


Cahiers de Topologie et Géométrie Différentielle Catégoriques 

Directeur de la publication: Andrée C. EHRESMANN, 
Faculté des Sciences, Mathématiques LAMFA 

33 rue Saint-Leu, F-80039 Amiens. 

 
Comité de Rédaction (Editorial Board) 

Rédacteurs en Chef (Chief Editors) : 
Ehresmann Andrée, ehres@u-picardie.fr 
Gran Marino, marino.gran@uclouvain.be 

Guitart René, rene.guitart@orange.fr 

Rédacteurs (Editors) 

Adamek Jiri,  
J.Adamek@tu-bs.de  
Berger Clemens, 
clemens.berger@unice.fr  

†  Bunge Marta 
Clementino Maria Manuel,   
mmc@mat.uc.pt 
Janelidze Zurab,  
zurab@sun.ac.za  
Johnstone Peter, 
P.T.Johnstone@dpmms.cam.ac.uk 
Kock Anders, kock@imf.au.dk 
 
 
Les "Cahiers" comportent un Volume 
par an, divisé en 4 fascicules trimes-
triels. Ils publient des articles originaux 
de Mathématiques, de préférence sur la 
Théorie des Catégories et ses applica-
tions, e.g. en Topologie, Géométrie 
Différentielle, Géométrie ou Topologie 
Algébrique, Algèbre homologique…  
Les manuscrits soumis pour publica-
tion doivent être envoyés à l'un des 
Rédacteurs comme fichiers .pdf. 

Depuis 2018, les  "Cahiers" publient 
une Edition Numérique en Libre 
Accès,  sans charge pour l'auteur : le 
fichier pdf du fascicule trimestriel est, 
dès parution, librement téléchargeable 
sur : 

Lack Steve, steve.lack@mq.edu.au 
Mantovani Sandra, 
sandra.mantovani@unimi.it 
Porter Tim, t.porter.maths@gmail.com 
Pradines Jean, pradines@wanadoo.fr  
Pronk Dorette, 
pronk@mathstat.dal.ca  
Street Ross, ross.street@mq.edu.au 
Stubbe Isar, 
Isar.stubbe@univ-littoral.fr 
Vasilakopoulou Christina, 
cvasilak@math.ntua.gr 

 

The "Cahiers" are a quarterly Journal 
with one Volume a year (divided in 4 
issues). They publish original papers in 
Mathematics, the center of interest 
being the Theory of categories and its 
applications, e.g. in topology,  differen-
tial geometry, algebraic geometry or 
topology, homological algebra… 
Manuscripts submitted for publication 
should be sent to one of the Editors as 
pdf files. 

From 2018 on, the "Cahiers" have also 
a Full Open Access Edition (without 
Author Publication Charge): the pdf file 
of each quarterly issue is immediately 
freely downloadable on:  

https://mes-ehres.fr 

et .http://cahierstgdc.com/ 



VOLUME LXIV – 4, 4ème trimestre 2023 

 
 

SOMMAIRE 
 

E. CHENG & T. TRIMBLE, The universal operad acting on loop 
  spaces, and generalisations     363          
 
BEZHANISHVILI, CARAI, AND MORANDI, A new proof of 
 the Joyal-Tierney Theorem                              425
          
Tobias LENZ, Categorical models of unstable G-global 
 Homotopy Theory             439
          
 
TABLE DES MATIERES du Volume LXIV (2023)         482
    
   



THE UNIVERSAL OPERAD ACTING

ON LOOP SPACES, AND

GENERALISATIONS

Eugenia CHENG and Todd TRIMBLE

Résumé. Dans cet article, nous étudions l’opérade globulaire utilisée par

Batanin pour définir l’ω-groupoı̈de fondamental d’un espace. Nous iden-

tifions une propriété universelle de cette opérade et nous construisons un

cadre catégoriel général des opérades universelles agissant sur une structure

donnée. Un exemple motivant est l’opérade universelle agissant sur les es-

paces de lacets. D’autres exemples comprennent des versions n-dimensionelles

de l’ω-groupoı̈de fondamental—la version à homotopie près, la version en-

richie dans les espaces topologiques, ou tout simplement la version tronquée.

Identifier la propriété universelle de l’opérade de Batanin nous aide à trouver

d’autres opérades convenables à reconnaı̂tre les ω-groupoı̈des fondamentaux.

Nous espérons que ces opérades non-universelles et plus petites nous permet-

tent de démontrer que les ω-groupoı̈des définis par les opérades globulaires

modélisent les types d’homotopie.

Abstract. In this paper we analyse the globular operad used by Batanin to de-

fine the fundamental ω-groupoid of a space. We identify a universal property

of this globular operad and give a general categorical framework for universal

operads acting on structures. A motivating example is the universal operad

acting on loop spaces. Other examples include n-dimensional versions of

the fundamental ω-groupoid—up-to-homotopy, enriched in spaces, or sim-

ply truncated. Identifying the universal property of Batanin’s operad helps

us to find other suitable operads for recognising fundamental ω-groupoids.

The hope is that these smaller, non-universal operads will enable a proof that
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globular operadic ω-groupoids model homotopy types.

Keywords. Operad, globular operad, fundamental ω-groupoid, loop spaces,

enriched categories, homotopy types.
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Introduction

One of the earliest motivations for studying higher-dimensional algebra was

Grothendieck’s suggestion of modelling homotopy types by “ω-groupoids”

[8]. There have been many different approaches to this, as there are many

different approaches to defining ω-groupoids. One approach is first to define

ω-categories and then to pick out the ω-groupoids among them as those in

which every element is “weakly invertible”. This is in contrast to the “direct”

approach in which non-invertible elements are never considered, for example
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with the notion of Kan complexes. This and other simplicial approaches (for

example [17, 16, 15]) are “non-algebraic” in that they do not specify all the

operations of the algebraic structure. Some other ways of thinking about this

are:

• they demand that composites exist rather than specifying them, thus

• they cannot be defined as algebras for a monad or models for an alge-

braic theory, and

• they can be thought of as nerves of algebraic structures, rather than

algebraic structures themselves.

A different family of approaches seeks to specify the operations of an ω-

groupoid explicitly, using operads. Operads achieved great success in the

study of iterated loop spaces, as a tool for parametrising multiplication of

loops [13]. This multiplication is associative and unital only up to homotopy;

a similar phenomenon occurs for ω-groupoids but is generalised to all types

of composition at every dimension.

One reason that operads are so efficacious for the study of loop spaces is

that we can pick combinatorially convenient operads for different situations;

the theory tells us how the resulting structures on loop spaces are equivalent.

The operads that are useful in practice (for example the little disks operad)

often do not have good universal properties, as the universal ones are much

too large for practical use.

By contrast, Category Theory tends to seek objects with nice universal

properties. One of the aims of this paper is to show that the operads used by

Trimble [18] and Batanin [1] in their definitions of n-category have a nice

universal property. We take the view that the main purpose of identifying

this universal property is to help us find smaller, non-universal operads for

practical use. One such “practical use” is the modelling of homotopy types.

There are (at least) two ways of using operads in higher-dimensional

algebra. Trimble proceeds inductively, using a classical operad at each di-

mension. Batanin on the other hand parametrises all dimensions at once,

using a more general form of operad called “globular operad”, in which the

arities of operations are no longer just natural numbers but “globular pasting
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diagrams” such as

Note that although Trimble’s definition, being inductive, can a priori only

achieve finite n dimensions, a coinductive argument may be used to provide

the ω-dimensional version [7].

In both cases, general ω-categories are defined, with the ω-groupoids

being identified among them afterwards. This is analogous to the fact that

while certain operads may be used to recognise loop spaces, it is not the case

that all the algebras for such operads are loop spaces—only those among

them that are group-like.

Batanin’s definition, or at least, the variant we shall use, says an ω-

category is a globular set equipped with the structure of an algebra for any

contractible globular operad. Then an ω-groupoid is an ω-category in which

every cell is weakly invertible (we will recall the precise definitions in Sec-

tion 4.1). Thus to give the fundamental ω-groupoid of a space X we must

1. identify its underlying globular set UX ,

2. find a contractible globular operad that acts on UX , and

3. show that every cell is weakly invertible.

Step (1) is straightforward—the n-cells of UX are found essentially by map-

ping the topological n-ball Bn into X (with a little care over sources and

targets).

Batanin achieves (2) by identifying a particular globular operad K that

acts naturally on the underlying globular set of any space. Note that “acting

naturally” here means two things—the action is canonical, but also, more

technically, the action is natural in X .

Essentially, given an n-pasting diagram α, the operations of K of arity α
are the boundary-preserving maps from Bn to the geometric realisation of α,

where “boundary-preserving” must be carefully interpreted to take into ac-

count all dimensions of boundary. The following facts are then immediately

true.

1. For any space X , UX is a K-algebra.
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2. Any K-algebra is an ω-category but not necessarily an ω-groupoid.

3. There might be ω-categories that are not K-algebras.

Batanin further shows that for any space X , UX is a K-algebra in which

every cell is weakly invertible (in a sense to be made precise). That is, it is

an ω-groupoid.

Crucially, there are other globular operads that act naturally on all glob-

ular sets UX (that is, naturally in X), and we will prove the following result

as an instance of the main theorem.

Theorem 1. A natural action of a globular operad P on underlying globular

sets UX is precisely given by a map P K of globular operads.

This result exhibits the action of K as universal (in fact terminal) among

such operad actions. Another way of saying this is: “Any such natural action

factors uniquely through the canonical action of K.”

Note that U extends to a functor Top GSet (where we write GSet

for the category of globular sets and their morphisms), and the naturality of

the actions in question means that in effect we should think of our operads as

acting on the functor U . In fact we prove the universality result in general for

suitable functors U : S G. Other examples are as follows; here n-GSet

denotes the category of n-dimensional globular sets.

1. Loop spaces, using the functor

Ω : Top∗ Top

X Top∗(S
1, X)

2. Fundamental n-groupoids, given by the functor

Πn : Top n-GSet

which agrees with U at all dimensions less than n, and takes homotopy

classes at dimension n (see Section 4.3 for a precise definition).

3. The “incoherent” version of Πn, a functor

Un : Top n-GSet

which simply truncates UX to n dimensions.
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4. The “path space” version of Πn, a functor

Pn : Top Top-n-Gph.

Here Top-n-Gph denotes the category of “n-graphs enriched in Top”;

we will treat these as n-graphs in Top where for all k < n the space of

k-cells is set-like. Then Pn agrees with U (and Πn at all dimensions

less than n); for k = n we have a space of k-cells of arity α, given

by the space of boundary-preserving maps from Bk to the geometric

realisation of α, where at lower dimensions we took the set of such

maps.

In each case we have a cartesian monad T on G giving us a pertinent

notion of T -operad, and the main theorem gives us a universal T -operad EU

acting on the functor in question. In (1), T is the free topological monoid

monad (giving rise to classical operads in Top); for (2) and (3) we use

the free strict n-category monad, and for (4) we use the free topologically-

enriched n-category monad.

Note that symmetric operads do not fit into this framework as the free

commutative monoid monad is not cartesian; it is however weakly cartesian,

so symmetric operads do fit into the more general framework of Weber [19].

A direct examination of symmetric operads acting on loop spaces yields a

universal symmetric operad analogous to the non-symmetric one, suggest-

ing that the main theorem could be extended to Weber’s weakly cartesian

framework. However this is beyond the scope of this work.

Once we have identified this simple universal property, we have an obvi-

ous method of finding smaller non-universal operads for the given purpose.

That is, having constructed the universal operad EU we just have to look for

any T -operad P equipped with an operad map P EU .

In the case of globular operads we can make use of the work of [4] in

which we prove that every Trimble n-category is a Batanin n-category. Part

of the proof produces a functor
{

Classical operads

acting on path spaces

} {

Globular operads

acting on ω-path spaces

}

Even the universal operad on the left yields a non-universal operad on the

right, and applying the functor to non-universal operads on the left gives fur-

ther non-universal examples on the right. We will discuss this in Section 4.4.
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The structure of this paper is as follows. In Section 1 we prove the main

universality theorem in sufficient generality to cover the several key exam-

ples to which the remainder of the paper is devoted. In Section 2 we prove

some technical results needed to address sizes issues when constructing in-

ternal homs; we are mostly working in categories of functors between large

categories, the construction of internal homs takes some care. In Section 3

we discuss operads acting on loop spaces. Among other things this serves

to emphasise the unwieldy nature of the universal operad in question, and

the importance of finding non-universal ones for calculations, as is done in

the theory of loop spaces. In Section 4 we discuss the motivating exam-

ple, globular operads for defining the fundamental ω-groupoids of spaces,

together with the various n-dimensional versions described above. We end

with a brief discussion of future work.

Note for experts

Experts who wish to read the paper quickly might wish to proceed directly

as follows.

1. The definition of EU , the universal operad acting on a functor U is

given in Definition 1.17.

2. The main theorem, giving the universal property ofEU , is Theorem 1.21.

3. The technical theorem addressing size issues is Theorem 2.4.

4. The loop space example is given in Theorem 3.3.

5. The fundamental ω-groupoid example is given in Theorem 4.8.

Terminology and notation

1. Top will denote a category of topological spaces that is complete, co-

complete and cartesian closed, for example the category of compactly

generated weakly Hausdorff spaces.

2. N will denote the natural numbers including 0.

3. By “classical operad” we will always mean non-symmetric operad.
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4. We will use the equivalent categories n-GSet and n-Gph more-or-

less interchangeably, although technically the former is defined as a

presheaf category and the latter by iterated enrichment.

5. We will write T -operads as their underlying collection (P T1)
or as their associated monad P . In other work we refer to these as

“(E, T )-operads”.

6. We will write n-Pd for the set of n-dimensional globular pasting dia-

grams (that is, the n-cells of the free strict ω-category on the terminal

globular set), and Pd for the set of all globular pasting diagrams.
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1. The main theorem

In this section we will prove the main theorem, exhibiting a universal T -

operad acting on a given functor U . There is a slight subtlety involved to

ensure that our framework can support all the examples we have in mind, as

listed in the introduction. We will need to fix some suitable categories and

functors:

• a category S with initial object; in our examples this will be Top or

Top∗;

• G a cartesian category, for example GSet, n-GSet or Top;

• a functor U : S G, for example the loop space functor or ω-path

space functor;

• a cartesian monad T on G, typically the free ω-category monad or n-

dimensional version.
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Finally we require that in the slice category [S,G]/∆T1 a particular inter-

nal hom defining the endomorphism operad on U exists, where ∆T1 denotes

the constant functor at T1. Some of the results are stated by Leinster for

G a presheaf category, or slightly weaker, for [S,G] locally cartesian closed.

(Recall that a category C is called cartesian if it has all pullbacks, and locally

cartesian closed if for all X ∈ C the slice category C/X is cartesian closed.)

In fact, either of these requirements is excessive for us, both in the sense of

being, abstractly, not necessary and in the sense of excluding the examples

we have in mind. We do not need every slice to be cartesian closed, only the

one above; in fact we don’t even need this slice to be cartesian closed as we

are only interested in one particular internal hom, the one defining the endo-

morphism operad on U . In our examples some care is needed about internal

homs because of size issues; this technical issue is resolved in Section 2, and

requires the following further conditions:

• The monad T : G G is not only cartesian but familially representable

(as happens when T is polynomial).

• The functor U : S G is a right adjoint from a cocomplete category

S to a presheaf category G, i.e., to a free cocompletion of a small cate-

gory.

When appropriate, these assumptions are adjusted to fit within an en-

riched category context; in fact our examples will only be enriched in Set or

Top, which helps the technical details go through without many changes.

Our range of examples is summed up in Table 1; for the full defini-

tions see Sections 3, 4.2 and 4.3 for loop spaces, ω-path spaces, and finite-

dimensional cases respectively.
1.1 Background

We begin with some background theory which is found in [12], but is simpli-

fied here by the fact that we are only considering operads, whereas Leinster

provides the more general theory for multicategories.

The content of the following definitions is that, given a cartesian monad

S on a cartesian category E, there is a monoidal structure on the category

E/S1 of “S-collections”, and an S-operad is a monoid in this monoidal cat-

egory. Moreover, under, suitable conditions E is enriched in E/S1 and ten-

sored over it, enabling us to define endomorphism operads and use them to

express algebra actions.
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Table 1: Examples

U S G T

loop spaces Ω Top∗ Top free Top-monoid

ω-path spaces U Top GSet free ω-category

n-truncated path spaces Un Top n-Gph free n-category

n-homotopy path spaces Πn Top n-Gph free n-category

n-topological path spaces Pn Top Top-n-Gph free Top-n-category

In all that follows, E is a cartesian category and S is a cartesian monad

on it, that is, the functor part preserves pullbacks and the naturality squares

for the unit and multiplication are pullbacks. In our examples E will either

be G or [S,G], and S will be the monad T on G or the induced monad T∗ on

[S,G] respectively.

Definition 1.1. The category of S-collections is the slice category E/S1.

There is a monoidal structure on E/S1 given as follows.
A

S1

p ⊗
B

S1

q is the

left-hand edge of the diagram:
.

SA B

S1S21

S1

S! Sq
Sp

µ1

Note that we will sometimes write a collection (P S1) simply as P to

simplify the notation. We will sometimes write the tensor product as (A ⊗
B S1) if there is no danger of ambiguity.

Definition 1.2. An S-operad is a monoid in the monoidal category E/S1.

A morphism of S-operads is a monoid map. S-operads and their morphisms

form a category S-Opd.
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The following hom and tensor structures are given by the special case

E = 1 of [12, Prop. 6.4.1].

Definition 1.3. Let S be a cartesian monad on a cartesian category E, where

E/S1 is cartesian closed.

1. Given
P

S1

∈ E/S1 and A ∈ E we define
P

S1

⊙ A ∈ E as the vertex of

the following pullback:
.

P SA

S1
S!

This assignation on objects extends to a functor E/T1× E E.

2. Given A,B ∈ E we define

Hom(A,B) =







SA

S1

S! ,
S1×B

S1

π1






∈ E/S1

where the square brackets denote the exponential in E/S1 where it

exists, and π1 denotes projection onto the first component. This assig-

nation on objects extends to a functor Eop × E E/T1.

Proposition 1.4. (Leinster) There is an isomorphism

E





P

S1

⊙ A , B




∼= E/S1





P

S1

, Hom(A,B)





natural in
P

S1

, A and B.

Remark 1.5. Leinster demands that E be locally cartesian closed but we see

that this is excessive for our construction—it does not hold in our examples,

but we only need one particular hom in one particular slice to exist.
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Leinster uses this result to define the notion of endomorphism S-operad;

again he does this for S-multicategories, but we only need the operad case.

Proposition 1.6. [12, Proposition 6.4.2] Let S be a cartesian monad on a

cartesian category E. Then given any object A ∈ E, if the S-collection

End (A) = Hom(A,A)

exists then it naturally has the structure of an S-operad.

Definition 1.7. We call End (A) the endomorphism operad of A.

Definition 1.8. An algebra for an S-operad P is given by an object A ∈ E

together with a map

P

S1

⊙ A A

compatible with the operad structure of P ; equivalently it is an algebra for

the associated monad.

We can equivalently express this using the endomorphism operad.

Proposition 1.9 (Leinster). let P be an S-operad. If the endomorphism

operad on an object A ∈ E exists then a P -algebra structure on A is an

operad map

P

S1

End (A).

This duality will play a key part in our proof of the main theorem.

1.2 Operad actions

We now seek to abstract the notion of an operad acting on loop spaces, path

spaces, or ω-path spaces.

Definition 1.10. Let T be a cartesian monad on a cartesian category G, let P
be a T -operad, and let U : S G be a functor. An action of P on U-objects

is given by, for all X ∈ S a morphism

αX :
P

T1

⊙ UX UX
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in G such that

1. operad compatibility: for all X ∈ S, αX exhibits UX as a P -algebra,

and

2. naturality: the αX are the components of a natural transformation

P

T1

⊙ U(−) U(−).

The aim of this work is to show that under the right hypotheses there is

a universal T -operad EU with such an action, characterised by the following

universal property: an action of a T -operad P on U-objects is uniquely and

completely determined by a T -operad map P EU .

The operad EU will be defined as ev∅(End (U)) and the universality re-

sult holds whenever this definition makes sense. The next few results will

build up towards making sense of this formula. Here ∅ is the initial object

of S if it has one. Now we put E = [S,G] which is cartesian if G is carte-

sian, with pullbacks computed pointwise. We use the following monad on

E, induced by composition with T .

Lemma 1.11. Given a cartesian monad T on a cartesian category G we have

a cartesian monad T∗ = T ◦ − on [S,G]. Explicitly, given A : S G we

have
T∗A : S G

X (TA)X

Proof. The multiplication and unit for T∗ are constructed from those of T
and the naturality squares are pullbacks since pullbacks in the functor cate-

gory are computed pointwise; the pointwise squares are all naturality squares

for the multplication and unit of T hence are themselves pullbacks.

Preservation of pullbacks also comes from the fact that pullbacks in the

functor category are computed pointwise; the pointwise squares we need

to check are all pullbacks in G with T applied, so are pullbacks since T
preserves pullbacks.
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In our proof of the main theorem we are going to move back and forth

between T -operads and T∗-operads using “constant” and “evaluation” func-

tors. Before we define these, it is useful to make a few observations about

the structure of the slice category [S,G]/T∗1.

Remarks 1.12.

1. Given
A

T∗1

p ,
B

T∗1

q ∈ [S,G]/T∗1 their tensor product is given by a certain

pullback in [S,G]. This is computed pointwise, and its component at

X ∈ S is the left-hand edge of
.

TAX BX

T1T 21

T1

T ! qX
TpX

µ1

which we see is the collection
AX

T1

pX ⊗
BX

T1

qX.

2. The tensor product
A

T∗1

p ⊙ B is also given by a pullback; this time the

component at X ∈ S is the vertex of the pullback

.

AX TBX

T1
pX T !

which we see is the tensor product
AX

T1

pX ⊙ BX .

