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TOPOLOGICAL PROOFS OF

CATEGORICAL COHERENCE

Pierre-Louis CURIEN and Guillaume LAPLANTE-ANFOSSI

”We shall construct KPn, as a CW-complex, in Section 2 and show that it is

an (n− 1)-ball. This gives an instant one-step proof of Mac Lane’s theorem

in full generality.” – Mikhail M. Kapranov

Résumé. Nous donnons une courte preuve topologique de cohérence pour

les opérades non-symétriques catégorifiées en utilisant le fait que les dia-

grammes impliqués forment le 1-squelette de CW complexes simplement

connexes. Nous obtenons également une preuve topologique ”en une étape”

du théorème de cohérence de Mac Lane pour les catégories monoı̈dales sy-

métriques, tel que suggéré par Kapranov en 1993. Notre analyse est basée

sur une notion combinatoire d’homotopie que nous étudions plus en détail

dans le cas particulier des complexes polyédraux, conduisant à une seconde

preuve géométrique de cohérence qui est très proche de l’argument original

de Mac Lane. Nous utilisons la théorie de Morse pour montrer que cette

seconde méthode est strictement moins générale que la première. Nous four-

nissons une analyse détaillée de la façon dont les deux méthodes nous per-

mettent de déduire ces deux résultats de cohérence catégorielle et discutons

de généralisations possibles aux catégories supérieures.

Abstract. We give a short topological proof of coherence for categorified

non-symmetric operads by using the fact that the diagrams involved form the

1-skeleton of simply connected CW complexes. We also obtain a “one-step”

topological proof of Mac Lane’s coherence theorem for symmetric monoidal

categories, as suggested by Kapranov in 1993. Our analysis is based on a

notion of combinatorial homotopy, which we further study in the special case

of polyhedral complexes, leading to a second geometrical proof of coherence
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which is very close to Mac Lane’s original argument. We use Morse theory

to show that this second method is strictly less general than the first. We pro-

vide a detailed analysis of how both methods allow us to deduce these two

categorical coherence results and discuss possible generalizations to higher

categories.

Keywords. Categorified operads, categorical coherence, Seifert–Van Kam-

pen theorem, polytopes, Mac Lane coherence theorem, rewriting theory, Morse

theory.

Mathematics Subject Classification (2010). Primary 18N20, Secondary

52B11.

Introduction

The n-dimensional permuto-associahedron, a CW-complex whose faces are

in bijection with parenthesized ordered partitions of n + 1 letters, was first

introduced by M. Kapranov in his study of higher dimensional Yang–Baxter

equations, through the moduli spaces of curvesM0,n+1(R) and the solutions

of the Knizhnik–Zamolodchikov equation [Kap93]. It was later realized as a

convex polytope by V. Reiner and G. M. Ziegler [RZ94], and more recently

through the nested braid fan by F. Castillo and F. Liu in [CL23].

The present study stems from a desire to understand the epigraph, taken

from the introduction of [Kap93]: what is the precise relationship between

the permuto-associahedron and Mac Lane’s coherence theorem for symmet-

ric monoidal categories? We show that the simple connectedness of the for-

mer implies the latter, thereby refining and proving Kapranov’s claim (see

Theorem 2.16).

This is done through a general “topological coherence theorem” which

applies to any simply connected, regular CW complex (Theorem 1.1). Ap-

plying it to the operahedra, another family of polytopes which encodes cat-

egorified non-symmetric operads [DP15, COI19, Lap22], we obtain a “one-

step” proof of the associated coherence theorem as well.

There is little price to pay, though. For both theorems, one needs to

provide a precise bijective correspondence between the 1-skeleton (resp. the

2–cells) on the topological side, and canonical morphisms (resp. bifuncto-

riality, naturality, and applications of coherence conditions) on the categor-

ical side (Propositions 2.13 and 2.6). Since the 2-skeleton of the permuto-
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associahedra corresponds to other basic canonical morphisms and coherence

conditions than those of Mac Lane (hexagons and naturality of the involu-

tive braiding on one hand versus dodecagons on the other hand), one needs

to show that the two presentations are equivalent, which is non-trivial, see

Remark 2.17. There is yet a third equivalent presentation (and hence another

proof of coherence) due to D. Baralić, J. Ivanović and D. Petrić [BIP19], that

matches the 2-skeleton of a different polytope, which unlike the permuto-

associahedron is simple, see Remark 2.14.

We further investigate a topological incarnation of Mac Lane’s original

argument, in the spirit of rewriting theory. We study polyhedral complexes

endowed with a generic orientation vector, or equivalently a Morse func-

tion in the sense of [BB97], whose 1-skeletons naturally feature terminating

and confluent rewriting systems (Proposition 1.12). We focus on the family

of simply connected polyhedral complexes whose outgoing links are con-

nected. The study of directed paths on their 1-skeleton leads to a second

general proof of coherence (Theorem 1.9). In particular, this second theo-

rem can be applied to all polytopes, allowing us to give a second, “rewriting-

theoretic” proof of both previously mentioned coherence results. In the case

of operahedra, our rewriting proof simplifies the original proof of Došen and

Petrić [DP15], see Remark 2.2.

It is worth noting that, while the above polyhedral complexes admit ab-

stract rewriting systems on their 1-skeleton, the family of operahedra (which

includes the associahedra, encoding non-symmetric monoidal categories)

further admits term rewriting systems, which exhibit more structure and are

the subject of a companion paper [CLA24]. In contrast, we shall argue that

the abstract rewriting approach to symmetric monoidal categories is not in-

formative, see Remark 2.18.

Using Morse theory on affine cell complexes [BB97], we relate our two

approaches by showing that the second is (strictly) less general than the first

(Proposition 1.5).

Our two general topological coherence theorems can be used to prove

other categorical results where polytopes appear, such as coherence for monoidal

functors between monoidal categories [Eps66], see Section 3.1. They also

shed light on some statements in the literature, such as the proof of [KV94,

Prop. 3.9], see Section 3.2. This all points towards further investigation of

the relationship between n-categorical coherence and n-connectedness of
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appropriate spaces. While topological proofs of 2-categorical coherence al-

ready appeared in [Gur11], higher dimensional results have been obtained

recently by S. Barkan in the context of ∞-operads [Bar22], for which the

present results could well be the strict, n = 1 case.

1. Topological coherence

1.1 Coherence à la Van Kampen

Let X be a regular CW complex, and let Xk, k ≥ 0 denote its k-skeleton.

For an edge e of X , denote its attaching map fe : S
0 → X0. Consider

the category A(X) with set of objects X0, and generating morphisms αe :
fe(−1) → fe(1) and α−1

e : fe(1) → fe(−1) for each edge e ∈ X1. A

combinatorial path onX is a composable sequence of α and α−1 morphisms

(a word in α and α−1). Two combinatorial paths γ, γ′ ∈ A(X)(x, y) with

the same endpoints are said to be parallel.

Let A be a 2-cell of X , let fA : S
1 → X1 be its attaching map, and

let x ∈ X0 be a vertex in the image of fA. Then fA defines a morphism

γA ∈ A(X)(x, x), given by the sequence of edges e1, . . . , en in its image

starting at x and respecting the anti-clockwise orientation of S1. Here, one

selects αei if the orientation of fA restricted to ei agrees with the one of fei ,
and α−1

ei
otherwise. Two parallel combinatorial paths γ, γ′ are said to be

elementary combinatorially homotopic if they differ exactly by a relation of

the form αeα
−1
e = idfe(1) or α−1

e αe = idfe(−1), or of the form γA = idx,

for some 2-cell A and vertex x as above. That is, one can rewrite γ into

γ′ or γ′ into γ by replacing some (possibly empty) subword of γ with an

equivalent subword using a relation γA = idx. More generally, two parallel

combinatorial paths are combinatorially homotopic if they are related by a

sequence of elementary combinatorial homotopies.

The quotient of the category A(X) by the relations αα−1 = α−1α = id
is the free groupoid F(X) generated by the α morphisms. Let C(X) denote

the further quotient of the groupoidF(X) by the relations γA = idx for some

choice of x, for each 2-cell A of X . In other words, C(X) is the quotient of

A(X) by the combinatorial homotopy equivalence relation. Note that the

definition of C(X) does not depend on the choice of x, for every 2-cell A.

Indeed, if x′ ̸= x ∈ A0 defines a relation γ′A = idx′ , we have γ′A = δγAδ
−1
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in F(X), where δ is the morphism in A(X)(x, x′) induced by γA. Thus,

a path γ can be rewritten into γ′ using γA = idx if and only if it can be

rewritten using γ′A = idx′ .

Let Π(X) denote the fundamental groupoid of X , that is the groupoid

with objects the points of X and morphisms the homotopy classes of paths

between them.

Theorem 1.1. Let X be a regular CW complex. Any two parallel combina-

torial paths on X are combinatorially homotopic if and only if every path

component of X is simply connected.

Proof. For Y ⊆ X , let us write Π(X)Y for the full subcategory of the

fundamental groupoid of X spanned by Y . Then, we have an isomorphism

of groupoids

Π(X)X0
∼= C(X) .

To show this, one proceeds in three steps. First, one shows that the funda-

mental groupoid Π(X1)X0 of the 1-skeleton of X is free on the homotopy

classes of maps generated by the attaching maps of the 1-cells, that is, free

on the α-morphisms [Bro06, 9.1.5]. Thus, one gets Π(X1)X0
∼= F(X). Sec-

ond, one shows that the fundamental groupoid Π(X2)X0 of the 2-skeleton

of X is the free groupoid Π(X1)X0 modulo the relations γA = 1, for A a

2-cell of X [Bro06, 9.1.6]. This is done through repeated application of the

Seifert–Van Kampen theorem; one then has Π(X2)X0
∼= C(X). Third, one

shows that the inclusion of X2 in X induces an isomorphism of fundamental

groupoids Π(X2)X0
∼= Π(X)X0 [Bro06, 9.1.7], which concludes the proof

of the isomorphism Π(X)X0
∼= C(X). The theorem then follows, since

every path component of X is simply connected if and only if its fundamen-

tal groupoid Π(X) is trivial, which holds if and only if its full subcategory

Π(X)X0 is trivial.

Note that any CW complex is locally path connected, and therefore is

connected if and only if it is path connected. Therefore, we could have

replaced in the preceding theorem “path component” by “connected compo-

nent”.

Let us say thatX is combinatorially connected if there is a combinatorial

path between any two vertices of X . In the course of the preceding proof,

we have in particular showed the following.
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Corollary 1.2. A regular CW complex is combinatorially connected if and

only if it is connected.

1.2 Coherence à la Morse

Let X ⊂ R
n be a polyhedral complex. Let v⃗ ∈ R

n be generic on the edges

of X , meaning that for any pair of vertices x, y ∈ X belonging to the same

edge of X , we have ⟨v⃗, x⟩ ≠ ⟨v⃗, y⟩. Such a generic vector v⃗ induces a

natural orientation on the edges of X , directed from the source vertex where

the functional ⟨v⃗,−⟩ is minimal to the target vertex where it is maximal.

One of the basic, very useful facts about polyhedral complexes with a

generic vector is that, for any face F ⊆ X of X , there is a unique source

vertex sc(F ) such that all its adjacent edges e ⊆ F are outgoing, and a

unique sink vertex sk(F ) whose adjacent edges are all incoming, see [Zie95,

Thm. 3.7]. More generally a vertex whose adjacent edges e ⊆ X are all

incoming is called a local sink, and when X has only one such vertex, we

call it global sink and denote it by sk(X).
Let H := {y ∈ R

n | ⟨v⃗, y⟩ = 0} be the linear hyperplane orthogonal to v⃗.

For every vertex x ∈ X , choose ε > 0 such that the interval between ⟨v⃗, x⟩
and ⟨v⃗, x⟩ + ε does not contain the image of any other vertex under the

“height” function ⟨v⃗,−⟩.

Definition 1.3. The outgoing link Lk+(x,X) of a vertex x ∈ X is the inter-

sectionF∩(H+x+εv⃗) of the family of facesF(x,X) := {F ⊆ X | sc(F ) =
x} with the affine hyperplane H + x+ εv⃗.

Recall from [Zie95, Sec. 2.1] that the vertex figure P/x of a polytope P
at a vertex x is obtained by cutting P by a hyperplane that cuts off the single

vertex x. Such a cut establishes a bijection between the (k−1)-faces of P/x
and the k-faces of P which contain x [Zie95, Prop. 2.4].

Lemma 1.4. Let X be a polyhedral complex with a generic vector. For any

k ≥ 0, there is a bijection between the k-faces of F(x,X) and the (k − 1)-
faces of Lk+(x,X).

Proof. Each maximal face of F(x,X) with respect to inclusion is a poly-

tope P , for which the intersection P ∩ (H +x+ εv⃗) is the vertex figure P/x
of P at x. By [Zie95, Prop. 2.4], there is a bijection between the k-faces
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of P and the (k − 1)-faces of P/x. Collecting these bijections for all maxi-

mal faces of F(x,X), and making the appropriate identifications, we get the

desired global bijection.

In this section we shall focus on polyhedral complexes whose outgoing

links are connected. The following proposition gives the topological signifi-

cance of this condition.

Proposition 1.5. Let X be a polyhedral complex. If there is a generic vector

such that the outgoing link of every vertex is connected, then every path

component of X is simply connected.

Proof. Let v⃗ ∈ R
n be generic with respect to X , and suppose that the out-

going link of every vertex is connected. Since v⃗ is generic on edges, it de-

fines a Morse function ⟨v⃗,−⟩ on X , in the sense of [BB97, Def. 2.2]. As

in classical Morse theory, one can determine the homotopy type of X by

considering its successive level sets. For t ∈ R denote by Xt the closed sub-

space of X containing points x such that ⟨x, v⃗⟩ is at least t. Let x be a vertex

of X of height h = ⟨x, v⃗⟩. Observe first that Xh+ε, for some small ε > 0,

is homotopy equivalent to Xh′ where h′ > h is the next greater height at

which there is a vertex. That is, the homotopy type of X can only change at

vertices [BB97, Lem. 2.3]. Then, one proves that Xh is homotopy equiva-

lent to the pushout of Xh+ε with the cone over the outgoing link of x along

the outgoing link of x [BB97, Lem. 2.5]. By our assumption, the outgo-

ing link of x is connected, and thus the cone over it is simply connected.

Since the pushout of simply connected spaces over a connected space is al-

ways simply connected (this is an application of the Seifert–Van Kampen

theorem), we obtain by induction that every path component of X is simply

connected [BB97, Point (3) of Cor. 2.6].

The converse of Proposition 1.5 is not true in general: many simply con-

nected polyhedral complexes, as the one represented in Figure 1, have dis-

connected outgoing links, for many (sometimes for all) choices of generic

vectors.

An important class of complexes which have connected outgoing links

are polytopes, which will be our main object of study in the next sections.

Proposition 1.6. Let P be a polytope with a generic vector. The outgoing

link of every vertex of P is connected.
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Figure 1: A simply connected polyhedral complex which admits discon-

nected outgoing links for every choice of generic vector.

Proof. Define the linear hyperplane H := {y ∈ R
n | ⟨v⃗, y⟩ = 0}, and con-

sider the two half-spaces H− := {y ∈ R
n | ⟨v⃗, y⟩ < 0} and H+ := {y ∈

R
n | ⟨v⃗, y⟩ < 0}. Since v⃗ is not perpendicular to any edge of P , it defines

a partition of the vertices of the vertex figure P/x into two connected com-

ponents: the vertices that lie in H−, which correspond to incoming edges

of P at x, and the vertices that lie in H+, which correspond to outgoing

edges of P at x. Thus, the outgoing link of x is connected, and the proof is

complete.

From now on we shall suppose that the polyhedral complexes that we

consider are endowed with a regular CW structure and provided with a

generic vector. Combining Proposition 1.5 with Theorem 1.1, we have that

any polyhedral complex X whose outgoing links are connected satisfies the

property that “any two parallel combinatorial paths onX are combinatorially

homotopic”. We shall now derive this same result by following an alterna-

tive, more combinatorial path (indeed!), getting close to the proof of [ML63,

Thm 3.1].

A combinatorial path γ on a polyhedral complex X is directed if for any

pair (e, f) of consective edges in γ, we have that sk(e) = sc(f). When no

ambiguity arises, we will omit the adjective “combinatorial” and say only

“directed path”.

In the rest of this section we shall use the notion of combinatorial con-
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nectedness, which as we have seen in Corollary 1.2 is equivalent to connect-

edness for the spaces we consider.

Lemma 1.7. Let X be a polyhedral complex with generic vector v⃗ such that

the outgoing link of every vertex is combinatorially connected. Let e, e′ be

two edges of X such that sc(e) = sc(e′), and suppose that there are directed

paths from sk(e) and sk(e′) to local sinks s and s′, respectively. Then, we

have s = s′.

Proof. Define the height h(x) of a vertex x as the length of the longest di-

rected path in X starting at x. Since the vector v⃗ is generic and X0 is finite,

this is well-defined. We proceed by induction on h(x). The statement holds

vacuously for vertices x such that h(x) = 0. Suppose that the assertion

above holds for all vertices x ∈ X such that h(x) = n, and consider a

vertex x with h(x) = n + 1. Since the outgoing link Lk+(x,X) is combi-

natorially connected, there is a combinatorial path θ in Lk+(x,X) between

the vertices corresponding to e and e′ (Lemma 1.4). The path θ determines

a sequence of edges e0 := e, e1, . . . , ek, e
′ =: ek+1 of X with sc(ei) = x for

all 0 ≤ i ≤ k + 1. Moreover, each consecutive pair ei, ei+1 determines a

2-face Fi+1 of X . Now, choose for each ei with 1 ≤ i ≤ k, a directed path

of maximal length starting at sk(ei) and passing through sk(Fi). Each of

these paths ends at a local sink si, including s0 := s and sk+1 := s′. Since

we have h(sk(ei)) < h(x) for all 0 ≤ i ≤ k + 1, we can apply induction

to the two directed paths from sk(ei) to si and si+1, which gives si = si+1.

Therefore, we have s = s0 = s1 = · · · = sk = sk+1 = s′, as desired.

Two parallel directed paths are said to be elementary combinatorially ho-

motopic if they are as undirected paths. They are combinatorially homotopic

if they are related by a sequence of elementary combinatorial homotopies

between directed paths.

The following Proposition 1.8 and its consequence Theorem 1.9 express

in topological terms the original proof technique used by Mac Lane in [ML63,

Thm 3.1]. Note that Proposition 1.8 involves first directed paths, while The-

orem 1.9 treats the general, undirected case.

Proposition 1.8. LetX be a polyhedral complex with a generic vector. Con-

sider the following three properties:
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(i) the outgoing link of every vertex is combinatorially connected,

(ii) there is a global sink in every connected component,

(iii) any two parallel directed combinatorial paths on X are combinatori-

ally homotopic.

Then, X satisfies (i) if and only if it satisfies (ii) and (iii).

Proof. First, we prove that (i) implies (ii). Suppose that there are two lo-

cal sinks s1 and s2 in the same connected component of X . Consider a

combinatorial path γ between s1 and s2, whose existence is garanteed by

Corollary 1.2. We proceed by induction on the number of peaks in γ, that

is the number of vertices x which are the source sc(e) = x = sc(e′) of two

edges e, e′ of γ. The path γ has at least a peak, otherwise s1 and s2 would not

be both local sinks. If γ has a unique peak, Lemma 1.7 implies that s1 = s2.
Now suppose that for any k ≤ n, if γ has k peaks, then we have s1 = s2.
If γ has n + 1 peaks, consider the first peak x = sc(e) = sc(e′) of γ. By

Lemma 1.7, there is a directed path δ from sk(e′) to s1. Replacing the ini-

tial section of γ ending in e′ by δ, we get a path with n peaks, and by the

induction hypothesis we get s1 = s2, completing the proof.

Second, we prove that (i) implies (iii). Let us assume thatX is connected,

otherwise we apply the same reasoning to each connected component. From

the preceding paragraph, we know that X has a global sink sk(X). Suppose

that the outgoing link of every vertex is combinatorially connected. Let γ
and γ′ be two parallel directed paths between two vertices x and y. We

prove that they are combinatorially homotopic. We proceed by induction on

the maximal length m of a directed path between x and y in X . Without loss

of generality, we can suppose that y = sk(X), since if y ̸= sk(X) we can

always find a directed path between y and sk(X). The cases whenm = 0 and

m = 1 are trivial. Suppose that the hypothesis holds up tom = k−1, k ≥ 2,

and consider two paths γ and γ′ for which m = k. Let e and e′ denote the

edges of γ and γ′ that are adjacent to x. We examine three cases.

1. If e = e′, we can apply the induction hypothesis to γ \ e and γ′ \ e′.

2. If e ̸= e′ and both edges are on the same 2-face F of X , then using

the induction hypothesis we have that γ and γ′ are respectively combi-

natorially homotopic to the paths δ and δ′ defined as follows: they go
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from x = sc(F ) to sk(F ) by the unique path containing e and e′, re-

spectively, and then from sk(F ) to y along the same arbitrary directed

path. Since δ and δ′ are combinatorially homotopic by definition, the

conclusion follows from the transitivity of the combinatorial homo-

topy equivalence relation.

3. Suppose that e ̸= e′, and that e and e′ are not on the same 2-face of X .

Since the outgoing link of x is combinatorially connected, there exists

a combinatorial path θ between the vertices corresponding to e and e′

in this link (Lemma 1.4). For every edge ei of X in the path θ, choose

a directed path γi in X from x to y = sk(X) going through ei. Now

apply Point (2) above to every pair of parallel directed paths (γi, γi+1)
with ei and ei+1 consecutive in θ, and conclude again by transitivity of

the combinatorial homotopy equivalence relation.

Finally, we prove that (ii) and (iii) imply (i). Suppose that every pair

of parallel directed combinatorial paths are combinatorially homotopic. We

show that for any vertex x, its outgoing link is combinatorially connected.

Indeed, take two edges e, e′ ofX with source x, and consider their extensions

to directed paths γ, γ′ from x to sk(X). By hypothesis, these two paths are

combinatorially homotopic, that is, there is a sequence of parallel directed

paths from γ to γ′. The collection of first edges in each of these paths defines

a combinatorial path between e and e′ in the outgoing link of x. Thus, this

link is combinatorially connected.

Theorem 1.9. Let X be a polyhedral complex with generic vector such that

the outgoing link of every vertex is combinatorially connected. Then, any

two parallel combinatorial paths on X are combinatorially homotopic.

Proof. Assume that X is connected, otherwise apply the argument to each

connected component. By Proposition 1.8, the polyhedral complex X ad-

mits a global sink sk(X) and the conclusion holds for directed paths. Let

us show that this implies the undirected version. Let γ be an undirected

combinatorial path on X between x and y. For every vertex z along γ, one

can choose a directed path δz from z to sk(X). We observe that for any

edge e : z → z′ of γ, the directed paths δz and δz′e are combinatorially ho-

motopic by hypothesis. Going from x to y inductively one edge at a time and

using transitivity of the homotopy equivalence relation, one obtains that γ is
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combinatorially homotopic to δ−1
y δx. Taking another combinatorial path γ′

parallel to γ, the same argument shows that γ′ is combinatorial homotopic

to δ−1
y δx. Thus γ and γ′ are combinatorially homotopic, which completes

the proof.

As Proposition 1.5 shows, the class of polyhedral complexes to which

Theorem 1.9 applies is a strict subclass of simply connected complexes. This

implies that the converse of Theorem 1.9 does not hold, and thus that Mac

Lane’s original proof is far from reaching the full generality of Theorem 1.1.

However, it will be sufficient for our purposes, since – as we have seen in

Proposition 1.6 – it applies to any polytope.

Another feature of polyhedral complexes with generic vector is that their

1-skeleton defines abstract rewriting systems which are terminating and con-

fluent, as we now show.

1.3 Rewriting systems

We refer to [BN98] for more details on rewriting systems.

Definition 1.10. An abstract rewriting system is a set A together with a

binary relation→.

We denote by
∗
−→ the reflexive and transitive closure of →. We say

that (A,→) is locally confluent (resp. confluent) if for all a, a1, a2 ∈ A

such that a1 ← a → a2 (resp. a1
∗
←− a

∗
−→ a2), there exists a term b with

a1
∗
−→ b

∗
←− a2. The diagram

a

a1 a2

b

∗ ∗

is called a local confluence diagram. A rewriting system is terminating if

every reduction sequence a → a1 → a2 → · · · eventually must terminate.

An element a ∈ A is reducible if there exists an a′ ∈ A such that a → a′;
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otherwise it is called irreducible – the rewriting synonymous of local sink!

We say that b is a normal form of a if a
∗
−→ b and b is irreducible.

Given a polyhedral complex X and a generic vector v⃗, one can consider

the abstract rewriting system defined by v⃗ on the vertices of X .

Definition 1.11. The vertices rewriting system is the pair (X0,→) made

of the set of vertices X0 of X , together with the following relation: we

have x→ y if x and y are vertices of the same edge and ⟨v, x⟩ < ⟨v, y⟩.

According to this definition, we have x
∗
−→ y if and only if there is a

directed path from x to y in X1. The hypothesis of Theorem 1.9 imposes

that the rewriting system (X0,→) is terminating and confluent.

Proposition 1.12. Let X be a polyhedral complex and v⃗ be a generic vec-

tor. If the outgoing link of every vertex is combinatorially connected, the

rewriting system (X0,→) is terminating and confluent.

Proof. Since v⃗ is generic, and thus strictly increasing along edges, it de-

fines a partial order, and since the set X0 is finite, the rewriting system

(X0,→) is terminating. By Proposition 1.8, there is a global sink in each

connected component of X . Confluence then follows: given any pair of

vertices x, y in the same connected component, since v⃗ is generic there are

directed paths x
∗
−→ s

∗
←− y to the global sink s of this connected compo-

nent.

Corollary 1.13. The abstract rewriting system on the vertices of any poly-

tope P is terminating and confluent. Moreover, every pair of vertices admits

a unique normal form sk(P ).

Recall that a polytope P is simple if each vertex of P is incident to pre-

cisely dimP edges.

Lemma 1.14. If a polytope P is simple, then there is a bijection between

the local confluence diagrams of (P0,→) and the oriented boundaries of the

2-faces of P .

Proof. When P is simple, the vertex figure P/x of every vertex x is a sim-

plex [Zie95, Prop. 2.16], with each edge in P/x corresponding to a 2-face

of P (Lemma 1.4). Thus every pair of edges e, e′ with source x = sc(e) =
sc(e′) determines a 2-face of P .
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Not much more can be said at this level of generality. For the specific

familiy of operahedra that we will consider in the next section, the rewrit-

ing systems possess more structure (they are term rewriting system) and are

studied in a companion paper [CLA24].

2. Categorical coherence

2.1 Categorified non-symmetric operad

Throughout this section we consider structures without units. Unless other-

wise stated, the adjective “non-unital” will be implicitly assumed.

Definition 2.1. A categorified non-symmetric operad P is a collection {P(n)}n∈N
of small categories equipped with bifunctors

◦i : P(n)× P(k) −→ P(n+ k − 1) , for 1 ≤ i ≤ n ,

and for each κ ∈ P(m), µ ∈ P(n), ν ∈ P(k), 1 ≤ i ≤ m, 1 ≤ j ≤ n
natural isomorphisms

βκ,µ,ν : (κ ◦i µ) ◦j+i−1 ν
∼=
−→ κ ◦i (µ ◦j ν) ,

θκ,ν,µ : (κ ◦i ν) ◦j+k−1 µ
∼=
−→ (κ ◦j µ) ◦i ν , when i < j ,

such that the following diagrams commute: the pentagonal

((κ ◦ τ) ◦ µ) ◦ ν

(κ ◦ (τ ◦ µ) ◦ ν)

κ ◦ ((τ ◦ µ) ◦ ν)

κ ◦ (τ ◦ (µ ◦ ν))

(κ ◦ τ) ◦ (µ ◦ ν)

βκ,τ,µ ◦ 1ν

βκ,τ◦µ,ν

1κ ◦ βτ,µ,ν

βκ◦τ,µ,ν

βκ,τ,µ◦ν

((κ ◦ τ) ◦ µ) ◦ ν

((κ ◦ τ) ◦ ν) ◦ µ

((κ ◦ ν) ◦ τ) ◦ µ

(κ ◦ ν) ◦ (τ ◦ µ)

(κ ◦ (τ ◦ µ) ◦ ν

θκ◦τ,µ,ν

θκ,τ,ν ◦ 1µ

βκ◦ν,τ,µ

βκ,τ,µ ◦ 1ν

θκ,τ◦µ,ν
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((κ ◦ τ) ◦ µ) ◦ ν

((κ ◦ µ) ◦ τ) ◦ ν

((κ ◦ µ) ◦ ν) ◦ τ

(κ ◦ (µ ◦ ν)) ◦ τ

(κ ◦ τ) ◦ (µ ◦ ν)

θκ,τ,µ ◦ 1ν

θκ◦µ,τ,ν

βκ,µ,ν ◦ 1τ

βκ◦τ,µ,ν

θκ,τ,µ◦ν

and hexagonal identities

((κ ◦ τ) ◦ µ) ◦ ν

(κ ◦ (τ ◦ µ)) ◦ ν

κ ◦ ((τ ◦ µ) ◦ ν)

κ ◦ ((τ ◦ ν) ◦ µ)

((κ ◦ τ) ◦ ν) ◦ µ

(κ ◦ (τ ◦ ν)) ◦ µ

βκ,τ,µ ◦ 1ν

βκ,τ◦µ,ν

1κ ◦ θτ,µ,ν

θκ◦τ,µ,ν

βκ,τ,ν ◦ 1µ

βκ,τ◦ν,µ

((κ ◦ τ) ◦ µ) ◦ ν

((κ ◦ µ) ◦ τ) ◦ ν

((κ ◦ µ) ◦ ν) ◦ τ

((κ ◦ ν) ◦ µ) ◦ τ

((κ ◦ τ) ◦ ν) ◦ µ

((κ ◦ ν) ◦ τ) ◦ µ

θκ,τ,µ ◦ 1ν

θκ◦µ,τ,ν

θκ,µ,ν ◦ 1τ

θκ◦τ,µ,ν

θκ,τ,ν ◦ 1µ

θκ◦ν,τ,µ

.

