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ON THE BÉNABOU-ROUBAUD
THEOREM

Bruno KAHN

Résumé. On donne une preuve détaillée du théorème de Bénabou-Roubaud.
Cette preuve fournit un affaiblissement des hypothèses: l’existence de pro-
duits fibrés n’est pas nécessaire dans la catégorie de base, et la condition de
“Beck-Chevalley”, sous la forme d’une transformation naturelle, peut être af-
faiblie en demandant seulement que cette dernière soit épi.
Abstract. We give a detailed proof of the Bénabou-Roubaud theorem. As
a byproduct, it yields a weakening of its hypotheses: the base category does
not need fibre products and the Beck-Chevalley condition, in the form of a
natural transformation, can be weakened by only requiring the latter to be
epi.
Keywords. Descent, monad, Beck-Chevalley condition
Mathematics Subject Classification (2020). 18D30, 18C15, 18F20

To the memory of Jacques Roubaud.

Introduction

The Bénabou-Roubaud theorem [2] establishes, under certain conditions, an
equivalence of categories between a category of descent data and a category
of algebras over a monad. This result is widely cited, but [2] is a note “with-
out proofs” and the ones I know in the literature are a bit terse ([7, pp. 50/51],
[8, proof of Lemma 4.1], [11, Th. 8.5]), [9, 3.7]; moreover, [8] and [11] are
formulated in more general contexts.
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B. KAHN ON THE BÉNABOU-ROUBAUD THEOREM

The aim of this note is to provide a detailed proof of this theorem in
its original context. This exegesis has the advantage of showing that the
original hypotheses can be weakened: it is not necessary to suppose that the
base category admits fibred products1, and the Chevalley property of [2],
formulated as an exchange condition, can also be weakened by requiring
that the base change morphisms be only epi. I hope this will be useful to
some readers. I also provided a proof of the equivalence between Chevalley’s
property and the exchange condition (attributed to Beck, but see remark 1.1):
this result is part of the folklore but, here again, I had difficulty finding a
published proof. In Corollary 5.2, I give a condition (probably too strong) for
the Eilenberg-Moore comparison functor to be essentially surjective. Finally,
I give cases in Proposition 6.1 where the exchange isomorphism holds; this
is certainly classical, but it recovers conceptually Mackey’s formula for the
induced representations of a group (Example 6.3).

Notation and conventions

I keep that of [2]: thus P : M → A is a bifibrant functor in the sense of [5,
§10]. If A ∈ A, we denote by M(A) the fibre of P above A. For an arrow
a : A1 → A0 of A, we write a∗ : M(A0) → M(A1) and a∗ : M(A1) →
M(A0) for the associated inverse and direct image functors (a∗ is left adjoint
to a∗) and ηa, εa for the associated unit and counit. We also write T a = a∗a∗
for the associated monad, equipped with its unit ηa and its multiplication
µa = a∗εaa∗. We do not assume the existence of fibre products in A.

In order to simplify calculations, we shall assume that the pseudofunctor
a 7→ a∗ is a functor. This can be justified by the fact that it can be rectified;
more precisely, the morphism of pseudofunctors i 7→ Fi of [10, §3, p. 141] is
clearly faithful, hence any parallel arrows in its source which become equal
in its target are already equal. (One could also use [3, I, Th. 2.4.2 or 2.4.4].)
Then one can also choose the left adjoints a 7→ a∗ to form a functor [12,
IV.8, Th. 1], which we do.

1As was pointed out by the referee, the corresponding arguments are related to Street’s
notion of descent object relative to a truncated (co)simplicial category as in the beginning
of [16]; but a “truncated cyclic category” à la Connes is also lurking in Proposition 4.6 b).
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B. KAHN ON THE BÉNABOU-ROUBAUD THEOREM

1. Adjoint chases

To elucidate certain statements and proofs, I start by doing two things: 1)
“deploy” the single object M1 of [2] into several, which will allow us to
remove the quotation marks from “natural” at the bottom of [2, p. 96], 2)
not assume the Beck-Chevalley condition to begin with, which will allow
us to clarify the functoriality in the first lemma of the note and to weaken
hypotheses.

1.1

Let a be as above; still following the notation of [2], we give ourselves a
commutative square

A2
a2−−−→ A1

a1

y a

y
A1

a−−−→ A0.

(1)

except that we don’t require it to be Cartesian. The equality a∗1a
∗ = a∗2a

∗

yields a base change morphism

χ : (a2)∗a
∗
1 ⇒ T a (2)

equal to the composition εa2T a ◦ (a2)∗a∗1ηa. Hence a map

ξM,N = ξ : M(A1)(T
aM,N)

χ∗
M−−→M(A1)((a2)∗a

∗
1M,N)

adj
∼−→M(A2)(a

∗
1M,a∗2N) (3)

for M,N ∈ M(A1). It goes in the opposite direction to the map Ka of [2],
which we will find back in (15). (See also Remark 4.4 in that section.)

Remark 1.1. The morphism (2) is sometimes called “Beck transformation”.
However, it already appears in SGA4 (1963/64) to formulate the proper base
change and smooth base change theorems [1, §4]. I have adopted the termi-
nology “base change morphism” in reference to this seminar.

Lemma 1.2 (key lemma). For any φ ∈M(A1)(T
aM,N), one has

ξ(φ) = a∗2φ ◦ a∗1ηaM .

5 



B. KAHN ON THE BÉNABOU-ROUBAUD THEOREM

Proof. For ψ ∈M(A1)(a2)∗a
∗
1M,N) one has adj(ψ) = a∗2ψ ◦ η

a2
a∗1M

, hence

ξ(φ) = adj(φ ◦ χM) = a∗2(φ ◦ χM) ◦ ηa2a∗1M
= a∗2(φ ◦ (εa2T a ◦ (a2)∗a∗1ηa)M) ◦ ηa2a∗1M
= a∗2φ ◦ a∗2ε

a2
TaM ◦ a

∗
2(a2)∗a

∗
1η

a
M ◦ η

a2
a∗1M

= a∗2φ ◦ a∗2ε
a2
TaM ◦ η

a2
a∗1T

aM ◦ a
∗
1η

a
M

= a∗2φ ◦ a∗1ηaM
where we successively used the naturality of ηa2 and an adjunction identity.

1.2

Let A3 ∈ A be equipped with “projections” p1, p2, p3 : A3 → A2. We
assume that the “face identities” a1p2 = a1p3, a1p1 = a2p3, a2p1 = a2p2 are
satisfied; we call these morphisms respectively b1, b2, b3.
Canonical example 1.3. A2 = A1 ×A0 A1, A3 = A1 ×A0 A1 ×A0 A1, all
morphisms given by the natural projections.

We then have maps, for i < j

αij(M,N) = αij : M(A2)(a
∗
1M,a∗2N)→M(A3)(b

∗
iM, b∗jN) (4)

given by
α12 = p∗3, α13 = p∗2, α23 = p∗1

hence composite maps

θij = αij ◦ ξ : M(A1)(T
aM,N)→M(A)(b∗iM, b∗jN). (5)

In addition, we have the multiplication of T a mentioned in the notations:

µa = a∗εaa∗ : T
aT a ⇒ T a. (6)

The commutative square2

A3
p3−−−→ A2

p1

y a2

y
A2

a1−−−→ A1

(7)

2Note that it is Cartesian in the canonical example.
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B. KAHN ON THE BÉNABOU-ROUBAUD THEOREM

yields another base change morphism λ : (p1)∗p
∗
3 ⇒ a∗1(a2)∗, hence a com-

position

(b3)∗b
∗
1 = (a2)∗(p1)∗p

∗
3a

∗
1

(a2)∗λa∗1=⇒ (a2)∗a
∗
1(a2)∗a

∗
1

χ∗χ
=⇒ T aT a (8)

which, together with adjunction, induces a map

ρ : M(A1)(T
aT aM,N)→M(A2)(b

∗
1M, b∗3N). (9)

Lemma 1.4. a) The diagram of natural transformations

(a2)∗(p1)∗p
∗
3a

∗
1

(a2)∗λa∗1
��

(b3)∗b
∗
1 (a2)∗(p2)∗p

∗
2a

∗
1

(a2)∗εp2a∗1
��

(a2)∗a
∗
1(a2)∗a

∗
1

χ∗χ
��

(a2)∗a
∗
1

χ

��
T aT a µa

+3 T a

is commutative.
b) One has θ13 = ρ ◦ µ∗

a (see (5), (6) and (9)).

Proof. a) is a matter of developing the base change morphisms as done for χ
just below (2) (see proof of Lemma 1.2). This yields a commutative diagram

M(A1)((b3)∗b
∗
1M,N)

((a2)∗εp2a∗1)
∗

←−−−−−−−− M(A1)((a2)∗a
∗
1M,N)

(8)∗
x χ∗

x
M(A1)(T

aT aM,N)
(µa)∗←−−− M(A1)(T

aM,N)

from which we get b) by developing the adjunction isomorphism for ((b3)∗, b∗3).

Let now M1,M2,M3 ∈ M(A1) and φij ∈ M(A1)(T
aMi,Mj) be three

morphisms. We have a not necessarily commutative square:

T aT aM1
Taφ12−−−→ T aM2

(µa)M1

y φ23

y
T aM1

φ13−−−→ M3.

(10)

Write φ̂ij = θij(φij) : b
∗
iMi → b∗jMj .

7 



B. KAHN ON THE BÉNABOU-ROUBAUD THEOREM

Lemma 1.5. Let ψ (resp. ψ′) be the composition of (10) passing through
T aM2 (resp. through T aM1 ). Then ρ(ψ) = φ̂23 ◦ φ̂12 and ρ(ψ′) = φ̂13.

Proof. The first point follows from a standard adjunction calculation similar
to the previous ones, and the second follows from lemma 1.4.

Proposition 1.6. If (10) commutes, we have φ̂13 = φ̂23 ◦ φ̂12; the converse
is true if ρ is injective in (9).

Proof. This is obvious in view of Lemma 1.5.

In (3), assume that M = N is of the form a∗M0 and write p = aa1 =
aa2 : A2 → A0. We have a composition

M(A1)(M,a∗M0)
∼−→M(A0)(a∗M,M0)

a∗−→M(A1)(T
aM,a∗M0)

ξ−→M(A2)(a
∗
1M, p∗M0) (11)

where the first arrow is the adjunction isomorphism. A new adjoint chase
gives:

Lemma 1.7. The composition (11) is induced by a∗1.

2. Exchange condition and weak exchange condition

Now we introduce the

Definition 2.1. A commutative square (1) is said to satisfy the exchange
condition if the base change morphism (2) is an isomorphism; we say that
(1) satisfies the weak exchange condition if (2) is epi.

Lemma 2.2 (cf. [13, Prop. 11] and [14, II.3]). The exchange condition of
Definition 2.1 is equivalent to the Chevalley condition (C) of [2].

Proof. Recall this condition: given a commutative square

M ′
1

k1−−−→ M1

χ′

y χ

y
M ′

0
k0−−−→ M0,

(12)

8 



B. KAHN ON THE BÉNABOU-ROUBAUD THEOREM

above (1) (where we take (i, j) = (1, 2) to fix ideas), if χ and χ′ are Cartesian
and k0 is co-Cartesian, then k1 is co-Cartesian.

I will show that the exchange condition is equivalent to each of the fol-
lowing two conditions: (C) and

(C’) if k0 and k1 are co-Cartesian and χ′ is Cartesian, then χ is Cartesian.

Let us translate the commutativity of (12) in terms of the square

M(A2)
(a2)∗−−−→ M(A1)

a∗1

x a∗

x
M(A1)

a∗−−−→ M(A0).

(13)

The morphisms of (12) correspond to morphisms k̃0 : a∗M
′
0 → M0,

k̃1 : (a1)∗M
′
1 → M1, χ̃ : M1 → a∗M0 and χ̃′ : M ′

1 → a∗2M
′
0, which fit in a

commutative diagram of M(A1):

(a2)∗a
∗
1M

′
0

c // T aM ′
0

a∗k̃0
��

(a2)∗M
′
1

(a2)∗χ̃′

OO

k̃1 //M1
χ̃ // a∗M0

where c is the base change morphism of (2). The cartesianity conditions on
χ and χ′ (resp. co-cartesianity conditions on k0 and k1) amount to requesting
the corresponding morphisms decorated with a˜to be isomorphisms.

Suppose c is an isomorphism. If χ̃′ and k̃0 are isomorphisms, χ̃ is an iso-
morphism if and only if k̃1 is. Thus, the exchange condition implies condi-
tions (C) and (C’). Conversely, M ′

0 being given, let k̃0, χ̃ and χ̃′ be identities,
which successively defines M0, M1 and M ′

1. The arrow c then defines an
arrow k̃1, which is an isomorphism if and only if so is c. This shows that the
exchange condition is implied by (C), and we argue symmetrically for (C’)
by taking χ̃′, k̃1 and k̃0 to be identities.

Remarks 2.3. a) This proof did not use the hypothesis that (1) be Cartesian.
b) Under conservativity assumptions for a∗2 or a∗, we obtain converses to (C)
and (C’).

9 



B. KAHN ON THE BÉNABOU-ROUBAUD THEOREM

3. Pre-descent data

Here we come back to the set-up of Section 1: namely, we give ourselves
a commutative diagram (1) as in §1.1 and a system (A3, p1, p2, p3) as in the
beginning of §1.2 satisfying the identities of loc. cit. In other words, we
have a set of objects and morphisms of A

(A0, A1, A2, A3, a, a1, a2, p1, p2, p3)

subject to the relations

aa1 = aa2, a1p2 = a1p3, a1p1 = a2p3, a2p1 = a2p2.

Let M ∈ M(A1) and v ∈ M(A2)(a
∗
1M,a∗2M). We associate to v three

morphisms
φ̂ij = αij(v) : b

∗
iM → b∗jM (i < j)

where αij are the maps of (4).

Definition 3.1. We say that v is a pre-descent datum on M if the φ̂ij satisfy
the condition φ̂13 = φ̂23 ◦ φ̂12 of Proposition 1.6. We write Dpre for the
category whose objects are pairs (M, v), where v is a pre-descent datum on
M , and whose morphisms are those of M(A1) which commute with pre-
descent data.

Let us introduce the

Hypothesis 3.2. The weak exchange condition is verified by the squares (1)
and (7).

Proposition 3.3 (cf. [2, lemme]). In (10), assume φ12 = φ23 = φ13 =: φ. If
φ satisfies the associativity condition of a T a-algebra, then ξ(φ) in (3) is a
pre-descent datum; the converse is true under Hypothesis 3.2.

Proof. In view of Proposition 1.6, it suffices to show that Hypothesis 3.2
implies the injectivity of ρ, which is induced by the composition of the two
natural transformations of (8). The second is epi, therefore induces an injec-
tion on Hom’s, and so does the first by adjunction.

10 



B. KAHN ON THE BÉNABOU-ROUBAUD THEOREM

Corollary 3.4. Let Ma
ass denote the category of associative T a-algebras

which are not necessarily unital. Then Proposition 3.3 defines a faithful
functor ξ : Ma

ass → Dpre commuting with the forgetful functors to M(A1);
under Hypothesis 3.2, it is an isomorphism of categories.

Proof. Commutation of ξ with the forgetful functors is obvious. This already
shows that it is faithful; under Hypothesis 3.2, it is essentially surjective by
Proposition 3.3 and we see immediately that it is also full.

4. The unit condition

We keep the hypotheses and notation of Section 3, and introduce an addi-
tional ingredient: a “diagonal” morphism ∆ : A1 → A2 such that a1∆ =
a2∆ = 1A1 .

Definition 4.1. A descent datum on M is a pre-descent datum v such that
∆∗v = 1M . We denote by D the full subcategory of Dpre given by the
descent data.

Let Ma ⊂Ma
ass be the category of T a-algebras.

Theorem 4.2 (cf. [2, théorème]). For all φ ∈M(A1)(T
aM,M), we have

∆∗ξ(φ) = φ ◦ ηaM . (14)

In particular, ξ(Ma) ⊂ D and ξ : Ma → D is an isomorphism of categories
under Hypothesis 3.2.

Proof. Suppose that M = N in Lemma 1.2. Applying ∆∗ to its identity,
we get (14). In particular, if φ is the action of a T a-algebra then v = ξ(φ)
verifies ∆∗v = 1M . We conclude with Corollary 3.4.

As in [12, VI.3, Th. 1], we have the Eilenberg-Moore comparison functor

Ka : M(A0)→Ma (15)
M0 7→ (a∗M0, a

∗εaM0
).

Lemma 1.7 yields:

11 



B. KAHN ON THE BÉNABOU-ROUBAUD THEOREM

Proposition 4.3. We have ξ(a∗εaM0
) = 1M0 . In other words, in the diagram

M(A0)
Ψa

//

Ka
$$

D Ua
//M(A1)

Ma

ξ

OO

UTa

::

the left triangle commutes (as well as the right one, trivially).

Remark 4.4. In [9, 3.7], Janelidze and Tholen construct a functor from D
to M (same direction as in [2]) by using the inverses of the base change
morphisms (2).

Remark 4.5. In the canonical example 1.3, a pre-descent datum v satisfies
the condition of Definition 4.1 if and only if it is invertible (therefore is a
descent datum in the classical sense): this follows from [4, A.1.d pp. 303–
304]. In loc. cit., Grothendieck uses an elegant Yoneda argument. It is an
issue to see how this result extends to our more general situation: this is
done in the next proposition. I am indebted to the referee for prodding me to
investigate this.

Note that I merely looked for what is necessary to translate Grothen-
dieck’s arguments, and not for the greatest generality.

Proposition 4.6. Let (A0, A1, A2, A3, a, a1, a2, p1, p2, p3) be as in Section 3.
Let M ∈M(A1) and let v ∈M(A2)(a

∗
1M,a∗2M) be a pre-descent datum as

in Definition 3.1. Further, let ∆ be as in the beginning of the present section.
Consider the following conditions:

(i) ∆∗v = 1M (i.e. v is a descent datum).

(ii) v is invertible.

Then:
a) (ii)⇒ (i) under one of the following conditions: there exists a morphism
s1 (resp. s2) from A2 to A3 such that

p1s1 = ∆a2, p2s1 = p3s1 = 1

(resp.
p1s2 = p2s2 = 1, p3s2 = ∆a2).

12 



B. KAHN ON THE BÉNABOU-ROUBAUD THEOREM

b) (i) ⇒ (ii) under the following condition: there exists an involution σ of
A2 and a morphism Γ : A2 → A3 such that

p1Γ = σ, p2Γ = ∆a1, p3Γ = 1A2 .

(In the case of the canonical example 1.3, we may take for s1 and s2 the
partial diagonals, for σ the exchange of factors and for Γ the graph of a1,
given in formula by (α1, α2) 7→ (α1, α2, α1).)

Proof. The predescent condition on v is

p∗2v = p∗1v ◦ p∗3v. (16)

a) Applying s∗1 to (16), we get

v = a∗2∆
∗v ◦ v

hence a∗2∆
∗v = 1A2 and

∆∗v = ∆∗a∗2∆
∗v = 1A1 .

Same reasoning with s2, mutatis mutandis. Note that with s1 (resp. s2),
it suffices to assume that v is right (resp. left) cancellable.

b) Applying Γ∗ to (16), we get

1A2 = a∗1∆
∗v = σ∗v ◦ v.

Applying now σ∗, we also get v ◦ σ∗v = 1A2 .

