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A (MATHEMATICAL) TRIBUTE TO
RONNIE BROWN: 1935 – 2024

Tim Porter

Résumé. Une esquisse de la vie de Ronnie Brown ainsi que quelques aspects
importants de son œuvre et une liste de ses publications.
Abstract. We provide a sketch of the life of Ronnie Brown, presenting some
important aspects of his work and provide a list of his publications.
Keywords. Crossed complexes, ω-groupoids, topological groupoids, holon-
omy, monodromy, popularisation, teaching innovation.
Mathematics Subject Classification (2010). 18B40, 18F15, 18G99, 18N99,
55P99, . . .

Ronald (Ronnie) Brown, who was a prolific researcher and a frequent
contributor to the categorical and topological literature, died on 5 December
2024, aged 89. He was also well known as a populariser of mathematics and
an innovator in teaching the subject.

Ronnie Brown was born on 4 January 1935 to parents who were first
generation emigrés to the U. K. from Romania. Aged about six, he spent
some time in the USA, staying with family, whilst his father was in the army.
Coming back to the UK in 1944, his family moved around quite a bit, but,
eventually, Ronnie went to Alleyn’s School, Dulwich, London, where his
interest in mathematics was encouraged. He gained a place in New College,
Oxford, in 1953. In Oxford, he met Margaret, also a student of mathematics.
They married in 1958 and later had eight children.

After completing his undergraduate degree at Oxford, Ronnie started as a
postgraduate, again at Oxford, where his supervisor was Henry Whitehead.
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Professor Whitehead died suddenly in 1960 and Ronnie continued under
the supervision of Michael Barratt. His thesis title was ‘Some problems in
Algebraic Topology: A study of function spaces, function complexes and FD-
complexes’. The title shows several aspects of Ronnie’s research interest,
not only in algebraic topology, but also in what is now seen as part of the
categorical side of topology. That latter area was exemplified, from the start,
in the subject matter of his first two papers, [R1, R2], published in 1963
and 1964, which discussed properties of various topologies on products of
topological spaces, and the corresponding relationship with function spaces
and product topologies, especially with regard to the crucial ‘exponential
law’,

X(Y×Z) ∼= (XY )Z ,

for function spaces. Much later, when Ronnie was attending an international
category theory meeting1, he was surprised to discover that these, his first
two papers, were considered of foundational importance for a large area of
categorical topology, and also for the study of non-cartesian monoidal struc-
tures on categories.

At that time, (1959 - 1964), Ronnie was an Assistant Lecturer, and then
Lecturer, at Liverpool University. Slightly later, he became, from 1964 to
1970, a Senior Lecturer, then Reader, at the University of Hull. In 1968, he
published a text book, ‘Elements of Modern Topology’, [B1], which was to
become very influential, both in the teaching of the subject, and in the direc-
tion that Ronnie’s own research took subsequently. That book was revised
and updated twice over a period of years, as [B3] and [B4], yet its contents
and style, suitably evolved, still prove important for more recent generations.

It was while writing that book, and, as he said later, ‘to clarify certain
points relating to the calculation of the fundamental group of a circle’, that he
started taking an interest in groupoids. Significantly one of his two publica-
tions at this time, [R8], discussed the groupoid version of van Kampen’s the-
orem, which extended the classical form to unions of non-connected spaces,
and which allowed the direct calculation of the fundamental group of the
circle, and more. The proofs suggested to him there might be higher di-
mensional versions of that theorem and the search for those was one of the
themes of Ronnie’s research for the next nearly 20 years.

1I think it was in Amiens.
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In 1970, Ronnie moved to North Wales to take up the post of Professor
of Pure Mathematics at the then University College of North Wales, part of
the University of Wales. The family moved to Anglesey, to Benllech and to
a house just a short distance from the beach.

From 1974 onwards, Ronnie started exploring the topic of higher dimen-
sional analogues of the groupoid van Kampen’s theorem, working with Phil
Higgins, initially from King’s College London, later at Durham University.
This work also involved input from several postgraduate students, often in
crucial ways, and also from other collaborators such as Hans Baues, and later
Jean-Louis Loday. The main thrust of this research lasted over 20 years,
culminating in the book, [B5], with Phil Higgins and Rafael Sivera. This
collected up the interlocking theories related to the proofs of a higher di-
mensional form of van Kampen’s theorem, but also the interactions of those
new theories with other more classical themes. It also involved some ideas,
especially those around crossed modules and what became known as crossed
complexes, which had been developed by Henry Whitehead in the 1940s and
50s from ideas of both Whitehead and Reidemeister in the 1930s, but which
had mostly lain fallow in the intervening period. The strong connection with
Whitehead’s work only became clear as the collaboration with Higgins pro-
gressed. This linked the new Brown-Higgins theory into the vision of White-
head for an Algebraic Homotopy Theory.

At this point we should mention the highly influential paper, [R56], with
Marek Golasiński, in which a Quillen model category structure was specified
on the category of crossed complexes, as this started the exploration of the
link between a Whitehead-style algebraic homotopy theory and the theory
of model categories.

For Ronnie, there was a very interesting spin off from the study of crossed
modules and crossed complexes. With Johannes Huebschmann, [R35], he
examined pre-war work by Reidemeister and his student Peiffer on identi-
ties among relations in presentations of groups, pushing that theory forward
in several ways. These relied on a detailed analysis of the notion of free
crossed modules and their interaction with various concepts from combina-
torial group theory. It also used earlier work by Ronnie and Chris Spencer,
[R20] and [R21], giving the first published detailed proof of a theorem men-
tioned by Verdier and Grothendieck, which showed the link between internal
categories in the category of groups and crossed modules.
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As mentioned above, further collaboration, (1983-87), again within this
general area of ‘higher dimensional group theory’, occurred in collaboration
with Jean-Louis Loday, and centred on his models for homotopy n-types,
called catn−1-groups and crossed (n−1)-cubes of groups, which generalise
internal categories in groups, and crossed modules respectively. Via a van
Kampen style theorem for these models, the collaboration revealed a new
type of tensor product-like construction available when two (possibly non-
abelian) groups act on each other in a compatible way. This further lead
to work with Dave Johnson and Edmund Robertson, [R52], on more purely
group theoretic aspects of this theory, whilst work by Ronnie’s former re-
search student, Graham Ellis, and many others, pushed the theory forward,
linking it with several important areas of group theory.

One of the papers with Graham Ellis, [R55], explored higher dimen-
sional analogues of the famous Hopf formula, which gives an expression for
the second homology group of a group on being given a presentation of the
group. As with many of Ronnie’s papers, this has been very influential, lead-
ing to many developments, this time in categorical and ‘higher dimensional’
algebra. These continue today nearly 40 years later.

Although that area of ‘higher dimensional algebra’ was an important
theme of Ronnie’s research, from about 1975, he also continued to work2

on the theory and application of topological groupoids, extending ideas of
Charles Ehresmann and Jean Pradines and interacting with ideas on foli-
ations and orbifolds. Much of this later work focussed on the ideas of
Monodromy and Holonomy groupoids, interacting with Kirill MacKenzie
in Sheffield; see [R71], [R118], and [R145].

In 1982, Ronnie wrote a letter to Alexander Grothendieck, and this started
a very fruitful and amicable exchange of letters, [L], that lasted until 1991.
His motivation had been to ask Grothendieck about his interest in notions of
∞-groupoids and categories, as certain types of∞-groupoids corresponded
to crossed complexes. This motivated Grothendieck to follow up on some
ideas he had had some years earlier and to start on the famous set of typed
notes known as Pursuing Stacks, published in book form only in 2022, but
distributed from Bangor with Grothendieck’s permission, as a photocopy of

2with others, including ex-research students, Hardy, Aof, Mucuk and İçen; see the ref-
erences.

6



TIM PORTER RONNIE BROWN (1935-2024)

the original as Grothendieck wrote it.
The models for (some) homotopy types that Ronnie was putting for-

ward were strict∞-groupoids and categories, corresponding to crossed com-
plexes in one of their manifestations. They thus did not fully answer to all
the requirements of Grothendieck’s wider programme, which needed some
weaker form of ∞-groupoids to handle all homotopy types. None-the-less
this provided additional evidence of the importance of the Brown-Higgins
theory of what they now started referring to as nonabelian algebraic topol-
ogy, c.f. [B5]. This was seen as an intermediate stage between a classical
homological, and thus abelian, methodology and the vision of the theory
proposed by Grothendieck that aimed at modelling all homotopy types by
means of weak ∞-groupoids. The work of Ronnie with Jean-Louis Loday
also fitted into this overall perspective.

At about this same period, Ronnie was reminded of one of his earli-
est papers. In [R5], he had examined some methods introduced by Shih in
1962, for calculating with E. H. Brown’s notion of a twisted tensor prod-
uct that dated from 1959, and also the related results of Barratt, Gugenheim
and Moore from the same year. This was for examining the structure of the
homology of the total space of a fibration in terms of the homology of the
base and fibre of the fibration. Slightly later, in 1972, Gugenheim rediscov-
ered these results and the two papers together came to form the basis for
what is now called Homological Perturbation Theory. This has turned out to
be an important theoretical and computational tool, and with computational
input from Chris Wensley and Larry Lambe, Ronnie started on adapting var-
ious computer algebra packages with the aim of obtaining insight into the
structure of algebraic homotopical invariants and algebraic homotopy types
using methods from combinatorial group theory, and also from the theory of
Gröbner bases; see [R101, R113].

Although this is not exhaustive as a description of Ronnie’s research
interests, rather than continuing with more such, we will pause and leave
the reader to peruse the list of his research papers, noting how the various
themes, topological and categorical, theoretical and computational, inter-
twine and interact throughout his research. We will return to this later on, but
considering his impact on other aspects of the subject area, it would not be
correct to omit either his work in popularisation or on teaching innovation.
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Moreover these activities interacted with his research interests.
Ronnie’s involvement in the popularisation of mathematics is well known.

In about 1985, with a group of colleagues and with the assistance of local
schools in North West Wales, he initiated a series of Mathematical Master-
classes for Young People in the area, under the aegis of the Royal Institution
of Great Britain. This led to the development in Bangor of material that was
designed to be useful in some of those Masterclass sessions, and also to the
preparation of a set of exhibition boards on the theme of ‘Maths and Knots’
for use when giving talks in the masterclasses, and, increasingly, elsewhere;
see [PP3].

Very quickly, this project was to acquire another component. As Ron-
nie says in [PP1]: ‘One day in May 1985, I was walking down Albermarle
Street3 from a meeting on masterclasses at the Royal Institiution. As I passed
the Freeland Gallery, ... and with some time to spare, I decided to wander
inside, enticed by the sculptures of children and animals shown in the win-
dow. To my amazement I found also some strong and beautifully crafted knot
sculptures’. Thus started a collaboration and friendship between Ronnie and
the sculptor, John Robinson, and a widening out of the scope of his popular-
ising work on the theme of ‘How Mathematics gets into Knots’. This led to
Bangor’s involvement in the Pop Maths Roadshow, and in a pan-European
project on Raising Public Awareness of Mathematics for European National
Science Week, 2000. This involved lots of fun interaction with lots of inter-
esting people ... and a lot of thought and hard work!

Partly as a result of working with the younger students in the master-
classes, and with the general public through popular lectures and the exhi-
bition, Ronnie, with myself and others, started thinking about the context of
the mathematics that was being taught to our own students. We realised, for
instance, that even our own students were not really aware that new mathe-
matics was being discovered / created all the time, nor how that was done.
We felt ‘We should also popularise mathematics to (our own) students4’,
as an antidote to the pressures for undergraduate courses to become ‘a bare
skeleton of technicalities’, rather than an exciting endeavour involving hu-
man interaction. We thus developed a new type of course: ‘Mathematics in
Context’. The style was very informal and in [T3], we describe the reac-

3in central London
4from [T18]
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tion of the students. We discussed historical, cultural and scientific issues,
and got very good and interesting input and feedback from the students.
The course did evolve in the years that followed with use of some exter-
nal speakers, for instance from industry, and with colleagues describing and
discussing some of their research projects in talks at the level of ones for a
general educated audience. The sessions were very enjoyable and were, in
general, very well received by both the students and, when the assessment
was completed, by the external examiners for the degree.

The idea of adding ‘context’ explicitly into courses was addressed in
[T18], and interacted with discussions on the methodology of mathemat-
ics, which coalesced in published versions, for instance, [T6, T7, T11], and
[T20]. The multiple versions were due to requests from various sources to
republish the original paper in their own journals for local consumption, as
the originals had not always been that easy to find.

This emphasis on methodology and on making research more approach-
able started to feedback into Ronnie’s research. It meant that he had a very
clear idea on how to explain methodological ideas to non-mathematicians,
partially bridging the well known gap between a mathematical view and the
viewpoints of scientists from other branches of enquiry.

Running through Ronnie’s research, there are some themes that repeat,
and these also pervade other branches of science. One is the idea of ‘lo-
cal to global’, so how ‘local’ information about an object coalesces to give
global information. Another, which is almost the converse of that, was the
idea that ‘subdivision is an inverse to composition’. For Ronnie, the local to
global paradigm was exemplified by the various higher algebraic structures
that grew out of the quest for generalisations of van Kampen’s theorem, but
at the same time, how that worked involved a detailed analysis of cubical
subdivisions. The local to global aspect provided insights into various philo-
sophical and scientific questions, which were illustrative of the methodology
of mathematics, for example, abstraction, modelling geometric situations via
algebra, and the development of new concepts.

In discussions, he realised how these paradigmatic problems were im-
portant in other very interesting areas. In computer science, for instance, the
local to global problem interacted with ideas on concurrent computing in a
very geometric way, whilst ideas on ‘composition versus subdivision’ led to
discussions on modelling neuro-systems, and more general hierarchical sys-
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tems in biology and biocomputing. Philosophical / psychological contexts in
which the problems of abstraction and the refinement of concepts occurred,
also mirrored quite closely those encountered in mathematics. These dis-
cussions led to several papers involving Ray Paton, [R90, R111], of the
Biocomputing and Computational Biology group at Liverpool University.
This direction was cut short by Ray’s untimely death in 2002, but was taken
further with different emphasis in joint work with Jim Glazebrook and Ion
Baianu, for instance, [R116, R123, R126] or [R138].

Throughout his life as a research mathematician, Ronnie served in ed-
itorial roles for international journals. From 1975 to 1994, he was on the
editorial advisory board for the London Mathematical Society. He was a
founding member of the editorial board of Theory and Applications of Cat-
egories, then on the editorial board of Applied Categorical Structures. In
1999, he helped found the electronic journal, Homology, Homotopy and Ap-
plications and then, from 2006, was an editor for the Journal of Homotopy
and Related Structures. In 2016, a special volume of that journal was dedi-
cated to him and his work on the occasion of his 80th birthday.

Throughout his career, he supervised many postgraduate students, who
contributed greatly to the various research themes of interest at Bangor. In
all there were 24 such, as listed by the Mathematics Genealogy Project. With
many of these he developed long lasting collaborations as can be seen from
the publication list.

Ronnie retired from full time teaching in 1999, although he continued as
a half-time research professor until 2001. This, of course, did not reduce the
amount of time and effort he put into his research and in particular into the
preparation of the book, [B5], with Phil Higgins and Rafael Sivera, which re-
grouped the results from the long series of articles with Higgins, developing
their theory in a coherent way in one source. He also developed new collab-
orations as Coordinator for an INTAS funded project, ‘Algebraic K-theory,
groups and categories’, linking Bangor, with the University of Bielefeld, the
Georgian Mathematical Institute, the State Universities of Moscow and of St.
Petersburg, and the Steklov Institute, St. Petersburg. This involved research
visits to Bielefeld and visits of their team to Bangor.

In 2016, Ronnie was elected to Fellowship of the Learned Society of
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Wales and he was a lifelong member of the London Mathematical Society.

By about 1998, Ronnie had become hard of hearing on one side, and
during one of the visits to Bielefeld for discussions with Tony Bak, he suf-
fered from a severe loss of balance. On his return to North Wales, he was
diagnosed as having an acoustic neuroma, which is a non-cancerous growth
covering the acoustic nerve. He was treated for this in February 2000, and for
a time was feeling a bit better. He then began to suffer from double vision.
This was caused by some of the debris from the treatment of the neuroma.
This itself was treated in 2001, and he gradually recovered and continued to
work on his research projects.

Although he and Margaret had eight children, throughout his life he had
found time to play firstly table tennis, then later on squash and to go swim-
ming, both in the sea and in the lakes of North Wales. He also spent time
gardening, making home made beer, searching for mushrooms in season,
and exploring the region with the children when they were young.

On retirement, he and Margaret left Anglesey to move to Deganwy, near
Llandudno, still in North Wales, and to a house with a beautiful view west-
ward along the coast. They also had a small cottage for family reunions, and
went on several Mediterranean cruises, including one during which he was
roped in to explain some aspects of Greek mathematics! They both partici-
pated in the cultural life of the area.

Margaret died in 2020, and Ronnie’s mobility had become reduced after
a stroke. He was cared for by their eldest son, and enjoyed excursions using a
mobility scooter, including to see seals in a cove a short drive away from their
home, to visit a nature reserve on the Conwy estuary or the beautiful gardens
at Bodnant, a short distance south along the valley of the river Conwy. It
was after one of the visits to see the seals that he passed away peacefully,
but suddenly, at home in Deganwy, aged 89 years. He will be missed by his
seven surviving children, and his grandchildren.

Perhaps the last word should be left to his children who said that on
journeys, their father would often deviate from the main roads to “take the
scenic route” – sometimes getting lost in the process. But his attitude to life
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and, in particular, to mathematics was always “take the scenic route”. That
love of exploring ideas or places for their own sake permeated his life both
in his research career and in the teaching that he loved.
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WHEN A MATRIX CONDITION
IMPLIES THE MAL’TSEV

PROPERTY

Michael Hoefnagel and Pierre-Alain Jacqmin

Résumé. Les conditions matricielles étendent les conditions de Mal’tsev
linéaires de l’algèbre universelle aux propriétés d’exactitude en théorie des
catégories. Certaines peuvent être énoncées dans le contexte finiment com-
plet alors que, en général, elles peuvent être énoncées seulement pour les
catégories régulières. Nous étudions quand une telle condition matricielle im-
plique la propriété de Mal’tsev. Nos résultats principaux affirment que, pour
les deux types de matrices, cette implication est équivalente à l’implication
correspondante restreinte au contexte des variétés d’algèbres universelles.
Abstract. Matrix conditions extend linear Mal’tsev conditions from Univer-
sal Algebra to exactness properties in Category Theory. Some can be stated
in the finitely complete context while, in general, they can only be stated
for regular categories. We study when such a matrix condition implies the
Mal’tsev property. Our main results assert that, for both types of matrices,
this implication is equivalent to the corresponding implication restricted to
the context of varieties of universal algebras.
Keywords. Mal’tsev category, Mal’tsev condition, matrix property, cube
term, finitely complete category, regular category, essentially algebraic cate-
gory.
Mathematics Subject Classification (2020). 18E13, 08B05, 03C05, 18-08
(primary); 18A35, 18E08, 18C05, 08A55, 08C10 (secondary).
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Introduction
Given a simple extended matrix of variables

M =

 x11 · · · x1m y1
...

...
...

xn1 · · · xnm yn


where the xij’s and the yi’s are (not necessarily distinct) variables from
{x1, . . . , xk}, one can associate the following linear Mal’tsev condition (in
the sense of [34]) on a variety of universal algebras V: the algebraic theory
of V admits an m-ary term p such that, for each i ∈ {1, . . . , n}, the equation

p(xi1, . . . , xim) = yi

holds in V. As shown in [25], this Mal’tsev condition is equivalent to the
condition that, for each homomorphic n-ary relation R ⊆ An on an algebra
A of V, given any function f : {x1, . . . , xk} → A interpreting the variables
in A, the implication

 f(x11)
...

f(xn1)

 , . . . ,

 f(x1m)
...

f(xnm)


 ⊆ R =⇒

 f(y1)
...

f(yn)

 ∈ R

holds. While the above linear Mal’tsev condition does not make sense in
an arbitrary category, the above condition on relations can be stated in any
finitely complete category C using internal relations and generalized ele-
ments. If this condition is satisfied, we say that C has M -closed relations.

One of the most famous examples of such a condition is given by the
matrix

Mal =

[
x1 x2 x2 x1

x1 x1 x2 x2

]
.

A finitely complete category has Mal-closed relations if and only if it is a
Mal’tsev category [10], i.e., if and only if every binary internal relation is
difunctional in the sense of [33], which occurs if and only if every binary
reflexive internal relation is an equivalence relation. A variety V has Mal-
closed relations if and only if its theory admits a ternary operation p satisfy-
ing the axioms p(x1, x2, x2) = x1 and p(x1, x1, x2) = x2. Such varieties are
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characterized by the fact that the composition of congruences on any algebra
in V is commutative [28] and are also called 2-permutable varieties.