We now define the “constant” and “evaluation” functors.
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Lemma 1.13. Let T be a cartesian monad on a cartesian category G. We

have a “constant” functor acting as follows:

T -Opd T∗-Opd

P

T1

∆P

T∗1

where ∆P : S G is the constant functor evaluating everywhere at P .

Proof. Given a T -operad P we also write its associated monad (on G) as P .

Suppose the operad P is given by the cartesian natural transformation

α : P T.

Then we also have a cartesian natural transformation

α∗ : P∗ T∗

i.e. a T∗-operad. The components of α∗ are given by, for each A ∈ [S,G] the

natural transformation

αA : PA TA.

It is easy to check that the naturality squares are pullbacks by examining

them pointwise.

Remark 1.14. It is useful to note that the operad P∗ has underlying T∗-

collection (P∗1 T∗1). Here 1 is the terminal object in [S,G], so it is the

constant functor that sends every object to 1 (the terminal object in G) and

every morphism to the identity. Thus, evaluated at X the above collection is

just (P1 T1), that is, the underlying collection of the operad P .

Thus the operad P∗ can be thought of as ∆P , the “constant operad” in

[S,G] that evaluates everywhere as P . We will sometimes write it in this

way, and will often think of it in this way. Similarly it is useful to note that

the functor T∗1 is the constant functor ∆T1.

The following corollary is barely more than a matter of notation, but is useful

for the proof of the main theorem.
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Corollary 1.15. A natural transformation

P

T1

⊙ U(−) U(−)

is precisely a natural transformation

P∗

T∗1

⊙ U U.

We now define the “evaluation” functor; this is a straightforward generalisa-

tion of the evaluation functor used by Leinster [12, Section 9.2].

Definition 1.16. For any X ∈ S we have a functor

evX : T∗-Opd T -Opd

which we define in steps as follows.

1. We have a functor
evX : [S,G] G

F FX

2. We know evX(T∗1) = T1 for all X , so the above functor evX extends

to a functor
evX : [S,G]/T∗1 G/T1

A

T∗1

AX

T1

3. It is straightforward to check that this functor is monoidal (this is es-

sentially the content of the first of Remarks 1.12) hence it maps oper-

ads to operads. That is, we get a functor

evX : T∗-Opd T -Opd.
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We now define our putative universal operad, which is again a generali-

sation of the one used by Leinster in [12, Section 9.2]; however note that it

will take a considerable amount of technical work to show that it exists in

the cases of interest.

Definition 1.17. Let T be a cartesian monad on a cartesian category G, S a

category with an initial object ∅, and U a functor S G. If the internal hom

Hom(U, U) =







T∗U

T∗1

,
T∗1× U

T∗1







exists in [S,G]/T∗1 then this gives the endomorphism T∗-operad End (U).
We define the universal T -operad acting on U-objects to be the T -operad

EU = ev∅(End (U)).

Note that evaluating the collection Hom(U, U) at ∅ gives us the underlying

collection of EU , and the operad structure is inherited.

The internal hom certainly exists if [S,G] is locally cartesian closed, or,

more specifically, if the slice [S,G]/T∗1 is cartesian closed. However, in

some of our key examples this demand is too stringent, mostly for size rea-

sons; we will address this in Section 2.

The rest of the section will be devoted to identifying the universal prop-

erty of this operad; the universal property is not studied by Leinster. The

next three lemmas show how we can use the initial object of S to simplify

all our calculations. For the rest of this section, T is a cartesian monad on

a cartesian category G, P is a T -operad, and S is a category with an initial

object ∅.

Lemma 1.18. Let S have an initial object ∅ and let ∆V : S G denote the

constant functor evaluating at V ∈ G. Then a natural transformation

α : ∆V F

is completely determined by its component at ∅, which has the form

α∅ : V F∅.
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Proof. Simple diagram chase: the component αX is determined by the nat-

urality square
V F∅

V FX.

α∅

αX

F !

Lemma 1.19. With notation as above, a map of T∗-collections

∆V F

T∗1

α

is completely determined by a map of T -collections

V F∅

T1.

α∅

Proof. A priori a map α of T∗-collections as shown is a natural transforma-

tion α : ∆V F making the triangle commute. By Lemma 1.18 the natural

transformation α is completely determined by its component at ∅; it remains

to check that the commutativity of the triangle at ∅ ensures the commutativity

of every triangle
V FX

T1

αX

which is accomplished by a simple diagram chase.

Lemma 1.20. Let E be a T∗-operad. A map

P∗ E

T∗1

β

is a map of T∗-operads if and only if applying ev∅ gives a map of T -operads

P ev∅(E)

T1.

β∅
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Proof. We have to check that β respects the monoid structure if β∅ does. For

multiplication, we check that the following diagram commutes.





P∗

T∗1
⊗
P∗

T∗1









E

T∗1
⊗
E

T∗1









P∗

T∗1









E

T∗1





β ⊗ β

β

µ µ

In principle we have to check that this commutes at every X ∈ S, which

amounts to checking that the following diagram commutes (where by a slight

abuse of notation we only write the “variable” part of each collection):

P ⊗ P EX ⊗ EX

P EX.

βX ⊗ βX

βX

µP µE
X

However, we see that commutativity of this diagram at any X follows from

commutativity at ∅ using the following diagram:

P ⊗ P EX ⊗ EX

P EX
E∅ ⊗ E∅

E∅

βX ⊗ βX

βX

µP µE
X

µE
∅

β∅ ⊗ β∅

β∅

E!⊗E!

E!

The top and bottom triangles are naturality “squares” for β (which are tri-

angles as the source functor of β is constant) and the right hand square is a

naturality square for µ. The diagrams for the unit work similarly.

381



E. CHENG AND T. TRIMBLE UNIVERSAL OPERAD

1.3 The universal property

We are finally ready to prove the main theorem.

Theorem 1.21 (Main theorem). Let T be a cartesian monad on a cartesian

category G, S a category with an initial object ∅, and U a functor S G.

Suppose further that End (U) exists, so we can define

EU = ev∅(End (U)).

Let P be a T -operad. Then an action of P on U-objects is precisely a map

of T -operads P EU .

Proof. We write E = [S,G]. An action of P on U-objects is by definition a

natural transformation

α :
P∗

T∗1

⊙ U U

such that for all X , the component

αX :
P

T1

⊙ UX UX

exhibits UX as a P -algebra.

By the tensor structure (Proposition 1.4), specifying such an α amounts

to specifying a morphism

α :
P∗

T∗1

Hom(U, U)

in E/T∗1 or, writing it out more fully,

P∗ Hom(U, U)

T∗1.

ᾱ
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Now P∗ = ∆P is a constant functor, so by Lemma 1.19 the natural transfor-

mation α is completely determined by the component at the initial object ∅,

that is, a map of T -collections

P ev∅(Hom(U, U))

T1

ᾱ∅

thus our natural transformation α is completely determined by a map of un-

derlying T -collections

α∅ :
P

T1

ev∅(End (U)) = EU .

It remains to show that this is a map of operads if and only if for all

X ∈ S, αX exhibits UX as a P -algebra. We proceed in steps, by proving

that the following are equivalent.

1. For all X ∈ S, αX :
P

T1

⊙ UX UX exhibits UX as a P -algebra.

2. α :
P∗

T∗1

⊙ U U exhibits U as a P∗-algebra.

3. α :
P∗

T∗1

End (U) is an operad map.

4. α∅ :
P

T1

ev∅(End (U)) = EU is an operad map.

• 1 ⇐⇒ 2 is Corollary 1.15.

• 2 ⇐⇒ 3 is Proposition 1.9.

• 3 ⇐⇒ 4 is Lemma 1.20.
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Remark 1.22. In this proof it is tempting to use the fact that (1) is equivalent

to the assertion that for all X ∈ S,

αX :
P

T1

End (UX)

is an operad map; this is true but not helpful at this point, as

evX(End (U)) 6= End (UX).

1.4 Topological version

The main theorem also holds in a topologically enriched version which we

will use for several of our examples. The theorem is essentially the same,

provided that the categories and functors involved are interpreted in an en-

riched sense.

As usual Top will denote a category of topological spaces that is com-

plete, cocomplete and cartesian closed, for example the category of com-

pactly generated weakly Hausdorff spaces. We will be consideringV-enriched

categories where V = Top.

The starting point is that we now want the categories S and G to be V-

categories rather than just plain categories. In our examples, S will be Top

or Top∗ and G will be Top or [Gop,Top]. We also want the monad T on

G to be enriched: as a functor, T is V-enriched, and the multiplication and

unit structures on T should be V-natural transformations. And likewise, the

requirement of familial representability of T now means that the functor T
is to be an enriched coproduct of (enriched) representable functors.

In the case V = Top, such adjustments tend to be mild. For example,

because the forgetful functor hom(1,−) : Top Set is faithful, V-natural

transformations are, in this case, the same as ordinary natural transforma-

tions. And in this case, enrichment of functors is a property-like structure:

an ordinary functor between the underlying categories of Top-categories, ei-

ther is or isn’t Top-enriched. That is, for a functor F : C D the functions

C(X, Y ) D(FX, FY ) giving the action on morphisms either are or are

not continuous, and that is the criterion for F to be enriched.
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There is an a priori distinction between enriched (co)limits and ordinary

(co)limits, but under mild assumptions on S and G (e.g., they are V-tensored

and cotensored; see below), the distinction is one we can ignore entirely. To

set the context, we introduce some notation:

• If C is a V-enriched category, write C0 for the underlying (plain) cate-

gory of C, obtained by applying V(1,−) : V Set to the homs of C

as objects in V, with 1 the monoidal unit of V.

• If D is an ordinary category, we write D for the free V-enriched cat-

egory generated by D. The objects of D are those of D, and the en-

riched homs of D as objects in V are defined by the formula

D(d, d′) =
∐

f : d d′

1.

In the case V = Top, it simply means we interpret the hom-sets of D
as discrete topological spaces, and eventually by abuse of notation we

will write the resulting V-category just as D.

• If A and B are V-categories, we write [A,B] for the (plain) category

of V-functors and V-transformations. We write Cat(D,E) for the cat-

egory of functors and transformations between plain categories D, E.

The freeness property of D then asserts

[D,C] ∼= Cat(D,C0)

for any V-category C.

• If in addition A is small, there is a canonical way of endowing [A,B]
with enriched structure, and we write BA for this V-category.

Under this notation, for any diagram category D we intend to take (co)limits

over, and for any enriched category C, we have a V-enriched V-functor cate-

gory

[D,C]

and we have a V-functor D 1, which induces a “ diagonal” V-functor
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∆D =
(

C ∼= [1,C] [D,C]
)

.

If ∆D has an enriched right adjoint V-limD (a right adjoint in the 2-category

V-Cat), then we say that C has enriched D-limits. Or, if ∆D has an enriched

left adjoint, then we say that C has enriched D-colimits.

Enriched D-limits in C, assuming they exist, are ordinary D-limits when

viewed in C0. That is to say, if there is an enriched right adjoint

V- lim
D

: [D,C] C

then applying the forgetful 2-functor V-Cat Cat (which preserves ad-

junctions as all 2-functors do) we get an ordinary right adjoint in Cat,

[D,C]0 C0
∼= Cat(D,C0) C0

that is right adjoint to an ordinary diagonal functor.

The distinction between enriched D-limits in C and ordinary D-limits in

C0 is that the former might not exist even if the latter do. The distinction

disappears if we know in advance that C is V-complete, and indeed in our

examples S and G will be V-complete and V-cocomplete, for straightforward

reasons.

Alternatively, if C is V-tensored, then C will have enriched D-limits if

it has ordinary D-limits [10, p.50]. And if C is V-cotensored, then C will

have enriched D-colimits if it has ordinary D-colimits. Again, existence of

tensors and cotensors is straightforwardly observed in our examples of S and

G.

Under some such niceness assumptions on S and G that allow us to forget

about distinguishing between enriched and ordinary (co)limits, we may say:

1. Pullbacks in G are simply pullbacks in G0.

2. Pullbacks in [S,G] are computed pointwise, as in Cat(S0,G0).

3. We can consider T as a cartesian monad on G0 and consider a T -operad

P ; then the underlying cartesian functor P : G0 G0 turns out to be

a V-functor G G. This follows from the above, as the action of P
can be defined entirely from P1 using pullbacks.
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This last point means that in effect we do not have to change our defini-

tion of T -operads and their maps, but that their underlying functors will all

turn out to be V-enriched “for free”. This in turn means that the evaluation

functor

evX : T∗-Opd T -Opd

still makes sense even though at the level of functors the evaluation functor

evX : [S,G] G0

necessarily now has only the underlying category G0 as its codomain.

We can now re-state the main theorem as follows.

Theorem 1.23 (Main theorem, topological version). Let S and G be Top-

categories, where S has an initial object ∅. Let T be a monad on G that is

cartesian in the Top-enriched sense, and let U be a Top-functor S G.

Suppose further that End (U) exists, so we can define

EU = ev∅(End (U)).

Let P be a T -operad. Then an action of P on U-objects is precisely a map

of T -operads P EU .

Our main theorem gives a universal operad acting onU-objects whenever

End (U) exists; in the next section we will show that it does exist in the cases

we’re interested in. This existence typically involves some fairly technical

considerations.

2. Internal hom constructions

In this section we will address some size issues that arise when we construct

the endomorphism operad End (U) in practice. These issues arise on ac-

count of us seeking an internal hom in the category [S,G]/T∗1 where the

category S is not small. However, in our examples we are helped by some

specific properties of the categories and functors in question, and we will

now provide the technical results that make this work.

It may be worth elucidating this issue in the case of one of our motivating

examples, G = [Gop,Set]. In that case we could invoke equivalences
[

S, [Gop,Set]
]

/T∗1 ≃ [S×G
op, Set ]/T∗1 ≃

[

(S×G
op)/T∗1, Set

]
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and then if S were small we could use the usual construction of an exponen-

tial in a presheaf category [Cop,Set]:

(Y X)(c) = [Cop,Set]
(

C(−, c)×X , Y
)

.

However, this functor evaluates each object c at a collection of natural trans-

formations, and when the category we’re taking presheaves over isn’t small,

this collection is not guaranteed to be a set. That is, if S is not small, this

construction is not guaranted to produce an object in the required functor

category.

In this section we are going to show that this does work in particular

circumstances which cover all the examples we have in mind. The main

technical result we will use is that we can define internal homs between

right adjoints in an enriched functor category of the form

[

S,VC
op]

where C is small. We then “translate” from our slice category into one of

this form via an equivalence

[

S , VB
op]

/T∗1 ≃
[

S , V(B/T1)op ]

and the fact that the functors whose internal hom we are now taking are right

adjoints will follow from U being a right adjoint and T being familially

representable.

All of the material in this section is developed in the generality of en-

riched category theory, relying heavily on [10]. Throughout this section V

will be a locally small, complete, cocomplete, cartesian closed category, or a

“cartesian cosmos”. In fact for our examples we only use the cases Set and

Top, a convenient category of small topological spaces.

2.1 Preliminaries on enriched category theory

First we fix our terminology and notation for the enriched setting. Let C be

a small V-category. We write VC
op

for the V-category of V-presheaves on C,

with hom-objects given by the usual end formula:

VC
op

(F,G) =

∫

c:C

GxFc.
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Note that we use the notation c : C rather than the more common c ∈ C
in all our (co)end formulae. The exponential here denotes the internal hom

in the cartesian closed category V ; we might also write internal hom in the

form V(Fc,Gc) when the exponential notation becomes arduous, as there is

no ambiguity.

We may refer to the hom-object VC
op

(F,G) as the enriched hom, to dis-

tinguish it from the internal hom: VC
op

is cartesian closed, with internal hom

given by the usual formula

GF (c) = VC
op(

C(−, c)× F, G
)

=

∫

d:C

V
(

C(d, c)× Fd, Gd
)

Now, ultimately we are interested in internal homs in a (plain) category

[S,VC
op

] of V-functors and V-transformations. GivenV-functors F,G : S VC
op

,

we write their internal hom in [S,VC
op

] as [F,G]. The following thought ex-

periment may elucidate the situation. We could use the equivalence

[S,VC
op

] ≃ [S× C,V]

and attempt to define the internal hom [F,G] : S × C V by the end

formula:

[F,G](s, c) =

∫

t:S,d:C

V
(

S(s, t)× C(d, c)× F (t, d), G(t, d)
)

(2.1)

In general this end might not exist as S is not small, but when it does

exist it will be an internal hom as we will carefully verify later in the course

of proving Theorem 2.4. This main technical result is to show that this end

does exist under some mild conditions on the categories, when F and G are

right adjoints. We proceed in two steps.

1. Give circumstances in which the enriched hom between right adjoints

in [S,VC
op

] exists.

2. Show that if F and G are right adjoints in [S,VC
op

] then the above end

is an instance of an enriched hom between (some other) right adjoints,

and so the above end exists and gives the internal hom [F,G].

We will then apply this result to the examples we’re interested in.
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2.2 Internal homs between right adjoints

Our main strategy is to express the end (2.1) as an enriched hom between

right adjoints. The following lemma ensures that such an enriched hom will

exist. In all that follows when we speak of a right adjoint S VC
op

we

mean a right adjoint in the 2-category of V-categories, V-functors, and V-

transformations.

Lemma 2.1. Suppose C is small, S is V-cocomplete, and the functors

S VC
opG

G′

have respective left adjoints F, F ′. Write F̄ = FyC , the restriction of F
along the Yoneda embedding yC : C VC

op

and similarly F̄ ′ = F ′yC . Then

the enriched hom [S,VC
op

](G,G′), as an end
∫

x:S
VC

op

(Gx,G′x), exists and is

given by

[S,VC
op

](G,G′) ∼= SC(F̄ ′, F̄ ).

Proof. By [10, Theorem 4.51], G and G′ are given by

Gx ∼= S(F̄−, x)

G′x ∼= S(F̄ ′−, x)

We have

SC(F̄ ′, F̄ ) ∼=

∫

c:C

S(F̄ ′c, F̄ c) as C is small

∼=

∫

c:C

∫

x:S

S(F̄ ′c, x)S(F̄ c,x) by enriched Yoneda, [10, 2.31]

∼=

∫

x:S

∫

c:C

S(F̄ ′c, x)S(F̄ c,x) by the Fubini theorem, [10, 2.8]

∼=

∫

x:S

V C
op
(

S(F̄−, x), S(F̄ ′−, x)
)

as required.
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We now aim to define an internal hom [F,G] : S VC
op

between right

adjoints. It is essentially given by the same formula (2.1) as would be ex-

pected if S were small, except we express it in such a way that the enriched

hom we need to invoke is between right adjoints so that Lemma 2.1 en-

sures it exists. This may give the following constructions an air of over-

complication, but the aim is to express something familiar as a composite of

right adjoints, which takes a little manœuvring. In the following construc-

tions we use the same hypotheses as in Lemma 2.1.

The following will be the first right adjoint in our enriched hom, derived

from F . Given an object s ∈ S we write S(s,−) · F for the following

composite; here δ denotes the diagonal, ∆ produces the constant functor,

and Π denotes the functor taking products.

S δ S×S
S(s,−)×F

V×VC
op ∆×1

VC
op

×VC
op Π VC

op

x (x, x)
(

S(s, x), F (x)
) (

∆S(s,x), F (x)
)

S(s, x)×F (x)

Here S(s, x)× F (x) denotes the functor

C op V

c S(s, x)× F (x)(c)

Proposition 2.2. If F is a right adjoint in V-Cat then so is the above com-

posite.

Proof. Let I denote the unit V-category. There is an evident V-category

I + I , and there is a unique V-functor ! : I + I I . The diagonal functor

δ : S S × S may be identified with the functor given by pre-composition

with !, which we write as S!; this has an enriched left adjoint (which, at the

underlying category level, is just the coproduct):

SI SI+I
S!

+ = Lan!

⊣

Similarly, we have a unique V-functor !C : C
op I , and ∆ above may be

identified with V!C . This too has an enriched left adjoint:

VI VC
op

V!C

colimC = Lan!C

⊣
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The second map has left adjoint (− ⊗ s) × F ′ where (− ⊗ s) : V S is

tensoring with an object s (which is left adjoint to the representable S(s,−) :
S V ), and F ′ is the left adjoint of F .

Finally, the enriched left adjoint of Π is the diagonal:

VC
op

× VC
op

VC
op

Π

δ

⊣

The following will be the second right adjoint in our enriched hom, de-

rived from G. For every object c ∈ C we write GC(−,c) for the following

composite:

S G VC
op (−)C(−,c)

VC
op

x Gx GxC(−,c)

Here GxC(−,c) denotes the exponential (in the cartesian closed category VC
op

)

of the functors G(x) and the representable C(−, c).

Proposition 2.3. If G is a right adjoint in V-Cat then so is the above com-

posite.

Proof. Recall that VC
op

is cartesian closed in the enriched sense, so that we

have a V-natural isomorphism

VC
op

(X × Y , Z) ∼= VC
op

(X , ZY )

between enriched functors valued in V. In particular, the enriched functor

(−)Y is an enriched right adjoint; we are using the case Y = C(−, c).

We are now ready to prove the main technical theorem we need, con-

structing internal homs between right adjoints via the above composites.

Theorem 2.4. Let V be a locally small, complete, cocomplete cartesian

closed category, let S be a V-cocomplete V-category, and let C be a small

V-category. Let F,G : S VC
op

be two right adjoints. Then, in the category

of V-functors [S,VC
op

] there is an internal hom [F,G] constructed according

to the formula

[F,G](s)(c) =
[

S,VC
op](

S(s,−) · F , GC(−,c)
)

.
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Proof. First note that this enriched hom may be legitimately formed as an

object of V by Lemma 2.1, since S(s,−) · F and GC(−,c) are right adjoints.

Thus,

[F,G](s)(c) =

∫

t:S

VC
op
(

S(s, t)× F (t) , G(t)C(−,c)
)

∼=

∫

t:S

VC
op
(

S(s, t)× F (t)× C(−, c) , G(t)
)

∼=

∫

t:S

∫

d:C

V
(

S(s, t)× F (t)(d)× C(d, c) , G(t)(d)
)

This is the formula expected as in (2.1).

