COMPLETELY COMPLETE VERY LONG TITLE

Carl GAUSS

Résumé. Dans cet article, nous étudions des racines primitives, et deux ou trois autres questions arithmétiques.
Abstract. In this article, we study primitive roots, and two or three problems in arithmetics.
Keywords. Your keywords come here.
Mathematics Subject Classification (2020). Your MSC numbers come here.

1. Introduction

In this paper, we prove that, for any prime $p \in \mathbb{N}$, the group of units in the quotient ring $\mathbb{Z} /(p)$ is cyclic. This is important in many aspects of number theory.

2. Primitive roots

We start with a definition.
Definition 2.1. Let $n \in \mathbb{N}$ be any non-zero number. We say that a number $a \in \mathbb{Z}$ is a primitive root modulo n when $a+(n) \in \mathbb{Z} /(n)$ is a generator for the group of units in the quotient ring $\mathbb{Z} /(n)$.

Our aim now is to show that, for any prime $p \in \mathbb{N}$, there exists a primitive root modulo p. We use a lemma, in which φ denotes the Euler phi function.

Lemma 2.2. Let G be a finite commutative group (written multiplicatively). Then G is cyclic if and only if, for each divisor d of $|G|$,

$$
\mid\{g \in G \mid g \text { is of order } d\} \mid \leq \varphi(d)
$$

Proof. Write $m=|G|$ and, whenever d divides $m, G_{d} \subseteq G$ for the set of elements of order d. By Lagrange's Theorem these form a partition of G :

$$
G=\bigcup_{d \mid m} G_{d}
$$

Counting on both sides shows that $m=\sum_{d \mid m}\left|G_{d}\right|$. If $\left|G_{d}\right| \leq \varphi(d)$ for each divisor d of m, then

$$
m=\sum_{d \mid m}\left|G_{d}\right| \leq \sum_{d \mid m} \varphi(d)=m
$$

by a well-known property of φ. Hence necessarily $\left|G_{d}\right|=\varphi(d)$ for each divisor d of m, thus in particular $\left|G_{m}\right|=\varphi(m) \neq 0$, saying precisely that G is cyclic.

The converse is left to the reader.
Without proof we mention the following.
Proposition 2.3. If G is a finite commutative group, and for every divisor d of $|G|$ we have that

$$
\left|\left\{g \in G \mid g^{d}=1\right\}\right| \leq d
$$

then G is cyclic.
We can now state our main result.
Theorem 2.4. For every prime $p \in \mathbb{N}$, the group $(\mathbb{Z} /(p))^{\times}$is cyclic.
Proof. The number of roots of the polynomial $X^{d}-1$, viewed as polynomial with coefficients in the field $\mathbb{Z} /(p)$, is less than or equal to d. The previous proposition applies to the group of units of this field.
Example 2.5. It is easy to verify that 2 is a primitive root modulo 11.
Remark 2.6. For more information on the lay-out of this article for the Cahiers, the official Guide to Authors can be found at the following address:
http://ehres.pagesperso-orange.fr/Cahiers/Ctgdc.htm.

References

[1] [C. F. Gauss, 1801] Disquisitiones Arithmeticae.

Carl Friedrich Gauss
Mathematisches Institut
University of Göttingen
Bunsenstrasse 3-5
37073 Göttingen (Germany)
my.email@server.univ.xy