Another example of matrix condition is given by

Ari =

 x1 x2 x2 x1

x1 x1 x2 x2

x1 x2 x1 x1


where the notion of a finitely complete category with Ari-closed relations
extends to the finitely complete context the notion of an arithmetical category
in the sense of [30]. One can also mention

Maj =

 x1 x1 x2 x1

x1 x2 x1 x1

x2 x1 x1 x1


for which a finitely complete category has Maj-closed relations if and only
if it is a majority category in the sense of [13].

The paper [16] describes an algorithm to decide whether one matrix con-
dition implies another one in the finitely complete context, i.e., given two
simple extended matrices M1 and M2, whether each finitely complete cat-
egory with M1-closed relations has M2-closed relations, which we denote
by M1 ⇒lex M2. We have also shown that this algorithm cannot be used
in the varietal context. That is, the statement M1 ⇒lex M2 is in general
stronger than the statement that any variety with M1-closed relations has
M2-closed relations, which we abbreviate as M1 ⇒alg M2. Moreover, a
general algorithm to decide M1 ⇒alg M2 still does not exist. However, the
results of [29] can be used to extract an algorithm for some matrices M2,
including the Mal’tsev matrix Mal. Surprisingly, in the case M2 = Mal,
this algorithm reduces to the algorithm from [16] for M1 ⇒lex Mal. This
thus means that M1 ⇒lex Mal is equivalent to M1 ⇒alg Mal, which is quite
particular to the Mal’tsev matrix Mal. In that case, the algorithm to decide
whether M1 ⇒lex Mal reduces to find two (not necessarily distinct) rows of
M1 such that, when reducing M1 to those two rows, its right column can-
not be found among its left columns. The number of operations required by
this algorithm is bounded by a polynomial in the numbers of rows and of
columns of the matrix M1. In addition, using this algorithm and the results
of [16], we can show that, given a finite number of simple extended matrices
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M1, . . . ,Md, if each finitely complete category with Mi-closed relations for
all i ∈ {1, . . . , d} is a Mal’tsev category, then there exists i ∈ {1, . . . , d}
such that Mi ⇒lex Mal.

The linear Mal’tsev conditions arising from simple extended matrices
only have equations of the form

p(x1, . . . , xm) = y

but not of the form

p(x1, . . . , xm) = p′(x′
1, . . . , x

′
m′)

for (not necessarily distinct) variables x1, . . . , xm, x
′
1, . . . , x

′
m′ and y. In or-

der to take this second kind of equation into account, one needs to consider
(not necessarily simple) extended matrices of variables

M =

 x11 · · · x1m y11 · · · y1m′

...
...

...
...

xn1 · · · xnm yn1 · · · ynm′


as introduced in [27], where the xij’s are variables from {x1, . . . , xℓ} and
the yij’s are variables from {x1, . . . , xℓ, . . . , xk} (where k ⩾ ℓ). The linear
Mal’tsev condition on a variety V associated to such an M is: the algebraic
theory of V contains m-ary terms p1, . . . , pm′ and ℓ-ary terms q1, . . . , qk−ℓ

such that, for each i ∈ {1, . . . , n} and each j ∈ {1, . . . ,m′},

pj(xi1, . . . , xim) =

{
xa if yij = xa ∈ {x1, . . . , xℓ}
qa−ℓ(x1, . . . , xℓ) if yij = xa ∈ {xℓ+1, . . . , xk}

is an equation in the variables x1, . . . , xℓ that holds in the algebraic theory
of V. As shown in [27], this is equivalent to the condition that, for any ho-
momorphic n-ary relation R ⊆ An on an algebra A of V, given any function
f : {x1, . . . , xℓ} → A, the implication

 f(x11)
...

f(xn1)

 , . . . ,

 f(x1m)
...

f(xnm)


 ⊆ R

=⇒ ∃ g : {x1, . . . , xk} → A
extension of f |


 g(y11)

...
g(yn1)

 , . . . ,

 g(y1m′)
...

g(ynm′)


 ⊆ R
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holds. In view of the existential quantifier in the above formula, a natural
categorical context in which to extend this condition is the context of reg-
ular categories in the sense of [4]. In addition to the examples of matrix
properties mentioned above, one has now also the example of n-permutable
categories [8]. The exactness properties on a regular category being express-
ible by finite conjunctions of such matrix conditions have been semantically
characterized in [23].

Given two such extended matrices M1 and M2, a general algorithm to de-
cide whether each regular category with M1-closed relations has M2-closed
relations, denoted as M1 ⇒reg M2, is yet to be found. However, using the
embedding theorems from [18, 21], the statement M1 ⇒reg M2 is equiv-
alent (assuming the axiom of universes [3]) to the statement, denoted by
M1 ⇒reg ess alg M2, that any regular essentially algebraic category (in the
sense of [1, 2]) with M1-closed relations has M2-closed relations. Using this
equivalence and the results from [29], we could prove that, when M2 = Mal,
the statement M1 ⇒reg Mal is equivalent to the statement M1 ⇒alg Mal.

Our two main theorems, the first one stating the equivalence of M1 ⇒lex

Mal and M1 ⇒alg Mal for a simple extended matrix M1 and the second one
stating the equivalence of M1 ⇒reg Mal and M1 ⇒alg Mal for a (general)
extended matrix M1 are quite surprising and particular to the Mal’tsev case.
Indeed, as it is the general philosophy of the papers [18, 19, 20, 21, 22,
23, 24], to prove the validity of many statements about exactness properties,
one is often required to produce a proof in the essentially algebraic context
(and not just in the varietal context as it is the case in the present situation).
Actually, we prove these two theorems not only for the Mal’tsev matrix Mal,
but for the matrix Cuben for each n ⩾ 2, describing the Mal’tsev condition
of having an n-cube term [5]. The Mal’tsev case is then recovered in the
case n = 2.

Let us stress here the fact that our results are proved in the context of
‘non-pointed’ matrices, i.e., each entry in our matrices is a variable. This is
in contrast with, e.g., [15] where entries can also be the constant symbol ∗
representing the zero morphisms in a pointed category.

This paper is organized as follows. In Section 1, we recall the necessary
material from other papers. In particular, we explain the theory of matrix
conditions, in the finitely complete, regular and varietal contexts. We also
recall the algorithm from [16] to decide for an implication M1 ⇒lex M2 in
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the finitely complete context and conclude the section with a reminder on
essentially algebraic theories. Section 2 contains the main new results of
the paper and is divided in two parts. In the first one, we prove Theorem 2.4
which states that given a simple extended matrix M and an integer n ⩾ 2, the
statement M ⇒lex Cuben is equivalent to M ⇒alg Cuben. We also obtain an
easy algorithm to decide when these conditions hold. From this algorithm,
we deduce (Theorem 2.7) that a finite conjunction of conditions induced by
simple extended matrices implies the Mal’tsev property if and only if one
of these matrix conditions alone already implies the Mal’tsev property. The
second part of Section 2 deals with (general) extended matrices and we prove
that for such a matrix M and an integer n ⩾ 2, the statement M ⇒reg Cuben
is equivalent to M ⇒alg Cuben (see Theorem 2.8).
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1. Preliminaries
By a variety, we mean a one-sorted finitary variety of universal algebras.
By a regular category, we mean a regular category in the sense of [4], i.e.,
a finitely complete category with coequalizers of kernel pairs and pullback
stable regular epimorphisms. Regular categories have been introduced as
a context where finite limits and regular epimorphisms behave in a similar
way as finite limits and surjections behave in the category of sets. In par-
ticular, every variety is a regular category. By a pointed category, we mean
a category with a zero object, i.e., an object which is both terminal and ini-
tial. A variety is pointed if and only if its algebraic theory contains a unique
constant term.
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Let us fix throughout this paper an infinite sequence x1, x2, x3, . . . of
pairwise distinct variables.

Matrix conditions
Let us start by recalling the theory of matrix conditions on finitely complete
and regular categories as introduced in [25, 26, 27]. We only treat ‘non-
pointed’ matrices in this paper, in contrast with [15]. An extended matrix
M of variables (or simply an extended matrix for short) is given by integer
parameters n ⩾ 1, m ⩾ 0, m′ ⩾ 0 and k ⩾ ℓ ⩾ 0 and by a n × (m +m′)
matrix  x11 · · · x1m y11 · · · y1m′

...
...

...
...

xn1 · · · xnm yn1 · · · ynm′

 (1)

where the xij’s are (not necessarily distinct) variables from {x1, . . . , xℓ} and
the yij’s are (not necessarily distinct) variables from {x1, . . . , xℓ, . . . , xk}.
When the parameters n,m,m′, ℓ, k are clear from the context, we will omit
them and we will represent an extended matrix M just by its matrix part; this
will be the case when the conditions m+m′ > 0,

{xij | i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}} = {x1, . . . , xℓ}

and

{x1, . . . , xℓ} ∪ {yij | i ∈ {1, . . . , n}, j ∈ {1, . . . ,m′}} = {x1, . . . , xk}

are all satisfied. The first m columns of M will be called its left columns,
while its last m′ columns will be called its right columns. Given an object A
in a finitely complete category C, each variable x in {x1, . . . , xℓ} gives rise
to the corresponding projection xA : Aℓ → A from the ℓ-th power of A (and
similarly, each variable x in {x1, . . . , xk} gives rise to the corresponding
projection xA : Ak → A). Given such an extended matrix M , an n-ary
internal relation r : R ↣ An in a regular category C is said to be M -closed
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if, when we consider the pullbacks

P
f ′

//

��

f

��

Rm

��

rm

��

Aℓ  xA
11 ··· xA

1m...
...

xA
n1 ··· xA

nm


// (An)m

Q
g′

//

��

g

��

Rm′

��

rm
′

��

Ak 
yA11 ··· yA

1m′...
...

yAn1 ··· yA
nm′


// (An)m

′

and
T // h′

//

h

��

Q
��

g

��

Ak ∼= Aℓ × Ak−ℓ

π1=(xA
1 ,...,xA

ℓ )
��

P //

f
// Aℓ

then h is a regular epimorphism (or, in other words, f factors through the
image of π1g). We say that the regular category C has M -closed relations
if any internal n-ary relation r : R ↣ An in C is M -closed. If C = V is a
variety, an internal relation is a homomorphic relation. An n-ary homomor-
phic relation R ⊆ An on an algebra A is M -closed when, for each function
f : {x1, . . . , xℓ} → A such that

 f(x11)
...

f(xn1)

 , . . . ,

 f(x1m)
...

f(xnm)


 ⊆ R,

there exists an extension g : {x1, . . . , xk} → A of f (i.e., g(xi) = f(xi) for
each i ∈ {1, . . . , ℓ}) such that

 g(y11)
...

g(yn1)

 , . . . ,

 g(y1m′)
...

g(ynm′)


 ⊆ R.
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This description can be used to prove the following theorem characterizing
varieties with M -closed relations via a linear Mal’tsev condition.

Theorem 1.1 ([27]). Let M be an extended matrix as in (1). A variety V
has M -closed relations if and only if the algebraic theory of V contains
m-ary terms p1, . . . , pm′ and ℓ-ary terms q1, . . . , qk−ℓ such that, for each
i ∈ {1, . . . , n} and each j ∈ {1, . . . ,m′},

pj(xi1, . . . , xim) =

{
xa if yij = xa ∈ {x1, . . . , xℓ}
qa−ℓ(x1, . . . , xℓ) if yij = xa ∈ {xℓ+1, . . . , xk}

is a theorem of the algebraic theory of V in the variables x1, . . . , xℓ.

For such a matrix M , we will denote by VM the variety whose basic
operations are the m-ary terms p1, . . . , pm′ and the ℓ-ary terms q1, . . . , qk−ℓ

and whose axioms are the theorems described in Theorem 1.1. Obviously,
VM has M -closed relations.

Simple matrix conditions
An extended matrix M as above will be said to be simple when k = ℓ and
m′ = 1. We can display such a matrix M as x11 · · · x1m y1

...
...

...
xn1 · · · xnm yn

 (2)

where the xij’s and the yi’s are variables from {x1, . . . , xk}. In that case, the
notion of n-ary M -closed relations can be extended to the finitely complete
context as follows. An n-ary internal relation r : R ↣ An in a finitely
complete category C is said to be M -closed when, given any object B and
any function f : {x1, . . . , xk} → C(B,A) such that the induced morphism f(x1j)

...
f(xnj)

 : B → An
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factor through r for each j ∈ {1, . . . ,m}, then so does the morphism f(y1)
...

f(yn)

 : B → An.

For a simple extended matrix M , we say that the finitely complete category
C has M -closed relations when each internal n-ary relation r : R ↣ An

is M -closed. If C = V is a variety, a homomorphic relation R ⊆ An is
M -closed when, for each function f : {x1, . . . , xk} → A, the implication

 f(x11)
...

f(xn1)

 , . . . ,

 f(x1m)
...

f(xnm)


 ⊆ R =⇒

 f(y1)
...

f(yn)

 ∈ R

holds. Particularizing Theorem 1.1 to this simpler situation, one gets the
following.

Theorem 1.2 ([25]). Let M be a simple extended matrix as in (2). A variety
V has M -closed relations if and only if the algebraic theory of V contains
an m-ary term p such that, for each i ∈ {1, . . . , n},

p(xi1, . . . , xim) = yi

is a theorem of the algebraic theory of V in the variables x1, . . . , xk.

Before describing some examples of matrix conditions, let us introduce
some notation. We denote by lex (respectively by lex∗, reg, reg∗, alg and
alg∗) the collection of finitely complete categories (respectively of finitely
complete pointed categories, regular categories, regular pointed categories,
varieties and pointed varieties). The notation lex abbreviates ‘left exact cat-
egories’ which is another name for finitely complete categories. Given two
extended matrices M1 and M2 and a sub-collection C of reg (respectively,
two simple extended matrices M1 and M2 and a sub-collection C of lex), we
write M1 ⇒C M2 to mean that any category in C with M1-closed relations
has M2-closed relations. We write M1 ⇔C M2 for the conjunction of the
statements M1 ⇒C M2 and M2 ⇒C M1. We also write M1 ⇏C M2 for the
negation of the statement M1 ⇒C M2.
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Examples
Example 1.3. Let Mal be the simple extended matrix given by

Mal =

[
x1 x2 x2 x1

x1 x1 x2 x2

]
.

A finitely complete category has Mal-closed relations if and only if it is a
Mal’tsev category as introduced in [10] (and in [9] in the regular context).
A variety has Mal-closed relations if and only if its theory admits a Mal’tsev
term, i.e., if and only if it is 2-permutable [28]. We refer the reader to [6, 7]
for surveys on Mal’tsev categories.

Example 1.4. More generally, for any r ⩾ 2, let Permr be the extended
matrix given by

Permr =

[
x1 x2 x2 x1 x3 x4 · · · xr

x1 x1 x2 x3 x4 · · · xr x2

]
.

A regular category has Permr-closed relations if and only if it is an r-permut-
able category as introduced in [8], generalizing the notion of an r-permutable
variety.

Example 1.5. Let Ari be the simple extended matrix given by

Ari =

 x1 x2 x2 x1

x1 x1 x2 x2

x1 x2 x1 x1

 .

The notion of a finitely complete category with Ari-closed relations extends
to the finitely complete context the notions of an arithmetical category in
the sense of [30] and of an equivalence distributive Mal’tsev category in the
sense of [12]. A variety V has Ari-closed relations if and only if its theory
admits a Pixley term [32].

Example 1.6. Let Maj be the simple extended matrix given by

Maj =

 x1 x1 x2 x1

x1 x2 x1 x1

x2 x1 x1 x1

 .
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A finitely complete category has Maj-closed relations if and only if it is
a majority category as introduced in [13, 14]. A variety V is a majority
category if and only if its theory admits a majority term [31].

Example 1.7. For any n, k ⩾ 2, let Cuben,k be the simple extended matrix
with n rows, kn − 1 left columns, one right column and k = ℓ variables
defined by taking as left columns (ordered lexicographically) all possible n-
tuples of elements of {x1, . . . , xk} except (x1, . . . , x1), which is used as right
column. As we shall see below (see Corollary 2.3), for any n, k1, k2 ⩾ 2,
one has Cuben,k1 ⇔lex Cuben,k2 . In view of this, we abbreviate Cuben,2 by
Cuben. Up to permutation of left columns and change of variables, Cube2
is the matrix Mal from Example 1.3, and therefore, Cube2 ⇔lex Mal. The
matrix Cube3 is the matrix

Cube3 =

 x1 x1 x1 x2 x2 x2 x2 x1

x1 x2 x2 x1 x1 x2 x2 x1

x2 x1 x2 x1 x2 x1 x2 x1

 .

For n ⩾ 2, a variety has Cuben-closed relations if and only if its theory
admits an n-cube term in the sense of [5].

Example 1.8. For any n ⩾ 2, let Edgen be the simple extended matrix with
n rows, n+1 left columns, one right column and k = ℓ = 2 variables defined
by

Edgen =


x2 x2 x1 x1 · · · x1 x1

x2 x1 x2 x1 · · · x1 x1

x1 x1 x1 x2 · · · x1 x1
...

...
...

... . . . ...
...

x1 x1 x1 x1 · · · x2 x1


where the entries in positions (1, 1), (2, 1) and (i, i+1) for all i ∈ {1, . . . , n}
are x2’s and the other ones are x1’s. Up to permutation of left columns and
change of variables, Edge2 is the matrix Mal, and thus Edge2 ⇔lex Mal.
For a general n ⩾ 2, a variety has Edgen-closed relations if and only if
its theory admits an n-edge term in the sense of [5]. Therefore, as it is
shown in [5], one has Cuben ⇔alg Edgen. Using Proposition 1.7 of [26], we
know that Edgen ⇒lex Cuben. However, for a general n, the converse is not
true. For instance, from the computer-based results of [16], we can see that
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Cube3 ⇏lex Edge3. This is an additional example of the context dependency
of the implications between matrix properties.

The algorithm in the finitely complete context
Given two extended matrices M1 and M2, as far as we know, algorithms to
decide whether M1 ⇒reg M2 or whether M1 ⇒alg M2 do not exist yet. On
the contrary, in [16], an algorithm to decide whether M1 ⇒lex M2 for two
simple extended matrices M1 and M2 has been developed. Since we will
need it further, let us recall it here.

A simple extended matrix M is called trivial if any finitely complete
category with M -closed relations is a preorder (i.e., a category with whose
hom-sets contain at most one morphism). As examples, one can cite

T1 =
[
x2 x1

]
and T2 =

[
x2 x1 x1

x1 x2 x1

]
for which a finitely complete category has T1-closed relations if and only
if it has T2-closed relations, which occurs if and only if it is a preorder. In
addition, we have the example with zero left columns

T0 =
[

x1

]
for which a finitely complete category has T0-closed relations if and only if
each hom-set contains exactly one morphism, i.e., if and only if it is equiva-
lent to the terminal category.

In order to state the characterization of trivial matrices from [16], we
need the following notation, using the presentation of M as in (2). Given
i ∈ {1, . . . , n}, RMi

denotes the equivalence relation on the set {1, . . . ,m}
defined by j1RMi

j2 if and only if xij1 = xij2 . Given two equivalence re-
lations R and S on the same set, R ∨ S denotes the smallest equivalence
relation containing both R and S. Finally, we denote by Setop the dual of
the category Set of sets.

Theorem 1.9 ([16]). For a simple extended matrix M as in (2), the following
conditions are equivalent:

(a) M is not a trivial matrix.
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(b) Setop has M -closed relations.

(c) For all i, i′ ∈ {1, . . . , n}, there exist j, j′ ∈ {1, . . . ,m} such that
xij = yi, xi′j′ = yi′ and jRMi

∨RMi′
j′.

For instance, one can see that T2 from above is indeed a trivial matrix
by taking i = 1 and i′ = 2. In that case, both RMi

and RMi′
are the discrete

equivalence relation on {1, 2} and there exist no j, j′ ∈ {1, 2} such that
x1j = x1, x2j′ = x1 and jRM1 ∨ RM2j

′ (i.e. j = j′). On the other hand, one
can see that the matrix Mal from Example 1.3 is not trivial by case analysis
on all i, i′ ∈ {1, 2}. If i = 1 and i′ = 2, one can take j = 1 and j′ = 3 since
x11 = x1 = y1, x23 = x2 = y2 and 1RM22RM13. Symmetrically, if i = 2
and i′ = 1, one can take j = 3 and j′ = 1; while if i = i′, the condition
simply means that the right entry of the i-th row can be found in the left
entries of that row.