The diagrams above hold for all instances of composable β and θ; these

depend on the indices i, j, k, which are omitted for the sake of readability.

Observe that a categorified non-symmetric operad concentrated in arity 1 is

a non-symmetric monoidal category.

As formalized in Proposition 2.6 below, one can picture an object µ ∈
P(n) as a planar tree with one vertex decorated by µ, n leaves and one root

(a corolla). The ◦i bifunctors then correspond to the operation of grafting

a corolla on top of another. Iterated applications of the ◦i can be visualized

as fully nested planar trees, with vertices decorated by objects of P , see

Figure 2. A nesting of a planar tree is a collection of subtrees (nests) which

are either included in one another or disjoint. A nesting is full if its number

of nests is maximal, equal to the number of internal edges of the tree [Lap22,

Def. 2.2].
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κ

τ

µ

ν ρ

1

2

3 4

Figure 2: A fully nested planar tree.

The β and θ arrows correspond to the sequential and parallel axioms

of an operad, and relate the two possible ways of fully nesting a tree with

3 vertices, see Figure 3. Moreover, there is then one coherence diagram

(pentagon or hexagon) for every planar tree with 4 vertices, see Figure 4.

κ

µ

ν

β
−→

κ

µ

ν

κ

µν θ
−→

κ

µν

Figure 3: The β and θ isomorphisms defining a categorified non-symmetric

operad.

Remark 2.2. K. Došen and Z. Petrić introduced in [DP15, Sec. 12] the no-

tion of weak Cat-operad. Despite looking different at first sight, the two no-

tions of categorified non-symmetric operad and weak Cat-operad are in fact

equivalent. The crucial observation is the following: the θ-isomorphisms of

Došen–Petrić comprise both the isomorphisms θ in Definition 2.1 and their

inverses θ−1. Therefore, there are only two pentagonal coherence diagrams

in the definition of a weak Cat-operad, the equations (β pente) and (βθ2e) of

[DP15, Sec. 9]. The set of diagrams of the form (β pente) is the same as the

set of diagrams which arises from the first pentagon in Definition 2.1, while
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κ

τ

µ

ν

κ

τ

µ

ν

κ

τ µ

ν

κ

τ

µ ν

κ

τ µ ν

Figure 4: The five planar trees with four vertices, giving rise to the pentago-

nal (first three) and hexagonal (last two) identites.

the set of diagrams of the form (βθ2e) is partitioned into the sets of diagrams

which arise from the second and third pentagons in Definition 2.1.

We will give in Theorem 2.5 two topological proofs of coherence for

categorified non-symmetric operads. A benefit of our presentation is that,

adopting the oriented approach (see the second proof of Theorem 2.5), we

get a proof of coherence where β and θ are both treated as rewriting rules, in

contrast with the proof in [DP15], which proceeds in two stages, much like

in Mac Lane’s proof of coherence for symmetric monoidal categories (see

Remark 2.18): first get rid of β (rewriting), then deal with θ.

Definition 2.3. A strong morphism of categorified non-symmetric operads

F : P → Q is a collection of functors Fn : P(n) → Q(n) together with

natural isomorphisms

γκ,µ : Fm−1+n(κ ◦i µ)
∼=
−→ Fm(κ) ◦i Fn(µ)

such that the following diagrams commute:

F ((κ ◦ µ) ◦ ν)

F (κ ◦ µ) ◦ F (ν)

(F (κ) ◦ F (µ)) ◦ F (ν)

F (κ) ◦ (F (µ) ◦ F (ν))

F (κ ◦ (µ ◦ ν))

F (κ) ◦ F (µ ◦ ν)

γκ◦µ,ν

γκ◦µ ◦ 1F (ν)

βF (κ),F (µ),F (ν)

F (βκ,µ,ν)

γκ,µ◦ν

1F (κ) ◦ γµ,ν

F ((κ ◦ ν) ◦ µ)

F (κ ◦ ν) ◦ F (µ)

(F (κ) ◦ F (ν)) ◦ F (µ)

(F (κ) ◦ F (µ)) ◦ F (ν)

F ((κ ◦ µ) ◦ ν)

F (κ ◦ µ) ◦ F (ν)

γκ◦ν,µ

γκ,ν ◦ 1F (µ)

θF (κ),F (ν),F (µ)

F (θκ,ν,µ)

γκ◦µ,ν

γκ,ν ◦ 1F (ν)
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It is said to be strict if the natural isomorphisms are identities.

Once again, the diagrams above hold for all instances of β and θ ar-

rows, and we have omitted the (i, j, k)-indices for readability. Observe that

a strong (resp. strict) morphism between categorified non-symmetric oper-

ads concentrated in arity 1 is a strong (resp. strict) monoidal functor between

non-symmetric monoidal categories.

2.2 Coherence for categorified non-symmetric operads

We now aim at the coherence theorem for categorified non-symmetric op-

erads. In order to state the theorem, we construct the free non-symmetric

categorified operad on a family of sets S = {Sn}n≥1. We define a family of

categories S = {Sn}n≥1 whose objects are given by the following rules:

1. if a ∈ Sn, then a is an object of Sn;

2. if t1 ∈ Sm and t2 ∈ Sn, then t1 ◦i t2 is an object of Sm−1+n, for any

1 ≤ i ≤ m.

If an object t1 is in Sn, we say that t1 has arity n. Now we define a set

M of basic morphisms β : (t1 ◦i t2) ◦j+i−1 t3 ↔ t1 ◦i (t2 ◦j t3) : β−1

for every t1 ∈ Sm, t2 ∈ Sn, t3 ∈ Sk, 1 ≤ i ≤ m and 1 ≤ j ≤ n, and

θ : (t1 ◦i t3)◦j−1+k t2 ↔ (t1 ◦j t2)◦i t3 : θ
−1 whenever i < j. We then define

the generating morphisms of the family S by the following rules:

1. if ϕ ∈M , then ϕ is a generating morphism of S;

2. if ϕ : t1 → t2 is a generating morphism in S , and t3 ∈ S , then

ϕ◦i id : t1 ◦i t3 → t2 ◦i t3 and id◦j ϕ : t3 ◦j t1 → t3 ◦j t2 are generating

morphisms, for any i (resp. j) between 1 and the arity of t1 (resp. t3).

Note that by construction, for every morphism ϕ : t1 → t2, the objects t1 and

t2 have the same arity, and we say that ϕ has this arity. We then define Sn as

the free category over all generating morphisms of arity n. This finishes the

construction of our family S of categories.

Definition 2.4. We denote byF(S) the quotient of the family of categories S
by localization (inverting the β and θ morphisms), the axioms of bifunctors

for the ◦i, the naturality conditions for β and θ, and the coherence diagrams

(pentagons and hexagons) defining a categorified non-symmetric operad.
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We obtain that F(S) is the free categorified non-symmetric operad on S.

That is, for any categorified non-symmetric operad P , and for any family of

functions ρn : Sn → Ob(P(n)), there is a unique strict morphism of non-

symmetric categorified operads F(S) → P which extends ρ := {ρn}n≥1.

By precomposing it with the quotient map S → F(S), we get a levelwise

functor [[−]] : S → P .

Theorem 2.5 (Coherence theorem). For any categorified non-symmetric op-

erad P , for any family of functions ρ : S → Ob(P), and for any two parallel

morphisms ϕ1, ϕ2 : t1 → t2 in S , we have [[ϕ1]] = [[ϕ2]].

In order to prove this Theorem 2.5, we need to first recall the construction

of the operahedra, a family of polytopes whose faces are in bijection with

the set of all nestings of a planar tree. We refer to [Lap22, Sec. 2] for details,

see also [DP15, Sec. 13] and [COI19]. Given a planar tree t with n internal

edges, and a full nesting N of t, one associates a point M(t,N ) ∈ R
n via a

simple algorithm which is due to J.-L. Loday [Lap22, Sec. 2.2]. The oper-

ahedron Pt ⊂ R
n is the convex hull of the points M(t,N ), for all maximal

nestings N of t. It has dimension n − 1. One then shows that the poset

of nestings of t, ordered by reverse inclusion, is isomorphic to the poset of

faces of Pt [Lap22, Prop. 2.15]. The dimension of a face is given by n minus

the number of nests in the corresponding nesting of t.
Reading a planar tree t from the leaves to the root defines a family of

incoming edges and one outgoing edge at each vertex of t. Given the family

of sets S and a planar tree t, we say that a decoration of the vertices of t by

elements of S is admissible if at every vertex the number of incoming edges

is equal to the arity of the element of S decorating it. Now, let us consider

the collection O(S) of polytopes with one copy of the operahedron Pt for

each admissible decoration of the planar tree t by elements of S.

Proposition 2.6. There are bijections between

1. objects of S and vertices of the operahedra in O(S),

2. generating morphisms of S and edges of the operahedra in O(S),

3. bifunctoriality, naturality and coherence diagrams and 2-faces of the

operahedra in O(S).
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Proof. To each element a of Sn, we associate a planar corolla with n leaves

and vertex decorated by a. Then, we identify a ◦i b with the planar tree ob-

tained from grafting the corolla decorated by b at the ith leaf of the corolla

decorated by a. Continuing in this fashion, and remembering the order in

which we graft the corollas, we obtain all possible fully nested planar trees

with vertices decorated by elements of S (Figure 2). A generating mor-

phism f in S is an application of one of the associativity rules β or θ to a

fully nested tree t, moving only one nest (Figure 3). If t has n internal edges,

forgetting the nest that has been moved gives a nesting of t with n− 1 nests.

We associate to f the edge of the operahedron Pt in O(S) labeled by this

nesting, see [Lap22, Def. 2.8 & Prop. 3.11]. It remains to consider all the

possible diagrams one can obtain by applying two generating morphisms to

a given fully nested tree t with n internal edges. These arise from moving

two different nests in the same fully nested tree. Starting by moving one or

the other of these 2 nests, one faces two types of situations:

(A1) If the two nests are disjoint, one obtains a bifunctoriality square,

(A2) If the two nests are nested, but do not share the same root, one obtains

a naturality square,

(B) If the two nests are nested and share the same root, one obtains either

a pentagon or a hexagon as in Definition 2.1.

To such a diagram, we associate the 2-face of the operahedron Pt in O(S)
corresponding to the nesting of t obtained by forgetting the two nests that

have been moved along the edges. We refer to [CLA24, Sec. 2] for a more

detailed analysis of the 2-faces.

Remark 2.7. The fact that every possible choice of initial moves gives rise

to a 2-face amounts to the fact that the operahedron Pt is a simple poly-

tope [DP11, Sec. 9]. As Lemma 1.14 shows, this property garantees the

correspondence between geometric and rewriting-theoretic proofs of coher-

ence, see [CLA24] for more details on the latter.

The conceptual origin of the bijections of Proposition 2.6 is the fact that

the combinatorics of the faces of the operahedra correspond exactly to the

monad of trees [LV12, Sec. 5.6.1]. Or, said differently, it lies in the fact
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that the operahedra encode (via the cellular chains functor) the minimal res-

olution of the colored symmetric operad whose algebras are non-unital non-

symmetric operads, see [VdL03] and [Lap22, Sec. 4.1].

We are now ready to prove Theorem 2.5, using either our non-oriented

or oriented topological coherence results for polytopes.

Proof of Theorem 2.5. From Point (2) in Proposition 2.6, we have that the

morphisms of S are in bijection with combinatorial paths on the operahedra

of O(S). Two parallel morphisms in S thus define two parallel combina-

torial paths on some operahedron Pt in O(S). Since an operahedron Pt is

simply connected, Theorem 1.1 implies that these two combinatorial paths

are combinatorially homotopic. By Point (3) in Proposition 2.6 the 2-faces

of the operahedra are exactly either a bifunctoriality or naturality square,

a pentagon or a hexagon (witnessing a coherence condition) as in Defini-

tion 2.1. Therefore, two parallel morphisms ϕ1, ϕ2 in S are equal in the

quotient F(S), and thus their images [[ϕ1]], [[ϕ2]] are also equal in P .

Second proof of Theorem 2.5. Alternatively, since the operahedra are poly-

topes, one can use Proposition 1.6 and Theorem 1.9. As shown in [Lap22,

Prop. 3.11], choosing a generic vector v⃗ which has strictly decreasing coor-

dinates gives the orientations of the diagrams given in Definition 2.1 on the

2-faces. One then obtains a topological proof of coherence which follows

closely the original proof of Mac Lane [ML63, Thm. 3.1], suitably general-

ized to categorified operads.

Following Remark 2.2, we have that Theorem 2.5 gives an alternative,

more economical proof of coherence for weak Cat-operads [DP15, Prop. 14.2].

Incidentally, it gives an alternative input to the proof of coherence for cyclic

symmetric categorified operads [CO20].

Restricting the theorem above to non-symmetric operads concentrated

in arity 1, the category F(S) becomes the free non-symmetric monoidal

category on S, and we get the following corollary.

Corollary 2.8 (Mac Lane coherence theorem for non-symmetric monoidal

categories). For any non-symmetric monoidal category C, for any function

ρ : S → Ob(C), and for any two parallel morphisms ϕ1, ϕ2 : t1 → t2 in S ,

we have [[ϕ1]] = [[ϕ2]].
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Remark 2.9. As mentioned at the end of Section 1.3, the rewriting systems

obtained on the vertices of the operahedra by choosing a generic vector with

strictly decreasing coordinates are in fact term rewriting systems. The faces

of type (B) in Point (3) of Proposition 2.6 (the coherence conditions) corre-

spond precisely to the critical pairs of these rewriting systems, see [CLA24,

Sec. 3.4]. Moreover, the associated posets on fully nested planar trees have

recently been shown to be lattices [DS24].

2.3 Symmetric monoidal categories

We now formulate and prove Mac Lane’s coherence theorem for symmetric

monoidal categories in the same style as above. Recall that in a symmetric

monoidal category C, in addition to the natural isomorphisms β, with com-

ponents βκ,µ,ν : (κ ⊗ µ) ⊗ ν → κ ⊗ (µ ⊗ ν), there are involutive natural

transformations τ , with components τµ,ν : µ ⊗ ν → ν ⊗ µ. Here, we use

κ, µ, ν, . . . to range over the objects of the category, consistently with the

notation used in Sections 2.1 and 2.2. In addition to the pentagons, obtained

from the first pentagon in Definition 2.1 by replacing ◦ with ⊗, there are

hexagons

(κ⊗ µ)⊗ ν

κ⊗ (µ⊗ ν)

(µ⊗ ν)⊗ κ

µ⊗ (ν ⊗ κ)

(µ⊗ κ)⊗ ν

µ⊗ (κ⊗ ν)

β

τ

β

τ ⊗ 1

β

1⊗ τ

for all objects κ, µ, ν in C.

In order to state the coherence theorem, we construct a free category on

a set S of generating objects. We define a small category SML whose set of

objects

TS =
⋃
{TA | A is a non-empty finite subset of S}
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is defined as follows:

1. if a ∈ S, then a ∈ T{a};

2. if t1 ∈ TA and t2 ∈ TB, and if A ∩ B = ∅, then t1 ⊗ t2 ∈ TA∪B.

We can see the objects of SML as fully parenthesized words over S where

letters are not repeated. We then define a set MML of basic morphisms β :
(t1 ⊗ t2) ⊗ t3 ↔ t1 ⊗ (t2 ⊗ t3) : β

−1 and τ : t1 ⊗ t2 ↔ t2 ⊗ t1, for every

t1, t2, t3 ∈ TS . We then define the generating morphisms of SML by the

following rules:

1. if ϕ ∈MML, then ϕ is a generating morphism;

2. if ϕ : t1 → t2 is a generating morphism and t3 ∈ TS , then ϕ ⊗ id :
t1 ⊗ t3 → t2 ⊗ t3 and id ⊗ ϕ : t3 ⊗ t1 → t3 ⊗ t2 are generating

morphisms.

We then define SML as the free category over all generating morphisms. This

finishes the construction of the category SML.

Definition 2.10. We denote by F(S) the quotient of SML by localization

(inverting the β morphisms), by the axioms τt1,t2 ◦ τt2,t1 = 1, by the axioms

of bifunctors, by the naturality conditions for β and τ , and by the coherence

conditions of symmetric monoidal categories.

By freeness, we have that for any symmetric monoidal category C, and

for any function ρ : S → Ob(C), there is a unique functor [[−]]ML :
SML → C which extends ρ and sends the formal basic morphisms to the

actual canonical morphisms of C. This functor factorizes through the quo-

tient map [−]ML : SML → F(S).
It turns out that Kapranov’s topological proof is not based on the above

presentation of F(S), but on another presentation of this category, that is

made explicit in [BIP19, Sec. 2]. Let us recall this presentation. We define

another category SK as follows. Its objects are the same as those of SML. We

define a set MK of basic morphisms β : (t1⊗ t2)⊗ t3 ↔ t1⊗ (t2⊗ t3) : β
−1

for every t1, t2, t3 ∈ TS , and τ : a ⊗ b ↔ b ⊗ a for every a, b ∈ S, i.e., we

limit τ to generating objects. Generating morphisms are defined in the same

way as for SML. We note that by construction SK is a wide subcategory

of SML.
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Definition 2.11. We denote by F(S)K the quotient of SK by localization

(inverting the β morphisms), by the axioms τa,b ◦ τb,a = 1, by the axioms of

bifunctors, by the naturality conditions for β, by the coherence conditions of

monoidal categories, and by the axioms in dodecagonal form given by the

solid arrows in Figure 5 (left), for a, b, c ranging over S only.

Figure 5: Kapranov dodecagons.

We pause here to reflect on the difference between the two presentations.

In the second one, we have less generators, and we have lost hexagons. For

an intuition, here is how Mac Lane himself motivated his hexagonal axioms

(verbatim, just changing the notation to fit with ours) in [ML63]:

The instance τκ⊗µ,ν interchanges the block κµ with the single

letter ν; the hexagon condition states that this interchange may

be replaced by two instances of τ which interchange single let-

ters with ν. Repeated such replacement using instances of the

hexagon shows that any interchange of successive blocks may

be replaced by interchanges of successive letters.
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In other words, hexagons are now taken as definitions rather than axioms.

But how do we guarantee that the general τ morphisms defined in this way

define a natural transformation? This is what the dodecagons are for.

Let C be a symmetric monoidal category. By freeness again, any function

ρ : S → Ob(C) extends uniquely to a functor [[−]]K : SK → C. This functor

is the restriction of [[−]]ML to SK, and factorizes through the quotient functor

[−]K : SK → F(S)K.

Theorem 2.12 (Kapranov coherence theorem for symmetric monoidal cat-

egories). For any two parallel morphisms ϕ1, ϕ2 : t1 → t2 in SK, we

have [ϕ1]
K = [ϕ2]

K.

In order to prove this “Kapranov style” coherence, we need to first recall

the construction of the permuto-associahedra, a family of polytopes whose

faces are in bijection with parenthesized ordered partitions of a finite set. We

refer to [Zie95, Sec. 9.3] for details, see also [Kap93] and [RZ94]. Given a

finite set A of cardinal n and a parenthesized permutation σ of its elements,

one associates a section γσ of the projection from the n-cube to the cyclic

polygon with n + 1 vertices [Zie95, Ex. 9.14], whose integral over the base

gives a pointM(σ) in R
n. The permuto-associahedron PA is the convex hull

of the points M(σ), for all parenthesized permutations σ of the elements of

A. It has dimension n − 1. One then shows that the poset of parenthesized

ordered partitions of A, ordered according to the rules below, is isomorphic

to the poset of faces of PA [Zie95, Thm. 9.15].

Parenthesized ordered partitions ofA can be drawn as planar trees whose

leaves are decorated with the parts of a partition ofA. The subface relation≺
is defined by two clauses: one can contract an edge of the tree, or remove

a node all of whose incoming edges are leaves and decorate its outcoming

edge – now a leaf – with the union of the decorations of those incoming

edges. The maximal face is A. For example, with A = {a1, . . . , a7}, the

following is a face:

({a1} {a4} {a2, a6}) {a3, a5, a7}

which is covered by the following two elements.

({a1} {a4} {a2, a6}) {a3, a5, a7} ≺ {a1} {a4} {a2, a6} {a3, a5, a7}
({a1} {a4} {a2, a6}) {a3, a5, a7} ≺ {a1, a2, a4, a6} {a3, a5, a7} .
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Given the set S, let us consider the collection P(S) of polytopes with one

copy of the permuto-associahedron PA for each finite subset A ⊆ S.

Proposition 2.13. There are bijections between

1. objects of SK and vertices of the permuto-associahedra in P(S),

2. generating morphisms of SK and edges of the permuto-associahedra

in P(S),

3. bifunctoriality, naturality and coherence diagrams and 2-faces of the

permuto-associahedra in P(S).

Proof. The 0-dimensional faces of PA are fully parenthesized words whose

letters are singletons, and are in obvious bijective correspondence with the

elements of TA. The 1-dimensional faces are

• either fully parenthesized words whose letters are singletons but for one

letter which is a two-element set {ai, aj} and feature an application of the

basic morphism τai,aj ,

• or an “almost” fully parenthesized word of singletons, with just one paren-

thesis removed, yielding a subword ({ai} {aj} {ak}), featuring an appli-

cation of the basic morphism βai,aj ,ak or β−1
ai,aj ,ak

– the orientation of the

edge being “decided” by the shape of its end vertices.

Finally, the 2-dimensional faces can be analyzed much in the same way as

in Proposition 2.6, and seen to correspond to bifunctoriality, naturality of β,

and to the pentagons and dodecagons. We have pictured the poset view of

the latter in Figure 5 (right). The reader can also convince himself on this

figure how the orientation of the β arrows on the left can be reconstructed

from the non-oriented dodecagon on the right.

Proof of Theorem 2.12. Having Proposition 2.13 in hand, the proof is simi-

lar to the proof of Theorem 2.5, using either the Van Kampen (Theorem 1.1)

or the Morse (Proposition 1.6 and Theorem 1.9) technique.

Remark 2.14. Alternatively, one could use the same strategy with the simple

permutoassociahedra from [BIP19], involving yet another equivalent pre-

sentation of symmetric monoidal categories.
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The following proposition establishes relations between the Mac Lane

and Kapranov presentations of symmetric monoidal categories.

Proposition 2.15 (Kapranov–Mac Lane comparison).

1. Let ϕ1, ϕ2 : t1 → t2 be parallel morphisms of SK. If we have [ϕ1]
K =

[ϕ2]
K, then we have [ϕ1]

ML = [ϕ2]
ML.

2. For any morphism ϕ of SML, there is a morphism ψ of SK such that

[ϕ]ML = [ψ]ML.

Proof. The proof of Point (1) is visualized in Figure 5 (left). The two dot-

ted lines delimit two Mac Lane hexagons on the top and at the bottom and

a naturality square in the middle. Explicitly, the two dotted τ -morphisms

are τa,b⊗c and τa,c⊗b. As for Point (2), we observe that a morphism ψ as in the

statement can be obtained by repeatedly applying the procedure described by

Mac Lane in the quotation which follows Definition 2.11 above.

Theorem 2.16 (Mac Lane coherence theorem for symmetric monoidal cate-

gories). For any symmetric monoidal category C, for any function ρ : S →
Ob(C), and for any two parallel morphisms ϕ1, ϕ2 : t1 → t2 in SML, we

have [[ϕ1]]
ML = [[ϕ2]]

ML.

Proof. Since the functor [[−]]ML factorizes through the functor [−]ML, it is

enough to prove that [ϕ1]
ML = [ϕ2]

ML. By Point (2) of Proposition 2.15,

there exist ψ1 and ψ2 in SK such that [ψ1]
ML = [ϕ1]

ML and [ψ2]
ML = [ϕ2]

ML.

In particular ψ1 and ψ2 are parallel, so by Theorem 2.12 we get [ψ1]
K =

[ψ2]
K, and by Point (1) of Proposition 2.15 we have [ψ1]

ML = [ψ2]
ML. Thus,

we have [ϕ1]
ML = [ψ1]

ML = [ψ2]
ML = [ϕ2]

ML, which concludes the proof.

Remark 2.17. One can see easily that this proof also shows that the cate-

gories F(S)K and F(S) are isomorphic. The statement of this fact is un-

related to coherence issues, but its proof relies on Kapranov style coher-

ence. In other words, the proof that Kapranov’s conditions imply Mac Lane’s

conditions is non-trivial, in contrast to the converse direction (cf. Proposi-

tion 2.15); a result of the magic of polytopes!
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Remark 2.18. Note that contrary to the case of the operahedra, there does not

seem to exist a generic vector whose induced orientation on the edges of the

permuto-associahedra coincides with a consistent orientation of the β and τ
arrows based on conventions independent of the orientation vector. This fol-

lows from the observation that the dodecagon (Figure 5, left) involves β−1 ar-

rows. The same remarks apply to the simple permuto-associahedra of [BIP19].

As for the original presentation of Mac Lane (for which no polytopal corre-

spondence is known), one could still hope to have an associated term rewrit-

ing system. But instead Mac Lane’s proof (rightly!) proceeds in two stages:

first using rewriting for the monoidal part (β only), and then dealing with

the symmetric part using Coxeter’s presentation of the symmetric groups. It

seems that one cannot do better. Indeed, even if Mac Lane’s hexagon does

not involve β−1 arrows, the latter would pop up when taking the combina-

torics of orientation of the τ arrows into account. As an illustration, suppose

that we decide to move parentheses to the right for β, fix a total order on S
and split the involutive τ into τ and τ−1 according to where the maximum

lies. Then, for µ < κ < ν the hexagon becomes

(κ⊗ µ)⊗ ν

κ⊗ (µ⊗ ν)

(µ⊗ ν)⊗ κ

µ⊗ (ν ⊗ κ)

(µ⊗ κ)⊗ ν

µ⊗ (κ⊗ ν)

β

τ

β

τ ⊗ 1

β

1⊗ τ

and a local confluence diagram for the pair of rewritings out of (µ⊗ ν)⊗ κ
cannot be completed without inverting β arrows.
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3. Perspectives

3.1 Further applications

One can also use the same strategy to prove coherence for unital non-symmetric

monoidal categories, using the unital associahedra of F. Muro and A. Tonks [MT14].

It is natural to ask if the construction of unital associahedra could be ex-

tended to the permutoassociahedra, in such a way as to provide a topological

proof of coherence for unital symmetric monoidal categories. The question

of the existence of these constructions at the operadic level (i.e. does there

exist unital operahedra, symmetric operahedra, and unital symmetric opera-

hedra?) is, to our knowledge, still open as well.

Another immediate application of Theorem 1.1 is the coherence of strong

non-symmetric monoidal functors between non-symmetric monoidal cate-

gories [Eps66]. The corresponding topological objects are in this case the

family of multiplihedra [Sta70, For08]. The generalization to strong mor-

phisms between non-symmetric categorified operads also goes through, in-

volving this time the family of multiploperahedra described at the end of the

introduction in [LM23].

In the same spirit as in Theorem 2.5, one could obtain coherence results

for categorifications of many operad-like structures, for instance the ones

described in [BMO23]: categorified modular operads, wheeled properads,

and permutads (shuffle algebras), among others. In order to treat cyclic and

symmetric structures, one could take inspiration from the reduction process

followed in [CO20] for the case of cyclic symmetric categorified operads.

3.2 Higher categories

Theorem 1.1 shows the precise relationship between coherence and connect-

edness. In addition to Kapranov’s claim [Kap93], it clarifies other state-

ments in the literature, such as the proof of [KV94, Prop. 3.9]. There, the

incipit “since Pn is a convex polytope” could be replaced by a more precise

“since Pn is simply connected”.

In the case of (symmetric) monoidal categories, Theorem 1.1 demon-

strates that coherence is equivalent to the vanishing of the first homotopy

groups of the (permuto-)associahedra. Since the (permuto-)associahedra are
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contractible, and therefore all their homotopy groups vanish, one could hope

for a topological proof of higher dimensional coherence theorems.