For completeness we now show that [F,G] satisfies the requisite univer-

sal property. Thus, suppose we are given a V-functor X : S VC
op

. We es-

tablish a natural bijection between the family of maps of the formψ : X [F,G]
and those of the form φ : X × F G.

Let us equivalently regard F,G,X as V -functors S× C
op

V, to avail

ourselves of more pleasant notation such as X(s, c). Using the definitions

of end and coend, and instances of ×–hom adjunctions, we have a natural

bijection between natural transformationsψ : X [F,G] and the following

extranatural families of maps:
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ψ(s, c) : X(s, c) [F,G](s, c) =

∫

t:S

∫

d:C

G(t, d)S(s,t)×F (t,d)×C(d,c) (1)

X(s, c) G(t, d)S(s,t)×F (t,d)×C(d,c) (2)

S(s, t)×X(s, c)× C(d, c) G(t, d)F (t,d) (3)

∫ (s,c) :S×C
op

S(s, t)×X(s, c)× C(d, c) G(t, d)F (t,d) (4)

X(t, d) G(t, d)F (t,d) (5)

X(t, d)× F (t, d) G(t, d) (6)

(X × F )(t, d) G(t, d) (7)

φ : X × F G (8)

where line (2) is achieved by definition of extranaturality and coends, line (3)

via a ×–hom adjunction, (4) by definition of extranaturality and ends, (5) by

Yoneda, (6) via a ×–hom adjunction, and (7) and (8) by definition.

Remark 2.5. Note that in practice we will express the formula for the inter-

nal hom in the usual format in a functor category, once we know that the end

in question exists, that is:

[F,G](s, c) =

∫

t:S

∫

d:C

G(t, d)S(s,t)×F (t,d)×C(d,c)

= [S× C
op,V](H(s,c) × F, G)

where H(s,c) denotes the appropriate representable S(s,−)× C(−, c).

2.3 Application to the endomorphism operad

We now show how to apply Theorem 2.4 to show that EndU may be formed

in our cases of interest. Recall that in our examples:

• V is Set or Top.
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• S is Top or Top∗.

• B is a small (plain) category which we may then regard as a Top-

category in which all hom objects are discrete spaces. In our examples

B is the globular category G or the finite version Gn (or indeed the

terminal category dir0o.

• T is a familially representable V-monad on VB
op

(so in particular is

cartesian); we will come back to this definition shortly.

• T∗ is the induced cartesian monad

[

S, VB
op] T◦− [

S, VB
op]

• U is a V-functor S VB
op

; all our examples of U are constructed via

a functor B D S with

U(X) = S(D−, X) ∈ VB
op

thus U is a right adjoint; its left adjoint is the left Kan extension of D
along the Yoneda embedding

B VB
op

S

yB

D

U

⊣

We seek to construct the endomorphism operad EndU as the following in-

ternal hom in the (plain) slice category [S,VB
op

]/T∗1:

Hom(U, U) =







T∗U

T∗1

,
T∗1× U

T∗1







We are going to use Theorem 2.4. Our first step here is to re-express the

slice category as an equivalent category of the form [S,VC
op

], and our next

step will be to show that under that equivalence, the objects whose internal

hom we’re taking become right adjoints.

The first step is straightforward for V = Set so we cover that case first;

it requires a little more effort for V = Top.
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Lemma 2.6. Let S be locally small and cocomplete, and B small, and T a

monad on [Bop,Set]. There are equivalences of categories:

[

S, [Bop,Set]
]

/T∗1 ≃
[

S, [Bop,Set]/T1
]

≃
[

S,
[

(B/T1)op,Set
]

]

where B/T1 denotes the category of elements.

Proof. First note that the functor T∗1 is the composite

S 1 [Bop,Set] T [Bop,Set]

c 1 T1

so it is the constant functor ∆T1. Thus an object (F α T∗1) in the first cate-

gory amounts to a cocone (F T1). This gives the first equivalence. The

second follows from the fact that slices of presheaf toposes are equivalent to

presheaf toposes as follows:

[Bop, Set ]/T1 ≃
[

(B/T1)op, Set
]

For the case V = Top we deal with the two equivalences separately;

the first follows easily, with the only subtlety being that VB
op

/T1 is now an

enriched slice category. However as we are only considering enrichment in

Top this amounts to the same as the ordinary slice but with a topology on the

homs, and that topology is inherited. We will express this lemma in simpler

terms to emphasise the fact that nothing very special is going on, but what

we have in mind here is G = VB
op

and X = T1.

Lemma 2.7. Let V = Top, let S and G be V-categories. Consider X ∈ G

and write ∆X : S G for the constant functor. Then there is an equivalence

of categories
[

S, G
]

/∆X ≃
[

S, G/X
]

Proof. As in the previous proof, an object (F α ∆X) in the first category

amounts to a cocone (F X), that is, an object in the second category.

The only extra subtlety here is that the enriched structure of G/X is inherited

from G, so F being a V-functor on the left ensures that the stated corrspon-

dence does produce a V-functor on the right.
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We now deal with the second equivalence. In what follows we will some-

times realise plain categories as Top-categories in which all the hom-spaces

are discrete; by abuse of notation we will not change the notation for this.

Lemma 2.8. Let V = Top. Let A be a small (plain) category. Let F : A Set

be any functor and i : Set Top be the functor each set to the discrete

space on it. Then there is a V-equivalence of V-categories:

VA/iF ≃ VA/F

where A/F denotes the category of elements of F .

Proof. We borrow the standard proof that

[A,Set]/F ≃ [A/F,Set]

—we just have to check continuity in a few key places. We know that we

have a functor

[A,Set]/F α [A/F,Set]

that is full, faithful and essentially surjective on objects. Recall that A/F is

the category of elements of F given as follows.

• Objects are pairs (a ∈ A, x ∈ Fa).

• A morphism (a, x) (a′, x′) is a morphism f : a a′ ∈ A such

that Ff(x) = x′.

First we recall the action of α. Given an element (S, θ) =
S

F

θ ∈ [A,Set]/F

with components
Sa

Fa

θa , we will write α(S, θ) = S̄ ∈ [A/F,Set], and its

action is as follows:

• On objects: (a, x) ∈ A/F is sent to the set θa
−1(x) ⊆ Sa.
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• On morphisms: the morphism

(a, x)
f

(a′, x′)

is sent to

θ−1
a (x) θ−1

a′ (x
′)

the restriction of Sf to the fibre θ−1
a (x); this works because of natu-

rality of θ.

The functor α is full, faithful and essentially surjective; it has (pseudo)-

inverse β given as follows. Given R ∈ [A/F,Set], the element

β(R) =
R̂

F

θR ∈ [A,Set]/F

is given by

R̂a =
∐

x∈Fa

R(a, x). (2.2)

The map θRa : R(a, x) Fa sends everything to x ∈ Fa. The rest of the

data is induced by the universal property of the coproduct (2.2).

In order to modify this proof for the topological case, we need to check

that

1. If S is a Top-functorA Top then S̄ becomes a Top-functor A/F Top,

2. IfR is a Top-functor A/F Top R̂ becomes a Top-functor A Top,

3. the components of θR are continuous, and

4. α and β are themselves Top-functors.

These all follow by making the preimage, coproduct and restriction maps in

Top instead of in Set.

Corollary 2.9. Under the usual hypotheses we have the following equiva-

lences of categories:

[

S,VB
op]

/T∗1 ≃
[

S,VB
op

/T1
]

≃
[

S,V(B/T1)op]
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Our next task is to take the objects whose internal hom we want to calcu-

late in the slice category
[

S,VB
op
]

/T∗1, and “translate” them into the functor

category
[

S,V(B/T1)op
]

and show that they are right adjoints so that we may

take their internal hom.

We first briefly recall some helpful results and definitions; we will not

state these in very great generality.

Lemma 2.10. Let V be Set or Top and keep the usual hypotheses. Consider

the canonical morphism T1 ! 1 in VB
op

. Then there is a V-adjunction which

we will write as

VB
op

/T1 VB
op

/1 ≃ VB
op

⊥

ΣT1

(T1)∗

where (T1)∗ is given by pullback along ! (so in this case, effectively it is just

a product) and ΣT1 is ! ◦ − (sometimes called the dependent sum).

Lemma 2.11. The V-functor T : VB
op

VB
op

can be canonically factorised

as:
VB

op

≃ VB
op

/1 T̂ VB
op

/T1 ΣT1 VB
op

/1 ≃ VB
op

X
X

1

!

TX

T1

T !

TX

1

! TX

Definition 2.12. The functor T is called a parametric right adjoint (p.r.a.) if

T̂ is a right adjoint. A monad is called parametric right adjoint if its functor

part is p.r.a. and its unit and multiplication are cartesian. Any familially

representable monad is p.r.a.

We are finally ready to tackle the internal hom in question.

Theorem 2.13. Under the usual hypotheses, including that T is a parametric

right adjoint and that U is a right adjoint, the following internal hom in

[S,VB
op

]/T∗1 exists:






T∗U

T∗1

T∗1 ,
T∗1× U

T∗1

p







where p denotes projection onto the first component.
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Proof. We “translate” each of these objects from the slice category above

into the functor category
[

S, V(B/T1)op
]

as in Lemma 2.7 and then express them as right adjoints. We then apply

Theorem 2.4 with C = B/T1.

First note that according to the first equivalence of Corollary 2.9, the

object (T∗U
T∗! T∗1) becomes the cocone (TU T ! T1). So we take T̂ ◦U ,

the following composite of right adjoints, giving the cocone required:

S U VB
op T̂ VB

op

/T1 ≃ V(B/T1)op

x Ux
TUx

T1

T !

For the second object of our internal hom, note that according to the

first equivalence of Corollary 2.9 the object (T∗1× U
p
T∗1) becomes the

cocone (T1×U
p
T1). We consider (T1)∗ ◦U , the following composite

of right adjoints, giving the cocone required:

S U VB
op (T1)∗

VB
op

/T1 ≃ V(B/T1)op

x Ux
T1× Ux

T1

p

Here (T1)∗ is a right adjoint with left adjoint given by ΣT1. Theorem 2.4

now applies, and we can compute the internal hom of right adjoints:

[

T̂ ◦ U, (T1)∗ ◦ U.
]

3. Loop spaces

In this section we discuss the first of our motivating examples—operads act-

ing on loop spaces. Most of the work here is just in unravelling the defini-

tions to show that the universal operad acting on loop spaces is the one we

are expecting from [14].

400



E. CHENG AND T. TRIMBLE UNIVERSAL OPERAD

In this example we take

S = Top∗

G = Top

U = Ω = Top∗(S,−) where here Top∗(X, Y ) denotes the unbased space of

based maps X Y , and S is the unit circle

T = free topological monoid monad on Top, thus TX =
∐

k∈N

Xk (see [9])

Note that the initial object in Top∗ is the one-point space; we will still write

it as ∅ although it is not empty.

Thus T1 is the space N with the discrete topology, a T -operad is just a

classical (non-Σ) operad, and operads acting on U-objects are just operads

acting on loop spaces. We seek to understand the universal operad

EΩ = ev∅(End (U)).

We will show that

EΩ(k) = Top∗(S, S
∨k),

the operad which has been called the “universal operad acting on loop spaces”

by Salvatore and others [14, 12, 2].

First we use the results of Section 2 to show that End (Ω) exists.

Proposition 3.1. With the definitions as above, we can form End (Ω) as an

internal hom in the slice category [S,G]/T∗1.

Proof. The monad T is familially representable and U is a right adjoint:

we identify Top with Topdir0oop

, and note that U can be regarded as being

constructed via the functor dir0o S Top∗ picking out the circle S. Then

U = Top∗(S,−) ∈ Top

is a right adjoint; its left adjoint is the left Kan extension of S along the

Yoneda embedding

dir0o Topdir0oop

≃ Top

Top∗

ydir0o

S

U

⊣
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We can thus apply Theorem 2.4 to form the required internal hom as

[T̂ ◦ U, (T1)∗ ◦ U ].

We now set about unravelling what EΩ = ev∅(End (U)) is. The first

step is to understand the slice category in question, re-expressed as a functor

category.

Now note that T1 in this case is N, the discrete category made into a

Top-category, and Top/N ≡ TopN
. So the first equivalence of Corollary 2.9

in this case becomes:

[Top∗,Top]/T∗1 ≃ [Top∗,Top/T1]

≃ [Top∗,TopN]

≃ [Top∗ × N,Top]

Example 3.2. An element
S

T∗1

in [Top∗,Top]/T∗1 consists of, for all X ∈

Top∗ a continuous map
SX

N

such that for all f : X X ′ the following

diagram commutes

SX SX ′

N.

Sf

Since N is discrete, we know SX =
∐

n

SnX , say, where each Sn is a functor

Top∗ Top. Thus we have a functor

Top∗ × N Top

(X, n) Sn(X).

Conversely, given a functor S : Top∗×N Top we have for all n a functor

Sn = S(n,−) : Top∗ Top.
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This corresponds to
S̄

N

by S̄X =
∐

n

Sn(X).

Theorem 3.3. For all k ≥ 0 we have EΩ(k) = Top∗(S, S
∨k).

Proof. We write S = Top∗. We must calculate ev∅(Hom(Ω,Ω)). Recall

that Hom(Ω,Ω) ∈ [S,Top]/T∗1 is given by






T∗Ω

T∗1

T∗! ,
T∗1× Ω

T∗1

π1






=







A

∆N

,
B

∆N






,

say, where the square brackets denote the exponential in the slice category

[S,Top]/T∗1. To calculate this hom we express it in the equivalent category

[S× N,Top]; then to evaluate it at ∅ we evaluate it at (∅, k) for each k ∈ N.

Now

AX = TΩX =
∐

k

(ΩX)k =
∐

k

S(S∨k, X)

BX = N× ΩX =
∐

k

ΩX =
∐

k

S(S,X)

so
Ā(X, k) = S(S∨k, X)

B̄(X, k) = S(S,X).

We now use the formula for the internal hom in [S×N,Top] as in Remark 2.5:

Hom(Ā, B̄)(∅, k) =
[

S× N,Top
](

H(∅,k) × Ā, B̄
)

(3.1)

where

H(∅,k)
(

Y,m
)

=
(

S× N
)(

(∅, k), (Y,m)
)

=

{

1 k = m

∅ otherwise

where here 1 and ∅ are terminal and initial respectively in Set.

Now S× N is a coproduct
∐

m∈N

S, so in general

[S× N,Top](F,G) ∼=
∏

m∈N

[

S,Top
](

F (−, m), G(−, m)
)

.
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So, using (3.1) above, we have:

Hom(Ā, B̄)(∅, k) =
∏

m∈N

[

S,Top
]

(

H(∅,k)(−, m)× S(S∨m,−), S(S,−)
)

=
[

S,Top
](

S(S∨k,−), S(S,−)
)

= S(S, S∨k) by the enriched Yoneda Lemma.

Remark 3.4. This operad is often thought of as the “coendomorphism op-

erad” on S in Top∗; we now see that it is derived from the endomorphism

operad in the functor category [Top∗,Top], on the representable functor at S.

Example 3.5. Let D be the non-Σ version of the little intervals operad, so

D(k) is the space of configurations of k disjoint intervals inside the unit

interval. It is well-known that D acts naturally on loop spaces; in fact the

action is explicitly defined via the action of the universal operad E. Given

an element of D(k) we derive an element of E(k), that is a based continu-

ous map S S∨k, as follows. We identify the endpoints of the (big) unit

interval to make the circle S of the domain; we then map any point outside

the little intervals to the basepoint of S∨k, and map the ith little interval to

the ith circle in the wedge S∨k. The element of D(k) is then considered to

act on loop spaces via the action of this derived element of E(k).
Note that there are many operations of E that do not arise in this way.

Broadly these fall into three types:

• maps S S∨k that are not surjective, so “omit” some loops,

• maps that involve going “backwards” around a loop, or

• maps that involve going more than once around loops.

In this sense the universal operad is “too big”, and the operads that have

proved efficacious in loop space theory are much smaller.

Examples 3.6. Let D(k) be the space of continuous, endpoint-preserving

maps [0, 1] [0, k]. These act on loop spaces naturally as they act on path

spaces naturally. Other examples arise as suboperads of this one, for ex-

ample by using only increasing maps, or piecewise linear increasing maps.
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One might wish to restrict further to smooth maps (for example in order to

reparametrise cobordisms). This is more complicated as one would have

to ensure that composites remained smooth; this is related to some issues

tackled using collars in [3].

4. Fundamental ω-groupoids

In this section we discuss our motivating example, the functor

U : Top GSet

giving the “fundamental globular set” or “ω-path space” of a space. In

a sense there is no further calculation to be done as Leinster has already

worked out what the globular operad ev∅(End (U)) is; see [12, Example

9.2.7], in which Leinster writes the operad in question as P ′ = (ev∅)∗(End (Πω)).
Thus, the history of this operad may be summarised as follows.

1. Batanin defines the operad directly [1].

2. Leinster expresses the operad as ev∅(End (U)) [12].

3. The present work establishes that End (U) does exist, so that this ex-

pression for P ′ makes sense, and exhibits the universal property of

P ′.

In fact as usual the story is slightly more complicated as we use the

“non-algebraic Leinster variant” of contractible globular operads (as used

by Cisinski [5]). In this section we will give some of the details of Le-

inster’s calculation and then show how to modify the proof to achieve the

n-dimensional versions in Section 4.3.

4.1 Globular theory

We first recall some theory from [1]; for an alternative treatment see [12] or

[6].

Definition 4.1. Let T be the free strict ω-category monad on GSet = [Gop,Set];
T is familially representable and in particular cartesian.
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• A T -operad (in the sense of Definition 1.2) is called a globular operad.

• A globular operad is called contractible if its underlying T -collection

is contractible.

• A T -collection
A

T1

p is called contractible if

1. given any 0-cells a, b ∈ A and a 1-cell y : pa pb ∈ T1, there

exists a 1-cell x : a b ∈ A such that px = y, and

2. for all m ≥ 1, given any m-cells a, b ∈ A that are “parallel” i.e.

sa = sb and ta = tb, and an (m + 1)-cell y : pa pb ∈ T1,

there exists an (m+ 1)-cell x : a b ∈ A such that px = y.

Note that for the finite n-dimensional version, we use the free strict

n-category monad which we denote Tn, and need an extra condition at

the nth dimension as follows: given any parallel n-cells a, b ∈ A with

pa = pb ∈ T1, we have a = b.

• A weak ω-category is any algebra for any contractible globular operad.

• A weak ω-groupoid is a weak ω-category in which every cell is weakly

invertible. Batanin defines this via the n-coskeleta of the ω-category—

the idea is that to be weakly invertible a k-cell in an ω-category should

be weakly invertible in the n-coskeleton (the weak n-category formed

by quotienting out by (n+1)-cells) for each n ≥ k; weak invertibility

in an n-category for finite n can be defined by induction. Since we

will not need to use this definition we refer the reader to [1] for the

full details.

The analogy with loop spaces should be clear; where for loop spaces we

used operads with an operation of arity k for each k ∈ N, we now have an

operation of arity α for every pasting diagram α.

We wish to exhibit every globular set UX as an ω-groupoid, so first we

must find a contractible globular operad that acts on each UX . Batanin pro-

poses the following operad. Essentially the operations of arity α ∈ n-Pd are

the continuous, boundary-preserving maps from the topological n-ball to the
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geometric realisation of α. However we must be careful about exactly what

boundary must be preserved. The idea is that the spaces in question should

have globular “sources” and “targets” of each lower dimension, and these

are the boundaries that should be preserved. This is expressed in Batanin’s

definition of “coglobular span in Top”.

Definition 4.2. A coglobular n-span in a category C is a commuting diagram

of the following shape in C.

an−1

an−2

an−3

a1

a0

bn−1

bn−2

bn−3

b1

b0

x

an−1 bn−1
...

...

Example 4.3. The topological n-ball Bn has maps

Bn−1 Bn
s

t

given by the inclusions of the north and south hemispheres. This makes Bn

into a coglobular n-span in Top as

Bn−1

Bn−2

B1

B0

Bn−1

Bn−2

B1

B0

Bn

Bn−1 Bn−1...
...

s

s

s t

s t

s t

s s t

t

t

t
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Example 4.4. Let α be an n-dimensional pasting diagram with source and

target ∂α. Then there are inclusions of the geometric realisations

|∂α| |α|
s

t

into the “source” and “target”. This makes |α| into a coglobular n-span in

Top as

|∂α|

|∂2α|

|∂n−1α|

|∂nα|

|∂α|

|∂2α|

|∂n−1α|

|∂nα|

|α|

Bn−1 Bn−1...
...

s

s

s t

s t

s t

s s t

t

t

t

Definition 4.5. A map of coglobular n-spans in C

an−1

an−2

a1

a0

bn−1

bn−2

b1

b0

x

Bn−1 Bn−1...
...

s

s

s t

s t

s t

s s t

t

t

t

a′n−1

a′n−2

a′1

a′0

b′n−1

b′n−2

b′1

b′0

x′

Bn−1 Bn−1...
...

s

s

s t

s t

s t

s s t

t

t

t

is given by a map v : x x′ and for all 0 ≤ i ≤ n− 1 maps

fi : ai a′i
gi : bi b′i

making everything commute.
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Example 4.6. (Informal.) Consider the following coglobular 2-spans in Top:

the ball B2

b b

and the geometric realisation |α|

b b

A map of coglobular spansB2 |α| is a map of the underlying spaces such

that

• the top and bottom boundaries ofB2 are mapped to the top and bottom

boundaries respectively of |α|, and

• the endpoints of the top and bottom boundaries of B2 are mapped to

the endpoints of the top and bottom boundaries of |α|.

4.2 The universal operad acting on ω-path spaces

We now invoke the results of Section 2 to show that End (U) in this case

exists. As we are enriching in Set here we will revert to the more usual

notation [Gop,Set] instead of SetG
op

.