5. A supplement

Recall [6, Ex. 8.7.8] that a category is called Karoubian if any idempotent
endomorphism has an image.

Proposition 5.1. Let a∗ be fully faithful and M(A0) Karoubian. Let φ :
T aM →M satisfy the identity φ◦ηaM = 1M . Then there existsM0 ∈M(A0)
and an isomorphism ν :M

∼−→ a∗M0 such that φ = ν−1 ◦ a∗εaM0
◦ T aν.

13 



B. KAHN ON THE BÉNABOU-ROUBAUD THEOREM

Proof. Let e denote the idempotent ηaMφ ∈ EndM(A1)(T
aM). By hypothe-

sis, e = a∗ẽ where ẽ is an idempotent of EndM(A0)(a∗M), with image M0.
Then a∗M0 is isomorphic to the image M of e via a morphism ν as in the
statement, such that

ν ◦ φ = a∗π, a∗ι ◦ ν = ηaM

where ιπ is the epi-mono factorization of ẽ.
To finish, it is enough to see that a∗π = a∗εaM0

◦ T aν. But we also have

ηaa∗M0
◦ ν = T aν ◦ ηaM = T aν ◦ a∗ι ◦ ν

hence ηaa∗M0
= T aν ◦ a∗ι. This concludes the proof, since ηaa∗M0

◦ a∗εaM0
is

the epi-mono factorisation of the idempotent of End(T aa∗M0) with image
a∗M0.

We thus obtain the following complement:

Corollary 5.2. Assume Hypothesis 3.2, and also that a∗ is fully faithful and
M(A0) Karoubian. Then
a) every unital T a-algebra is associative;
b) Ka is essentially surjective.

Can one weaken the full faithfulness assumption in this corollary? The
following lemma does not seem sufficient:

Lemma 5.3. Let M,N ∈M(A1). Then the map

a∗ : M(A0)(a∗M,a∗N)→M(A1)(T
aM,T aN)

has a retraction r given by r(f) = εaa∗N ◦ a∗f ◦ a∗η
a
M . More generally, we

have an identity of the form r(a∗g ◦ f) = g ◦ r(f).

Proof. For f : T aM → T aN and g : a∗N → a∗P , we have

r(a∗g ◦ f) = εaa∗P ◦ a∗a
∗g ◦ a∗f ◦ a∗ηaM = g ◦ εaa∗N ◦ a∗f ◦ a∗η

a
M = g ◦ r(f).

Taking f = 1TaM , we obtain that r is a retraction.
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6. Appendix: a case where the exchange condition is veri-
fied

Let A be a category. Take for A the category of presheaves of sets on A.
Write

∫
A for the category associated to A ∈ A by the Grothendieck con-

struction [5, §8]. Recall its definition in this simple case: the objects of
∫
A

are pairs (X, a) where X ∈ A and a ∈ A(X), and a morphism from (X, a)
to (Y, b) is a morphism f ∈ A(X, Y ) such that A(f)(x) = y.

Let C be another category. We take for M the fibred category of rep-
resentations of A in C: for A ∈ A, an object of M(A) is a functor from∫
A to C. For all a ∈ A(A1, A0) we have an obvious pull-back functor

a∗ : M(A0) → M(A1), which has a left adjoint a∗ (direct image) given by
the usual colimit if C is cocomplete. We can then ask whether the exchange
condition is true for Cartesian squares of A.

Proposition 6.1. This is the case if C is the category of sets Set, and more
generally if C admits a forgetful functor Ω : C → Set with a left adjoint L
such that (L,Ω) satisfies the conditions of Beck’s theorem [12, VI.7, Th. 1].

Proof. First suppose C = Set; to verify that (2) is a natural isomorphism, it
is enough to test it on representable functors. Consider Diagram (13) again.
For (c, γ) ∈

∫
A1 and (d, δ) ∈

∫
A1 (with c, d ∈ A and γ ∈ A1(c) , δ ∈

A1(d)), we have

T ay(c, γ)(d, δ) = a∗y(c, a(γ))(d, δ) = y(c, a(γ))(d, a(δ))

= {φ ∈ A(d, c) | φ∗a(γ) = a(δ)}

and

(a2)∗a
∗
1y(c, γ)(d, δ) = lim−→

(e,η)∈(d,δ)↓a2

a∗1y(c, γ)(e, η)

= lim−→
(e,η)∈(d,δ)↓a2

y(c, γ)(e, a1(η))

= lim−→
(e,η)∈(d,δ)↓a2

{ψ ∈ A(e, c) | ψ∗γ = a1(η)}.

We have

(d, δ) ↓ a2 = {(e, η, η2, θ) ∈ A×A1(e)×A0(e)A1(e)×A(d, e) | θ∗η2 = δ}.

15 
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This category has the initial set {(d, η1, δ, 1d) | a(η1) = a(δ)}, so

(a2)∗a
∗
1y(c, γ)(d, δ) =

∐
{(η1∈A1(d)|a(η1)=a(δ)}

{φ ∈ A(d, c) | φ∗γ = η1}

= {φ ∈ A(d, c) | a(φ∗γ) = a(δ)}

and the map (a2)∗a
∗
1y(c, γ)(d, δ) → (a2)∗(a

12)∗y(c, γ)(d, δ) is clearly equal
to the identity.

General case: let us write more precisely MC(A) = CAT(
∫
A, C). The

functors L and Ω induce pairs of adjoint functors (same notation)

L : MSet(A) ⇆ MC(A) : Ω.

These two functors commute with pull-backs; as L is a left adjoint, it
also commutes with direct images. Therefore, in the above situation, the
base change morphism χM : (a2)∗a

∗
1M → T aM is an isomorphism when

M ∈ MC(A1) is of the form LX for X ∈ MSet(A1). For any M , we have
its canonical presentation [12, (5) p. 153]

(LΩ)2M ⇒ LΩM →M (17)

whose image by Ω is a split coequaliser (loc. cit.). Given the hypothesis
that Ω creates such coequalisers, (17) is a coequaliser. Since pull-backs are
cocontinuous, as well as direct images (again, as left adjoints), (17) remains
a coequaliser after applying the functors (a2)∗(a

12)∗ and T a. Finally, a co-
equaliser of isomorphisms is an isomorphism.

Examples 6.2 (for C). Varieties (category of groups, abelian groups, rings. . . ):
[12, VI.8, Th. 1].

Example 6.3 (forA). The category with one objectG associated with a group
G: then A is the category of G-sets. Let us take for C the category of R-
modules where R is a commutative ring. If A ∈ A is G-transitive,

∫
A is

a connected groupoid, which is equivalent to H for the stabilizer H of any
element of A; thus, M(A) is equivalent to RepR(H). If a : A1 → A0 is
the morphism of A defined by an inclusion K ⊂ H ⊂ G (A1 = G/K,
A0 = G/H), then a∗ is restriction from H to K and a∗ is induction V 7→
RH⊗RKV . From Proposition 6.1, we thus recover conceptually the Mackey
formula of [15, 7.3, Prop. 22], proven “by hand” in loc. cit.
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A RESULT ABOUT CONTINUOUS
LATTICES OVER THE SIERPIŃSKI

LOCALE

Christopher TOWNSEND

Résumé. Soit 2 la catégorie {0 ≤ 1} et S la locale de Sierpiński (telle que
Sh(S) ≃ [2,Set]). Nous démontrons que

[2,CtsLat≪] ≃ CtsLat≪Sh(S)

où CtsLat≪ est la catégorie de treillis continus avec morphismes les ho-
momorphismes de treillis qui préservent les bornes supérieures et la relation
«way below».
Abstract. Let 2 be the category {0 ≤ 1} and S the Sierpiński locale (so that
Sh(S) ≃ [2,Set]). We prove

[2,CtsLat≪] ≃ CtsLat≪Sh(S)

where CtsLat≪ is the category of continuous lattices with way-below rela-
tion preserving suplattice homomorphisms as morphisms.
Keywords. Locale, topos, geometric logic.
Mathematics Subject Classification (2010). 06D22.

Dedicated to Harvey Alison on the occasion of his 50 th birthday.

1. Introduction

The aim of this short note is to prove the equivalence as stated in the Abstract.
The proof technique used is taken from [HT23a] and hinges firstly on view-
ing continuous lattices as the rounded ideals of a type of information system.
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We then rely on a description of rounded ideals in a presheaf category given
in that paper, now applied to a broader class of relations. The description
is that the poset of rounded ideals, internal to a presheaf category [Cop,Set],
can be calculated by first applying the rounded ideals functor in Set and then
applying the ‘lax-to-natural’ construction ˜(_) : [Cop,Pos] - [Cop,Pos].
To complete the proof we show that ˜(_) is full when applied to presheaves of
continuous lattices. For this to work we seem to need to reduce to the case
C = {0 ≤ 1}op, so that the presheaf category Ĉ is equivalent to sheaves over
the Sierpiński locale S.

After the main result (Harvey’s Lemma) we finish with a corollary that
has implications for the classification of locally compact locales via localic
groupoids.

An Appendix has also been included that consists of a result about su-
plattices in presheaf categories. The result should be of general interest as it
provides a new connection between presheaves of suplattices and suplattices
internal to a presheaf topos.

2. Continuous lattices via strong proximity lattices

We take the following terms as understood: poset, ideal (of a poset; i.e. a
directed lower closed subset), semilattice, continuous lattice, dcpo, suplat-
tice and way-below relation (≪). Consult for example [J82] for background
material. The information system approach to continuous posets, exempli-
fied by [V93], possibly covers the material of this section. However here we
follow the more recent exposition given in [K21] and in particular are ex-
ploiting the notion of ‘strength’ as defined in that paper. The results of this
section (indeed the whole paper) are constructive and so valid in all toposes;
in particular they will be exploited in presheaf toposes in later sections, as
we build up to the proof of the main result.

Definition 2.1. 1. A strong proximity join semilattice is a join semilattice S
together with a relation ≺⊆ S × S such that ∀a, b, c ∈ S

(i) a ≺ b if and only if there exist d ∈ S with a ≺ d and d ≺ b,
(ii) a ≤ b ≺ c implies a ≺ c, and a ≺ b ≤ c implies a ≺ c,
(iii) {d|d ≺ a} is an ideal of S,
(iv) a ≺ b implies a ≤ b; and,
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(v) (strong) if c ≺ a ∨ b then there exists a0 ≺ a and b0 ≺ b such that
c ≤ a0 ∨ b0.

2. A rounded ideal of a strong proximity join semilattice is an ideal I
such that ∀a ∈ I there exists b ∈ I such that a ≺ b. The collection of all
rounded ideals of S is written R-idl(S).

Example 2.2. For any continuous lattice A, (A,≪) is a strong proximity
join semilattice. Further A ∼= R-idl(A); in one direction the isomorphism is
a 7→ ↓↓a and directed join (i.e. I 7→

∨↑ I) is the inverse.

It is clear from the definition that strong proximity join semilattices
are the models of a geometric theory; the morphisms of the correspond-
ing category of models are join semilattice homomorphisms that preserve
≺. We denote this category ∨-SPSLat and there is a forgetful functor
U : CtsLat≪ - ∨ -SPSlat.

Proposition 2.3. For any strong proximity join semilattice S, R-idl(S)
is a continuous lattice. Define ϕ̄(I) =

⋃↑{↓S′
ϕ(a)|a ∈ I}, for each

strong proximity join semilattice homomorphism ϕ : S - S ′; then by
taking R-idl(ϕ) = ϕ̄ on morphisms we have defined a functor R-idl :
∨-SPSlat - CtsLat≪.

In the statement of the Proposition we use the notation ↓S a = {b|b ≺ a}
for any element a of a strong proximity join semilattice S.

Proof. The bottom of R-idl(S) is ↓S 0, and I ∨ J =↓ {a ∨ b|a ∈ I, b ∈ J}
(use the roundedness of I and J to check that this set, which is clearly an
ideal, is rounded). The directed union of rounded ideals is a rounded ideal
so R-idl(S) is a complete lattice. Any rounded ideal I is the directed union
of ↓S a for each a ∈ I . Therefore I ≪ J iff ∃j ∈ J such that I ⊆↓S j from
which it is clear that R-idl(S) is continuous.

Let ϕ : S - S ′ be a morphism of strong proximity join semilattices.
Certainly ϕ̄(↓S 0) ⊆↓S′

0 as i ≺S 0 implies i = 0 and ϕ(0) = 0. That
ϕ̄ preserves directed joins follows essentially by definition of union. For
preservation of binary joins by ϕ̄ it is therefore clearly sufficient to verify
ϕ̄(↓S a ∨ b) ⊆ ϕ̄(↓S a) ∨ ϕ̄(↓S b) for any pair a, b ∈ S. This amounts
to verifying that for any d ≺S′

ϕ(c), for some c with c ≺S a ∨ b, that
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d ≤ c0 ∨ c1 for some c0, c1 such that there exists a0 ≺S a and b0 ≺S b with
c0 ≺S′

ϕ(a0) and c1 ≺S′
ϕ(b0). Use c ≺S a ∨ b and the strength of the

proximity lattice S to find a0 and b0 for which then ϕ(c) ≤ ϕ(a0 ∨ b0). But
ϕ(a0 ∨ b0) = ϕ(a0)∨ ϕ(b0) so by the strength of S ′ there exists the c0 and c1
required.

To complete our check that ϕ̄ is a morphism of CtsLat≪ we must check
that it preserves ≪. For this we need to verify that if I ⊆↓S j for some
j ∈ J that ϕ̄(I) ⊆↓S j′ for some j′ ∈ ϕ̄(J). But by roundedness of J and
preservation of ≺ by ϕ, j ∈ J implies ϕ(j) ∈ ϕ̄(J) and we can see that
ϕ̄ ↓S j ⊆↓S′

ϕ(j) as ϕ preserves ≺. These last two observations combine to
show that ϕ̄ preserves ≪.

Finally, it is clear that we have defined a functor. Preservation of identity
is trivial and ψ̄ϕ̄ = ψϕ because ≺ is preserved.

Notice that the isomorphism A ∼= R-idl(A) of Example 2.2 is
natural in A; more explicitly there is a natural isomorphism R-idl ◦
U ∼= IdCtsLat≪ , though we will not notate the forgetful functor
U : CtsLat≪ - ∨ -SPSlat in what follows.

3. Background presheaf topos results

This section consists of three subsections where we recall in turn some re-
sults about constructions and characterisations of lattice theoretic properties
in presheaf toposes. The results are all effectively well known. In the first
subsection we recall the ˜(_) construction which given a presheaf of posets
returns another presheaf of posets, but on morphisms sends lax natural trans-
formations to natural transformations. Next we recall how the ˜(_) construc-
tion can be used to give an explicit description of the rounded ideal comple-
tion in a presheaf topos. Finally we recall that for any dcpo (suplattice) ho-
momorphism α : A - B in a presheaf topos Ĉ, that αa : A(a) - B(a)
is a dcpo (suplattice) homomorphism for every object a of C.

3.1 The lax-to-natural functor ˜(_)

We recall the ˜(_) construction from [HT23a], which is a lax right adjoint
to the forgetful functor that embeds [Cop,Pos] into the category with the
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same objects (presheaves of posets) but with lax natural transformations as
morphisms. We will not exploit this lax universal property here, relying
instead on [HT23a] for properties of ˜(_), but we will need to describe it
explicitly.

If F : Cop - Pos is a presheaf of posets on some category C then we
define F̃ by

F̃ (a) = {(xf ) ∈ Πf :b - aF (b)|F (g)xf ≤ xfg, ∀c g- b
f- a}.

In terms of its action on morphisms we have [F̃ (f)((xh))]g = xfg for any
f : b - a and g : c - b. If ϕ : F

≤- G is a lax natural trans-
formation (i.e. G(f)ϕb ≤ ϕaF (f) for all f : b - a of C) then we
define a natural transformation ϕ̃ : F̃ - G̃ by ϕ̃a((xf )) = (ϕb(xf )). We
know from [HT23a] that it is faithful; in fact, for any natural transformation
α : F̃ - G̃ there is a lax natural transformation ψα : F

≤- G such that
ϕ = ψϕ̃ for any lax natural transformation ϕ : F

≤- G. Further ψ(_) has
the properties that ψId = Id and ψαψβ ≤ ψαβ . The explicit formula for ψα

is ψα
a (x) = (αa((F (f)(x))f ))Ida .

3.2 R-idl in a presheaf topos

In this subsection we recall the approach taken in [HT23a] to constructing
R-idl in a presheaf topos Ĉ = [Cop,Set]. As made clear in Section 4 of that
paper, any construction of sets of subsets, each determined by geometric
sequents, can be calculated by first applying the construction in Set at each
object (and morphism) to obtain a new presheaf, and then applying the ˜(_)
construction to that presheaf. Put another we are saying that R-idlĈ(S), as
a poset in Ĉ, is naturally isomorphic to ˜R-idl ◦ S, for any strong proximity
lattice S in the topos Ĉ. (Given that S is the model of a geometric theory in
a presheaf topos, it is the same thing as a functor Cop - ∨ -SPSLat; e.g.
D1.2.14 (i) of [J02].)

3.3 Dcpo and suplattice homomorphisms in Ĉ

Lemma 3.1. Let α : A - B be an internal dcpo (suplattice) homo-
morphism in a presheaf topos Ĉ between two internal dcpos (suplattices) A
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and B. Then αa : A(a) - B(a) is a dcpo (suplattice) homomorphism
for every object a of C. Further, if A is an internal suplattice then for any
morphism f : b - a of C A(f) is a suplattice homomorphism.

Proof. Recall that for any geometric morphism f : F - E its direct
image defines a functor f∗ : dcpoF

- dcpoE ([T04]). The tech-
niques of (i) in Lemma C1.6.9 of [J02] can then be applied to complete
the proof. To provide more detail, note that A(a) is isomorphic to γ∗(a∗A)
where γ is the unique geometric morphism Ĉ/a a- Ĉ - Set. (Here
a : Ĉ/a - Ĉ is the geometric morphism corresponding to the pullback
adjunction ΣY (a) ⊣ Y (a)∗ under Ĉ/a ≃ Ĉ/Y (a); its inverse image is logi-
cal.)

4. Main result

Lemma 4.1. (Harvey’s lemma).

[2,CtsLat≪] ≃ CtsLat≪Sh(S)

Proof. Consider

Ψ : [2,CtsLat≪] - CtsLat≪Sh(S)

F 7→ F̃

This is well defined because F ∼= R-idl ◦ F (recall our earlier comment that
R-idl ◦ U ∼= Id) and so F̃ ∼= ˜R-idl ◦ F ∼= R-idlSh(S)F , a continuous lattice
in Sh(S). It is clearly essentially surjective as any continuous lattice A in
Sh(S) has A ∼= R-idlSh(S)(A). (In fact, all this holds for any Ĉ.)

We have commented already that ˜(_) is faithful, so we just need to prove
fullness of Ψ to complete the proof. Say we have α : F̃ - G̃, a ≪
preserving internal suplattice homomorphism (in Sh(S)). Because it is ≪
preserving, its right adjoint α∗ is directed join preserving; i.e. a dcpo ho-
momorphism. Indeed, this is an equivalent characterisation of ≪ preserv-
ing for a suplattice homomorphism and we will call on this characterisation
below. By Lemma 3.1 we know that αi : F̃ (i) - G̃(i) (respectively
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(α∗)i : G̃(i) - F̃ (i)) are suplattice (respectively dcpo) homomorphisms
for i = 0, 1.