One dimension higher, N. Gurski has shown in [Gur11, Thms. 22 &

23] that coherence for (braided) monoidal bicategories is equivalent to the

vanishing of fundamental 2-groupoids of braid groups. Recent results of S.

Barkan provide evidence for higher dimensional statements, relating coher-

ence diagrams of∞-operads to the connectivity of certain operadic partition

complexes [Bar22]. It seems likely that the present results could be inter-

preted as a strict version and a special case of [Bar22, Thm. B]. It would

be interesting to see how the permuto-associahedra arise in the strictification

process, and how they are related to operadic partition complexes.
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8 place Aurélie Nemours

75013 Paris, France

curien@irif.fr

Guillaume Laplante-Anfossi

School of Mathematics and Statistics, The University of Melbourne

813 Swanston Street

3052 Parkville, Australia

guillaume.laplanteanfossi@unimelb.edu.au

389



NOTES ON LIMITS OF ACCESSIBLE

CATEGORIES

Leonid POSITSELSKI

Résumé. Soient κ un cardinal régulier, λ < κ un cardinal infini plus

petit, et K une catégorie κ-accessible qui admet les colimites de chaı̂nes

indexées par λ. Nous démontrons que diverses constructions catégoriques

appliquées à K, comme les équifiers et inserters produisent de nouvelles

catégories κ-accessibles E, et que les objets κ-présentables de E admettent

une caractérisation naturelle. En particulier, si C est une catégorie κ-petite,

alors la catégorie des foncteurs C −→ K est aussi κ-accessible et ses objets

κ-présentables sont exactement les foncteurs à valeurs dans la sous-catégorie

des objets κ-présentables de K. Nous discutons aussi la préservation de la

κ-accessibilité par les pseudo-limites coniques, les limites lax et oplax et les

pseudo-limites à poids. Une partie de ces résultats peuvent se retrouver dans

une note non-publiée de Ulmer de 1977. Ce travail est motivé par la théorie

des modules plats et des faisceaux quasi-cohérents.

Abstract. Let κ be a regular cardinal, λ < κ be a smaller infinite cardi-

nal, and K be a κ-accessible category where colimits of λ-indexed chains

exist. We show that various category-theoretic constructions applied to

K, such as the inserter and the equifier, produce κ-accessible categories E

again, and the most obvious expected description of the full subcategory

of κ-presentable objects in E in terms of κ-presentable objects in K holds

true. In particular, if C is a κ-small category, then the category of functors

C −→ K is κ-accessible, and its κ-presentable objects are precisely all the

functors from C to the κ-presentable objects of K. We proceed to discuss

the preservation of κ-accessibility by conical pseudolimits, lax and oplax

limits, and weighted pseudolimits. The results of this paper go back to an
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unpublished 1977 preprint of Ulmer. Our motivation comes from the theory

of flat modules and flat quasi-coherent sheaves.

Keywords. κ-directed colimits, κ-presentable objects, κ-accessible cat-

egories, limits of categories, products, inserters, equifiers, lax and oplax

limits, weighted pseudolimits, diagram categories, flat modules, diagrams

and complexes of modules.

Mathematics Subject Classification (2020). 18A30, 18C35, 18N10,

18A10, 16D40, 16E05.

Introduction

Let κ be a cardinal and K be a category such that all the objects of K are

κ-filtered colimits of (suitably defined) “objects of small size relative to κ ”.

Suppose E is the category of objects from K or collections of objects from K

with a certain additional structure and/or some equations imposed. Is every

object of E a κ-filtered colimit of objects whose underlying objects from K

have small size relative to κ ?

To specify the context of the discussion, let κ be a regular cardinal and

K be a κ-accessible category (in the sense of [19, §2.1] or [1, Chapter 2]).

Let C be a κ-small category, and let E = Fun(C,K) be the category of func-

tors C −→ K. Ideally, one may wish to claim that the category Fun(C,K)
is κ-accessible and its κ-presentable objects are precisely all the functors

C −→ K<κ, where K<κ is the full subcategory of κ-presentable objects in K.

But is it true?

The “ideal” state of affairs described in the previous paragraph was

claimed as a general result in a 1988 paper [18, Lemma 5.1]. A general

outline of a proof of the lemma was presented in [18]; the details were

declared to be “direct calculations” and omitted. A refutation came in the

recent preprint [12, Theorem 1.3]. The ideal state of affairs does not hold in

general.

The assertions of [12, Theorem 1.3] provide a complete characteriza-

tion of all small categories C such that the “ideal” statement holds for all

κ-accessible categories K. All such categories C are essentially κ-small, but

being essentially κ-small is not enough. The category C needs to be also

well-founded in the sense of the definition in [12].

But are there some κ-accessible categories K that are better behaved
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than some other ones, with respect to the question at hand? Another the-

orem from [12] tells that there are. According to [12, Theorem 1.2], if

the category C is κ-small and the category K is locally κ-presentable (in

the sense of [10] or [1, Chapter 1]), then the functor category Fun(C,K)
is locally κ-presentable and its full subcategory of κ-presentable objects is

Fun(C,K<κ) ⊂ Fun(C,K).
Are there any better behaved κ-accessible categories beyond the locally

κ-presentable ones? The present paper purports to answer this question by

generalizing the result of [12, Theorem 1.2].

We show that the following much weaker version of local presentability

is sufficient to guarantee the “ideal state of affairs”: it is enough to assume

existence of an infinite cardinal λ < κ such that colimits of all λ-indexed

chains of objects and morphisms exist in K. If this is the case and K is

κ-accessible, then for any κ-small category C the category Fun(C,K) is also

κ-accessible, and the κ-presentable objects of Fun(C,K) are precisely all the

functors C −→ K<κ. This is the result of our Theorem 6.1.

Let us mention that the idea of our condition on a category K involving

a pair of cardinals λ < κ is certainly not new. It appeared in the discussion

of pseudopullbacks in [6, Proposition 3.1] and [28, Theorem 2.2] (and our

arguments in this paper bear some similarity to the one in [6]). The fact that

this condition is sufficient for the “ideal” result on accessibility of diagram

categories Fun(C,K) (our Theorem 6.1) seems to be if not quite new, then a

“well-forgotten old” discovery, however.

The discussion in the beginning of this introduction suggests that we

are also interested in other category-theoretic constructions beyond the cat-

egories of functors or diagrams; and indeed we are.

Limits of accessible categories are mentioned in the title of this paper.

There are many relevant concepts of limits of categories, the most general

ones being the weighted pseudolimits or weighted bilimits [19, §5.1], [13],

[5]. All of them can be built from certain elementary building blocks.

We discuss the Cartesian product (easy), the equifier (a representative

case for our techniques), the inserter (difficult), and the pseudopullback (for

which our result is already known in relatively recent literature [6, 28]), as

well as the nonadditive and the additive/k-linear diagram categories. The

pseudopullbacks and the diagram categories are built from the products, the

inserters, and the equifiers.
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In fact, all weighted pseudolimits and weighted bilimits can be built from

products, inserters, and equifiers, up to category equivalence [13, 5]. Hence

the importance of our detailed discussion of the products, the inserters, and

the equifiers in the general context of limits of accessible categories.

In all the settings (with the exception of the trivial case of the Cartesian

products), our results are very similar. The main assumptions are that κ is a

regular cardinal and λ < κ is a smaller infinite cardinal (so the case of finitely

accessible categories, κ = ℵ0, is excluded). The category K is assumed

to be κ-accessible with colimits of λ-indexed chains. If this is the case,

then the category E of (collections of) objects from K with an additional

structure satisfying some equations is also κ-accessible (again with colimits

of λ-indexed chains), and the κ-presentable objects of E are precisely those

whose underlying objects are κ-presentable in K.

We do not dare to speculate on what the author of the paper [18] might

have in mind back in 1988, but the proofs of our results seem to follow the

general outline suggested in [18, proof of Lemma 5.1]. They are, indeed,

“direct calculations” (which, however, get complicated at times).

In fact, our results go back all the way to late 1970s, to an unpub-

lished 1977 preprint of Ulmer [29]. The very concept and terminology of

an accessible category was only introduced by Makkai and Paré in their

1989 book [19]. Accordingly, the exposition in [29] was written mainly in

the generality of locally presentable categories (which had been known since

the 1971 book of Gabriel and Ulmer [10]).

The main results of [29] relevant in our context are [29, Theorem 3.8 and

Corollary 3.9]. These are stated for locally presentable categories, followed

by a remark [29, Remark 3.11(II)] explaining that the assertions are actually

valid for some (what we would now call) accessible categories. This work

of Ulmer was subsequently taken up and developed in the 1984 dissertation

of Bird [4], which was also written in the generality of locally presentable

categories. Ulmer’s remark [29, Remark 3.11(II)] was not taken up, and

apparently remained almost forgotten.

The topic of limits of accessible categories was studied by Makkai and

Paré [19, §5.1] using methods which seem to be quite different from those

of Ulmer. The Limit Theorem of Makkai and Paré [19, Theorem 5.1.6]

claimed that all weighted bilimits of accessible categories are accessible, but

offered no cardinality estimate on the accessibility rank. The fact that a tight
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estimate can be obtained from Ulmer’s results was not realized. See our

Corollary 9.2.

The present author learned about the existence of Ulmer’s preprint

from [28, paragraph after Pseudopullback Theorem 2.2], where the knowl-

edge about Ulmer’s work is attributed to Porst. Still, no traces of such

knowledge can be found in Porst’s own earlier paper [22] (cf. [23, Re-

mark 3.2] and [26]). I only got hold of my copy of Ulmer’s preprint after the

first version of the present paper, with my own detailed proofs of the main

results, was already available on the arXiv.

Let us explain our motivation now. In terms of the intended applications,

we are primarily interested in the “minimal cardinality” case κ = ℵ1 and

λ = ℵ0. The examples we care about arise from flat modules over rings, flat

quasi-coherent sheaves over schemes, flat comodules, and flat contramod-

ules.

It is shown in the preprint [27, Theorem 2.4] that the category X–Qcohfl
of flat quasi-coherent sheaves on a quasi-compact quasi-separated scheme

X is ℵ1-accessible. More genenerally, the same holds for any countably

quasi-compact, countably quasi-separated scheme [27, Theorem 3.5]. The

ℵ1-presentable objects ofX–Qcohfl are the locally countably presentable flat

quasi-coherent sheaves, i. e., the quasi-coherent sheaves F onX such that the

OX(U)-module F(U) is flat and countably presented for all affine open sub-

schemes U ⊂ X (equivalently, for the affine open subschemes Uα appearing

in some fixed affine open covering X =
⋃
α Uα of the scheme X). Obvi-

ously, all directed colimits, and in particular directed colimits of ℵ0-indexed

chains, exist in K = X–Qcohfl. So the results of this paper are applicable to

this category.

The results of [27] were extended to certain noncommuative stacks and

noncommutative ind-affine ind-schemes in the preprint [23]. Specifically,

let C be a (coassociative, counital) coring over a noncommutative ring A.

According to [23, Theorem 3.1], the category of A-flat left C-comodules

C–ComodA-fl is ℵ1-accessible. The ℵ1-presentable objects of of C–ComodA-fl

are the A-countably presentable A-flat left C-comodules. Once again, it is

obvious that all directed colimits exist in C–ComodA-fl; so the results of the

present paper can be applied. There is also a version for flat contramodules

over certain topological rings [23, Theorem 10.1], where the results of the

present paper are applicable as well.
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Some results about constructing A-pure acyclic complexes of A-flat

C-comodules as ℵ1-filtered colimits of A-pure acyclic complexes of

A-countably presentable A-flat C-comodules are discussed in [23, Sec-

tion 4]. A contramodule version can be found in [23, Section 11]. The

techniques developed in the present paper are used throughout the current

(new) versions of the papers [27] and [23]. The same methods are also used

in the preprint [25], where accessibility of categories of modules of finite flat

dimension and two-sided/F-totally acyclic flat resolutions is discussed, and

in the preprint [26], where we discuss local presentability and accessibility

ranks of the categories of corings and coalgebras over rings.

In the present paper, we do not go into any details on sheaves, comodules,

or contramodules, restricting ourselves to “toy examples” of diagrams and

complexes of modules over a noncommutative ring R. It is easy to see that

the category of flat left R-modules R–Modfl is κ-accessible for any regular

cardinal κ; the κ-presentable objects of R–Modfl are those flat R-modules

that are κ-presentable in the category of arbiratry R-modules R–Mod. Ap-

plying the results of this paper, we obtain descriptions of diagrams of flat

modules and pure acyclic complexes of flat modules as directed colimits (re-

covering, in particular, a weaker version of a result from the papers [9, 21]

with very general category-theoretic methods).
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1. Preliminaries

We use the book [1] as the main background reference source on the foun-

dations of the theory of accessible categories.
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Let κ be a regular cardinal. We refer to [1, Definition 1.4, Theorem 1.5,

Definition 1.13(1), and Remark 1.21] for the discussion of κ-directed posets

vs. κ-filtered categories and, accordingly, κ-directed vs. κ-filtered diagrams

and their colimits.

Let K be a category in which all κ-directed (equivalently, κ-filtered) col-

imits exist. An object S ∈ K is said to be κ-presentable [1, Definitions 1.1

and 1.13(2)] if the functor HomK(S,−) : K −→ Sets preserves κ-directed

colimits. We will denote by K<κ ⊂ K the full subcategory of κ-presentable

objects in K.

A category K with κ-directed colimits is called κ-accessible [1, Defini-

tion 2.1] if there is a set S of κ-presentable objects in K such that every object

of K is a κ-directed colimit of objects from S. In any κ-accessible category,

there is only a set of isomorphism classes of κ-presentable objects; in fact,

the κ-presentable objects of K are precisely the retracts of the objects from S

[1, Remarks 1.9 and 2.2(4)].

Let K be a category and S ⊂ K be a set of objects. For any objectK ∈ K,

the canonical diagram [1, Definition 0.4] of morphisms from objects from S

into K is indexed by the small indexing category ∆ = ∆S,K whose objects

v ∈ ∆ are morphisms v : Dv −→ K into K from objects Dv ∈ S. A

morphism a : v −→ w in ∆ is a morphism a : Dv −→ Dw in K making the

triangular diagram Dv −→ Dw −→ K commutative in K. The canonical

diagram D = DS,K : ∆ −→ K takes an object v ∈ ∆ to the object Dv ∈ K,

and acts on the morphisms in the obvious way.

Lemma 1.1. Let K be a κ-accessible category and S be a set of representa-

tives of isomorphism classes of κ-presentable objects in K. Then, for every

object K ∈ K, the canonical diagram D = DS,K of morphisms from ob-

jects from S into K (or in other words, its indexing category ∆ = ∆S,K) is

κ-filtered. The natural morphism lim
−→v∈∆

Dv −→ K is an isomorphism in K.

Proof. This is [1, Definition 1.23 and Proposition 2.8(i–ii)].

Let K be a category with κ-directed colimits and A ⊂ K be a class of

objects (full subcategory). Then we denote by lim
−→(κ)

A ⊂ K the class of all

objects of K that can be obtained as κ-directed colimits of objects from A.

The following proposition is also essentially well-known. In the particu-

lar case of finitely accessible (κ = ℵ0) additive categories, it was discussed

396



L. POSITSELSKI ACCESSIBLE CATEGORIES

in [17, Proposition 2.1], [8, Section 4.1], and [15, Proposition 5.11]. (The

terminology “finitely presented categories” was used in [8, 15] for what are

called finitely accessible categories in [1].)

Proposition 1.2. Let K be a κ-accessible category and S ⊂ K<κ be a set of

κ-presentable objects in K. Then the full subcategory lim
−→(κ)

S ⊂ K is closed

under κ-directed colimits in K. The category lim
−→(κ)

S is κ-accessible; the

full subcategory of all κ-presentable objects of lim
−→(κ)

S consists of all the

retracts of objects from S in K. An object E ∈ K belongs to lim
−→(κ)

S if and

only if, for every κ-presentable object T ∈ K<κ, every morphism T −→ E
in K factorizes through an object from S.

Proof. The key assertion is that if an object E ∈ K has the property that

every morphism T −→ K intoK from an object T ∈ K<κ factorizes through

some object from S, thenE ∈ lim
−→(κ)

S. (All the other assertions follow easily

from this one.)

Indeed, let T denote a representative set of κ-presentable objects in K.

Consider the canonical diagram C : ∆S −→ K of morphisms into E from

objects of S and the canonical diagram D : ∆T −→ K of morphisms into E
from objects of T. Then we have E = lim

−→w∈∆T
Dw by Lemma 1.1, and we

need to show that E = lim
−→v∈∆S

Cv. So it remains to check that the natural

functor between the index categories δ : ∆S −→ ∆T is cofinal in the sense

of [1, Section 0.11].

Let w : Dw −→ E be an object of ∆T. ThenDw ∈ T, and by assumption

the morphism v factorizes as Dw
a
−→ S

v
−→ E with S ∈ S. So v : Cv =

S −→ E is an object of ∆S, and we have a morphism a : w −→ δ(v) in ∆T.

This proves condition (a) from [1, Section 0.11]. Since the category ∆T is

κ-filtered and the functor δ is fully faithful, condition (b) follows automati-

cally.

Any cardinal λ can be considered as a totally ordered set, which is a

particular case of a poset; and any poset I can be viewed as a category (with

the elements of I being the objects, and a unique morphism i −→ j for every

pair of objects i ≤ j ∈ I). A λ-indexed chain (of objects and morphisms)

in a category K is a functor λ −→ K, where λ is viewed as a category as

explained above.
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2. Product

The result of this short section is easy and straightforward; it is only included

here for the sake of completeness of the exposition. It is essentially a trivial

particular case of [12, Theorem 1.3], and also the correct particular case of an

erroneous (generally speaking) argument in [1, proof of Proposition 2.67].

Proposition 2.1. Let κ be a regular cardinal and (Ki)i∈I be a family of

κ-accessible categories. Assume that the cardinality of the indexing set

I is smaller than κ. Then the Cartesian product K =
∏

i∈I Ki is also a

κ-accessible category. An object S ∈ K, S = (Si ∈ Ki)i∈I is κ-presentable

in K if and only if all its components Si are κ-presentable in Ki.

Proof. The condition that the cardinality of I is smaller than κ (which is

missing in [1, proof of Proposition 2.67]) is needed in order to claim that

an object S ∈ K is κ-presentable whenever its components Si ∈ Ki are

κ-presentable for all i. Essentially, this holds because κ-directed colimits

commute with κ-small products in the category of sets (cf. [12, Proposi-

tion 2.1]). Once this is established, it remains to observe that every object

of K is a κ-directed colimit of such objects S, just as [1, proof of Propo-

sition 2.67] tells. Indeed, let K = (Ki)i∈I ∈ K be an object and (Ξi)i∈I
be nonempty κ-filtered categories such that Ki = lim

−→ξi∈Ξi
Si,ξi in Ki for all

i ∈ I with Si,ξi ∈ (Ki)<κ. Then Ξ =
∏

i∈I Ξi is a κ-filtered category and

K = lim
−→ξ∈Ξ

Sξ, where Sξ = (Si,ξi)i∈I whenever ξ = (ξi)i∈I ∈
∏

i∈I Ξi.

One also needs to use the fact that any retract of an object S ∈ K with

κ-presentable components Si is again an object with κ-presentable compo-

nents.

3. Equifier

Let κ be a regular cardinal and λ be a smaller infinite cardinal, i. e., λ < κ.

Let K and L be κ-accessible categories in which all λ-indexed chains (of ob-

jects and morphisms) have colimits. Let F , G : K ⇒ L be two parallel func-

tors preserving κ-directed colimits and colimits of λ-indexed chains. As-

sume further that the functor F takes κ-presentable objects to κ-presentable

objects. Let φ, ψ : F ⇒ G be two parallel natural transformations of func-

tors.

398



L. POSITSELSKI ACCESSIBLE CATEGORIES

Let E ⊂ K be the full subcategory consisting of all objects E ∈ K such

that φE = ψE . This construction of the category E is known as the equi-

fier [13, Section 4], [5, Section 1], [1, Lemma 2.76].

The aim of this section is to prove the following theorem going back

to the unpublished preprint [29, Theorem 3.8, Corollary 3.9, and Re-

mark 3.11(II)].

Theorem 3.1. In the assumptions above, the equifier category E is κ-acces-

sible. The κ-presentable objects of E are precisely all the objects of E that

are κ-presentable as objects of K.

We start with the obvious observations that κ-directed colimits (as well

as colimits of λ-indexed chains) exist in E and are preserved by the inclusion

functor E −→ K (because such colimits exist in K and are preserved by the

functor F ). It follows immediately that any object of E that is κ-presentable

in K is also κ-presentable in E. The proof of the theorem is based the fol-

lowing proposition.

Proposition 3.2. Let E ∈ E be an object and S ∈ K<κ be a κ-presentable

object. Then any morphism S −→ E in K factorizes through an object

U ∈ E ∩ K<κ.

Proof. Let E = lim
−→ξ∈Ξ

Tξ be a representation of the object E as a κ-filtered

colimit of κ-presentable objects in the category K. Then we have G(E) =
lim
−→ξ∈Ξ

G(Tξ) in L and F (S), F (Tξ) ∈ L<κ. There exists an index ξ0 ∈ Ξ

such that the morphism S −→ E factorizes through the morphism Tξ0 −→
E in K.

Since E ∈ E, we have φE = ψE : F (E) −→ G(E). Hence the two

compositions

F (Tξ0)
φ

//

ψ
// G(Tξ0) // G(E)

are equal to each other in L. SinceG(E) = lim
−→ξ∈Ξ

G(Tξ) and F (Tξ0) ∈ L<κ,

it follows that there exists an index ξ1 ∈ Ξ together with an arrow ξ0 −→ ξ1
in Ξ such that the two compositions

F (Tξ0)
φ

//

ψ
// G(Tξ0) // G(Tξ1)
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are equal to each other in L.

Similarly, there exists an index ξ2 ∈ Ξ together with an arrow ξ1 −→ ξ2
in Ξ such that the two compositions

F (Tξ1)
φ

//

ψ
// G(Tξ1) // G(Tξ2)

are equal to each other, etc.

Proceeding in this way, we construct a λ-indexed chain of indices ξi ∈ Ξ
and arrows ξi −→ ξj in Ξ for all 0 ≤ i < j < λ such that, for all ordinals

0 ≤ i < λ, the two compositions

F (Tξi)
φ

//

ψ
// G(Tξi)

// G(Tξi+1
)

are equal to each other in L. Specifically, for a limit ordinal k < λ, we just

pick an index ξk ∈ Ξ and arrows ξi −→ ξk in Ξ for all i < k making the

triangles ξi −→ ξj −→ ξk commutative in Ξ for all i < j < k. This can be

done, because k < κ and the index category Ξ is κ-filtered. For a successor

ordinal k = i + 1 < λ, the same argument as above in this proof provides

the desired arrow ξi −→ ξi+1.

After the construction is finished, it remains to put U = lim
−→i<λ

Tξi . We

have U ∈ K<κ, since λ < κ and the class of all κ-presentable objects in

a category with κ-directed colimits is closed under those κ-small colimits

that exist in the category [1, Proposition 1.16]. We also have φU = ψU by

construction, since F (U) = lim
−→i<λ

F (Tξi); so U ∈ E.

Proof of Theorem 3.1. Combine Propositions 1.2 and 3.2.

Remark 3.3. In applications of Theorem 3.1, one may be interested in the

joint equifier of a family of pairs of natural transformations (cf. [1, Re-

mark 2.76]). Let K be a κ-accessible category and (Li)i∈I be a family of

κ-accessible categories. Let Fi, Gi : K ⇒ Li be a family of pairs of par-

allel functors, all of them preserving κ-directed colimits and colimits of

λ-indexed chains. Assume further that the functors Fi take κ-presentable

objects to κ-presentable objects, and that the cardinality of the indexing set

I is smaller than κ. Let φi, ψi : Fi ⇒ Gi be a family of pairs of parallel

natural transformations.
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Consider the full subcategory E ⊂ K consisting of all objects E ∈ K

such that φi,E = ψi,E for all i ∈ I . Then the category E is κ-accessible,

and the κ-presentable objects of E are precisely all the objects of E that are

κ-presentable as objects of K. This assertion can be deduced from Proposi-

tion 2.1 and Theorem 3.1 by passing to the Cartesian product category L =∏
i∈I Li. The family of functors Fi : K −→ Li defines a functor F : K −→ L,

the family of functors Gi : K −→ Li defines a functor G : K −→ L, and the

family of pairs of natural transformations φi, ψi : Fi ⇒ Gi defines a pair of

natural transformations φ, ψ : F ⇒ G. It follows from Proposition 2.1 that

all the assumptions of Theorem 3.1 are satisfied by the category L and the

pair of functors F , G.

4. Inserter

As in Section 3, we consider a regular cardinal κ and a smaller infinite car-

dinal λ < κ. Let K and L be κ-accessible categories in which all λ-indexed

chains have colimits. Let F , G : K ⇒ L be two parallel functors preserving

κ-directed colimits and colimits of λ-indexed chains; assume further that the

functor F takes κ-presentable objects to κ-presentable objects.

Let E be the category of pairs (K,φ), where K ∈ K is an object and

φ : F (K) −→ G(K) is a morphism in L. This construction of the category

E is known as the inserter [13, Section 4], [5, Section 1], [19, Section 5.1.1],

[1, Section 2.71].

The aim of this section is to prove the following theorem, which also

goes back to the unpublished preprint [29, Theorem 3.8, Corollary 3.9, and

Remark 3.11(II)].

Theorem 4.1. In the assumptions above, the inserter category E is κ-acces-

sible. The κ-presentable objects of E are precisely all the pairs (S, ψ) where

S is a κ-presentable object of K.

We start with the obvious observations that κ-directed colimits (as well

as colimits of λ-indexed chains) exist in E and are preserved by the forgetful

functor E −→ K (because such colimits exists in K and are preserved by the

functor F ).

The proof of the theorem is based on three propositions. It uses the

same idea as the proof of Theorem 3.1 above, but the details are much more
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complicated in the case of Theorem 4.1.

Proposition 4.2. Let (S, ψ) ∈ E be an object such that S ∈ K<κ. Then

(S, ψ) ∈ E<κ.

Proof. The assumptions concerning cardinal λ are not needed for this propo-

sition. Essentially, the assertion holds because κ-directed colimits commute

with finite limits in the category of sets (cf. [12, Proposition 2.1]). To be

more specific, it helps to observe that, given an object (K,φ) in E, the set of

morphisms HomE((S, ψ), (K,φ)) is computed as the equalizer of the natural

pair of maps

HomK(S,K)
f 7→φ◦F (f)

//

f 7→G(f)◦ψ
// HomL(F (S), G(K)).

Then one needs to use the assumptions that the functor G preserves κ-di-

rected colimits and the functor F takes κ-presentable objects to κ-present-

able objects.

Denote by E′

<κ ⊂ E the full subcategory formed by all the pairs (S, ψ) ∈
E with S ∈ K<κ. By Proposition 4.2, we have E′

<κ ⊂ E<κ.

Proposition 4.3. Let E = (K,φ) ∈ E be an object. Consider the canonical

diagramC = DE of morphisms intoE from (representatives of isomorphism

classes of) objects B = (S, ψ) ∈ E′

<κ, with the indexing category ∆ = ∆E .

Then the indexing category ∆ is κ-filtered.

Proposition 4.4. In the context of Proposition 4.3, consider also the canoni-

cal diagram D = DK of morphisms into K from (representatives of isomor-

phism classes of) objects S ∈ K<κ, with the indexing category ∆K . Then the

natural functor between the indexing categories ∆E −→ ∆K is cofinal (in

the sense of [1, Section 0.11]).

The proofs of Propositions 4.3 and 4.4 are based on the following lemma.

Lemma 4.5. Let E = (K,φ) ∈ E be an object, let S, T ∈ K<κ be

κ-presentable objects, and let σ : F (S) −→ G(T ) be a morphism in L. Let
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S −→ T and T −→ K be morphisms in K. Assume that the pentagonal

diagram

F (S) //

σ

��

F (T ) // F (K)

φ

��

G(T ) // G(K)

is commutative in L. Then there exists an object B = (U, ψ) ∈ E′

<κ together

with a morphism (U, ψ) −→ (K,φ) in E and a morphism T −→ U in K

such that the pentagonal diagram

F (S) //

σ

��

F (T ) // F (U)

ψ

��

G(T ) // G(U)

is commutative in L and the triangular diagram T −→ U −→ K is commu-

tative in K.

Proof. Let K = lim
−→ξ∈Ξ

Tξ be a representation of the object K as a κ-filtered

colimit of κ-presentable objects in the category K. Then we have G(K) =
lim
−→ξ∈Ξ

G(Tξ) in L and F (S), F (Tξ) ∈ L<κ. There exists an index ξ0 ∈ Ξ

such that the morphism T −→ K factorizes through the morphism Tξ0 −→
K in K. Then the heptagonal diagram

F (S) //

σ

��

F (T ) // F (Tξ0) // F (K)

φ

��

G(T ) // G(Tξ0) // G(K)

is commutative in L.