Theorem 4.7. Let T be the free ω-category monad on [Gop,Set], andU : Top [Gop,Set]
the ω-path space functor. Then the internal hom

End (U) =







T∗U

T∗1

,
T∗1× U

T∗1







exists in
[

Top, [Gop,Set]
]

/T ∗1.

Proof. We know that T is familially representable and U is a right adjoint:

U is constructed via a functor G D Top where D(n) = Bn the topological

n-ball. Then

U(X) = S(D−, X) ∈ [Gop,Set]

409



E. CHENG AND T. TRIMBLE UNIVERSAL OPERAD

thus U is a right adjoint; its left adjoint is the left Kan extension of D along

the Yoneda embedding

G [Gop,Set]

Top

yG

D

U

⊣

We can thus apply Theorem 2.4 to form the required internal hom as

[T̂ ◦ U, (T1)∗ ◦ U ].

We now sketch the calculation of the universal globular operad acting

on ω-path spaces. This can be found in [12, Example 9.2.7] but we give

some of the details here as we will be modifying the calculation to give the

finite-dimensional cases in the next section.

In order to calculate the operad in this case, we need to use the expo-

nential in the slice category
[

Top, [Gop,Set]
]

/T∗1, which we will do via Re-

mark 2.5 and the equivalences of Lemma 2.6:

[

Top, [Gop,Set]
]

/T∗1 ≃
[

Top,
[

(G/T1)op,Set
]

]

≃
[

Top × (G/T1)op, Set
]

The rest of the calculation is given by Leinster; we will sketch the main

details here.

Theorem 4.8 (Leinster, [12, Example 9.2.7]). Let U : Top GSet be

the ω-path space functor. Then the operad EU = ev∅(End (U)) has as

operations of arity α the maps of coglobular spans Bn |α|. Here α is a

pasting diagram of dimension n and |α| is its geometric realisation.

Proof. (Sketch) Write S = Top. Now

End (U) =







T∗U

T∗1

,
T∗1× U

T∗1






=







A

T∗1

,
B

T∗1






,
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say, where the square brackets denote the exponential in
[

S, [Gop,Set]
]

/T∗1,

which we know to exist by Theorem 2.4. Here

T∗1(X) = T1 : Gop
Set

for all X ∈ S, and

T∗1(X, n) = T1(n) ∈ Set.

Note that Gop/T1 has as objects pairs (n ∈ N, α ∈ T1(n) = n-Pd). Now

given

S

T∗1

p ∈
[

S, [Gop,Set]
]

/T∗1,

with components

SX

T1

pX,

we get

S̄ ∈
[

S× (Gop/T1),Set
]

given by

S̄(X, n, α) = pX
−1(α) ⊆ SX(n).

Conversely given S ∈
[

S×(Gop/T1),Set
]

we have
Ŝ

T∗1

p ∈
[

S, [Gop,Set]
]

/T∗1

given by

ŜX(n) =
∐

α∈T1(n)

S(X, n, α)

thus the fibre of ŜX over α is S(X, n, α).
So we have

Ā(X, n, α) = { pasting diagrams of shape α in UX }

= S(|α|, X)

B̄(X, n, α) = {n-cells in UX }

= S(Bn, X)
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We can now use the usual internal hom formula in the functor category
[

S× (Gop/T1),Set
]

to get

End (U) =
[

S× (Gop/T1),Set
](

H• × Ā, B̄
)

.

To find ev∅(End (U)) we can calculate fibre by fibre—the fibre over an n-

pasting diagram α is

End (U)(∅, n, α) =
[

S× (Gop/T1),Set
](

H(∅,n,α) × Ā, B̄
)

as a set of natural transformations.

Note that

H(∅,n,α)(X,m, β) =







1 α = β

{s, t} β = ∂α

∅ otherwise

Thus a natural transformation as above must have component at (X,m, β)
of the form:

• if α = β, S(|α|, X) S(Bn, X)

• if β = ∂α
{s, t} × S(|β|, X) S(Bm, X)

hence a pair of maps S(|β|, X) S(Bm, X),

• otherwise: ∅ S(Bm, X) i.e. the trivial map.

We now examine naturality; as our domain is a product category we can

examine naturality in X and (m, β) separately.

• Naturality in X tells us we must have a natural transformation

S(|α|,−) S(Bn,−)

and for each 0 ≤ m < n two natural transformations

S(|∂n−mα|,−) S(Bm,−).

By Yoneda this is just an element of S(Bn, |α|) and two elements of

S(Bm, |∂n−mα|) for each 0 ≤ m < n, that is, the underlying data for

a morphism of coglobular spans.
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• Naturality in (m, β) tells us that we have the necessary commuting

conditions to be a morphism of coglobular spans as required.

4.3 Finite-dimensional versions

There are three finite n-dimensional versions of this that follow immediately,

one by taking truncations, one by taking homotopy classes at the top dimen-

sion, and one by taking path spaces at the top. The analogous result for

the truncated version follows immediately, while the other versions follow

with a little effort. First we recall the functors in question, described in the

introduction. Note that they all agree on the first (n− 1) dimensions.

Definition 4.9. We will define the following functors for each n ≥ 0.

• “n-truncation” Un : Top n-GSet ≃ [Gop

n ,Set]

• “fundamental n-groupoid” Πn : Top n-GSet

• “n-path space” Pn : Top Top-n-Gph ⊂ [Gop

n ,Top]

UnX is the n-dimensional truncation of UX . ΠnX agrees with UX for all

dimensions up to n−1 but (ΠnX)(n) is given by homotopy classes of n-cells

in UX in the following sense: we identify any parallel n-cells x, y ∈ UX(n)
if there is an (n + 1)-cell f : x y in UX(n + 1). That is, we apply the

functor qn : GSet n-GSet which is left adjoint to the functor

n-GSet Dn GSet

that adds in putative identities at every dimension above n. (Note that in

general the description of qn would require us to generate an equivalence

relation from the above relation; however in the case of globular sets of the

form UX the above description suffices since we always have reverse and

composite homotopies.)

For Pn we are thinking of a “Top-enriched n-graph” as an n-graph whose

n-cells form a space but every lower dimension is just a set. However in or-

der to apply Theorem 2.4 we are going to express these as n-globular spaces,

that is, objects X of the enriched presheaf category TopG
op
n such that for all
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k < n, X(k) is indiscrete. As with globular sets, given k-cells x, y we also

write X(x, y) for the subset (or subspace) of X(k + 1) of cells with domain

x and codomain y.

Then P0(X) = X and for n > 0 we have

• Pn(X) agrees with Pn−1(X) at all dimensions up to n− 2.

• Pn(X)(n− 1) is the set of points of the space Pn−1(X)(n− 1) (more

precisely, the indiscrete space on the underlying set of points).

• Given x, y ∈ Pn(X)(n − 1), we have Pn(X)(x, y) = Pn−1(X)(x, y)
(the path space).

Remarks 4.10.

1. The functor Πn will be used to find fundamental n-groupoids of spaces,

while Un is used in [7] when constructing ω-categories from “inco-

herent” n-categories. Pn can be thought of as an “(∞, n)” version,

where algebraic information is extracted up to dimension n, with non-

algebraic information remaining in higher dimensions.

2. We could give ω-dimensional versions of these functors, but in fact

these would all be the same as U .

Corollary 4.11. Let Tn be the free strict n-category monad on n-GSet. Then

there is a universal n-globular operad (i.e. Tn-operad) acting on Un given

by the n-truncation of EU .

Proof. This is immediate, with proof as in the proof of Theorems 4.7 and

4.8.

Theorem 4.12. There is a universal n-globular operad acting on Πn given

by qnEU .

Proof. We prove this by adapting the proof of Theorem 4.8. For m < n
the mth dimension behaves exactly as for U ; for the n-cells we must calcu-

late ΠnX and TnΠnX so we must quotient S(Bn, X) and S(|α|, X) by the

equivalence relation demanded by our definition of Πn.
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It is useful to make this equivalence relation precise. Πn = qnU so all

parallel n-cells x, y of UX are to be identified if there is an (n + 1)-cell

f : x y. In UX this means

Bn X
x

y

are identified if they can be expressed as composites

Bn Bn+1 X
s

t

f

(4.1)

for some map f .

For TnqnU we ask when we identify

|α| X.
x

y

Write Σα for the (n+ 1)-pasting diagram given by taking the tree for α and

extending each leaf by one level. For example

b b b

b

b b b

b b b

b

or in pictures

Then we identify the n-cells x and y if they can be expressed as

|α| |Σα| X
|s|

|t|

f

(4.2)

for some f . Note that the operation Σ is a form of suspension, and given a

coglobular map

|α| |β|

there is a coglobular map

|Σα| |Σβ|
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making the following diagram commute

|α| |Σα|
|s|

|t|

|β| |Σβ|
|s|

|t|

p

This is because the geometric realisation of an n-pasting diagram is homo-

topy equivalent to the n-ball, and the parallel pair of maps |s|, |t| in each case

gives, up to homotopy, the inclusion of the n-sphere (expressed as a pair of

n-balls glued along their boundary) into the boundary of the (n+ 1)-ball.

Then we must ask the following questions.

1. Which natural transformations S(|α|,−) S(Bn,−) respect this equiv-

alence relation?

2. Which natural transformations S(|α|,−) S(Bn,−) become the same

on equivalence classes?

It is useful to note that the globular operadEU is contractible (in the sense

of 4.1). Now, we know that a natural transformation S(|α|,−) S(Bn,−)
is given by precomposition with a map Bn p |α|, and the naturality condi-

tion in G
op

n/Tn1 ensures that this will have to be a map of coglobular spans as

before. We must check when equivalent elements of S(|α|, X) are mapped

to equivalent elements of S(Bn, X). In fact this is the case for all Bn p |α|
as follows. Writing our equivalent elements of S(|α|, X) as

|α| |Σα| X
|s|

|t|

f

we map them to S(Bn, X) by precomposition with p to give the two maps

Bn |α| |Σα| X
p |s|

|t|

f

which are equivalent via

|α| |Σα| X.
|s|

|t|

f

Bn = = Bn+1|bn| |Σbn|
|s|

|t|

p
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Here we are writing bn for the n-pasting diagram consisting of a single n-

cell, thus |bn| = Bn and |Σbn| = Bn+1 so we have the maps

Bn Bn+1 X
s

t

f

as in diagram (4.1) as required.

Next we show that all parallel maps Bn p |α| induce the same map on

equivalence classes. That is, given

Bn |α|
p

p′

agreeing on all boundaries, we show that for any |α|
f
X the induced maps

Bn |α| X
p

p′

f

are equivalent elements of S(Bn, X) by expressing them as

|α| |Σα| X
|s|

|t|

f

as in diagram (4.2).

In fact since |α| is contractible we have

Bn+1

Bn |α|

f

p

p′

s

t

X
f

commuting serially giving an expression of the form of (4.2) as required.

We now turn our attention to the more topological case. We use the

monad Sn for “free n-categories internal to Top”; this monad is constructed

in the same way as the free strict n-category monad (for n-categories in-

ternal to Set), except that we take pullbacks in Top instead of in Set. It

follows immediately that Sn is p.r.a. We will also call this monad the “free

topological n-category monad”.

Now note that we can construct Pn via the usual Kan extension con-

struction as below: we start with a functor Gn
D Top where D(n) = Bn
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the topological n-ball, and form the usual induced functor which we will

temporarily call V
V (X) = S(D−, X) ∈ TopG

op
n

and we then post compose with a functor

TopG
op
n TopG

op
n

which leaves the top dimension the same but at every lower dimension takes

the indiscrete space on the underlying set of points. Note that this con-

struction uses the functors O producing the underlying set of points and I
producing the indiscrete space:

Top Set⊥

O

I

Given an n-globular space

Xn Xn−1 Xn Xn X0· · ·
s

t

s

t

s

t

we produce the n-globular space

Xn OIXn−1 Xn Xn OIX0· · ·
s

t

s

t

s

t

and with the source and target maps on n-cells proceeding via the counit of

the adjunction O ⊣ I . We will call this functor OI<n.

Thus we have the following situation giving the functor Pn:

Gn TopG
op
n TopG

op
n

Top

yG

D V

OI<n

Pn

Lemma 4.13. The functor Pn is a right adjoint.

Proof. As Top is complete, well-powered, and has a cogenerator, it suffices

to check that Pn preserves limits. As limits in TopG
op
n are computed pointwise

it suffices to check that for each object k ∈ G
op

n the composite

Top Pn TopG
op
n evalk Top
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preserves limits. When k = n this is just V , which we know is a right adjoint

so preserves limits. When k < n this is OI , and this is a composite of right

adjoints so preserves limits.

Theorem 4.14. Write Sn for the free topologicaln-category monad on TopG
op
n .

Then there is a universal Sn-operad acting on Pn whose m-cells are those

of EU for m < n, and whose space of n-cells of arity α is the space of

coglobular maps Bn |α|.

Note that Sn1 is discrete at every dimension—it is in fact the same as

Tn1, just with each set of k-cells realised as a discrete space.

Proof. As Sn is p.r.a. and Pn is a right adjoint we may use Theorem 2.4 and

compute the internal hom in the slice category

[Top,TopG
op
n ]/Sn∗1.

Note that, under the equivalences of Corollary 2.9 and by Remark 2.5 we

can use equivalences

[Top,TopG
op
n ]/Sn∗1 ≃ [Top,Top(Gop

n/Sn1)]

≃ [Top ×G
op

n/Sn1, Top]

Now Pn agrees with EU everywhere except dimension n so this is the

only dimension we need to consider here. In fact Pn agrees at dimension n
as well if we simply “reinterpret” the notation

Pn(X)(n) = Top(Bn, X)

where this must now mean the space of maps Bn X .

Now, following the proof of Theorem 4.8, to find the spaces of n-cells of

arity α of ev∅(End (U)) we must calculate

[

Top × (Gop

n/Sn1),Top
](

H(∅,n,α) × Ā, B̄
)

where
Ā(X,m, β) = Top(|β|, X)

B̄(X,m, β) = Top(Bm, X)
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interpreted as spaces of maps. We now have to calculate this as a space of

enriched natural transformations using the end formula
∫

(X,m,β)

Top
(

H(∅,n,α)(X,m, β)× Top(|β|, X) , Top(Bm, X)
)

.

As before we have

H(∅,n,α)(X,m, β) =







1 n = m,α = β

{s, t} n > m, β = ∂α

∅ otherwise

Fixing α = β we get
∫

X∈Top

Top
(

Top(|α|, X) , Top(Bn, X)
)

= Top(Bn, α)

by enriched Yoneda. The rest of the end formula gives the same commuting

conditions as before.

Note that evaluating the endomorphism operad End (Πn) at (X,m, β)
where m < n gives the same answer as for End (U), expressed as a discrete

space, so this internal hom is indeed in our full subcategory as required.

Example 4.15. Operads acting on path spaces.

Note that the case n = 1 gives us operads acting on path spaces, but not

in the most obvious sense as the operads in question will not be classical

operads but S1-operads.

The monad S1 is the free topological category monad on what we might

call Gph(Top), the category of graphs in spaces; S11 has a single object, and

its single hom-space is the discrete space N. Thus an S1-operad P has as its

underlying data

• a set P0 of objects, and

• for every pair a, b of objects and every arity k ∈ N a space of opera-

tions.

In particular any classical operad can be expressed as an S1-operad with a

single object; this is the “suspension” operation used in [4].

The functor P1 : Top TopG
op

1 takes a space X and produces the glob-

ular space with
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• objects the indiscrete space on the points of X , and

• the hom-space is the space of paths in X , Top(I,X).

Note that this is not quite the same as a Top-enriched graph, which, essen-

tially, would treat the hom-space as a disjoint union of individual hom-spaces

X(x, y).
The theorem then gives us the universal S1-operad acting on this sense

of path space, and examining the construction in that case shows that it is

the suspension of the operad used by Trimble, which has E(k) ∈ Top is

the space of continuous, endpoint-preserving maps [0, 1] [0, k]. Thus

we can say that Trimble’s operad has the following universal property: its

suspension is the universal S1-operad acting on path spaces.

Note the notion of “operad acting on path spaces” can be defined directly

without going via S1-operads (see for example [11]), but making an abstract

version of that approach is tricky. Trimble [18] uses the category Bip of

bipointed spaces; however this is not a straightforward generalisation of the

use of Top∗ for loop spaces. For loop spaces we have

ΩX = Top∗(S,X)

(ΩX)k = Top∗(S
∨k, X);

for path spaces we can try to replace the circle S with the interval I regarded

as a bipointed space via its endpoints, giving

X(x, y) = Bip
(

{I, 0, 1}, {X, x, y}
)

.

However raising this to the power of k does not give us a string of k com-

posable paths as we require. Trimble instead expresses the action on path

spaces using “operads in topological profunctors”.

4.4 Non-universal examples

In this final section we discuss non-universal versions of the operads studied

in the previous sections. One class of non-universal examples comes from

applying the work of [4]. Recall that in this work we showed that every

Trimble n-category is a Batanin n-category. One part of this takes a classical

operad acting on path spaces and iteratively produces from it an n-globular

operad acting on n-path spaces for any n.
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Applying the construction to the universal operadE (regarded as a classi-

cal operad) gives a suboperad Ē of G. Thus, by the main theorem, Ē acts on

n-path spaces. Given any non-universal exampleP we have a canonical mor-

phismP E giving rise to a morphism P̄ Ē and hence P̄ Ē G.

So P̄ also acts on n-path spaces.

Thus for example we can apply this to the little intervals operad or other

non-universal classical operads and get a smaller operad acting on n-path

spaces. However this general method only allows us to control the operations

at the lowest dimension. The 1-cells of P̄ are formed from the points of

P (k), but the 2-cells also involve the paths of P (k) and the 3-cells involve

the homotopies between paths, and so on. This approach suffices for some

purposes and in future work we will use it to show that doubly degenerate

Trimble 3-categories, parametrised by the little intervals operad, give braided

monoidal categories in a suitable sense.

However for more general results more control over the higher dimen-

sions of the globular operad may be desirable. This cannot be done automat-

ically using the machinery of [4], but the present work gives us a first step in

the direction of being able to construct more tractable non-universal operads

suitable for proving results about weak n-categories.
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Résumé. Nous donnons une preuve alternative du théorème bien connu de

Joyal-Tierney dans la théorie des locales en utilisant la dualité de Priestley

pour les cadres.

Abstract. We give an alternative proof of the well-known Joyal-Tierney The-

orem in locale theory by utilizing Priestley duality for frames.
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1. Introduction and Preliminaries

A well-known result in locale theory, known as the Joyal-Tierney Theorem,

states that a localic map f : M → L is open iff its left adjoint f ∗ : L → M is

a complete Heyting homomorphism (see, e.g., [8, Prop. III.7.2]). In addition,

if L is subfit, then f is open iff f ∗ is a complete lattice homomorphism (see,

e.g., [8, Prop. V.1.8]). Our aim is to give another proof of this result utilizing

the language of Priestley spaces.

Priestley duality [9, 10] establishes a dual equivalence between the cate-

gories of bounded distributive lattices and Priestley spaces. We recall that a

Priestley space is a Stone space X equipped with a partial order ≤ such that

x 6≤ y implies the existence of a clopen upset U such that x ∈ U and y /∈ U .

A Priestley morphism is a continuous order-preserving map.

Pultr and Sichler [12] showed how to restrict Priestley duality to the cat-

egory of frames. We recall (see, e.g., [8, p. 10]) that a frame is a complete
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lattice L satisfying the infinite distributive law a ∧
∨

S =
∨

{a ∧ s : s ∈ S}
for each a ∈ L and S ⊆ L. A map h : L → M between frames is a frame

homomorphism if h preserves finite meets and arbitrary joins. Let Frm be

the category of frames and frame homomorphisms.

Definition 1.1.

1. A Priestley space X is a localic space, or simply an L-space, provided

the closure of an open upset is a clopen upset.

2. A Priestley morphism f : X → Y between L-spaces is an L-morphism

provided clf−1U = f−1clU for each open upset U of Y .

3. Let LPries be the category of L-spaces and L-morphisms.

Proposition 1.2. [12, p. 198] Frm is dually equivalent to LPries.

Remark 1.3. Since frames are exactly complete Heyting algebras (see, e.g.,

[6, Prop. 1.5.4]), every L-space is an Esakia space, where we recall that a

Priestley space X is an Esakia space provided ↓U is clopen for each clopen

U ⊆ X (equivalently, the closure of an open upset is an upset).

Remark 1.4. The contravariant functors establishing Pultr-Sichler duality

are the restrictions of the contravariant functors establishing Priestley dual-

ity. They are described as follows.

For an L-space X , let ClopUp(X) be the frame of clopen upsets of X .

The functor ClopUp : LPries → Frm sends X ∈ LPries to the frame

ClopUp(X) and an LPries-morphism f : X → Y to the Frm-morphism

f−1 : ClopUp(Y ) → ClopUp(X).
For L ∈ Frm let XL be the set of prime filters of L ordered by inclusion

and equipped with the topology whose basis is {φ(a) \ φ(b) : a, b ∈ L},

where φ : L → ℘(XL) is the Stone map φ(a) = {x ∈ XL : a ∈ x}. Then

XL is an L-space and the functor pf : Frm → LPries sends L ∈ Frm to XL

and a Frm-morphism h : L → M to the LPries-morphism h−1 : XM → XL.

Let L,M be frames. Every frame homomorphism h : L → M has a right

adjoint r = h∗ : M → L, called a localic map. It is given by

r(b) =
∨

{a ∈ L : h(a) ≤ b}.

The following provides a characterization of localic maps:
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Proposition 1.5. [8, Prop. II.2.3] A map r : M → L between frames is a

localic map iff

(1) r preserves all meets (so has a left adjoint h = r∗);

(2) r(a) = 1 implies a = 1;

(3) r(h(a) → b) = a → r(b).