Now, the obvious choice for a natural transformation ψ : F - G such
that ψ̃ = α is ψα (described in Section 3.1). To show that this works and so
to complete the proof we must show: (a) [ψ̃α]i = αi for i = 0, 1, (b) ψα

i is a
suplattice homomorphism for i = 0, 1, (c) ψα is a natural transformation and
not just a lax natural transformation; and, (d) ψα

i preserves ≪ for i = 0, 1.
We will take each in turn but first let us note that by construction

F̃ (1) = F (1) (there is only the identity morphism away from 1). From
this it is clear α1 = ψα

1 = [ψ̃α]1 and so (a), (b) and (d) are actually im-
mediate at i = 1. The suplattice F̃ (0) is also easy to describe: it consists
of pairs (x0, x1) with xi ∈ F (i), i = 0, 1 and F (≤)(x0) ≤ x1. Further
the function F̃ (≤) : F̃ (0) - F̃ (1) is projection (x0, x1) 7→ x1; this is
just a repetition of the definition of ˜(_). Notice from this that by natural-
ity of α therefore for any (x0, x1) in F̃ (0) we have π2α0(x0, F (≤)x0) ≤
π2α0(x0, x1) = α1π2(x0, x1) = ψα

1 x1; this will be used in our verification of
(a) which is the next step.

(a) As α is an internal suplattice homomorphism we know that

F̃ (0)
α0 - G̃(0)

F̃ (1)

ΣF̃ (≤)

6

α1 - G̃(1)

ΣG̃(≤)

6

commutes where ΣF̃ (≤) ⊣ F̃ (≤) and similarly for G̃. See the proof of
Lemma C1.6.9 [J02] for details on how internal suplattices, as presheaves,
have left adjoints for their transition functions and for references to see how
internal suplattice homomorphisms must commute with these left adjoints
(or e.g. Proposition 3.7 of [T04] for effectively the same material). We can
give an explicit description of ΣF̃ (≤): it is x1 7→ (0, x1); this is clear as F̃ (≤)
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is projection. Therefore we can calculate:

α0(x0, x1) = α0((x0, F (≤)x0) ∨ (0, x1))

= α0(x0, F (≤)x0) ∨ α0ΣF̃ (≤)(x1)

= α0(x0, F (≤)x0) ∨ ΣG̃(≤)α1(x1)

= (ψα
0 x0, π2α0(x0, F (≤)x0)) ∨ (0, ψα

1 x1) by def. of ψα

= (ψα
0 x0, π2α0(x0, F (≤)x0) ∨ ψα

1 x1)

= (ψα
0 x0, ψ

α
1 x1) by an earlier remark

= [ψ̃α]0(x0, x1)

(b) By construction ψα
0 is the composite

F (0)
(Id,F (≤))- F̃ (0)

α0- G̃(0)
π1- G(0).

By noting that joins in F̃ (0) and G̃(0) are calculated pointwise it is clear that
each factor in the composite is a suplattice homomorphism, and so ψα

0 is a
suplattice homomorphism.

(c) We know ψα is lax so this part of the proof amounts to checking

ψα
1F (≤) ≤ G(≤)ψα

0 .

In (a) we established α0(x0, x1) = (ψα
0 (x0), ψ

α
1 (x1)). By uniqueness of ad-

joints we therefore know that (α∗)0(y0, y1) = ([ψα
0 ]∗(y0), [ψ

α
1 ]∗(y1)). From

the definition of ψα∗ we therefore know that ψα∗
i = [ψα

i ]∗. But ψα∗ is a lax
natural natural transformation so we know that

F (≤)ψα∗
0 ≤ ψα∗

1 G(≤).

Part (c) therefore follows by taking adjoint transpose (twice) of this last in-
equality.

(d) Apply the same reasoning as (b), but now to [ψα
0 ]∗ which we have

established is equal to ψα∗
0 . Having a right adjoint that preserves directed

joins implies preservation of ≪.

Remark 4.2. I have not been able to establish whether we must restrict to
C = {0 ≤ 1}op for the result to work. I expect so because in the proof
we are exploiting a gluing construction which is, itself, tied to having an
open/closed decomposition.
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We finish with a corollary that has implications for the classification of
locally compact locales via localic groupoids. Define CtsFrm≪ to be the
full subcategory of CtsLat≪ consisting of continuous frames; i.e. con-
tinuous lattices that are also frames. Note that the morphisms are not frame
homomorphisms; they are suplattice homomorphisms with directed join pre-
serving right adjoints.

Corollary 4.3.

[2,CtsFrm≪] ≃ CtsFrm≪
Sh(S)

Proof. A continuous lattice is always a preframe (e.g. Lemma VII 4.1 of
[J82]; but straightforward lattice theory). Therefore a continuous lattice is
a continuous frame if and only if it satisfies the distributive law. The proof
of the main lemma gives an explicit description of F̃ (i) in terms of F (i) for
i = 0, 1 and we noticed F̃ (1) = F (1). So it just needs to be checked that
assuming F (1) is distributive, F̃ (0) is distributive if and only if F (0) is. This
is immediate from the explicit description as binary meet and join in F̃ (0)
are calculated pointwise.

It is expected that we can construct a classifying localic groupoid for lo-
cally compact locales, using for example the approach of [HT23b] (or via
an explicit construction of the points of the localic groupoid via the locale
SN; G. Manuell, private communication). That is, we expect that there exists
a localic groupoid GLK such that for any locale X the category LK

∼=
Sh(X) of

locally compact locales internal to the topos Sh(X) (with isomorphisms as
morphisms) is equivalent to the category of principal GLK-bundles over X .
Now [HT23a] shows that S-homotopies between principal bundles (over the
classifying localic groupoid for compact Hausdorff locales) correspond to
locale maps between compact Hausdorff locales (and the same correspon-
dence for discrete locales is easy from the definition of presheaf topos). So it
might be hoped that the same holds for locally compact locales. The Corol-
lary rules this out: locally compact locales in Sh(S) correspond externally
to ≪ preserving suplattice homomorphisms and these do not correspond to
locale maps.

27 



C. TOWNSEND LATTICES OVER SIERPIŃSKI

5. Appendix: Internal suplattices

Below is a result about the relationship between [Cop,Sup] and SupĈ which
should be of general interest.

Proposition 5.1. Let C be a small cartesian category (i.e. small and finitely
complete). Then the ˜(_) construction determines a functor:

˜(_) : [Cop,Sup] - SupĈ

Proof. We split the proof into two parts:
(a) If F : Cop - Sup is a functor then F̃ is an internal suplattice in Ĉ.
(b) If ϕ : F - G is a natural transformation then ϕ̃ : F̃ - G̃ is an

internal suplattice homomorphism in Ĉ.

(a) We rely on Lemma C1.6.9 of [J02] which shows that a presheaf L :
Cop - Pos is an internal suplattice if and only if (i) L(a) is a suplattice
for every object a of C, (ii) L(f) : L(a) - L(b) has a right and left adjoint
for every morphism f : b - a; and, (iii) Beck-Chevalley holds for left
adjoints; that is, for any pullback diagram

a×d b
π2 - b

a

π1

? l
- d

k

?

in C the square

L(a×d b) �
L(π2)

L(b)

L(a)

Σπ1

?
�

L(l)
L(d)

Σk

?

commutes where Σh is the left adjoint of L(h) for any morphism h of C.
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We verify (i), (ii) and (iii) for F̃ where F : Cop - Sup.
For (i) note that if (xif )f :b - a is an indexed (i ∈ I) collection of ele-

ments of F̃ (a) then (
∨

i∈I x
i
f )f is in F̃ (a) because F (g) preserves arbitrary

joins for all g : c - b, and can readily be seen to be the join of the (xif )fs.
So F̃ (a) is a suplattice for each a. Notice that arbitrary meet is similarly
defined pointwise; i.e. (

∧
i∈I x

i
f )f is the meet of the (xif )fs.

Next (ii) is straightforward because arbitrary joins and meets are defined
pointwise so it is easy to see that they are preserved by F̃ (f) (and we know
that a monotone map between complete lattices has a right(left) adjoint iff it
preserves arbitrary joins(meets)). For example, for joins,

(F̃ (f)(
∨
i

xih))g =
∨
i

xifg = [
∨
i

F̃ (f)(xih)]g.

For (iii) by uniqueness of adjoints we only need to prove F̃ (l)Σk ≤
Σπ1F̃ (π2). Recall that quite generally if ϕ : A - B preserves arbitrary
meets then its left adjoint is given by Σϕ(b) =

∧
{a|b ≤ ϕ(a)}. So checking

(iii) amounts to checking for each n : a′ - a and each (xg)g:c - b ∈
F̃ (b) that

(
∧

{(x′r)|xg ≤ x′kg, ∀g : c - b})ln (A)

is less than or equal to

(
∧

{(ym)|xπ2t ≤ yπ1t, ∀t : c - a×d b})n (B)

Our strategy is to find for each (ym) ∈ F̃ (a) in the meet (B) an (x′r) ∈ F̃ (d)
such that xg ≤ x′kg for all g : c - b. From this we know that A ≤ x′ln
for each n : a′ - a and the check of (iii) can be completed by verifying
x′ln ≤ yn for each n : a′ - a.

Define, for r : d′ - d,

x′r = [F (πd′

2 )]∗yπ1

where πd′
2 : a ×d d

′ - d′ and we are using ϕ∗ to denote the right ad-
joint of any ϕ (and F (f), being a suplattice homomorphism, has a right
adjoint for each f ). We first check that (x′r) is in F̃ (d); that is, do we have
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F (t)x′r ≤ x′rt for every t : d′′ - d′? Because F (Ida × t)yπ1 ≤ yπ1(Ida×t)

(as (ym) ∈ F̃ (a)) this can be confirmed by verifying F (t)[F (πd′
2 )]∗yπ1 ≤

[F (πd′′
2 )]∗F (Ida × t)yπ1 . This last is easy to verify as it is equivalent

to F (πd′′
2 )F (t)[F (πd′

2 )]∗yπ1 ≤ F (Ida × t)yπ1 , tπd′′
2 = πd′

2 (Ida × t) and
F (πd′

2 )[F (π
d′
2 )]∗ ≤ Ida×dd′ .

For xg ≤ x′kg, given a g : c - b note that x′kg = [F (πc
2)]∗yπ1(Ida×g).

So we must but check F (πc
2)(xg) ≤ yπ1(Ida×g). This follows because

F (πc
2)(xg) ≤ xgπc

2
(as (xg) is in F̃ (b)) and xgπc

2
= xπb

2(Ida×g) ≤ yπ1(Ida×g)

where the last inequality follows as (ym) is in the meet (B).
So to complete our strategy for checking (iii) we must verify that x′ln ≤

yn for any n : a′ - a. Using that the pullback of the composite ln along
l is π1(Ida × n), where π1 : a×d a - a, the calculation is:

x′ln = [F (πa′

2 )]∗yπ1(Ida×n)

≤ [F (πa′

2 )]∗[F (n, Ida′)]∗F (n, Ida′)yπ1(Ida×n)

= [F (Ida′)]∗F (n, Ida′)yπ1(Ida×n)

≤ yn

where the last is because (ym) ∈ F̃ (a) (and, of course, n factors as π1(Ida×
n)(n, Ida′)).

(b) We prove that ϕ̃ is an internal suplattice homomorphism. This follows
provided we can verify that ϕ̃aΣF̃ (f) ≤ ΣG̃(f)ϕ̃b for all f : b - a (this
can be seen from the constructions shown in the proof of C1.6.9 of [J02];
Proposition 3.7 of [T04] also provides a route).

For each (yg) ∈ F̃ (b) we must verify

ϕ̃a(
∧

{(xr)|yg ≤ xfg, ∀g : c - b}) ≤∧
{(zt)|[ϕ̃b((yg))]g ≤ zfg, ∀g : c - b}

Given (zt) ∈ G̃(a) then it is in the meet of the right hand side iff ϕc(yg) ≤
zfg for all g : c - b. For any such (zt) define (xr) by xr = [ϕa′ ]∗(zr) for
each r : a′ - a. We check that (xr) ∈ F̃ (a); i.e. that F (d)xr ≤ xrd,
or equivalently F (d)[ϕa′ ]∗zr ≤ [ϕa′′ ]∗zrd for each d : a′′ - a′. But given
that G(d)zr ≤ zrd this will follow if F (d)[ϕa′ ]∗ ≤ [ϕa′′ ]∗G(d), which is true
as ϕ is natural.
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To complete we must verify (1) yg ≤ xfg for all g and (2) (ϕ̃a((xr)))t ≤
(zt). For (1), as ϕc(yg) ≤ zfg, yg ≤ [ϕc]∗zfg = xfg. For (2), this amounts to
checking ϕa′xr ≤ zr for each r : a′ - a which is again immediate from
the definition of (xr).

Remark 5.2. I believe that the restriction to cartesian C can be seen to be
unnecessary, using techniques from [T04]; however the proof becomes a bit
more involved.

Remark 5.3. Part (b) of the proof does not work if we only assume that
ϕ is a lax natural transformation. For example, take C = {0 ≤ 1}op. If
X, Y : {0 ≤ 1} - Set then a lax natural transformation from PX :
{0 ≤ 1} - Sup to PY : {0 ≤ 1} - Sup is the same data as a pair
of relations R(0) ⊆ X(0)× Y (0) and R(1) ⊆ X(1)× Y (1) such that

{Y (≤)j0|∃i0 ∈ I0, i0R(0)j0} ⊆ {j1|∃i′0 ∈ I0, (X(≤)i′0)R(1)j1}

for each I0 ⊆ X(0). But this is not sufficient for R to be a subfunctor of
X × Y , and so cannot correspond to an internal suplattice homomorphism
in Ĉ.

Remark 5.4. The proposition can be used to prove the main lemma (Lemma
4.1) without using information systems. For example, ↓↓ : F - idl ◦ F is
a natural transformation if F : Cop - CtsLat≪ and so ↓̃↓ is an internal

suplattice homomorphism which is a splitting for
∨̃↑ : ĩdl ◦ F - F̃ . This

shows that F̃ is an internal continuous lattice because ĩdl ◦ F ∼= idlĈF and
so we have exhibited F̃ as a dcpo retract of idlĈA for some internal poset A
of Ĉ.
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Almost Cofibrations

Luciano STRAMACCIA

Résumé. Dans cet article nous étudions une généralisation de la propriété
d’extension de l’homotopie ainsi que la notion associée de almost-cofibration
pour les espaces topologiques. Après avoir présenté quelques caractéristiques
nouvelles et intéressantes de cette notion, nous montrons que tout plongement
fermé d’espaces compacts métrisables est une almost-cofibration. De plus, il
s’avère que la catégorie des espaces compacts métrisables, avec les almost-
cofibrations et les équivalences de forme forte, possède la structure d’une
catégorie de cofibrations dont la catégorie d’homotopie est sa catégorie de
forme forte.
Abstract. We study a generalization of the homotopy extension property
together with the related notion of almost-cofibration of topological spaces.
After giving some new and interesting features of such a notion we show
that every closed embedding of compact metrizable spaces is an almost-
cofibration. Moreover, it turns out that the category of compact metrizable
spaces, together with almost-cofibrations and strong shape equivalences has
the structure of a cofibration category whose homotopy category is its strong
shape category.

Keywords. HEP, RWHEP, almost-cofibration, strong shape equivalence,
cofibration category, compact metrizable space.
Mathematics Subject Classification (2010). 55P05, 55P10, 54B30, 55P55.

Introduction

We consider a variation of the usual homotopy extension property (HEP),
called the rather weak homotopy extension property (RWHEP), that was in-
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troduced in [1], see also [8]. The maps having the RWHEP are characterized
by the fact that they are exactly those maps inducing levelwise fibrations in
the 2-category [Top,Gpd], where Top denotes the category of topological
spaces, while Gpd is the category of groupoids and their homomorphisms
(functors). In this paper we are interested in certain features of this property,
for instance, in contrast to the HEP, the RWHEP is preserved when passing
to the category of inverse systems and also passes to limits of inverse sys-
tems. A map having the RWHEP with respect to all spaces is called here an
almost-cofibration. In particular, it is proved that every closed embedding of
compact metrizable spaces is an almost-cofibration.
Almost-cofibrations and strong shape equivalences [11] give the category C
of compact metrizable spaces the structure of a cofibration category [14].
In [2] it was proved that the strong shape category of C is obtained by local-
izing at the class Σ of strong shape equivalences, that is Ssh(C) = C[Σ−1]. It
then follows that Ssh(C) actually is the homotopy category of a cofibration
category.

1. Preliminaries

A category enriched over Gpd is just a 2-category whose 2-cells are all in-
vertible. The category Top of topological spaces and continuous maps will
be considered with its enrichment over Gpd. Given two spaces X, Y, the
groupoid Gpd(X, Y ) has points the maps X → Y while a path α : f → g
is a track connecting the two maps, that is α = [H] is the relative homotopy
class of a homotopy H : X × I → Y connecting f to g. It is often called
the track groupoid of Y under X [1]. Anr will denote the full subcategory
of Top whose objects are the spaces having the homotopy type of compact
absolute neighborhood retracts for metrizable spaces (Anr-spaces).

Gpd is enriched over itself, the homotopies being the natural isomor-
phisms of functors. A homomorphism of groupoids is a homotopy equiva-
lence if and only if it is an equivalence of categories.
Every ordinary category can be considered as a category enriched over Gpd
with only identity homotopies.

Both the categories Top and Gpd are closed model categories [12], [7]
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with the following structure:

(a) Top : the weak equivalences are the homotopy equivalences, the fibra-
tions and the cofibrations are the Hurewicz fibrations and the Hurewicz
cofibrations.

(b) Gpd : the weak equivalences are the homorphisms that are equiva-
lences of categories, the cofibrations are the homomorphisms that are
injective on objects. The fibrations are the homomorphisms φ : G →
H having the following source lifting property as described by Brown
in [1]:

(1.1.1) for every x ∈ G and every path β : φ(x) → • in H , there exists
a path α : x→ • in G such that φ(α) = β.

For A a (small) category and K any 2-category, consider the functor 2-
category [A,K]. If F,G : A → K are 2-functors a 2-natural transformation
τ : F ⇒ G is a level equivalence, respectively a level fibration, level cofi-
bration, if τA : F (A) → G(A) is an equivalence, respectively a fibration,
cofibration in K, for all A ∈ A (whatever ”equivalence, fibration, cofibra-
tion” could mean).
Following [5], the functor category [A,Gpd] can be equipped with the so
called projective model structure. There the weak equivalences are the level
equivalences, the fibrations are the level fibrations and the cofibrations are
those natural transformations having the left lifting property with respect to
level trivial fibrations.

From now on we denote by C the category of compact metrizable spaces.
Moreover, by K we mean both a class of topological spaces and the full
subcategory of Top it generates.

Let us recall the following theorem ([10], I.5.2, Thm. 7 and Cor. 4) for
later use.

Theorem 1.1. Every space X ∈ C can be represented as the inverse limit of
an inverse system X = (Xλ, xλλ′ ,Λ) in Anr.

We refer to [10] for all that concerns inverse systems and the construction
of the category Pro(Top). Let us only recall that X is a contravariant functor
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X : Λ → Top, where (Λ,≤) is a cofinite, strongly directed set [4], Xλ =
X(λ) and xλλ′ = X(λ ≤ λ′).
A morphism p : X → X is a natural cone, that is a family p = {pλ : X →
Xλ |λ ∈ Λ} of maps such that xλλ′ ◦ pλ′ = pλ, for λ ≤ λ′.