Since G(K) = lim
−→ξ∈Ξ

G(Tξ) and F (Tξ0) ∈ L<κ, there exists an index

ξ1 ∈ Ξ such that the composition F (Tξ0) −→ F (K) −→ G(K) factorizes

through the morphism G(Tξ1) −→ G(K) in L:

F (Tξ0) //

ψ0

��

F (K)

φ

��

G(Tξ1) // G(K)
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Moreover, since G(K) = lim
−→ξ∈Ξ

G(Tξ) and F (S) ∈ L<κ, one can choose

the index ξ1 together with an arrow ξ0 −→ ξ1 in Ξ such that the hexagonal

diagram

F (S) //

σ

��

F (T ) // F (Tξ0)

ψ0

��

G(T ) // G(Tξ0) // G(Tξ1)

is commutative in L. Notice that the pentagonal diagram

F (Tξ0) //

ψ0

��

F (Tξ1) // F (K)

φ

��

G(Tξ1) // G(K)

is also commutative in L.

Hence one can choose an index ξ2 ∈ Ξ together with an arrrow ξ1 −→ ξ2
in Ξ such that the composition F (Tξ1) −→ F (K) −→ G(K) factorizes

through the morphism G(Tξ2) −→ G(K):

F (Tξ1) //

ψ1

��

F (K)

φ

��

G(Tξ2) // G(K)

and the square diagram

F (Tξ0) //

ψ0

��

F (Tξ1)

ψ1

��

G(Tξ1) // G(Tξ2)

is commutative in L. Then the pentagonal diagram

F (Tξ1) //

ψ1

��

F (Tξ2) // F (K)

φ

��

G(Tξ2) // G(K)
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is commutative in L.

Proceeding in this way, we construct a λ-indexed chain of indices ξi ∈ Ξ
and arrows ξi −→ ξj in Ξ for all 0 ≤ i < j < λ together with morphisms

ψi : F (Tξi) −→ G(Tξi+1
) in L such that, for all ordinals 0 ≤ i < λ, the

square diagram

F (Tξi)
//

ψi

��

F (K)

φ

��

G(Tξi+1
) // G(K)

is commutative in L and, for all ordinals 0 ≤ i < j < λ, the square diagram

F (Tξi)
//

ψi

��

F (Tξj)

ψj

��

G(Tξi+1
) // G(Tξj+1

)

is commutative in L.

Specifically, similarly to the proof of Proposition 3.2, for a limit ordi-

nal k < λ, we just pick an index ξk ∈ Ξ and arrows ξi −→ ξk in Ξ for

all i < k making the triangles ξi −→ ξj −→ ξk commutative in Ξ for

all i < j < k. For a successor ordinal k = j + 1 < λ, we choose an

index ξj+1 ∈ Ξ together with an arrow ξj −→ ξj+1 in Ξ such that the com-

position F (Tξj) −→ F (K) −→ G(K) factorizes through the morphism

G(Tξj+1
) −→ G(K):

F (Tξj)
//

ψj

��

F (K)

φ

��

G(Tξj+1
) // G(K)

and the square diagram

F (Tξi)
//

ψi

��

F (Tξj)

ψj

��

G(Tξi+1
) // G(Tξj+1

)
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is commutative in L for all i < j. The latter condition can be satisfied

because the pentagonal diagrams

F (Tξi)
//

ψi

��

F (Tξj)
// F (K)

φ

��

G(Tξi+1
) // G(K)

are commutative in L for all i < j and the index category Ξ is κ-filtered.

After the construction is finished, it remains to put U = lim
−→i<λ

Tξi ,

and define ψ : F (U) −→ G(U) to be the colimit of the morphisms

ψi : F (Tξi) −→ G(Tξi+1
). It is important here that F (U) = lim

−→i<λ
F (Tξi).

We have U ∈ K<κ for the reason explained in the proof of Proposi-

tion 3.2.

Proof of Proposition 4.3. Firstly, let va : (Sa, ψa) −→ (K,φ) be a family of

morphisms into (K,φ) from objects (Sa, ψa) ∈ E′

<κ, with the set of indices a
having cardinality smaller than κ. We need to show that there is a morphism

u : (T, τ) −→ (K,φ) into (K,φ) from an object (T, τ) ∈ E′

<κ such that

all the morphisms va factorize through u. For this purpose, choose a rep-

resentation K = lim
−→ξ∈Ξ

Sξ of the object K ∈ K as a κ-filtered colimit of

κ-presentable objects Sξ ∈ K<κ.

Then there exists an index ξ0 ∈ Ξ such that all the morphisms va : Sa −→
K factorize through the morphism Sξ0 −→ K in K. The hexagonal diagram

F (Sa) //

ψa

��

F (Sξ0) // F (K)

φ

��

G(Sa) // G(Sξ0) // G(K)

is commutative in L for all indices a. Therefore, one can choose an index

ξ1 ∈ Ξ together with an arrow ξ0 −→ ξ1 in Ξ such that the composition

F (Sξ0) −→ F (K) −→ G(K) factorizes through the morphism G(Sξ1) −→
G(K):

F (Sξ0) //

σ

��

F (K)

φ

��

G(Sξ1) // G(K)
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and the pentagonal diagrams

F (Sa) //

ψa

��

F (Sξ0)

σ

��

G(Sa) // G(Sξ0) // G(Sξ1)

are commutative in L for all a. Then the pentagonal diagram

F (Sξ0) //

σ

��

F (Sξ1) // F (K)

φ

��

G(Sξ1) // G(K)

is also commutative in L. It remains to put S = Sξ0 and T = Sξ1 , and use

Lemma 4.5.

Secondly, let v : (P, π) −→ (K,φ) be a morphism into (K,φ) from

an object (P, π) ∈ E′

<κ, and let wa : (R, ρ) −→ (P, π) be a family of

parallel morphisms into (P, π) from an object (R, ρ) ∈ E′

<κ, with the set

of indices a having cardinality smaller than κ. Assume that all the mor-

phisms vwa : (R, ρ) −→ (K,φ) are equal to each other. We need to show

that the morphism v : (P, π) −→ (K,φ) can be factorized as (P, π)
u
−→

(U, ψ) −→ (K,φ) in such a way that (U, ψ) ∈ E′

<κ and all the morphisms

uwa : (R, ρ) −→ (U, ψ) are equal to each other.

For this purpose, choose a representation K = lim
−→ξ∈Ξ

Sξ of the object

K ∈ K as a κ-filtered colimit of κ-presentable objects Sξ ∈ K<κ. Then

there exists an index ξ0 ∈ Ξ such that the morphism v : P −→ K factorizes

through the morphism Sξ0 −→ K and all the compositions R
wa−→ P −→

Sξ0 are equal to each other. The hexagonal diagram

F (P ) //

π

��

F (Sξ0) // F (K)

φ

��

G(P ) // G(Sξ0) // G(K)

is commutative in L.
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Therefore, one can choose an index ξ1 ∈ Ξ together with an arrow ξ0 −→
ξ1 in Ξ such that the composition F (Sξ0) −→ F (K) −→ G(K) factorizes

through the morphism G(Sξ1) −→ G(K):

F (Sξ0) //

σ

��

F (K)

φ

��

G(Sξ1) // G(K)

and the pentagonal diagram

F (P ) //

π

��

F (Sξ0)

σ

��

G(P ) // G(Sξ0) // G(Sξ1)

is commutative in L. Once again, it remains to put S = Sξ0 and T = Sξ1 ,

and refer to Lemma 4.5.

Proof of Proposition 4.4. Firstly, let P −→ K be a morphism into K from

an object P ∈ K<κ. We need to show that there exists an object (U, ψ) ∈ E′

<κ

together with a morphism (U, ψ) −→ (K,φ) in E and a morphism P −→ U
in K such that the triangular diagram P −→ U −→ K is commutative in K.

For this purpose, choose a representation K = lim
−→ξ∈Ξ

Tξ of the object

K ∈ K as a κ-filtered colimit of κ-presentable objects Tξ ∈ K<κ. Then there

exists an index ξ1 ∈ Ξ such that the morphism P −→ K factorizes through

the morphism Tξ1 −→ K in K and the composition F (P ) −→ F (K) −→
G(K) factorizes through the morphism G(Tξ1) −→ G(K) in L:

F (P ) //

σ

��

F (K)

φ

��

G(Tξ1) // G(K)

It remains to put S = P and T = Tξ1 , and refer to Lemma 4.5.

Secondly, let (R′, ρ′) and (R′′, ρ′′) be two objects of E′

<κ, let

(R′, ρ′) −−→ (K,φ) ←−− (R′′, ρ′′)
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be two morphisms in E, and let R′ ←− P −→ R′′ be two morphisms in K

such that the square diagram

P

~~ !!

R′ // K R′′oo

is commutative in K. We need to show that there exists an object (U, ψ) ∈
E<κ together with two morphisms (R′, ρ′) −→ (U, ψ) ←− (R′′, ρ′′) and a

morphism (U, ψ) −→ (K,φ) in E such that the two triangular diagrams

(R′, ρ′) //

$$

(U, ψ)

��

(R′′, ρ′′)oo

yy

(K,φ)

are commutative in E and the square diagram

P

~~   

R′ // U R′′oo

is commutative in K.

For this purpose, choose a representation K = lim
−→ξ∈Ξ

Sξ of the object

K ∈ K as a κ-filtered colimit of κ-presentable objects Sξ ∈ K<κ. Then

there exists an index ξ0 ∈ Ξ such that both the morphisms R′ −→ K and

R′′ −→ K factorize through the morphism Sξ0 −→ K in K and the square

diagram

P

~~ !!

R′ // Sξ0 R′′oo
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is commutative in K. So the whole diagram

P

~~ !!

R′ //

  

Sξ0

��

R′′oo

}}

K

is commutative. Then the two hexagonal diagrams

F (R′) //

ρ′

��

F (Sξ0) // F (K)

φ

��

F (Sξ0)oo F (R′′)oo

ρ′′

��

G(R′) // G(Sξ0) // G(K) G(Sξ0)oo G(R′′)oo

are commutative in L.

Hence one can choose an index ξ1 ∈ Ξ together with an arrow ξ0 −→ ξ1
in Ξ such that the composition F (Sξ0) −→ F (K) −→ G(K) factorizes

through the morphism G(ξ1) −→ G(K):

F (Sξ0) //

σ

��

F (K)

φ

��

G(Sξ1) // G(K)

and the two pentagonal diagrams

F (R′) //

ρ′

��

F (Sξ0)

σ

��

F (R′′)oo

ρ′′

��

G(R′) // G(Sξ0) // G(Sξ1) G(Sξ0)oo G(R′′)oo

are commutative in L. Then it remains to put S = Sξ0 and T = Sξ1 , and refer

to Lemma 4.5.

Finally, we are ready to prove the theorem.
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Proof of Theorem 4.1. By Proposition 4.2, all the pairs (S, ψ) ∈ E with S ∈
K<κ are κ-presentable in E. It is also clear that the full subcategory E′

<κ of

all such pairs (S, ψ) is closed under retracts in E (since the full subcategory

K<κ is closed under retracts in K). Let S ⊂ E be a set of representatives

of isomorphism classes of objects from E′

<κ. In view of [1, Remarks 1.9

and 2.2(4)] (see the discussion in Section 1), it suffices to prove that, for

every objectE ∈ E, the indexing category ∆ = ∆E of the canonical diagram

C = DE of morphisms into E from objects of S is κ-filtered, and that E =
lim
−→v∈∆

Cv.
The former assertion is the result of Proposition 4.3. To prove the lat-

ter one, notice that by Lemma 1.1 we have K = lim
−→w∈∆K

Dw in K, where

D : ∆K −→ K is the canonical diagram of morphisms into K from repre-

sentatives of isomorphisms classes of objects from K<κ. Since the natural

functor δ : ∆ −→ ∆K between the indexing categories is cofinal by Propo-

sition 4.4, it follows that K = lim
−→v∈∆E

Dδ(v) in K. As the forgetful functor

E −→ K is conservative and preserves κ-filtered colimits, we can conclude

that E = lim
−→v∈∆E

Cv in E.

Remark 4.6. In applications of Theorem 4.1, one may be interested in the

joint inserter of a family of pairs of functors. Let K be a κ-accessible cate-

gory and (Li)i∈I be a family of κ-accessible categories. Let Fi, Gi : K ⇒ Li

be a family of pairs of parallel functors, all of them preserving κ-directed

colimits and colimits of λ-indexed chains. Assume further that the functors

Fi take κ-presentable objects to κ-presentable objects, and that the cardinal-

ity of the indexing set I is smaller than κ.

Let E be the category of pairs (K,φ), where K ∈ K is an object and

φ = (φi)i∈I is a family of morphisms φi : Fi(K) −→ Gi(K) in Li. Then the

category E is κ-accessible, and the κ-presentable objects of E are precisely

all the pairs (S, ψ) where S is a κ-presentable object of K. This assertion

can be deduced from Proposition 2.1 and Theorem 4.1 by passing to the

Cartesian product category L =
∏

i∈I Li. The family of functors Fi : K −→
Li defines a functor F : K −→ L, and the family of functors Gi : K −→ Li

defines a functor G : K −→ L. It follows from Proposition 2.1 that all the

assumptions of Theorem 4.1 are satisfied by the category L and the pair of

functors F , G.
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5. Pseudopullback

As in Sections 3 and 4, we consider a regular cardinal κ and a smaller

infinite cardinal λ < κ. Let A, B, and C be κ-accessible categories in

which all λ-indexed chains (of objects and morphisms) have colimits. Let

ΘA : A −→ C and ΘB : B −→ C be two functors preserving κ-directed col-

imits and colimits of λ-indexed chains, and taking κ-presentable objects to

κ-presentable objects.

Let D be the category of triples (A,B, θ), where A ∈ A and B ∈ B are

objects and θ : ΘA(A) ' ΘB(B) is an isomorphism in C. This construction

of the category D is known as the pseudopullback [6, Proposition 3.1], [28,

Section 2]. The aim of this section is to deduce the following corollary of

Theorems 3.1 and 4.1.

Corollary 5.1. In the assumptions above, the category D is κ-accessible.

The κ-presentable objects of D are precisely all the triples (A,B, θ), where

A is a κ-presentable object of A and B is a κ-presentable object of B.

Proof. This result, going back to [29, Remark 3.2(I), Theorem 3.8, Corol-

lary 3.9, and Remark 3.11(II)], appears in the recent literature as [6, Propo-

sition 3.1], [28, Pseudopullback Theorem 2.2]. So we include this proof for

the sake of completeness of the exposition and for illustrative purposes.

The point is that the pseudopullback can be constructed as a combi-

nation of products, inserters, and equifiers. Put K = A × B and L =
C × C, and consider the following pair of parallel functors F , G : K −→ L.

The functor F takes a pair of objects (A,B) ∈ A × B to the pair of ob-

jects (ΘA(A),ΘB(B)) ∈ C × C. The functor G takes a pair of objects

(A,B) ∈ A × B to the pair of objects (ΘB(B),ΘA(A)) ∈ C × C. Then

the related inserter category E from Section 4 (cf. Remark 4.6) is the cat-

egory of quadruples (A,B, θ′, θ′′), where A ∈ A and B ∈ B are objects,

while θ′ : ΘA(A) −→ ΘB(B) and θ′′ : ΘB(B) −→ ΘA(A) are arbitrary mor-

phisms.

Theorem 4.1 together with Proposition 2.1 tell that the category E is

κ-presentable, and the κ-presentable objects of E are precisely all the quadru-

ples (A,B, θ′, θ′′) such that A is a κ-presentable object of A and B is a

κ-presentable object of B.

It remains to apply the joint equifier construction of Section 3 and Re-

mark 3.3 to the family of two pairs of parallel natural transformations (id, θ′◦
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θ′′) and (id, θ′′ ◦ θ′) of functors E −→ C in order to produce the full subcat-

egory D ⊂ E of all quadruples (A,B, θ′, θ′′) such that θ′ and θ′′ are mutually

inverse isomorphisms ΘA(A) ' ΘB(B). Then Theorem 3.1 tells that the cat-

egory D is κ-accessible and describes its full subcategory of κ-presentable

objects, as desired.

Remark 5.2. Alternatively, one can consider what we would call the

isomorpher construction for two parallel functors between two categories

P , Q : H ⇒ G. (It appears in the literature under the name of the “iso-

inserter” [13, Section 4], [5, Section 1].) The isomorpher category D

consists of all pairs (H, θ), where H ∈ H is an object and θ : P (H) ' Q(H)
is an isomorphism in G.

One can observe that the pseudopullback and the isomorpher construc-

tions are actually equivalent, in the sense that they can be reduced to one

another. Given a pair of functors ΘA : A −→ C and ΘB : B −→ C, one can

put H = A× B and G = C, and denote by P : H −→ G and Q : H −→ G the

compositions A× B −→ A −→ C and A× B −→ B −→ C. In this context,

the two constructions of the category D agree.

Conversely, given a pair of parallel functors P , Q : H ⇒ G, put A = B =
H and C = H × G. Let the functor ΘA : A −→ C take an object H ′ ∈ H

to the pair (H ′, P (H ′)) ∈ H × G and the functor ΘB : B −→ C take an

object H ′′ ∈ H to the pair (H ′′, Q(H ′′)) ∈ H × G. Then an isomorphism

ΘA(H
′) ' ΘB(H

′′) in C means a pair of isomorphisms H ′ ' H ′′ in H and

P (H ′) ' Q(H ′′) in G. Up to a category equivalence, the datum of two

objects H ′, H ′′ ∈ H endowed with such two isomorphisms is the same thing

as a single objectH ∈ H together with an isomorphism P (H) ' Q(H) in G.

Thus, in this context, the two constructions of the category D agree as well.

Assume that the categories H and G are κ-accessible with colimits of

λ-indexed chains (for a regular cardinal κ and a smaller infinite cardinal

λ < κ). Assume further that the functors F andG preserve κ-directed colim-

its and colimits of λ-indexed chains, and that they take κ-presentable objects

to κ-presentable objects. Then it follows from Proposition 2.1 and Corol-

lary 5.1 that the isomorpher category D is κ-accessible, and the κ-presentable

objects of D are precisely all the pairs (H, θ) with H ∈ H<κ.
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6. Diagram categories

In this section, we discuss two constructions: the category of functors

Fun(C,K) and the category of k-linear functors Funk(A,K). The former

one is of interest to the general category theory, while the latter one is

relevant for additive category theory, module theory, complexes in additive

categories, etc.

Let us start with the nonadditive case. Given a small category C and a

category K, we denote by Fun(C,K) the category of functors C −→ K.

Recall that a category K is called locally κ-presentable [1, Definitions 1.9

and 1.17] if K is κ-accessible and all colimits exist in K. The following

theorem is a generalization of [12, Theorem 1.2] from the case of locally

κ-presentable categories to the case of κ-accessible categories with colimits

of λ-indexed chains (for some fixed infinite cardinal λ < κ). It is also a

correct version of [18, Lemma 5.1] (which was shown to be erroneous in

full generality in [12, Theorem 1.3]).

A category C is said to be κ-small if the cardinality of the set of all objects

and morphisms in C is smaller than κ.

Theorem 6.1. Let κ be a regular cardinal and λ < κ be a smaller infinite

cardinal. Let C be a κ-small category. Let K be a κ-accessible category in

which all λ-indexed chains (of objects and morphisms) have colimits. Then

the category Fun(C,K) is κ-accessible. The full subcategory Fun(C,K<κ) is

precisely the full subcategory of all κ-presentable objects in Fun(C,K).

Proof. Similarly to the proof Corollary 5.1, the point is that the diagram cat-

egory can be constructed as a combination of products, inserters, and equi-

fiers. Let K′ =
∏

c∈C K be the Cartesian product of copies of the category

K indexed by the objects of the category C, and let L′ =
∏

(c→d)∈C K be the

similar product of copies of K indexed by the morphisms of the category C.

Proposition 2.1 tells that the categories K′ and L′ are κ-accessible, and de-

scribes their full subcategories of κ-presentable objects.

Define a pair of parallel functors F ,G : K′ −→ L′ as follows. The functor

F assigns to a collection of objects (Kc ∈ K)c∈C ∈ K′ the collection of

objects (Lc→d)(c→d)∈C ∈ L′ given by the rules Lc→d = Kc for any morphism

c −→ d in C. Similarly, the functor G assigns to a collection of objects

(Kc ∈ K)c∈C ∈ K′ the collection of objects (Lc→d)(c→d)∈C ∈ L′ given by the

rules Lc→d = Kd for any morphism c −→ d in C.
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Then the related inserter category E from Section 4 (cf. Remark 4.6) is

the category of all “nonmultiplicative functors” C −→ K. An object E ∈ E

is a rule assigning to every object c ∈ C an object Ec ∈ K and to every mor-

phism c −→ d in C a morphism Ec −→ Ed in K. The conditions of compat-

ibility with the compositions of morphisms and with the identity morphisms

are not imposed. Morphisms of “nonmultiplicative functors” (i. e., the mor-

phisms in E) are similar to the usual morphisms of functors; so the desired

functor category Fun(C,K) is a full subcategory in E.

Theorem 4.1 tells that the category E is κ-accessible, and describes its

full subcategory of κ-presentable objects. Now the desired full subcategory

Fun(C,K) ⊂ E can be produced as a joint equifier category, as in Section 3

and Remark 3.3. There are two kinds of pairs of parallel natural transforma-

tions to be equified.

Firstly, for every composable pair of morphisms b −→ c −→ d in C,

we have a pair of parallel functors Fb→c→d, Gb→c→d : E ⇒ K and a pair

of parallel natural transformations φb→c→d, ψb→c→d : Fb→c→d ⇒ Gb→c→d.

The functor Fb→c→d takes an object E ∈ E to the object Eb ∈ K, and the

functor Gb→c→d takes an object E ∈ E to the object Ed ∈ K. The natural

transformation φb→c→d acts by the composition of the morphisms Eb −→
Ec −→ Ed in K assigned to the morphisms b −→ c and c −→ d by the datum

of the object E. The natural transformation ψb→c→d acts by the morphism

Eb −→ Ed assigned to the composition of the morphisms b −→ c −→ d in

C by the datum of the object E.

Secondly, for every object c ∈ C, we have a pair of parallel functors Fc =
Gc : E −→ K and a pair of parallel natural transformations φc, ψc : Fc ⇒ Gc.

The functor Fc = Gc takes an object E ∈ E to the object Ec ∈ K. The

natural transformation φc acts by the morphism Ec −→ Ec in K assigned to

the identity morphism idc in C by the datum of the object E; while ψc is the

identity natural transformation.

The resulting joint equifier is the functor category Fun(C,K). Theo-

rem 3.1 tells that this category is κ-accessible, and provides the desired de-

scription of its full subcategory of κ-presentable objects.

Now let k be a commutative ring. A k-linear category A is a category

enriched in k-modules. This means that, for any two objects a and b ∈ A,

the set of morphisms HomA(a, b) is a k-module, and the composition maps
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HomA(b, c)× HomA(a, b) −→ HomA(a, c) are k-bilinear.

Suppose given a set of objects a and, for every pair of objects a, b, a

generating set of morphisms Gen(a, b). Then one can construct the k-linear

category B on the given set of objects freely generated by the given gener-

ating sets of morphisms. For every pair of objects a, b, the free k-module

HomB(a, b) has a basis consisting of all the formal compositions gn · · · g1,
n ≥ 0, where gi ∈ Gen(ci, ci+1), c1 = a, cn+1 = b.

Furthermore, suppose given a set of defining relations Rel(a, b) ⊂
HomB(a, b) for every pair of objects a, b. Then one can construct the

two-sided ideal of morphisms J ⊂ B generated by all the relations, and pass

to the k-linear quotient category A = B/J by the ideal J.

Abusing terminology, we will say that a k-linear category A is κ-pre-

sented if it has the form A = B/J as per the construction above, where the

set of objects {a}, the set of all generators
∐

a,bGen(a, b), and the set of all

relations
∐

a,bRel(a, b) all have the cardinalities smaller than κ. In another

terminology, one could say that A is “the path category of a κ-small quiver

with a κ-small set of relations”.

A k-linear category K is said to be κ-accessible if it is κ-accessible as

an abstract category. Given a small k-linear category A and a k-linear cate-

gory K, we denote by Funk(A,K) the (k-linear) category of k-linear functors

A −→ K. The following theorem is a k-linear version of Theorem 6.1.

Theorem 6.2. Let κ be a regular cardinal and λ < κ be a smaller infinite

cardinal. Let k be a commutative ring, let A be a κ-presented k-linear cat-

egory, and let K be a κ-accessible k-linear category in which all λ-indexed

chains have colimits. Then the category Funk(A,K) is κ-accessible. The full

subcategory Funk(A,K<κ) is precisely the full subcategory of all κ-present-

able objects in Funk(A,K).

Proof. The argument is similar to the proof of Theorem 6.1, with the only

difference that one works with the generating morphisms and defining re-

lations in A instead of all morphisms and all compositions in C. Let K′ =∏
a∈A K be the Cartesian product of copies of the category K indexed by

the objects of the category A, and let L′ =
∏

a,b∈A

∏
(a→b)∈Gen(a,b) K be

the similar product of copies of K indexed by the set of generating mor-

phisms
∐

a,bGen(a, b). Proposition 2.1 tells that the categories K′ and L′ are

κ-accessible, and describes their full subcategories of κ-presentable objects.
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Define a pair of parallel functors F , G : K′ −→ L′ as follows. The func-

tor F assigns to a collection of objects (Ka ∈ K)a∈A ∈ K′ the collection

of objects (La→b)(a→b)∈Gen(a,b), a,b∈A ∈ L′ given by the rules La→b = Ka for

any generating morphism (a → b) ∈ Gen(a, b). Similarly, the functor G
assigns to a collection of objects (Ka ∈ K)a∈A ∈ K′ the collection of ob-

jects (La→b)(a→b)∈Gen(a,b), a,b∈A ∈ L′ given by the rules La→b = Kb for any

generating morphism (a→ b) ∈ Gen(a, b).
Then the related inserter category E from Section 4 (cf. Remark 4.6) is

naturally equivalent to the category Funk(B,K), where B is the “path cat-

egory of the quiver without relations” constructed in the discussion pre-

ceding the formulation of the theorem. Theorem 4.1 tells that the cate-

gory E is κ-accessible, and defines its full subcategory of κ-presentable ob-

jects. The category Funk(A,K) we are interested in is a full subcategory in

E = Funk(B,K) consisting of all the “quiver representations in K for which

the relations are satisfied”. The full subcategory Funk(A,K) ⊂ Funk(B,K)
can be produced as a joint equifier category, as in Section 3 and Remark 3.3.

The pairs of parallel natural transformations to be equified are indexed

by elements of the set of defining relations
∐

a,bRel(a, b). Given a defining

relation r ∈ Rel(a, b), we have a pair of parallel functors Fr, Gr : E ⇒

K and a pair of natural transformations φr, ψr : Fr ⇒ Gr. The functor

Fr : Funk(B,K) −→ K takes a functor E : B −→ K to the object E(a) ∈
K, and the functor Gr takes the functor E to the object E(b) ∈ K. The

natural transformation φr acts by the morphism E(r) : E(a) −→ E(b). The

natural transformation ψr acts by the zero morphism 0: E(a) −→ E(b) in

the k-linear category K.

The resulting joint equifier is the category of k-linear functors

Funk(A,K). Theorem 3.1 tells that this category is κ-accessible, and

provides the desired description of its full subcategory of κ-presentable

objects.

7. Brief preliminaries on 2-categories

The aim of this section is to provide a very brief and mostly terminological

preliminary discussion for the purposes of the next two Sections 8–9. The

reader can find the details by following the references.

Throughout the three sections, for the most part we adopt the policy of
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benign neglect with respect to set-theoretical issues of size (i. e., the distinc-

tion between sets and classes). When specific restrictions on the size matter,

we mention them.

In the terminology of higher category theory, the prefix “2-” means strict

concepts, while the prefix “bi-” refers to relaxed ones. So 2-categories are

strict, while bicategories are relaxed [3].

A 2-category is a category enriched in the category of categories Cat

(with the monoidal structure on Cat given by the Cartesian product) [14]. In

particular, there is the important 2-category of categories Cat: categories are

the objects, functors are the 1-cells, natural transformations are the 2-cells.

In the terminology of the bicategory theory, one speaks of morphisms

of bicategories (which are multiplicative and unital on 1-cells up to coher-

ent families of 2-cells) or homomorphisms of bicategories (which are multi-

plicative and unital on 1-cells up to coherent families of invertible 2-cells) [3,

Section 4]. Even when one is only interested in 2-categories, the notion of

a 2-functor may be too strict, and one may want to relax it by considering

morphisms of 2-categories (known as lax functors), or homomorphisms of

2-categories (known as pseudofunctors).

Let Γ and ∆ be two 2-categories. Then 2-functors Γ −→ ∆ form a

2-category [Γ,∆]. The objects of [Γ,∆] are the 2-functors Γ −→ ∆, the

1-cells of [Γ,∆] are the 2-natural transformations, and the 2-cells of [Γ,∆]
are called modifications [14, Section 1.4]. A 2-functor Γ −→ ∆ is a rule

assigning to every object of Γ an object of ∆, to every 1-cell of Γ a 1-cell

of ∆, and to every 2-cell of Γ a 2-cell of ∆. A 2-natural transformation is

a rule assiging to every object of Γ a 1-cell in ∆. A modification is a rule

assigning to every object of Γ a 2-cell in ∆. 2-categories and 2-functors form

the 3-category of 2-categories: 2-categories are the objects, 2-functors are

the 1-cells, 2-natural transformations are the 2-cells, and modifications are

the 3-cells.