Let Loc be the category of frames and localic maps. The following is

obvious from Propositions 1.2 and 1.5:

Proposition 1.6. Loc is dually isomorphic to Frm, and hence equivalent to

LPries.

To define open localic maps, we recall the notion of a sublocale which

generalizes that of a subspace. Let L be a frame. A subset S of L is a

sublocale of L if S is closed under arbitrary meets and x → s ∈ S for each

x ∈ L and s ∈ S. Sublocales correspond to nuclei, where we recall (see,

e.g., [8, Sec. III.5.3]) that a nucleus on L is a map ν : L → L satisfying

1. a ≤ νa;

2. ννa ≤ νa;

3. ν(a ∧ b) = νa ∧ νb.

We can go back and forth between nuclei and sublocales as follows. If ν
is a nucleus on L, then Sν := ν[L] is a sublocale of L. Conversely, if S is

a sublocale of L, then νS : L → L is a nucleus on L, where νS is given by

νS(a) =
∧

{s ∈ S : a ≤ s}. This correspondence is one-to-one (see, e.g.,

[8, Prop. III.5.3.2]).

If a ∈ L, then o(a) := {a → x : x ∈ L} is a sublocale of L, called an

open sublocale of L, whose corresponding nucleus νa is given by νa(x) =
a → x (see, e.g., [8, pp. 33, 35]).

Definition 1.7. [8, p. 37] A localic map r : M → L is open if for each open

sublocale S of M , the image r[S] is an open sublocale of L.
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2. The Joyal-Tierney Theorem

The Joyal-Tierney Theorem provides a characterization of open localic maps

(see, e.g., [7, Prop. 7.3] or [8, pp. 37–38]):

Theorem 2.1 (Joyal-Tierney). Let r : M → L be a localic map between

frames with left adjoint h. The following are equivalent:

(1) r is open.

(2) h is a complete Heyting homomorphism.

(3) h has a left adjoint ℓ = h∗ satisfying the Frobenius condition

ℓ(a ∧ h(b)) = ℓ(a) ∧ b

for each a ∈ M and b ∈ L.

Our aim is to give an alternative proof of this result using Priestley duality

for frames. For this we need to translate the algebraic conditions of Theo-

rem 2.1 into geometric conditions about Priestley spaces. We will freely use

the following well-known lemma. For parts (1) and (2) see [4, Lems. 11.21,

11.22]; for part (3) see [11, Prop. 2.6]; and part (4) is a consequence of

Esakia’s lemma (see [6, Lem. 3.3.12]).

Lemma 2.2.

(1) For a Priestley space X , the set {U \ V : U, V ∈ ClopUp(X)} is a

basis of open sets of X .

(2) Let X be a Priestley space. If F,G are disjoint closed subsets of X ,

with F an upset and G a downset, then there is a clopen upset U of X
such that F ⊆ U and G ∩ U = ∅. In particular, every open upset is a

union and every closed upset is an intersection of clopen upsets.

(3) If F is a closed subset of a Priestley space, then ↑F and ↓F are closed.

(4) Let f : X → Y be a continuous map between Priestley spaces. For

each x ∈ X we have

f
[

⋂

{U ∈ ClopUp(X) : x ∈ U}
]

=
⋂

{f [U ] : x ∈ U ∈ ClopUp(X)}.
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We recall (see, e.g., [4, p. 265]) that if h : L → M is a frame homomor-

phism and f : XM → XL is its Priestley dual, then

f−1φ(a) = φh(a). (a)

We also recall that if r : M → L is a localic map and S is a sublocale of M ,

then r[S] is a sublocale of L (see, e.g., [8, Prop. III.4.1]).

Lemma 2.3. Let r : M → L be a localic map with left adjoint h. If S is a

sublocale of M , then νr[S] = rνSh.

Proof. Let a ∈ L. We have

νr[S](a) =
∧

{r(s) : s ∈ S, a ≤ r(s)}

=
∧

{r(s) : s ∈ S, h(a) ≤ s}

= r
(

∧

{s ∈ S : h(a) ≤ s}
)

= rνSh(a).

Therefore, νr[S] = rνSh.

We thus see that a localic map r : M → L, with left adjoint h, is open iff

for each a ∈ M there is b ∈ L with rνah = νb. We use this observation in

the proof of the following lemma.

Lemma 2.4. Let r : M → L be a localic map, h the left adjoint of r, and

f : XM → XL the Priestley dual of h. The following are equivalent:

(1) r is open.

(2) If U is a clopen upset of XM , then f [U ] is a clopen upset of XL.

Proof. We start by showing that if a ∈ M and b, c ∈ L, then

b ≤ (rνah)(c) ⇐⇒ φ(b) ∩ f [φ(a)] ⊆ φ(c). (b)

To see this,

b ≤ (rνah)(c) ⇐⇒ b ≤ r(a → h(c)) ⇐⇒ h(b) ≤ a → h(c)

⇐⇒ h(b) ∧ a ≤ h(c).
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Therefore, since f [f−1(B) ∩ A] = B ∩ f [A] for each A,B, by (a) we have

b ≤ (rνah)(c) ⇐⇒ φh(b) ∩ φ(a) ⊆ φh(c)

⇐⇒ f−1φ(b) ∩ φ(a) ⊆ f−1φ(c)

⇐⇒ f [f−1φ(b) ∩ φ(a)] ⊆ φ(c)

⇐⇒ φ(b) ∩ f [φ(a)] ⊆ φ(c).

(1)⇒(2). Let U ∈ ClopUp(XM). Then U = φ(a) for some a ∈ M . By

(1) and Lemma 2.3, there is b ∈ L with rνah = νb. Since 1 = νb(b), we have

1 ≤ (rνah)(b), so φ(1) ∩ f [U ] ⊆ φ(b) by (b). Therefore, f [U ] ⊆ φ(b). For

the reverse inclusion, let y ∈ φ(b). If y /∈ f [U ], then since f [U ] is closed in

XL, there is a clopen set containing y and missing f [U ]. By Lemma 2.2(1),

there are c, d ∈ L with y ∈ φ(c) \ φ(d) and f [U ] ∩ (φ(c) \ φ(d)) = ∅.

Thus, f [U ] ∩ φ(c) ⊆ φ(d), so c ≤ (rνah)(d) = νb(d) = b → d by (b).

This gives b ∧ c ≤ d, and hence φ(b) ∩ φ(c) ⊆ φ(d), a contradiction since

y ∈ φ(b) ∩ φ(c) but y /∈ φ(d). Therefore, y ∈ f [U ], and so φ(b) ⊆ f [U ].
Consequently, f [U ] = φ(b), and so f [U ] ∈ ClopUp(XL).

(2)⇒(1). Let a ∈ M and set U = φ(a). Then U ∈ ClopUp(XM), so

f [U ] ∈ ClopUp(XL) by (2). Therefore, there is b ∈ L with φ(b) = f [U ]. If

c, d ∈ L, then by (b),

c ≤ (rνah)(d) ⇐⇒ φ(c) ∩ f [U ] ⊆ φ(d)

⇐⇒ φ(c) ∩ φ(b) ⊆ φ(d)

⇐⇒ c ∧ b ≤ d

⇐⇒ c ≤ b → d

⇐⇒ c ≤ νb(d).

Thus, rνah = νb, and hence r is open.

We next give a dual characterization of when a frame homomorphism

has a left adjoint. Let X be a Priestley space. Then we have two addi-

tional topologies on X , the topology of open upsets and the topology of

open downsets. If cli and inti are the corresponding closure and interior op-

erators (i = 1, 2), then it is well known (see, e.g., [3, Lem. 6.5]) that for

A ⊆ X we have:

cl1A = ↓clA and int1(A) = X \ ↓(X \ intA);

cl2A = ↑clA and int2(A) = X \ ↑(X \ intA).
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Let L be a frame and let a =
∧

S for a ∈ L and S ⊆ L. Then

φ(a) = int1
⋂

{φ(s) : s ∈ S} (c)

(see, e.g., [2, Lem. 2.3]). This will be used in the following lemma.

Lemma 2.5. Let h : L → M be a frame homomorphism and f : XM → XL

its Priestley dual. The following are equivalent:

(1) h has a left adjoint.

(2) h preserves all meets.

(3) f−1int1F = int1f
−1F for each closed upset F ⊆ XL.

(4) ↑f [U ] is clopen for each clopen upset U ⊆ XM .

Proof. (1)⇔(2). This is well known (see, e.g., [4, Prop. 7.34]).

(2)⇒(3). Let F be a closed upset of XL. By Lemma 2.2(2), we may

write F =
⋂

{φ(s) : s ∈ S} for some S ⊆ L. By (a),

f−1(F ) = f−1
(

⋂

{φ(s) : s ∈ S}
)

=
⋂

{f−1φ(s) : s ∈ S}

=
⋂

{φh(s) : s ∈ S},

so

int1f
−1(F ) = int1

⋂

{φh(s) : s ∈ S} = φ
(

∧

h[S]
)

.

On the other hand, by (c) we have

int1F = int1
⋂

{φ(s) : s ∈ S} = φ
(

∧

S
)

.

Therefore, using (a) again yields

f−1(int1F ) = f−1φ
(

∧

S
)

= φh
(

∧

S
)

.

Thus, by (2) we have

int1f
−1(F ) = φ

(

∧

h[S]
)

= φh
(

∧

S
)

= f−1(int1F ).
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(3)⇒(4). Let U ∈ ClopUp(XM) and set F = ↑f [U ]. By Lemma 2.2(3),

F is a closed upset of Y . By (3),

U ⊆ int1f
−1(f [U ]) ⊆ int1f

−1F = f−1int1F,

so f [U ] ⊆ int1F , and hence ↑f [U ] ⊆ int1F = int1↑f [U ]. Thus, ↑f [U ] is

clopen.

(4)⇒(1). Let a ∈ M . By (4), ↑f [φ(a)] ∈ ClopUp(XL). Therefore, there

is a unique b ∈ L such that φ(b) = ↑f [φ(a)]. Letting ℓ(a) = b defines a

function ℓ : M → L such that

φℓ(a) = ↑f [φ(a)]. (d)

To see that ℓ is left adjoint to h, let c ∈ L. Since φ(c) is an upset, by (a) we

have

ℓ(a) ≤ c ⇐⇒ φℓ(a) ⊆ φ(c) ⇐⇒ ↑f [φ(a)] ⊆ φ(c) ⇐⇒ f [φ(a)] ⊆ φ(c)

⇐⇒ φ(a) ⊆ f−1φ(c) ⇐⇒ φ(a) ⊆ φh(c) ⇐⇒ a ≤ h(c).

We recall (see, e.g., [6, p. 9]) that a map f : X → Y between posets

is a bounded morphism or a p-morphism if ↓f−1(y) = f−1(↓y) for each

y ∈ Y . Let h : L → M be a frame homomorphism between frames and

f : XM → XL its Priestley dual. Then f is an L-morphism. It follows

from Esakia duality for Heyting algebras [5, 6] that h preserves → iff f is a

p-morphism. This together with Lemma 2.5 yields:

Lemma 2.6. Let h : L → M be a frame homomorphism and f : XM → XL

its dual L-morphism. Then h is a complete Heyting homomorphism iff f is a

p-morphism and ↑f [U ] is clopen for each clopen upset U of XM .

We next provide a dual characterization of the Frobenius condition

ℓ(a ∧ h(b)) = ℓ(a) ∧ b

for each a ∈ M and b ∈ L.

Lemma 2.7. Let h : L → M be a frame homomorphism with Priestley dual

f : XM → XL. The following are equivalent:
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(1) h has a left adjoint ℓ and ℓ(a ∧ h(b)) = ℓ(a) ∧ b for all a ∈ M and

b ∈ L.

(2) ↑f [U ] is clopen and ↑(f [U ]∩V ) = ↑f [U ]∩V for all U ∈ ClopUp(XM)
and V ∈ ClopUp(XL).

Proof. By Lemma 2.5, h has a left adjoint ℓ iff ↑f [U ] is clopen for each U ∈
ClopUp(XM). It is left to show that ℓ(a ∧ h(b)) = ℓ(a) ∧ b for each a ∈ M
and b ∈ L iff ↑(f [U ] ∩ V ) = ↑f [U ] ∩ V for each U ∈ ClopUp(XM) and

V ∈ ClopUp(XL). Letting U = φ(a) and V = φ(b), since ↑f [U ] = φℓ(a)
by (d), we have

φ(ℓ(a) ∧ b) = φℓ(a) ∩ φ(b) = ↑f [U ] ∩ V.

On the other hand, since f [U ∩ f−1(V )] = f [U ] ∩ V , by (a) we have

φℓ(a ∧ h(b)) = ↑f [φ(a ∧ h(b))] = ↑f [φ(a) ∩ φh(b)]

= ↑f [φ(a) ∩ f−1φ(b)] = ↑f [U ∩ f−1(V )]

= ↑(f [U ] ∩ V ).

Thus,

ℓ(a ∧ h(b)) = ℓ(a) ∧ b ⇐⇒ φℓ(a ∧ h(b)) = φ(ℓ(a) ∧ b)

⇐⇒ ↑(f [U ] ∩ V ) = ↑f [U ] ∩ V.

We thus have translated the three conditions of Theorem 2.1 into the

dual conditions in the language of Priestley spaces. We next prove that the

translated conditions are equivalent.

Theorem 2.8. Let f : X → Y be a Priestley morphism between L-spaces.

The following are equivalent:

(1) If U ∈ ClopUp(X), then f [U ] ∈ ClopUp(Y ).

(2) f is a p-morphism and ↑f [U ] is clopen for all U ∈ ClopUp(X).

(3) ↑f [U ] is clopen and ↑(f [U ]∩V ) = ↑f [U ]∩V for all U ∈ ClopUp(X)
and V ∈ ClopUp(Y ).
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Proof. (1)⇒(2). Let U ∈ ClopUp(X). By (1), f [U ] is an upset of Y , so

↑f [U ] = f [U ]. Therefore, ↑f [U ] is clopen in Y by (1). It is left to prove

that f is a p-morphism. For this it suffices to show that f(↑x) is an upset for

each x ∈ X (see, e.g, [6, Prop 1.4.12]). By Lemma 2.2(2),

↑x =
⋂

{U ∈ ClopUp(X) : x ∈ U},

so by Lemma 2.2(4),

f [↑x] = f
[

⋂

{U ∈ ClopUp(X) : x ∈ U}
]

=
⋂

{f [U ] : x ∈ U ∈ ClopUp(X)}.

Thus, f [↑x] is an upset by (1).

(2)⇒(3). It is sufficient to show that ↑(f [U ] ∩ V ) = ↑f [U ] ∩ V for

each U ∈ ClopUp(X) and V ∈ ClopUp(Y ). But since f is a p-morphism,

↑f [U ] = f [U ], so ↑f [U ] ∩ V = f [U ] ∩ V = ↑(f [U ] ∩ V ) because f [U ] ∩ V
is an upset.

(3)⇒(1). It suffices to show that f [U ] is an upset. If not, then there exist

x ∈ U and y ∈ Y with f(x) ≤ y but y /∈ f [U ]. This yields y /∈ ↓(↓y∩f [U ]),
so there is a clopen upset V of Y such that y ∈ V and V ∩ ↓y ∩ f [U ] = ∅

(see Lemma 2.2(2)). Therefore, y /∈ ↑(f [U ] ∩ V ) but y ∈ ↑f [U ] ∩ V , a

contradiction to (3). Thus, f [U ] is an upset.

By Lemmas 2.4, 2.6 and 2.7, the three conditions of Theorem 2.8 are

equivalent to the corresponding three conditions of Theorem 2.1. Hence, the

Joyal-Tierney Theorem is a consequence of Theorem 2.8. We conclude this

section with the following observation.

Remark 2.9. Condition (1) of Theorem 2.8 is equivalent to:

(1′) If U is an open upset of X , then f [U ] is an open upset of Y .

Clearly (1′) implies (1) since if U is clopen, then f [U ] is closed, hence a

clopen upset of Y by (1′). Conversely, if U is an open upset, then U =
⋃

{V ∈ ClopUp(X) : V ⊆ U} by Lemma 2.2(2). Therefore, f [U ] =
⋃

{f [V ] : V ∈ ClopUp(X), V ⊆ U} is a union of clopen upsets of Y by

(1). Thus, f [U ] is an open upset of Y . Consequently, (1) is equivalent to f
being an open map with respect to the open upset topologies.
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On the other hand, this does not imply that f is an open map with respect

to the Stone topologies. To see this, we use the space defined in [1, p. 32].

Let X be the 2-point compactification of the discrete space {xn, zn : n ≥ 1}
with ω the limit point of {xn : n ≥ 1} and ω′ the limit point of {zn : n ≥ 1}.

Let Y be the 1-point compactification of the discrete space {yn : n ≥ 1}.

We order X and Y and define the map f : X → Y as shown in the diagram

below.

X

ω′

ω

z2x4

x3

x2

x1

z1

Y

∞

y4

y3

y2

y1

f

It is straightforward to see that X and Y are L-spaces and f is an L-mor-

phism such that f [U ] is a clopen upset of Y for each clopen upset U of X .

However, f is not an open map since U := {zn : n ≥ 1} ∪ {ω′} is an open

subset of X whose image {y2n : n ≥ 1} ∪ {∞} is not an open subset of Y .

3. The subfit case

As was shown in [8, Prop. V.1.8], if in the Joyal-Tierney Theorem we assume

that L is subfit, then the localic map r : M → L is open iff its left adjoint

h : L → M is a complete lattice homomorphism (so h being a Heyting

homomorphism becomes redundant). We will give an alternative proof of

this result in the language of Priestley spaces.

We recall that a frame L is subfit if for all a, b ∈ L we have

a 6≤ b =⇒ (∃c ∈ L)(a ∨ c = 1 and b ∨ c 6= 1).

We next give a dual characterization of when L is subfit. As usual, for a

poset X we write minX for the set of minimal points of X .

435



G. BEZHANISHVILI, ET AL. JOYAL-TIERNEY THEOREM

Lemma 3.1. Let L be a frame and XL its Priestley space. Then L is subfit

iff minXL is dense in XL.

Proof. First suppose that minXL is dense in XL. To see that L is subfit,

let a, b ∈ L with a 6≤ b. Then φ(a) 6⊆ φ(b), so φ(a) \ φ(b) is a nonempty

clopen subset of X . Therefore, there is x ∈ (φ(a) \ φ(b)) ∩ minXL. Let

U = XL \ {x}. Then U is an open upset of XL. Since φ(a) ∪ U = XL

and U is a union of clopen upsets (see Lemma 2.2(2)), compactness of XL

implies that there is a clopen upset U ′ ⊆ U with φ(a) ∪ U ′ = XL. Because

U ′ = φ(c) for some c ∈ L, we have a ∨ c = 1. On the other hand, since

x /∈ φ(b) ∪ U ′ = φ(b ∨ c), it follows that b ∨ c 6= 1. Thus, L is subfit.

Conversely, suppose that minXL is not dense in XL. Then there is a

nonempty clopen subset A of XL such that A ∩ minXL = ∅. We may

assume that A = U \ V , where U 6⊆ V are clopen upsets of XL (see

Lemma 2.2(1)). From A ∩ minXL = ∅ it follows that U ∩ minXL ⊆ V .

Let a, b ∈ L be such that U = φ(a) and V = φ(b). Since U 6⊆ V , we

have a 6≤ b. Suppose c ∈ L is such that a ∨ c = 1. Let W = φ(c). Then

U ∪W = XL, so minXL ⊆ U ∪W . Because U ∩minXL ⊆ V , this yields

minXL ⊆ V ∪ W , which forces V ∪ W = XL because ↑minXL = XL

(see, e.g., [6, Thm. 3.2.1]). Thus, b ∨ c = 1, and hence L is not subfit.

Lemma 3.2. Let f : X → Y be a Priestley morphism between L-spaces. If

minY is dense in Y and ↑f [U ] is clopen for each U ∈ ClopUp(X), then f
is a p-morphism.

Proof. It is sufficient to show that Condition (1) of Theorem 2.8 holds, which

amounts to showing that f [U ] is an upset for each U ∈ ClopUp(X). If not,

then ↑f [U ] \ f [U ] 6= ∅ for some U ∈ ClopUp(X). Let V = ↑f [U ] \ f [U ].
Since ↑f [U ] is open and f [U ] is closed, V is a nonempty open subset of Y .

Thus, V ∩minY 6= ∅ because minY is dense in Y . On the other hand,

V ∩minY ⊆ ↑f [U ] ∩minY = f [U ] ∩minY.

This is a contradiction since V ∩ f [U ] = ∅. Consequently, f [U ] is an

upset.

As an immediate consequence of Lemma 3.2, we obtain:
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Theorem 3.3. Let f : X → Y be a Priestley morphism between L-spaces.

If minY is dense in Y , then Condition (2) in Theorem 2.8 is equivalent to

(2′) ↑f [U ] is clopen for each U ∈ ClopUp(X).

Theorems 2.8 and 3.3 together with Lemmas 2.4 and 2.5 yield the fol-

lowing version of the Joyal-Tierney Theorem:

Corollary 3.4. [8, Prop. V.1.8] Let r : M → L be a localic map with left

adjoint h. If L is subfit, then r is open iff h is a complete lattice homomor-

phism.
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tos de Matemática. Série B, vol. 41, Universidade de Coimbra, Depar-
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CATEGORICAL MODELS OF

UNSTABLE G-GLOBAL HOMOTOPY

THEORY

Tobias LENZ

RÂesumÂe. Nous prouvons que la catÂegorie G-Cat des petites catÂegories avec

G-action forme un modèle de la thÂeorie de l’homotopie instable G-globale

pour tout groupe discret G, gÂenÂeralisant la structure de modèle global de

Schwede sur Cat. En consÂequence, nous prouvons que G-Cat modÂelise la

thÂeorie de l’homotopie Âequivariante G appropriÂee, non seulement lorsque

nous testons les Âequivalences faibles sur les points fixes, mais aussi lorsque

nous les testons sur les points fixes d’homotopie catÂegorielle.