2. Almost-cofibrations

For each topological space X , the representable (covariant) 2-functor

Gpd(X,−) : Top → Gpd

sends a space K to the groupoid Gpd(X,K), a map f : K → H to the
functor f ∗

K = Gpd(X, f) : Gpd(X,K) → Gpd(X,H), a 7→ f ◦ a,
and a track α = [H] : f ⇒ g : K → H to the natural isomorphism
Gpd(X,α) : Gpd(X, f) ⇒ Gpd(X, g) induced by α in the evident way.
Let f : X → Y be a map and let K ⊂ Top be a class of spaces. The natural
transformation

f ∗ = Gpd(f,−) : Gpd(Y,−) ⇒ Gpd(X,−) : K → Gpd

is a level fibration, resp. level equivalence , if f ∗
K : Gpd(Y,K) → Gpd(X,K)

is a fibration, respectively an equivalence of groupoids, for all K ∈ K.
The fact that f ∗

K is a fibration of groupoids amounts, by (1.1.1), to the fol-
lowing property

(2.1.1) for every g and H such that H ◦ e0(X) = g ◦ f , there is a
G : Y × I → K with G ◦ e0(Y ) = g and G ◦ (f × id) ≃ H . In diagram

X X × I

Y Y × I

-

-
??

e0(X)

e0(Y )

f f×id

?

@
@
@R

PPPPPPPPPPPq K

H

≃

= G

g

Such a consideration leads to the following generalization of the classical
Homotopy Extension Property (HEP):
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Definition 2.1. A map f : X → Y has the almost homotopy extension prop-
erty (RWHEP) with respect to a space K if, for every g : Y → K and
H : X × I → K such that H ◦ e0(X) = g ◦ f , there is a G : Y × I → K
with G ◦ e0(Y ) = g and G ◦ (f × 1) ≃ H .
If K ⊂ Top, f ∈ RWHEP (K) means that f has the RWHEP with re-
spect to all K ∈ K. If f ∈ RWHEP (Top), f will be called an almost-
cofibration.

Then, it is clear that

Theorem 2.2. Let f : X → Y be a map of spaces. The following are
equivalent

(a) f ∈ RWHEP (K)

(b) the homomorphism f ∗
K : Gpd(Y,K) → Gpd(X,K) is a fibration of

groupoids, for all K ∈ K.

Remark 2.3. We point out that the RWHEP was introduced by R. Brown
[1] and also that our almost-cofibrations are called rather weak cofibrations
in [8].

Let us recall the following facts:

(a) A map f : X → Y has the homotopy extension property with respect
to a class K of spaces, written f ∈ HEP(K), if : given a map g : Y →
K, K ∈ K, and a homotopyH : X×I → K starting at g◦f , there is a
homotopyG : Y ×I → K starting at g and such thatG◦(f×id) = H .
f : X → Y is a (Hurewicz) cofibration if it has the HEP with respect
to all topological spaces. This amounts to the following diagram to be
a weak pushout in Top

X X × I

Y Y × I

-

-
??

e0(X)

e0(Y )

f f×id

Here I denotes the unit interval [0, 1] and e0(X) : X → X × I is the
map e0(X)(x) = (x, 0).
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(b) given a map f : X → Y , its mapping cylinder M(f) is obtained as
the pushout

X X × I

.

Y M(f)

-

-
??

e0(X)

f

jf

πf

M(f) is then the quotient space of the disjoint union X × [0, 1] ⊔ Y
modulo the relation which identifies each point (x, 0) with f(x).

Proposition 2.4. Let f : X → Y be any map and K a class of spaces. If f ∈
HEP(K), then the functor f ∗

K = Gpd(f,K) : Gpd(Y,K) → Gpd(X,K)
is a fibration in Gpd, for all K ∈ K. In particular, every map having the
HEP(K) has also the RWHEP(K).

Proof. See ([1], 7.2.2) and Thm. 3.2.

The converse implication does not hold in general. In fact: letA = {0}∪⋃∞
n=1{

1
n
} andZ = [0, 1]×{0}∪A×[0, 1]. Let f : A→ [0, 1] be the inclusion

and let maps G : A× [0, 1] → Z, g : [0, 1] → Z be defined by the formulas
G(x, t) = (x, t) and g(y) = (y, 0) for (x, t) ∈ A × [0, 1] and y ∈ [0, 1].
Then f ∈ HEP(Anr) by the classical homotopy extension theorem, but it
is not true that f ∈ HEP(C). Indeed, a homotopy F : [0, 1] × [0, 1] → Z
such that F (x, t) = G(x, t) and F (y, 0) = g(y) for (x, t) ∈ A × [0, 1] and
y ∈ [0, 1] would be a retraction of the locally connected continuum [0, 1] to
a non-locally connected continuum Z.

Proposition 2.5. Let f : X → Y be a map of compact metrizable spaces,
then:

(1) the mapping cylinder M(f) is also a compact metrizable space.

(2) f is a cofibration if and only if f ∈ HEP(C).

Proof. (1)M(f) is compact since the category of compact spaces is closed
under finite coproducts and quotients. Since every continuous image in a
Hausdorff space of a compact metrizable space is metrizable, it suffices to
prove that M(f) is Hausdorff. Let q : X × [0, 1] ⊔ Y → M(f) be the
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quotient map and u, v ∈ M(f). If the two points are both in Y there are
disjoint open sets U ∋ u and V ∋ v in Y . Then Ũ = q(f−1(U)× [0, 1]⊔U)
and Ṽ = q(f−1(V )× [0, 1]⊔ V ) are disjoint open sets in M(f) contaning u
and v, respectively. Assume now that u ∈ X × [0, 1) and v ∈ Y : they have
disjoint open neighborhoods given by X × [0, t), t < 1, and X × [0, s) ⊔ Y
for some 0 < s < t. The case u, v ∈ X × [0, 1) is obviuos.
(2) Recall that a map is a cofibration if and only if it has the HEP with respect
to its mapping cylinder ([9], 2.10).

Proposition 2.6. Let f : X → Y be such that M(f) ∈ K. Then f ∈
RWHEP (K) if and only if f ∈ RWHEP (M(f)).

Proof. Let us consider the following diagram

X X × I

Y Y × I

-

M(f)

?

-

A
AAU

A
A
AU

?

HH
HHH

HHj
HH

HHH
HHH

HHHj

�
�
��

?

�
�

��

e0(X)

g

jf

f f×id

Hϕ

ψ

πfe0(Y )

K

From the fact that M(f) ∈ K, there is a map ϕ such that:
- ϕ ◦ e0(Y ) = jf ,
- ϕ ◦ (f × id) ≃ πf .

Since the middle square is a pushout, there is a map ψ such that:
- ψ ◦ jf = g,
- ψ ◦ πf = H.

Finally: (ψ ◦ ϕ) ◦ e0(Y ) = g and (ψ ◦ ϕ) ◦ (f × id) ≃ H.

The next two propositions mark the difference between the HEP and the
RWHEP.

Proposition 2.7. Let f : X → Y . The following are equivalent
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(a) f ∈ RWHEP (K)

(b) f ∈ RWHEP (Pro(K)).

Proof. (a) ⇒ (b): let K = {Kj}J ∈ Pro(K) and let g : Y → K, H :
X × I → K be such that H ◦ eY0 = g ◦ f . Since f ∈ RWHEP (K), there
is a diagram

X X × I

Y Y × I

-

Kj

=

≃

?

-

PPPPPPPPPPPq

@
@
@R

?

?

?

e0(X)

e0(Y )

gj

Gj

f f×id

Hj

for every j ∈ J . The family of maps G = {Gj : Y × I → Kj : j ∈ J} is
a pseudo cone, that is kjj′ ◦ Gj′ ≃ Gj , for all j ≤ j′, being G ◦ e0(Y ) = g
and e0(Y ) a homotopy equivalence. Moreover G ◦ (f × id) ≃ H.
Finally, since G ◦ e0(Y ) = g is a cone, let us consider the cone

Λ : Y × I Y × IY K- - -

?

σ(Y ) e0(Y ) G

which has the properties:

• Λ ◦ e0(Y ) = g,

• Λ ◦ (f × id) ≃ H.

X X × I

Y Y × I

-

K
?

-

PPPPPPPPPPPq

@
@
@R

?

?

?

e0(X)

e0(Y )

g

Λ

≃

=

f f×id

H

The other direction is clear.

40



L. STRAMACCIA ALMOST COFIBRATIONS

Proposition 2.8. Let f ∈ RWHEP (K) and let K = {Kj}j∈J be an inverse
system in K with inverse limit p : K → K. Then f ∈ RWHEP (K).

Proof. Let g : Y → K, H : X × I → K be such that H ◦ e0(X) = g ◦ f
and consider the diagram

X X × I

Y Y × I

-

K

-

J
J
J
J
JĴ

-

HH
HHH

HHH
HHHHj

HHH
HHH

HHH
HHHj

�
�

�	

?

�
�

�	

e0(X)

e0(Y )

g

f f×id

Φ

γ

p

H

K

Since f ∈ RWHEP (Pro(K)) (Prop. 2.6), there is a map (cone) Φ : Y ×
I → K such that Φ ◦ e0(Y ) = p ◦ g and Φ ◦ (f × id) ≃ p ◦ H . By the
universal property of the limit, there is a unique map γ : Y × I → K with
Φ = p ◦ γ. Then p ◦ γ ◦ e0(Y ) = p ◦ g, hence γ ◦ e0(Y ) = g.
Note that:

p ◦H ◦ e0(X) = p ◦ g ◦ f = Φ ◦ e0(Y ) ◦ f =

= p ◦ γ ◦ e0(Y ) ◦ f = p ◦ γ ◦ (f × id) ◦ e0(X),

from which it follows

H ◦ e0(X) = γ ◦ (f × id) ◦ e0(X).

Finally: H ≃ γ ◦ (f × id), being e0(X) a homotopy equivalence.

Theorem 2.9. Let f : X → Y be a map of compact metrizable spaces. The
following are equivalent

(a) f ∈ RWHEP (Anr),

(b) f ∈ RWHEP (C),

(c) f is an almost-cofibration.
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Proof. (a) ⇒ (b): this follows from Thm. 1.1 and Prop. 2.7. (b) ⇒ (c):
follows from Prop. 2.5.

Our main result here is the following

Theorem 2.10. Every inclusion i : B → X of a closed set in a compact
metrizable space is an almost-cofibration.

Proof. By the Borsuk’s homotopy extension theorem i : B → X has the
HEP(Anr), hence also the RWHEP(Anr). From Theorem 2.8 the assertion
follows.

3. The Homotopy Structure

Definition 3.1. [11] A map f : X → Y is a strong shape equivalence if it
fulfills the following requirements:

(ss1) for each map g : X → K, K ∈ Anr, there is a map h : Y → K such
that h ◦ f ≃ g,

(ss2) if h1, h2 : Y → K are given maps and G : X × I → K is a homotopy
G : h1 ◦ f ≃ h2 ◦ f , then there is a homotopy H : Y × I → K,
H : h1 ≃ h2, such that G and H ◦ (f × 1) are homotopic rel end
maps.

Since the homotopy H in (ss2) is uniquely determined up to homotopies
rel end maps ([3], Prop.1.2), it follows at once that f : X → Y is a strong
shape equivalence whenever the natural transformation

Gpd(f,−) : Gpd(Y,−) ⇒ Gpd(X,−) : A → Gpd

is a level equivalence, that is the functors of groupoids

Gpd(f,K) : Gpd(Y,K) → Gpd(X,K)

are all equivalences of categories, for all K ∈ Anr.
Every homotopy equivalence is a strong shape equivalence.
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Definition 3.2. [14] A cofibration category is a category E equipped with
two classes of morphisms Σ and Γ called weak equivalences and cofibra-
tions, respectively, such that the following axioms are satisfied.

(1) Weak equivalences satisfy the 2-out-of-6 property, i.e., if f, g, h are
composable morphisms of E such that both gf and hg are weak equiv-
alences, then so are f, g and h.

(2) Every isomorphism of E is an acyclic cofibration.

(3) E has an initial object, denoted 0.

(4) Every object X ∈ E is cofibrant, that is the unique morphism 0 → X
is a cofibration.

(5) (Trivial) Cofibrations are stable under pushouts along arbitrary mor-
phisms of E . A trivial cofibrations is morphisms in Σ ∩ Γ.

(6) Every morphism of E factors as a composite of a cofibration followed
by a weak equivalence.

In the category C let us denote Σ = the class of strong shape equivalences
and Γ = the class of almost-cofibrations.

Theorem 3.3. (C,Σ,Γ) is a cofibration category.

Proof. (1) Let

W YX Z- - -f g h

be morphisms of C such that both g ◦ f and h ◦ g are strong shape equiva-
lences. Then, for every K ∈ Anr, we have that in

Gpd(Z,K) Gpd(X,K)Gpd(Y,K) Gpd(W,K)- - -h∗K g∗K f∗K

43



L. STRAMACCIA ALMOST COFIBRATIONS

both f ∗
K ◦ g∗K and g∗K ◦ h∗K are equivalences in Gpd. Since Gpd is a model

category and every model category has the 2-out-of-6 property, the assertion
follows.
(2), (3), (4) and (6) are obvious.
(5) Let

B Y

A A
⊔
B Y

-

-
??

f

f

ii

be a pushout in C with i a (trivial) almost-cofibration. For all K ∈ C, we get
a pullback in Gpd

Gpd(A
⊔
B Y,K) Gpd(A,K)

Gpd(Y,K) Gpd(B,K)

-

-
??

f ′∗

f∗

i∗ i∗

with i∗ a (trivial) fibration in Gpd. Since (trivial) fibration are stable under
pullbacks in the model structure of Gpd, it follows that i∗ is a (trivial) fibra-
tion in Gpd, from which it follows that i is a (trivial) almost-cofibration.

The strong shape category of compact metrizable spaces is obtained for-
mally inverting the class of strong shape equivalences SSh(C) = C[Σ−1]
[2]. The previous theorem says that it can be represented as the homotopy
category of the cofibration category (C,Σ,Γ).
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THE TOPOLOGY OF CRITICAL
PROCESSES, IV

(THE HOMOTOPY STRUCTURE)

Marco GRANDIS

Résumé. La Topologie Algébrique Dirigée étudie des espaces équipés d’une
forme de direction, avec l’objectif d’inclure les processus non réversibles.
Dans l’extension présente nous voulons couvrir aussi les processus critiques,
indivisibles et inarrêtables, du changement d’état dans une cellule de mémoire
à l’action d’un thermostat.

Les parties précédentes de cette série ont introduit les espaces contrôlés,
en examinant comment il peuvent modeler les processus critiques issus de
divers domaines, et étudié leur catégorie fondamentale. Ici on traite leur
structure formelle d’homotopie.

Abstract. Directed Algebraic Topology studies spaces equipped with a form
of direction, to include models of non-reversible processes. In the present
extension we also want to cover ‘critical processes’, indecomposable and un-
stoppable – from the change of state in a memory cell to the action of a
thermostat.

The previous parts of this series introduced controlled spaces, examining
how they can model critical processes in various domains, and studied their
fundamental category. Here we deal with their formal homotopy theory.

Keywords. Directed algebraic topology, homotopy theory, fundamental cat-
egory, concurrent process.

Mathematics Subject Classification (2010). 55M, 55P, 55Q, 68Q85.
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Introduction

0.1 Directed and controlled spaces

Directed Algebraic Topology is an extension of Algebraic Topology, deal-
ing with ‘spaces’ where the paths need not be reversible; the general aim is
including the representation of irreversible processes. The category dTop
of directed spaces, or d-spaces [G2], is a typical setting for this study; it is
frequently employed in the theory of concurrency: see [FGHMR]. Homo-
topy in dTop is based on the standard directed interval I, whose paths are
the (weakly) increasing continuous mappings [0, 1]  [0, 1]. It is the basic
model of a non-reversible process, or a one-way road.

This article belongs to a series devoted to a further extension, where the
paths can also be non-decomposable in order to include critical processes,
indivisible and unstoppable – either reversible or not. For instance: quantum
effects, the onset of a nerve impulse, the combustion of fuel in a piston, the
switch of a thermostat, the change of state in a memory cell, the action of a
siphon, moving in a no-stop road, etc.

Part I [G3] introduced the category cTop of controlled spaces, or c-
spaces, examining how they can model critical processes; the definition is
reviewed in 1.1. The previous setting of d-spaces is embedded in cTop as the
full, reflective and coreflective subcategory of ‘flexible’ c-spaces. Homotopy
in cTop is based on the standard controlled interval cI, whose paths are the
increasing continuous mappings [0, 1]  [0, 1] which are either surjective
or constant at 0 or 1. It is the basic model of a non-reversible unstoppable
process, or a one-way no-stop road.

Parts II and III [G4, G5] introduced and studied the fundamental category
of controlled spaces, as a functor

Π1 : cTop  Cat, (1)

which extends the functor Π1 : dTop  Cat studied in [G2].
The extension is not obvious, essentially because the cylinder functor

of cTop does not preserve pushouts. The problem was overcome with a
hybrid use of ‘general’ and ‘flexible’ homotopies, and some new methods
of computation. Covering maps work well ([G4], Theorem 5.8), but the
van Kampen theorem for the fundamental category of d-spaces cannot be
extended, as it is based on the subdivision of paths.
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Here we study the homotopy theory of c-spaces, including homotopy
equivalences, homotopy constructions like cones and suspension, and the
relationship with cubical sets.

0.2 Outline

In Section 1 we analyse the formal theory of homotopy in cTop, following
the classification of directed settings in [G2]: it is a symmetric dI2-category
with concatenation pushout of the interval (to concatenate paths), no con-
catenation pushout of the cylinder functor (homotopies cannot be concate-
nated), and no path functor (the cylinder functor has no right adjoint). For
comparison, dTop is a dIP4-homotopical category, with far stronger prop-
erties. The breaking of symmetries and ‘extended symmetries’ in cTop is
examined in 1.6. In 1.7 and 1.8 we review the basic elements of homotopy
theory in Cat.

Composite homotopies of c-spaces are introduced in Section 2, together
with forms of directed homotopy equivalence, contractibility and connect-
edness adequate to the present setting.

Sections 3 and 4 deal with homotopy pushouts, cones and suspension.
Weak flexibility properties (see 3.1) are used to counteract the fact that push-
outs are not preserved by the cylinder functor.

The flexible interval I (the basis of homotopy for d-spaces) produces a
second homotopy structure for c-spaces, denoted as cTopF and examined in
Section 5. In fact, we have already seen in Part II (Theorems 5.4 and 5.5)
that the fundamental category functor is invariant up to flexible homotopy.

Finally, Section 6 is about cubical sets. A cubical set has diverse geo-
metric realisations: as a topological space (the classical realisation, pasting
topological cubes In), as a directed space (pasting directed cubes In), and
as a controlled space (pasting controlled cubes cIn). All this can be com-
bined: a cubical set labelled in cTop comprises all these instances and their
aggregations (see 6.7).

0.3 An overview of this series

(a) Reviewing our aims, Part I explores how the new controlled spaces can
model concrete, critical processes and their interaction with continuous vari-
ation.
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Controlled spaces can thus unify aspects of continuous and discrete math-
ematics. Moreover, they can interpret phenomena of diverse domains in a
single system of mathematical models, which can be combined together and
studied with extensions of the usual tools of Algebraic Topology.