Let M1 and M2 be two simple extended matrices with parameters n1,
m1, m′

1 = 1, k1 = ℓ1 and n2, m2, m′
2 = 1, k2 = ℓ2. We know that if m1 = 0,

then M1 is trivial, we always have M1 ⇒lex M2 and we have M2 ⇒lex M1 if
and only if m2 = 0. If m1 > 0 and M1 is trivial, then we have M1 ⇒lex M2

if and only if m2 > 0 and we have M2 ⇒lex M1 if and only if M2 is trivial. It
thus remains to explain, in the case where neither M1 nor M2 is trivial, how
to decide whether M1 ⇒lex M2. In order to describe this algorithm, we need
the following notion. Given i ∈ {1, . . . , n1} and a set S, an interpretation of
type S of the i-th row of M1 is an (m1 + 1)-tuple[

f(x1
i1) . . . f(x1

im1
) f(y1i )

]
formed by applying a function f : {x1, . . . , xk1} → S to the entries of the
i-th row of M1. Now, if neither M1 nor M2 is a trivial matrix, the algorithm
from [16] to decide whether M1 ⇒lex M2 is the following:

Keep expanding the set of left columns of M2, until it is no more
possible, with right columns of n2 × (m1 + 1) matrices fi1(x

1
i11
) . . . fi1(x

1
i1m1

) fi1(y
1
i1
)

...
...

...
fin2

(x1
in21

) . . . fin2
(x1

in2m1
) fin2

(y1in2
)
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for which each row is an interpretation of type {x1, . . . , xk2} of a row
of M1, each of the first m1 left columns is in the expansion of the set
of left columns of M2 but the right column is not. Then M1 ⇒lex M2

holds if and only if the right column of M2 is contained in the left
columns of the expanded matrix M2.

To illustrate this algorithm, let us consider the matrices Mal and Cube3 of
Examples 1.3 and 1.7. They can be shown to be non-trivial via Theorem 1.9.
One can show that[

x1 x2 x2 x1

x1 x1 x2 x2

]
⇒lex

 x1 x1 x1 x2 x2 x2 x2 x1

x1 x2 x2 x1 x1 x2 x2 x1

x2 x1 x2 x1 x2 x1 x2 x1


i.e., that Mal ⇒lex Cube3 in one step by considering the matrix x1 x2 x2 x1

x2 x2 x1 x1

x1 x1 x1 x1


where the first row is the first row of Mal, the second row is an interpretation
of the second row of Mal where x1 is interpreted as x2 and vice-versa and
the third row is the first (or second) row of Mal where both variables are
interpreted as x1. Since the left columns of that matrix are left columns
of Cube3 and its right column is the right column of Cube3, this shows the
announced implication.

As a two-step example, one can cite the implication

M1 =

 x1 x1 x2 x2 x1

x1 x2 x1 x2 x1

x2 x3 x3 x1 x1

 ⇒lex M2 =

 x2 x2 x1 x3 x3 x1

x1 x1 x2 x2 x1 x1

x3 x1 x2 x3 x2 x1


appearing in [16]. These matrices are non-trivial by Theorem 1.9. To show
the implication, one first considers the matrix x3 x3 x2 x2 x3

x2 x2 x1 x1 x2

x3 x3 x3 x1 x1
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where the first two rows are interpretations of the first row of M1 (x1 is
interpreted respectively as x3 in the first row and as x2 in the second row, and
x2 is interpreted respectively as x2 in the first row and as x1 in the second
row), and the third row is an interpretation of the third row of M1 (x1 is
interpreted as x1 and both x2 and x3 are interpreted as x3). The left columns
of that matrix are all left columns of M2, so that now, we can expand M2 as x2 x2 x1 x3 x3 x3 x1

x1 x1 x2 x2 x1 x2 x1

x3 x1 x2 x3 x2 x1 x1

 .

One now concludes the proof of the implication by considering the matrix x2 x3 x3 x1 x1

x1 x1 x2 x2 x1

x1 x2 x1 x2 x1


where the first row is the third row of M1, the second row is the first row
of M1 and the third row is the second row of M1. Notice that the left columns
of that matrix are left columns of the expansion of M2 above and the right
column is the right column of M2.

Essentially algebraic categories
Let us conclude this preliminary section with a reminder on (many-sorted)
essentially algebraic categories [1, 2] (or in other words locally presentable
categories [11]) as we will need them to prove Theorem 2.8. They are de-
scribed by essentially algebraic theories, i.e., quintuples

Γ = (S,Σ, E,Σt,Def)

where

• S is a set of sorts;

• Σ is an S-sorted signature of algebras, i.e., a set of operation symbols
σ with prescribed arity σ :

∏
u∈U su → s where U is a set, su ∈ S for

each u ∈ U and s ∈ S;
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• E is a set of Σ-equations;

• Σt is a subset of Σ called the set of total operation symbols;

• Def is a function assigning to each operation symbol σ :
∏

u∈U su → s
in Σ \ Σt a set Def(σ) of Σt-equations t1 = t2 where t1 and t2 are Σt-
terms

∏
u∈U su → s′.

A Γ-model is an S-sorted set A = (As)s∈S together with, for each operation
symbol σ :

∏
u∈U su → s in Σ, a partial function σA :

∏
u∈U Asu → As such

that:

1. for each σ ∈ Σt, σA is totally defined;

2. given σ :
∏

u∈U su → s in Σ \ Σt and a family (au ∈ Asu)u∈U of
elements, σA((au)u∈U) is defined if and only if the identity

tA1 ((au)u∈U) = tA2 ((au)u∈U)

holds for each Σt-equation of Def(σ);

3. A satisfies the equations of E wherever they are defined.

A Σ-term t :
∏

u∈U su → s will be said to be everywhere-defined if, for each
Γ-model A, the induced function tA :

∏
u∈U Asu → As is totally defined

(see [18, 19] for more details). A homomorphism f : A → B of Γ-models is
an S-sorted function (fs : As → Bs)s∈S such that, given σ :

∏
u∈U su → s

in Σ and a family (au ∈ Asu)u∈U such that σA((au)u∈U) is defined in A, then
σB((fsu(au))u∈U) is defined in B and the identity

fs(σ
A((au)u∈U)) = σB((fsu(au))u∈U)

holds. The Γ-models and their homomorphisms form the category Mod(Γ).
A category which is equivalent to a category Mod(Γ) for some essentially
algebraic theory Γ is called essentially algebraic. These are exactly the lo-
cally presentable categories. Note that essentially algebraic categories are
in general not regular but have a (strong epimorphism, monomorphism)-
factorization system. Each variety is a regular essentially algebraic cate-
gory. The category Cat of small categories is a non-regular essentially al-
gebraic category. We denote by ess alg (respectively ess alg∗, reg ess alg and
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reg ess alg∗) the collection of essentially algebraic categories (respectively
of essentially algebraic pointed categories, regular essentially algebraic cat-
egories and of regular essentially algebraic pointed categories). Therefore,
for extended matrices M1 and M2, the notation M1 ⇒reg ess alg M2 means
that any regular essentially algebraic category with M1-closed relations has
M2-closed relations.

2. Main results

Results for simple matrices
We know from Theorem 4.2 in [15] that, given two simple extended matrices
M1 and M2 where M2 has at least one left column, then M1 ⇒lex M2 holds
if and only if M1 ⇒lex∗ M2 holds. Let us now prove the analogous result for
varieties.

Proposition 2.1. Let M1 and M2 be two simple extended matrices such that
M2 has at least one left column. Then, the following statements are equiva-
lent:

(a) M1 ⇒alg M2

(b) M1 ⇒alg∗ M2

Proof. The implication (a)⇒(b) being trivial, let us prove (b)⇒(a). Let us
denote the parameters of Mi (for i ∈ {1, 2}) by ni ⩾ 1, mi ⩾ 0, m′

i = 1
and ki = ℓi ⩾ 1. We recall that VM1 is the variety with one m1-ary ba-
sic operation p and the axioms are the identities described in Theorem 1.2
for M1. We also need the pointed variety V∗

M1
constructed from VM1 by

adding one constant symbol 0 and the axiom p(0, . . . , 0) = 0. Let us de-
note by FrM1 : Set → VM1 and Fr∗M1

: Set → V∗
M1

the left adjoints to the
respective forgetful functors. For some distinct variables z0, z1, . . . , zm2 , the
VM1-algebra FrM1(z0, z1, . . . , zm2) can be considered as a V∗

M1
-algebra by

considering z0 as the constant 0 (one has p(z0, . . . , z0) = z0 since n1 ⩾ 1
and there is thus at least one axiom as in Theorem 1.2). Moreover, the V∗

M1
-

algebra Fr∗M1
(z1, . . . , zm2) can be considered as a VM1-algebra in the obvious

way. Let
f : Fr∗M1

(z1, . . . , zm2) → FrM1(z0, z1, . . . , zm2)
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be the unique homomorphism of V∗
M1

-algebras such that f(zj) = zj for each
j ∈ {1, . . . ,m2}. Let also

g : FrM1(z0, z1, . . . , zm2) → FrM1(z1, . . . , zm2)

be the unique homomorphism of VM1-algebras such that g(z0) = z1 and
g(zj) = zj for each j ∈ {1, . . . ,m2} (note that we need m2 > 0 here).

Since V∗
M1

is a pointed variety with M1-closed relations, it has M2-closed
relations assuming that M1 ⇒alg∗ M2. By Theorem 1.2, there exists an
m2-ary term q ∈ Fr∗M1

(z1, . . . , zm2) satisfying the identities of Theorem 1.2
for M2. Let q′ = g(f(q)) ∈ FrM1(z1, . . . , zm2). We would like to prove
that this m2-ary term of VM1 also satisfies the identities of Theorem 1.2
for M2. Fixing a row i of M2, we consider the function ι : {z1, . . . , zm2} →
{x1, . . . , xk2} given by ι(zj) = x2

ij , where x2
ij is the corresponding entry

of M2. We consider also the homomorphisms of V∗
M1

-algebras

ι1 : Fr
∗
M1

(z1, . . . , zm2) → Fr∗M1
(x1, . . . , xk2)

and
f ′ : Fr∗M1

(x1, . . . , xk2) → FrM1(x0, x1, . . . , xk2)

such that ι1(zj) = ι(zj) for each j ∈ {1, . . . ,m2} and f ′(xu) = xu for
each u ∈ {1, . . . , k2} (where FrM1(x0, x1, . . . , xk2) is considered as a V∗

M1
-

algebra with x0 as constant 0). Finally, we consider the homomorphisms of
VM1-algebras

ι2 : FrM1(z0, z1, . . . , zm2) → FrM1(x0, x1, . . . , xk2),

ι3 : FrM1(z1, . . . , zm2) → FrM1(x1, . . . , xk2)

and
g′ : FrM1(x0, x1, . . . , xk2) → FrM1(x1, . . . , xk2)

such that ι2(z0) = x0, ι2(zj) = ι(zj) and ι3(zj) = ι(zj) for each j ∈
{1, . . . ,m2}, g′(x0) = ι(z1) and g′(xu) = xu for each u ∈ {1, . . . , k2}.
Note that ι2 is also a homomorphism of V∗

M1
-algebras. The left-hand square

in

Fr∗M1
(z1, . . . , zm2)

f
//

ι1
��

FrM1(z0, z1, . . . , zm2)
g
//

ι2

��

FrM1(z1, . . . , zm2)

ι3

��

Fr∗M1
(x1, . . . , xk2) f ′

// FrM1(x0, x1, . . . , xk2) g′
// FrM1(x1, . . . , xk2)
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commutes in V∗
M1

(and thus in VM1), while the right-hand square commutes
in VM1 . Since q is sent by ι1 to y2i (i.e., the right entry of the i-th row of M2),
q′ = g(f(q)) is sent by ι3 to y2i , proving that q′ satisfies the equations of The-
orem 1.2 for M2. Therefore, VM1 has M2-closed relations. Since any variety
with M1-closed relations admits a forgetful functor to VM1 (Theorem 1.2),
this shows M1 ⇒alg M2.

Let us make explicit that, as in the finitely complete context, the above
theorem cannot be generalized to the situation where M2 has no left columns.
A counter-example is given by the implication T1 ⇒alg∗ T0 which holds
whereas the implication T1 ⇒alg T0 does not. A variety has T1-closed
relations if and only if the identity x = y holds (i.e., each algebra is either
empty or a singleton); while a variety has T0-closed relations if and only
if there is a constant symbol 0 such that the identity 0 = y holds (so each
algebra is a singleton). In the pointed varietal context, both properties are
equivalent to the identity 0 = y for the unique constant 0.

Let us now turn our attention to the case where M2 = Cuben,k is the
matrix from Example 1.7. In that case, the algorithm for deciding M1 ⇒lex

M2 can be nicely simplified.

Proposition 2.2. Let M be a simple extended matrix (with parameters n ⩾ 1,
m ⩾ 0, m′ = 1 and k = ℓ ⩾ 1)

M =

 x11 · · · x1m y1
...

...
...

xn1 · · · xnm yn


and let n′, k′ ⩾ 2 be integers. The implication M ⇒lex Cuben′,k′ holds if
and only if there exist i1, . . . , in′ ∈ {1 . . . , n} such that there does not exist
j ∈ {1, . . . ,m} for which xiaj = yia for each a ∈ {1, . . . , n′}.

Proof. Firstly, let us notice that Theorem 1.9 implies that Cuben′,k′ is not a
trivial matrix. Let us now assume that M is trivial. In that case, we have
M ⇒lex Cuben′,k′ . By Theorem 1.9, there must exist i, i′ ∈ {1, . . . , n} such
that for all j, j′ ∈ {1, . . . ,m}, if xij = yi and xi′j′ = yi′ then j is not related
to j′ by RMi

∨RMi′
. If the left part of the i-th row of M does not contain yi as

an entry, the second condition is satisfied with i1 = · · · = in′ = i. Similarly,
if the left part of the i′-th row of M does not contain yi′ as an entry, the
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second condition is satisfied with i1 = · · · = in′ = i′. Otherwise, there exist
j, j′ ∈ {1, . . . ,m} such that xij = yi and xi′j′ = yi′ and thus j is not related
to j′ by RMi

∨ RMi′
. Since n′ ⩾ 2, the second condition in the statement

is then satisfied with i1 = i and i2 = · · · = in′ = i′. Indeed, if there exists
j′′ ∈ {1, . . . ,m} such that xij′′ = yi and xi′j′′ = yi′ , then xij = xij′′ and
xi′j′ = xi′j′′ , which would imply jRMi

j′′RMi′
j′, a contradiction.

We can thus suppose without loss of generality that M is not trivial. In
the algorithm to decide whether M ⇒lex Cuben′,k′ , there is only one column
that could be added to Cuben′,k′ , i.e., the column of x1’s. This column can
indeed be added if and only if we can find i1, . . . , in′ ∈ {1, . . . , n} and func-
tions fi1 , . . . , fin′ : {x1, . . . , xk} → {x1, . . . , xk′} such that the left columns
of the matrix  fi1(xi11) . . . fi1(xi1m) fi1(yi1)

...
...

...
fin′ (xin′1) . . . fin′ (xin′m) fin′ (yin′ )


are different from the n′-tuple (x1, . . . , x1), but the right column is equal to it.
This condition clearly implies the one in the statement. Conversely, from the
condition in the statement, one can construct such a matrix by considering,
for each a ∈ {1, . . . , n′}, the function fia : {x1, . . . , xk} → {x1, . . . , xk′}
which sends yia to x1 and the other elements of the domain to x2 (using the
fact that k′ ⩾ 2).

Since the above condition characterizing M ⇒lex Cuben′,k′ does not de-
pend on k′, one immediately has the following corollary.

Corollary 2.3. For n, k1, k2 ⩾ 2, one has Cuben,k1 ⇔lex Cuben,k2 .

As mentioned in Example 1.7, this corollary is the reason why we abbre-
viate Cuben,2 as Cuben since then, Cuben ⇔lex Cuben,k for any k ⩾ 2.

Putting together Propositions 2.1 and 2.2 and the results of [29], we can
easily prove the following theorem. We recall that for an extended matrix M ,
we have defined after Theorem 1.1 the variety VM as the ‘generic’ one with
M -closed relations. If M is simple, VM is thus obtained with a single basic
operation and one axiom for each row of M as described in Theorem 1.2.
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Theorem 2.4. Let M be a simple extended matrix (with parameters n ⩾ 1,
m ⩾ 0, m′ = 1 and k = ℓ ⩾ 1)

M =

 x11 · · · x1m y1
...

...
...

xn1 · · · xnm yn


and let n′ ⩾ 2 be an integer. The following statements are equivalent:

(a) M ⇒lex Cuben′

(b) M ⇒lex∗ Cuben′

(c) M ⇒reg Cuben′

(d) M ⇒reg∗ Cuben′

(e) M ⇒alg Cuben′

(f) M ⇒alg∗ Cuben′

(g) M ⇒ess alg Cuben′

(h) M ⇒ess alg∗ Cuben′

(i) M ⇒reg ess alg Cuben′

(j) M ⇒reg ess alg∗ Cuben′

(k) There exist i1, . . . , in′ ∈ {1, . . . , n} such that there does not exist j ∈
{1, . . . ,m} for which xiaj = yia for each a ∈ {1, . . . , n′}.

(l) There does not exist a function p : {0, 1}m → {0, 1} making ({0, 1}, p)
an algebra of VM such that its induced n′-power ({0, 1}n′

, pn
′
) is com-

patible with the n′-ary relation Rn′ = {0, 1}n′ \ {(0, . . . , 0)} (i.e.,
pn

′
(r1, . . . , rm) ∈ Rn′ for each r1, . . . , rm ∈ Rn′).

Proof. The equivalence (e)⇔(l) is an immediate application of Lemma 3.5
and Proposition 7.7 of [29] applied to the variety VM . The equivalence
(a)⇔(k) is Proposition 2.2 with k′ = 2. It is trivial that (a) implies all
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the statements (b)–(j) and any of these statements implies (f). The equiv-
alence (e)⇔(f) is an immediate application of Proposition 2.1. It thus suf-
fices to show the implication (l)⇒(k). By contradiction, let us suppose
(k) does not hold and let us prove (l) does not hold neither. We define
p : {0, 1}m → {0, 1} on an m-tuple (b1, . . . , bm) by p(b1, . . . , bm) = 0 if and
only if there exist i ∈ {1, . . . , n} and a function f : {x1, . . . , xk} → {0, 1}
such that f(yi) = 0 and (b1, . . . , bm) = (f(xi1), . . . , f(xim)). To prove that
({0, 1}, p) indeed forms an algebra of VM , we need to show that for any
i ∈ {1, . . . , n} and any function f : {x1, . . . , xk} → {0, 1}, one has

p(f(xi1), . . . , f(xim)) = f(yi).

If f(yi) = 0, this is immediate from the definition of p. If f(yi) = 1, we need
to show there do not exist i′ ∈ {1, . . . , n} and g : {x1, . . . , xk} → {0, 1}
such that g(yi′) = 0 and (f(xi1), . . . , f(xim)) = (g(xi′1), . . . , g(xi′m)). But
if this was the case, using that n′ ⩾ 2 and that (k) is false with i1 = i and
i2 = · · · = in′ = i′, we obtain a j ∈ {1, . . . ,m} such that xij = yi and
xi′j = yi′ , contradicting f(xij) = g(xi′j). It remains to prove that pn′ is
compatible with Rn′ . The only way for it not to be so is that there exist
i1, . . . , in′ ∈ {1, . . . , n} and functions f1, . . . , fn′ : {x1, . . . , xk} → {0, 1}
such that fa(yia) = 0 for each a ∈ {1, . . . , n′} and such that the matrix f1(xi11) · · · f1(xi1m)

...
...

fn′(xin′1) · · · fn′(xin′m)


does not contain a column of 0’s. But this is impossible by our assumption
that (k) is false.

The situation described by Theorem 2.4 is very particular to the matri-
ces Cuben′ . Indeed, as we have already remarked in Example 1.8, one has
Cube3 ⇒alg Edge3 but Cube3 ⇏lex Edge3. Other examples of this phe-
nomenon are given in [16].

Since it is our most interesting case, let us specify some of the state-
ments of Theorem 2.4 in the case where n′ = 2, i.e., when Cuben′ = Cube2
describes the Mal’tsev property.
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Corollary 2.5. Let M be a simple extended matrix (with parameters n ⩾ 1,
m ⩾ 0, m′ = 1 and k = ℓ ⩾ 1)

M =

 x11 · · · x1m y1
...

...
...

xn1 · · · xnm yn

 .

The following statements are equivalent:

(a) Each finitely complete category with M -closed relations is a Mal’tsev
category.

(b) Each variety with M -closed relations is a Mal’tsev variety.

(c) There exist i, i′ ∈ {1 . . . , n} such that there is no j ∈ {1, . . . ,m} for
which xij = yi and xi′j = yi′ .