Abstract. We prove that the category G-Cat of small categories with G-

action forms a model of unstable G-global homotopy theory for every discrete

group G, generalizing Schwede’s global model structure on Cat. As a conse-

quence, we prove that G-Cat models proper G-equivariant homotopy theory

not only when we test weak equivalences on fixed points, but also when we

test them on categorical homotopy fixed points.

Keywords. Equivariant homotopy theory, nerve functor, model categories,

Thomason model structure.

Mathematics Subject Classification (2010). 55P91, 18G55

Introduction

It is an observation going back to Quillen [Ill72, VI.3] that every topologi-

cal space is weakly equivalent to the classifying space of a small category,
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and that in fact taking classifying spaces yields an equivalence between the

homotopy category of small categories (formed with respect to those func-

tors that induce homotopy equivalences of classifying spaces) and the usual

unstable homotopy category. This comparison was later lifted to a model cat-

egorical statement by Thomason [Tho80] who constructed a model structure

on the category Cat of small categories with the above weak equivalences

and proved that it is Quillen equivalent to the usual Kan-Quillen model struc-

ture on simplicial sets.

In more recent years, several generalizations and refinements of Thoma-

son’s and Quillen’s results have been established:

In [BMO+15], Bohmann, Mazur, Osorno, Ozornova, Ponto, and Yarnall

constructed for any discrete group G a model structure on the category G-Cat

of small G-categories in which a map is a weak equivalence if and only if

it induces weak equivalences on all fixed points. Moreover, they proved

that G-Cat is Quillen equivalent to the usual G-equivariant model structure

on G-simplicial sets, thereby establishing G-Cat as a model of unstable G-

equivariant homotopy theory. This result was strengthened by May, Stephan,

and Zakharevich [MZS17] who showed that already the full subcategory of

G-posets models the same homotopy theory, generalizing a non-equivariant

result due to Raptis [Rap10].

On the other hand, we can consider global homotopy theory [Sch18]

which, roughly speaking, studies equivariant phenomena that exist uniformly

across suitable families of groups, like all finite groups or all compact Lie

groups. In this setting, Schwede [Sch19] refined Thomason’s result by con-

structing the so-called global model structure on Cat and proving that it is

Quillen equivalent to the orbispace model of unstable global homotopy the-

ory with respect to finite groups.

In the present paper, we generalize Schwede’s result by establishing

G-Cat for every discrete group G as a model of unstable G-global homotopy

theory in the sense of [Len20, Chapter 1]. G-global homotopy theory arises

for example naturally in the study of global infinite loop spaces [Len20,

Chapter 2] or in the form of various ‘Galois-global’ phenomena [Sch22b].

For every G, G-global homotopy theory admits a Bousfield localization

to proper G-equivariant homotopy theoryÐi.e. equivariant homotopy theory

where we only consider the fixed points for finite subgroupsÐand we make

the localization functor explicit for the model constructed in [BMO+15].
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As a consequence of this comparison, we obtain a new model structure on

G-Cat that still models proper G-equivariant homotopy theory, but whose

weak equivalences are now tested on categorical homotopy fixed points (i.e.

homotopy fixed points formed with respect to the underlying equivalences

of categories) as opposed to ordinary fixed points. There is then a Quillen

equivalence between this new model structure and the one of [BMO+15],

whose right adjoint is given by

Fun(EG, ±) : G-Cathomotopy fixed points → G-Catfixed points (∗)

where EG is the contractible groupoid with object set G, equipped with the

evident G-action.

Our interest in the above model structure and the Quillen equivalence (∗)

comes from equivariant algebraic K-theory as studied in [GM17, Mer17].

Namely, as observed in [GMMO20, §3], (∗) lifts to a functor from the cate-

gory of small symmetric monoidal categories with G-action to the category

of so-called genuine symmetric monoidal G-categories. Equivariant alge-

braic K-theory in the sense of [GM17] is defined in terms of the latter, and

it is only this lift of (∗) that allows to define the G-equivariant algebraic K-

theory of a plain symmetric monoidal category with G-action.

In the sequel [Len22], we will prove that also this lift induces an equiva-

lence of homotopy theories with respect to the above notions of weak equiva-

lences; in particular, from the point of view of algebraic K-theory, there is no

harm in just working with ordinary symmetric monoidal categories with G-

action. While the argument we will give in [Len22] will be formally mostly

independent of the results of the present paper, the equivalence (∗) provided

much of the original motivation for [Len22]. Moreover, the proof we give

here requires much less machinery than its symmetric monoidal counterpart,

and we think it is actually instructive to have a direct argument available in

this case.

Organization

In Section 1 we recall some basic facts about Thomason’s model structure on

Cat as well as our reference model of unstable G-global homotopy theory

in terms of simplicial sets equipped with an action of a specific simplicial

monoid.
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Section 2 is devoted to establishing a general criterion for the existence

of transferred model structures, which we then employ in Section 3 to con-

struct (under a mild technical assumption) a model structure on the category

of small categories with the action of a given categorical monoid and to com-

pare it to its simplicial counterpart, partially generalizing [BMO+15]. Using

this, we establish a categorical analogue of our reference model of G-global

homotopy theory and prove that these two models are Quillen equivalent.

Finally, we construct the desired G-global model structure on G-Cat in

Section 4 and compare it to our previous models of G-global homotopy the-

ory as well as the proper G-equivariant model structure on G-Cat.
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1. Preliminaries

1.1 G-global homotopy theory

[Len20, Chapter 1] introduces several equivalent models of unstable G-glo-

bal homotopy theory and studies their relation to G-equivariant and global

homotopy theory. Here we will recall one of these models, which is based

on a specific monoidM that we call the universal finite group:

Definition 1.1. We write 𝜔 = {0, 1, . . . } for the set of natural numbers and

we denote byM the monoid (under composition) of all injections 𝜔→ 𝜔.

Remark 1.2. In addition to their role in (G-)global homotopy theory [Len20,

Sch22a], which we will detail below,M-actions have been studied in various
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places in the literature, for example in relation to the homotopy groups of

symmetric spectra [Sch08] or in the study of E∞-monoids [SS21]. In several

of these applications, one imposes an additional tameness condition on the

M-action, demanding that the action on any given element x only depend

on the values of an injection u ∈ M on a suitable finite set supp(x) ⊂ 𝜔.

On the other hand, sets with an action of the maximal subgroup coreM

(i.e. the group of bijective self-maps of 𝜔) satisfying an analogous notion of

tameness have been studied in logic and theoretical computer science under

the name nominal sets [Pit13], and together with the equivariant maps they

form a topos, called the Schanuel topos. It is not hard to prove, and also

follows by combining [SS21, Proposition 5.6] with [Pit13, Theorem 6.8],

that a tame M-action is already uniquely determined by the action of the

invertible elements, i.e. the Schanuel topos is equivalent to the category of

tameM-sets via the forgetful functor.

In contrast to that, we will work with generalM-actions throughout the

present paper (which are not determined by the action of the maximal sub-

group), and we instead refer the reader e.g. to [Len20, Sections 1.3 and 2.1]

or [Len22, Section 4] for the role of tameness in (G-)global homotopy the-

ory.

Definition 1.3. A finite subgroup H ⊂ M is called universal if 𝜔 with the

restriction of the tautologicalM-action is a complete H-set universe.

Here we call a countable H-set U a complete H-set universe if every

other countable H-set embeds intoU equivariantly.

It is in fact not hard to show that every finite group H admits an injec-

tive homomorphism i : H → M such that i(H) is universal, and that any

two such homomorphisms differ only by conjugation with an invertible el-

ement ofM [Len20, Lemma 1.2.8]. In particular, if X is any simplicial set

with anM-action, then we can associate to this an H-fixed point space for

any abstract finite group H by picking such a homomorphism i : H → M

and taking i(H)-fixed points. However, while this space is independent of

the chosen homomorphism i up to isomorphism, this isomorphism itself is

not canonical, even up to homotopy. One way to solve this is to pass to a

certain simplicial extension of the monoidM, which relies on the following

construction:
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Construction 1.4. Recall that the functor Cat → Set sending a small cate-

gory to its set of objects admits a right adjoint E (usually called the ‘chaotic’

or ‘indiscrete’ category functor). Explicitly, EX is the category with object

set X and precisely one morphism x → y for any x, y ∈ X. Composition in

EX is defined in the unique possible way, and if f : X → Y is a map of sets,

then Ef is the unique functor which is given on objects by f .

Likewise, the functor SSet → Set sending a simplicial set Y to its set

of 0-simplices admits a right adjoint E. Explicitly, E is given on objects by

(EX)n =
∏n

i=0
X � maps({0, . . . , n}, X) with the evident functoriality in n

and X.

Note that the nerve of the category EX is indeed canonically isomorphic

to the simplicial set of the same name, justifying that we won’t distinguish

between them notationally.

As E is a right adjoint, it in particular preserves products so that the

category or simplicial set EM inherits a natural monoid structure fromM.

Warning 1.5. If G is a discrete group acting on a set X, one can form the

translation category X //G, whose objects are given by the set X and with

Hom(x, y) = {g ∈ G : g.x = y} for any x, y ∈ X. If X = G with its usual

action, this agrees with the indiscrete category EG, see e.g. [GMM17, Propo-

sition 1.8], and accordingly some sources like [EM06, Section 10] refer to

EG as the translation category (while still using the above notation). Beware

however that while the construction of the translation category makes perfect

sense for any monoid action, the result for the monoidM would be differ-

ent from the indiscrete category EM (in particular, the translation category

M //M contains nontrivial endomorphisms).

Definition 1.6. We write EM-G-SSet for the category whose objects are the

simplicial sets equipped with an action of the simplicial monoid EM × G,

and whose morphisms are the (EM × G)-equivariant maps. A map f : X →

Y in EM-G-SSet is called a G-global weak equivalence if f 𝜑 is a weak

equivalence for every universal subgroup H ⊂ M and every homomorphism

𝜑 : H → G; here we write (±)𝜑 for the fixed points with respect to the graph

subgroup ΓH,𝜑 := {(h, 𝜑(h)) : h ∈ H} ⊂ M × G.

Next, we want to recall the G-global model structure on EM-G-SSet.

This is actually just a particular instance of the following proposition, which
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generalizes the usual equivariant model structures for group actions, see

e.g. [Ste16, Example 2.14], to monoid actions:

Proposition 1.7. Let M be a simplicial monoid and let F be a collection

of finite subgroups of M0. Then there exists a unique model structure on

M-SSet in which a map f is a weak equivalence or fibration if and only if

f H is a weak equivalence or fibration, respectively, in the usual Kan-Quillen

model structure on SSet for each H ∈ F . We will refer to this as the F -

model structure and to its weak equivalences as the F -weak equivalences.

The F -model structure is combinatorial with generating cofibrations

{M/H × 𝜕Δn ↩→ M/H × Δn : H ∈ F , n ≥ 0}

and generating acyclic cofibrations

{M/H × Λn
k
↩→ M/H × Δn : H ∈ F , 0 ≤ k ≤ n}.

Moreover it is simplicial (for the obvious enrichment), proper, and a com-

mutative square is a homotopy pushout or pullback if and only if the induced

square on H-fixed points is a homotopy pushout or pullback, respectively, in

SSet for every H ∈ F . Pushouts along underlying cofibrations are homotopy

pushouts.

Finally, the F -weak equivalences are stable under filtered colimits.

Proof. [Len20, Proposition 1.1.2] shows all of these except for the charac-

terizations of homotopy pushouts and pullbacks. The statement about ho-

motopy pullbacks is obvious, while the ones about homotopy pushouts are

instances of [Len20, Proposition 1.1.6 and Lemma 1.1.14]. □

Specializing to our situation we get, also see [Len20, Corollary 1.2.34]:

Corollary 1.8. There is a unique model structure on EM-G-SSet in which

a map f is a weak equivalence or fibration if and only if f 𝜑 is a weak equiva-

lence or fibration, respectively, in the usual Kan-Quillen model structure on

SSet. □

In particular, the weak equivalences of this model structure are precisely

the G-global weak equivalences, and accordingly we refer to this as the G-

global model structure. Proposition 1.7 also provides us with explicit sets
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of generating (acyclic) cofibrations: writing EM ×𝜑 G for (EM × G)/ΓH,𝜑

these are given by

{EM ×𝜑 G × (𝜕Δn ↩→ Δ
n) : n ≥ 0, H ⊂ M universal, 𝜑 : H → G}

{EM ×𝜑 G × (Λn
k
↩→ Δ

n) : 0 ≤ k ≤ n, H ⊂ M universal, 𝜑 : H → G}.

Finally, we come to the relation between G-global and proper G-equi-

variant homotopy theory, i.e. G-equivariant homotopy theory with respect to

the collection of all finite subgroups H ⊂ G.

Theorem 1.9. The functor trivEM : G-SSetproper → EM-G-SSetG-global

equipping a G-simplicial set with the trivial EM-action is homotopical. The

induced functor Ho(trivEM) : Ho(G-SSet) → Ho(EM-G-SSet) on homo-

topy categories fits into a sequence of four adjoints suggestively denoted by

L(±/EM) ⊣ Ho(trivEM) ⊣ (±)REM ⊣ R.

Moreover, (±)REM is a (Bousfield) localization at the E-weak equivalences,

where E denotes the collection of all subgroups ΓH,𝜑 ⊂ M ×G with univer-

sal H ⊂ M for which 𝜑 is injective.

In particular, trivEM : G-SSetproper → EM-G-SSetE-w.e. descends to

an equivalence of homotopy categories.

Proof. See [Len20, Theorem 1.2.92]. □

Remark 1.10. In fact, loc. cit. establishes the above result on the level of

∞-categorical localizations. For simplicity, we will stick to the formulation

in terms of classical homotopy categories in the present paper.

1.2 The Thomason model structure

We close this section by recalling Thomason’s model structure on Cat that

models the ordinary homotopy theory of spaces. While the usual nerve

functor N induces an equivalence of homotopy categories by [Ill72, Corol-

laire 3.3.1], it can’t be part of a Quillen equivalence to the Kan-Quillen

model structure as its left adjoint h (sending a simplicial set to its homotopy

category) is not homotopically well-behaved. Thomason’s crucial insight

was that we can avoid this issue by using Kan’s Sd ⊣ Ex-adjunction [Kan57,

§7] to replace the nerve by a weakly equivalent functor:
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Theorem 1.11 (Thomason). There is a unique model structure on Cat in

which a functor f : C → D is a weak equivalence if and only if N(f ) is a

weak homotopy equivalence of simplicial sets and a fibration if and only

if Ex2 N(f ) is a Kan fibration. This model structure is combinatorial with

generating cofibrations

{h Sd2 𝜕Δn ↩→ h Sd2
Δ

n : n ≥ 0}

and generating acyclic cofibrations

{h Sd2
Λ

n
k
↩→ h Sd2

Δ
n : 0 ≤ k ≤ n}.

Moreover, with respect to this model structure the adjunction

h Sd2 : SSetKan-Quillen ⇄ Cat : Ex2 N (1.1)

is a Quillen equivalence.

Proof. The existence of the model structure together with the above choices

of generating (acyclic) cofibrations is [Tho80, Theorem 4.9]; as Cat is lo-

cally presentable, this is then a combinatorial model structure.

It is obvious that (1.1) is a Quillen adjunction. Moreover, the right adjoint

is homotopical as Ex is weakly equivalent to the identity functor [Kan57,

Lemma 7.4], while the left adjoint is so by Ken Brown’s Lemma. Thus,

for (1.1) to be a Quillen equivalence one has to show that the ordinary unit

and counit are weak equivalences, for which Thomason refers to Fritsch and

Latch [FL81, Example 4.12-(v)]. □

Thomason’s proof of the above theorem crucially relies on a careful anal-

ysis of the (generating) cofibrations. As we will need some of their properties

later, we briefly recall them here for easy reference.

Definition 1.12. A sieve i : C → D is called a Dwyer map if it can be fac-

tored as i = jf such that the following holds:

1. j is a cosieve.

2. f admits a right adjoint.

Proposition 1.13. Let i : K ↩→ L be a cofibration of simplicial sets. Then

h Sd2(i) is a Dwyer map.
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Proof. See [Tho80, Proposition 4.2]. □

Dwyer maps are extremely useful since pushouts along them admit a

very explicit description, which we will recall later in Construction 3.5. For

now we only record one important consequence of this:

Proposition 1.14. Let

A B

C D

←→

←

→
i

←→

←

→

be a pushout in Cat such that i is a Dwyer map. Then the induced map

NB ⨿NA NC→ ND

is a weak homotopy equivalence.

Proof. This is [Tho80, Proposition 4.3]. □

Finally, let us state Schwede’s global refinement of the Thomason model

structure, which we will later generalize to the G-global setting:

Theorem 1.15 (Schwede). There is a unique model structure on Cat in

which a functor f : C → D is a weak equivalence or fibration if and only

if Fun(BH, f ) is a weak equivalence or fibration, respectively, in the Thoma-

son model structure for every finite group H.

We call this the global model structure on Cat. It is proper and combi-

natorial with generating cofibrations

I = {BH × h Sd2 𝜕Δn ↩→ BH × h Sd2
Δ

n : n ≥ 0, H a finite group}

and generating acyclic cofibrations

J = {BH × h Sd2
Λ

n
k
↩→ BH × h Sd2

Δ
n : 0 ≤ k ≤ n, H a finite group}.

Strictly speaking, I and J are not sets as there are too many finite groups.

However, this can be easily cured by restricting to a system of representatives

of isomorphism classes of finite groups, which we will tacitly assume below.
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Proof. Specializing [Sch19, Theorem 1.12] to the collection {BH : H finite

group} shows that this model structure exists and is proper, also see [Sch19,

Theorem 3.3]. Moreover, Schwede’s proof explicitly identifies I and J as set

of generating cofibrations and generating acyclic cofibrations, respectively.

□

The following lemma is crucial to Schwede’s proof of the above theorem

and will also be instrumental later in establishing our G-global generaliza-

tion:

Lemma 1.16. Let X be a small category such that for every x, y ∈ X there

exists both a morphism x→ y as well as y→ x. Let moreover

A B

C D

←

→
i

←→ ←→

←

→

be a pushout in Cat where i is a Dwyer map. Then also the induced square

Fun(X, A) Fun(X, B)

Fun(X, C) Fun(X, D)

←

→
Fun(X,i)

←→ ←→

←

→

is a pushout.

Proof. This is the first half of [Sch19, Theorem 1.5]. □

2. Transferring model structures

Just as the usual equivariant model structures on G-Cat or G-SSet, the G-

global model structures we discuss in this paper will be obtained as trans-

ferred model structures:

Definition 2.1. Let 𝒞 be a model category, let 𝒟 be a complete and cocom-

plete category, and let

F : 𝒞 ⇄ 𝒟 :U
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be an adjunction. The model structure transferred along F ⊣ U is the (unique

if it exists) model structure on 𝒟 in which a morphism f is a weak equiva-

lence or fibration if and only if Uf is a weak equivalence or fibration, respec-

tively, in 𝒞.

We now give a criterion for the existence of transferred model structures

that we will use for all our constructions later.

Proposition 2.2. Let 𝒞 be a left proper cofibrantly generated model cate-

gory such that filtered colimits in 𝒞 are homotopical, and let I, J be sets of

generating (acyclic) cofibrations. Moreover, let 𝒟 be a locally presentable

category together with an adjunction F : 𝒞 ⇄ 𝒟 : U, and assume the fol-

lowing:

1. For each j ∈ J, the map UFj is a weak equivalence.

2. U sends any pushout square

FA FB

C D

←→

←

→
Fi

←→

←

→

in 𝒟, where i ∈ I is a generating cofibration of 𝒞, to a homotopy

pushout in 𝒞.

3. U preserves filtered colimits up to weak equivalence, i.e. for each fil-

tered poset P and each diagram X• : P → 𝒟 the natural comparison

map colimP(U ◦ X•)→ U(colimP X•) is a weak equivalence.

Then the transferred model structure on 𝒟 exists and it is combinatorial with

set of generating cofibrations FI and set of generating acyclic cofibrations

FJ. This model structure is left proper with homotopy pushouts created by

U, and filtered colimits in 𝒟 are homotopical; if 𝒞 is right proper, then so

is 𝒟, and U also creates homotopy pullbacks.

Moreover, in the presence of (2) and (3) the first condition is implied by

(1′) J consists of maps between cofibrant objects. Moreover, the unit 𝜂∅ is

a weak equivalence, and for each generating cofibration (X → Y) ∈ I

both 𝜂X and 𝜂Y are weak equivalences.
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Finally, under this stronger assumption the adjunction F ⊣ U is a Quillen

equivalence.

Proof. Assume first that (1)±(3) hold. To see that the transferred model

structure exists and is cofibrantly generated by FI and FJ it suffices to ver-

ify the assumptions of the usual transfer criterion for cofibrantly generated

model categories [Hir03, Theorem 11.3.2]. As 𝒟 is locally presentable, the

smallness assumption is automatically satisfied, so we only have to show

that relative FJ-cell complexes are weak equivalences. By Condition (3) it

is then enough to verify that pushouts of maps of the form Fj with j ∈ J are

weak equivalences in 𝒟, i.e. sent under U to weak equivalences in 𝒞.

Let us consider the class ℋ of those maps i′ : A′→ B′ in 𝒟 such that U

sends pushouts along them to homotopy pushouts, i.e. those maps such that

the analogue of Condition (2) holds for them. [Len20, Proposition A.2.7]

then shows that ℋ is closed under pushouts, transfinite compositions, and

retracts.

As F preserves pushouts, transfinite compositions, and retracts (being a

left adjoint functor), it follows that also F±1(ℋ) is closed under all of these.

As it contains all i ∈ I by assumption, it follows by the characterizations of

cofibrations in a cofibrantly generated model category that F±1(ℋ) contains

all cofibrations of 𝒞; in particular it contains J. Hence if (j : A → B) ∈ J is

a generating acyclic cofibration and we have any pushout square

FA FB

C D,

←→

←

→
Fj

←→

←

→
k

(2.1)

then applying U to this yields a homotopy pushout in 𝒟. But UFj is a weak

equivalence by Condition (1). It follows that Uk is a weak equivalence,

and hence by definition so is k. Altogether, we conclude that the transferred

model structure exists and is cofibrantly generated by FI and FJ (hence com-

binatorial).