(b) Following this program, Parts II and III introduce and investigate the
fundamental category of controlled spaces. This is used, in particular, to
classify obstructions in problems related to concurrency (Part III, Section 2).

Now, the fundamental category studies controlled paths up to flexible
homotopy. Homotopy properties are more involved here than in the tamer
world of directed spaces, and we have to blend the standard homotopy struc-
ture, based on the controlled interval cI, with the flexible one, based on the
directed interval I.
(c) The present part aims to make clear the role of these homotopy struc-
tures on the category of controlled spaces, in the general frame of directed
homotopy built in the book [G2]. In our opinion, the interest and beauty of
peculiar structures, like controlled cones and spheres (in Section 4), might
be a sufficient impulse to study their formal world. Of course, this study is
not concluded here.

In a marginal way, we can add that labelled cubical sets, considered in
6.7, might be used to model traffic networks where roads (possibly one-way,
or no-stop, or including delays) interact with planar areas, e.g. parking lots
and desert lands; or rivers and canals interact with lakes and sees.

0.4 Terminology and notation

A continuous mapping between topological spaces, possibly structured, is
called a map. R denotes the euclidean line as a topological space, and I the
standard euclidean interval [0, 1]. Similarly Rn and In are euclidean spaces.
Sn is the n-dimensional sphere. The open and semiopen intervals of the real
line are always denoted by square brackets, like ]0, 1[, [0, 1[, etc.

The symbol ⊂ denotes weak inclusion. The binary variable α takes val-
ues 0, 1, also written, respectively, as −,+ in superscripts and subscripts.
Marginal remarks are written in small characters.

The previous papers [G3, G4, G5] of this series are cited as Part I, Part
II and Part III, respectively. The reference I.2, or II.3, or III.1.4, points to
Section 2 of Part I, or Section 3 of Part II, or Subsection 1.4 of Part III.
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1. The standard homotopy structure of controlled spaces

We examine the formal homotopy structure of c-spaces, following the clas-
sification of such structures in [G2].

The component λX : F (X)  G(X) of a natural transformation be-
tween functors is often written as λ : FX  GX .

1.1 Controlled spaces

The category cTop of controlled spaces, or c-spaces, was introduced in Part
I [G3]; we briefly recall the main definitions.

An objectX is a topological space equipped with a setX] of continuous
mappings a : [0, 1]  X , called controlled paths, or c-paths, that satisfies
three axioms:

(csp.0) (constant paths) the trivial loops at the endpoints of a controlled path
are controlled,

(csp.1) (concatenation) the concatenation of consecutive controlled paths is
controlled,

(csp.2) (global reparametrisation) the reparametrisation aρ of a controlled
path a by a surjective (weakly) increasing map ρ : [0, 1]  [0, 1] is con-
trolled.

A map of c-spaces, or c-map, is a continuos mapping which preserves
the selected paths.

The reversor functor R : cTop  cTop of the category of c-spaces sends
X to the opposite object RX = Xop, with reversed selected paths.

The category cTop contains the category dTop of d-spaces (studied in
[G2]) as a full subcategory, reflective and coreflective: a c-space is a d-space
if and only if it is flexible, which means that each point is flexible (its trivial
loop is controlled) and every controlled path is flexible (all its restrictions
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are controlled). Both categories are complete and cocomplete, with limits
(resp. colimits) calculated as in Top and enriched with initial (resp. final)
structures. The terminal object is the singleton ∗ of dTop, also called the
flexible singleton when viewed in cTop.

The reflector cTop  dTop (cf. I.1.8, that is Section 1.8 of Part I) takes
a c-space X to the generated d-space X̂ , with the same underlying topo-
logical space and the d-structure generated by the c-paths; the unit of the
adjunction is the reshaping X  X̂ , whose underlying map is the identity.
The coreflector takes X to the flexible part FlX , namely the subspace of
flexible points X0 (called the flexible support) with the d-structure of the
flexible c-paths; the counit is the inclusion FlX  X .

1.2 Structured intervals and lines

(a) In dTop the standard d-interval I has the d-structure generated by the
identity id I: the directed paths are all the increasing maps I  I. It plays
the role of the standard interval in this category, because the directed paths
of any d-space X coincide with the d-maps I  X .

It may be viewed as an essential model of a non-reversible process, or a
one-way road in transport networks. It is represented as

0 1 I// (2)

Similarly, the directed line R has for directed paths all the increasing
maps I  R.
(b) In cTop the standard c-interval cI, or one-jump interval, has the same
support, with the c-structure generated by the identity id I: the controlled
paths are the surjective increasing maps I  I and the trivial loops at 0 or 1.
The controlled paths of any c-space X coincide with the c-maps cI  X .

It can model a non-reversible unstoppable process, or a one-way no-stop
road. It is represented as

0 1
• •

cI
// // (3)

marking by a bullet the isolated flexible points: here the endpoints of the
interval. The controlled line cR has for directed paths all the increasing
maps I  R whose image is an interval [k, k′] with integral endpoints.
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(c) The interval I is also used in cTop, as the flexible interval. Flexible
paths of c-spaces and flexible homotopies of c-maps are parametrised on it,
as c-maps I  X and X×I  Y , respectively (see II.4.1).

(d) We also recall that, in the fundamental category Π1(X) of a c-space X
(introduced in II.5.1)

- the vertices are the flexible points of X ,

- the arrows are equivalence classes [a] : x  y of c-paths a : x  y; the
equivalence relation is generated by flexible homotopies ϕ : a′  a′′ with
fixed endpoints, which are c-maps ϕ : cI×I  X defined on the hybrid
square cI×I.

1.3 The standard dI2-structure

In cTop the standard interval cI has a structure formed of the following op-
erations.

The first-order part was already seen in II.4.1: two faces ∂α (α = ±),
a degeneracy e and a reflection r. We also have a second-order part which
involves the standard square cI2 = cI× cI: two connections, or main opera-
tions gα (already used in Part II) and a transposition s

∗
∂α

//// cI
e

oo cI2
gαoooo r : cI  cIop, s : cI2  cI2, (4)

∂α(∗) = α, g−(t, t′) = max(t, t′), g+(t, t′) = min(t, t′),

r(t) = 1− t, s(t, t′) = (t′, t)

As a consequence, the (standard) cylinder endofunctor

Ic = −×cI : cTop  cTop,

written as I if it is clear that we are working in cTop, has natural transfor-
mations, written as above

1
∂α

//// I
e

oo I2
gαoooo r : IR  RI, s : I2  I2, (5)
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that satisfy the following equations

e∂α = 1, egα = e(Ie) = e(eI) (degeneracy),

gα(Igα) = gα(gαI) (associativity),

gα(I∂α) = 1 = gα(∂αI) (unitarity),

gβ(I∂α) = ∂αe = gβ(∂αI) (absorbency, for α 6= β),

(RrR)r = 1, (Re)r = eR,

r(∂+R) = R∂−, r(g+R) = (Rg−)r2 (reflection),

ss = 1, (Ie)s = eI, s(I∂α) = ∂αI,

(Rs)r2 = r2(sR), gαs = gα (transposition),

(6)

where r2 = (rI)(Ir) : I2R(X)  RI2(X) is the double reflection, namely:
r2(x, t, t

′) = (x,−t,−t′).

According to a classification of homotopy structures defined by a cylin-
der endofunctor, the category cTop, equipped with the functors I, R and the
previous operations, is a symmetric dI2-category ([G2], 4.2): the previous
equations are the axioms of this structure. Moreover, the existence of the
terminal object and pushouts makes cTop into a dI1-homotopical category
([G2], 1.7.0).

The present structure is made concrete fixing the flexible singleton ∗
as the standard point ([G2], 1.2.4). The c-space cI = I(∗) is a symmetric
dI2-interval for the cartesian product ([G2], 4.2.8).

1.4 Higher properties

(a) The category dTop of directed spaces has a far richer structure. In partic-
ular the cylinder functor Id = −×I preserves all pushouts (which allows the
concatenation of homotopies) and has a right adjoint, the cocylinder functor
Pd = (−)I, or path functor. Adding the previous operations and others, we
have a symmetric dIP4-homotopical category ([G2], 4.2.6).

The homotopy structure of Cat, reviewed in 1.7, is also of this kind.

(b) The category Top of topological spaces has a reversible structure of this
kind: the reversor endofunctor is the identity.
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The same holds for the category Ch•(D) of unbounded chain complexes
on an additive category, or Ch+(D) of positive chain complexes on an addi-
tive category with kernels ([G2], 4.4).

(c) On the other hand, the classification of cTop as a symmetric dI2-category
and a dI1-homotopical category cannot be improved, essentially because
pushouts are not preserved by the cylinder functor.

(i) It is not a dI3-category ([G2], 4.2.2): the concatenation pushout JX =
IX +X IX , in particular, is not preserved by the functor I , as remarked
for X = ∗ and the two-jump interval J(∗) = cJ, in II.4.7(c).

(ii) It is not a dIP1-category ([G2], 1.2.2): the cylinder functor −×cI has
no right adjoint, by the same reason.

(iii) We shall see in 3.8(b) that cTop is not a symmetric dI1-homotopical
category (as defined in [G2], 4.1.4): the cylinder I does not preserve the
‘cylindrical colimits’ that produce the homotopy pushouts.

This makes the use of pushouts in cTop complicated, as we have already
seen in Part II for the construction of the fundamental category, and will
also see in the present study of homotopy equivalences, homotopy pushouts,
cones and suspension. Flexibility properties will be used, to link these con-
structions to the more regular ones of dTop.

1.5 The splitting property

The standard concatenation pushout – pasting two copies of the standard
interval, one after the other – is realised in cTop as cJ, the two-jump structure
on the euclidean interval [0, 1], generated by the paths c−, c+ (see II.4.2)

∗ ∂+
//

∂−



cI
c−



c−(t) = t2,

c+(t) = (t+ 1)2

cI
c+

// cJ
(7)

Adding the concatenation map κ : cI  cJ (a reshaping, cI being finer
than cJ, cf. I.1.7), the regular concatenation of two consecutive c-paths a′, a′′ :
cI  X is expressed as

a′ ∗ a′′ = aκ : cI  cJ  X (ac− = a′, ac+ = a′′) (8)
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This procedure is frequent in homotopy theory. For instance, chain com-
plexes have a similar behaviour: pasting two copies of the interval (or a
cylinder) yields a different object, related to the former by a (non-invertible)
concatenation map. The same happens in Cat (see 1.7) and for cubical sets
(see Section 6).

On the other hand, in dTop (and Top) the standard concatenation pushout
can be realised as the interval itself, letting κ be the identity map (see II.3.2),
so that every path a is the concatenation of two paths, uniquely determined
as ac− and ac+. We can introduce the term of a splittable homotopy structure
to express the property that the concatenation map is invertible.

1.6 Breaking the symmetries of classical topology

A topological space X has ‘intrinsic symmetries’, which act on its singular
cubes In  X .

They are generated by the standard reversion r and the standard transpo-
sition s

r : I  I, r(t) = 1− t, s : I2  I2, s(t, t′) = (t′, t) (9)

Their n-dimensional versions

ri = Ii−1×r×In−i : In  In (i = 1, , n),

si = Ii−1×s×In−i−1 : In  In (i = 1, , n− 1),
(10)

span the group of symmetries of the n-cube, namely the hyperoctahedral
group (Z2)n o Sn (a semidirect product): the reversions ri commute with
each other and generate the first factor, while the transpositions si generate
the symmetric group Sn. This group acts on the set of n-cubes In  X .

Topological spaces have thus both kinds of symmetries. Directed alge-
braic topology allows one to break the first kind, and also the second in some
settings.

(a) Reversion. The prime effect of the reversion r : I  I is reversing the
paths, in any topological space. This map also gives the reversion of homo-
topies, by the reversion id×r of the cylinder functor I = −×I : Top  Top.

Controlled spaces (as well as preordered spaces and directed spaces) lack
a reversion, replaced by a reflection pair (R, r) consisting of the reversor
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R : cTop  cTop and a reflection r : IR  RI for the cylinder functor. This
behaviour is shared by all the structures for directed homotopy considered in
[G2]; the reversible case is a particular instance, with R the identity functor.

(b) Transposition. Coming back to topological spaces, the transposition
s(t, t′) = (t′, t) of the standard square I2 yields the transposition symme-
try of the iterated cylinder functor I2 = −×I2 : Top  Top ([G2], 1.1.1).

This second-order symmetry, acting on I2, also exists in cTop (as we
have seen above), pTop and dTop, but does not exist in other directed struc-
tures, e.g. for cubical sets (see 6.3, 6.8). Its role, within directed algebraic
topology, is double-edged. On the one hand, its presence has an important
consequence, the homotopy invariance of the cylinder functor – as proved
in (18). On the other hand, it restricts the interest of directed homology,
preventing a good relation of the latter with suspension ([G2], Section 2.2).

In fact the (pre)ordered group H1(S1) = Z of directed homology has the
canonical order, while H2(S2) only gets the chaotic preorder. Essentially, we
cannot reverse the d-path that generates the former, but we can transpose the d-
square that generates the latter, so that its homology class and the opposite are
both weakly positive. (In a cubical set there is a finer control of cubes, see 6.8.)

(c) Restriction. Finally, we already remarked that the present extension to
c-spaces breaks a flexibility feature of d-spaces: paths can no longer be sub-
divided.

Formally, this can be traced back to the action on paths of the monoid of
restrictions (in I.1.2), formed of the affine endomaps

ρ : I  I ρ(t) = (t2 − t1)t+ t1 (0 6 t1 < t2 6 1) (11)

In Top, pTop and dTop these are endomaps of the standard interval (I or
I), and act on any path restricting it to the subinterval [t1, t2] (reparametrised
on [0, 1]). In cTop they are not endomaps of cI: path-restriction is prevented
in the standard homotopy structure (but allowed in the flexible structure ex-
amined in Section 5).

One might say that there is now a breaking of ‘extended symmetries’,
forming a monoid instead of a group.
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1.7 Categories and directed homotopy

The fundamental category functor Π1 : cTop  Cat takes flexible homo-
topies of c-spaces (and homotopies of d-spaces) to directed homotopies in
Cat, the cartesian closed category of small categories (cf. Theorem II.5.4,
and Proposition 5.3 here). We briefly review here the homotopy structure of
Cat – a symmetric dIP4-homotopical category (cf. [G2], 4.3.2).

The reversor functor R takes a small category to the opposite one

R : Cat  Cat, R(X) = Xop, (12)

where Xop has precisely the same objects as X , with Xop(x, y) = X(y, x)
and the opposite composition, so that R is strictly involutive.

(a) The standard homotopy structure of Cat is based on the cartesian product
and the directed interval i = 2 = 0  1, an ordinal. Its cartesian powers
2n are ordered sets (viewed as categories); the standard point is the terminal
category 20 = 1.

Faces, degeneracy, reflection, connections and transposition are order
preserving mappings (and functors)

1
∂α

//// 2
e

oo 22
gαoooo r : 2  2op, s : 22  22, (13)

defined by the same formulas as in (4).
A point x : 1  X of the small category X is an object of the latter. A

(directed) path a : 2  X from x to x′ is an arrow a : x  x′ of X , their
concatenation is the composition, strictly associative and unitary.

The concatenation pushout gives here the ordinal category j = 3. The
obvious concatenation map κ : 2  3, κ(0  1) = (0  2) is not invert-
ible: this homotopy structure is not splittable.

The (directed) cylinder functor IX = X×2 has a right adjoint: PY =
Y 2, the category of morphisms of Y . A (directed) homotopy ϕ : f 
g : X  Y , represented by a functor X×2  Y or equivalently X  Y 2,
is the same as a natural transformation between the functors f, g. Given
two parallel arrows a, b : x  x′ in X , a homotopy with fixed endpoints
a  b is a commutative square 2×2  X with trivial vertical edges and
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equal horizontal edges a = b. The fundamental category of X is the cate-
goryX itself. (This homotopy structure is ‘one-dimensional’, akin to that of
1-cubical sets.)

The operations of homotopies (vertical composition and whisker com-
position) coincide with the 2-categorical structure of Cat, which implies that
the homotopy structure is 2-regular, in the sense of [G2], 4.2.3.

A future homotopy equivalence (f, g;ϕ,ψ) between small categories X ,
Y ([G2], 3.3.1) is a four-tuple of functors and natural transformations (that
need not be invertible)

f : X −− Y : g, ϕ : id  gf, ψ : id  fg (14)

‘Directed homotopy equivalence’ in Cat is studied in [G2], Chapter 3,
combining the future and past homotopy equivalences of categories in com-
plex forms, aiming to classify the fundamental categories of directed spaces;
some examples were recalled in II.7. (Different homotopy structures on Cat
are studied or cited in [Mi].)

(b) Ordinary equivalence of categories is a stricter, far simpler notion, based
on the reversible homotopy structure Cati produced by the reversible inter-
val i. The latter is the indiscrete groupoid on two objects, formed by an
isomorphism u : 0  1 and its inverse

i = 0 −− 1, r : i  i, r(u) = u−1, (15)

with the obvious reversion r, defined above. This gives a reversible cylinder
functorX×i, with right adjoint Y i (the full subcategory of Y 2 whose objects
are the isomorphisms of Y ); a reversible homotopy ϕ : f  g : X  Y is
the same as a natural isomorphism of functors.

(c) Both structures on Cat give the same homotopies for groupoids, repre-
sented by the restriction of the cylinder (or cocylinder) of Cati to the full
subcategory Gpd of small groupoids.

1.8 Coherent homotopy equivalence of categories

A future homotopy equivalence (f, g;ϕ,ψ) in Cat is said to be coherent,
or a future equivalence ([G2], 3.3.1), if it satisfies the following coherence
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conditions:

f : X −− Y : g, ϕ : idX  gf, ψ : id Y  fg,

fϕ = ψf : f  fgf, ϕg = gψ : g  gfg
(16)

This structure plays a primary role in [G2]. It can be seen as a symmetric
version of an adjunction, with two units (although f and g do not determine
each other). Its dual, a past equivalence, has two counits.

Future equivalences compose, in the same way as adjunctions ([G2],
3.3.3), and give an equivalence relation between small categories. Two cat-
egories are future equivalent if and only if they can be embedded as full
reflective subcategories of a common one ([G2], Theorem 3.3.5).

A property is invariant for future equivalences if and only if it is pre-
served by full reflective embeddings and by their reflectors.

All this works because the homotopy structure of Cat is 2-regular, as
remarked above. On the other hand, these coherence conditions are generally
too strong for the homotopy equivalence of topological spaces (or d-spaces),
and only one of them is required for strong deformation retracts.

Here we shall make a limited use of coherent future homotopy equiva-
lences of c-spaces: see 2.6.

2. Homotopy equivalence and connectedness of c-spaces

After reviewing the homotopies of c-spaces, from II.4, we introduce formal
composite homotopies to cover their lack of a vertical composition. Then we
study forms of directed homotopy equivalence and connectedness adequate
to the present setting.

2.1 Composing homotopies

Homotopies of controlled spaces, and their structure, are defined by the
cylinder functor and the structure examined above.