Remark 2.6. It is shown in [17] that if M is a simple extended matrix as in
Corollary 2.5 with k = 2, then the equivalent conditions in that corollary are
further equivalent to:

(d) There is a finitely complete majority category which does not have
M -closed relations.

In other words, if k = 2, M ⇒lex Mal if and only if Maj ⇏lex M . It is also
shown that if k > 2, this equivalence is no longer true.

Statement (k) of Theorem 2.4 provides an algorithm to decide whether
M ⇒alg Cuben′ (or equivalently M ⇒lex Cuben′). It is easy to see that this
algorithm requires at most m × nn′ comparisons of columns, and thus at
most n′ × m × nn′ comparisons of elements. For a fixed n′, this is thus a
polynomial-time algorithm in the parameters n and m of the input matrix M .
For n′ = 2, statement (c) of Corollary 2.5 thus provides an algorithm to
decide whether M ⇒alg Mal (or equivalently M ⇒lex Mal) which requires
at most 2mn2 comparisons of elements.

To illustrate Theorem 2.4 and Corollary 2.5, we can see that Maj ⇒lex

Cube3 and Maj ⇒alg Cube3 by taking i1 = 1, i2 = 2 and i3 = 3 in state-
ment (k) of Theorem 2.4 since the right column x1

x1

x1
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of Maj as presented in Example 1.6 does not appear as one of its left columns.
Besides, one has Maj ⇏lex Mal and Maj ⇏alg Mal since, given any two rows
of Maj, they contain [

x1

x1

]
in their left part.

Theorem 3.6 in [16] states that the intersection of finitely many matrix
properties induced by simple extended matrices is again a matrix property
induced by a simple extended matrix. Given, for each i ∈ {1, 2}, such a
matrix Mi with parameters ni, mi, m′

i = 1 and ki = ℓi, we can form a
matrix M with parameters n = n1 + n2, m = m1 × m2, m′ = 1 and
k = ℓ = max(k1, k2) as follows: the left columns of M are indexed by the
pairs consisting of a left column of M1 and a left column of M2 and are ob-
tained by superposing this column of M1 over this column of M2. The right
column of M is obtained by superposing the right column of M1 over the
right column of M2. Then, a finitely complete category has M -closed rela-
tions if and only if it has M1-closed relations and M2-closed relations. For
instance, if M1 = Mal as in Example 1.3 and if M2 = Maj as in Example 1.6,
one has

M =


x1 x1 x1 x2 x2 x2 x2 x2 x2 x1

x1 x1 x1 x1 x1 x1 x2 x2 x2 x2

x1 x1 x2 x1 x1 x2 x1 x1 x2 x1

x1 x2 x1 x1 x2 x1 x1 x2 x1 x1

x2 x1 x1 x2 x1 x1 x2 x1 x1 x1


which turns out to satisfy M ⇔lex Ari.

Theorem 2.7. Let d ⩾ 0 be an integer and (Mi)i∈{1,...,d} be a finite fam-
ily of simple extended matrices. For n′ ⩾ 2, the following statements are
equivalent:

(a) Each finitely complete category with Mi-closed relations for all i ∈
{1, . . . , d} has Cuben′-closed relations.

(b) There exists i ∈ {1, . . . , d} such that Mi ⇒lex Cuben′ .

Proof. The statement being trivial for d = 0 and d = 1, let us assume
without loss of generality that d ⩾ 2. Furthermore, since the intersection of
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finitely many matrix properties induced by simple extended matrices is again
a matrix property induced by a simple extended matrix, using induction, we
can assume without loss generality that d = 2. The implication (b)⇒(a)
being trivial, we assume (a) and we shall prove (b). Let M be the simple
extended matrix as constructed above from M1 and M2. We shall use the
same notation as above for the parameters of M1, M2 and M . Moreover, for
i ∈ {1, 2}, we denote the entries of Mi as

Mi =

 xi
11 · · · xi

1mi
yi1

...
...

...
xi
ni1

· · · xi
nimi

yini


and we denote the entries of M as

M =

 x11 · · · x1m y1
...

...
...

xn1 · · · xnm yn

 .

We thus assume that M ⇒lex Cuben′ and we shall prove that either M1 ⇒lex

Cuben′ or M2 ⇒lex Cuben′ . By Theorem 2.4, we know that there exist
i1, . . . , in′ ∈ {1, . . . , n1+n2} such that there does not exist j ∈ {1, . . . ,m1×
m2} for which xiaj = yia for each a ∈ {1, . . . , n′}. Let us denote by
S1 the set S1 = {a ∈ {1, . . . , n′} | ia ∈ {1, . . . , n1}} and by S2 the set
S2 = {1, . . . , n′} \ S1. If there exist j1 ∈ {1, . . . ,m1} and j2 ∈ {1, . . . ,m2}
such that x1

iaj1
= y1ia for each a ∈ S1 and x2

(ia−n1)j2
= y2ia−n1

for each a ∈ S2,
by choosing j ∈ {1, . . . ,m1 ×m2} as the index of the left column of M ob-
tained by superposing the j1-th left column of M1 over the j2-th left column
of M2, one obtains that xiaj = yia for each a ∈ {1, . . . , n′}, contradicting
our hypothesis. By symmetry, we can therefore assume without loss of gen-
erality that there does not exist j1 ∈ {1, . . . ,m1} for which x1

iaj1
= y1ia for

each a ∈ S1. Let us define i′a ∈ {1, . . . , n1} for each a ∈ {1, . . . , n′} by

i′a =

{
ia if a ∈ S1

1 if a ∈ S2.

The indices i′1, . . . , i
′
n′ ∈ {1, . . . , n1} satisfy condition (k) of Theorem 2.4

and therefore one has M1 ⇒lex Cuben′ .
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Results for general matrices
We now tackle the question to describe when M ⇒reg Cuben for a (not
necessarily simple) extended matrix M . In general, we do not yet know an
algorithm to decide whether a general matrix condition implies another one.
In the following theorem, we thus have to use another technique than the
one used to prove Theorem 2.4. We will use here, in addition to the results
of [29], the embedding theorems of [21]. In order to do so, we will need
the axiom of universes [3], which will only be used to prove the implica-
tion (b)⇒(a) (the equivalences (b)⇔(c)⇔(d) do not rely on the axiom of
universes).

Theorem 2.8. Let M be an extended matrix (with parameters n ⩾ 1, m ⩾ 0,
m′ ⩾ 0 and k ⩾ ℓ ⩾ 0)

M =

 x11 · · · x1m y11 · · · y1m′

...
...

...
...

xn1 · · · xnm yn1 · · · ynm′


and let n′ ⩾ 2 be an integer. The following statements are equivalent:

(a) M ⇒reg Cuben′

(b) M ⇒reg ess alg Cuben′

(c) M ⇒alg Cuben′

(d) There do not exist functions

p1, . . . , pm′ : {0, 1}m → {0, 1}

and
q1, . . . , qk−ℓ : {0, 1}ℓ → {0, 1}

making A = ({0, 1}, p1, . . . , pm′ , q1, . . . , qk−ℓ) an algebra of VM such
that the n′-ary relation Rn′ = {0, 1}n′\{(0, . . . , 0)} is a homomorphic
relation on A.
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Proof. The equivalence (c)⇔(d) is an immediate application of Lemma 3.5
and Proposition 7.7 of [29] applied to the variety VM . Under the axiom of
universes, the implication (b)⇒(a) follows immediately from Theorem 4.6
of [21]. The implications (a)⇒(b)⇒(c) being trivial, it remains to prove
(d)⇒(b). Let us thus assume that (d) holds and let us consider an essen-
tially algebraic theory Γ = (S,Σ, E,Σt,Def) such that Mod(Γ) is a regular
category with M -closed relations. We shall prove that it has Cuben′-closed
relations. By Theorem 3.3 in [21], we know that, for each sort s ∈ S, there
exist in Γ:

• for each j ∈ {1, . . . ,m′}, a term psj : s
m → s,

• for each a ∈ {1, . . . , k − ℓ}, a term qsa : s
ℓ → s

such that, for each i ∈ {1, . . . , n} and each j ∈ {1, . . . ,m′},

• if yij = xa ∈ {x1, . . . , xℓ}, the term psj(xi1, . . . , xim) : s
ℓ → s (in the

variables x1, . . . , xℓ) is everywhere-defined and equal to xa,

• if yij = xa ∈ {xℓ+1, . . . , xk}, the term psj(xi1, . . . , xim) : s
ℓ → s (in

the variables x1, . . . , xℓ) is defined for an ℓ-tuple (b1, . . . , bℓ) ∈ Bℓ
s in

a Γ-model B if and only if qsa−ℓ(b1, . . . , bℓ) is defined, and in that case
they are equal.

Let now T be a homomorphic n′-ary relation on the Γ-model B. Let s ∈ S
and let b0, b1 ∈ Bs be such that any n′-tuple of elements of {b0, b1}, ex-
cept maybe (b0, . . . , b0), is in Ts. We shall prove that (b0, . . . , b0) ∈ Ts.
For each j ∈ {1, . . . ,m′}, let us define the function pj : {0, 1}m → {0, 1}
on (c1, . . . , cm) ∈ {0, 1}m by pj(c1, . . . , cm) = 0 if psj(bc1 , . . . , bcm) is de-
fined and equal to b0, otherwise we set pj(c1, . . . , cm) = 1. Similarly, for
each a ∈ {1, . . . , k − ℓ}, let us define the function qa : {0, 1}ℓ → {0, 1}
on (c1, . . . , cℓ) ∈ {0, 1}ℓ by qa(c1, . . . , cℓ) = 0 if qsa(bc1 , . . . , bcℓ) is defined
and equal to b0, otherwise we set qa(c1, . . . , cℓ) = 1. It is easy to see that
A = ({0, 1}, p1, . . . , pm′ , q1, . . . , qk−ℓ) forms an algebra of VM . Let us con-
sider the bijection f : {0, 1} → {b0, b1} defined by f(0) = b0 and f(1) = b1
and the induced bijection fn′

: {0, 1}n′ → {b0, b1}n
′ . Since (d) holds, ei-

ther there exist j ∈ {1, . . . ,m′} and elements r1, . . . , rm ∈ Rn′ such that
pn

′
j (r1, . . . , rm) = (0, . . . , 0) or there exist a ∈ {1, . . . , k − ℓ} and elements
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r1, . . . , rℓ ∈ Rn′ such that qn′
a (r1, . . . , rℓ) = (0, . . . , 0) (where pn′

j and qn
′

a are
the operations induced on {0, 1}n′ by pj and qa respectively). We thus have
either that (psj)

n′
(fn′

(r1), . . . , f
n′
(rm)) is defined and equal to (b0, . . . , b0),

or that (qsa)
n′
(fn′

(r1), . . . , f
n′
(rℓ)) is defined and equal to (b0, . . . , b0). Since

T is a homomorphic relation on B and either fn′
(r1), . . . , f

n′
(rm) ∈ Ts or

fn′
(r1), . . . , f

n′
(rℓ) ∈ Ts, we can conclude in both cases that (b0, . . . , b0) ∈

Ts.

Let us notice that condition (d) provides a (finite-time) algorithm to de-
cide whether M ⇒reg Cuben′ (or equivalently M ⇒alg Cuben′), but it seems
this is not a polynomial-time algorithm.

Again, since this is our most interesting case, let us emphasize the case
n′ = 2 of Theorem 2.8.

Corollary 2.9. For an extended matrix M , the following statements are
equivalent:

(a) Every regular category with M -closed relations is a Mal’tsev category.

(b) Every variety with M -closed relations is a Mal’tsev variety.
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[29] J. OPRŠAL, Taylor’s modularity conjecture and related problems for
idempotent varieties, Order 35 (2018), 433–460.

[30] M.C. PEDICCHIO, Arithmetical categories and commutator theory,
Appl. Categ. Structures 4 (1996), 297–305.

[31] A.F. PIXLEY, Distributivity and permutability of congruence relations
in equational classes of algebras, Proc. Am. Math. Soc. 14 (1963), 105–
109.

[32] A.F. PIXLEY, The ternary discriminator function in universal algebra,
Math. Ann. 191 (1971), 167–180.

[33] J. RIGUET, Relations binaires, fermetures, correspondances de Galois,
Bull. Soc. Math. France 76 (1948), 114–155.

[34] J.W. SNOW, Maltsev conditions and relations on algebras, Algebra
Univers. 42 (1999), 299–309.

Michael Hoefnagel
Mathematics Division
Department of Mathematical Sciences
Stellenbosch University
Private Bag X1 Matieland 7602
South Africa

National Institute for Theoretical and Computational Sciences (NITheCS)
South Africa

mhoefnagel@sun.ac.za

and

6463 63 



M. HOEFNAGEL AND P.-A. JACQMIN M ⇒ Mal

Pierre-Alain Jacqmin
Institut de Recherche en Mathématique et Physique
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CONNECTEDNESS THROUGH
DECIDABLE QUOTIENTS

Enrique RUIZ-HERNÁNDEZ and Pedro SOLÓRZANO
In memory of William Lawvere

Résumé. En considérant des quotients décidables, on fournit une condition
suffisante (1) pour garantir que la sous-catégorie pleine des objets décidables
d’un topos soit un idéal exponentiel et (2) pour que la notion classique de
connexité pour un objet X coı̈ncide avec ΠX = 1, où Π est le foncteur ad-
joint à gauche de l’inclusion des décidables.

L’ajout de cette condition-ci dans le contexte de l’axiomatique de McLarty
pour la Géométrie Différentielle Synthétique rend tout topos qui la satisfait
précohésif sur le topos de ses objets décidables. Une réciproque est également
fournie.

Abstract. By looking at decidable quotients, a sufficient condition is pro-
vided to guarantee that (1) the full subcategory of decidable objects of a topos
is an exponential ideal and that (2) the classical notion of connectedness for
an object X coincides with ΠX = 1, where Π is the left-adjoint functor of
the inclusion of the decidable objects.

The addition of this condition to McLarty’s axiomatic set up for Synthetic
Differential Geometry makes any topos that satisfies it precohesive over the
topos of its decidable objects. A converse is also provided.

Keywords. Topos, connectedness, precohesion.
Mathematics Subject Classification (2020). Primary 18B25; Secondary
03G30, 03B38.
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Motivation

Colin McLarty [7] formalizes a development of the notion of set out of that of
space through topos theory: he considers a topos of spaces from which it is
possible to get a category of sets, a topos of sets. In that paper, he posits two
axiom systems, one for the topos of sets and another for the topos of spaces,
which he denotes SDG—for several of the postulates pertain specifically to
the topic of Synthetic Differential Geometry. There are two postulates in this
latter system, SDG6 and SDG7 which he further studies in [6]. There they
are presented as

(NS) Any object is either initial or has a global element,

and

(DSO) There exists a unique decidable subobject for any
given object containing all of its points.

In McLarty’s words, intuitively, the Nullstellensatz (NS) “says points are the
smallest spaces, so two points in any space are either wholly coincident or
wholly disjoint”; that is, “for every space B and points b1 ∈ B and b2 ∈ B,
‘b1 = b2 ∨ ¬(b1 = b2)’ is true even if B is not discrete (decidable) and the
corresponding sentence with variables over B is not true” ([7, p. 81]).

Toposes satisfying NS abound: Any topos E precohesive over a topos S
that satisfies NS must also satisfy NS—thus any topos that is precohesive
over Set satisfies NS. Indeed, by Lawvere’s Nullstellensatz, f!(X) is initial
if f∗(X) is initial. In such a case, by the strictness of 0, X would be initial
too. Hence f∗(X) is not initial whenever X is not initial either.

These two axioms imply that the topos of spaces we begin with has a
local geometric morphism to a category of—decidable—sets, as proved in
[6]. There is just one functor missing to aspire to have precohesion in the
sense of William Lawvere’s program [4].

Main Results

The purpose of this communication is to ultimately focus in such a functor,
first in isolation, and then in the precohesive context. To this effect, proceed-
ing à la McLarty, consider the following postulate:
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(DQO) There exists a unique decidable quotient for any given
object along which any arrow to 2 factors uniquely.

In the presence of DQO, let pX : X → Π(X) be the corresponding quotient
map. It follows that Π1 ∼= 1, ΠX = 0 if and only if X = 0, and ΠΠX ∼= ΠX
for every object X ∈ E .

It is not immediately apparent that DQO implies that Π is indeed the
object part of a left adjoint of the inclusion of Dec(E) in E . This is actually
the case, as established by the following result.

Theorem A. For a topos E that satisfies NS and DQO, Π is the object part
of a finite-product-preserving functor left adjoint to the inclusion of Dec(E).

Conversely, by 2.3, DQO holds in the presence of NS as soon as the
inclusion Dec(E) into E has a left adjoint. Therefore,

Theorem B. For a topos E that satisfies NS , Dec(E) is an exponential ideal
as soon as it is reflective.

It is not immediately apparent that a topos E precohesive over Dec(E)
satisfies McLarty’s DSO. Section 3 is devoted to establishing this. It should
be noted that the proof requires DQO. Hence,

Theorem C. Let E be a topos satisfying NS. Then E satisfies DQO and
McLarty’s DSO if and only if E is precohesive over Dec(E).

In an extensive category, an object is connected if it has exactly two
complemented subobjects. On the other hand, Lawvere [4] calls an object
connected in the context of precohesion if its image under the left-most ad-
joint is terminal. In this report, for an object X , the latter corresponds in
a weak sense to Π(X) = 1. In fact, in the presence of NS and DQO both
agree (see 1.1). Notice that to require DQO but not NS is not be enough: In
Set × Set, DQO holds and thus Π(1) = 1, yet 1 has four complemented
subobjects.

In view of these observations, the addition of DQO is a natural exten-
sion of McLarty’s axioms for SDG that frames it in a context of Lawvere’s
precohesion in which these two notions of connectedness agree.
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1. Connectedness

An object X is connected if it has exactly two complemented subobjects.
Let Subc(X) be the collection of complemented subobjects of X . These
are evidently classified by 2. The DQO axiom requires the complemented
subobjects of X to be in bijective correspondence with those of its decidable
quotient ΠX . In fact,

1.1 Proposition. Let E satisfy NS and DQO. For an object X , ΠX = 1 if
and only if Subc(X) has exactly two elements, i.e. if X is connected.

Proof. For the necessity, since ΠX = 1 and NS guarantees that Subc(1) =
2, there are exactly two arrows X → 2. So, as X, 0 ∈ Subc(X), these are all
of the complemented subobjects of X .

For the sufficiency, since X ̸= 0, there is an arrow 1 → X . Now, by
considering the composite 1 → X → 1, it follows that !X : X → 1 is epic.
Assuming that Subc(X) has exactly two elements, the two arrows X → 2
are the constants, which factor through !X ; thus by DQO, the arrow ΠX → 1
is an isomorphism.

1.2 Proposition (Schanuel). Let E satisfy NS and DQO. The finite product
of connected objects is connected.

Proof. The argument syntactically coincides with that of [2, Theorem 12.1.1],
as expected since the Nullstellensatz therein coincides with NS.

Let Z ↣ X × Y be complemented in X × Y and different from ∅ and
X ×Y . By NS, there are points ⟨a, b⟩ : 1 → X ×Y and ⟨c, d⟩ : 1 → X ×Y
that factor through Z and Zc respectively.
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The decomposition given by Z induces a decomposition of X via the
map ⟨1, b!X⟩ : X → X × Y and a decomposition of Y via the map ⟨c!Y , 1⟩ :
Y → X × Y. Now, since X and Y are connected, these decompositions are
trivial. Therefore, ⟨1, b!X⟩ factors through Z and ⟨c!Y , 1⟩ factors through Zc.
This implies that ⟨b, c⟩ : 1 → X×Y factors through Z∩Zc. A contradiction.

Therefore there does not exist a nontrivial complemented subobject of
X × Y , and thus the conclusion follows.

Before the next definition, let Pc(X) be the subobject of the power object
P (X),

{u ∈ P (X) : u ∪ uc = X} ↣ P (X), (1)

where uc stands for {x ∈ X : x /∈ u}. Observe that Subc(X) is in one-to-
one correspondence with E(1, Pc(X)).

Also, recall that in a topos, morphisms can be described as in set theory
via their graphs: appropriate subobjects of the product of their domain and
codomain (See Exercise VI.11 in the textbook by Mac Lane and Moerdijk
[5]): the subobject

G ↣ X × Y

is the graph of an arrow X → Y if and only if

∃!y(⟨x, y⟩ ∈ G (2)

is universally valid for x ∈ X . In particular, for an arrow f : X → Y one
writes |f | ↣ X × Y for its graph and f−1(y) instead of {x ∈ X : ⟨x, y⟩ ∈
|f |} for its standard fiber.

