-world and an N-world and somewhere an co-world.
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