(a) As we have already said in II.4.1, a (standard, or general) homotopy
ϕ : f  g : X  Y of c-spaces is represented by a map ϕ : IX  Y ,
with faces f = ϕ∂− and g = ϕ∂+. The representative map is written as
ϕ̂ : IX  Y when useful. The degeneracy map e : IX  X gives the
trivial homotopy 0f : f  f : X  Y , represented by fe : IX  Y .
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The reflection r : IR  RI transforms a homotopy ϕ : f  g : X  Y
into the reflected one

ϕop : gop  f op : Xop  Y op, (ϕop)̂ = R(ϕ̂)r : IRX  RY (17)

The transposition s : I2  I2 makes the cylinder functor I : cTop 
cTop homotopy invariant: the homotopy ϕ can be transformed into a homo-
topy Iϕ : If  Ig : IX  IY

(Iϕ)̂ = I(ϕ̂)s : I2X  IY,

I(ϕ̂)s(∂−IX) = I(ϕ̂)(I∂−X) = If, I(ϕ̂)s(∂+IX) = Ig,
(18)

modifying the map I(ϕ̂), which does not have the correct faces.

(b) There is a whisker composition of maps and homotopies

X ′ h // X
f //

g
//↓ϕ Y

k // Y ′ (19)

k◦ϕ◦h : kfh  kgh : X ′  Y ′, (k◦ϕ◦h)̂ = (kϕ̂)(Ih) : IX ′  Y ′,

also written as kϕh. This ternary operation satisfies obvious relations of
associativity and identities (cf. [G2], 1.2.3).

(c) On the other hand, homotopies of c-spaces have no vertical composition:
two consecutive homotopies f  g  h (between parallel c-maps) cannot
be concatenated, because of the failure of the concatenation pushout recalled
above (see II.4.7(c)).

We introduce thus a composite homotopy ϕ = (ϕ1, ,ϕn) : f
′ · f ′′ :

X  Y (denoted by a dot-marked arrow) as a finite sequence of consecutive
homotopies between maps fi : X  Y

f ′ = f0
ϕ1 // f1

ϕ2 // f2 
ϕn // fn = f ′′ (20)

Their whisker composition with maps is obvious

kϕh = (kϕ1h, kϕ2h, , kϕnh) (21)

The vertical composition ψϕ with a second composite homotopy ψ :
f ′′ · f ′′′ : X  Y is just word concatenation, and is associative.

Of course these two composition laws do not satisfy the middle-four inter-
change and do not produce a 2-category.
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2.2 Future and past homotopy equivalences

We already recalled that directed homotopy equivalence comes out in two
basic forms, which can be combined in various ways studied in [G2]. Here
we have to extend this approach, working with composite homotopies.

(a) A future homotopy equivalence between the c-spacesX and Y , or homo-
topy equivalence in the future, will be a four-tuple (f, g;ϕ,ψ) of maps and
composite homotopies (starting from the identity maps of the spaces)

f : X −− Y : g, ϕ : idX · gf, ψ : id Y · fg (22)

We speak of a future homotopy equivalence in one step when ϕ and ψ
are mere homotopies.

Future homotopy equivalences compose: given a second

h : Y −− Z : k, ϑ : id Y · kh, ζ : idZ · hk, (23)

their composite is obtained by whisker composition and vertical composition
(as in the horizontal composition of adjunctions)

hf : X −− Z :gk,

(gϑf)ϕ : idX · gkhf, (hψk)ζ : idZ · hfgk
(24)

Being future homotopy equivalent c-spaces is thus an equivalence rela-
tion.

A past homotopy equivalence between the c-spaces X, Y is a four-tuple
(f, g;ϕ,ψ)

f : X −− Y : g, ϕ : gf · idX, ψ : fg · id Y, (25)

where the composite homotopies start from the composed maps. The rever-
sor R turns future into past and conversely (see (17)), and we will mostly
deal with the former case.

(b) More particularly, with the following structure

i : X0 −− X : p, idX0 = pi, ϕ : idX · ip, (26)

we say that the c-spaceX0 is a future deformation retract ofX , or embedded
in X as a future deformation retract; this can always be realised with a c-
subspace X0 = Im i ⊂ X . Again, we speak of a future deformation retract
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in one step when we can realise the previous structure with a homotopy
ϕ : idX  ip, as will often be the case in the examples below.

(c) We say that the c-spacesX, Y are coarsely c-homotopy equivalent if they
are linked by the equivalence relation generated by future and past homotopy
equivalence.

2.3 Contractible c-spaces

We say that a c-space is future contractible if it is future homotopy equivalent
to the terminal singleton ∗. Here we only need a pair of maps i, p and one
composite homotopy ϕ

i : ∗ −− X : p, ϕ : idX · ip (pi = id ∗), (27)

and ∗ is embedded as a future deformation retract ofX , at a flexible point
x0 = i(∗). We also say that X is future contractible to x0.

Equivalently, we have a composite homotopy ϕ such that

ϕ = (ϕ1, ,ϕn) : f0 · fn : X  X,

f0 = idX, fn is constant at x0 ∈ X0
(28)

We say that the c-space X is coarsely c-contractible if it is coarsely
c-homotopy equivalent to ∗: there exists a finite sequence of c-spaces
X,X1, , Xn−1, ∗ such that each of them is future or past homotopy equiv-
alent to the next.

Examples. (a) The standard interval cI is past contractible to 0 and future
contractible to 1, in one step, with homotopies supplied by the connections
gα : cI2  cI recalled in 1.3

∂− : ∗ −− cI : e, g+ : ∂−e  id cI, e∂− = id ,

∂+ : ∗ −− cI : e, g− : id cI  ∂+e, e∂+ = id 
(29)

(b) The two-jump interval cJ is also past contractible to 0 and future con-
tractible to 1, with homotopies gα : cJ×cI  cJ.

(c) The standard c-line cR is not future contractible, because there is no point
x0 such that each flexible point x has a c-path x  x0. (The necessity of
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this property is proved in Proposition 2.5(a).) By R-duality it is not past
contractible either.

However, it is easy to prove that cR is coarsely c-contractible: it has a
future deformation retract c[0,+∞[ (in one step), which is past contractible
to 0 (in one step).

2.4 Controlled connection

(a) In a c-space X the existence of a c-path between two points gives a
reflexive and transitive relation in X0, and we consider the equivalence
relation generated by the latter. The equivalence class [x]c of a flexible point
is called a controlled component, or c-component, of X; it is a topological
subspace of X 0.

X is said to be c-connected if it has precisely one c-component. (The
empty c-space is not.) If f : X  Y is a c-map whose restriction X 0 
Y 0 is surjective and X is c-connected, Y is also. A product of c-spaces is
c-connected if and only if all its factors are.

(b) We denote as Π0(X) the quotient of the set X0 modulo this equiv-
alence relation, that is the set of controlled components. We have thus a
functor Π0 : cTop  Set, with an obvious action on a c-map f : X  Y

f∗ : Π0(X)  Π0(Y ), f∗[x]c = [f(x)]c (30)

Equivalently, Π0(X) is the set of connected components of the funda-
mental category Π1(X).

(c) Examples. All the ‘basic’ c-spaces are c-connected: the intervals cI, cJ,
c−I, c+I, I, the lines cR, cnR, R, the spheres cS1, cnS1, cSn, Sn, and all
their products. Their non-trivial sums are not, of course.

We recall, from I.2.4(b), that the past-delayed c-interval c−I is the stan-
dard interval [0, 1] with the c-structure generated by the past-delayed repa-
rametrisation f(t) = 0 ∨ (2t− 1). The future-delayed c-interval c+I is based
on the future-delayed reparametrisation g(t) = 2t ∧ 1.

(d) Remarks. The interval cI is c-connected but its flexible support 0, 1 is
a disconnected topological space. The same happens for all the c-structures
of intervals and lines considered above, except the d-spaces I and R.
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This fact becomes clearer using the path-support X 1 of the c-space X ,
defined in II.2.1(d) as the topological subspace of X  formed by the union
of the images of all c-paths in X , so that X0 ⊂ X 1 ⊂ X . If X is c-
connected, the space X 1 is path connected: in fact every point of the latter
is linked to a flexible point by the restriction of a c-path. The converse fails,
as for the ‘diagonal’ c-structure of the square I2, in I.2.7(d) and II.2.2(b).

2.5 Proposition

(a) If the c-space X is future contractible to x0, every flexible point x has a
c-path x  x0.

(b) A coarsely contractible c-space X is always c-connected.

Proof. It is sufficient to prove (a). According to (28) we have a composite
homotopy ϕ = (ϕ1, ,ϕn) : f0 · fn : X  X , where f0 = idX and fn is
constant at x0 ∈ X0. For every flexible point x the c-maps ϕi(x,−) : cI 
X form a sequence of consecutive c-paths x  f1(x)    x0, whose
concatenation is a c-path x  x0.

2.6 Coherent homotopy equivalence

(a) As in 1.8, a coherent future homotopy equivalence of c-spaces will be a
four-tuple (f, g;ϕ,ψ) of maps and homotopies (in one-step) satisfying the
coherence conditions

f : X −− Y : g, ϕ : idX  gf, ψ : id Y  fg,

fϕ = ψf : f  fgf, ϕg = gψ : g  gfg
(31)

These structures cannot be composed (even for mere topological spaces).
R-duality gives the corresponding case in the past.

(b) If the map f (for instance) is a reshaping, its topological support is an
identity. Therefore, loosely speaking, ϕ and ψ are represented by the same
mapping ϕ̂ = ψ̂, which is at the same time a c-map X × cI  X and
Y ×cI  Y ; the first coherence condition is automatically satisfied, and the
second means that ϕ̂(g×id ) = gϕ̂.

64 



M. GRANDIS THE TOPOLOGY OF CRITICAL PROCESSES, IV

(c) As a typical example, the reshaping f : c+I  cI of the future-delayed
interval (in 2.4(c)) can be completed to a coherent future homotopy equiva-
lence

f : c+I −− cI : g, g(s) = 2s ∧ 1,

ϕ̂(s, t) = (1 + t)s ∧ 1, ϕ̂(s, 0) = s, ϕ̂(s, 1) = 2s ∧ 1
(32)

In fact, we have to verify three points.

(i) The map ϕ̂ : I2  I is a c-map cI×cI  cI. This is obvious, because ϕ̂
is increasing in both variables and preserves the flexible points.

(ii) The same map ϕ̂ is a c-map c+I×cI  c+I. Indeed, given a c-path
a = 〈h, k〉 : cI  c+I×cI, the c-map h : cI  c+I is increasing between
flexible points and either constant at 0, or constant at 1 on a non-degenerate
interval [τ, 1], at least. In both cases the path ϕ̂a is increasing between
flexible points and has a final delay: either ϕ̂(0, k(t)) = 0, for all t, or

ϕ̂(h(t), k(t)) = (1 + h(t)) ∧ 1 = 1, for t > τ

(iii) ϕ̂(g×id ) = gϕ̂, because:

ϕ̂(g(s), t) = (1 + t)(2s ∧ 1) ∧ 1 = (1 + t)2s ∧ (1 + t) ∧ 1

= (1 + t)2s ∧ 1 = gϕ̂(s, t)

(d) The previous homotopy ϕ is strict, that is ϕ̂(s,−) is constant for s = 0, 1
(the flexible points of cI and c+I). Applying Theorem III.3.3 we deduce that
f and g induce two functors Π1(c+I) −− Π1(cI) which are inverse to
each other. Both categories are isomorphic to the ordinal 2.

3. Homotopy pushouts and flexibility

Taking on the study of the standard homotopy structure cTop, we deal now
with homotopy pushouts. Their derived constructions, cones and suspension,
are deferred to the next section.

Homotopy pushouts are well-known in Top [Ma], and also in Cat as
cocomma squares. They are studied in [G1, G2] in general dI1-categories
([G2], Section 1.3) and symmetric dI1-homotopical categories ([G2], Sec-
tions 1.7, 4.1), in particular for directed spaces and pointed directed spaces.
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The ‘defective’ homotopy structure of cTop requires a specific study;
flexibility properties link these constructions to those of d-spaces, far better
behaved.

X will denote a c-space.

3.1 Weak flexibility

We begin by recalling some weak forms of flexibility studied in II.2, which
will also have a role in analysing the present constructions.

(a) We say that X is preflexible if it is ‘full’ in the generated d-space X̂ ,
which means that every c-path of X̂ between flexible points of X is already
a c-path of the latter. Then the fundamental category Π1(X) is the full
subcategory of Π1(X̂) with vertices in the flexible support X 0, as proved
in Theorem II.5.3(b).

Preflexible c-spaces form a full, reflective subcategory of cTop. They are
closed in cTop under limits and sums; they are not closed under pushouts.

(b) We say thatX is border flexible if one can restrict every c-path, by cutting
out delays at the endpoints; more precisely, if a : cI  X is a c-path constant
on [0, t1] and [t2, 1], the restriction of a to the interval [t1, t2] (reparametrised
on I, see II.2.1(c)) is still a c-path.

Again, border flexible c-spaces form a full, reflective subcategory of
cTop. They are closed in cTop under limits and sums, but not under push-
outs. All preflexible c-spaces are border flexible; the converse is false.

(c) The path-support X1 has already been recalled in 2.4(d). We say that
X has a total path-support if X 1 = X.
(d) Examples. Besides all d-spaces, many basic c-spaces we have considered
in Parts I and II are preflexible, with a total path-support: for instance cI, cJ
and cI∼ (in I), cR (in R), cS1 (in S1), and their products.

The delayed intervals c−I and c+I (in 2.4(c)) are not even border flexible,
like the higher c-spheres cSn, for n > 2 (see 4.6).

The ‘diagonal’ c-structure X of the square I2 described in I.2.7(d) and
II.2.2(b) is border flexible and not preflexible; its path-support is not total.
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3.2 The cylinder

The flexible points of the cylinder IX = X×cI form the set X0×0, 1,
contained in the bases of the cylinder.

A c-path 〈a, h〉 : cI  X× cI in the cylinder IX consists of a c-path
a : x′  x′′ in the c-space X and a c-path h in the interval cI. There are
three cases, as in the following figure, distinguished by the map h : cI  cI:

X×cI(x′,0)

(x′,1)

(x′′,0)

(x′′,1)

00

00

KK KK (33)

(i) a path 〈a, e0〉 : (x′, 0)  (x′′, 0) in the lower base ∂−X = X×0,
(ii) a path 〈a, e1〉 : (x′, 1)  (x′′, 1) in the upper base ∂+X = X×1,
(iii) a path 〈a, h〉 : (x′, 0)  (x′′, 1), where h : cI  cI is a global repa-
rametrisation, that is a surjective increasing map.

If the c-space X is preflexible or border flexible, so is IX . In fact these
properties are closed under products and cI satisfies them.

3.3 Homotopy pushouts

The structure of cTop as a symmetric dI1-category and the existence of push-
outs ensures the existence of homotopy pushouts ([G2], 1.3). These are in-
troduced in their ‘standard form’, also to get a functor.

(a) Let f : X  Y and g : X  Z be two c-maps with the same domain.
The standard homotopy pushout, or h-pushout, from f to g is a four-tuple
(W ; u, v;λ) satisfying the following universal property:

X
g //

f



Z

v


λ : uf  vg : X  W,

Y u
//

λ 11

W

(34)

- for every similar four-tuple (W ′; u′, v′;λ′) there is precisely one map
h : W  W ′ such that u′ = hu, v′ = hv, λ′ = hλ.
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The object W is determined up to isomorphism; its construction is de-
ferred to the next subsection. It will be denoted as Ic(f, g), or I(f, g),
and called a double mapping cylinder. Let us note that it is a directed no-
tion, from f to g; the reflection r : IRX  RIX induces an isomorphism
rI : I(Rg,Rf)  RI(f, g), called the reflection of an h-pushout. When f
or g is idX , one has a mapping cylinder, I(X, g) or I(f,X).

(b) The cylinder IX itself is the h-pushout of the pair (idX, idX), by means
of the structural homotopy ∂ represented by the identity of the cylinder

X
id //

id


X

∂+



∂ : ∂−  ∂+ : X  IX,

∂̂ = id IX

X
∂−

//

∂ 00

IX

(35)

In fact ∂ establishes a bijection between maps ϕ : IX  Y and homo-
topies ϕ∂ : ϕ∂−  ϕ∂+ : X  Y , by the very definition of the latter.

(c) It is easy to see that h-pushouts give a functor

I(−,−) : cTop∨  cTop, (36)

where ∨ is the formal-span category: •  •  •. (The verification can be
found in [G2], 1.3.7, for all dI1-categories with h-pushouts.)

The corresponding functor for d-spaces carries coherent triples of homotopies
to homotopies, as it happens in every symmetric dI1-homotopical category ([G2],
Theorem 4.1.6). This does not apply here: see 3.8(b).

3.4 The construction

(a) The homotopy pushout I(f, g) can be constructed using the cylinder
IX = X×cI and the ordinary colimit of the left solid diagram below, called
a cylindrical colimit. It amounts to three ordinary pushouts, as shown at the
right hand

X
g //

∂+



Z

v



X
g //

∂+



Z


X

∂−
//

f


IX
λ

##

X
∂−

//

f


IX //



I(X, g)


Y u

// I(f, g) Y // I(f,X) // I(f, g)

(37)
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(b) The space I(f, g) results thus of the pasting of the cylinder IX with the
spaces Y, Z, under the following identifications (for x ∈ X)

I(f, g) = (Y + IX + Z) ∼, [x, 0] = [f(x)], [x, 1] = [g(x)] (38)

The construction is made clear by the following pictures. In the first f
and g are injective, and we have drawn a path from a point y ∈ Y to a point
z ∈ Z (see the following theorem)

y

z

v−

v+

•

•

LL LL (39)

In the second f and g are the terminal map X  ∗, and I(f, g) is the
suspension ΣX where each base if IX is collapsed to a point (see 4.3).

The structural maps u : Y  I(f, g) and v : Z  I(f, g) are always
injective, while the map λ : IX  I(f, g) is certainly injective outside of
the bases ∂αX; it is injective ‘everywhere’ if and only if both f and g are.

(c) We have a similar construction Id(f, g) in dTop, based on the directed
cylinder Id(X) = X×I, and in Top, based on the ordinary cylinder X×I.
The three constructions give the same topological space, since the forgetful
functors cTop  Top and dTop  Top preserve colimits and commute with
the cylinders.

3.5 Theorem (The paths)

(a) In the h-pushout I(f, g) of (37), the c-paths are of the following three
kinds (and there are none from a point of Z to a point of Y ).

(i) A c-path y  y′ between points of Y is a c-path of Y (embedded in
I(f, g) by u),

(ii) A c-path z  z′ between points of Z is a c-path of Z (embedded in
I(f, g) by v),

(iii) A c-path from y ∈ Y to z ∈ Z.
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For the last case, we begin to say that a regular c-path from y to z (as in
figure (39)) is formed by the regular concatenation a = ua1 ∗ λa2 ∗ va3 of
the images of three c-paths in Y , IX and Z

a1 : y  f(x1) in Y, a3 : g(x3)  z in Z,

a2 = 〈b, h〉 : (x′, 0)  (x′′, 1),

f(x1) = f(x′), g(x3) = g(x′′),

(40)

where b : x′  x′ in X and h : 0  1 in cI.
To get all c-paths from y to z we allow:

- discarding a1 when y ∈ f(X) and discarding a3 when z ∈ g(X),
- global reparametrisations of the paths previously obtained.

(b) The structural maps u : Y  I(f, g) and v : Z  I(f, g) are embed-
dings of c-spaces, that is they induce an isomorphism onto their images.