1.3 Definition. A map f : X → Y has pneumoconnected fibers if the for-
mula

¬¬(f−1(y) ∩ w = ∅ ∨ f−1(y) ∩ wc = ∅) (3)

is universally valid, with y ∈ Y and w ∈ Pc(X).

Intuitively, it says that any generic fiber f−1(y) is very close to being
connected: Except for the double negation, it reads that fibers cannot be
separated through complemented objects. One cannot rid oneself from the
double negation in the definition, since ¬¬α ⇒ α is not universally valid
in the internal logic of a non-boolean topos. Yet to prove an assertion of
the form ¬α (e.g. in the previous or in the following two propositions), a
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CONNECTEDNESS THROUGH
DECIDABLE QUOTIENTS

perfectly valid intuitionistic argument (so long as one refrains from invoking
the axiom of choice and the excluded middle) is to assume α and arrive at a
contradiction ⊥, since ¬α is equivalent to α ⇒⊥.

When considering global elements (3) does capture the connectendess of
fibers, as seen in the next few results.

1.4 Proposition. Let E satisfy NS and DQO. And let f : X → Y have
pneumoconnected fibers. For any point b : 1 → Y , its fiber f−1(b), given by
the pullback diagram

f−1(b) //

��

X

f

��
1

b
// Y,

does not have nontrivial complemented subobjects, i.e. Π(f−1(b)) = 1.

Proof. Let A ↣ f−1(b) such that f−1(b) = A + Ac. If this is a nontrivial
decomposition, then both A and Ac are not initial. By NS, there are points
a : 1 → A and a′ : 1 → Ac such that f ◦ a = f ◦ a′ = b. Therefore,
f−1(b) ∩ A ̸= ∅ and f−1(b) ∩ Ac ̸= ∅, which proves that

¬(f−1(b) ∩ A = ∅ ∨ f−1(b) ∩ Ac = ∅),

which contradicts (3).

1.5 Proposition. Let E satisfy NS and DQO. Let f : X → Y and g : X ′ →
Y ′ be two arrows with pneumoconnected fibers. Then f×g has pneumocon-
nected fibers.

Proof. Define

ϑ := (f × g)−1(⟨z, w⟩) ∩ v ̸= ∅ ∧ (f × g)−1(⟨z, w⟩) ∩ vc ̸= ∅

and
R := {⟨z, w⟩ ∈ Y × Y ′ : ∃v ∈ Pc(X ×X ′).ϑ}.

Suppose for contradiction that R is not initial. By the NS, there exist points
a : 1 → Y , b : 1 → Y ′ and a complemented D ↣ X ×X ′ such that

(f × g)−1(⟨a, b⟩) ∩D ̸= ∅ ∧ (f × g)−1(⟨a, b⟩) ∩Dc ̸= ∅. (4)
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On the other hand, Π(f−1(a)) = 1 = Π(g−1(b)) and thus

(f × g)−1(⟨a, b⟩) = f−1(a)× g−1(b)

is also connected. Therefore, (f×g)−1(⟨a, b⟩)∩D = ∅ or (f×g)−1(⟨a, b⟩)∩
Dc = ∅, which is a contradiction to (4). Therefore, R cannot have points
and by NS it must be initial. That is that

¬∃v ∈ Pc(X ×X ′).ϑ

is universally valid for ⟨z, w⟩ ∈ Y × Y ′. Or, equivalently,

∀v ∈ Pc(X ×X ′).¬ϑ

is universally valid for ⟨z, w⟩ ∈ Y × Y ′.
Or, equivalently,

¬¬((f × g)−1(⟨z, w⟩) ∩ v = ∅ ∨ (f × g)−1(⟨z, w⟩) ∩ vc = ∅)

is universally valid, with z ∈ Y , w ∈ Y ′ and v ∈ Pc(X × X ′), as required
by (3).

Lastly, another result that can be proved along the same lines is the fol-
lowing.

1.6 Proposition. Let E satisfy NS and DQO. Any pullback of an arrow that
has pneumoconnected fibers has pneumoconnected fibers.

Proof. Straightforward.

2. Fiber Pneumoconnectedness Lemma

The purpose of this section is to state and prove the following result. It is
central to several arguments in this report.

2.1 Theorem (Fiber Pneumoconnectedness Lemma). Let E be a topos that
satisfies NS. Let q : X ↠ Q be epic. Then the following statements are
equivalent:

(i) Every arrow X → 2 factors through q.
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(ii) The map q has pneumoconnected fibers.

(iii) Every arrow X → Y with Y decidable factors through q.

The rest of the section is devoted to some of its applications. Afterwards,
a proof of 2.1 will be given towards the end of the section.

2.2 Corollary. Le E satisfy NS and DQO and let pX : X → Π(X) be the
corresponding quotient map. Then Π(X × Y ) ∼= ΠX × ΠY .

Proof. By 2.1 both projections pX and pY have pneumoconnected fibers,
hence by 1.5 so does the epic arrow pX × pY : X × Y → ΠX × ΠY . By
DQO, since ΠX × ΠY is a decidable quotient that factors arrows to 2, it
coincides with Π(X × Y ).

Proof of Theorem A. For an arrow f : X → Y with Y ∈ Dec(E), by 2.1(iii)
there exists a unique f ′ : ΠX → Y such that f ′ ◦ pX = f . So Π is functorial
and Π ⊣ I. By 2.2 it also preserves products.

2.3 Corollary. Let E satisfy NS with Dec(E) reflective. Then DQO holds.

Proof. Let Π ⊣ I be the reflection. Let p : 1 → IΠ be its unit. Since
every arrow X → 2 in E factors through pX and thus also through its image.
Since the image is also decidable, then it is universal and hence the unit of
the adjunction. Whence pX is epic. Thus there exists a decidable quotient
that factors arrows to 2. By 2.1, pX has pneumoconnected fibers.

To verify uniqueness, let q : X ↠ Q and q′ : X ↠ Q′ with Q and
Q′ decidable be two quotients satisfying the factorization property of DQO.
Then, by (iii), there are arrows Q → Q′ and Q′ → Q which are necessarily
inverses of each other. Thus one verifies DQO.

In his context, McLarty [6] proves that Dec(E) is actually a topos (see
Menni [8] for some generalizations).

The following result also invokes 2.1 and provides necessary and suffi-
cient conditions for Dec(E) to be a topos.

2.4 Corollary. Let E be a nondegenerate topos satisfying NS and DQO. The
category Dec(E) is a topos if and only if the arrow Π(f) is epic for every
¬¬-dense arrow f .
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Proof. Proposition VI.1 in [5] establishes several equivalences for a topos to
be boolean. Among which is that every subobject is complemented. Also,
that the operator ¬¬ is the identity, i.e. there are no nontrivial dense subob-
jects.

Suppose that Π(f) is epic for every ¬¬-dense arrow f : A → X . Now,
let m : B ↣ ΠX be a monic arrow. Consider the following pullback
diagrams:

R //
p−1
X (m)

//

����

X

pX
����

Poo
p−1
X (mc)
oo

����
B //

m
// ΠX Bcoo

mc
oo

Since inverse images preserve pseudocomplements, p−1
X (mc) ∼= p−1

X (m)c,
without loss of generality P = Rc, and, by 1.6, B ∼= ΠR and Bc ∼= ΠRc.

Now, as r : R + Rc ↣ X is ¬¬-dense, Π(r) is epic. Consider the
following commutative diagram:

R // //

pR

��

R +Rc

xx

r
xx

pR+Rc

����

Rcoooo

pRc

����

R

=

//
p−1
X (m)

//

����

X

pX

����

Rcoo
p−1
X (mc)

oo

=

����

ΠR // // ΠR +ΠRc

Πrxxxx

ΠRcoooo

B

∼=

//
m

// ΠX Bcoo
mc

oo

∼=

Therefore, as ΠRc ∼= Bc and accordingly ΠR+ΠRc ∼= ΠR∪ΠRc, then Πr
is monic. So B is complemented, and thus Dec(E) is a topos with 2 as its
subobject classifier.

Conversely, suppose Dec(E) is a topos, then it must be boolean (see
Acuña Ortega and Linton[1, Observation 2.6]). Let f : X → Y be ¬¬-
dense, since the composition of ¬¬-dense arrows is ¬¬-dense, it follows
that Π(f) ◦ pX = pY ◦ f is dense. Hence it must be epic.

The following result shows that the property of having pneumoconnected
fibers is also present in the canonical map from an object to its sheafification.
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AND P. SOLÓRZANO
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2.5 Corollary. Let E be topos satisfying NS and let mX
¬¬ : X ↠ M¬¬X be

the reflector of the inclusion of category of ¬¬-separated objects of E . Then
m¬¬ has pneumoconnected fibers. Consequently, the sheafification functor
also has pneumoconnected fibers1.

Proof. Immediate from 2.1, since every decidable object is ¬¬-separated.

The proof of 2.1 is split into the next two results.

2.6 Proposition. Let E be a topos satisfying NS. Let q : X → Q be such
that for every arrow f : X → 2 there is an arrow f ′ : Q → 2 making the
following diagram commutative:

X
f

��
q

��
Q

f ′
// 2.

Then q has pneumoconnected fibers.

Proof. Define

R := {z ∈ Q : ∃v ∈ Pc(X)((q−1(z) ∩ v ̸= ∅) ∧ (q−1(z) ∩ vc ̸= ∅))}.

Suppose for contradiction that R is not initial. Then, there is a point a : 1 →
Q and a complemented A ↣ X such that

q−1(a) ∩ A ̸= ∅ ∧ q−1(a) ∩ Ac ̸= ∅. (5)

For A corresponds an arrow ξ : X → 2. Let ξ′ : Q → 2 be such
that ξ = ξ′q. That means that ξ′a must be both 0! and 1!. A contradiction.
Therefore, R is initial. This means that

∀v ∈ Pc(X)¬((q−1(z) ∩ v ̸= ∅) ∧ (q−1(z) ∩ vc ̸= ∅)

1In the presence of NS, this suggests there ought to be a description that characterizes
the behavior of the fibers of mX

j : X → MjX for an arbitrary local operator j, which might
then provide a description for the required behavior of the fibers of the unit of f∗f! of an
arbitrary precohesion f . Nothing thus far eases the work required to syntactically describe
the image of f∗.
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is universally valid for z ∈ Q, which in turn means that

¬¬((q−1(z) ∩ v = ∅) ∨ (q−1(z) ∩ vc = ∅))

is universally valid for z ∈ Q and v ∈ Pc(X), as promised.

2.7 Proposition. Let E be a topos satisfying NS and q : X ↠ Q be epic with
pneumoconnected fibers. Every arrow X → Y with Y decidable factors
through q.

Proof. Given an arrow f : X → Y with Y decidable, let |f | ↣ X × Y and
|q| ↣ X × Q be the graphs of f and q respectively. The goal is to find f ′

through it graph. Consider the subobject

G = {⟨z, y⟩ : ∃x(⟨x, z⟩ ∈ |q| ∧ ⟨x, y⟩ ∈ |f |)} ↣ Q× Y.

Since q is epic,
∃y(⟨z, y⟩ ∈ G). (6)

is universally valid for z ∈ Q. To see that G is indeed the graph of a function
f ′—as per (2)—, what remains to verify is uniqueness in y. Let

R := {z ∈ Q : ∃⟨y, y′⟩ ∈ ∆c
Y .⟨z, y⟩ ∈ G ∧ ⟨z, y′⟩ ∈ G}

Assume for contradiction that R is not initial. Then there are points a : 1 →
Q, b, c : 1 → Y such that b is distinct from c and such that ⟨a, b⟩ and ⟨a, c⟩
factor through G. That means that there exists points d : 1 → q−1(a)∩f−1(b)
and e : 1 → q−1(a) ∩ f−1(c).

Since Y is decidable, b complemented and thus so is f−1(b). As f−1(c)
is a subobject of f−1(b)c, (q−1(a)∩ (f−1(b))c ̸= ∅). This means that q−1(a)
would not be connected. A contradiction.

Therefore, by NS, R must be initial. Thus,

¬∃⟨y, y′⟩ ∈ ∆c
Y .⟨z, y⟩ ∈ G ∧ ⟨z, y′⟩ ∈ G

is universally valid for z ∈ Q. Wherefrom,

⟨y, y′⟩ ∈ ∆c
Y ⇒ ¬(⟨z, y⟩ ∈ G ∧ ⟨z, y′⟩ ∈ G)
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is universally valid for z ∈ Q and ⟨y, y′⟩ ∈ Y × Y . By contrapositive,

(⟨z, y⟩ ∈ G ∧ ⟨z, y′⟩ ∈ G) ⇒ ¬¬(y = y′)

is universally valid for z ∈ Q and ⟨y, y′⟩ ∈ Y × Y , since α always implies
¬¬α. But using the decidability once more,

(⟨z, y⟩ ∈ G ∧ ⟨z, y′⟩ ∈ G) ⇒ y = y′

is universally valid for z ∈ Q and ⟨y, y′⟩ ∈ Y ×Y . Which yields uniqueness.
Therefore, G is the graph of an arrow f ′ : Q → Y that factors f .

By delving deeper into the internal logic of the topos it is possible to do
away with NS in the previous proof, yet this would go beyond the present
purposes.

Proof of the Fiber Pneumoconnectedness Lemma 2.1. 2.6 yields (i)⇒(ii),
2.7 yields (ii)⇒(iii). Finally (iii)⇒(i) is trivial since 2 is decidable.

3. Precohesiveness

Recall that a topos E is precohesive over a topos S if there is a string of
adjunctions

f! ⊣ f ∗ ⊣ f∗ ⊣ f ! : E → S (7)

such that f ∗ is fully faithful, f! preserves finite products, and that the counit
f ∗f∗ → 1 is monic (See Lawvere and Menni [3, Lemma 3.2]).

From Theorem A and from the results in [6] it is evident that NS + DSO
+ DQO yields that E is precohesive over Dec(E).

To provide a converse in the presence of NS, let f be as in (7) over a
boolean base. It is proved in 2.3 that DQO holds on E .

Since this means in particular that the unit σ : 1 → f ∗f! is epic, by [3,
Proposition 2.2]) this is equivalent to the counit β : f ∗f∗ → 1 being monic.
To verify the uniqueness in DSO, let g : A ↣ X with A decidable have
the same factoring property for arrows from 1. Then there is a unique arrow
g′ : A ↣ f ∗f∗X such that the following diagram commutes:

A ##
g

##

��
g′

��
f ∗f∗X //

βX

// X

7776 



E. RUIZ-HERNÁNDEZ
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It remains to see that g′ is epic. By virtue of 2.4, it suffices to verify that it is
dense, since then

A
g′ //

∼= σA

��

f∗X

σf∗X ∼=
��

f!A
f!g

′
// // f!f∗X

f!g
′ is epic and thus so is g′.
To this effect, notice that by NS, exactly one of the following is uni-

versally valid: f ∗f∗X ∩ (A¬¬)c = ∅ or ¬(f ∗f∗X ∩ (A¬¬)c = ∅), since
neither has free variables and are thus interpreted as points in Ω. Assum-
ing for contradiction the latter holds, there exists a global element a : 1 →
f ∗f∗X ∩ (A¬¬)c. But since f ∗f∗X ∩ (A¬¬)c ↣ X , a factors through A.
That is,

a ∈ A ∧ ¬(a ∈ A)

would hold—a contradiction. Therefore, f∗X ∩ (A¬¬)c = ∅ holds. Whence
A is ¬¬-dense in f∗X . This finishes the proof of Theorem C.
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México.
e.ruiz-hernandez@cinvcat.org.mx

Pedro Solórzano
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FIBRATIONS OF DOUBLE
GROUPOIDS, I: ALGEBRAIC

PROPERTIES AND HOMOTOPY
SEQUENCES.

Antonio M. CEGARRA

Résumé. Nous introduisons la notion de fibration de double groupoı̈des, que
nous définissons comme un foncteur double possédant une propriété spécifique
de remplissage-relèvement. Nous en étudions les propriétés fondamentales,
notamment en établissant des suites exactes d’homotopie, parmi lesquelles
figurent une suite de Mayer-Vietoris associée à un changement de base, ainsi
que la suite d’homotopie propre à une fibration. Nous construisons également
le module croisé fondamental d’une fibration.
Abstract. We introduce the notion of fibrations of double groupoids, defined
as double functors with a specific filling-lifting property, and study their main
properties. In particular, we establish exact homotopy sequences, including
a Mayer-Vietoris sequence arising from a change of base, and the homotopy
sequence associated to a fibration. We also construct the fundamental crossed
module of a fibration.
Keywords. Double groupoid, Fibration, Homotopy groups, Crossed module,
Geometric realization.
Mathematics Subject Classification (2020). 18N10, 20L05, 55P15, 55R15.
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Introduction and summary.

Double groupoids, that is, groupoid objects in the category of groupoids,
were introduced by Ehresmann [22, 23, 24] in the late 20th century and
have since been studied by several researchers due to their connections with
various areas of mathematics. In particular, (small) double groupoids have
garnered interest in algebraic topology, largely thanks to the work of Brown,
Higgins, Porter, and others, where the connection of double groupoids with
crossed modules and a higher Seifert-van Kampen Theory has been estab-
lished (see, for example, the survey [7] and the references therein).

This is the third paper in a series exploring some purely algebraic proper-
ties of double groupoids using methods inspired by the topological context.
In [17], we addressed the homotopy types obtained from double groupoids
satisfying a quite natural filling condition. Like topological spaces, these
double groupoids have associated homotopy groups, which are defined com-
binatorially using only their algebraic structure. Thus, the notion of weak
equivalence between such double groupoids arises, and a corresponding ho-
motopy category is defined. A main result states that the homotopy category
of double groupoids with the filling property is equivalent to the homotopy
category of all topological spaces with the property that the nth homotopy
group at any base point vanishes for n ≥ 3 (that is, the category of homo-
topy 2-types). Similar to the theory of Postnikov invariants with homotopy
2-types, the paper [19] provides a precise and purely algebraic classifica-
tion for weak equivalence classes of double groupoids by three-cohomology
classes.

This work and its companion paper [18] deal with fibrations of dou-
ble groupoids, which we introduce as those double functors between dou-
ble groupoids F : A → B that always solve certain filling-lifting prob-
lems on morphisms and boxes (see Definition 2.1 for precision). For in-
stance, a double groupoid A has the filling property if and only if the dou-
ble functor A → ∗, from A to the final double groupoid ∗, is a fibration.
If A and B are 2-groupoids, regarded as double groupoids where one of
the side groupoids of morphisms is discrete, then a fibration F : A → B
in our sense is the same as a fibration of 2-groupoids in the sense of Mo-
erdijk and Svensson[33, 34], Hermida [28], Buckley [15], or Hardie, Kamps,
and Kieboom [27]. By the equivalence between crossed complexes over
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groupoids and 2-groupoids, our concept of fibration also generalizes the no-
tion of fibration of crossed modules over groupoids by Brown [6]. In par-
ticular, if both A and B are groupoids, viewed as double groupoids whose
vertical morphisms are all identities and whose boxes are all vertical identi-
ties, then a fibration F : A → B in our sense is the same as a fibration of
groupoids in the sense of Grothendieck [25] and Brown [2]. However, our
concept of fibration is more restrictive than the notion of double fibration
proposed by Cruttwell, Lambert, Pronk, and Szyld in [20].

After Section 1, where we briefly establish some notational conventions
on double groupoids, Sections 2 and 3 present the concept of fibration be-
tween double groupoids and study its basic properties, such as the change of
base property, the filling property of fibres, and the path-lifting and homotopy-
lifting properties. In Section 3, we also review several necessary definitions
and results for the fundamental groupoid and the homotopy groups of a dou-
ble groupoid. In Section 4, we show how a Mayer-Vietoris type exact se-
quence on homotopy groups arises from a change in the base of a fibration
of double groupoids. This is used in Section 5 to derive a 9-term exact
sequence on homotopy groups from a fibre sequence of double groupoids.
This section also includes additional information about this homotopy se-
quence that relates to the actions of fundamental groupoids on the homotopy
groups of fibres. In particular, we construct the fundamental crossed module
over groupoids of a fibration of double groupoids. Our results in Sections
4 and 5 are deeply inspired by those we generalize, stated by Brown in [2]
and Brown, Heath, and Kamps in [10] for groupoids, by Brown in [6] and
Howie in [29] for crossed modules over groupoids, and by Hardie, Kamps,
and Kieboom in [27] and Kamps and Porter in [30] for 2-groupoids.

Concerning the relationship between fibrations of double groupoids and
simplicial and topological fibrations, we refer the reader to the companion
paper [18].