Even when one is only interested in 2-functors rather than the more re-

laxed concepts of lax functors or pseudofunctors, the notion of a 2-natural

transformation may be too strict, and one may want to relax it. Then one

can consider lax natural transformations (compatible with the action of the

2-functors on 1-cells in Γ up to a coherent family of 2-cells in ∆) or pseu-

donatural transformations (compatible with the action of the 2-functors on

the 1-cells in Γ up to a coherent family of invertible 2-cells in ∆). In
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the terminology of [19, §4.1], lax natural transformations are called “trans-

formations”, pseudonatural transformations are called “strong transforma-

tions”, and 2-natural transformations are called “strict transformations”. The

2-category of 2-functors Γ −→ ∆, pseudonatural transformations, and mod-

ifications is denoted by Psd[Γ,∆] in [4], [13, Section 5], [5, Section 2].

In connection with the “lax” notions, the choice of the direction of the

(possibly noninvertible) 2-cells providing the relaxed compatibility becomes

important. When the direction is reversed, the correspoding notions are

called “oplax”. For “pseudo” notions, the compatibility 2-cells are assumed

to be invertible, and so the choice of the direction in which they act no longer

matters.

8. Conical pseudolimits, lax limits, and oplax limits

We denote by Cat the 2-category of small categories and by CAT the

2-category of locally small categories (i. e., large categories in which mor-

phisms between any fixed pair of objects form a set). So the categories of

morphisms in CAT need not be even locally small; this will present no

problem for our constructions.

Let Γ be a small 2-category and H : Γ −→ CAT be a 2-functor. The

(conical) lax limit of H is a category L whose objects are the following sets

of data:

i. for every object γ ∈ Γ, an object Lγ ∈ H(γ) of the category H(γ) is

given;

ii. for every 1-cell a : γ −→ δ in Γ, a morphism la : H(a)(Lγ) −→ Lδ in

the category H(δ) is given.

Here H(a) : H(γ) −→ H(δ) is the functor assigned to the 1-cell a : γ −→ δ
by the 2-functor H .

The set of data (i–ii) must satisfy the following conditions:

iii. for every identity 1-cell a = idγ : γ −→ γ in Γ, one has lidγ =
idLγ

: Lγ −→ Lγ;

iv. for every composable pair of 1-cells a : γ −→ δ and b : δ −→ ε in Γ,

one has lba = lb ◦H(b)(la) in the category H(ε);
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v. for every 2-cell t : a −→ b, where a, b : γ ⇒ δ is a pair of parallel

1-cells in Γ, the triangular diagram

H(a)(Lγ)

H(t)Lγ

��

la

$$

Lδ

H(b)(Lγ)

lb

::

is commutative in the category H(δ).

Here H(t) : H(a) −→ H(b) is the morphism of functors from the cate-

gory H(γ) to the category H(δ) assigned to the 2-cell t : a −→ b by the

2-functor H .

A morphism L −→ M in the category L is the datum of a morphism

Lγ −→ Mγ in the category H(γ) for every object γ ∈ Γ, satisfying the

obvious compatibility condition with the data (ii) for the objects L and M .

The (conical) oplax limit of the 2-functor H is the category M whose

objects are the following sets of data:

i∗. for every object γ ∈ Γ, an object Mγ ∈ H(γ) of the category H(γ) is

given;

ii∗. for every 1-cell a : γ −→ δ in Γ, a morphism ma : Mδ −→ H(a)(Mγ)
in the category H(δ) is given.

The set of data (i∗–ii∗) must satisfy the following conditions:

iii∗. for every identity 1-cell a = idγ : γ −→ γ in Γ, one has midγ =
idMγ

: Mγ −→Mγ;

iv∗. for every composable pair of 1-cells a : γ −→ δ and b : δ −→ ε in Γ,

one has mba = H(b)(ma) ◦mb in the category H(ε);

v∗. for every 2-cell t : a −→ b, where a, b : γ ⇒ δ is a pair of parallel
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1-cells in Γ, the triangular diagram

H(a)(Mγ)

H(t)Mγ

��

Mδ

ma

99

mb
%%

H(b)(Mγ)

is commutative in the category H(δ).

A morphism L −→ M in the category M is the datum of a morphism

Lγ −→ Mγ in the category H(γ) for every object γ ∈ Γ, satisfying the

obvious compatibility condition with the data (ii∗) for the objects L and M .

The pseudolimit of the 2-functorH is the full subcategory E ⊂ L consist-

ing of all the objects E ∈ L such that the morphism ea : H(a)(Eγ) −→ Eδ
in (ii) is an isomorphism in H(δ) for every 1-cell a : γ −→ δ in Γ. Equiv-

alently, the pseudolimit E can be defined as the full subcategory E ⊂ M

consisting of all the objects E ∈ M such that the morphism ea : Eδ −→
H(a)(Eγ) in (ii∗) is an isomorphism in H(δ) for every 1-cell a : γ −→ δ
in Γ.

Let κ be a regular cardinal and λ < κ be a smaller infinite cardinal. De-

note by ACCλ,κ ⊂ CAT the following 2-subcategory in CAT. The objects

of ACCλ,κ are all the κ-accessible categories with colimits of λ-indexed

chains. The 1-cells of ACCλ,κ are the functors preserving κ-directed colim-

its and colimits of λ-indexed chains. The 2-cells of ACCλ,κ are the (arbi-

trary) natural transformations.

As usual, we will say that a 2-category is κ-small if it has less than κ ob-

jects, less than κ 1-cells, and less than κ 2-cells.

Theorem 8.1. Let κ be a regular cardinal and λ < κ be a smaller infi-

nite cardinal. Let Γ be a κ-small 2-category and H : Γ −→ ACCλ,κ be a

2-functor. Then the oplax limit M of the 2-functor H (computed in CAT,

as per the construction above) belongs to ACCλ,κ. For every object γ ∈ Γ,

the natural forgetful/projection functor M −→ H(γ) belongs to ACCλ,κ.

An object S ∈ M is κ-presentable if and only if, for every object γ ∈ Γ, the

image Sγ of S in H(γ) is κ-presentable.
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Proof. Similarly to the proofs of Corollary 5.1 and Theorems 6.1–6.2, one

constructs the oplax limit M as a combination of products, inserters, and

equifiers.

Let K =
∏

γ∈ΓH(γ) be the Cartesian product of the categories H(γ)
taken over all objects γ ∈ Γ, and let L =

∏
(a:γ→δ)∈ΓH(δ) be the Cartesian

product of the categories H(δ) taken over all the 1-cells a : γ −→ δ in Γ.

Consider the following pair of parallel functors F , G : K −→ L. The functor

F takes a collection of objects (Mγ ∈ H(γ))γ∈Γ ∈ K to the collection of

objects (Mδ ∈ H(δ))(a:γ→δ) ∈ L. The functor G takes the same collection

of objects (Mγ ∈ H(γ))γ∈Γ ∈ K to the collection of objects (F (a)(Mγ) ∈
H(δ))(a:γ→δ) ∈ L.

Then the related inserter category E from Section 4 (cf. Remark 4.6) is

the category of all sets of data (i∗–ii∗) from the definition of the oplax limit

above. The conditions (iii∗–v∗) have not been imposed yet.

Theorem 4.1 tells that E is a κ-accessible category and describes its full

subcategory of κ-presentable objects. The desired oplax limit M is a full

subcategory M ⊂ E which can be produced as a joint equifier category,

as in Section 3 and Remark 3.3. There are three kinds of pairs of paral-

lel natural transformations to be equified, corresponding to the three condi-

tions (iii∗–v∗).

Firstly, for every object γ ∈ Γ, we have a pair of parallel functors

Fγ = Gγ : E −→ H(γ) and a pair of parallel natural transformations φγ ,

ψγ : Fγ −→ Gγ . The functor Fγ = Gγ takes an object E ∈ E to the

object Eγ ∈ H(γ). The natural transformation φγ acts by the morphism

eidγ : Eγ −→ Eγ assigned to the identity 1-cell idγ : γ −→ γ in Γ by the

datum (ii∗) for the object E ∈ E; while ψγ is the identity natural transforma-

tion.

Secondly, for every composable pair of 1-cells a : γ −→ δ and b : δ −→ ε
in Γ, we have a pair of parallel functors Fa,b, Ga,b : E ⇒ H(ε) and a pair of

parallel natural transformations φa,b, ψa,b : Fa,b ⇒ Ga,b. The functor Fa,b
takes an object E ∈ E to the object Eε ∈ H(ε). The functor Ga,b takes an

object E ∈ E to the object H(ba)(Eγ) ∈ H(ε). The natural transforma-

tion φa,b acts by the morphism eba : Eε −→ H(ba)(Eγ). The natural trans-

formation ψa,b acts by the composition of morphisms H(b)(ea) ◦ eb : Eε −→
H(b)(Eδ) −→ H(ba)(Eγ).

Thirdly, for every 2-cell t : a −→ b, where a, b : γ ⇒ δ is a pair of
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parallel 1-cells in Γ, we have a pair of parallel functors Ft, Gt : E ⇒ H(δ)
and a pair of parallel natural transformations φt, ψt : Ft ⇒ Gt. The functor

Ft takes an object E ∈ E to the object Eδ ∈ H(δ). The functor Gt takes an

object E ∈ E to the object H(b)(Eγ) ∈ H(δ). The natural transformation φt
acts by the composition of morphisms H(t)Eγ

◦ ea : Eδ −→ H(a)(Eγ) −→
H(b)(Eγ). The natural transformation ψt acts by the morphism eb : Eδ −→
H(b)(Eγ).

The resulting joint equifier is the oplax limit M. Theorem 3.1 tells that

this category is κ-accessible, and provides the desired description of its full

subcategory of κ-presentable objects. This proves the first and the third as-

sertions of the theorem, while the second assertion is easy.

Denote by ACC
κ
λ,κ ⊂ ACCλ,κ the following 2-subcategory in CAT.

The objects of ACC
κ
λ,κ are the same as the objects of ACCλ,κ, i. e., all

the κ-accessible categories with colimits of λ-indexed chains. The 1-cells

of ACC
κ
λ,κ are the functors preserving κ-directed colimits and colimits of

λ-indexed chains, and taking κ-presentable objects to κ-presentable objects.

The 2-cells of ACC
κ
λ,κ are the (arbitrary) natural transformations.

Theorem 8.2. Let κ be a regular cardinal and λ < κ be a smaller infi-

nite cardinal. Let Γ be a κ-small 2-category and H : Γ −→ ACC
κ
λ,κ be a

2-functor. Then the lax limit L of the 2-functor H (computed in CAT, as

per the construction above) belongs to ACC
κ
λ,κ. For every object γ ∈ Γ,

the natural forgetful/projection functor L −→ H(γ) belongs to ACC
κ
λ,κ. An

object S ∈ L is κ-presentable if and only if, for every object γ ∈ Γ, the

image Sγ of S in H(γ) is κ-presentable.

Proof. Similar to the proof of Theorem 8.1, with the directions of some ar-

rows suitably reversed as needed.

Theorem 8.3. Let κ be a regular cardinal and λ < κ be a smaller infi-

nite cardinal. Let Γ be a κ-small 2-category and H : Γ −→ ACC
κ
λ,κ be a

2-functor. Then the pseudolimit E of the 2-functor H (computed in CAT,

as per the construction above) belongs to ACC
κ
λ,κ. For every object γ ∈ Γ,

the natural forgetful/projection functor E −→ H(γ) belongs to ACC
κ
λ,κ. An

object S ∈ E is κ-presentable if and only if, for every object γ ∈ Γ, the

image Sγ of S in H(γ) is κ-presentable.
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Proof. Similar to the proofs of Theorems 8.1 and 8.2, with the only differ-

ence that it is convenient to use the isomorpher construction of Remark 5.2

instead of the inserter construction of Theorem 4.1. The equifier construc-

tion of Theorem 3.1 still needs to be used. (Cf. [13, Propositions 4.4 and 5.1]

and [5, Proposition 2.1].)

Remark 8.4. The notions of (op)lax limit and pseudolimit are somewhat

relaxed. The related strict notion is the 2-limit of categories. 2-limits of cat-

egories are not well-behaved in connection with accessible categories, gen-

erally speaking [19, paragraph after Proposition 5.1.1], [1, Example 2.68].

The well-behaved ones among the (weighted) 2-limits are called flexible lim-

its in [5]. Still, the (op)lax limits and pseudolimits are strict enough to be de-

fined up to isomorphism of categories (as per the constructions above) rather

than just up to category equivalence.

The case of the pseudopullback is instructive. Let Γ be the following

small 2-category. The 2-category Γ has three objects A, B, and C, and two

nonidentity 1-cells a : A −→ C and b : B −→ C. There are no nonidentity

2-cells in Γ. Hence a 2-functor H : Γ −→ CAT is the same thing as a triple

of categories A, B, and C together with a pair of functors ΘA : A −→ C

and ΘB : B −→ C, as in Section 5. Then [19, paragraph after Propo-

sition 5.1.1] explains that the 2-pullbacks, i. e., the 2-limits of 2-functors

H : Γ −→ CAT, do not preserve accessibility of categories.

The (op)lax limits and pseudolimits are better behaved and preserve ac-

cessibility, as per the theorems above in this section; but one has to be care-

ful. Looking into these constructions, one can observe that the definition of

the pseudopullback in Section 5 was, strictly speaking, an abuse of terminol-

ogy. The pseudolimit E of a 2-functor H : Γ −→ CAT is the category of

all quintuples (A,B,C, θa, θb), where A ∈ A, B ∈ B, and C ∈ C are three

objects and θa : ΘA(A) ' C, θb : ΘB(B) ' C are two isomorphisms (cf. [6,

Proposition 3.1], [28, Pseudopullback Theorem 2.2]). The pseudopullback

D as defined in Section 5 is naturally equivalent to the pseudolimit E of the

2-functor H , but not isomorphic to it.

The even more relaxed notion of a limit of categories defined up to a

category equivalence is called the bilimit [19, Section 5.1.1], [13, Section 6].

In the terminology of [19, Section 5.1.1], the pseudolimits are called strong

bilimits.
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9. Weighted pseudolimits

Let Γ be a small 2-category and W : Γ −→ Cat be a 2-functor (so the

category W (γ) is small for every γ ∈ Γ). The 2-functor W is called a

weight.

Let H : Γ −→ CAT be another 2-functor. The weighted pseudolimit

{W,H}p [5, Sections 1–2] (called “indexed pseudolimit” in the terminol-

ogy of [13, Sections 2 and 5] or “strong weighted bilimit” in the terminology

of [19, Section 5.1.1]) can be simply constructed as the category of 1-cells

W −→ H in the 2-category of pseudonatural transformations Psd[Γ,CAT]
(mentioned in Section 7). So {W,H}p = Psd[Γ,CAT](W,H) [13, for-

mula (5.5)].

The strict version of the same construction is the weighted 2-limit

{W,H}, which can be defined as the category of 1-cells W −→ H
in the 2-category of 2-natural transformations [Γ,CAT]; so {W,H} =
[Γ,CAT](W,H) [13, formula (2.5)]. It is explained in [13, Section 4]

or [5, Section 1] how to obtain the inserters, equifiers, and isomorphers

(iso-inserters) as particular cases of weighted 2-limits. Up to category

equivalence, they are also particular cases of weighted pseudolimits.

Taking Γ to be the 2-category with a single object, a single 1-cell, and

a single 2-cell, one obtains the construction of the diagram category (as in

Theorem 6.1), called the “cotensor product” in [13, Section 3], [5, Section 1],

as the particular case of the weighted 2-limit or weighted pseudolimit.

Taking W to be the 2-functor assigning to every object γ ∈ Γ the cate-

gory with a single object and a single morphism, one obtains the construction

of the pseudolimit from Section 8 as a particular case of weighted pseudo-

limit. To distinguish them from the more general weighted pseudolimits, the

pseudolimits from Section 8 are called conical pseudolimits [13, Sections 3

and 5], [5, Sections 1–2].

The notation ACC
κ
λ,κ ⊂ ACCλ,κ ⊂ CAT was introduced in Section 8.

Theorem 9.1. Let κ be a regular cardinal and λ < κ be a smaller infinite

cardinal. Let Γ be a κ-small 2-category and W : Γ −→ Cat be a 2-functor

such that the categoryW (γ) is κ-small for every object γ ∈ Γ. LetH : Γ −→
ACC

κ
λ,κ be a 2-functor. Then the weighted pseudolimit {W,H}p (computed

in CAT, as per the construction above) belongs to ACC
κ
λ,κ.
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Proof. The point is that all weighted pseudolimits can be constructed in

terms of products, inserters, and equifiers [13, Proposition 5.2], [5, Propo-

sition 2.1]; so the assertion follows from Proposition 2.1, Theorem 3.1,

and Theorem 4.1. The same argument applies also to all weighted bilim-

its [13, Section 6] and all flexible weighted 2-limits [5, Theorem 4.9 and

Remark 7.6].

Corollary 9.2. Let λ and κ be infinite regular cardinals such that λ / κ in

the sense of [19, §2.3] or [1, Definition 2.12]. Let Γ be a κ-small 2-category

and W : Γ −→ Cat be a 2-functor such that the category W (γ) is κ-small

for every object γ ∈ Γ. Let H : Γ −→ CAT be a 2-functor such that, for

every object γ ∈ Γ, the category H(γ) is λ-accessible, and for every 1-cell

a : γ −→ δ in Γ, the functor H(a) : H(γ) −→ H(δ) preserves λ-directed

colimits and takes κ-presentable objects to κ-presentable objects. Then the

weighted pseudolimit {W,H}p (computed in CAT, as per the construction

above) is a κ-accessible category.

Proof. Follows immediately from Theorem 9.1.

Remark 9.3. The assertion of Theorem 9.1 captures many, but not all the

aspects of the preceding results in this paper. In particular, Theorems 3.1

and 4.1 are not particular cases of Theorem 9.1, if only because the assump-

tions of Theorems 3.1–4.1 are more general. Indeed, in the assumptions of

Theorems 3.1–4.1 the functor F is required to belong to ACC
κ
λ,κ, while the

functor G may belong to the wider 2-category ACCλ,κ. In other words, the

functor G need not take κ-presentable objects to κ-presentable objects. This

subtlety, which was emphasized already in [29, Section 3], manifests itself in

the related difference between the formulations of Theorem 8.1, on the one

hand, and Theorems 8.2–8.3, on the other hand. It plays an important role in

the application to comodules over corings worked out in [23, Theorem 3.1

and Remark 3.2] and in the application to corings in [26, Theorem 4.2].

10. Toy examples

The examples in this section aim to illustrate the main results of this pa-

per in the context of additive categories, modules categories, and flat mod-

ules, which served as the main motivation for the present research. We re-

fer to the papers [27, 23, 25, 26] for more substantial applications to flat
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quasi-coherent sheaves, flat comodules and contramodules, arbitrary and flat

coalgebras and corings, and flat/injective (co)resolutions. This section also

serves as a reference source for [27, 23, 25, 26], as it contains some results

that are useful as building blocks for the more complicated constructions.

10.1 Modules and flat modules

Let R be an associative ring. We denote by R–Mod the abelian category of

left R-modules and by R–Modfl ⊂ R–Mod the full subcategory of flat left

R-modules.

The following two propositions are fairly standard.

Proposition 10.1. For any ring R and any regular cardinal κ, the category

of R-modules R–Mod is locally κ-presentable. The κ-presentable objects of

R–Mod are precisely all the left R-modules that can be constructed as the

cokernel of a morphism of free left R-modules with less than κ generators.

Proposition 10.2. For any ring R and any regular cardinal κ, the category

of flat R-modules R–Modfl is κ-accessible. All directed colimits exist in

R–Modfl and agree with the ones in R–Mod. The κ-presentable objects of

R–Modfl are precisely all those flat left R-modules that are κ-presentable as

objects of R–Mod.

Proof. The connection between the present proposition and the previous one

fits into the setting described in Proposition 1.2. The assertions for κ = ℵ0
are corollaries of the classical Govorov–Lazard theorem [11, 16] character-

izing the flat R-modules as the directed colimits of finitely generated projec-

tive (or free) R-modules. The general case of an arbitrary regular cardinal κ
can be deduced by applying [1, Theorem 2.11 and Example 2.13(1)].

For a version of Proposition 10.2 for modules of bounded flat dimension,

see [25, Corollary 5.2].

10.2 Diagrams of flat modules

The following two corollaries are our “toy applications” of Theorem 6.2.
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Corollary 10.3. Let k be a commutative ring and R be an associative,

unital k-algebra. Let κ be an uncountable regular cardinal and A be

a κ-presented k-linear category (in the sense of Section 6). Then any

k-linear functor A −→ R–Modfl is a κ-directed colimit of k-linear functors

A −→ R–Modfl,<κ into the category of κ-presentable flat left R-modules

R–Modfl,<κ.

Proof. By Proposition 10.2 and Theorem 6.2 (with λ = ℵ0), the k-linear

functor/diagram category Funk(A, R–Modfl) is κ-accessible, and Funk(A,
R–Modfl,<κ) is its full subcategory of κ-presentable objects.

Corollary 10.4. Let R be an associative ring and κ be an uncountable reg-

ular cardinal. Then any cochain complex of flat R-modules is a κ-directed

colimit of complexes of κ-presentable flat R-modules.

Proof. This is the particular case of Corollary 10.3 for the ring k = Z and

the suitable choice of additive category A describing cochain complexes.

The objects of A are the integers n ∈ Z, the set of generating morphisms is

the singleton Gen(n,m) = {dn} form = n+1 and the empty set otherwise,

and the set of defining relations is the singleton Rel(n,m) = {dn+1dn} for

m = n+ 2 and the empty set otherwise.

For a quasi-coherent sheaf, a comodule, and a contramodule version of

Corollary 10.4, see [27, Theorem 4.1] and [23, Propositions 3.3 and 10.2].

Remark 10.5. For an uncountable regular cardinal κ, the complexes of

κ-presentable R-modules are precisely all the κ-presentable objects of the

locally finitely presentable (hence locally κ-presentable) abelian category of

complexes of R-modules. For κ = ℵ0, the finitely presentable objects of the

category of complexes of R-modules are the bounded complexes of finitely

presentable R-modules.

Notice that not every complex of flat R-modules is a directed colimit

of bounded complexes of finitely presentable flat (i. e., finitely generated

projective) R-modules. In fact, the directed colimits of bounded complexes

of finitely generated projective R-modules are the homotopy flat complexes

of flat R-modules [7, Theorem 1.1].

Using the argument from [1, proof of Theorem 2.11 (iv)⇒ (i)] (for λ =
ℵ0 and µ = κ), one can deduce the assertion that any homotopy flat com-

plex of flat R-modules is a κ-directed colimit of homotopy flat complexes
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of κ-presentable flat R-modules, for any uncountable regular cardinal κ. A

quasi-coherent sheaf version of this observation can be found in [27, Theo-

rem 4.5].

10.3 Categories of epimorphisms

For any category K, we denote by K→ the category of morphisms in K (with

commutative squares in K as morphisms in K→). The following lemma is

not difficult.

Lemma 10.6. For any regular cardinal κ and κ-accessible category K,

the category of morphisms K→ is κ-accessible. The full subcategory of

κ-presentable objects in K→ is the category (K<κ)
→ of morphisms of

κ-presentable objects in K.

Proof. One has K→ = Fun(C,K) for the obvious finite category C with no

nonidentity endomorphisms; so the result of [2, Exposé I, Proposition 8.8.5],

[20, page 55], or [12, Theorem 1.3] is applicable.

For any category K, let us denote by Kepi ⊂ K→ the full subcategory

whose objects are all the epimorphisms in K.

Lemma 10.7. For any regular cardinal κ and any locally κ-presentable

abelian category K, the category of epimorphisms Kepi is locally κ-present-

able. The full subcategory of κ-presentable objects in Kepi is the category

(K<κ)
epi of epimorphisms between κ-presentable objects in K.

Proof. Notice first of all that a morphism in K<κ is an epimorphism in K<κ

if and only if it is an epimorphism in K (because the full subcategory K<κ

is closed under cokernels in K [1, Proposition 1.16]). Furthermore, the full

subcategory Kepi is closed under colimits in the locally presentable abelian

category K→; so all colimits exist in Kepi. In view of Lemma 10.6 and ac-

cording to Proposition 1.2, in order to prove the lemma it suffices to check

that any morphism from an object of (K<κ)
→ to an object of Kepi factorizes

through an object of (K<κ)
epi in K→.

Indeed, consider a commutative square diagram in K

S //

��

K

����

T // L
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with an epimorphism K � L and objects S, T ∈ K<κ. Let M be the

pullback of the pair of morphisms K −→ L and T −→ L in K; then M −→
T is also an epimorphism (since the category K is assumed to be abelian).

S //

��

M //

����

K

����

T T // L

Let M = lim
−→ξ∈Ξ

Uξ be a representation of M as a κ-filtered colimit of

κ-presentable objects Uξ in K, and let Vξ denote the images of the composi-

tions Uξ −→ M −→ T . The κ-filtered colimits are exact functors in K [1,

Proposition 1.59]; hence we have T = lim
−→ξ∈Ξ

Vξ. Since T ∈ K<κ, it follows

that there exists ξ0 ∈ Ξ such that the morphism Vξ0 −→ T is a retraction (as

Vξ0 −→ T is a monomorphism by construction, this means that Vξ0 −→ T is

actually an isomorphism). Hence the composition Uξ0 −→ M −→ T is an

epimorphism. Since S ∈ K<κ, one can choose an index ξ1 ∈ Ξ together with

an arrow ξ0 −→ ξ1 in Ξ such that the morphism S −→M factorizes through

the morphism Uξ1 −→M . Hence we arrive to the desired factorization

S //

��

Uξ1 //

����

K

����

T T // L

through an object (Uξ1 → T ) ∈ (K<κ)
epi.

Remark 10.8. It follows immediately from the first assertion of Lemma 10.7

that the category Kmono of monomorphisms in K is also locally κ-presentable.

In fact, the categories Kepi and Kmono are naturally equivalent; the functors

of the kernel of an epimorphism and the cokernel of a monomorphism pro-

vide the equivalence. However, the direct analogue of the second assertion

of Lemma 10.7 fails for monomorphisms (even though the full subcategory

Kmono ⊂ K→ is closed under κ-directed colimits by [1, Proposition 1.59]).

In fact, a monomorphism i in K is a κ-directed colimit of monomorphisms

between κ-presentable objects if and only if i is an admissible monomor-

phism in the maximal locally κ-coherent exact structure on K [24, Corol-

lary 3.3]. In particular, if R is an associative ring that is not left coherent,
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then any monomorphism i : N −→ M from a finitely generated but not

finitely presentable left R-module N to a finitely presentable left R-module

M is not a directed colimit of monomorphisms of finitely presentable mod-

ules in R–Mod.

Given a ring R and a full subcategory L ⊂ R–Mod, we denote by

Lsurj ⊂ L→ the full subcategory whose objects are all the surjective mor-

phisms between objects of L.

Lemma 10.9. For any associative ring R and any regular cardinal κ, the

category of surjective morphisms of flat R-modules R–Mod
surj
fl is κ-accessi-

ble. The κ-presentable objects of R–Mod
surj
fl are the surjective morphisms of

κ-presentable flat R-modules.

Proof. The argument is similar to the proof of Lemma 10.7. In view of

Proposition 10.2, Lemma 10.6 is applicable to K = R–Modfl; so the category

of morphisms of flat R-modules R–Mod
→

fl is κ-accessible and the category

of morphisms of κ-presentable flatR-modulesR–Mod
→

fl,<κ is the full subcat-

egory of κ-presentable objects in R–Mod
→

fl . According to Proposition 1.2,

in order to prove the lemma it suffices to check that any morphism from an

object of R–Mod
→

fl,<κ to an object of R–Mod
surj
fl factorizes through an object

of (R–Modfl,<κ)
surj.

Following the proof of Lemma 10.7, one needs to observe that if K � L
is a surjective morphism of flat R-modules and T −→ L is a morphism of

flat R-modules, then the pullback M (computed in the category R–Mod) is

a flat R-module. Indeed, the kernel F of the morphism K −→ L is a flat

R-module, so the short exact sequence 0 −→ F −→ M −→ T −→ 0
shows that M is a flat R-module, too. The images Vξ of the morphisms

Uξ −→ T can be taken in the ambient abelian category R–Mod. Otherwise,

the argument is the same, except that one considers surjective morphisms in

R–Modfl rather than epimorphisms in K.