(c) In dTop we have similar results, replacing I with Id, c-paths with d-
paths, and global reparametrisations with the partial ones (for paths of kind
(iii)).

Proof. (a) The paths listed above form a c-structure on the topological col-
imit I(f, g), as they are closed under trivial loops at the endpoints, concate-
nation and global reparametrisation.

The (injective) mappings u, v are obviously c-maps. To verify that λ :
IX  I(f, g) is a c-map we note that, in a c-path a = 〈b, h〉 : cI  IX =
X×cI, the map h : cI  cI is either constant at 0, or constant at 1, or a path
0  1. In the first case a = ∂−b : cI  X  IX and λa = λ∂−b = u(fb)
is a c-path of Y embedded in I(f, g), of kind (i). In the second case a = ∂+b
is similarly a path of kind (ii). In the last, λa is a path of I(f, g) of kind (iii).

Finally, the c-structure we have described is generated by the images of
the c-paths of Y (by u), of IX (by λ) and Z (by v), and is thus the structure
of the colimit c-space.

(b) To prove that the mapping u is an embedding of c-spaces, we only have
to consider the topological part, since the c-paths of u(Y ) have already been
considered.

Let V be open in Y . The subset W = f−1(V )× [0, 1/2[ is open in the
cylinder IX . Now V W is open in the topological sum T = Y + IX + Z, and
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saturated for the projection p : T  I(f, g). Thus p(T ) is open in I(f, g), and
u(V ) = u(Y )  p(T ) is open in u(Y ).

(c) The argument is the same.

3.6 Theorem (Preflexibility, I)

If, in the homotopy pushout (34), the c-space X is preflexible with a total
path-support (see 3.1), then:

(Ic(f, g))̂ = Id(f̂ , ĝ) (41)

More explicitly, we are considering the following two structures on the
same topological space, the h-pushout in Top of the underlying maps, and
saying that they coincide:

- the d-structure generated by the h-pushout Ic(f, g) in cTop,

- the h-pushout in dTop of the d-maps f̂ : X̂  Ŷ and ĝ : X̂  Ẑ.

Proof. The colimit (37) in cTop is preserved by the reflector :̂ cTop 
dTop. Moreover (IcX )̂ = Id(X̂), by Corollary II.2.6.

3.7 Theorem (Preflexibility, II)

If, in the homotopy pushout (34), the c-space X is flexible, while Y and Z
are preflexible, the h-pushout I(f, g) is preflexible.

Proof. It is a consequence of Theorems 3.5 and 3.6.
Let a : w′  w′′ be a d-path in (Ic(f, g))̂ = Id(f̂ , ĝ) between flexible

points of I(f, g); we have to prove that a is a c-path of I(f, g). By 3.5(c) the
d-path a can be of three kinds.

In case (i) (or (ii)) a is a d-path of Ŷ (or Ẑ) between flexible points of Y
(or Z), and therefore a c-path of the latter.

In case (iii) it is sufficient to consider a regular d-path from y ∈ Y 0 to
z ∈ Z0, formed by the regular concatenation a = ua1 ∗ λa2 ∗ va3 of the
images of three d-paths in Ŷ , IdX̂ and Ẑ, as in (40).

By hypothesis, b : x′  x′ is a c-path in X . Then f(x1) = f(x′) is a
flexible point of Y , and a1 is a c-path of Y . Similarly a3 is a c-path of Z.
Finally, h : 0  1 in I is a c-path of cI, and we are done: a = ua1∗λa2∗va3
is a c-path of I(f, g).
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3.8 Remarks

(a) In the previous statement we cannot let X be just preflexible. In fact,
the cylinder of a preflexible c-space X is preflexible, but we shall see in
4.5(b) that its suspension need not be – although in this case the c-spaces
Y = Z = ∗ are even flexible.

(b) We recalled in 1.3 that cTop is a symmetric dI2-category. Moreover, it
has all limits and colimits, and in particular all cylindrical colimits. To make
it into a symmetric dI1-homotopical category ([G2], 4.1.4) the cylinder I
should preserve the cylindrical colimits (as colimits), which would ensure
good properties for h-pushouts ([G2], 4.1, 4.2). This is not the case.

In fact, the cylindrical colimit I(∗, ∂−) amounts to the standard con-
catenation pushout (7) and we know that this pushout is not preserved by
I = −×cI (cf. II.4.7(c)).

4. Cones, suspension and flexibility

Cones and suspension are derived from homotopy pushouts. We go on study-
ing their weak flexibility properties.

X is always a c-space and we write as p : X  ∗, or pX , its map to
the terminal singleton.

4.1 Mapping cones and cones

(a) A c-map f : X  Y has an upper mapping cone C+
c f = Ic(f, pX), also

written C+f , defined as the h-pushout below, at the left

X
p //

f


∗
v+


X
f //

p



Y

u


Y u
//

γ 00

C+f ∗
v−

//

γ 00

C−f

(42)

Its structural maps are the lower base u : Y  C+f and the upper vertex
v+ : >  C+f ; then, we have a structural homotopy γ : uf  v+p : X 
C+f , which links uf to a constant map, in a universal way. The upper
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mapping cone is a functor C+ : cTop2  cTop, defined on the category of
morphisms of cTop.

Symmetrically, f has a lower mapping cone C−
c f = I(pX , f) defined as

the right h-pushout above (also written as C−f ), with a lower vertex v− and
an upper base u.

Let us note that the terms upper and lower agree with the vertex: this is
consistent with future and past contractibility, in Lemma 4.2.

(b) In particular, the upper cone C+
c X = C+

c (idX) = Ic(X, pX) of a c-
space X is given by the h-pushout of the left diagram below, or equivalently
by the pushout at the right

X
p //

id


∗
v+


X
p //

∂+



∗
v+


X u
//

γ //

C+X IX γ
// C+X

(43)

C+X = (IX + ∗)(∂+X + ∗), γ(x, t) = [x, t], v+(∗) = v+

It can be calculated as the quotient c-space displayed above: the upper
base of the cylinder is collapsed to an upper vertex v+ = v+(∗), while the
lower base is still an embedding:

u = γ∂− : X  IX  C+X, u(x) = [x, 0] (44)

The homotopy γ : IX  C+X allows one to deform – in the cone – the
lower base u : X  C+X to the map γ∂+ = v+p : X  C+X , constant at
the upper vertex.

In particular, C+∅ = v+ is a flexible singleton. If X is not empty:

C+X = IX∂+X, γ(x, t) = [x, t], v+(∗) = [x, 1] (45)

The previous pushout defines a functor C+ : cTop  cTop. As in 3.3(c),
it is not homotopy invariant.

(c) Examples. The upper cones of S1, S1 and cS1, in cTop, can be drawn in
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the plane, as discs

C+
c (S1) C+

c (S
1
) C+

c (cS1)

• • • •

 


 

(46)

The upper cones of S1 and S1 in dTop will be recalled in (56).

(d) Dually, by reversor duality, the lower cone C−X = I(p,X) is obtained
by collapsing the lower base of IX to a lower vertex v− = v−(∗).

4.2 Lemma (Cones and contractibility)

A c-space X is future contractible in one step if and only if the base of its
upper cone u : X  C+X has a retraction h : C+X  X .

Proof. (In [G2], Lemma 1.7.3, this result is stated for dI1-homotopical cat-
egories.) We use the notation of (43). If hu = idX , the map hγ : IX  X
is a homotopy from hγ∂− = hu = idX to hγ∂+ = hv+pX : X  X , and
the latter is a constant endomap.

Conversely, if there is a homotopy ϕ : IX  X with ϕ∂− = idX and
ϕ∂+ = ipX : X  X , we define h : C+X  X as the unique map such
that hγ = ϕ : IX  X and hv+ = i : >  X . Now hu = hγ∂− = ϕ∂− =
idX .

4.3 Suspension

The suspensionΣcX = Ic(pX , pX), orΣX , of the c-spaceX is the following
colimit and quotient space

X //

∂+



∗

v+



X
∂−

//



IX
σ

""

ΣX = (∗+ IX + ∗)R,

∗
v−

// ΣX

(47)
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where R collapses each base of IX to a point: the lower vertex v− and the
upper vertex v+. (See the right-hand figure in (39).)

In particular Σ∅ = S0 = cS0 (with the natural c-structure of a discrete
topological space, the flexible one). IfX is not empty, ΣX is the quotient of
IX that collapses each bases to a point

ΣX = IXR′, σ(x, t) = [x, t], vα(∗) = [x,α] (48)

The suspension of S0 gives a rigid structure of the circle, represented in
the left figure below

Σc(S0) = cO1 Σd(S0
) = O1

•

•

OOOO OOOO OO OO (49)

The generated d-space is the suspension Σd(S0) = O1 in dTop ([G3],
1.4.3, 1.7.4), whose non-trivial selected paths are the restrictions of the pre-
vious ones. It is called the ordered circle, as its d-structure is produced by
an obvious (partial) order relation on the topological circle.

4.4 Suspension and cones

The suspension ΣX is linked to the cones Cα(X) by the following diagrams
of pushouts

X
p //

∂+



∗
v+


X
∂−

//

p


IX //



C+(X)



X
∂−

//

p


C+(X)


∗

v−
// C−(X) // ΣX ∗

v−
// ΣX

(50)

ΣX = C+(X)∂−X = C−(X)∂+X, (51)

and is the quotient of each cone that collapses its base to a point.
In a splittable homotopy structure like Top and dTop (see 1.5), the sus-

pension can also be obtained as a pasting of two cones on their bases. This
cannot be done here: see 4.5(a).
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4.5 Examples and flexibility

(a) The cones and suspension of a flexible spaceX are preflexible, by Theo-
rem 3.7. Of course they are not flexible, generally; for instance this is not the
case when X is a non-empty discrete d-space, as in the following examples

C+∗ = C−∗ = Σ∗ = cI, (52)

C+(S0) C−(S0)
•

•

•

•

•

•

?? ?? ____ ____ ?? ?? (53)

including Σ(S0), represented in (49). (We note that this c-space has two
flexible points, while the pasting of C−(S0) and C+(S0) over S0 has four of
them.)

(b) The cones and suspension of a preflexible c-space need not be preflexible,
nor even border flexible.

In fact, this is not the case for C+(cI) = cI2∂+I: the projection in
C+(cI) of the following c-path a in cI2 has an unavoidable final delay

• •

••

a(t) = (t, 2t ∧ 1)GG GG (54)

4.6 Higher spheres

The spheres cSn are not border flexible, for n > 2.
We consider the two-dimensional case cS2 = cI2∂I2, the higher ones

being similar. It is convenient to view cS2 as a quotient of the controlled torus
cT2 = cR2Z2 (an orbit space, cf. I.2.6) modulo the equivalence relation
that collapses the image A of R×Z  Z×R (in cT2) to the flexible point
of the sphere. (Also in cTop ‘a quotient of a quotient is a quotient’, up to
isomorphism.)

In the following picture of the c-plane cR2, the points of the flexible
support Z2 are marked with bullets, and the dashed lines form the subspace
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R×Z  Z×R, collapsed to a point in the sphere

• • •

• • •

cR2
a
GG GG (55)

As in (54), the projection b (in cS2) of the c-path a of cR2 has an un-
avoidable final delay, so that cS2 is not border flexible.

Remarks. (a) This example is even more ‘defective’ than the cone C+(cI)
of 4.5(b): our path b also has internal prescribed delays. Thus the generated
border flexible c-space (cS2)bf (defined in II.2.3(b)) is not preflexible.

(b) The controlled circle, and even more the n-stop c-circle cnS1 of I.2.6(b),
model various concrete processes, like a hand of a watch, a washing machine
dial, or a vertical panoramic wheel with n cabins. A railway turntable can
be modelled by the reversible c-space generated by cnS1.

A controlled 2-sphere with an assigned distribution of ‘stops’ (the flex-
ible points) might model a net of stationary satellites around the Earth, at a
fixed altitude, providing the stops for a servicing shuttle.

4.7 The cofibre sequences of a map

The cofibre sequences of a map, or Puppe sequences, are defined and studied
for a general dI1-homotopical category, in [G2], 1.7.6 – 1.7.9. (A symmetric
dI1-homotopical structure is not required.) Here we only mention the basic
facts obtained by applying these results to cTop.

Every c-map f : X  Y has a natural upper cofibre sequence

X
f // Y

u // C+f
d // ΣX

Σf // ΣY
Σu // Σ(C+f)

Σd // Σ2X  (56)

formed by the base u : Y  C+f and the upper differential d = d+(f) :
C+f  ΣX . The latter is defined by the universal property of the upper
cone C+f as an h-pushout, in (42)

du = v−pY : Y  ΣX, dv+ = v+ : >  ΣX,

dγ = σ : v−pX  v+pX : X  ΣX
(57)
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Reversor duality gives the lower cofibre sequence of f , with the lower
differential d = d−(f) : C−f  ΣX

X
f // Y

u // C−f d // ΣX
Σf // ΣY

Σu // Σ(C−f) Σd // Σ2X  (58)

These sequences give exact sequences in directed homology, as proved
in [G2], 2.6.3, for a general dI1-homotopical category. But we already re-
marked in 1.6(b) the moderate interest of directed homology for d-spaces
and c-spaces, beyond degree 1; on the other hand, pointed cubical sets have
a ‘perfect theory’ ([G2], 2.6.4).

5. The flexible homotopy structure of c-spaces

The flexible interval I produces a second homotopy structure on the cat-
egory of c-spaces, that will be denoted as cTopF . It has a secondary role
here, although it is better related to the fundamental category functor, by
Proposition 5.3 (and Theorem II.5.4).

5.1 The flexible structure

The c-space I is also a symmetric dI2-interval, with the same operations
listed above, in (4). Moreover it is exponentiable in cTop, as proved in The-
orem II.3.9(b).

The flexible cylinder functor

IF : cTop  cTop, IF (X) = X×I, (59)

extends the cylinder functor Id of d-spaces, and satisfies the axioms listed in
(6): cTopF is also a symmetric dI2-category.

The functor PF of flexible paths, right adjoint to IF

PF : cTop  cTop, PF (Y ) = Y
I, (60)

extends the path functor Pd of d-spaces. The adjunction automatically makes
cTopF into a symmetric dIP2-homotopical category: the faces, degeneracy,
reflection and connections of PF are mates to those of IF ([G2], 4.2.1). For
instance, the ‘new’ faces ∂α : PF  1 are obtained as PFY  IFPFY  Y
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by composing the cylinder faces of PFY with the counit of the adjunction
(the path evaluation).

Moreover, taking into account that the category cTop has all colimits,
preserved by IF , and all limits, preserved by PF , the structure cTopF is a
symmetric dIP2-homotopical category ([G2], 4.2.1).

Remarks. (a) The classification of dIP-structures cannot go higher, as shown
below.
(b) The fact that every flexible homotopy is a standard one can be formally ex-
pressed saying that the identity functor of the category cTop is a lax dI2-functor
H : cTopF  cTop of dI2-categories (cf. [G2], 1.2.6 and 4.2.7).

Essentially, we have a strict comparison RH = HR (the reversors of these
structures are the same) and a non-invertible comparison h : IcH  HIF (given by
the reshaping IcX  IFX), which agree with the dI2-structure.

5.2 Flexible homotopies

In cTopF the flexible interval produces flexible homotopies, already intro-
duced in II.4.1: a flexible homotopy ϕ : f  g : X  Y of c-maps is
represented by a map IFX  Y (or equivalently X  PFY ).

Again, flexible homotopies ‘cannot’ be concatenated): more precisely,
as proved in II.4.7(b), they are not closed under concatenation within topo-
logical homotopies, and cTopF cannot have a dI3-structure consistent with
the topological one (cf. [G2], 4.2.2).

Formally, one can define a concatenation pushout JFX = IFX +X IFX ,
which is preserved by IF since I is exponentiable. But this is useless with-
out a ‘good’ concatenation map IFX  JFX that would transform a ‘pre-
concatenation’ JFX  Y into a flexible homotopy IFX  Y : to agree with
the underlying topology, this map should be a reshaping, and IFX need not be
finer than JFX , as shown in II.4.7(b) for X = cI.

Flexible homotopies are dealt with in the same way as the general ones
in 2.1: trivial case, reflection, whisker composition, composite flexible ho-
motopies and their operations.

In particular, a composite flexible homotopy ϕ = (ϕ1, ,ϕn) : f
′ · f ′′ :

X  Y is a finite sequence of consecutive flexible homotopies between
c-maps fi : X  Y

f ′ = f0
ϕ1 // f1

ϕ2 // f2 
ϕn // fn = f ′′ (61)
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Computations are the same as in the standard structure, but involve differ-
ent spaces: for instance, the trivial flexible homotopy of a c-map f : X  Y ,
represented by fe : X×I  Y , is still defined as fe(x, t) = f(x), on a dif-
ferent domain.

Future F-homotopy equivalences and future F-deformation retracts are
defined as in (22) and (26), using composite flexible homotopies. The re-
versed notions, in the past, are produced by the reflector R. The coherent
case is defined as in 2.6.

5.3 Proposition (Homotopy invariance)

(a) A composite flexible homotopy ϕ = (ϕ1, ,ϕn) : f
′ · f ′′ : X  Y (as

in (61)) induces a natural transformation

ϕ∗ : f
′
∗  f ′′

∗ : Π1(X)  Π1(Y ), (62)

the composite of the natural transformations ϕi∗ : fi−1∗  fi∗ of Theorem
II.5.4.

Induction agrees with the operations of composite flexible homotopies:
their vertical composition and whisker composition (with c-maps) are sent
to the corresponding operations of natural transformations (with functors).

(b) A future F-homotopy equivalence (f, g;ϕ,ψ) of c-spacesX, Y induces a
future homotopy equivalence of their fundamental categories (see (14))

f∗ : Π1(X) −− Π1(Y ) : g∗, ϕ∗ : id  g∗f∗, ψ∗ : id  f∗g∗ (63)

Proof. A consequence of Theorem II.5.4(b).

5.4 Flexible contractibility

A future F-contractible c-space X is defined as in (27), using a composite
flexible homotopy ϕ

i : ∗ −− X : p, ϕ : idX · ip (pi = id ∗) (64)

In this case the singleton ∗ is a future F-deformation retract of X , at
the flexible point x0 = i(∗). We also say that X is future F-contractible to
x0.
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Here the fundamental category of X is future contractible to the single-
ton category 1

i∗ : 1 −− Π1(X) : p∗, ϕ∗ : id Π1(X)  p∗i∗ (p∗i∗ = id 1) (65)

Equivalently, Π1(X) has a natural weak terminal object x0 = i(∗).
This means a family of arrows ϕ(x) : x  x0 (indexed on the flexible points
x ∈ X0) which is natural, in the sense that every arrow u : x  x′ gives a
commutative triangle ϕ(x) = ϕ(x′)u : x  x0.

We say that X is coarsely F-contractible if there exists a finite sequence
X,X1, , Xn−1, ∗where each c-space is future or past F-homotopy equiv-
alent to the next.

The interval I is past F-contractible to 0 and future F-contractible to 1,
with flexible homotopies given by the (flexible) connections gα : I2  I,
as in (29).

5.5 Flexible connectedness

In a c-space X , a flexible path a : x  x′ is the same as a c-path in the
flexible part FlX (in 1.1).