1. Some conventions on double groupoids.

The notion of a double groupoid is well-known; in this preliminary section,
we specify some basic terminology and notational conventions. We will
work only with small double groupoids, so that in a double groupoid A we
have a set of objects (usually denoted by a, b, c, . . .), horizontal morphisms
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between them (f, g, h, . . .), vertical morphisms between them (x, y, z, . . .),
both with composition written by juxtaposition, and boxes (α, β, γ, . . .), usu-
ally depicted as

d

α

b
f
oo

c

y
OO

a

x
OO

g
oo

(1)

where the horizontal morphisms f and g are, respectively, its vertical target
and source, and the vertical morphisms y and x are its respective horizontal
target and source. The horizontal composition of boxes is denoted by the
symbol ◦h:

·
α′

·f ′
oo

α

·f
oo

7→
·

z
OO

·
g′
oo

OO

·g
oo

x
OO ·

α′◦hα
·f ′f

oo

·
z
OO

·
g′g
oo

x
OO

and the vertical composition of boxes is denoted by the symbol ◦v:

·
α

·f
oo

·
y
OO

α′
·oo

x
OO

7→

·
y′
OO

·
h
oo

x′
OO

·
α◦vα′

·f
oo

·
yy′
OO

·
xx′
OO

h
oo

Horizontal and vertical identities on objects and morphisms are respectively
denoted by Iha, Iva, I

v
f , Ihx, and Ia = Iv

Iha
= IhIva , depicted as

a

aa

a

·
Ivf

·f
oo

· ·
f
oo

·
Ihx

·

·
x
OO

·
x
OO a

Ia

a

a a

and horizontal and vertical inverses of boxes are respectively denoted by
α−h, α−v, and α−hv = (α−h)−v = (α−v)−h; that is, for α as in (1),

·
α−h

·f−1
oo ·

α−v

·g
oo ·

α−hv

·g−1
oo

·
x
OO

·
g−1
oo

y
OO

·
y−1
OO

·
f
oo

x−1

OO

·
x−1

OO

·
f−1
oo

y−1
OO
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We will frequently use the coherence theorem by Dawson and Paré [21,
Theorem 1.2], which ensures that if a compatible arrangement of boxes in
a double groupoid is composable in two different ways, the resulting pasted
boxes are equal. Throughout the paper, when we refer to an equality between
pasting diagrams of boxes in a double groupoid, we means that the resulting
pasted boxes are the same.

2. Fibrations between double groupoids.

A double functor F : A → B between double groupoids maps objects,
horizontal and vertical morphisms, and boxes in A to objects, horizontal
and vertical morphisms, and boxes in B, respectively, in such a way that it
preserves compositions and identities.

Definition 2.1. A double functor F : A → B between double groupoids is a
fibration if all lifting problems

(i)
� F //

·

· a

∃?
OO

∃?
oo

·

· Fa

x̃
OO

f̃

oo

(ii) ·
� F //∃?

·f
oo

·

OO

·oo

x
OO ·

α̃

·Ff
oo

·

OO

·
Fx

OO

oo

have solution. That is,

(i) If a is an object of A, for any horizontal (resp. vertical) morphism f̃
(resp. x̃) in B with source Fa, there is a horizontal (resp. vertical)
morphism f (resp. x) in A with source a such that Ff = f̃ (resp.
Fx = x̃).

(ii) If f is a horizontal morphism of A and x is a vertical morphism of A
whose target is the source of f , for any box α̃ of B with vertical target
Ff and horizontal source Fx, there is a box α in A with vertical target
f and horizontal source x such that Fα = α̃.
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The above fibration condition (i) means that the restrictions of F to the
respective groupoids of horizontal and vertical morphisms of A and B are
both fibrations of groupoids in the sense of Brown [2] or Grothendieck [25].
In fact, if both A and B are groupoids, considered as double groupoids with
all vertical morphisms as identities and all boxes as vertical identities, then a
fibration F : A → B in the sense of Definition 2.1 is the same as a fibration
of groupoids. Furthermore, if A and B are 2-groupoids, regarded as double
groupoids whose vertical arrows are all identities, then a fibration F : A →
B is the same as a fibration of 2-groupoids in the sense of Moerdijk and
Svensson [33, 34] (see [33, Lemma 1.7.3]) or, equivalently, a 2-fibration as
defined by Hermida [28] or Buckley [15].

However, our concept of fibration between double groupoids is more
restrictive than the notion of double fibration proposed by Cruttwell, et al.
[20]. A double functor between double groupoids F : A → B is a double
fibration in the sense of [20, Definition 2.25] whenever its restriction to the
groupoids of vertical morphisms is a fibration, and every lifting problem

·
� F //∃?

·f
oo

·

OO

·oo

OO ·
α̃

·Ff
oo

·

OO

·

OO

oo

has a solution. If F is a fibration as in Definition 2.1, we can first select a
vertical morphism x with target the source of f , which is carried by F to the
vertical target of α̃ and then to find a box α in A with vertical target f and
horizontal source x such that Fα = α̃. Thus, every fibration between double
groupoids is a double fibration. However, the converse is false because, for
example, double fibration does not necessary restrict fibration between the
groupoids of horizontal morphisms.

The fibration conditions are more symmetric than they appears:

Lemma 2.2. If F : A → B is a fibration of double groupoids, then any of
the three lifting problems below has a solution.

·
� F //∃?

·oo

·

OO

·
f
oo

x
OO ·

α̃1

·oo

·

OO

·
Fx

OO

Ff
oo
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·
� F //∃?

·f
oo

·
x
OO

·oo

OO ·
α̃2

·Ff
oo

·
Fx

OO

·

OO

oo

·
� F //∃?

·oo

·
x
OO

·
f
oo

OO ·
α̃3

·oo

·
Fx

OO

·

OO

Ff
oo

Proof. Since F is a fibration, there are boxes in A

·
α1

·f
oo

·

OO

·
x−1 ,
OO

oo

· ·f−1
oo

α2

·

OO

·oo

x ,
OO · ·f−1

oo

α3

·

OO

·oo

x−1
OO

such that Fα1 = α̃−v
1 , Fα2 = α̃−h

2 , and Fα3 = α̃−hv
3 . Then, α−v

1 , α−h
2 , and

α−hv
3 are solutions to the respective lifting problems.

Let ∗ denote the final double groupoid; that is, the double groupoid with
only one object, ∗, one vertical morphism, Iv∗, one horizontal morphism, Ih∗ ,
and one box

∗ ∗
I∗

∗ ∗

If A is a double groupoid, then the double functor A → ∗ is a fibration if
and only if A has the so-called filling property: Any filling problem

· ·f
oo

∃?
·

OO

·oo

x
OO

has a solution. This filling condition on double groupoids is often assumed
in the case of double groupoids arising in different areas of mathematics,
such as in weak Hopf algebra theory or in differential geometry (see, for in-
stance, Andruskiewitsch and Natale [1] and Mackenzie [32]). It is also sat-
isfied for those double groupoids that have emerged with an interest in alge-
braic topology, mainly thanks to the work of Brown, Higgins, Spencer, et al.
(see the papers by Brown [3, 4, 7, 8] and the references given there). Thus,
the filling condition is easily proven for edge symmetric double groupoids
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(also called special double groupoids) with connections (see Brown and Hig-
gins [12], Brown and Spencer [14], Brown, Hardie, Kamps and Porter [9],
and Brown, Kamps and Porter [13]), for double groupoid objects in the cate-
gory of groups (also termed cat2-groups by Loday [31], see also Porter [35]
and Bullejos, Cegarra and Duskin [16]), or, for example, for 2-groupoids (re-
garded as double groupoids where one of the side groupoids of morphisms
is discrete (see for instance Moerdijk and Svensson [34] and Hardie, Kamps
and Kieboom [26]).

Lemma 2.2 implies the following useful result by Andruskiewitsch and
Natale [1, Lemma 1.12].

Corollary 2.3. In a double groupoid satisfying the filling condition, any of
the filling problems below has a solution:

·
∃?

·oo

·

OO

·
x ,
OO

f
oo

· ·oo

∃?
·

x
OO

·
f
oo

,OO
· ·f
oo

∃?
·

x
OO

·oo

,OO

Proposition 2.4. Let F : A → B be a fibration of double groupoids.

(i) If B has the filling property, then A also has the filling property.

(ii) If A has the filling property and F is onto on objects, then B has the
filling property.

Proof. (i) Suppose B has the filling property, and let

· ·f
oo

∃?
·

OO

·oo

x
OO

be a filling problem in A. Choose a box α̃ in B of the form

· ·Ff
oo

α̃

·

OO

·oo

Fx
OO

Then, as F is a fibration, we may choose a box α in A with vertical target f
and horizontal source x such that Fα = α̃. In particular, α solves the given
filling problem in A.
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(ii) Suppose A has the filling property, and let

· ·f̃
oo

∃?
·

OO

·oo

x̃
OO

be a filling problem in B. Since F is onto on objects, we can choose an
object a of A such that Fa is the source of x̃. Using that F is a fibration, we
can choose a vertical morphism x of A with source a such that fx = x̃, as
well as a horizontal morphism with source the target of x such that Ff = f̃ .
Since A has the filling property, we can choose a box α of A

· ·f
oo

α

·

OO

·oo

x
OO

whose respective horizontal and vertical sources are f and x. Obviously, Fα
solves the given filling problem in B.

Proposition 2.5. In a pullback square of double groupoids

B′ ×B A G′
//

F ′

��

A
F
��

B′
G

// B

if F is a fibration, then so also is F ′.

Proof. (i) By [2, Prop. 2.8], the projection F ′ restricts giving fibrations both
between the groupoids of horizontal and vertical morphisms.

(ii) Suppose given a box α′ of B′ and morphisms f and x in A as in

·
α′

·f ′
oo

·

OO

·
x′
OO

oo

· ·f
oo

·
x
OO

such that Gf ′ = Ff and Gx′ = Fx. Since F is a fibration, there is a solution
in A, say α, to the lifting problem
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·
� F //∃?

·f
oo

·

OO

·oo

x
OO ·

Gα′

·oo

·

OO

·

OO

oo

Then (α′, α) is a box in B′ ×B A satisfying that F ′(α′, α) = α′.

Let F : A → B be a fibration of double groupoids. If b is an object
of B, let Fb = F−1(b) denote the double groupoid fibre of F over b. That
is, Fb is the double subgroupoid of A with objects those a of A such that
Fa = b, vertical morphisms those vertical morphisms x of A such that
Fx = Ivb , horizontal morphisms those horizontal morphisms f of A such
that Ff = Ihb , and boxes those α of A such that Fα = Ib. For every object a
of Fb, we call the sequence

(Fb, a) ↪→ (A, a) F−→ (B, b)

a fibre sequence of double groupoids.

Proposition 2.6. In any fibre sequence as above, the double groupoid fibre
Fb has the filling property.

Proof. This follows from Proposition 2.5, since Fb occurs in the pullback
square of double groupoids

Fb
� � //

��

A
F
��

∗ b // B

3. Paths, loops, homotopies, homotopy groups.

In this section, we work under the assumption that the double groupoids
satisfy the filling condition.

Let A be a double groupoid. A path in A from an objet a to an object a′

[17, §2], denoted by
(f, x) : a↷ a′,
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is a pair of morphisms (f, x) where x is a vertical morphism from a and f is
a horizontal morphism from the target of x to a′; that is, a pair of morphisms
of the form

·f
a′ oo

a

x
OO (2)

When a′ = a, we say that (f, x) : a ↷ a is a loop with base point a. The
identity loop at an object a is the loop (Iha, I

v
a) : a↷ a, which is depicted as

a a

a

Proposition 3.1 (Path-lifting property). Let F : A → B be a fibration of
double groupoids. For every object a of A and every path (f̃ , x̃) : Fa ↷ b
in B, there exists a path (f, x) : a↷ a′ such that (Ff, Fx) = (f̃ , x̃).

Proof. Since F is a fibration, we can choose a vertical morphism in A with
source a, say x : a→ a′′, such that Fx = x̃. Since Fa′′ is the source of f̃ , we
can also choose a horizontal morphism f : a′′ → a′ in A such that Ff = f̃ .
Thus (f, x) : a↷ a′ is a path in A such that Ff = f̃ and Fx = x̃.

If (f, x), (g, y) : a ↷ a′ are two paths in A, then (f, x) is homotopic
to (g, y), denoted by (f, x) ≃ (g, y), whenever there is a box α in A of the
form

·
α

·f−1g
oo

· ·
yx−1
OO (3)

that is, whose horizontal target and vertical sources are identities, its hori-
zontal source is yx−1, and its vertical target is f−1g (see [17, §2]). We call
such a box a homotopy, and we often write α : (f, x) ≃ (g, y) whenever we
wish to display the homotopy.

Proposition 3.2 (Path homotopy-lifting property). Let F : A → B be a
fibration of double groupoids. Suppose (g, y) : a ↷ a′ is a path in A,
(f̃ , x̃) : Fa ↷ Fa′ is a path in B, and α̃ : (f̃ , x̃) ≃ (Fg, Fy) is a homotopy
in B. Then, there is a path (f, x) : a ↷ a′ in A such that (Ff, Fx) = (f̃ , x̃)
and there is a homotopy α : (f, x) ≃ (g, y) such that Fα = α̃.
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Proof. Using the filling property, we can select a box β̃ in B of the form

Fa′

β̃

·
f̃
oo

·

z̃

OO

Fa

x̃

OO

h̃

oo

and construct the box γ̃ of B by

Fa′

Fa′

γ̃

·
Fg
oo

=
·

z̃
OO

Fa
h̃

oo

Fy
OO

β̃

·
f̃
oo

α̃

·
f̃−1 Fg
oo

·

Ih

·

Fy x̃−1
OO

·

z̃

OO

Fa

x̃
OO

h̃

oo Fa

x̃
OO

Since F is a fibration, we can choose a box γ in A of the form

a′

γ

·
g
oo

·

z
OO

a
h
oo

y
OO

such that Fγ = γ̃, and then (since Fz = z̃ and Fh = h̃) we can also choose
a box β of the form

a′

β

·
f
oo

·

z
OO

a
h
oo

x
OO

such that Fβ = β̃. Then (f, x) : a ↷ a′ is a path in A satisfying that
(Ff, Fx) = (f̃ , x̃). Furthermore, if α : (f, x) ≃ (g, y) is the homotopy
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defined by

·

·
α

·f−1g
oo

=
· ·

yx−1
OO

β-h

·f−1
oo

γ

·g
oo

·
x

OO

Ih

·
z

OO

h−1
oo ·

y

OO

h
oo

·
x−1

OO

·
x−1

OO

then,

·

·

Fα =

β̃-h

·f̃−1
oo

γ̃

·g̃
oo

=·
x̃

OO

Ih

·
z̃

OO

h̃−1

oo ·
ỹ

OO

h̃

oo

·
x̃−1

OO

·
x̃−1

OO

β̃-h

·

β̃

f̃−1
oo ·f̃

oo

α̃

·f̃−1Fy
oo

= α̃.

· ·
Fy x̃−1

OO

·

x̃

OO

·h̃−1
oo

z̃

OO

·h̃oo

x̃

OO

·
x̃

OO

Ih

·
x̃−1

OO

·
x̃−1

OO

Ih

For every pair of objects a and a′ of a double groupoid A, by [17, Lemma
2.1], homotopy is an equivalence relation on the set of paths in A from a to
a′, and we write [f, x] to denote the homotopy class of a path (f, x) : a↷ a′

in A. These homotopy classes of paths are the morphisms

[f, x] : a→ a′

of the fundamental groupoid of the double groupoid, which is denoted by

ΠA.

The composition of two morphisms [f, x] : a → a′ and [g, y] : a′ → a′′ in
ΠA is defined as follows: By the filling condition, we can select a box θ in
A whose horizontal target is y and whose vertical source is f . Thus, we have
a diagram in A of the form

a′′ ·
g
oo

θ

·
f ′
oo

a′

y
OO

·
y′
OO

f
oo

a

x

OO

(4)
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and we define the composite

[g, y] · [f, x] = [gf ′, y′x] : a↷ a′′. (5)

By [17, Lemma 2.2], this composition is well-defined, that is, it does not
depend on the representative paths or on the selection made of the box θ in
(4). By [17, Theorem 2.3], with this composition, ΠA is actually a groupoid.
The identity of an object a is the morphism represented by the identity loop
at a,

[Iha, I
v
a] : a→ a.

The inverse in ΠA of a morphism [f, x] : a → a′ represented by a path
(f, x) : a↷ a′ is the morphism

[f, x]−1 = [f ′, x′] : a′ → a

represented by the path (f ′, x′) : a′ ↷ a defined by the vertical target and
the horizontal source of a (any) box γ in A whose horizontal target is x−1

and whose vertical source is f−1, that is, of the form

a

γ

·
f ′
oo

·
x−1

OO

a′
f−1
oo

x′
OO

The set π0A [19, §3,1], of path-connected classes of objects of a double
groupoid A, is

π0A = π0(ΠA),

the set of iso-classes of objects of its fundamental groupoid.
The group π1(A, a) [19, §3,2], of homotopy classes of loops in A based

at a, is
π1(A, a) = AutΠA(a),

the group of automorphisms of a in the fundamental groupoid ΠA.
The abelian group

π2(A, a)
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[19, §3,3] consists of all boxes of A whose horizontal source and target are
both Iva, the vertical identity of a, and whose vertical source and target are
both Iha, the horizontal identity of a; that is, of the form

a

σ

a

a a

By the Eckman-Hilton argument, the interchange law on A implies that
the operations ◦h and ◦v on π2(A, a) coincide and are commutative. Thus,
π2(A, a) is an abelian group with addition

σ + τ = σ ◦h τ = σ ◦v τ,

zero 0 = Ia, and opposites −σ = σ−v = σ−h.
Every double functor F : A → B induces a functor between the funda-

mental groupoids
F∗ : ΠA → ΠB,

which carries a morphism [f, x] : a→ a′ to the morphism

F∗[f, x] = [Ff, Fx] : Fa→ Fa′.

Hence, for every object a of A, F induces a pointed map

F∗ : π0(A, [a]) → π0(B, [Fa])

and a homomorphism of groups

F∗ : π1(A, a) → π1(B, Fa).

Clearly, there is also an induced homomorphism

F∗ : π2(A, a) → π2(B, Fa)

given by
a

σ

a

7→
a a

Fa

Fσ

Fa

Fa Fa
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4. The Mayer-Vietoris sequence.

Throughout this section, we consider a pullback square of double groupoids

B′×B A G′
//

F ′
��

A
F
��

B′ G // B

(6)

where F is a fibration and both B and B′ have the filling property. By Propo-
sition 2.5 F ′ is a fibration and, by Proposition 2.4, both A and B′×BA have
the filling property.

Moreover, we fix an object (b′, a) of B′×BA, so that b′ is an object of B′

a is an object of A such that Gb′ = Fa, and let b = Fa.

Theorem 4.1 (Mayer-Vietoris sequence). There is an exact sequence of ho-
momorphisms of groups and pointed maps

π2
(
B′×BA, (b′, a)

) (F ′∗,G′∗) // π2(B′, b′)×π2(A, a)
−G∗+F∗ //0 → π2(B, b)

∂2

rr

π1
(
B′×BA, (b′, a)

)
//(F ′∗,G′∗) π1(B′, b′)×π1(A, a)

G−1
∗ ·F∗

// π1(B, b)
∂1

rr

π0
(
B′×BA, [b′, a]

)
//(F ′∗,G′∗) (π0B′×π0Bπ0A, ([b′], [a])) → 1

Furthermore, [f̃1, x̃1], [f̃2, x̃2] ∈ π1(B, b) satisfy ∂1[f̃1, x̃2] = ∂1[f̃2, f̃2] if and
only if there are [f ′, x′] ∈ π1(B′, b′) and [f, x] ∈ π1(A, a) such that

[f̃2, x̃2] = G∗[f
′, x′]−1 · [f̃1, x̃1] · F∗[f, x].

The meaning of the maps in the sequence is clarified in the proof pro-
vided in the following subsections 4.1, 4.2, and 4.3.

If the pullback square (6) is a pullback of groupoids, regarded as double
groupoids where the vertical morphisms are all identities and the boxes are
all vertical identities, then the Mayer-Vietoris sequence in Theorem 4.1 spe-
cializes to the Mayer-Vietoris sequence of Brown, Heath, and Kamps [10,
Theorem 2.2] (see also [5, 10.7.6]).
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4.1 The connecting homomorphism ∂2 : π2(B, b)→π1
(
B′×B A, (b′, a)

)
.

Let β ∈ π2(B, b). Since F is a fibration, the lifting problem

a
� F //∃?

·oo

a a

OO b

β

b

b b

has solution. Thus, we can choose a box αβ in A of the form

a

αβ

·
fβ
oo

a a

xβ
OO (7)

such that Fαβ = β. Since Ffβ = Ihb = GIhb′ and Fxβ = Ivb = GIvb′ , we have
that (

(Ihb′ , fβ), (I
v
b′ , xβ)

)
: (b′, a) ↷ (b′, a) (8)

is a loop in the double groupoid B′×BA.