But with this established we conclude by the same argument (this time

applied in 𝒟) from the closure properties of ℋ that U sends pushouts along

cofibrations in 𝒟 to homotopy pushouts. Thus, [Len20, Lemma A.2.15]

shows that 𝒟 is left proper with homotopy pushouts created by U. The
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statements about filtered colimits and homotopy pullbacks are trivial, finish-

ing the proof of the first half of the proposition.

Now assume that (1′), (2), and (3) hold. We first observe:

Claim. The unit 𝜂X is a weak equivalence for each cofibrant X ∈ 𝒞.

Proof. This is a standard cell induction argument. By Quillen’s Retract Ar-

gument, any cofibrant object is a retract of an I-cell complex; as weak equiv-

alences are closed under retracts, it therefore suffices to prove the claim for

every I-cell complex X.

To this end, we write X as a transfinite composition ∅ = X0 → X1 →

· · ·X𝛼 = X of pushouts of maps in I for some ordinal 𝛼. We will now prove

by transfinite induction that 𝜂X𝛽
is a weak equivalence for every 𝛽 ≤ 𝛼.

For 𝛽 = 0 this is part of Condition (1′). If 𝛽 = 𝛾 + 1 is a successor ordi-

nal, then we exhibit X𝛾 → X𝛽 as a pushout of some generating cofibration

i : A→ B and consider the induced commutative cube

UFA UFB

A B

UFX𝛾 UFX𝛽

X𝛾 X𝛽

←

→
UFi

←

→

←

→

←→
←

→
i

←

→

←→

←

→

←

→

←

→

←

→ ←

→

(2.2)

where all front-to-back maps are given by 𝜂. The front square is a homotopy

pushout as 𝒞 is left proper, and so is the back square by Condition (2) and

since F preserves pushouts.

In (2.2), the upper front-to-back maps are weak equivalences by Condi-

tion (1′), and so is the lower left one by the induction hypothesis. Thus, also

𝜂X𝛽
is a weak equivalence as desired.

Finally, if 𝛽 is a limit ordinal, then we consider the commutative square

colim𝛾<𝛽 X𝛾 X𝛽

colim𝛾<𝛽 UFX𝛾 UFX𝛽

←

→

←→colim𝛾<𝛽 𝜂 ←→ 𝜂

←

→
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where the horizontal maps are induced by the structure maps X𝛾 → X𝛽; in

particular, the upper map is an isomorphism and the lower map is a weak

equivalence by Condition (3). On the other hand, the left hand map is a

filtered colimit of weak equivalences by the induction hypothesis, hence a

weak equivalence by assumption on 𝒞. Thus, also the right hand vertical

map is a weak equivalence by 2-out-of-3, which completes the proof of the

claim. △

If now j : X → Y is one of the chosen generating acyclic cofibrations,

then X and Y are cofibrant by assumption, so 𝜂X and 𝜂Y are weak equiv-

alences by the above. Thus, also UFj is a weak equivalence by 2-out-of-

3, proving (1), and in particular supplying the desired model structure. To

show that F ⊣ U is a Quillen equivalence, we observe that U creates weak

equivalences by definition, so that it suffices that 𝜂 : X → UFX is a weak

equivalence for each cofibrant X, which was verified above. □

3. Categories with monoid actions

In this section we want to prove the analogue of Proposition 1.7 for suitable

strict monoids in Cat as well as a comparison between the simplicial and

categorical approaches.

3.1 Equivariant Dwyer maps for groups

Dwyer maps are central to Thomason’s treatment of his model structure on

Cat, and it should come as no surprise that we will need an equivariant

version of this. For this it will be convenient to consider the case of ordinary

groups first (as some arguments will only work in this setting), so let us fix

a not necessarily finite discrete group G.

Definition 3.1. A G-equivariant functor i : C → D of small G-categories is

called a G-equivariant Dwyer map if it is a sieve and it admits a factorization

i = jf into G-equivariant functors f : C → X, j : X → D with the following

properties:

1. j is a cosieve.
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2. f admits a G-equivariant right adjoint, i.e. there exists a G-equivariant

functor r : X → C together with G-equivariant natural transformations

𝜂 : id⇒ ri and 𝜖 : ir⇒ id satisfying the usual triangle identities.

Remark 3.2. For G = 1 the above is equivalent to i being an ordinary

(i.e. non-equivariant) Dwyer map, see Definition 1.12. Conversely, if i is

a non-equivariant Dwyer map, then it is a G-equivariant Dwyer map with

respect to the trivial G-actions on source and target for any discrete group G.

Remark 3.3. May, Stephan, and Zakharevich [MZS17, Definition 4.1] addi-

tionally require the map 𝜂 in (2) to be the identity transformation; however,

this can always be arranged, so that the above definition agrees with their

notion of a Dwyer G-map:

The first condition guarantees that f is again fully faithful. It follows then

formally that for any right adjoint r̃ the unit transformation 𝜂 : id ⇒ r̃f is a

natural isomorphism. As f is obviously injective on objects, it is well-known

in the non-equivariant setting that we may massage r̃ to another right adjoint

r of f such that the unit 𝜂 is actually the identity.

The same proof works in the equivariant setting, but I do not know a

reference for this. As this extra condition will become relevant later, let me

briefly sketch the argument. We first define r : X → C on objects via

r(x) =

{
c if x = f (c)

r̃(x) if x ∉ im f .

This is well-defined as f is injective on objects, and it is G-equivariant be-

cause im f and hence also (im f )c are closed under the action of G; note that

this would break down for general monoids. We now define for each x ∈ X

an isomorphism 𝜑x : r(x) → r̃(x) as follows: if x = f (c), then 𝜑x is the unit

𝜂c : r(x) = c → r̃f (c) = r̃(x); otherwise, 𝜑x is the identity. It is then obvious

that this is again compatible with the G-action in the sense that 𝜑g.x = g.𝜑x.

There is a unique way to extend r to a functor in such a way that 𝜑

becomes a natural isomorphism r � r̃, namely r(𝛼 : x → y) = 𝜑±1
y r̃(𝛼)𝜑x.

It follows then from the above compatibility of 𝜑 with the G-action that r

is again G-equivariant and that 𝜑 is a G-equviariant isomorphism. One then

easily checks that 𝜂 := id = 𝜑±1f ◦ 𝜂 : id ⇒ rf and 𝜖 := 𝜖 ◦ f 𝜑 : fr ⇒ id

exhibit r as G-equivariant right adjoint of f as desired.
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Below we will need the following closure properties of G-equivariant

Dwyer maps, the first one of which can also be found (without proof) as

[MZS17, Lemma 4.2].

Lemma 3.4. Let i : C→ D be a G-equivariant Dwyer map.

1. Let H ⊂ G be a subgroup. Then iH : CH → DH is a Dwyer map.

2. Let S be any small G-category. Then S × i : S × C → S × D is a

G-equivariant Dwyer map.

3. Let T be a small right G-category. Then also Fun(T , i) : Fun(T , C) →

Fun(T , D) is a G-equivariant Dwyer map.

Proof. All of these follow the same pattern, so we will only prove the first

statement. We pick a factorization i = jf as above and a G-equivariant ad-

junction f ⊣ r with unit 𝜂 and counit 𝜖 . It is then easy to check that iH is

again a sieve and that jH is a cosieve. Moreover, rH is right adjoint to f H

with unit 𝜂H and counit 𝜖H , so iH = jHf H is the desired factorization. □

In general, pushouts in Cat (and hence also in G-Cat) are very difficult

to describe on the level of morphisms. One advantage of ordinary Dwyer

maps is that one can give an explicit and tractable description of pushouts

along them, see [Sch19, Construction 1.2] which generalizes [BMO+15,

Lemma 2.5]:

Construction 3.5. Let

A B

C

←

→
i

←→c

be a diagram in Cat and assume that i is a Dwyer map. Fix a factorization

i = kf as in the definition of a Dwyer map and an adjunction f ⊣ r such

that the unit is the identity; in particular the counit 𝜖 satisfies 𝜖 f = id by

the triangle identities. For simplicity of notation we assume further that i

and k are honest inclusions of subcategories; we write X for the source of k.

Finally, let us write V for the complement of Ob A in Ob B.
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We now define a category D as follows: the objects of D are given by the

disjoint union Ob C⨿V and the morphism set between x, y ∈ D is defined as

HomD(x, y) =




HomC(x, y) if x, y ∈ C

HomC(x, cr(y)) if x ∈ C and y ∈ V ∩ X

HomB(x, y) if x, y ∈ V

∅ otherwise.

(3.1)

Compositions are in such a way that the obvious maps B → D and C → D

are actual functors; moreover, if x, y ∈ C and z ∈ V ∩X then the composition

x
𝛼
−→ y

𝛽
−→ z

in D, where 𝛼 is a morphism x → y in C and 𝛽 is a morphism y → cr(z)

in C, is defined as the composition 𝛽 ◦ 𝛼 in C. On the other hand, if x ∈ C,

y, z ∈ V ∩ X, then the composition 𝛽 ◦ 𝛼 in D, where now 𝛼 : x→ cr(y) is a

morphism in C and 𝛽 : y→ z is a morphism in V ∩ X ⊂ B, is defined as the

composition cr(𝛽) ◦ 𝛼 in C.

We have a functor j : C→ D via the inclusion of C. Moreover, we define

d : B → D as follows: on V ⊂ B the functor d is just given by the inclusion

and on A = Vc via c. Finally, if 𝛽 : a → x is a morphism in B, where a ∈ A

and x ∈ X ∩ V , then

d(𝛽) = c(r(𝛽)) : cr(a)
︸︷︷︸

=c(a)=d(a)

→ cr(x) ∈ HomC(c(a), cr(x)) = HomD(d(a), d(x)).

We remark that this indeed a complete case distinction as X ⊂ B is a cosieve

(so any morphism starting in A ⊂ X has to end in X = (X∩V)∪A) and A ⊂ B

is a sieve (so any arrow ending in A also has to start in A).

We omit the verification that D is a category and that these are well-

defined functors exhibiting D as pushout (which uses that 𝜖 f = id), and

instead refer the curious reader to [Sch19, Construction 1.2].

Construction 3.6. Now assume that A, B, C are G-categories, i is a G-equi-

variant Dwyer map, and c is any equivariant functor. By Remark 3.3 we may

choose the G-equivariant adjunction f ⊣ r such that 𝜖 f = id, allowing us to

apply the above construction with respect to this data.
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We equip D with the following G-action: G acts on the full subcategories

C and V in the obvious way; observe that V is indeed preserved by the G-

action as its complement isÐhere we again used that G is a group as opposed

to a mere monoid. Finally, if x ∈ C, y ∈ V ∩ X and 𝛼 : x → cr(y) defines

a morphism x→ y in D, then we define the G-action again via the G-action

on C; note that this indeed makes sense as both c and r are assumed to be

G-equivariant.

We leave the easy verification that this is indeed a G-action and that j and

d are G-equivariant to the reader.

As pushouts in G-Cat are created in Cat we immediately get:

Corollary 3.7. With respect to the above G-action on D,

A B

C D

←→c

←

→
i

←→ d

←

→
j

becomes a pushout in G-Cat. □

Now we can prove that pushouts along G-equivariant Dwyer maps are

compatible with passing to fixed points, generalizing [BMO+15, Proposi-

tion 2.4].

Proposition 3.8. Let

A B

C D

←→
←

→
i

←→

←

→

(3.2)

be a pushout in G-Cat such that i is a G-equivariant Dwyer map. Then for

any subgroup H ⊂ G also the induced square

AH BH

CH DH

←→

←

→
iH

←→

←

→

(3.3)

is a pushout (along a Dwyer map).
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Proof. Pick a factorization i = kf together with a right adjoint r of f as in

Construction 3.6; we may then assume without loss of generality that (3.2)

is the square from this construction.

The map iH is a Dwyer map by Lemma 3.4-(1); more precisely, by the

proof of the lemma the factorization iH = kHf H together with the right ad-

joint rH and the natural transformations 𝜂H and 𝜖H exhibits iH as Dwyer

map. Thus it suffices to identify (3.3) with the pushout from Construction 3.5

applied to the ordinary Dwyer map iH and the above data.

For this we spell out the definitions again: the set of objects of our con-

struction of the pushout (3.2) is C ⨿ V , where V is the complement of A in

B, and the H-fixed points of this is CH ⨿ VH . From the explicit description

(3.1) of the Hom-sets we then see that for x, y ∈ DH

HomDH (x, y) =




HomC(x, y)H if x, y ∈ C

HomC(x, cr(y))H if x ∈ C and y ∈ V ∩ X

HomB(x, y)H if x, y ∈ V

∅H otherwise

=




HomCH (x, y) if x, y ∈ CH

HomCH (x, cHrH(y)) if x ∈ CH and y ∈ VH ∩ XH

HomBH (x, y) if x, y ∈ VH

∅ otherwise

As VH is the complement of AH in BH and XH is the source of f H , these

are literally the objects and morphism sets of the above construction of the

pushout of CH ← AH → BH . Moreover, one checks by direct inspection

that the composition is defined in the same way and that also the structure

maps BH → DH and CH → DH agree; this finishes the proof. □

Corollary 3.9. In the situation of the previous corollary, the induced map

N(B) ⨿N(A) N(C)→ N(D)

is an F -weak equivalence for any collection F of subgroups of G.

Proof. Let H ⊂ G be any subgroup. We have to show that the induced map

on H-fixed points is a weak equivalence. But this map fits into a commutative
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diagram

N(BH) ⨿N(AH) N(CH) N(DH)

(NB)H ⨿(NA)H (NC)H (ND)H

(
NB ⨿NA NC

)H
(ND)H

←→

←

→

←→

←→

←

→

⇐⇐

←

→

where all maps are induced by the relevant universal properties of colimits

and limits. The two top vertical arrows are isomorphisms as N is a right

adjoint, and the lower left vertical arrow is an isomorphism as fixed points

commute with pushouts along monomorphisms in Set and hence in SSet.

But by the previous corollary, the square (3.3) is a pushout along a

Dwyer map, hence the top map is a weak equivalence by the classical non-

equivariant statement, see Proposition 1.14. The claim follows by 2-out-of-

3. □

3.2 Equivariant Dwyer maps for monoids

Let M be a monoid in Cat, i.e. a small strict monoidal category.

Definition 3.10. An M-equivariant functor i : C → D is called an M-equi-

variant Dwyer map if it is a core(Ob M)-equivariant Dwyer map in the sense

of Definition 3.1, where core(Ob M) denotes the maximal subgroup of the

discrete monoid Ob M of objects of M.

Slightly expanding the above definition this means that i is a sieve and

that we can find a factorization i = jf into core(Ob M)-equivariant functors

with certain properties. However, all of the results below will just follow

formally from the corresponding results for equivariant Dwyer maps with

respect to groups established above.

Corollary 3.11. Let

A B

C D

←→

←

→
i

←→

←

→

459



T. LENZ CATEG. MODELS OF G-GLOBAL HOMOTOPY THEORY

be a pushout in the category M-Cat of small categories with M-action, and

assume that i is an M-equivariant Dwyer map. Then for any subgroup H ⊂

Ob M the induced square

AH BH

CH DH
←→

←

→
iH

←→

←

→

is a pushout along a Dwyer map in Cat.

Proof. As pushouts in both M-Cat as well as core(Ob M)-Cat are created

in Cat, this is immediate from Proposition 3.8. □

In order to prove the analogue of Corollary 3.9 we first have to explain

how to make N(C) into an N(M)-simplicial set for a given M-category C:

Construction 3.12. We lift the adjunction h: SSet⇄ Cat :N to

hM : N(M)-SSet⇄ M-Cat :NM

as follows: on underlying categories or simplicial sets hM and NM agree

with h and N, respectively; in particular, this determines their definition on

morphisms. If C is an M-category, then NM(C) = N(C) carries the N(M)-

action given by the composition

N(M) × N(C)
�

−→ N(M × C)
N(action)
−−−−−−−−→ N(C)

where the left hand map is the inverse of the canonical isomorphism. Sim-

ilarly, if X is an N(M)-simplicial set, then the M-action on hM(X) = hX is

given by

M × hX
�

−→ hN(M) × hX
�

−→ h(N(M) × X)
h(action)
−−−−−−−→ hX.

Here the first map is the inverse of the counit of h ⊣ N (using that N is fully

faithful) and the second map is as above (using that h happens to preserve

products).

We omit the easy verification that this is well-defined and that the unit

and counit of the original adjunction lift to natural transformations id ⇒
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NMhM and hMNM ⇒ id, respectively. It then follows formally that these

exhibit hM as left adjoint of NM. We moreover observe that for any M-

category C and any m ∈ Ob(M) the action map m.± : NM(C) → NM(C)

agrees with N(m.±) as a map of simplicial sets.

With this terminology we can now formulate the desired generalization

to categorical monoids:

Corollary 3.13. Let

A B

C D

←→

←

→
i

←→

←

→

be a pushout in M-Cat such that i is an M-equivariant Dwyer map. Then the

induced map NM(B) ⨿NM(A) NM(C) → NM(D) is an F -weak equivalence

for any collection F of subgroups of N(M)0.

Proof. As all the relevant pushouts are created in Cat or SSet, and since the

action of any H ⊂ N(M)0 on NM(D) is just the one given by functoriality,

this follows from Corollary 3.9. □

Corollary 3.14. In the situation of the previous corollary, the square

NM(A) NM(B)

NM(C) NM(D)

←→

←

→
NM(i)

←→

←

→

is a homotopy pushout in the F -model structure on N(M)-SSet for any col-

lection F of finite subgroups of N(M)0.

Proof. By the previous corollary, the induced map

NM(B) ⨿NM(A) NM(C)→ NM(D)

is a weak equivalence. On the other hand, i is in particular a fully faith-

ful embedding, so that NM(i) is an underlying cofibration. Proposition 1.7

then implies that the left hand side already represents the homotopy pushout,

finishing the proof. □
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Similarly, one generalizes Lemma 3.4 to all categorical monoids. Below,

we will freely refer to Lemma 3.4 whenever we actually need the corre-

sponding statement for monoid actions.

3.3 The equivariant Ex-functor

In order to construct the equivariant model structure on M-Cat, we will need

an equivariant generalization of the usual Sd ⊣ Ex adjunction, which turns

out to be slightly more subtle than in the case of the adjunction h ⊣ N, also

cf. [Sch19, Construction 2.8]:

Construction 3.15. Let N be a simplicial monoid. We define ExN : N-SSet→

N-SSet as follows: on underlying simplicial sets, ExN agrees with the usual

Ex; in particular, this determines the definition of ExN on morphisms.

If now X is any N-simplicial set, then we equip ExN(X) = Ex(X) with

N-action given by

N × Ex(X)
e×Ex(X)
−−−−−−−→ Ex(N) × Ex(X)

�

−→ Ex(N × X)
Ex(action)
−−−−−−−−→ Ex(X);

here e is the usual natural transformation id ⇒ Ex [Kan57, Section 3] and

the second map is the inverse of the canonical isomorphism. We omit the

easy verification that this is well-defined, that the natural transformation e

lifts to eN : id ⇒ ExN , and that any n ∈ N0 acts on ExN(X) = Ex(X) by

Ex(n.±).

Lemma 3.16. The functor ExN preserves small limits and filtered colimits.

Proof. As limits in colimits in N-SSet are created in SSet and as ExN agrees

with Ex on underlying simplicial sets, this is a immediate consequence of

the corresponding statement for Ex. □

The Special Adjoint Functor Theorem implies:

Corollary 3.17. ExN admits a left adjoint SdN . □

Let us fix such an adjunction for the rest of this article.
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Construction 3.18. Let X ∈ N-SSet be arbitary. We define dN : SdN X → X

to be the adjunct of eN : X → ExN X, i.e. we have commutative diagrams

SdN X SdN ExN X

X

←

→dN

←

→
SdN en

←→ 𝜖 and

X ExN SdN X

ExN X.

←

→
𝜂

←

→eN

←→ ExN dN

Obviously, the dN assemble into a natural transformation dN : SdN ⇒ id,

and this is by definition the total mate of the square

N-SSet N-SSet

N-SSet N-SSet

←

→id

eN

⇒← →ExN

←

→

id

← →id (3.4)

(picking the trivial adjunctions for all the identity arrows).

We now turn to some properties of the adjunction SdN ⊣ ExN as well as

the natural transformations dN and eN :

Lemma 3.19. 1. The functor ExN preserves F -weak equivalences for

any collection F of subgroups of N0.

2. The natural transformation eN is a levelwise weak equivalence.

Proof. By 2-out-of-3 it suffices to prove the second statement. For this

we have to show that for each H ⊂ N0 and each X ∈ N-SSet the map

(eN)H : XH → ExN(X)H is a weak equivalence. However, we have identi-

fied the H-action on ExN(X) = Ex(X) as the one induced by functoriality. As

Ex is a right adjoint, it preserves limits, so we have a canonical isomorphism

𝜎 : Ex(XH) � Ex(X)H . Naturality and the universal property of limits then

imply that the composition

XH e
−→ Ex(XH)

𝜎
−→ Ex(X)H

(where the left hand map is the ordinary e : id⇒ Ex evaluated at XH) agrees

with eH = (eN)H . Hence the claim follows from the fact that the ordinary e

is a levelwise weak equivalence [Kan57, Lemma 7.4]. □
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Lemma 3.20. Let H ⊂ N0 be any subgroup. There is a natural isomorphism

𝜏 filling

SSet N-SSet

SSet N-SSet,

←

→
N/H×±

←→Sd ←→ SdN
𝜏⇒

←

→
N/H×±

and moreover 𝜏 can be chosen in such a way that for each K ∈ SSet the

diagram

N/H × Sd K SdN(N/H × K)

N/H × K

←

→
𝜏
�←

→N/H×d

←→ dN

commutes (where d as usual denotes the adjunct of e).