Therefore, flexible connectedness inX can be defined by the property of
c-connectedness in FlX , characterised by the composed functor

Π0Fl : cTop  Set (66)

The flexible component [x]F of a flexible point of the c-spaceX will be its
c-component in FlX , contained in the controlled component [x]c and equal
to the latter in any d-space. X is flexibly connected, or F-connected, if it has
precisely one flexible component, if and only if Π0Fl (X) is a singleton.

Let n > 1. The c-spaces cS1, cnS1, cSn are trivially flexibly connected,
as they have a single flexible point. The d-spaces I, I∼, R, Sn are flexibly
connected, as well as the cartesian products of the examples considered so
far. The other examples in 2.4(c) are not, which implies that they are not
coarsely F-contractible, by the following proposition.

5.6 Proposition

(a) If the c-space X is future F-contractible to x0, every flexible point x has
a flexible path x  x0.
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(b) A coarsely F-contractible c-space X is always flexibly connected.

Proof. Point (b) follows from (a), which can be proved as in Proposition
2.5. Here we have flexible homotopies ϕi : fi−1  fi, which are c-maps
X×I  X and, at any flexible point x, give a sequence of consecutive
flexible paths x  f1(x)    x0.

5.7 Flexible homotopy pushouts

The homotopy pushouts of the standard structure cTopc, studied in Section
3, have parallel constructions in cTopF , based on the flexible cylinder IF =
−×I:
- the flexible homotopy pushout IF (f, g),

- the flexible mapping cones C+
F f = IF (f, pX) and C−

F f = IF (pX , f),

- the flexible cones C+
F X = IF (X, pX) and C−

F X = IF (pX , X),

- the flexible suspension ΣFX = IF (pX , pX).

These constructions extend the corresponding ones of dTop, based on
its endofunctor Id = −×I. Thus, in the following examples of flexible
upper cones, the d-spaces S1 and S1 give the upper cones of dTop, namely
C+

F (S1) = C+
d (S1) and C+

F (S
1
) = C+

d (S
1
)

C+
F (S1) C+

F (S
1
) C+

F (cS1)

• • • •

 


 

(67)

whileC+
F (cS1) is not a d-space, of course; but note that there are also flexible

paths from the flexible point of the circle to the upper vertex.

5.8 Proposition (Flexible cones and contractibility)

(a) The flexible upper cone C+
F X is future F-contractible, in one step.
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(b) A c-space X is future F-contractible in one step if and only if the base
u : X  C+

F X has a retraction h : C+
F X  X .

Proof. (a) The pushout in (43) (at the right hand) is preserved by the product
−×I (by an exponentiable object of cTop). There is thus precisely one map
ϕ : C+

F X×I  C+
F X such that

ϕ(γ×I) = γ(X×g−) : X×I×I  X×I  C+
F X,

ϕ(v+×I) = v+q : I  ∗  C+
F X,

(68)

taking into account that γ(X×g−)(∂+×I)(x, t) = [x, 1 ∨ t] = v+.
This c-map is a flexible homotopy, from idC+

F X to the constant map
C+

F X  C+
F X at v+

(ϕ∂−)[x, s] = ϕ(γ(x, s), 0) = ϕ(γ×I)(x, s, 0)
= γ(x, g−(s, 0)) = γ(x, s) = [x, s],

(ϕ∂+)[x, s] =  = γ(x, g−(s, 1)) = γ(x, 1) = v+

(b) As in Lemma 4.2.

6. Cubical sets and their realisations

Cubical sets have a well-known non-symmetric monoidal structure. As a
consequence, the obvious directed interval i, freely generated by a 1-cube
(see 6.2) gives rise to a left cylinder i ⊗ K and a right cylinder K ⊗ i,
and two notions of directed homotopy interchanged by an endofunctor, the
‘transposer’ S.

Classically, cubical sets are viewed as combinatorial structures mod-
elling relatively simple topological spaces, by their geometric realisation
(see 6.4). But they can also model d-spaces, by a directed geometric realisa-
tion (in 6.5), and c-spaces, by a controlled geometric realisation (in 6.6).

Part of this material comes from [G2], Section 1.6.

6.1 Cubical sets

Every topological space X has an associated cubical set X , with compo-
nents nX = Top(In, X), the set of singular n-cubes of X . Its faces and
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degeneracies, for α = 0, 1 and i = 1, , n

∂α
i : nX  n−1X, ei : n−1X  nX, (69)

come out (contravariantly) from the faces and degeneracies of the standard
cubes In, written in the same way

∂α
i = Ii−1×∂α×In−i : In−1  In,

∂α
i (t1, , tn−1) = (t1, ,α, , tn−i),

ei = Ii−1×e×In−i : In  In−1,

ei(t1, , tn) = (t1, , t̂i, , tn)

(70)

As usual, t̂i means that the coordinate ti is omitted.

Generally, a cubical set K is a sequence of sets Kn (n > 0), together
with mappings, called faces (∂α

i ) and degeneracies (ei)

K = ((Kn), (∂
α
i ), (ei)),

∂α
i = ∂α

ni : Kn  Kn−1, ei = eni : Kn−1  Kn,
(71)

(for α = ± and i = 1, , n) that satisfy the cubical relations

∂α
i ∂

β
j = ∂β

j ∂
α
i+1 (j 6 i), ejei = ei+1ej (j 6 i),

∂α
i ej = ej∂

α
i−1 (j < i), or id (j = i), or ej−1∂

α
i (j > i)

(72)

Elements of Kn are called n-cubes, and vertices or edges for n = 0
or 1, respectively. Each n-cube x ∈ Kn has 2n vertices: ∂α

1 ∂
β
2 ∂

γ
3 (x) for

n = 3. Given a vertex x ∈ K0, the totally degenerate n-cube at x is obtained
by applying n degeneracy operators to the given vertex, in any (legitimate)
way:

en(x) = ein  ei2ei1(x) ∈ Kn (1 6 ij 6 j) (73)

Amorphism f = (fn) : K  L is a sequence of mappings fn : Kn  Ln

commuting with faces and degeneracies.
All this forms a category Cub which has all limits and colimits and is

cartesian closed. It is the presheaf category of functorsK : Iop  Set, where
I is the subcategory of Set consisting of the elementary cubes 2n, together
with the maps 2m  2n which delete some coordinates and insert some 0’s
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and 1’s, without modifying the order of the remaining coordinates. One can
see [G2], Sections 1.6.7 and A1.8; or [GM] for cubical sets with a richer
structure, including connections and symmetries.

The terminal object> is freely generated by one vertex ∗ and will also be
written as ∗ (although each of its components is a singleton). The initial
object is empty, i.e. all its components are; all the other cubical sets have
non-empty components in every degree.

We shall make use of two covariant involutive endofunctors, the reversor
R and the transposer S

R : Cub  Cub, RK = Kop = ((Kn), (∂
−α
i ), (ei)),

S : Cub  Cub, SK = ((Kn), (∂
α
n+1−i), (en+1−i)),

RR = id , SS = id , RS = SR

(74)

(The meaning of −α, for α = ±, is obvious.) The functor R reverses
the 1-dimensional direction, while S reverses the 2-dimensional one; plainly,
they commute. If x ∈ Kn, the same element viewed in Kop will often be
written as xop, so that ∂−

i (x
op) = (∂+

i x)
op.

We say that a cubical setK is reversive if RK ∼= K , and permutative if
SK ∼= K.

The category Cub has a non-symmetric monoidal structure [Ka, BH]

(K ⊗ L)n = (Σp+q=n Kp×Lq) ∼n, (75)

where∼n is the equivalence relation generated by identifying (er+1x, y)with
(x, e1y), for all (x, y) ∈ Kr×Ls (where r + s = n − 1). The equivalence
class of (x, y) is written as x⊗ y.

We refer to [G2], 1.6.3, for a more detailed description.

6.2 Standard models

The elementary directed interval i = 2 is freely generated by a 1-cube,
written as u

0
u // 1 ∂−

1 (u) = 0, ∂+
1 (u) = 1 (76)

This cubical set is reversive and permutative.
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The elementary directed n-cube (n > 0) is its n-th tensor power i⊗n
=

i⊗ ⊗i ([G2], 1.6.3). It is freely generated by its n-cube u⊗n, still rever-
sive and permutative, and can also be defined as the representable presheaf
I(−, 2n) : Iop  Set. The elementary directed square i⊗2

= i⊗ i can be
represented as follows, with the generator u⊗ u, its faces and vertices

00
0⊗u //

u⊗0


01

u⊗1


•
2

//

1
10

1⊗u
//

u⊗u

11

(77)

The face ∂−
1 (u⊗u) = 0⊗u is drawn as orthogonal to direction 1 (and di-

rections are chosen so that the labelling of vertices agrees with matrix index-
ing). For each cubical object K, Cub(i⊗n

, K) = Kn, by Yoneda Lemma.
The directed (integral) line z is generated by (countably many) vertices

n ∈ Z and edges un, from ∂−
1 (un) = n to ∂+

1 (un) = n + 1. The directed
integral interval [i, j]z is the obvious cubical subset with vertices in the
integral interval [i, j]z (and all cubes whose vertices lie there); in particular,
i = [0, 1]z.

The elementary directed circle s1 is generated by one 1-cube u with
equal faces

∗ u // ∗ ∂−
1 (u) = ∂+

1 (u) (78)

Similarly, the elementary directed n-sphere sn (for n > 1) is generated
by one n-cube u all whose faces are totally degenerate (see (73)), hence
equal

∂α
i (u) = en−1(∂−

1 )
n(u) (α = ±; i = 1, , n) (79)

Moreover, s0 is the discrete cubical set on two vertices. The elementary
directed n-torus is a tensor power of s1

tn = (s1)⊗n (80)

We also consider the ordered circle o1, generated by two edges with the
same faces

0
u′

//
u′′

// 1 ∂α
1 (u

′) = ∂α
1 (u

′′), (81)
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which is a ‘cubical model’ of the ordered circle O1, a d-space recalled in
4.3. (The latter is the directed geometric realisation of the former, in the
sense of 6.5.)

Starting from s0, the unpointed suspension provides all on ([G2], 1.7.6)
while the pointed suspension provides all sn ([G2], 2.3.2). Of course, these
models have the same geometric realisation Sn (as a topological space) and
the same homology; but their directed homology is different ([G2], 2.1.4):
the models sn are more interesting: they have a non-trivial order in directed
homology.

All these cubical sets are reversive and permutative.

6.3 The homotopy structure

As shown in [G2], 1.6.5, the category of cubical sets has a left dIP1-structure
CubL defined by the left cylinder functor I(K) = i ⊗ K, and a right
dIP1-structure CubR defined by the right cylinder functor SIS(K) = K ⊗
i. These structures are made isomorphic by the symmetriser S : CubL 
CubR.

The left cylinder P has a simple description: it shifts down all the com-
ponents, discarding the faces and degeneracies of index 1, which are then
used to build three natural transformations, the faces and degeneracy of P

P : Cub  Cub, PK = ((Kn+1), (∂
α
i+1), (ei+1)),

∂α = ∂α
1 : PK  K, e = e1 : K  PK

(82)

Symmetrically, the right cylinder SPS shifts down all components, dis-
carding the faces and degeneracies of highest index.

The transposition of spaces, d-spaces and c-spaces is partially surrogated
here by an ‘external transposition’, s : PSPS  SPSP , whose compo-
nents are identities ([G2], 1.6.5).

Coming back to the discussion of symmetries in 1.6, we note that Cub
breaks both symmetries of topological spaces, reversion and transposition.
This has heavy consequences for homotopy theory, as remarked in 1.6, and
strong advantages for homology, recalled in 6.8.
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6.4 The classical geometric realisation

We have already recalled the functor

 : Top  Cub, X = Top(I•, X), (83)

which assigns to a topological space X the singular cubical set of n-cubes
In  X , produced by the cocubical space of standard cubes

I• = ((In), (∂α
i ), (ei)),

a covariant functor I• : I  Top. The geometric realisationRK of a cubical
set is given by its left adjoint

R : Cub −− dTop :, R a  (84)

The topological space RK is constructed by pasting a copy of the stan-
dard cube In for each n-cube x ∈ Kn, along faces and degeneracies. This
colimit comes with a cocone of structural mappings x̂ (for x ∈ Kn and
n ∈ N), coherently with faces and degeneracies of I• and K

x̂ : In  RK, x̂∂α
i = (∂α

i x)̂ , x̂ei = (eix)̂ , (85)

andRK has the finest topology making all the structural mappings continu-
ous. (Formally,R is the coend of the functorKI• : Iop×I  Set×Top  Top,
see [M].)

This realisation is important, since it is well known that the combinatorial
homology of a cubical set K coincides with the homology of the CW-space
RK (cf. [Mu] 4.39, for the simplicial case). But we also want finer realisa-
tions, retaining more information on the cubes of K: we shall use a d-space
(in 6.5), or a c-space (in 6.6, 6.7).

6.5 Directed geometric realisation

Cubical sets also have a realisation as d-spaces, where the n-cube i⊗n is
realised as In.

We replace the cocubical space I• of standard topological cubes In by a
directed version, the cocubical d-space I• : I  dTop of standard d-cubes
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In, with the corresponding faces and degeneracies

∂α
i = Ii−1×∂α×In−i

: In−1  In,
ei = Ii−1×e×In−i

: In+1  In
(86)

This produces the functor

 : dTop  Cub, n(X) = dTop(In, X), (87)

which assigns to a d-space X the singular cubical set (X) of its directed
n-cubes In  X , extending the functor  : Top  Cub. Its left adjoint
yields the directed geometric realisation R(K) of a cubical set K

R : Cub −− dTop : , R a  (88)

The d-space R(K) is thus the pasting in dTop ofKn copies of I•(2n) =
In (n > 0), along faces and degeneracies. (Again, the coend of the functor
KI• : Iop×I  dTop.)

In other words (since a colimit in dTop is the colimit of the underly-
ing topological spaces, equipped with the final d-structure of the structural
maps), one starts from the ordinary geometric realisation RK , as a topo-
logical space, and equips it with the following d-structure R(K): the d-
paths are generated, under concatenation and partial reparametrisation, by
the mappings x̂a : I  In  RK, where a : I  In is an order-preserving
map and x̂ corresponds to some cube x ∈ Kn, in the colimit-construction of
RK.

Composing (88) with the adjunction U a D′ (in I.1.7) between d-spaces
and spaces

Cub
↑R // dTop

U //
↑

oo Top
D′

oo (89)

we get back the ordinary realisation R = U(R) : Cub  Top. (The d-
space D′X associated to a space admits all paths as d-paths.)

Various models of dTop are directed realisations of simple cubical sets
already considered in 6.2. For instance, the directed interval I realises i;
the directed line R realises z; the directed sphere Sn realises sn; the
ordered circle O1 (cf. 4.3) realises o1

= 0 −− 1.
The directed realisation functor R : Cub  dTop is a strong dI1-functor,

which means that it commutes with the cylinder functor, up to functorial iso-
morphism: see [G2], 1.6.7.
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6.6 Controlled geometric realisation

Cubical sets can also be realised as c-spaces, turning the n-cube i⊗n into
the standard c-cube cIn.

Now we start from the cocubical c-space cI• : I  cTop of standard
c-cubes cIn, with the corresponding faces and degeneracies

∂α
i = cIi−1×∂α×cIn−i, ei = cIi−1×e×cIn−i (90)

This produces the functor

c : cTop  Cub, cn(X) = cTop(cIn, X), (91)

which assigns to a c-spaceX the singular cubical set c(X) of its controlled
n-cubes cIn  X; it is an extension of the functor  : dTop  Cub,
because the reflector of d-spaces in cTop gives (cIn)̂ = In (see I.2.7). The
controlled geometric realisation cR(K) of a cubical set is given by the left
adjoint functor

cR : Cub −− cTop : c, cR a c (92)

The c-space cR(K) is thus the pasting in cTop of Kn copies of cI•(2n)
= cIn (n > 0), along faces and degeneracies – the coend of the functor
KcI• : Iop×I  cTop.

Again, cR(K) is the geometric realisation RK with controlled paths
generated, under concatenation and global reparametrisation, by the map-
pings x̂a : I  In  RK, where a : cI  cIn is a c-path and x̂ corresponds
to a cube x ∈ Kn in the colimit-construction of RK.

Composing this adjunction with the canonical adjunctions between c-
spaces, d-spaces and spaces (in I.1)

Cub
cR // cTop

ˆ //
c

oo dTop
U //

⊃
oo Top

D′
oo (93)

we prove that the controlled realisation is consistent with the previous ones

(cR(K))̂ = R(K), U((cR(K)))̂ ) = RK (94)

Also here, various models of cTop are controlled realisations of simple
cubical sets: the controlled interval cI realises i; the controlled line cR
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realises z; the controlled sphere cSn realises sn; the controlled ordered
circle cO1 (in (49)) realises o1.

The controlled realisation functor cR : Cub  cTop is also a strong dI1-
functor, with the same proof as in [G2], 1.6.7.

6.7 Labelled cubical sets

More generally, one can define the geometric realisationRK of a c-labelled
cubical set: a cubical setK = ((Kn), (∂

α
i ), (ei)) where each n-cube x ∈ Kn

is labelled with a c-structure Kn(x) on the euclidean n-cube In, under a
coherence condition: all the faces and degeneracies of the euclidean cubes
give c-maps

∂α
i : K

n−1(∂α
i x)  Kn(x), ei : K

n+1(eix)  Kn(x) (95)

The first condition, for instance, means that each face Kn−1(∂α
i x) has a c-

structure (weakly) finer than that induced by Kn(x).
The geometric realisation of K is defined as the colimit in cTop of the

diagram formed by all the c-spacesKn(x), with the c-maps specified above.
The following 2-dimensional example is about a simpler case, a c-labelled

face-cubical set (without degeneracies)

cI×I × I2

•

•

•

•

// // //
oo

// // // //
oooo

OO OO
(96)

The labels cI, I, I of the edges are replaced by the symbols we have
been using: ,, or unmarked. The cross in the central rectangle means
that there are no 2-cubes inside.

Finally, RK is a quotient of a sum of c-spaces

(cI×I) + I2 + I+ Iop + cI+ cIop, (97)

modulo the equivalence relation that identifies vertices as shown in the pic-
ture.

Iop and cIop can be replaced by their opposites, I and cI, which are isomor-
phic to the former; yet, formula (97) makes identifications easier.
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6.8 Directed homology

Cubical sets have a directed homology (introduced in [G1]), taking values
in preordered abelian groups. For instance, Hn(sn) = Z, the ordered
abelian group of the integers.

We refer to [G2], Chapter 2, for this theory and its strong relationship
with noncommutative geometry.

Obviously, one can define the directed homology of a c-space X , letting

Hn(X) = Hn(c(X)), (98)

but the interest of this issue is not clear.
Already in [G2], the directed homology of cubical sets is far more in-

teresting than the derived directed homology of d-spaces. This comes out
of the fact that the directed character of d-spaces (and c-spaces) does not go
beyond the one-dimensional level: after selecting some paths and forbidding
others, no higher choice is needed.

On the other hand, a cubical setK has privileged selections in any dimen-
sion: an element ofKn need not have any counterpart with faces reversed in
some direction (for n > 1), nor permuted (for n > 2). This richer choice
is paid with many drawbacks, starting with the lack of path-concatenation,
which is not needed for homology but obviously needed for homotopy. How-
ever, the weak homotopy structure CubL can be enriched to a relative dI-
homotopical structure, by means of the functor R : Cub  dTop ([G2],
5.8.6) which takes values in a good dIP4-homotopical structure.
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