Lemma 4.2. If the choice of αβ in (7) is changed, then the loop (8) is
changed to a homotopic loop in B′×BA.

Proof. Suppose any other box in A

a ·
f ′
oo

α′

a a

x′
OO

such that Fα′ = β. We define a homotopy α : (fβ, xβ) ≃ (f ′, x′) in A by

·

·

α

·
f−1
β f ′
oo

=

· ·

x′x−1
β

OO
α-h
β

a

f−1
β
oo

α′

·
f ′
oo

a

xβ

OO

Ih

a a

x′

OO

·

x−1
β

OO

·

x−1
β

OO

Since
b

Fα =
β−h

b

β

b

= Ib = GIb′b

Ib

b b

b b
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(Ib′ , α) :
(
(Ihb′ , fβ), (I

v
b′ , xβ)

)
≃

(
(Ihb′ , f

′), (Ivb′ , x
′)
)

is a homotopy in the pull-
back double groupoid B′×BA.

Definition 4.3. The map ∂2 : π2(B, b) → π1(B′×BA, a′) is given, on every
β ∈ π2(B, b), by

∂2β = [(Ihb′ , fβ), (I
v
b′ , xβ)] : (b

′, a) → (b′, a),

where (fβ, xβ) : a ↷ a is the loop of A given by the vertical target fβ and
the horizontal source xβ of a (any) box αβ , as in (7), such that Fαβ = β.

Let us stress that, by Lemma 4.2, ∂2 is a well-defined map.

Proposition 4.4. ∂2 : π2(B, b) → π1(B′×BA, (b′, a)) is a homomorphism of
groups.

Proof. Suppose β, γ ∈ π2(B, b). Let

a ·
fβ
oo

αβ

a a

xβ
OO a ·

fγ
oo

αγ

a a

xγ
OO

be boxes of A such that Fαβ = β and Fαγ = γ. Since F is a fibration,
Fxβ = Ivb , and Ffγ = Ihb , we can choose a box θ in A of the form

· ·f ′
oo

θ

a

xβ
OO

·
fγ
oo

x′
OO

such that Fθ = Ib. Hence Fθ = GIb′ and the diagram in B′×BA

(b′,a) (b′,·)
(Ih

b′ ,fβ)oo

(Ib′ ,θ)

(b′,·)
(Ih

b′ ,f
′)

oo

(b′,a)

(Iv
b′ ,xβ)

OO

(b′,·)
(Ih

b′ ,fγ)
oo

(Iv
b′ ,x

′)

OO

(b′,a)

(Iv
b′ ,xγ)

OO
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tell us that, in the group π1(B′×BA, (b′, a)),

∂2β · ∂2γ = [(Ihb′ , fβ), (I
v
b′ , xβ)] · [(Ihb′ , fγ), (Ivb′ , xγ)]

= [(Ihb′ , fβf
′), (Ivb′ , x

′xγ)].

Now, we have the box αβ+γ of A defined by

a

a

αβ+γ

·
fβf

′
oo

=

a a

x′xγ

OO
αβ

·
fβ
oo

θ

·
f ′
oo

a

αγ

a

OO

·

x′
OO

fγ
oo

a a

xγ
OO

which satisfies that

b

F (αβ+γ) =
β

b

Ib

b

= β + γ.b b

γ

b

b b

Hence, by Lemma 4.2, ∂2(β + γ) = [(Ihb′ , fβf
′), (Ivb′ , x

′xγ)] = ∂2β · ∂2γ.

4.2 The connecting map ∂1 : π1(B, b) → π0(B′×BA, [b′, a]).

Let (f̃ , x̃) : b↷ b be a loop in B based at b

b ·
f̃
oo

b

x̃
OO

By Proposition 3.1, we can choose a path (f, x) : a↷ af̃,x̃ in A

af̃,x̃ ·
f
oo

a

x
OO (9)

such that (Ff, Fx) = (f̃ , x̃). Since Faf̃,x̃ = b, the pair (b′, af̃,x̃) is an object
of the pullback double groupoid B′×BA.

9897 



A. M. CEGARRA FIBRATIONS OF DOUBLE GROUPOIDS

Lemma 4.5. (i) If the choice of (f, x) in (9) is changed, then (b′, af̃,x̃) is
changed to a path-connected object in B′×BA.

(ii) If (g̃, ỹ) : b ↷ b is a loop in B homotopic to (f̃ , x̃), then a suitable
selection of the lifting path of (g̃, ỹ) leaves the object af̃,x̃ unaltered.

Proof. (i) Suppose (g, y) : a ↷ a1 other path in A such that (Fg, Fy) =
(f̃ , x̃). Since Fy = x̃ = Fx and F is a fibration, we can choose a box α in
A as in the diagram

a1 ·
g
oo

α

·
hoo

a

y
OO

·

x−1

OO

af̃ ,x̃

z

OO

f−1
oo

such that Fα = Ih
f̃−1 . Since F (gh) = Fg Fh = f̃ f̃−1 = Ihb = G(Ihb′)

and Fz = Ivb = G(Ivb′), the path
(
(Ihb′ , gh), (I

v
b′ , z)

)
: (b′, af̃,x̃) ↷ (b′, a1)

belongs to the pullback double groupoid B′×BA, so that [b′, af,x] = [b′, a1]
in π0(B′×BA).

(ii) If (g̃, ỹ) : b ↷ b is a loop homotopic to (f̃ , x̃) in B, by Proposi-
tion 3.2, there is a path (g, y) : a ↷ af̃,x̃, homotopic to (f, x), such that
(Fg, Fy) = (g̃, ỹ). Choosing this lifting path, we have ag̃,ỹ = af̃,x̃.

Definition 4.6. The map ∂1 : π1(B, b) → π0
(
B′×BA, [b′, a]

)
is given, for

every loop (f̃ , x̃) : b↷ b of B, by

∂1[f̃ , x̃] = [b′, af̃,x̃]

where af̃,x̃ is the end of a (any) path (f, x) : a ↷ af̃,x̃ in A, as in (9), such
that (Ff, Fx) = (f̃ , x̃).

Remark that, by Lemma 4.2, ∂1 is a well-defined map. Moreover, since
(F Iha, F I

v
a) = (Ihb , I

v
b ), we have ∂1[Ihb , I

v
b ] = [b′, a], that is, ∂1 is a pointed map.

4.3 The exactness of the Mayer-Vietoris sequence.

Proposition 4.7. The sequence of group homomorphisms below is exact.

0 → π2
(
B′ ×B A, (b′, a)

)(F ′
∗,G

′
∗)// π2(B′, b′)× π2(A, a)

F∗−G∗// π2(B, b)

9998 



A. M. CEGARRA FIBRATIONS OF DOUBLE GROUPOIDS

Proof. Exactness of the sequence above means that the homomorphisms F ′
∗

and G′
∗ induce an isomorphism

π2
(
B′×BA, (b′, a)

) ∼= π2(A, a)×π2(B,b) π2(B′, b′),

which follows directly from the definition of π2.

Proposition 4.8. The following sequence of group homomorphisms is exact.

π2(B′, b′)×π2(A, a)
F∗−G∗// π2(B, b)

∂2 // π1
(
B′×BA, (b′, a)

)
Proof. If σ is an element of the group π2(A, a), then we can choose the box
αFσ = σ in (7). Hence, ∂2(Fσ) = [(Ihb′ , I

h
a), (I

h
b′ , I

h
a)] = [Ih(b′,a), I

v
(b′,a)]. So

ImF∗ ⊆ Ker∂2. Let β′ be an element of the group π2(B′, b′). For any chosen
box in A as in (7)

a ·
f
oo

α

a a

x
OO

such that Fα = Gβ′, the box of B′×BA

(b′,a)

(β′,α)

(b′,·)
(Ih

b′ ,f)oo

(b′,a) (b′,a)

(Iv
b′ ,x)

OO

is a homotopy (β′, α) : (Ih(b′,a), I
v
(b′,a)) ≃

(
(Ihb′ , f), (I

v
b′ , x)

)
. Hence,

∂2(Gβ
′) = [(Ihb′ , f), (I

v
b′ , x)] = [Ih(b′,a), I

v
(b′,a)].

So ImG∗ ⊆ Ker∂2.
We now prove Ker∂2 ⊆ ImF∗ + ImG∗: Suppose β ∈ π2(B, b) such that

∂2β = [Ih(b′,a), I
v
(b′,a)]. As in (7), let

a

αβ

·
fβ
oo

a a

xβ
OO
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be a box of A such that Fαβ = β; so that ∂2β = [(Ihb′ , fβ), (I
v
b′ , xβ)]. There is

then a homotopy (Ih(b′,a), I
v
(b′,a)) ≃

(
(Ihb′ , fβ), (I

v
b′ , xβ)

)
; that is, a box in B′×BA

of the form

(b′,a)

(β′,α)

(b′,·)
(Ih

b′ ,fβ)oo

(b′,a) (b′,a)

(Iv
b′ ,xβ)
OO

for some boxes β′ of B′ and α of A of the form

b′

β′
b′

b′ b′

a

α

·
fβ
oo

a a

xβ
OO

satisfying that Gβ′ = Fα. Define σ = αβ ◦h α−h ∈ π2(A, a)

a

σ

a

=
a a

a

αβ

·
fβ
oo

α−h

a

f−1
β
oo

a a

OO

a

Then Fσ = Fαβ − Fα = β − Gβ′; so that β = F∗(σ) + G∗(β
′) ∈

ImF∗ + ImG∗.

Proposition 4.9. The sequence of group homomorphisms below is exact.

π2(B, b)
∂2 // π1

(
B′×BA, (b′, a)

) (F ′
∗,G

′
∗)// π1(B′, b′)×π1(A, a)

Proof. For every β ∈ π2(B, b), the box αβ in (7) is actually a homotopy in
A, αβ : (Iha, I

v
a) ≃ (fβ, xβ). Hence,

G′
∗(∂2β) = G′

∗[(I
h
b′ , fβ), (I

v
b′ , xβ)] = [fβ, xβ] = [Iha, I

v
a],

F ′
∗(∂2β) = F ′

∗[(I
h
b′ , fβ), (I

v
b′ , xβ)] = [Ihb′ , I

v
b′ ].

So Im∂2 ⊆ KerF ′
∗ ∩KerG′

∗. For the opposite inclusion, let(
(f ′, f), (x′, x)

)
: (b′, a) ↷ (b′, a)
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be a loop in B′×BA such that [f ′, x′] = [Ihb′ , I
v
b′ ] in π1(B′, b′) and [f, x] =

[Iha, I
v
a] in π1(A, a). Choose homotopies β′ : (Ihb′ , I

v
b′) ≃ (f ′, x′) in B′ and

α : (Iha, I
v
a) ≃ (f, x) in A; that is, boxes of the form

b′

β′

·
f ′
oo

b′ b′

x′
OO a

α

·
f
oo

a a

x
OO

Since Gf ′ = Ff and Gx′ = Fx, the box β = Fα ◦h Gβ′−h

b

β

b

=
b b

b

Fα

·
Ff
oo

Gβ′−h

b
Gf ′−1

oo

b b

OO

b

belongs to π2(B, b). Let

a

αβ

·
fβ
oo

a a

xβ
OO

be a box of A such that Fαβ = β, so that ∂2β = [(Ihb′ , fβ), (I
v
b′ , xβ)]. We can

construct a homotopy α1 : (fβ, xβ) ≃ (f, x) in A by

·

·
α1

·
f−1
β f
oo

=

· ·
xx−1

β

OO

α-h
β

·
f−1
β
oo

α

·f
oo

·
xβ

OO

Ih

· ·
x

OO

·
x−1
β

OO

·
x−1
β

OO

Since
b

Fα1 =
β−h

b

Fα

b

= Gβ′ ◦h Fα−h ◦h Fα = Gβ′,b

Ib

b b

b b

the pair (β′, α1) :
(
(Ihb′ , fβ), (I

v
b′ , xβ)

)
≃

(
(f ′, f), (x′, x)

)
is a loop homotopy

in B′×BA. Thus, [(f ′, f), (x′, x)] = [(Ihb′ , fβ), (I
v
b′ , xβ)] = ∂2β =∈ Im∂2.
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Proposition 4.10. The sequence

π1
(
B′ ×B A, (b′, a)

)(F ′
∗,G

′
∗)// π1(B′, b′)× π1(A, a)

G−1
∗ ·F∗
// π1(B, b),

where (F ′
∗, G

′
∗) is a homomorphism and G−1

∗ · F∗ is a pointed map, is exact.

Proof. Exactness of the sequence above means that the homomorphisms F ′
∗

and G′
∗ induce an epimorphism

π1
(
B′×BA, (b′, a)

)
↠ π1(A, a)×π1(B,b) π1(B′, b′).

To prove this, let (g, y) : a ↷ a and (f ′, x′) : b′ ↷ b′ be loops, in A and B′

respectively, such that [Fg, Fy] = [Gf ′, Gx′] in π1(B, b). By Proposition 3.2,
there is a loop (f, x) : a ↷ a in A such that [f, x] = [g, y] and (Ff, Fx) =
(Gf ′, Gx′). Then,

(
(f ′, f), (x′, x)

)
: (b′, a) ↷ (b′, a) is a loop in B′×BA and

F ′
∗[(f

′, f), (x′, x)] = [f ′, x′] and G′
∗[(f

′, f), (x′, x)] = [f, x] = [g, y].

Proposition 4.11. The following sequence of pointed maps is exact.

π1(B′, b′)×π1(A, a)
G−1

∗ ·F∗
// π1(B, b)

∂1 // π0
(
B′×BA, [b′, a]

)
Further, [f̃1, x̃1], [f̃2, x̃2] ∈ π1(B, b) satisfy ∂1[f̃1, x̃2] = ∂1[f̃2, f̃2] if and only
if there are [f ′, x′] ∈ π1(B′, b′) and [f, x] ∈ π1(A, a) such that

[f̃2, x̃2] = G∗[f
′, x′]−1 · [f̃1, x̃1] · F∗[f, x]. (10)

Proof. Given (f̃1, x̃1), (f̃2, x̃2) : b ↷ b loops in B, let us choose paths in A
(f1, x1) : a↷ a1 and (f2, x2) : a↷ a2 such that (Ff1, Fx1) = (f̃1, x̃1) and
(Ff2, Fx2) = (f̃2, x̃2); so that ∂1[f̃1, x̃1] = [b′, a1] and ∂1[f̃2, x̃2] = [b′, a2].

Suppose there are loops (f ′, x′) : b′ ↷ b′ in B′ and (f, x) : a ↷ a in A
such that (10) holds. Choose (g, y) : a2 ↷ a1 a path in A representative of
the composite morphism [f1, x1] · [f, x] · [f2, x2]−1 : a2 → a1 of ΠA. Since

[Gf ′, Gx′] = F∗[f1, x1] · F∗[f, x] · F∗[f2, x2]
−1

= F∗
(
[f1, x1] · [f, x] · [f2, x2]−1

)
= [Fg, Fy],

by Proposition 3.2, there is a path (g′, y′) : a2 ↷ a1 which is homotopic to
(g, y) and satisfies (Fg′, Fy′) = (Gf ′, Gx′). Then,(

(f ′, g′), (x′, y′)
)
: (b′, a2) ↷ (b′, a1) (11)
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is a path in B′ ×B A and therefore [b′, a1] = [b′, a2].
Conversely, assume that [b′, a1] = [b′, a2], so that there is a path in the

pullback B′×BA as (11), for some loop (f ′, x′) : b′ ↷ b′ in B′ and some path
(g′, y′) : a2 ↷ a1 in A such that (Gf ′, Gx′) = (Fg′, Fy′). The composite
morphism in ΠA

[f, x] = [f1, x1]
−1 · [g′, y′] · [f2, x2] : a→ a

is then an element of π1(A, a) = AutΠA(a) and

[f̃2, x̃2] = F∗[f2, x2] = F∗[g
′.y′]−1 · F∗[f1, x1] · F∗[f, x]

= G∗[f
′, x′]−1 · [f̃1, x̃1] · F∗[f, x].

Proposition 4.12. The following sequence of pointed maps is exact.

π1(B, b)
∂1 // π0

(
B′×BA, [b′, a]

)(F ′
∗,G

′
∗)//
(
π0B′ ×π0B π0A, ([b′], [a])

)
Proof. For every loop (f̃ , x̃) : b ↷ b in B, the path (f, x) : a → af̃,x̃ in (9)
tell us that the objects a and af̃,x̃ are path connected in A. Hence

(F ′
∗, G

′
∗)∂1[f̃ , x̃] = (F ′

∗, G
′
∗)[b

′, af̃,x̃] = ([b′], [af̃,x̃]) = ([b′], [a]).

So Im∂1 ⊆ (F ′
∗, G

′
∗)

−1([b′], [a]). For the opposite inclusion, let (b′0, a0) be an
object of B′×B A such that [b′0] = [b′] in π0B′ and [a0] = [a] in π0A. Choose
paths (f ′, x′) : b′0 ↷ b′ in B′ and (f, x) : a ↷ a0 in A. Since Gb′0 = Fa0
and F is a fibration, we can select a path (f1, x1) : a0 ↷ a1 such that

(Ff1, Fx1) = (Gf ′, Gx′) : Fa0 ↷ b.

Further, because of the filling property, we can choose now a box θ in A as
in the diagram

a1 ·f1
oo

θ

·g
oo

a0

x1

OO

·
y
OO

f
oo

a

x

OO
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This way, we find the path (f1g, yx) : a ↷ a1 in A which is a lifting of the
loop (f̃ , x̃) = (F (f1g), F (yx)) : b↷ b in B. Hence ∂1[f̃ , x̃] = [b′, a1]. As(

(f ′, f1), (x
′, x1)

)
: (b′0, a0) ↷ (b′, a1)

is a path in B′×BA, [b′0, a0] = [b′, a1] in π0(B′×BA), and we finally conclude
that ∂1[f̃ , x̃] = [b′0, a0]. Thus, [b′0, a0] ∈ Im∂1, as claimed.

Proposition 4.13. The map (F ′
∗, G

′
∗) : π0(B′ ×B A) → π0B′ ×π0B π0A is

surjective.

Proof. Suppose objects a0 of A and b′0 of B′ such that [Fa0] = [Gb′0] in
π0B. Then, we can choose is a loop (f̃ , x̃) : Fa0 ↷ Gb′0 in B and, by
Proposition 3.1, we can also choose a loop (f, x) : a0 ↷ a1 in A such that
(Ff, Fx) = (f̃ , x̃). Then, since Fa1 = Gb′0, the pair (b′0, a1) is an object of
B′×BA and F ′

∗[b
′
0, a1] = [b′0], G

′
∗[b

′
0, a1] = [a1] = [a0].

5. The homotopy sequence.

Throughout this section, we consider a given fibration of double groupoids
F : A → B, assuming that B has the filling property. For an object a in A,
let b = Fa and Fb = F−1(b) be the corresponding double groupoid fibre
over b. This setup leads to the following fibre sequence of pointed double
groupoids, where Propositions 2.4 and 2.6 ensure that both A and Fb have
the filling property:

(Fb, a)
i
↪→ (A, a) F−→ (B, b) (12)

Theorem 5.1. The fibre sequence (12) gives rise to an exact sequence (of
groups and pointed sets)

0 // π2(Fb, a)
i∗ // π2(A, a)

F∗ // π2(B, b)
∂2

ss

π1(Fb, a)
i∗ // π1(A, a)

F∗ // π1(B, b)
∂1

ss

π0(Fb, [a])
i∗ // π0(A, [a])

F∗ // π0(B, [b]).

(13)
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Furthermore, [f̃1, x̃1], [f̃2, x̃2] ∈ π1(B, b) satisfy ∂1[f̃1, x̃2] = ∂1[f̃2, f̃2] if and
only if there is an [f, x] ∈ π1(A, a) such that

[f̃2, x̃2] = [f̃1, x̃1] · F∗[f, x].

Proof. This result follows from the Mayer-Vietoris sequence stated in Theo-
rem 4.1 above, because Fb appears in the pullback square of double groupoids
depicted below.

∗ ×B A i //

��

A
F
��

Fb
∼=

∗ b // B

If (Fb, a) ↪→ (A, a) F−→ (B, b) is a pointed Moerdijk fibration of 2-
groupoids, regarded as double groupoids whose vertical arrows are all iden-
tities, then the associated 9-term exact sequence (13) yields the exact se-
quence constructed by Hardie, Kamps, and Kieboom in [27]. In particular,
if F : A → B is a Grothendieck fibration of groupoids, viewed as double
groupoids whose vertical morphisms are all identities and whose boxes are
all vertical identities, then (13) specializes to the 6-term exact sequence due
to Brown [2, Theorem 4.3], [5, 7.2.9].