Remark 10.10. Alternatively, one can drop the assumption that the category

K is abelian in Lemma 10.7, requiring it only to be additive; but assume the

cardinal κ to be uncountable instead. Then the resulting assertion can be

obtained as a particular case of Corollary 5.1. Consider the category of mor-

phisms A = K→, the zero category B = {0}, and the category C = K. Let

ΘA : A −→ C be the cokernel functor f 7−→ coker(f) and ΘB : B −→ C
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be the zero functor. Then the pseudopullback D is the category of epimor-

phisms D = Kepi. All the assumptions of Corollary 5.1 (with λ = ℵ0) are

satisfied; so the corollary tells that Kepi is κ-accessible and provides the de-

sired description of κ-presentable objects.

Similarly, assuming κ to be uncountable, one can deduce Lemma 10.9

from Lemmas 10.6 and 10.7 using Corollary 5.1. Consider the category of

R-module epimorphisms A = R–Mod
epi, the category of morphisms of flat

R-modules B = R–Mod
→

fl , and the category of R-module morphisms C =
R–Mod

→. Let ΘA : A −→ C and ΘB : B −→ C be the natural inclusions.

Then the pseudopullback D is the category of surjective morphisms of flat

R-modules R–Mod
surj
fl , and Corollary 5.1 is applicable.

10.4 Short exact sequences of flat modules

Now we can deduce the following three corollaries of Lemma 10.9.

Corollary 10.11. Let R be an associative ring and κ be a regular cardinal.

Then any surjective morphism of κ-presentable flat R-modules is a direct

summand of a κ-small directed colimit of surjective morphisms of finitely

generated projective R-modules (in the category R–Mod
→

fl ).

Proof. This follows from Lemma 10.9 in view of [1, proof of Theo-

rem 2.11 (iv)⇒ (i)] for K = R–Mod
surj
fl , λ = ℵ0, and µ = κ. The

Govorov–Lazard characterization of flat modules [11, 16] implies that all

finitely presentable flat R-modules are projective. By Lemma 10.9, the cat-

egory of surjective morphisms of flat R-modules is finitely accessible, and

its finitely presentable objects are the surjective morphisms of finitely gen-

erated projective R-modules. So all surjective morphisms of flat R-modules

are directed colimits of surjective morphisms of finitely generated projective

R-modules.

Let A denote the set of all κ-small directed colimits of surjective mor-

phisms of finitely generated projective R-modules. Following the argu-

ment in [1, proof of Theorem 2.11 (iv)⇒ (i)] and [1, Example 2.13(1)], all

the objects of R–Mod
surj
fl are κ-directed colimits of objects from A. Thus

all the κ-presentable objects of R–Mod
surj
fl are direct summands of objects

from A.

The next corollary is a generalization of [23, Lemma 4.1].
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Corollary 10.12. Let R be an associative ring and κ be a regular cardinal.

Then the kernel of any surjective morphism of κ-presentable flat R-modules

is a κ-presentable flat R-module.

Proof. Follows from Corollary 10.11, as the kernel of any surjective mor-

phism of finitely generated projective R-modules is a finitely generated pro-

jective R-module. For another proof, see [24, Corollary 4.7].

Given a ring R and a full subcategory L ⊂ R–Mod, let us denote by Lses

the category of all short exact sequences inR–Mod with the terms belonging

to L.

Corollary 10.13. For any associative ring R and any regular cardinal κ,

the category of short exact sequences of flat R-modules R–Mod
ses
fl is

κ-accessible. The full subcategory of κ-presentable objects of R–Mod
ses
fl is

the category (R–Modfl,<κ)
ses of all short exact sequences of κ-presentable

flat R-modules.

Proof. By Corollary 10.12, the obvious equivalence of categoriesR–Mod
surj
fl

' R–Mod
ses
fl identifies (R–Modfl,<κ)

surj with (R–Modfl,<κ)
ses. This makes

the desired assertion a restatement of Lemma 10.9.

10.5 Pure acyclic complexes of flat modules

Finally, we can present our “toy application” of Corollary 5.1. An acyclic

complex of flat R-modules is said to be pure acyclic if its modules of cocy-

cles are flat.

The following corollary is essentially a weaker version of the result of [9,

Theorem 2.4 (1)⇔ (3)] or [21, Theorem 8.6 (ii)⇔ (iii)]. Our argument pro-

duces it as an application of general category-theoretic principles. See [27,

Theorem 4.2] and [23, Corollaries 4.5 and 11.4] for a quasi-coherent sheaf,

a comodule, and a contramodule version.

Corollary 10.14. Let R be an associative ring and κ be an uncount-

able regular cardinal. Then any pure acyclic complex of flat R-modules

is a κ-directed colimit of pure acyclic complexes of κ-presentable flat

R-modules.
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Proof. The point is that a pure acyclic complex of flat R-modules F • is

the same thing as a collection of short exact sequences of flat R-modules

0 −→ Gn −→ F n −→ Hn −→ 0 together with a collection of isomor-

phisms Hn ' Gn+1, n ∈ Z. This means that the category of pure acyclic

complexes of flat R-modules can be constructed from the category of short

exact sequences of flat R-modules R–Mod
ses
fl using Cartesian products (as in

Section 2) and the isomorpher construction from Remark 5.2.

Specifically, put H =
∏

n∈ZR–Mod
ses
fl and G =

∏
n∈ZR–Modfl. Let

P : H −→ G be the functor taking a collection of short exact sequences

(0→ Gn → F n → Hn → 0)n∈Z to the collection of modules (Hn)n∈Z, and

let Q : H −→ G be the functor taking the same collection of short exact se-

quences to the collection of modules (Gn+1)n∈Z. Then the resulting isomor-

pher category D is the category of pure acyclic complexes of flatR-modules.

Given the results of Proposition 10.2 and Corollary 10.13, it follows from

Proposition 2.1 and Remark 5.2 that the category D is κ-accessible and the

pure acyclic complexes of κ-presentable flat R-modules are precisely all the

κ-presentable objects of D.
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THE TOPOLOGY OF CRITICAL

PROCESSES, II

(THE FUNDAMENTAL CATEGORY)

Marco GRANDIS

Résumé. La topologie algébrique dirigée étudie des espaces équipés d’une

forme de direction, avec l’objectif d’inclure les processus non réversibles.

Dans l’extension présente nous voulons couvrir aussi les processus critiques,

indivisibles et inarrêtables.

La première partie de cette série a introduit les espaces contrôlés, en ex-

aminant comment ils peuvent modeler les processus critiques issus de divers

domaines, du changement d’état dans une cellule de mémoire à l’action d’un

thermostat ou un siphon. Ici nous construisons la catégorie fondamentale de

ces espaces.

Abstract. Directed Algebraic Topology studies spaces equipped with a form

of direction, to include models of non-reversible processes. In the present

extension we also want to cover critical processes, indecomposable and un-

stoppable.

The first part of this series introduced controlled spaces, examining how

they can model critical processes in various domains, from the change of state

in a memory cell to the action of a thermostat or a siphon. We now construct

the fundamental category of these spaces.

Keywords. Directed algebraic topology, homotopy theory, fundamental cat-

egory.

Mathematics Subject Classification (2010). 55M, 55P, 55Q.
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Introduction

0.1 Critical processes and controlled spaces

Directed Algebraic Topology is an extension of Algebraic Topology, deal-

ing with ‘spaces’ where the paths need not be reversible; the general aim is

including the representation of irreversible processes. A typical setting for

this study, the category dTop of directed spaces, or d-spaces, was introduced

and studied in [G1]–[G3]; it is frequently employed in the theory of concur-

rency: see the book [FGHMR] and many articles cited in a previous paper

[G5].

The present series is devoted to a further extension, where the paths can

also be non-decomposable in order to include critical processes, indivisible

and unstoppable – either reversible or not. For instance: quantum effects,

the onset of a nerve impulse, the combustion of fuel in a piston, the switch

of a thermostat, the change of state in a memory cell, the action of a siphon,

moving in a no-stop road, etc.

To this effect the category of d-spaces was extended in Part I [G5] to the

category cTop of controlled spaces, or c-spaces: an object is a topological

space equipped with a set X] of continuous mappings a : [0, 1]→ X , called

controlled paths, or c-paths, that satisfies three axioms:

(csp.0) (constant paths) the trivial loops at the endpoints of a controlled

path are controlled,

(csp.1) (concatenation) the concatenation of consecutive controlled paths

is controlled,

(csp.2) (global reparametrisation) the reparametrisation of a controlled

path by a surjective increasing map [0, 1]→ [0, 1] is controlled.

A map of c-spaces, or c-map, is a continuos mapping which preserves the

selected paths. Their category cTop contains the category dTop of d-spaces

as a full subcategory, reflective and coreflective: a c-space is a d-space if

and only if it is flexible, which means that each point is flexible (its trivial

loop is controlled) and every controlled path is flexible (all its restrictions

are controlled).

Here we deal with the fundamental category of controlled spaces. Part

III will study more advanced methods of computations of the latter, with
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applications to models of critical processes and concurrency. The homotopy

theory of c-spaces will be dealt with in Part IV.

0.2 Standard intervals

The difference between these two settings – directed and controlled spaces

– shows clearly in two structures of the euclidean interval I = [0, 1], the

starting point of homotopy in each setting, represented as follows (and better

described in 1.3)

0 1

• •↑I 0 1 cI
// // // (1)

The left figure shows the standard d-interval ↑I (in dTop): its directed

paths are all the (weakly) increasing maps I → I. It may be viewed as the

essential model of a non-reversible process, or a one-way route in transport

networks. Its fundamental category ↑Π1(↑I), as defined in [G1, G3], is the

ordered set [0, 1], with one arrow t→ t′ for each pair t 6 t′ in [0, 1].
The right figure shows the standard c-interval cI, or one-jump interval

(in cTop): its controlled paths are the surjective increasing maps I → I and

the trivial loops at 0 or 1. It models a non-reversible unstoppable process, or

a one-way no-stop route. Its fundamental category ↑Π1(cI), as defined here,

is the ordinal 2, with one non-trivial arrow 0→ 1 and two identities.

0.3 Outline

The basic definitions and the main examples of Part I are recalled in Section

1; in particular, every c-space has two associated d-spaces, the generated

d-space X̂ and the flexible part FlX , by the reflector and coreflector of the

embedding dTop → cTop (see 1.2). Then we introduce in Section 2 two

weak forms of flexibility which will play a role in our study: preflexible and

border flexible c-spaces.

Section 3 reviews the basic part of the homotopy theory of d-spaces

studied in [G1, G3], including the construction of the fundamental category
↑Π1(X) of a d-space; some of these results are already extended or adapted

to c-spaces.

In the next two sections we introduce the fundamental category ↑Π1(X)
of a c-space, an extension of the previous case. Its vertices are the flexi-

ble points of X; its arrows come out of a complex construction, based on
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the hybrid square cI×↑I: they are equivalence classes of controlled paths

(parametrised on cI), up to flexible deformations (parametrised on ↑I).
The main results can be found in Section 5: the construction of ↑Π1(X),

its relationship with the fundamental category of the associated d-spaces X̂
and FlX (in 5.2 and 5.3), its homotopy invariance (in 5.4) and its calculation

for covering maps of c-spaces (in 5.8). All this is based on the technical

analysis of Section 4. We end by calculating the fundamental category of

the basic c-spaces, in 5.9.

0.4 Comments

In the present extension we reach models of phenomena that have no place in

the previous settings of Directed Algebraic Topology, and peculiar ‘shapes’,

like the one-stop circle cS1, the n-stop circle cnS
1, or the higher controlled

spheres and tori described in Part I. The fundamental category of the new

spaces is often quite simple.

We also loose some good properties of the theory of d-spaces. For in-

stance, the interval cI is not exponentiable in cTop (see 4.7(b)), and the as-

sociated cylinder functor I(X) = X×cI has no right adjoint: there is no

path endofunctor. We manage to extend the fundamental category, by allow-

ing c-paths to be deformed by flexible homotopies, and one can also extend

directed singular homology, but new methods of calculation are needed: the

van Kampen theorem and the Mayer-Vietoris sequence are based on the sub-

division of paths and homological chains, which is no longer permitted. On

the other hand, the theory of covering maps can be extended to the present

case (Theorem 5.8(b)).

Essentially, the previous setting of d-spaces extends classical topology

by breaking the symmetry of reversion: directed paths need no longer be

reversible. This further extension to c-spaces breaks a flexibility feature that

d-spaces still retain: paths can no longer be subdivided, and this has drastic

consequences.

Critical processes and transport networks are often represented by graphs,

in an effective way as far as they do not interact with continuous variation.

We want to show that they can also be modelled by structured spaces, in

a theory that includes classical topology and ‘non-reversible spaces’. Con-

trolled spaces can thus unify aspects of continuous and discrete mathematics,
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interacting with hybrid control systems and others sectors of Control Theory

[Br, He].

Acknowledgments. The author wishes to thank the Referee for a very careful

reading and many helpful suggestions.

0.5 Notation and conventions

A continuous mapping between topological spaces is called a map. R de-

notes the euclidean line as a topological space, and I the standard euclidean

interval [0, 1]. The identity path id I is written as i. The open and semiopen

intervals of the real line are denoted by square brackets, like ]0, 1[, [0, 1[
etc. A space is locally compact if every point has a local basis of compact

neighbourhoods; the Hausdorff property is not assumed.

A preorder relation, generally written as x ≺ y, is assumed to be re-

flexive and transitive; an order, often written as x 6 y, is also assumed to

be anti-symmetric. A mapping which preserves (resp. reverses) preorders is

said to be increasing (resp. decreasing), always used in the weak sense.

As usual, a preordered set X is identified with the small category whose

objects are the elements ofX , with one arrow x→ x′ when x ≺ x′ and none

otherwise.

The binary variable α takes values 0, 1, which are generally written as

−,+ in superscripts and subscripts. The symbol ⊂ denotes weak inclusion.

The first paper [G5] of this series is cited as Part I; the reference I.2 or

I.2.3 points to Section 2 or Subsection 2.3 of Part I, respectively.

1. Controlled and directed spaces

We recall the definition of controlled space, or c-space, introduced in Part I.

Their category cTop is an extension of the category dTop of directed spaces,

or d-spaces, studied in [G1]–[G3] and commonly used in concurrency; we

generally refer to the book [G3]. The term ‘selected path’ is used in both

cases.
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1.1 Controlled spaces

As defined in Part I, a controlled space X , or c-space, is a topological space

equipped with a set X] of (continuous) maps a : I → X , called controlled

paths, or c-paths, that satisfies three axioms:

(csp.0) (constant paths) the trivial loops at the endpoints of a controlled

path are controlled,

(csp.1) (concatenation) the controlled paths are closed under path concate-

nation: if the consecutive paths a, b are controlled, their concatenation a∗ b
is also,

(csp.2) (global reparametrisation) the controlled paths are closed under

pre-composition with every surjective increasing map ρ : I → I: if a is a

controlled path, aρ is also.

The controlled paths are also closed under general n-ary concatenations,

based on arbitrary partitions 0 = t0 < t1 < ... < tn = 1 of I (as shown

in I.1.2). The underlying topological space is written as U(X), or |X|, and

called the support of X .

A map of c-spaces, or c-map, is a continuos mapping which preserves

the selected paths. Their category is written as cTop.

Reversing c-paths, by the involution r(t) = 1 − t, yields the opposite

c-space RX = Xop, where a ∈ (Xop)] if and only if ar belongs to X]. We

have thus the reversor endofunctor

R : cTop→ cTop, RX = Xop. (2)

The c-space X is reversible if X = Xop. More generally, it is reversive

if it is isomorphic to Xop.

Controlled spaces have all limits and colimits, which are topological lim-

its and colimits with the initial or final structure determined by the structural

maps.

In a c-space X , a point x is flexible if its trivial loop ex is controlled.

The flexible support |X|0 is the subspace of these points, and can be empty.

A c-path is flexible if all its restrictions are controlled. The c-space itself is

flexible if every point and every selected path are flexible.

The singleton space has two c-structures: the discrete one Dc{∗}, with

no controlled paths, and the flexible singleton {∗} where the trivial loop is

selected; this is the terminal object and the unit of the cartesian product.
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The category cTop has two forgetful functors to topological spaces

U : cTop→ Top, U0 : cTop→ Top, (3)

where U(X) = |X| is the topological support and U0(X) = |X|0 is the

flexible support. U has both adjoints, U0 has only the left one: it preserves

limits and sums (I.1.7(e)).

We say that the c-space X1 is finer than X2 if they have the same topo-

logical support X and X]
1 ⊂ X]

2, which means that the identity map of X is

a c-map X1 → X2; the latter is called a reshaping.

We shall see later, in 4.9, that requiring that all trivial loops be controlled

would be a serious hindrance.

1.2 Directed spaces

Previously, a directed space X , or d-space, was also defined as a topological

space with a setX] of selected paths, called directed paths, or d-paths, under

stronger axioms: the selected paths are stable under: (all) constant paths,

concatenations and partial reparametrisations (by increasing endomaps of

the interval, not assumed to be surjective) [G3].

A d-space is the same as a flexible c-space, and can also be defined in

this way. The category dTop of d-spaces and d-maps is a full subcategory of

cTop, reflective and coreflective

:̂ cTop→ dTop (the reflector),

Fl : cTop→ dTop (the coreflector).
(4)

In the first construction the generated d-space X̂ of a c-space X has the

same support with the d-structure generated by the c-paths, i.e. the finest

containing them; it can be obtained by stabilising the latter under constant

paths, restriction and general concatenation. The unit of the adjunction is the

reshaping X → X̂; the counit is the identity Ŷ = Y , for a d-space Y .

In the second construction the flexible part FlX is the flexible support

|X|0 with the d-structure of the flexible c-paths. The counit is the inclusion

FlX → X , the unit is the identity Y = FlY , for a d-space Y .

Also dTop has all limits and colimits, preserved by the embedding in

cTop.
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1.3 Structured intervals and cubes

(a) In dTop the standard d-interval ↑I has the d-structure generated by the

identity i = id I: the directed paths are all the increasing maps I → I. It

plays the role of the standard interval in this category, because the directed

paths of any d-space X coincide with the d-maps ↑I→ X .

It may be viewed as an essential model of a non-reversible process, or a

one-way road in transport networks. It will be represented as in figure (1) of

the Introduction.

Similarly, the directed line ↑R has for directed paths all the increasing

maps I→ R.

(b) In cTop the standard c-interval cI, or one-jump interval, has the same

support, with the c-structure generated by the identity i: the controlled paths

are the surjective increasing maps I → I and the trivial loops at 0 or 1. The

controlled paths of any c-space X coincide with the c-maps ↑I→ X .

It can model a non-reversible unstoppable process, or a one-way no-stop

road. It is also represented in figure (1), marking by a bullet the isolated

flexible points: in this case, the endpoints of the interval.

The controlled line cR has for directed paths all the increasing maps

I→ R whose image is an interval [k, k′] with integral endpoints.

We shall also use other c-structures of the compact interval, already ex-

amined in I.2.4.

(c) In the two-jump interval cJ, the non-trivial c-paths are the increasing

maps I→ I whose image is either [0, 1/2], or [1/2, 1], or [0, 1]

0 1/2 1

• • • cJ
// // // // (5)

This c-space can model a non-reversible two-stage process. Formally, it

parametrises the ordinary concatenation of two c-paths, see 4.2.

(d) The reversible c-interval cI∼ has a c-structure generated by the identity

i and the reversion r : I→ I. It can model a reversible unstoppable process.

The reversible c-paths of a c-space X coincide with the c-maps cI∼ → X .

(e) We shall also use the delayed intervals c−I and c+I of I.2.4(b). Each

of these c-structure is generated by a single map I → I, namely ρ(t) =
0 ∨ (2t− 1) or σ(t) = 2t ∧ 1, respectively. They can model irreversible non-

stoppable processes with inertia, or inductance.
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(f) The powers In and Rn inherit various controlled structures. On I2 we

shall mostly use the d-square ↑I
2
, the c-square cI2 and the hybrid square

cI×↑I (cf. I.2.7).

1.4 Structured spheres

(a) The standard d-circle ↑S1 can be obtained as an orbit space

↑S1 = (↑R)/Z

oo

(6)

with respect to the action of the group of integers on the directed line ↑R (by

translations): the directed paths of ↑S1 are the projections of the increasing

paths in the line.
↑S1 can also be obtained as the coequaliser in dTop of the following pair

of maps

∂−, ∂+ : {∗} −→−→ ↑I, ∂−(∗) = 0, ∂+(∗) = 1, (7)

that is the quotient ↑I/∂I which identifies the points of the boundary ∂I =
{0, 1}.

(b) More generally, the directed n-dimensional sphere is defined, for n > 0,

as the quotient of the directed cube ↑I
n

modulo the equivalence relation that

collapses its boundary ∂In to a point

↑Sn = (↑I
n
)/(∂In) (n > 0), ↑S0 = S

0 = {−1, 1}, (8)

while ↑S0 has the discrete topology and the natural (discrete) d-structure.

(c) The standard c-circle cS1, or one-stop circle, can also be defined as an

orbit space

•

cS1 = (cR)/Z

oooo

(9)
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for the action of the group of integers on the controlled line cR, by transla-

tions. The controlled paths of cS1 are the projections of the controlled paths

in the line: here this means an anticlockwise path (in the ordered plane)

which is a loop at ∗ = [0], the only flexible point (corresponding to (1, 0) in

the plane).

The c-space cS1 can also be obtained as the coequaliser in cTop of the

following pair of maps

∂−, ∂+ : {∗} −→−→ cI, ∂−(∗) = 0, ∂+(∗) = 1. (10)

(d) More generally, the n-stop c-circle cnS
1 (n > 0) is constructed in I.2.6(b)

as the orbit space

cnS
1 = (cnR)/Z (c1S

1 = cS1), (11)

where the c-paths of cnR are the increasing paths whose image is an interval

[k/n, k′/n], for integers k 6 k′.

(e) The standard c-sphere cSn is defined as a quotient of the cube cIn (for

n > 0)

cSn = (cIn)/(∂In) (n > 0), cS0 = S
0 = {−1, 1}. (12)

1.5 Identities and associativity

Concatenation of paths and the various forms of reparametrisation have a

complex relationship. Here we recall two well-known points.

(a) The constant loops act as identities up to the equivalence relation gener-

ated by global reparametrisation. In fact, the following surjective increasing

maps ρ, σ : I → I reparametrise any path a, from x to y, as ex ∗ a or a ∗ ey,

respectively:

ρ σ

ρ(t) = 0 ∨ (2t− 1),

σ(t) = 2t ∧ 1,
(13)

aρ = ex ∗ a, aσ = a ∗ ey.
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These maps were used in I.2.4(b), as the past- (resp. future-) delayed

reparametrisation. Since ρ 6 i 6 σ, there are directed homotopies with

fixed endpoints aρ→ a→ aσ in dTop [G3], which also work in the present

setting, as we shall see in Lemma 4.6. (These homotopies are reversible in

Top, but are not for our directed structures.)

(b) All n-ary concatenations are equivalent, up to invertible reparametrisa-

tion (cf. I.1.2). In particular, let ρ : I → I be the obvious piecewise affine

invertible reparametrisation that takes the partition 0 < 1/2 < 3/4 < 1 to

the regular partition 0 < 1/3 < 2/3 < 1, while σ : I → I does the same on

0 < 1/4 < 1/2 < 1

1/2

1/3

2/3

1/2

1/3

2/3

ρ σ
(14)

Now, if d = a ∗ b ∗ c is the regular concatenation of three consecutive

paths, based on the partition 0 < 1/3 < 2/3 < 1

dρ = a ∗ (b ∗ c), dσ = (a ∗ b) ∗ c. (15)

Again ρ 6 i 6 σ, and there are homotopies with fixed endpoints dρ →
d → dσ, which work in dTop and will also work in the present setting, by

Lemma 4.6.

2. Weak flexibility

We now introduce weak forms of flexibility that will be important for the

construction of the fundamental category, and still hold in basic c-spaces

like cI, cJ, cR, cS1 and all their products (and limits) – although all of them

are rigid c-spaces, in the sense of I.1.6.

X is always a c-space.

2.1 Preflexible and border flexible c-spaces

(a) If S is a subset of the flexible support |X|0 of X , we can form a finer

c-space X|S on the same support selecting the c-paths of X whose endpoints
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belong to S. We say that the c-space X|S is full in X , or obtained from X
by restricting the flexible support to S. We shall see, in Theorem 5.3(a), that
↑Π1(X|S) is the full subcategory of ↑Π1(X) with vertices in S.

For instance the c-spaces cI and cJ are full in ↑I, which is just finer than

I. Both relationships, being finer or full, are preserved by products.

(b) We say that X is preflexible if it is full in the generated d-space X̂ , which

means that every c-path of X̂ between flexible points ofX is already a c-path

of the latter. The interest of this property will be evident in Theorem 5.3(b).

(c) We say that X is border flexible if its controlled paths are closed under

‘cutting out delays at the endpoints’. More precisely, we are asking that,

for every c-path a of X which is constant on [0, t1] and [t2, 1], the border

restriction aρ be still a controlled path, for

ρ : I→ I, ρ(t) = t1 + (t2 − t1)t (0 6 t1 < t2 6 1). (16)

Plainly, every preflexible c-space is border flexible; the converse is false:

see 2.2(b).

(d) We also introduce the path-support |X|1 of the c-spaceX as the topolog-

ical subspace of |X| formed by the union of the images of all c-paths in X ,

so that |X|0 ⊂ |X|1 ⊂ |X|. A c-map can be restricted to the path-supports.

We say that X has a total path-support if |X|1 = |X|.

2.2 Examples and remarks

(a) Besides all d-spaces, many c-spaces we have considered in Part I and

here are preflexible: for instance cI, cJ and cI∼ (in ↑I), cR (in ↑R), cS1 (in
↑S1), and all their limits (by Proposition 2.3).

The delayed intervals c−I and c+I recalled in 1.3(e) are not even bor-

der flexible: the preflexible space generated by any of them (according to

Proposition 2.3(a)) is the standard interval cI.
It is not difficult to prove that the c-spheres cSn are not border flexible,

for n > 2.

(b) The ‘diagonal’ c-structure X of the square I2 described in I.2.7(d) is

border flexible (obviously) and not preflexible (as shown below); it does not

have a total path-support.
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We recall that the c-paths of X are generated by two diagonal paths,

t 7→ (t, t) and t 7→ (t, 1− t), represented in the left figure below

X X ′ X ′′

0

x

y

1

• •

••

• •

••

• •

••

?? ??

�� ��

?? ??
�� (17)

The flexible points are the four vertices of the square. The generated d-

space X̂ has also c-paths 0→ y and x→ 1, proving thatX is not preflexible.

We also note that the structure ofX is generated by two finer c-structures

X ′, X ′′ of the square, with the same flexible points and non-trivial c-paths

generated by one of the previous diagonals. X is thus the pushout of three

preflexible spaces, X ′ and X ′′ over X0: the latter is the square I2 with the

trivial loops at the vertices (the intersection of the structures of X ′ and X ′′).

(c) The quotient of the interval X = c[0, 2] ⊂ cR modulo the equivalence

relation that collapses its second half to a point

X/[1, 2] ∼= c+I, (18)

is not border flexible. It is the pushout in cTop of two maps of border flexible

c-spaces, the inclusion c[1, 2]→ c[0, 2] and the map c[1, 2]→ {∗}.

(d) Remarks. In a border flexible c-space, initial or final delays cannot be

required; but let us note that they can never be prevented – a global repara-

metrisation can always produce them.

On the other hand, ‘internal’ delays can be required, as in the border-

flexible middle-delay interval cMI, with the c-structure generated by the map

cM(t) = ((3t ∧ 1) ∨ (3t− 1))/2 (middle-delay map).

(e) Full c-spaces were already considered in I.3.5, in the equivalent perspec-

tive of excluding the flexible points of |X|0 \S.

2.3 Proposition and Definition (Reflectors and limits)

(a) Preflexible c-spaces form a full, reflective subcategory cpfTop of cTop.

The reflector

(−)pf : cTop→ cpfTop, X 7→ Xpf , (19)
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gives the generated preflexible space Xpf , with the same flexible points and

all the c-paths of X̂ between them; maps stay ‘unchanged’. The unit is the

reshaping X → Xpf .

As in every full reflective subcategory, preflexible c-spaces are closed in

cTop under limits. All colimits can be obtained taking the colimit in cTop
and applying the reflector. Sums are preserved by the inclusion, but pushouts

are not – in general.

(b) Similarly, border flexible c-spaces form a full, reflective subcategory

cbfTop of cTop. The reflector

(−)bf : cTop→ cbfTop, X 7→ Xbf , (20)

gives the generated border flexible space Xbf , with the least c-structure con-

taining the border restrictions of the original c-paths, as specified in 2.1(c).

Maps stay ‘unchanged’; the unit is the reshaping X → Xbf . Obviously

X and Xbf generate the same d-space.

Again, border flexible c-spaces are closed in cTop under limits. All col-

imits can be obtained taking the colimit in cTop and applying the reflector.

Sums are preserved by the inclusion and pushouts need not be.

(c) Controlled spaces with a total path-support form a full coreflective sub-

category of cTop, closed under colimits and products.

Proof. (a) The reshaping X → Xpf is a universal arrow from X to the

inclusion cpfTop→ cTop, which creates all limits.