The following proposition provides further relevant information about
the 9-term sequence.

Proposition 5.2. (i) There is a group action of the group π1(A, a) on the
group π1(Fb, a) making the homomorphism i∗ : π1(Fb, a) → π1(A, a)
into a crossed module.

(ii) There is a canonical action of the group π1(B, b) on the set π0Fb such
that the boundary ∂1 is given by ∂1[f̃ , x̃] = [f̃ ,x̃][a].

(iii) [a], [a′] ∈ π0Fb satisfy i∗[a] = i∗[a
′] if and only if [a′] = [f̃ ,x̃][a], for

some [f̃ , x̃] ∈ π1(B, b).

Proof. In the following subsections, these issues are addressed in a more
general setting, as detailed in Theorems 5.7 and 5.9, and Proposition 5.10
below.
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If F : A → B is a fibration of 2-groupoids, viewed as double groupoids
whose vertical morphisms are all identities, and we consider the equivalence
between 2-groupoids and crossed modules over groupoids as established by
Brown and Higgins [11], then Proposition 5.2 leads to the analogous state-
ments for fibrations of crossed modules over groupoids, as demostrated by
Howie [29, Theorem 3.1] and Brown [6, Theorem 2.11].

5.1 The fundamental crossed module π1F → π1A.

We begin by fixing some notations concerning crossed modules over groupoids.
If P is a groupoid, a (left) P-group is a functor from P to the category Gr of
groups. For every P-group H : P → Gr, each morphism ϕ : a→ b in P, and
each h ∈ H(a), we denote by ϕh the value of H(ϕ) at h and call it the action
of ϕ on h. Thus, a P-group H provides groups H(a), one for each a ∈ ObP,
and action homomorphisms

H(a) → H(b), h 7→ ϕh,

one for each morphism ϕ : a → b in P, satisfying ψ(ϕh) = ψϕh and 1h = h.
For instance, let

π1P : P → Gr, a 7→ π1(P, a) = AutP(a), (14)

denote the P-group that attaches to each object a the group of its automor-
phisms in P. The action of a morphism ϕ : a → b on an automorphism
ψ : a → a is given by conjugation in P, that is, ϕψ = ϕψϕ−1. If P = G is a
group regarded as a groupoid with only one object, then π1G = G with the
action on itself by conjugation.

A morphism of P-groups µ : H → H ′ is a natural transformation, so it
consists of homomorphisms µ = µa : H(a) → H ′(a), one for each object a
of P, such that, for every ϕ : a→ b in P, µ(ϕh) = ϕµ(h).

A P-crossed module (or crossed module of groupoids over P) is a mor-
phism of P-groups

H
µ−→ π1P

such that, for every h, h′ ∈ H(a), a ∈ ObP, the equation below holds:

µ(h)h′ h = hh′. (15)
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Thus, for every object a of P, H(a)
µ→ π1(P, a) is a crossed module over the

group of automorphism of a in P.
Returning to the fibration F : A → B, for P = ΠA, the fundamental

groupoid of A, we denote the ΠA-group (14), i.e. π1(ΠA), simply by

π1A : ΠA → Gr, a 7→ π1(A, a) = AutΠA(a). (16)

The assignment a 7→ π1(FFa
, a) defines the function on objects of a functor

π1F : ΠA → Gr

whose effect on morphisms is as follows: Suppose [f, x] : a → a′ a mor-
phism in ΠA, which is represented by a path (f, x) : a ↷ a′ in A, and let
[g, y] ∈ π1(FFa

, a), represented by a loop (g, y) : a↷ a in F
Fa

. Since F is a
fibration, we can choose boxes α and β in A as in the diagram

a′ ·
f
oo

α

·
g′
oo

β

·
f ′
oo

a

x
OO

·g
oo

x′
OO

·

OO

yx−1

a′
f−1
oo

y′

OO (17)

such that Fα = IhFx and Fβ = IvFf−1 . Since Fy′ = IvFa′ and F (f g′f ′) = IhFa′ ,
the loop

(f g′f ′, y′) : a′ ↷ a′ (18)

belongs to the double groupoid fibre F
Fa′

. We define the action of the mor-
phism [f, x] : a→ a′ of ΠA on [g, y] ∈ π1(FFa

, a) by

[f,x][g, y] = [f g′f ′, y′] ∈ π1(FFa′
, a′). (19)

It follows from Lemmas 5.3, 5.4 and 5.5 below that this action is well
defined and that π1F is really a ΠA-group.

Lemma 5.3. [f,x][g, y] is independent of the choices of the representative
path of [f, x] in A, of the representative loop of [g, y] in F

Fa
, and of the boxes

α and β in (17).
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Proof. Let γ : (f, x) ≃ (f1, x1) be a homotopy of paths from a to a′ in
A and let δ : (g, x) ≃ (g1, x1) be a homotopy of loops at a in the double
groupoid fibre F

Fa
. Suppose we have selected boxes α, β, α1, and β1, as in

the diagrams

a′ ·
f
oo

α

·
g′
oo

β

·
f ′
oo

a

x
OO

·g
oo

x′
OO

·

OO

yx−1

a′
f−1
oo

y′

OO a′ ·
f1
oo

α1

·
g′1oo

β1

·
f ′1oo

a

x1
OO

·g1
oo

x′1

OO

·

OO

y1x
−1
1

a′

f−1
1

oo

y′1

OO

such that Fα = IhFx, Fβ = IvFf -1 , Fα1 = IhFx1 , and Fβ1 = Iv
Ff -1

1
. Then,

we get a homotopy of loops at a′ in the double groupoid fibre F
Fa′

from
(f g′f ′, y′) to (f1 g

′
1f

′
1, y

′
1) by pasting the diagram

· ·
f ′−1

oo ·
g′−1

oo

γ

·
f−1f1
oo ·

g′1oo ·
f ′1oo

·

Ih

·

OO

x1x−1

·

x′

OO

a
g−1

oo

x

OOα-h

a

x

OO

·
g1

oo

x′1

OO

α1

· ·

OO

y1y−1δ

·

OO

yx−1 Ih

·

OO

yx−1

a′

y′

OO

·
f

oo

β-h

γ-v

·

OO

xx−1
1

oo f−1f1 ·
f−1
1oo

y′1

OO

β1

·

y′−1

OO

·

y′−1

OO

I-h

Lemma 5.4. For every pair of paths in A

(f1, x1) : a1 ↷ a2, (f2, x2) : a2 ↷ a3
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and every loop (g, y) : a1 ↷ a1 in the fibre FFa1 ,

[f2,x2]
(
[f1,x1][g, y]

)
= [f2,x2]·[f1,x1][g, y].

Proof. Let α, β, and θ be boxes of A as in the diagrams

a2 ·
f1
oo

α

·
g′
oo

β

·
f ′1oo

a1

x1
OO

·g
oo

x′1

OO

·

OO

yx−1
1

a2
f−1
1

oo

y′

OO a3 ·
f2
oo

θ

·
f ′1oo

a2

x2

OO

·

x′2

OO

f1
oo

a1

x1

OO

such that Fα = IhFx1 and Fβ = Iv
Ff−1

1

. Hence, [f1,x1][g, y] = [f1 g
′f ′

1, y
′] and

[f2, x2] · [f1, x1] = [f2f
′
1, x

′
2x1]. Since F is fibration, we can successively

choose boxes α′, θ′, and β′ in A of the form

·
α′

·g′′
oo

·
x′2

OO

·
g′
oo

x′′2

OO ·
θ′

·
f ′′1oo

·
x′′2

OO

·
f ′1

oo

x′′′2

OO ·
β′

·
f ′2oo

·
x′′′2 y

′x−1
2

OO

·
f−1
2

oo

y′′
OO

such that Fα′ = IhFx′2
, Fθ′ = θ−h, and Fβ′ = Iv

Ff−1
2

. Then, the pasting
diagram

a3 ·
f2
oo

θ

·
f ′1oo

α′
·

g′′
oo

θ′
·

f ′′1oo ·
f ′2oo

a2

x2
OO

·
f1
oo

OO

·
g′
oo

OO

·
f ′1

oo

x′′′2

OO

·

OO

y′x−1
2

a3

y′′

OO

f−1
2

oo

β′

tell us that [f2,x2]
(
[f1,x1][g, y]

)
= [f2f

′
1g

′′f ′′
1 f

′
2, y

′′], since F (θ◦hα′◦hθ′) = IhFx2
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and Fβ′ = Iv
Ff−1

2

, while the pasting diagram

a3 ·
f2
oo ·

f ′1oo

α′
·

g′′
oo

θ′
·

f ′′1oo ·
f ′2oo

·

x′2

OO

α

·oo

OO

·
f ′1

oo

x′′′2

OO

a1

x1
OO

·g
oo

OO

x′1

·

OO

yx−1
1

·
f−1
1oo

y′

OO

β

·
x′2

−1
OO

·
f ′1

−1
oo

x−1
2

OO

θ−hv

a3
f−1
2

oo

y′′

OO

β′

tell us that also [f2,x2]·[f1,x1][g, y] = [f2f
′
1g

′′f ′′
1 f

′
2, y

′′], since F (α′ ◦v α) =
IvF (x′2x1)

and F
(
(θ′ ◦v β ◦v θ−hv) ◦h β′) = IvF (f2f ′1)

−1 .

Lemma 5.5. For every pair of loops (g1, y1), (g2, y2) : a ↷ a in F
Fa

and
every path (f, x) : a↷ a′ in A,

[f,x]
(
[g1, y1] · [g2, y2]

)
= [f,x][g1, y1] · [f,x][g2, y2].

Proof. Let α1, β1, α2, and β2 be boxes of A as in the diagrams

a′ ·
f
oo

α1

·
g′1oo

β1

·
f ′1oo

a

x
OO

·g1
oo

x′1

OO

·

OO

y1x−1

a′
f−1
oo

y′1

OO a′ ·
f
oo

α2

·
g′2oo

β2

·
f ′2oo

a

x
OO

·g2
oo

x′2

OO

·

OO

y2x−1

a′
f−1
oo

y′2

OO

such that Fα1 = IhFx = Fα2 and Fβ1 = IvFf−1 = Fβ2, so that [f,x][g1, y1] =

[fg′1f
′
1, y

′
1] and [f,x][g2, y2] = [fg′2f

′
2, y

′
2], and let θ be a box in F

Fa
as in the

diagram

a ·
g1
oo

θ

·
g′′2oo

a

y1
OO

·
y′′1

OO

g2
oo

a
y2

OO
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so that, [g1, y1] · [g2, y2] = [g1g
′′
2 , y

′′
1y2] in the group π1(FFa

, a). Since F is
fibration, we can successively choose boxes α and β in A of the form

·
α

·
g′′′2oo

·
x′1

OO

·
g′′2

oo

x′′1

OO ·
β

·
f ′′2oo

·
x′′1y

′′
1 x

′
2
−1
OO

·
f ′2

oo

y′′′1

OO

such that Fα = IhFx and Fβ = IvFf−1 . Then, on the one hand, the pasting
diagram

a′ ·
f
oo

α1

·
g′1oo

α

·
g′′′2oo ·

f ′′2oo

a

x

OO

·g1
oo

OO

·
g′′2

oo

x′′1

OO

·

OO

y′′1 x
′
2
−1

β

·

y′′′1

OO

oo

·

OO

x′2y2x
−1

β2

a′
f−1
oo

y′2

OO

tell us that [f,x]
(
[g1, y1] · [g2, y2]

)
= [fg′1g

′′′
2 f

′′
2 , y

′′′
1 y

′
2], since F (α1 ◦hα) = IhFx

and F (β ◦v β2) = IvFf−1 . On the other hand, the pasting diagram

a′ ·
f
oo ·

g′1oo ·
f ′1oo ·

f ′1
−1

oo ·
g′′′2oo ·

f ′′2oo

·

OO

x′1 α

·oo

x′′1

OO

ββ−h
1

·

OO

y1 θ

·oo

y′′1

OO

a′

y′1

OO

·
f
oo

OO

x−1 α−v
2

·
g′2

oo

OO

x′2
−1

·
f ′2

oo

y′′′1

OO

a′

y′2

OO

also tell us that [f,x][g1, y1] · [f,x][g2, y2] = [fg′1g
′′′
2 f

′′
2 , y

′′′
1 y

′
2], since the pasted

box of the inner boxes belongs to F
Fa′

.

Proposition 5.6. There is a morphism of ΠA-groups i∗ : π1F → π1A
which, at each object a ∈ ObA, consists of the homomorphism induced
by the inclusion i∗ : π1(FFa

, a) → π1(A, a).
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Proof. We must prove that, for every path (f, x) : a ↷ a′ in A and every
loop (g, y) : a↷ a in F

Fa
, the equality

i∗
(
[f,x][g, y]

)
· [f, x] = [f, x] · i∗[g, y]

holds in the fundamental groupoid ΠA. For, let us choose boxes α and β as
in diagram (17) such that Fα = IhFx and Fβ = IvFf−1; so that [f,x][g, y] =
[f g′f ′, y′]. We have the diagrams in A

a′ ·
fg′f ′
oo

β−h

·
f ′−1

oo

a′

y′
OO

·
f
oo

x′yx−1

OO

a

x

OO

a′ ·
f
oo

α

·
g′
oo

a

x

OO

·g
oo

x′
OO

a

y
OO

The first of them tell us that

i∗
(
[f,x][g, y]

)
· [f, x] = [fg′f ′f ′−1

, x′yx−1x] = [fg′, y′x],

and the second one that also [f, x] · i∗[g, y] = [fg′, x′y].

Theorem 5.7. The morphism of ΠA-groups i∗ : π1F → π1A is a crossed
module over ΠA.

Proof. We must prove that, for every pair of loops (f, x), (g, y) : a ↷ a in
F

Fa
, the equality

i∗[f,x][g, y] · [f, x] = [f, x] · [g, y]

holds in the fundamental group π1(FFa
, a). To do that, since the double

groupoid fibre F
Fa

has the filling property, we can choose boxes α and β of
F

Fa
as in the diagram

a′ ·
f
oo

α

·
g′
oo

β

·
f ′
oo

a

x
OO

·g
oo

x′
OO

·

OO

yx−1

a′
f−1
oo

y′

OO
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Then i∗[f,x][g, y] = [f g′f ′, y′], and the diagrams in F
Fa

a′ ·
fg′f ′
oo

β−h

·
f ′−1

oo

a′

y′
OO

·
f
oo

x′yx−1

OO

a

x

OO

a′ ·
f
oo

α

·
g′
oo

a

x

OO

·g
oo

x′
OO

a

y
OO

tell us that i∗[f,x][g, y] · [f, x] = [fg′, x′y] = [f, x] · [g, y].

5.2 The ΠB -set π0F .

If P is a groupoid, a (left) P-set is a functor from P to the category Set of
sets. For every P-set H : P → Set, each morphism ϕ : a→ b in P, and each
h ∈ H(a), we denote by ϕh the value of H(ϕ) at h and call it the action of
ϕ on h. Thus, a P-set H provides of sets H(a), one for each a ∈ ObP, and
action homomorphisms

H(a) → H(b), h 7→ ϕh,

one for each morphism ϕ : a→ b in P, satisfying ψ(ϕh) = ψϕh and 1h = h.
Returning to the fibration F : A → B, the assignment b 7→ π0Fb defines

the function on objects of a functor from the fundamental groupoid of B

π0F : ΠB → Set

whose effect on morphisms is described as follows: Suppose [f̃ , x̃] : b → b′

a morphism in the fundamental groupoid ΠB of B, represented by a path
(f̃ , x̃) : b ↷ b′ in B, and let [a] ∈ π0Fb, represented by an object a of Fb.
Since F is a fibration, we can choose a path in A

(f, x) : a↷ af̃,x̃

such that (Ff, Fx) = (f̃ , x̃). Then Faf̃,x̃ = b′, so that the object af̃,x̃ belongs
to fibre double groupoid Fb′ . We define the action of the morphism [f̃ , x̃] :
b→ b′ of ΠB on [a] ∈ π0Fb by

[f̃ ,x̃][a] = [af̃,x̃] ∈ π0Fb′ . (20)

It follows from the lemma below that this action is well-defined.
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Lemma 5.8. [af̃,x̃] is independent of the choices of the representative object
a of [a] in Fb, of the representative path (f̃ , x̃) : b↷ b′ of [f̃ , x̃] in B, and of
its lifted path (f, x) : a↷ af̃,x̃ in A.

Proof. Let (h, z) : a ↷ a′ be a path in Fb and let α̃ : (f̃ , x̃) ≃ (g̃, ỹ)
be a homotopy of paths in B from b to b′. Suppose we have chosen paths
(f, x) : a ↷ af̃,x̃ and (g, y) : a′ ↷ a′g̃,ỹ in A such that (Ff, Fx) = (f̃ , x̃)
and (Fg, Fy) = (g̃, ỹ). We must prove that there is a path af̃,x̃ ↷ a′g̃,ỹ in
Fb′ . For, we can proceed as follows: By the filling property, let us choose
boxes α1 of Fb and α2 ∈ A of the form

a′

α1

·
hoo

·

z′
OO

a
h′
oo

z

OO ·
α2

af̃,x̃

f−1
oo

a

x

OO

·
f ′
oo

x′
OO

Then, since F is a fibration, we can select a box α3 in A of the form

·
α3

·f ′′
oo

·
yz′
OO

·
h′f ′
oo

x′′
OO

such that

·

Fα3 =
α̃−h

·
g̃−1f̃
oo

Fα2

b′
f̃−1
oo

·

ỹx̃−1

OO

·

b

x̃

OO

b

x̃

OO

Ihx̃

·

Fx′

OO

Ff ′
oo

This way, we have the path (gf ′′, x′′x′−1) : af̃,x̃ ↷ a′g̃,ỹ

a′g̃,ỹ ·
g
oo ·

f ′′
oo

·
x′′
OO

af̃,x̃

x′−1
OO
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which actually belongs to Fb′ , since F (gf ′′) = g̃ g̃−1 = Ihb′ and F (x′′x′−1) =
Fx′ Fx′−1 = Ivb′ .

Theorem 5.9. π0F is a ΠB-set.

Proof. We must prove that, for every pair of paths (f̃ , x̃) : b ↷ b′ and
(g̃, ỹ) : b′ ↷ b′′ in B and every object a in Fb,

[9̃,ỹ]
(
[f̃ ,x̃][a]

)
= [g̃,ỹ]·[f̃ ,x̃][a].

For, using that F is a fibration and A has the filling property, let us construct
a diagram in A of the form

a′′ ·
g
oo

θ

·
f ′
oo

a′

y
OO

·
y′
OO

f
oo

a
x

OO

such that (Ff, Fx) = (f̃ , x̃) and (Fg, Fy) = (g̃, ỹ). Thus, on the one hand,
[f̃ ,x̃][a] = [a′] and [9̃,ỹ]

(
[f̃ ,x̃][a]

)
= [a′′]. On the other hand, the induced dia-

gram in B
b′′ ·

g̃
oo

Fθ

·
Ff ′
oo

b′

ỹ
OO

·
Fy′
OO

f̃

oo

b
x̃

OO

tell us that, in the fundamental groupoid of B, [g̃, ỹ]·[f̃ , x̃] = [g̃ Ff ′, Fy′ x̃] =
[F (gf ′), F (y′x)]. So that (gf ′, y′x) : a ↷ a′′ is a lifting in A of a represen-
tative path in B of the composite morphism [g̃, ỹ] · [f̃ , x̃] : b → b′′ of ΠB.
Hence, [g̃,ỹ]·[f̃ ,x̃][a] = [a′′].

Proposition 5.10. Let b, b′ be objects of B and let

π0Fb
i∗ // π0A π0Fb′

i′∗oo

be the induced maps by the inclusions i : Fb ↪→ A and i′ : Fb′ ↪→ A. Then,
[a] ∈ π0Fb and [a′] ∈ π0Fb′ satisfy i∗[a] = i′∗[a

′] if and only if

[a′] = [f̃ ,x̃][a]

for some morphism [f̃ , x̃] : b→ b′ of ΠB.
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Proof. Suppose i∗[a] = i′∗[a
′], so that there is a path (f, x) : a ↷ a′ in A.

Then, if (f̃ , x̃) = (Ff, Fx) : b↷ b′, we have [f̃ ,x̃][a] = [a′].
Conversely, suppose (f̃ , x̃) : b↷ b′ is a path in B such that [f̃ ,x̃][a] = [a′].

If (f, x) : a ↷ a′0 is a path in A such that (Ff, Fx) = (f̃ , x̃), then we have
i∗[a] = i′∗[a

′
0] in π0A and also [a′0] = [a′] in π0Fb′ . Hence, i∗[a] = i′∗[a

′].
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