Closure under sums is trivial, while this does not work with pushouts, as

we have seen in 2.2(b). All colimits can be constructed as specified above;

or directly, by final structures.

(b) The c-space X is indeed finer than Xbf : if a′ = aρ is a border restriction

of a c-path of X , we can reconstruct a = a′σ by a global reparametrisation

of a′ that brings back the delays.

Technically, a is constant on two intervals [1, t1] and [t2, 1], with t1 < t2,
and we let:

ρ(t) = t1 + (t2 − t1)t, σ(t) = ((t− t1)/(t2 − t1) ∨ 0) ∧ 1, (21)

so that aρσ = a. The reshapingX → Xbf is a universal arrow fromX to the

inclusion cbfTop → cTop, and the rest works as in (a), taking into account

example 2.2(c) for pushouts.
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(c) The coreflector takes a c-space X to its path-support |X|1 equipped with

the same c-paths. Moreover the path-support functor | − |1 : cTop → Top

preserves products.

2.4 Lemma

(a) Let a be a c-path of the d-space X̂ generated by the c-space X . We

suppose that one of these conditions is satisfied:

(i) a is not constant,

(ii) a is constant at a point x of the path-support |X|1.

Then a is a restriction of some c-path b : x0 → x1 of X̂ between flexible

points ofX . We can choose b so that a is its middle restriction, on [1/3, 2/3].

(b) If the c-space X is preflexible, every c-path of X̂ satisfying (i) or (ii) is

the middle restriction of some c-path of X .

Proof. We prove (a), which trivially implies (b). In case (i) a non-constant

c-path a : x′ → x′′ of the d-space X̂ is a general concatenation of c-paths

a1, ..., an which are restrictions of c-paths b1, ..., bn of X . There is thus

some c-path b′ : x0 → x′ of X̂ starting from a flexible point of X: either a

restriction of b1, as in the left figure below

X̂ X̂
x0

b′

x′
x′′ b′′

x1
x0

b′

x′ b′′

x1

55
�� ?? ��

55

�� (22)

or a trivial loop at x0 = x′, if x′ is a flexible point of X . Symmetrically there

is in X̂ a c-path b′′ : x′′ → x1 reaching a flexible point of X .

Now, a is the middle restriction of the regular concatenation b = b′ ∗ a ∗
b′′ : x0 → x1.

Case (ii) is obvious: there is a c-path b : x0 → x1 of X whose image

contains x and we can take in X̂ suitable restrictions b′ : x0 → x and b′′ :
x→ x1 of b, as in the right figure above; or we take two trivial loops, if x is

already a flexible point ofX . Again, a is the middle restriction of the regular

concatenation b′ ∗ a ∗ b′′ : x0 → x1 in X̂ .
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2.5 Theorem (Flexibility and cartesian products)

(a) The flexible c-space (
∏

iXi)̂ generated by a product is finer than
∏

iX̂i,

and can be strictly finer.

(b) For any family (Xi) of preflexible c-spaces with a total path-support (see

2.1(d)):

(
∏
Xi)̂ =

∏
X̂i. (23)

Proof. (a) The flexible structure of
∏
X̂i contains the structure of

∏
Xi, and

also of (
∏
Xi)̂ . The inclusion can be strict, as shown in I.2.7(b) for the

products X×cI or X×↑I, where X = Dc{∗} has an empty path-support.

One could also use the diagonal c-space of 2.2(b), which is not preflexible.

(b) We prove that, if all Xi are preflexible c-spaces with a total path-support,

every c-path a = 〈ai〉 of
∏
X̂i is also controlled in (

∏
Xi)̂ .

By Lemma 2.4(b), each ai is the middle restriction biρ of some c-path

bi of Xi, always applying the strictly increasing affine map ρ : I → I with

image [1/3, 2/3]. Therefore a = 〈bi〉ρ is the restriction of a c-path of the

product, and belongs to the structure (
∏
Xi)̂ .

2.6 Corollary

(a) If X is a preflexible c-space with a total path-support

(X×cI)̂ = X̂ × ↑I, (X × ↑I)̂ = X̂×↑I. (24)

(b) In particular: (cI×↑I)̂ = ↑I
2
.

3. Elementary homotopy theory of d-spaces

We recall here the elementary part of homotopy theory in the category dTop
of d-spaces and the construction of their fundamental category [G3], which

will be later extended to c-spaces. Some new results on c-spaces are already

inserted in Proposition 3.3 and Theorem 3.9.
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3.1 Directed homotopy

Homotopy in dTop is based on the directed interval ↑I and the reversor end-

ofunctor R : dTop→ dTop.

Inside this theory, a map a : ↑I → X is simply called a path – or a

directed path when we want to stress the difference with the paths of the

underlying space UX . Homotopies are represented by maps ϕ : X×↑I→ Y ,

defined on the (directed) cylinder X×↑I. This works by a complex structure

on the interval and the cylinder functor (developed in [G3], Chapters 1 and

4), of which we recall here the initial part.

The first-order structure of the interval in dTop consists of four maps:

two faces (∂−, ∂+), a degeneracy (e) and a reflection (r)

∂α : {∗} −→←−−→ ↑I : e, r : ↑I→ ↑I
op

(α = 0, 1),

∂α(∗) = α, e(t) = ∗, r(t) = 1− t.
(25)

(The same structure works in Top, using the euclidean interval I and a trivial

reversor R, the identity of the category.)

The cylinder endofunctor Id (written as I if it is clear that we are working

in dTop)

Id : dTop→ dTop, Id = −×↑I, (26)

inherits from this structure four natural transformations, with the same names

and symbols:

∂α : 1 −→←−−→ I : e, r : IR→ RI (α = 0, 1),

∂α(x) = (x, α), e(x, t) = x, r(x, t) = (x, 1− t).
(27)

The component ∂αX = X×∂α on the d-space X is simply written as ∂α, when

this is not ambiguous; similarly for the other natural transformations.

These natural transformations satisfy the identities

e∂α = 1: id → id , (RrR)r = 1: IR→ IR,

(Re)r = eR : IR→ R, r(∂−R) = R∂+ : R→ RI.
(28)

Since RR = 1, r is invertible with r−1 = RrR : RI → IR. Moreover

r(∂+R) = R∂−.
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A (directed) homotopy ϕ : f → g : X → Y of d-spaces is defined as a

d-map ϕ : IX → Y with faces ϕ∂− = f and ϕ∂+ = g. When we want

to distinguish the homotopy from the map IX → Y which represents it,

we write the latter as ϕ̂. A path in X is the same as a homotopy a : x →
y : {∗} → X between its endpoints, identified to maps {∗} → X .

Each map f : X → Y has a trivial endohomotopy, ef : f → f , repre-

sented by f(eX) = (eY )If : IX → Y .

Every homotopy ϕ : f → g : X → Y has a reflected homotopy between

the opposite d-spaces

ϕop : gop → f op : Xop → Y op,

(ϕop)̂ = R(ϕ̂)r : IRX → RIX → RY,
(29)

and (ϕop)op = ϕ, (ef )
op = efop .

There is a whisker composition for maps and homotopies

X ′ h // X
f //

g
//↓ϕ Y

k // Y ′ (30)

k◦ϕ◦h : kfh→ kgh : X ′ → Y ′,

(k◦ϕ◦h)̂ = (kϕ̂)(Ih) : IX ′ → Y ′,

which will also be written as kϕh. This ternary operation satisfies obvious

axioms of associativity and identities (cf. [G3], 1.2.3).

3.2 Concatenating paths and homotopies

In dTop the standard concatenation pushout – pasting two copies of the d-

interval, one after the other – can be realised as ↑I itself, with embeddings

c−, c+ covering the first or second half of the interval

{∗} ∂+
//

∂−

��

↑I

c−

��

c−(t) = t/2,

c+(t) = (t+ 1)/2.

↑I
c+

// ↑I

(31)

Indeed, given two consecutive paths a, b : ↑I → X (with a∂+ = b∂−),

their concatenation a ∗ b is a map ↑I→ X .
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More generally we want to concatenate two consecutive homotopies ϕ :
f → g : X → Y and ψ : g → h : X → Y , with ϕ(∂+X) = g = ψ(∂−Y ),
defining

χ = ϕ ∗ ψ : f → h : X → Y,

χ(x, t) = ϕ(x, 2t), for 0 6 t 6 1/2,

χ(x, t) = ψ(x, 2t− 1), for 1/2 6 t 6 1.

(32)

As in Top, we do obtain a map χ : X×↑I→ Y , because of the following

proposition.

3.3 Proposition (Concatenating homotopies)

(a) For every d-space X , the functor X×− : dTop → dTop preserves the

standard concatenation pushout (31), giving the concatenation pushout of

the cylinder functor I = −×↑I

X ∂+
//

∂−

��

X×↑I

c−

��

c−(x, t) = (x, t/2),

c+(x, t) = (x, (t+ 1)/2).

X×↑I
c+

// X×↑I

(33)

(b) If X is a flexible c-space, this is also a pushout in cTop, so that the

functor X×− : cTop→ cTop preserves the pushout (31).

Proof. (a) We copy the proof of [G3], 1.4.9, in a more detailed way that will

be used in the next section.

The square (33) becomes a pushout in Top, because UX× [0, 1/2] and

UX× [1/2, 1] form a finite closed cover of UX× I, so that each mapping

defined on the latter and continuous on these closed parts is continuous.

Consider then the map χ : UX× I → UY obtained by pasting two d-

maps ϕ, ψ : X×↑I → Y on the topological pushout UX×I, as in (32). We

want to prove that χ is a d-map X×↑I→ Y .

Let 〈a, h〉 : ↑I→ IX be any d-map, with a : ↑I→ X and h : ↑I→ ↑I.

(i) If the image of h is contained in the first (resp. second half) of [0, 1], then

χ〈a, h〉 is directed, because

χ(a(t), h(t)) = ϕ(a(t), 2h(t))

(resp. χ(a(t), h(t)) = ϕ(a(t), 2h(t)− 1)),
(34)
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and, in this case, 2h (resp. 2h − 1) is a map ↑I → ↑I (just an increasing

continuous mapping).

(ii) Otherwise, there is some t1 ∈ ]0, 1[ such that h(t1) = 1/2, and we

can assume that t1 = 1/2 (up to pre-composing with an automorphism of
↑I). Now, the path χ〈a, h〉 : I → UY is directed in Y , because it is the

concatenation of the following two directed paths ci : ↑I→ Y

c1(t) = χ(a(t/2), h(t/2)) = ϕ(a(t/2), 2h(t/2)),

c2(t) = χ(a((t+ 1)/2), h((t+ 1)/2))

= ψ(a((t+ 1)/2), 2h((t+ 1)/2)− 1).

(35)

Note that we are using the splitting property of a, in the d-space X .

(b) A straightforward consequence: by hypothesis X is a d-space, and the

pushout (33) is preserved by the embedding in cTop.

3.4 Homotopies of paths

Operating on the standard concatenation pushout (31) with the functors−×↑I
and ↑I×−, we get the following pushouts

↑I
∂+×1 //

∂−×1

��

↑I×↑I

Φ′

��

↑I
1×∂+

//

1×∂−

��

↑I×↑I

Φ′′

��
↑I×↑I

Ψ′
// ↑I×↑I ↑I×↑I

Ψ′′
// ↑I×↑I

(36)

that we use now to concatenate double paths, horizontally and vertically.

A double path in the d-space X is a d-map H : ↑I
2
→ X . Its four faces

are paths in X , between four points, its vertices

HH∂−
1 H∂+

1

H∂−
2

H∂+
2

s

t

//

OO
(37)

∂α1 = ∂α×↑I : ↑I→ ↑I
2
, ∂α1 (t) = (α, t),

∂α2 = ↑I×∂α : ↑I→ ↑I
2
, ∂α2 (s) = (s, α).
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Given two horizontally consecutive double paths H,K : ↑I×↑I → X
(H∂+1 = K∂−1 ), the left pushout (36) gives a map H ∗1K : ↑I×↑I→ X , the

horizontal concatenation of H and K.

Symmetrically, given two double paths H,L : ↑I×↑I → X which are

vertically consecutive, the right pushout (36) gives the vertical concatenation

H ∗2 L : ↑I×↑I→ X .

It is evident and well-known that these operations satisfy – even strictly – the

middle-four interchange property:

(H ∗1 K) ∗2 (L ∗1 M) = (H ∗2 L) ∗1 (K ∗2 M).

In Top this induces the commutativity of π2 (using double paths with degenerate

faces).

A path-homotopy with fixed endpoints, denoted as

H : a→2 b : x→ y, (38)

is a double path H : ↑I
2
→ X whose vertical faces H∂α1 are trivial loops at

two points x, y (constant on the thick edges)

Hex ey

a

b
H(0, t) = x, H(1, t) = y,

H(−, 0) = a, H(−, 1) = b.
(39)

H will also be called a 2-path, by analogy with the 2-cells of a 2-category.

The existence of H : a→2 b gives a preorder relation a �2 b consistent with

concatenation, because 2-paths are obviously closed under the vertical and

horizontal concatenation of double paths.

We now use the 2-equivalence relation a′∼ 2 a
′′ spanned by the preorder

�2: there exists a finite sequence of paths a′ �2 a1 �2 a2 ... �2 a
′′ (between

the same endpoints). It is also consistent with concatenation.

A class of paths [a] up to 2-equivalence is a class of this equivalence

relation. These classes become now the arrows of the fundamental category.

3.5 Definition [G1, G3]

In the fundamental category ↑Π1(X) of a d-space X:

- the vertices are the points of X ,
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- the arrows are the equivalence classes [a] : x → y of paths a : x → y, up

to the 2-equivalence relation a′∼2 a
′′ described above (spanned by homo-

topies with fixed endpoints a′ →2 a
′′),

- the composition is induced by concatenation of consecutive paths, and

the identities are induced by trivial loops

[a][b] = [a ∗ b], 1x = [ex]. (40)

The operation is well defined, because∼2 is consistent with path concate-

nation. Associativity and identities follow from Lemma 3.7, which also im-

plies that a global (increasing) reparametrisation ρ : I→ I gives [a] = [aρ].
A d-map f : X → Y produces a functor

f∗ = ↑Π1(f) : ↑Π1(X)→ ↑Π1(Y ),

f∗(x) = f(x), f∗[a] = [fa].
(41)

In fact a 2-path H : a′ →2 a′′ gives a 2-path fH : fa′ →2 fa′′, and a concate-

nation a′ ∗ a′′ of paths in X is sent to a concatenation fa′ ∗ fa′′ in Y .

We have thus a functor with values in the category of small categories

↑Π1 : dTop→ Cat. (42)

The next theorem refers to the directed homotopy structure of Cat, based on the

directed interval 2 ([G3], 1.2.2, 4.3.2); in this light, a natural transformation is a

directed homotopy of functors.

3.6 Theorem (Homotopy invariance, I)

(a) The functor ↑Π1 is homotopy invariant, in the sense that a (directed)

homotopy ϕ : f → g : X → Y induces a natural transformation

ϕ∗ : f∗ → g∗ : ↑Π1(X)→ ↑Π1(Y ),

ϕ∗(x) = [ϕx] : f(x)→ g(x),
(43)

where ϕx = ϕ̂(x×i) : {∗}×↑I→ Y is a directed path in Y .

(b) Induction preserves whisker composition: a whisker composition ψ =
k◦ϕ◦h : kfh→ kgh of homotopies and maps (as in (30)) is taken to the cor-

responding whisker composition of natural transformations and functors:

ψ∗ = k∗◦ϕ∗◦h∗ : k∗f∗h∗ → k∗g∗h∗ : ↑Π1(X
′)→ ↑Π1(Y

′). (44)
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Proof. (a) Again we write out the proof of [G3], Theorem 3.2.4(c), to extend

it later to the present setting.

Let a : x → x′ be a path in X , represented by a map a : ↑I → X . The

homotopy ϕ : X×↑I → Y gives a double path ϕa in Y , with the following

faces

g(x)
ga // g(x′)

ϕa ϕa = ϕ̂(a×i) : ↑I×↑I→ Y,

f(x)
fa

//

ϕx

OO

f(x′)

ϕx′

OO

(45)

where the vertical direction agrees with the present graphic representation of

double paths. We have to prove that this double path induces a commutative

square in ↑Π1(Y ): f∗(a) ∗ ϕ∗(x
′) = ϕ∗(x) ∗ g∗(a).

This comes out nearly for free from the higher structure of the directed

interval ↑I (as a dioid [G3], 1.1.7), which includes the max and min opera-

tions gα (with unit ∂α)

gα : ↑I
2
→ ↑I, g−(s, t) = s ∨ t, g+(s, t) = s ∧ t, (46)

g−i e1

i

e1

g+e0 i

e0

i

Working with the double path (45) and the new ones, by horizontal con-

catenation, we get a double path (ϕxg
+ ∗1 ϕa) ∗1 ϕx′g− (the parentheses are

irrelevant)

f(x)
ϕx // g(x)

ga // g(x′)
egx′ // g(x′)

ϕxg
+ ϕa ϕx′g−

f(x) efx
//

efx

OO

f(x)
fa

//

ϕx

OO

f(x′) ϕx′
//

ϕx′

OO

g(x′)

egx′

OO

(47)

It is a 2-path from (efx ∗ fa) ∗ ϕx′ to (ϕx ∗ ga) ∗ egx′ in Y , and proves

our identity in ↑Π1(Y )

f∗(a) ∗ ϕ∗(x
′) = [fa][ϕx′ ] = [ϕx][ga] = ϕ∗(x) ∗ g∗(a).
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(b) The component ψ∗(x) = [ψx] at x ∈ X ′ is the 2-equivalence class of the

following d-path kfh(x)→ kgh(x) in Y ′:

ψx = ψ̂(x×i) = kϕ̂(Ih)(x×i) = kϕ̂(h(x)×i) = kϕhx.

and coincides with the component (k∗◦ϕ∗◦h∗)(x).

3.7 Lemma (Reparametrisation and homotopy)

Let a : x→ y be a path in the d-space X .

(a) If ρ, σ : I → I are global reparametrisations and ρ 6 σ, there exists a

2-path

H : aρ→2 aσ : ↑I→ X, H : ↑I
2
→ X. (48)

(b) In particular, using the global reparametrisations (13) and (14), we get

2-paths of acceleration and associativity:

ex ∗ a→2 a, a→2 a ∗ ey, (49)

a ∗ (b ∗ c)→2 a ∗ b ∗ c, a ∗ b ∗ c→2 (a ∗ b) ∗ c. (50)

(d) For any global reparametrisation ρ : I→ I there are global reparametri-

sations ρ′, ρ′′ and 2-paths

aρ′ →2 a→2 aρ
′′, aρ′ →2 aρ→2 aρ

′′, (51)

proving that a ∼ 2 aρ.

Proof. (a) We build a 2-path Φ: ρ→2 σ : ↑I→ ↑I

Φ: ↑I
2
→ ↑I, Φ(s, t) = (1− t)ρ(s) + tσ(s), (52)

as the affine interpolation from ρ to σ, which is increasing because ρ 6 σ.

(This corresponds to a particular case, where a is the identity of ↑I.)
Then, composing Φ with the path a : ↑I→ X , we get a 2-path

aΦ: aρ→2 aσ : ↑I→ X. (53)

(b) Follows from (a), using the global reparametrisations ρ 6 i 6 σ of (13)

and (14).

(c) Follows from (a), using ρ′ = ρ ∧ i and ρ′′ = ρ ∨ i.
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3.8 The cocylinder functor

Coming back to first-order homotopy theory in dTop, we recall that the

cylinder functor I = −×↑I : dTop → dTop has a right adjoint, the co-

cylinder functor, or path functor

P : dTop→ dTop, P (Y ) = Y
↑I (I a P ). (54)

In fact, the d-interval ↑I is exponentiable in dTop, by Theorem 3.9 (see

below). The d-space P (Y ) is the set of d-paths dTop(↑I, Y ) equipped with

the compact-open topology (induced by the topological path-space P |Y | =
Top(I, |Y |)) and the d-structure described in the statement of 3.9.

A homotopy ϕ : f− → f+ : X → Y can thus be equivalently defined

- by a map ϕ̂ : X×↑I→ Y with ϕ̂∂α = fα, for α = ±,

- by a map ϕ̌ : X → Y ↑I with ∂αϕ̌ = fα (with respect to the faces

∂α : P → 1 specified below).

The path functor is equipped with a first-order structure dual to that of

the cylinder functor, with the same reversor R; it consists of four natural

transformations, still called faces, degeneracies and reflection, and denoted

by the same symbols (for a : ↑I→ X)

∂α : P ←−−→ 1 : e, ∂α(a) = a∂α, e(a) = ae,

r : RP → PR, r(a) = (Ra)r : ↑I→ ↑I
op
→ Xop.

(55)

In cTop this part will have a complex reworking: the interval cI is not

exponentiable, as will be shown in 4.7(b). On the other hand, the interval
↑I is still exponentiable in cTop, as we prove in 3.9(b), and gives rise to a

functor of flexible paths, that represents flexible homotopies (in (62)).

3.9 Theorem (Exponentiable spaces)

Let K be a d-space on a locally compact support |K|.

(a) The d-space K is exponentiable in dTop. For every d-space Y

Y K = dTop(K, Y ) ⊂ Top(|K|, |Y |) (56)

is the set of d-maps K → Y , equipped with:
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- the compact-open topology (restricted from the topological exponential

|Y ||K|)
- the d-structure where a path c : I → |Y K | ⊂ |Y ||K| is directed if and

only if the corresponding topological map ĉ : I×|K| → |Y | is a d-map
↑I×K → Y .

(b) The d-space K is also exponentiable in cTop, extending the definition of

the previous internal hom: for every c-space Y

Y K = cTop(K, Y ) = dTop(K, FlY ) ⊂ Top(|K|, |Y |), (57)

is the set of c-maps K → Y , with the compact-open topology and the c-

structure where a path c : I→ |Y K | ⊂ |Y ||K| is controlled if and only if the

corresponding map ĉ : I×|K| → |Y | is a c-map cI×K → Y . Moreover, all

the elements of Y K are flexible.

If Y is a d-space, we find the same exponential Y K .

Proof. (a) This is Theorem 1.4.8 of [G3]. We rewrite the proof in a more

detailed way, to be used in (b).

In the domain of topological spaces, it is well known that a locally com-

pact space K is exponentiable: the space Y K is the set of maps Top(K, Y )
with the compact-open topology, and the adjunction consists of the natural

bijection

:̂ Top(X, Y K)→ Top(X×K, Y ), f̂(x, k) = f(x)(k). (58)

Coming back to d-spaces, we verify the axioms (dsp.0)-(dsp.2) for the

d-structure of Y K defined above.

(i) (Constant paths) If c : I → |Y ||K| is constant at the d-map g : K → Y ,

then ĉ can be factorised as gp2 : ↑I×K → K → Y , and is a d-map.

(ii) Concatenation) Let c = c1 ∗ c2 : I → |Y |
|K|, with ĉi : ↑I×K → Y . By

Proposition 3.3(a), the product −×K preserves the concatenation pushout

(31). Therefore ĉ, as the pasting of ĉ1, ĉ2 on this pushout, is a directed map.

(iii) (Partial reparametrisation) For ĉ : ↑I×K → Y and h : ↑I → ↑I, the

map (ch)̂ = ĉ(h×K) is directed.

We prove now that (58) restricts to a bijection between dTop(X, Y K)
and dTop(X×K, Y ).
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In fact, we have a chain of equivalent conditions

- f : X → Y K is a d-map,

- ∀a ∈ X], fa : ↑I→ Y K is a d-path,

- ∀a ∈ X], (fa)̂ = f̂(a×K) : ↑I×K → X×K → Y is a d-map,

- ∀a ∈ X], ∀h ∈ ↑I
]
, ∀b ∈ K], f̂〈ah, b〉 : ↑I→ Y is a d-map,

- f̂ : X×K → Y is a d-map,

taking into account, for the last equivalence, that ah : ↑I→ X is an arbitrary

d-path.

(b) To verify that the c-structure of Y K is well formed, point (i) works as

above: if c : I → Y K is constant at any c-map g : K → Y , the associated

map ĉ can be factorised as gp2 : cI×K → K → Y , and is a c-map. This

also proves that all the ‘points’ of Y K are flexible.

Point (ii) is also proved as above: we can apply Proposition 3.3(b), since

K is a flexible c-space.

Point (iii) is now about global reparametrisation. If h : ↑I → ↑I is a

surjective increasing map, h×K is also surjective and (ch)̂ = ĉ(h×K) is

controlled.

To prove that (58) restricts to a bijection between cTop(X, Y K) and

cTop(X×K, Y ) it is sufficient to rewrite the previous chain of equivalences,

replacing the interval ↑I by cI and the prefix ‘d’ by ‘c’.

Finally, if Y is a d-space, the condition that ĉ be a c-map cI×K → Y is

equivalent to a d-map ↑I×K → Y , because (cI×K )̂ = ↑I×K, by Theorem

2.5(b).

4. Paths and double paths in controlled spaces

We now begin to develop homotopy theory in the category cTop. We work

in a concrete, naive way, to prepare the definition of the fundamental cate-

gory of a c-space (in the next section). This is achieved by a hybrid theory

based on general paths, parametrised on cI, and their flexible deformations

parametrised on ↑I: in other words, we work with the hybrid square cI×↑I.
Loosely speaking, as made precise in 4.5(e), if we work on the standard

c-square cI2 our homotopies of paths cannot be concatenated; on the other
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hand, working with the flexible square ↑I
2

we would only get the fundamen-

tal category of the flexible part of X . But we shall see in Part III that, for a

border flexible c-space, one can equivalently use the standard square cI2.
X and Y are c-spaces. A controlled path in a c-space is simply called

a path, or a general path if we want to stress that it is not assumed to be

flexible; a path in the underlying topological space is called a topological

path.

4.1 Paths and homotopies

(a) In cTop we want to use both the standard c-interval cI and the flexible

interval ↑I. They have a similar first-order structure (two faces, a degeneracy

and a reflection), already examined for ↑I in (25)

∂α : {∗} −→←−−→ cI : e, r : cI→ cIop,

∂α : {∗} −→←−−→ ↑I : e, r : ↑I→ ↑I
op
.

(59)

A map x : {∗} → X is a flexible point in the c-space X; a map a : cI→
X is a c-path in X , also called a path, or a general path.

A map a : ↑I → X is a flexible path. The latter is flexibly reversible if

also the reversed topological path a] = ar is a flexible path of the c-space

X; this is equivalent to a c-map I∼ → X , defined on the reversible d-interval

(whose d-structure is generated by i and r, see I.2.4(c)).

(b) A (general) homotopy ϕ : f → g : X → Y is a map ϕ : X×cI → Y ,

with faces f = ϕ(1×∂−) and g = ϕ(1×∂+). In particular, a homotopy

a : x→ y : {∗} → X is a general path (between flexible points), identifying

{∗}×cI with cI.
A flexible homotopy ϕ : f → g is a map ϕ : X×↑I → Y with faces as

above. A flexible homotopy a : x → y : {∗} → X is the same as a flexible

path in X . A flexible homotopy ϕ : X×↑I→ Y is flexibly reversible if also

the reflected topological homotopy ϕ] = ϕ(X×r) is a flexible homotopy.

Given a general (resp. flexible, flexibly reversible) homotopy ϕ : f → g,
every flexible point x ∈ X gives a general (resp. flexible, flexibly reversible)

path ϕ(x,−) : f(x) → g(x) in Y . A mere point gives a topological path.

(According to the structure of X , it can give something more: see 4.4(b).)
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(c) The reversor R transforms a general homotopy ϕ : f → g : X → Y into

the reflected one

ϕop : gop → f op : Xop → Y op,

(ϕop)̂ = R(ϕ̂)(Xop×r) : Xop×cI→ (X×cI)op → Y op.
(60)

(As in 3.1, the representative map IX → Y is written as ϕ̂when it should

be distinguished from the homotopy ϕ.) The flexible case works similarly

(ϕop)̂ = R(ϕ̂)(Xop×r) : Xop×↑I→ (X×↑I)op → Y op. (61)

(d) General and flexible homotopies have a whisker composition with maps,

as in (30). (We shall see that they cannot be concatenated: this is verified in

4.7(b), (c), for the special case X = cI.)

More formally, we are working with the standard cylinder functor Ic and the

flexible cylinder functor IF

Ic : cTop→ cTop, Ic = −×cI,

IF : cTop→ cTop, IF = −×↑I,
(62)

supplying the category cTop with structures that will be investigated in a sequel.

(e) Within flexible c-spaces, both general and flexible homotopies coincide

with the homotopies of d-spaces. The second point is obvious, the first

comes from Corollary 2.6: if X and Y are flexible, a general homotopy

ϕ : X×cI→ Y amounts to a map defined on (X×cI)̂ = X×↑I.

We now want to form the fundamental category of a c-space.

4.2 Concatenation of c-paths

(a) The concatenation of general paths is formalised in a slightly more com-

plex way than for d-spaces (in 3.2), because of the failure of the path-splitting

property.

The standard concatenation pushout of c-spaces is realised as cJ, the

two-jump structure on the euclidean interval [0, 1] (recalled in 1.3(c))

{∗}
∂+

//

∂−

��

cI

c−

��

c−(t) = t/2,

c+(t) = (t+ 1)/2.

cI
c+

// cJ

(63)
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Now, given two maps a′, a′′ : cI → X such that a′∂+ = a′′∂−, we get

a map a : cJ → X such that ac− = a′, ac+ = a′′, which ‘is’ also a path

cI→ X , because cI has a finer structure.

More formally, we can introduce the concatenation map κ : cI → cJ, a

reshaping, and define a′ ∗ a′′ = aκ : cI→ X .

This procedure is not infrequent in homotopy theory. For instance, chain com-

plexes of abelian groups have a similar behaviour: pasting two copies of the interval

(or a cylinder) yields a different object, related to the former by a concatenation

map (cf. [G3], Section 4.4, where we mostly work with the cocylinder). The same

happens in Cat, whose two-jump interval is the ordinal 3.

(b) The problem here is that the pushout (63) need not be preserved by a

functor X×− : cTop→ cTop.

Trying to adapt the proof of Proposition 3.3 to the category cTop and this

pushout, we note that:

- case (i) still holds: here it can only occur for a c-map h : cI→ cI constant

at 0 (resp. 1), and then 2h (resp. 2h− 1) is the same map,

- case (ii) fails: the argument only works if the path a : cI → X can be

splitted as a = a′ ∗ a′′.

(c) Finally, we have proved that: if X is a flexible c-space, the functor X×−
(or equivalently the functor −×X) preserves the pushout (63), in cTop.

We shall use the fact that the product by ↑I works, using flexible homo-

topies of general paths. (In this case the preservation of all colimits already

follows from ↑I being exponentiable in cTop, by Theorem 3.9(b).)

4.3 Double paths and 2-paths

(a) A map H : cI×↑I → X represents a flexible homotopy between two

general paths H(1×∂α) : cI×{∗} → X

H : a→ b : cI→ X, H(−, 0) = a, H(−, 1) = b. (64)

H will be called a hybrid double path, as it is parametrised on the hybrid

square cI×↑I; the latter is less fine than cI2, and gives a stronger condition

on H .
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(b) In particular, a hybrid 2-path is a map H : cI×↑I→ X which is constant

on the vertical faces of the square; it will be written as H : a →2 b : x → y,

where the c-paths a and b are its horizontal faces: see figure (39).

(c) Marginally, we also consider general double paths H : cI2 → X; such a

map gives a general 2-path H : a→2 b : x→ y if the vertical facesH(α,−)
are constant.

(d) All these notions extend the corresponding ones for dTop: if X is a d-

space

- a general path cI→ X is the same as a d-path ↑I→ X (since (cI)̂ = ↑I),

- a hybrid 2-path cI×↑I → X is the same as a 2-path ↑I
2
→ X (because

(cI×↑I)̂ = ↑I
2
, by 2.6).

(e) A homotopy ϕ : f → g : X → Y will be said to be strict if it is constant

at each flexible point x ∈ X: the path ϕ(x,−) : f(x) → g(x) is a trivial

loop in Y . Then f and g have the same restriction f0 = g0 : |X|0 → |Y |0 to

the flexible supports.

This notion is of interest if the c-space X has few flexible points, while it

gives a trivial homotopy if X is a d-space. In particular, a strict (resp. strict

flexible) homotopy between c-paths is the same as a 2-path (resp. hybrid

2-path).

Strict homotopies will be important for border flexible c-spaces, in Part

III.

4.4 Complements

Let H : cI×↑I→ X be a hybrid 2-path between c-paths a, b : x→ y.

(a) At any t ∈ ↑I (always a flexible point) we get an intermediate c-path

Ht = H(−, t) : cI→ X, Ht : x→ y, (65)

that varies continuously (in the path space X I) from H0 = a to H1 = b.
These paths cover ImH , in the sense that ImH =

⋃
t ImHt. This proves

that a hybrid 2-path H between c-paths x→ y satisfies

ImH ⊂ |X(x, y)|, (66)
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where X(x, y) denotes the c-subspace of X formed by the union of the im-

ages of all c-paths x→ y in X .

(b) On the other hand, the only flexible points of cI are the endpoints, where

we get ex and ey. At any other s ∈ cI we get a topological path H(s,−) :
a(s) → b(s), which is actually increasing for the extended path preorder

x � x′ of X (determined by the existence of a generated path x→ x′ in X̂ ,

see I.1.7(c)).

In fact the hybrid double path H ‘is’ also a d-map (cI×↑I)̂ → X̂ , and

(cI×↑I)̂ = ↑I
2

(by 2.6), so that H(s,−) ‘is’ a d-map ↑I→ X̂ .

(c) Let x, y be two flexible points of the c-space X . The subspace X(x, y)
covered by the c-paths x→ y ofX gives a functor ↑Π1(X(x, y))→ ↑Π1(X)
which is bijective for the arrows x→ y.

Surjectivity is obvious. Injectivity is a trivial consequence of (66): every

hybrid 2-path between c-paths x→ y has image in X(x, y).

(d) An easy construction shows that a general 2-path H : cI2 → X be-

tween c-paths x → y also has a continuous family of intermediate paths

Hwt : cI→ X , which vary from Hw0 = a ∗ ey to Hw1 = ex ∗ b, and cover

ImH . Therefore, property (66) is still satisfied.

4.5 The concatenation of hybrid double paths

Hybrid double paths have a horizontal concatenationH ∗1K, and no vertical

concatenation.

(a) Horizontal concatenation. The concatenation pushout (63) is preserved

by the product by ↑I, a flexible c-space, as we have seen in 4.2(c)

cI
∂+×1 //

∂−×1

��

cI×↑I

c−×1

��
cI×↑I

c+×1
// cJ×↑I

(67)

Given two horizontally consecutive hybrid double paths H,K : cI×↑I
→ X , this pushout gives a map L : cJ×↑I → X . Using the reshaping

κ′ = κ×i : cI×↑I → cJ×↑I, we define the horizontal pasting of H and K

469 



M. GRANDIS THE TOPOLOGY OF CRITICAL PROCESSES, II

as the composed map

H ∗1 K = Lκ′ : cI×↑I→ X. (68)

(b) There is no vertical concatenation of hybrid double paths: this is proved

in 4.7(b).

(c) The existence of a hybrid 2-path a →2 b in X is a reflexive relation

(between paths in X , with the same endpoints), consistent with path con-

catenation by the horizontal concatenation (a).

Transitivity fails, as stated in (b), but this can be overcome: we write as

a′ �2 a
′′ the preordering spanned by the previous relation: there exists a

finite sequence a′ →2 a1 →2 a2 ... →2 a
′′ of hybrid 2-paths. We write as

a′∼ 2 a
′′ the equivalence relation, called flexible 2-equivalence, spanned by

the latter (or by→2): there exists a finite sequence

a′ −→2 a1 2←− a2 ... −→2 a′′

of hybrid 2-paths, forward or backward. Both these relations are consistent

with concatenation.

A class of paths [a] up to 2-equivalence will be a class of this equivalence

relation, and an arrow of the fundamental category of X , in 5.1.

(d) The failure of transitivity is not a real problem here: in any case we

must use the equivalence relation generated by the relation a′ →2 a
′′, and it

makes little difference whether the latter is transitive or not. (It will make

a difference in the general theory of homotopies, where we do not want to

miss direction: see Part III.)

On the other hand, the failure of point (a) would have been crucial: the

congruence of categories generated by a relation between parallel arrows

which is not consistent with composition involves all the objects, and is too

‘uncontrolled’ to allow non-trivial calculations.

(e) If we only work on cI, by general homotopies of general paths, horizontal and

vertical concatenation both fail (they are equivalent, by symmetry): general double

paths, parametrised on cI2, are not closed under concatenation. This is proved in

4.7(c).

On the other hand, if we only work on ↑I, by flexible homotopies of flexible

paths, we just get the fundamental category ↑Π1(FlX) of the flexible part of X: in

fact a map ↑I → X is a d-path in FlX , and a map ↑I
2
→ X is a double d-path in

FlX .
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4.6 Lemma

Let a : x→ y be a path in the c-space X .

(a) If ρ, σ : I → I are global reparametrisations and ρ 6 σ, there exists a

hybrid 2-path:

aρ →2 aσ. (69)

(b) In particular, using the global reparametrisations ρ, σ : I → I of (13)

and (14), we get hybrid 2-paths of acceleration and associativity:

ex ∗ a →2 a, a →2 a ∗ ey, (70)

a ∗ (b ∗ c) →2 a ∗ b ∗ c, a ∗ b ∗ c →2 (a ∗ b) ∗ c. (71)

(c) For any global reparametrisation ρ : I→ I there exist hybrid 2-paths

aρ′ →2 a →2 aρ
′′, aρ′ →2 aρ →2 aρ

′′ (72)

proving that a ∼ 2 aρ.

Proof. It is a consequence of Lemma 3.7, once we verify that the increasing

interpolation Φ: ρ→2 σ constructed there

Φ: I2 → I, Φ(s, t) = (1− t)ρ(s) + tσ(s), (73)

is a map cI×↑I→ cI.
In fact, the hybrid square cI×↑I has three kind of controlled paths cI→

cI×↑I (see I.2.7(c)), of the form 〈0, v〉, or 〈1, v〉, or 〈u, v〉, with increasing

functions u, v and u surjective

cI×↑I

44 44
OO

OO (74)

Now the functions Φ(0, v(t)) and Φ(1, v(t)) are constant at 0 and 1, re-

spectively, while Φ(u(t), v(t)) is increasing from 0 to 1.
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4.7 Concatenating double paths

The concatenation of double paths in dTop was recalled in 3.4. We end this

section by analysing what happens in cTop for hybrid, general and flexible

double paths. The particular case of 2-paths is dealt with in 4.8.

(a) (Horizontal concatenation of hybrid double paths) This case has already

been discussed in 4.5(a): we have a concatenation pushout (67), which al-

lows us to define the horizontal concatenation H ∗1 K of horizontally con-

secutive hybrid double paths.

(b) (Vertical concatenation of hybrid double paths) In the following pushout,

P is a c-structure on I2 generated by the structural maps 1×c±

cI
1×∂+

//

1×∂−

��

cI×↑I

1×c−

��
cI×↑I

1×c+
// P

(75)

This structure is not cI×↑I (in fact, it is strictly finer): we prove below,

in point (e), that the diagonal of the square is not controlled in P . Therefore:

- the interval cI is not exponentiable in cTop, since the functor cI×− does

not preserve the concatenation pushout (31) (of the d-interval),

- hybrid double paths are not closed under vertical concatenation (within

topological double paths), and flexible homotopies cannot be concatenated

in cTop.

Indeed, the structural maps cI×↑I → P are vertically consecutive hybrid dou-

ble paths, and flexible homotopies (of general paths). Their ‘topological’ vertical

concatenation (in Top) is idP , which is not a c-map cI×↑I→ P .

(c) (Concatenation of general double paths) By symmetry it is sufficient to

consider the vertical case. The following pushout gives a c-structure Q on

the square, different from cI2

cI
1×∂+

//

1×∂−

��

cI2

1×c−

��
cI2

1×c+
// Q

(76)
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Again, the diagonal of the square is not controlled in Q, which is finer

than P in pushout (75), as cI2, in the present pushout, is finer than cI×↑I.

We also note that the concatenation pushout cJ, in (63), is not preserved by the

cylinder functor −×cI: in fact, cJ×cI is distinct from Q, by the same reason.

As a consequence:

- general double paths are not closed under vertical concatenation (within

topological double paths),

- general homotopies cannot be concatenated in cTop.

(d) (Concatenation of flexible double paths) Flexible squares have a horizon-

tal and vertical concatenation in cTop. Indeed a c-map ↑I
2
→ X is the same

as a d-map ↑I
2
→ FlX , and we are just considering d-squares in the flexible

parts.

(e) Finally we verify that, in the c-space P of pushout (75), the diagonal map

d of I2 is not a c-path

d

I2

p′ p′′

a

b

c

P
00 00

00 00
?? // // (77)

In fact any c-path (0, 0) → (1, 1) in P , being generated by the c-paths

of the lower and upper half, must go through the point p′ = (0, 1/2) (as a in

the right figure above), or p′′ = (1, 1/2) (as b), or both (as c).

4.8 General 2-paths

We have seen that general double paths are not closed under horizontal or

vertical concatenation (within topological double paths), but the argument is

not really conclusive for our goal: we have to show that general 2-paths are

not closed under horizontal concatenation.

We start from the following pushout (symmetric with respect to (76))

cI
∂+×1 //

∂−×1

��

cI2

c−×1

��
cI2

c+×1

// Q′

(78)
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We take the quotient Q′/R, modulo the equivalence relation that col-

lapses each of the thick segments to a point, in the left figure below

a b

a′ b′

Q′/R

a

b′

Q′/R// // // //

// // // //

KK KK KK KKOOOO
(79)

Now c−×1 and c+×1 induce general 2-paths a →2 a
′ and b →2 b

′,

respectively. Topologically, their horizontal concatenation is the canonical

projection p : Q′ → Q′/R, and this is not a c-map cI2 → Q′/R, by an

argument similar to that of (77).

The diagonal d : cI → cI2 is projected to a path (0, 0) → (1, 1) in the support

of Q′/R, which is not a c-path: to qualify as such it should admit as a restriction

either a or b′ or both, as shown in the right figure above.

4.9 Trivial loops

Finally we want to make clear a point concerning the definition of c-spaces in

1.1: if we replace axiom (csp.0) about constant paths with (dsp.0) (all trivial

loops are selected), we get a structure – let us say a c-space – where our con-

struction of the fundamental category fails, by the failure of the horizontal

concatenation of hybrid double paths, in 4.7(a).

In fact, the standard c-interval cI is the euclidean interval [0, 1] with the

new structure generated by the identity mapping i: the selected paths are the

surjective increasing maps I→ I and all the constant ones.

The new hybrid square has two kind of c-paths: the increasing vertical

paths t 7→ (s0, v(t)) and all increasing paths with surjective first projections.

Now the double path Φ: I2 → I defined in (73) is not a map cI×↑I→ cI:
on a vertical path t 7→ (s0, t) in cI×↑I we get a path Φ(s0,−) : I → I

from ρ(s0) to σ(s0), which – generally – is not selected in cI: it is neither

surjective nor constant.
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5. The fundamental category of controlled spaces

We introduce the fundamental category ↑Π1(X) of a c-space, extending the

fundamental category of a d-space – and therefore the fundamental groupoid

Π1(−) of a topological space.

There are also fundamental categories ↑Π1(FlX) and ↑Π1(X̂) induced

by the coreflector and the reflector of d-spaces, and linked to the previous

one by obvious natural transformations. But these ‘induced’ functors miss

the critical aspects of c-spaces.

The invariance of ↑Π1 up to flexible homotopies, proved in Theorem 5.4,

will be linked to directed homotopy equivalence of categories [G3], in Part

III.

After Theorem 5.3 we already have some of the main ingredients to com-

pute the fundamental category of a c-space; one can read at that point the

elementary computations of ↑Π1(X) in 5.9 (which only marginally rely on

Theorem 5.8).

5.1 Definition (The fundamental category of a c-space)

The fundamental category ↑Π1(X) of a controlled space consists of the fol-

lowing items:

- the vertices are the flexible points of X ,

- the arrows are the equivalence classes [a] : x → y of general paths

a : x→ y, up to the 2-equivalence relation a′ ∼ 2 a
′′ spanned by the hybrid

2-paths (see 4.5(c)),

- the composition is induced by concatenation of general paths, and the

identities are induced by trivial loops

[a][b] = [a ∗ b], 1x = [ex]. (80)

The operation is well defined because 2-equivalence is consistent with path con-

catenation. Identities and associativity follow from hybrid 2-paths of acceleration

and associativity, in Lemma 4.6.

A d-map f : X → Y produces a functor between small categories

f∗ = ↑Π1(f) : ↑Π1(X)→ ↑Π1(Y ),

f∗(x) = f(x), f∗[a] = [fa] (x ∈ |X|0),
(81)
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and we have a functor
↑Π1 : cTop→ Cat, (82)

which extends ↑Π1 : dTop→ Cat, by 4.3(d).

At a flexible point x0 of the c-space X , the endoarrows of ↑Π1(X) form

the fundamental monoid

↑π1(X, x0) = ↑Π1(X)(x0, x0). (83)

Extending a definition of d-spaces ([G3], 3.2.7), we say that a c-space X
is 1-simple if its fundamental category is a preorder (i.e. the category associ-

ated to a preordered set). This means that every hom-set ↑Π1(X)(x, x′) has

at most one arrow: there is one if there is a c-path x → x′ in X , and none

otherwise. We shall see that many basic c-spaces are of this kind.

5.2 Induced fundamental categories

We can also use in cTop the homotopy theory of dTop, through the reflector

(ˆ) : cTop→ dTop and the coreflector Fl : cTop→ dTop.

We obtain thus two ‘induced’ functors, the fundamental category of gen-

erated paths ↑Π1(X̂)

↑Π1(ˆ) : cTop→ Cat, X 7→ ↑Π1(X̂), (84)

and the fundamental category of flexible paths ↑Π1(FlX)

↑Π1Fl : cTop→ Cat, X 7→ ↑Π1(FlX). (85)

We recall that the support of FlX is the subspace |X|0 of flexible points,

which are the vertices of the categories ↑Π1(FlX) and ↑Π1(X).
The canonical embeddings FlX → X → X̂ (the counit and unit of the

adjunctions) give two natural transformations, with components

↑Π1(FlX) −→ ↑Π1(X) −→ ↑Π1(X̂). (86)

If X is flexible we get two identities. These functors need not be faithful

(see Part III), but Theorem 5.3(b) shows an important case where the second

is a full embedding.
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As we shall see in 5.9, these three categories are strongly different on

rigid objects. Both the ‘induced’ functors ↑Π1(FlX) and ↑Π1(X̂) are unable

to analyse the critical features of c-spaces: the former leaves out the non-

flexible paths and the latter makes all paths flexible.

For every c-space X , the underlying topological space |X| has a natural

c-structure, and the reshapingX → |X| gives another natural transformation
↑Π1(X)→ Π1(|X|) with values in the ordinary fundamental category of the

support. There is thus a commutative diagram

↑Π1(FlX) //

��

↑Π1(X) //

��

↑Π1(X̂)

��
Π1(|X|0) // Π1(|X|) Π1(|X|)

(87)

5.3 Theorem (Weak flexibility and fundamental category)

(a) If X is full in the c-space X ′ (see 2.1(a)), ↑Π1(X) is the full subcategory

of ↑Π1(X
′) with vertices in |X|0.

(b) If the c-space X is preflexible (i.e. full in the generated d-space X̂ , see

2.1(b)) the component ↑Π1(X) → ↑Π1(X̂) is a full embedding. In other

words ↑Π1(X) is the full subcategory of ↑Π1(X̂) with vertices in |X|0.

Proof. It is sufficient to prove (a). Let x, y be two flexible points of the

c-space X . The subspace X(x, y) covered by the c-paths x → y of X
coincides with X ′(x, y), and the component ↑Π1(X

′(x, y)) → ↑Π1(X
′) is

bijective for the arrows x→ y, by 4.4(c).

5.4 Theorem (Homotopy invariance, II)

(a) The fundamental category of c-spaces is invariant in the following sense:

a flexible homotopy ϕ : f → g : X → Y of c-spaces induces a natural

transformation

ϕ∗ : f∗ → g∗ : ↑Π1(X)→ ↑Π1(Y ),

ϕ∗(x) = [ϕx] : f(x)→ g(x), ϕx = ϕ̂(x×i) : {∗}×↑I→ Y,
(88)

where, for every x ∈ |X|0, ϕx is a flexible path in Y , from f(x) to g(x).
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(b) If ϕ : f → g is a strict flexible homotopy (see 4.3(e)), ϕ∗ is the identity of

f∗ = g∗.

(c) A whisker composition ψ = k◦ϕ◦h : kfh → kgh of flexible homo-

topies and maps is taken to the corresponding whisker composition of natu-

ral transformations and functors.

Proof. (a) Naturality works as in Theorem 3.6(a), for d-spaces. We have

only to check that, in the present setting, the three double paths used in (47)

are maps cI×↑I → Y , that is flexible double paths. (Of course this would

not work for a general homotopy.)

First, the double path ϕa = ϕ(a×i) is a composite cI×↑I→ X×↑I→ Y .

Secondly, the double path ϕxg
+ is a composite ↑I

2
→ ↑I → Y , because ϕx

is a flexible path; but cI×↑I is finer than ↑I
2

and we are done. The third

double path ϕx′g− works in the same way.

(b) An obvious consequence. (c) By the same argument as in 3.6(b).

5.5 Theorem

(a) If a is a flexibly reversible c-path in the c-space X (see 4.1), the arrows

[a] and [ar] are inverse to each other in ↑Π1(X).
This need not be true if a is merely flexible and reversible: see Part III.

(b) If ϕ : f → g : X → Y is a flexibly reversible homotopy of c-spaces (see

4.1), the natural transformation ϕ∗ : f∗ → g∗ is invertible.

More generally, the same holds if ϕ is a flexible homotopy of c-spaces

and, for every x ∈ X , the c-path ϕx = ϕ̂(x×i) : {∗}×↑I → Y is flexibly

reversible in Y .

Proof. The path a : x→ x′ is supposed to be a map a : I∼ → X . The double

paths H(s, t) = a(s ∧ t) and K(s, t) = a((1− s) ∧ t)

Hex a K ex

ex ex

a ar

H = ag+,

K = ag+(r×1),
(89)

are maps I∼2 → I∼ → X , and therefore cI×↑I → X , that is hybrid double

paths.
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The latter have a horizontal concatenation H ∗1 K, which is a hybrid

2-path and proves that (a ∗ ar)∼ 2 ex. Applying the same result to the path

ar : x′ → x, we get (ar ∗ a)∼ 2 ex′ .

(b) An obvious consequence of Theorem 5.4 and the previous point: in the

given hypotheses each component ϕ∗(x) = [ϕx] : f(x) → g(x) of the natu-

ral transformation ϕ∗ is invertible.

5.6 Theorem (Products and sums)

(a) The functor ↑Π1 : cTop→ Cat preserves arbitrary products and sums.

(b) A product or sum of a family (Xi) of 1-simple c-spaces is 1-simple. Con-

versely, if their product or sum is 1-simple, all Xi are also – provided there

is no empty factor in the case of the product.

Proof. (a) One can apply the same argument that works in Top (and dTop).

In a cartesian product of c-spaces, paths and hybrid double paths are detected

by the cartesian projections. In a sum, they live in one ‘component’.

(b) A consequence of (a). In fact, property (b) holds in Cat, interpreting

‘1-simple’ as being a preorder. Moreover, preorders form a reflective and

coreflective subcategory of Cat, so that limits and colimits agree.

(In the elementary homotopy theory of categories described in [G3], 1.1.6, the

fundamental category of a category is the category itself.)

5.7 Covering maps

(a) The theory of covering maps for topological spaces, a classical topic of

Homotopy Theory, can be found in many books on Algebraic Topology, like

[Ha, HiW, Hu, Sp].

We recall that a map p : X → Y of topological spaces is called a covering

map, or a covering projection, if every point y ∈ Y has an open neighbour-

hood which is ‘evenly covered’ by p: this means that the preimage p−1(U)
is the disjoint union of open subsets of X , each of which is mapped homeo-

morphically onto U by p. X is the total space, or covering space, of p; Y is

the basis; Fy = p−1{y} is the fibre at y ∈ Y – a discrete subspace of X . The

map p is a surjective local homeomorphism, and an open map.
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A classical example is the exponential map, forming the ‘universal cov-

ering’ of the circle (in the complex plane)

p : R→ S
1, p(t) = e2πit. (90)

(b) Here we only need the basic results on the homotopy lifting property of

a covering map p : X → Y . (For a proof without prerequisites one can see

[G4], Theorem 6.2.9.)

(i) For every path b : I → Y in the basis and every point x0 in the fibre at

b(0), there is a unique lifting a : I→ X (i.e. pa = b) starting at x0.

(ii) For every 2-path K : b →2 b
′ (a map K : I2 → Y ) and every point

x0 in the fibre at b(0) = b′(0), there is a unique lifting H : I2 → X (i.e.

pH = K) to a 2-path a→2 a
′ of paths starting at x0. (The latter are liftings

of the paths b, b′.)

Formally, property (i) is a consequence of (ii); nevertheless, stating it is

useful.

(c) Now, we say that a map p : X → Y of c-spaces is a covering map of

c-spaces if it is a covering map of topological spaces and the path-lifting

property (i) holds within c-paths: every lifting of a c-path of the basis is a

c-path of the total space.

Then the homotopy-lifting property (ii) automatically holds for any hy-

brid 2-path K : cI×cJ→ Y , because its topological lifting H : I2 → |X| is
a c-map cI×cJ→ X if and only if every c-path cI → cI×cJ→ Y is lifted

to a c-path of X .

We also note that the flexible support of X is the union of the fibres of

the flexible points of Y .

Our prime examples are the exponential c-maps

p : cR→ cS1, p(t) = e2πit,

pn : cnR→ cnS
1, pn(t) = e2πit.

(91)

This will be applied in 5.9 to determine ↑Π1(cS
1) and ↑Π1(cnS

1).

The second map can be replaced with p′n : cR→ cnS
1, p′n(t) = e2nπit.

A covering map of d-spaces is similarly defined, using d-maps and d-

paths.
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5.8 Theorem

Let p : X → Y be a covering map of topological spaces.

(a) Let x0 ∈ X , y0 = p(x0) and y ∈ Y . The functor p∗ : Π1(X) → Π1(Y )
induces a bijection of sets

p∗ :
∑

x∈Fy
Π1(X)(x0, x) → Π1(Y )(y0, y), (92)

defined on the disjoint union of the sets Π1(X)(x0, x), for x ∈ Fy.

In other words, the functor p∗ is surjective on objects and arrows, and faithful.

The composition in Π1(Y ) is determined by that of Π1(X), as any pair of compos-

able arrows in Π1(Y ) can be lifted to a pair of composable arrows in Π1(X).

(b) For a covering map p : X → Y of c-spaces (as defined above) we have

the same result for the functor p∗ : ↑Π1(X)→ ↑Π1(Y ).

Proof. The lifting properties (i), (ii) of 5.8 imply that the mapping (92) is

surjective and injective.

In case (b), where 2-equivalence is generated by hybrid 2-paths, one

should use again the fact that all c-paths can be lifted.

5.9 Elementary calculations

Computing the fundamental category will be studied in Part III, but several

results can be simply obtained using Theorem 5.3(b) on preflexible c-spaces

(and the fundamental category of the generated d-spaces, already computed

in [G3]), or Theorem 5.8 on covering maps of c-spaces. In particular, many

basic c-spaces are 1-simple, in the sense of 5.1: their fundamental category

is a preorder; of course, the controlled circle is not.

The symbols 2,3,N,Z,R denote ordered sets and the associated cat-

egories; the ordered sets 2, 3 and D|Z| are discrete. N is the one-object

category associated to the additive monoid of the natural numbers.

(a) By Theorem 5.3(b), the fundamental categories of the preflexible c-spaces

cI, cJ, cR are the following ordered sets:

↑Π1(cI) = 2, ↑Π1(cJ) = 3, ↑Π1(cR) = Z. (93)
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For these preflexible spaces the functors (86) become inclusions of or-

dered sets:

2→ 2→ [0, 1], 3→ 3→ [0, 2], D|Z| → Z→ R. (94)

(b) The fundamental category of the directed circle ↑S1, as described in [G3],

3.2.7(d), is the subcategory of the groupoid Π1S
1 formed of the classes of

anticlockwise paths (in R2). Each monoid ↑π1(↑S
1, x) is isomorphic to the

additive monoid N of natural numbers.

Applying Theorem 5.3(b), the fundamental category of the one-stop cir-

cle cS1 amounts to the fundamental monoid at the unique flexible point x0
(the point 1 of the complex plane)

↑Π1(cS
1)(x0, x0) = ↑π1(↑S

1, x0) = N. (95)

Without using ↑Π1(↑S
1)), this is also proved by Theorem 5.8(b) applied

to the exponential map cR → cS1. Two c-loops a, b in cS1 are 2-equivalent

if and only if they have the same length 2kπ (in radians), if and only if they

both turn k times (k > 0) around the circle, anticlockwise.

(c) More generally, the fundamental category of the preflexible n-stop circle

cnS
1 (see (11)) is the full subcategory cn of the fundamental category of

(cnS
1)̂ = ↑S1 = ↑R/Z on n flexible points, the vertices [i/n] (for i =

0, ..., n− 1) of an inscribed n-gon.

Again, this result can also be obtained using the covering map of c-spaces

pn : cnR→ cnS.

(d) Applying Theorem 5.6 on cartesian products, we get the following fun-

damental categories, which are (partially) ordered sets

↑Π1(cI
n) = 2

n, ↑Π1(cJ
n) = 3

n,

↑Π1(cI×cJ) = 2×3, ↑Π1(cR
n) = Z

n.
(96)
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