Proof. We recall from the proof of the previous lemma that we have a natural

isomorphism filling

SSet N-SSet

SSet N-SSet,

←
→(±)H
⇒← →Ex

←

→

(±)H

← →ExN

namely the inverse of the canonical comparison map. We take 𝜏 to be the

total mate of this, which is a natural isomorphism

N/H × Sd(±) � SdN(N/H × ±).

It remains to prove the compatibility of 𝜏 with d and dN . For this we observe

that N/H×d is by definition and the compatibility of mates with pastings the

total mate of

SSet SSet N-SSet

SSet SSet N-SSet.

←

→=

e

⇒

←

→(±)H

=

⇒← →Ex

←

→

=

← →=

←

→

(±)H

← →=
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But on the other hand this pasting agrees by the proof of the previous lemma

with

SSet N-SSet N-SSet

SSet N-SSet N-SSet

←

→(±)H

can±1

⇒

←

→=

eN

⇒← →Ex

←

→

(±)H

← →ExN

←

→

=

← →=

whose total mate is (again using compatibility of mates with pasting) pre-

cisely dN ◦ 𝜏. This finishes the proof. □

Corollary 3.21. Let X ∈ N-SSet be isomorphic to N/H × K for some K ∈

SSet and some subgroup H ⊂ N0. Then:

1. dN : SdN X → X is an F -weak equivalence for any collection F of

subgroups of N0.

2. 𝜂 : X → ExN SdN X is a weak equivalence.

Proof. By naturality we may assume without loss of generality that X is

actually equal to N/H × K. For the first statement we then simply invoke

the previous lemma together with the fact that d : Sd K → K is an ordinary

weak equivalence [Kan57, Lemma 7.5].

For the second statement we consider the commutative diagram

X ExN SdN X

ExN X

←

→
𝜂

←

→eN

←→ ExN dN

from Construction 3.18. The first part together with Lemma 3.19 implies

that both ExN dN and eN are weak equivalences; the claim follows by 2-out-

of-3. □

3.4 Categories vs. simplicial sets

Let M be a monoid in Cat and let F be a collection of finite subgroups of

Ob M, which we will confuse with subgroups of (NM)0. In order to construct

the desired model structure on M-Cat together with a Quillen equivalence

to M-SSet, we will need the following mild technical condition:
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Definition 3.22. A subgroup H ⊂ Ob(M) is called good if the right H-action

on M given by right multiplication is free. A collection F of subgroups of

Ob M is called good, if all H ∈ F are good.

Example 3.23. If Ob(M) = G is a group, then any subgroup H ⊂ G is good.

Example 3.24. Every subgroup of Ob(EM) = M is good as injections of

sets are monomorphisms. More generally, all subgroups of Ob(EM×G) are

good.

Theorem 3.25. Let F be a good collection of finite subgroups of Ob M. Then

there exists a unique model structure on M-Cat such that a map f : C →

D is a weak equivalence or fibration if and only if for each H ∈ F the

map f H : CH → DH is a weak equivalence or fibration, respectively, in the

Thomason model structure.

This model structure is combinatorial with generating cofibrations

{M/H × h Sd2 𝜕Δn ↩→ M/H × h Sd2
Δ

n : n ≥ 0, H ∈ F }

and generating acyclic cofibrations

{M/H × h Sd2
Λ

n
k
↩→ M/H × h Sd2

Δ
n : 0 ≤ k ≤ n, H ∈ F }.

Moreover, it is proper with homotopy pushouts and pullbacks created by NM,

and filtered colimits in it are homotopical.

Finally, the adjunction

hM Sd2
N(M)

: N(M)-SSet⇄ M-Cat :Ex2
N(M)

NM (3.5)

is a Quillen equivalence when we equip N(M)-SSet with the F -model struc-

ture (viewing the elements of F as subgroups of N(M)0 now).

If M = G is a discrete group, the above result (without the finiteness

condition on F ) was proven by Bohmann, Mazur, Osorno, Ozornova, Ponto,

and Yarnall [BMO+15, Theorems A and B] although they only explicitly

state their result for the collection of all subgroups.

Proof. Recall from Proposition 1.7 that the F-model structure on N(M)-SSet

is proper, simplicial, that filtered colimits in it are homotopical, and that it is

cofibrantly generated with generating cofibrations

I = {N(M)/H × 𝜕Δn → N(M)/H × Δn : n ≥ 0, H ∈ F } (3.6)
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and generating acyclic cofibrations

J = {N(M)/H × Λn
k
→ N(M)/H × Δn : 0 ≤ k ≤ n, H ∈ F }.

Let us verify the conditions of Proposition 2.2. It is clear that M-Cat

is locally presentable. Moreover, each N(M)/H is evidently cofibrant in

N(M)-SSet, and hence so are the sources of the generating acyclic cofibra-

tions as the model structure is simplicial. To complete the verification of

Condition (1′) we will prove more generally that the unit is a weak equiva-

lence for each X = N(M)/H × K with H ∈ F and any K ∈ SSet that can be

equipped with the structure of a simplicial complex, i.e. that can be embed-

ded into the nerve of a poset. For this we recall that a standard choice of unit

is given by the composition

X
𝜂
−→ ExN(M) SdN(M) X

ExN(M) 𝜂 SdN(M)
−−−−−−−−−−−−−−→ Ex2

N(M)
Sd2

N(M)
X

Ex2
N(M)

𝜂 Sd2
N(M)

−−−−−−−−−−−−−−→ Ex2
N(M)

NMhM Sd2
N(M)

X

where the first two maps come from the unit of SdN(M) ⊣ ExN(M) and the

final one is induced by the unit of hM ⊣ NM.

By Corollary 3.21 the first map is a weak equivalence. As SdN(M)(X) �

N(M)/H×Sd K (Lemma 3.20) and as ExN(M) is homotopical (Lemma 3.19),

the corollary also implies that the second map is a weak equivalence. For the

final map we use Lemma 3.20 twice to see Sd2
N(M)

X � N(M)/H × Sd2 K.

Now as an ordinary simplicial set N(M)/H lies in the essential image of N as

the nerve preserves free quotients, and so does Sd2 K by [Tho80, discussion

after Proposition 2.5] as K was assumed to admit the structure of a simplicial

complex. Since N preserves products, we see that the underlying simplicial

set of Sd2
N(M)

X indeed lies in the essential image of N. But as a map of

simplicial sets, the unit 𝜂 : Y → NMhM(Y) agrees with the usual unit 𝜂 : Y →

NhY for any Y ∈ M-SSet; as the nerve is fully faithful, we see that this is in

fact an isomorphism as soon as the underlying simplicial set of Y lies in the

essential image of N, finishing the verification of (1′).

For Condition (2)Ði.e. that the right adjoint sends pushouts along gener-

ating cofibrations to homotopy pushoutsÐwe show more generally (cf. Lem-

ma 3.4-(2)) that pushouts along M-equivariant Dwyer maps are sent to ho-
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motopy pushouts by Ex2
N(M)

◦NM, which is immediate from Corollary 3.14

together with Lemma 3.19.

Finally, ExN(M) preserves filtered colimits by Lemma 3.16, and the same

argument as employed there shows that also NM preserves filtered colimits.

Thus, also the composition Ex2
N(M)

NM preserves filtered colimits, verifying

Condition (3).

Thus, the proposition applies and we see that M-SSet carries a model

structure such that a map f is weak equivalence or fibration if and only if

Ex2
N(M)

N(f ) is, i.e. if and only if (Ex2
N(M)

NM(f ))H is a weak equivalence

or fibration in the Kan Quillen model structure for every H ∈ F . As both

ExN(M) and NM commute with (±)H this is indeed equivalent to the condition

stated in the theorem.

Moreover, the proposition tells us that (3.5) is a Quillen equivalence,

that the model structure obtained this way is proper with homotopy pushouts

and pullbacks created by NM, and that filtered colimits in it are homotopi-

cal. Moreover, it shows that the model structure is cofibrantly generated

(hence combinatorial) with generating cofibrations hM Sd2
N(M)

(I) and gener-

ating acyclic cofibrations hM Sd2
N(M)

(J). Finally, again using that the nerve

preserves free quotients, Lemma 3.20 tells us that also the sets from the

theorem form generating cofibrations and generating acyclic cofibrations,

respectively. □

Corollary 3.26. In the situation of the theorem, pushouts along M-equivari-

ant Dwyer maps are homotopy pushouts.

Proof. We have seen in the above proof that NM sends such squares to ho-

motopy pushouts. □

Corollary 3.27. In the above situation, a commutative square is a homotopy

pushout if and only if for every H ∈ F the induced square on H-fixed points

is a homotopy pushout in the Thomason model structure on Cat.

Proof. Using that NM : M-Cat → N(M)-SSet and N: Cat → SSet create

homotopy pushouts, this follows from the characterization given in Proposi-

tion 1.7. □

Together with Lemma 3.19 we get:
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Corollary 3.28. For any good family F , the homotopical functor

NM : M-CatF -w.e. → N(M)-SSetF -w.e.

descends to an equivalence of homotopy categories. □

3.5 The G-global model structure

Let us specialize the above to the context of G-global homotopy theory:

Corollary 3.29. For any discrete group G, there is a unique model structure

on EM-G-Cat in which a map f is a weak equivalence or fibration if and

only if f 𝜑 is a weak equivalence or fibration, respectively, in the Thomason

model structure for each universal H ⊂ M and each 𝜑 : H → G. We call

this the G-global model structure and its weak equivalences the G-global

weak equivalences.

This model category is combinatorial with generating cofibrations

{EM×𝜑G×(h Sd2 𝜕Δn ↩→ h Sd2
Δ

n) : n ≥ 0, H ⊂ M universal, 𝜑 : H → G}

and generating acyclic cofibrations

{EM×𝜑G×(h Sd2
Λ

n
k
↩→ h Sd2

Δ
n) : 0 ≤ k ≤ n, H ⊂ M universal, 𝜑 : H → G}.

Moreover, it is proper and filtered colimits in it are homotopical.

Finally, we have a Quillen equivalence

hEM×G Sd2
EM×G

: EM-G-SSet⇄ EM-G-Cat :Ex2
EM×G

NEM×G

with respect to the model structure from Corollary 1.8 on the left hand side.

□

Corollary 3.30. The homotopical functor

NEM×G : EM-G-CatG-global → EM-G-SSetG-global

descends to an equivalence of homotopy categories. □
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On the other hand, we can equip G-CatÐeither by Theorem 3.25 above

or by [BMO+15, Theorem A]Ðwith the equivariant model structure with

respect to the collection of all finite subgroups H ⊂ G; we again call this

the proper G-equivariant model structure. As in the simplicial case, the G-

global and proper G-equivariant model structure are related through a chain

of four adjoints:

Proposition 3.31. The functor trivEM : G-Catproper → EM-G-CatG-global

is homotopical and the induced functor Ho(trivEM) on homotopy categories

fits into a sequence of four adjoints suggestively denoted by

L(±/EM) ⊣ Ho(trivEM) ⊣ (±)REM ⊣ R.

Moreover, (±)REM is a (Bousfield) localization at the E-weak equivalences.

Proof. The diagram of homotopical functors

G-Catproper EM-G-CatG-global

G-SSetproper EM-G-SSetG-global

←

→
trivEM

←→NG ←→ NEM×G

←

→
trivEM

commutes by direct inspection, and the vertical maps induce equivalences

of homotopy categories by Corollary 3.28. Thus, the claim follows from

Theorem 1.9 by a straight-forward diagram chase. □

Remark 3.32. Analogously to the case of the simplicial models treated in

[Len20, Theorem 1.2.92], the functor trivEM is easily seen to be right Quillen

with respect to the above model structures, so that its left adjoint (±)/EM

is left Quillen, justifying the above notation L(±/EM). Moreover, while

trivEM is not left Quillen, we can make it into a left Quillen functor by suit-

ably enlarging the generating cofibrations of the G-global model structure,

e.g. using [Len20, Corollary A.2.17]. With respect to this model structure,

(±)EM is then right Quillen and its right derived functor is then right adjoint

to Ho(trivEM) as before.
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4. G-categories as models of G-global homotopy types

Fix a discrete group G. In this final section, we will prove as our main

result that already categories with a mere G-action model unstable G-global

homotopy theory. For this we will use the following notion from [Len23,

Definition 6.1] which generalizes Schwede’s global equivalences [Sch19,

Definition 3.2]:

Definition 4.1. Let C be a G-category, let H be a finite group, and let

𝜑 : H → G be a group homomorphism. We define the 𝜑-‘homotopy’ fixed

points of C as

C‘h’𝜑 := Fun(EH, 𝜑∗C)H

where the H-action on the right is the diagonal of the H-action on C via 𝜑

and the one induced by the right regular action on EH.

If f is a G-equivariant functor f : C → D, then f ‘h’𝜑 is defined analo-

gously. We call f a G-global weak equivalence if f ‘h’𝜑 is a weak homotopy

equivalence (i.e. weak equivalence in the Thomason model structure) for ev-

ery such 𝜑.

Remark 4.2. The above represents the H-homotopy fixed points of 𝜑∗C with

respect to the canonical model structure on Cat, i.e. where the weak equiv-

alences are the equivalences of categories. However, as we are generalizing

Thomason’s model structure (for which homotopy fixed points look quite

different), we have decided to put ‘homotopy’ in quotation marks every-

where.

It is of course crucial that we’re taking homotopy fixed points with re-

spect to the ‘wrong’ model structure here as otherwise being a G-global

weak equivalence would be equivalent to being an underlying weak homo-

topy equivalence.

Theorem 4.3. There is a unique cofibrantly generated model structure on

G-Cat with weak equivalences the G-global weak equivalences and with

generating cofibrations given by

{(EM ×𝜑 G) × (h Sd2 𝜕Δn ↩→ h Sd2
Δ

n) : n ≥ 0, H ⊂ M universal,

𝜑 : H → G homomorphism}.
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This model structure is combinatorial, proper, and filtered colimits in it are

homotopical. We call it the thick G-global model structure. A set of generat-

ing acyclic cofibrations is given by

{(EM ×𝜑 G) × (h Sd2
Λ

n
k
↩→ h Sd2

Δ
n) : 0 ≤ k ≤ n, H ⊂ M universal,

𝜑 : H → G homomorphism}.

Moreover, we have a Quillen equivalence

forget : EM-G-CatG-global ⇄ G-Catthick G-global :Fun(EM, ±) (4.1)

(where Fun(EM, C) is equipped for every C ∈ G-Cat with the left EM-

action induced by the usual right EM-action on itself), and the right adjoint

creates homotopy pushouts and homotopy pullbacks.

The proof will be given below after some preparations.

Lemma 4.4. Let f : C → D be a map of G-categories, let H ⊂ M be any

subgroup, and let 𝜑 : H → G. Then f ‘h’𝜑 is a weak equivalence in the

Thomason model structure if and only if Fun(EM, f )𝜑 is so. In particular,

f is a G-global weak equivalence in G-Cat if and only if Fun(EM, f ) is a

G-global weak equivalence in EM-G-Cat.

Proof. This appears as [Len20, Remark 4.1.28]; as we will need similar ar-

guments below, we spell out the proof in detail.

It will be enough to show that the inclusion H ↩→M induces a (G ×H)-

equivariant weak equivalence Fun(EM, C) → Fun(EH, C) for every G-

category C. For this we observe that there exists a right H-equivariant map

r : M → H as H acts freely from the right on M. There are then unique

isomorphisms E(i)E(r) = E(ir) � id and E(r)E(i) = E(ri) � id, and these are

automatically H-equivariant. It is then clear that the corresponding restric-

tions exhibit Fun(Er, C) as a (G×H)-equivariant quasi-inverse to the map in

question; in particular, both are (G × H)-equivariant weak equivalences. □

Definition 4.5. A small EM-G-category C is called saturated if the unit

𝜂 : C → Fun(EM, forget C) induces equivalences on 𝜑-fixed points for all

universal H ⊂ M and all 𝜑 : H → G.
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Remark 4.6. As observed in [Len20, Remark 4.1.24], an EM-G-category

C is saturated if and only if the inclusion C ↩→ Fun(EM, C) of constant

diagrams induces equivalences on 𝜑-fixed points for all 𝜑 as above, where

the right hand side is now equipped with the diagonal EM-action. This

alternative definition is used in [Sch22a, Len20].

Proposition 4.7. Let K ⊂ M be any finite subgroup, let 𝜓 : K → G, and

let P be any poset (viewed as an EM-G-category with trivial actions). Then

EM ×𝜓 G × P is saturated.

Proof. As Fun(EM, ±), the forgetful functor, and (±)𝜑 each preserve prod-

ucts, it suffices to show that both EM×𝜓 G and P are saturated. But indeed,

the first statement is a special case of [Len20, Lemma 4.2.10], and for the

second statement we observe that 𝜂 is even an isomorphism as EM is a con-

nected groupoid while P has no non-trivial isomorphisms. □

Proof of Theorem 4.3. Obviously, there is at most one such model structure.

We will now verify the assumptions (1′), (2), and (3) of Proposition 2.2

for the adjunction (4.1). For this we begin by observing that the images

of the standard generating (acyclic) cofibrations of EM-G-Cat are indeed

precisely the above sets. Moreover, Lemma 4.4 tells us that the transferred

weak equivalences agree with the G-global weak equivalences.

The standard generating acyclic cofibrations of EM-G-Cat have cofi-

brant sources as the ones of EM-G-SSet have. The remainder of Con-

dition (1′), stating that the unit is a weak equivalence on ∅ as well as on

sources and targets of the standard generating cofibrations, is a special case

of Proposition 4.7.

For Condition (2) we consider any pushout

A B

C D

←→

←

→
i

←→

←

→

(4.2)

in G-Cat such that i is a G-equivariant Dwyer map; for example, i could be

one of the standard generating cofibrations. As all colimits in question are

created in Cat, Lemma 1.16 shows that applying Fun(EM, ±) to (4.2) yields

a pushout in EM-G-Cat. Moreover, Lemma 3.4-(3) shows that Fun(EM, i)
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is an (EM × G)-equivariant Dwyer map. Thus, Corollary 3.26 implies that

Fun(EM, ±) sends (4.2) to a homotopy pushout.

It remains to check that Fun(EM, ±) preserves filtered colimits up to

weak equivalence. For this we observe that the functor Fun(EM, ±)𝜑 is

weakly equivalent to (±)‘h’𝜑 = Fun(EH, ±)𝜑 : G-Cat → Cat by the proof

of Lemma 4.4, so it suffices that (±)‘h’𝜑 preserves filtered colimits up to

weak equivalence. But as EH is a finite category and since filtered colimits

in Cat commute with finite limits, it even preserves filtered colimits up to

isomorphism.

Hence Proposition 2.2 implies the existence of the model structure, shows

that (4.1) is a Quillen equivalence, and proves all the desired properties. □

We can also construct a variant of the above model structure with fewer

cofibrations, which for G = 1 recovers Schwede’s global model structure on

Cat recalled in Theorem 1.15:

Proposition 4.8. There is a unique model structure on G-Cat in which a map

is a weak equivalence or fibration if and only if f ‘h’𝜑 is a weak equivalence or

fibration, respectively, in the Thomason model structure for every universal

H ⊂ M and each 𝜑 : H → G. We call this the G-global model structure. It

is proper (with homotopy pushouts and pullbacks created by the homotopy

fixed point functors (±)‘h’𝜑 for varying 𝜑) and combinatorial with generating

cofibrations

{EH ×𝜑 G × (h Sd2 𝜕Δn ↩→ h Sd2
Δ

n) : H finite group, 𝜑 : H → G, n ≥ 0}

(4.3)

and generating acyclic cofibrations

{EH×𝜑G×(h Sd2
Λ

n
k
↩→ h Sd2

Δ
n) : H finite group, 𝜑 : H → G, 0 ≤ k ≤ n}.

(4.4)

Moreover, filtered colimits in this model structure are homotopcial.

Finally, the adjunction

id : G-CatG-global ⇄ G-CatG-global thick : id

is a Quillen equivalence.
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Proof. To construct the model structure and to prove that it has all the prop-

erties stated above it suffices to verify the assumptions (1)±(3) of Proposi-

tion 2.2 for the adjunction

L :
∏

𝜑 : H→G

Cat⇄ G-Cat :
(
(±)‘h’𝜑)

𝜑

where the product runs over a set of representatives of isomorphism classes

of finite groups H and all homomorphisms 𝜑 : H → G. The left adjoint

can be calculated as before on objects by (X𝜑)𝜑 ↦→
∐

𝜑 EH ×𝜑 G × X𝜑 and

likewise on morphisms. In particular, the above sets agree up to isomorphism

with the images of the standard generating (acyclic) cofibrations of
∏

𝜑 Cat

under L.

It is clear that the right adjoint sends the maps in (4.4) to weak equiva-

lences. Moreover, the maps in (4.3) are G-equivariant Dwyer maps, so the

right adjoint sends pushouts along them to homotopy pushouts by the same

argument as in the proof of Theorem 4.3. Finally, the right adjoint clearly

preserves filtered colimits.

It is clear that the identity functor G-CatG-global → G-CatG-global thick

preserves and reflects weak equivalences, so it only remains to show that

it sends generating cofibrations to cofibrations. To this end we fix a finite

group H with a homomorphism 𝜑 : H → G, and we pick an injective homo-

morphism 𝜄 : H → M with universal image. To finish the proof, it is now

enough to show that EH×𝜑G is a retract of EM×𝜑𝜄±1 G, for which it suffices

that H is a right H-equivariant retract ofM, where H acts onM via 𝜄. But

indeed, 𝜄 : H → M is an H-equivariant injection andM is free, so 𝜄 admits

an H-equivariant retraction as desired. □

Finally, let us compare the above to the usual proper G-equivariant model

structure on G-Cat:

Definition 4.9. We call a map f : C → D in G-Cat a G-equivariant ‘homo-

topy’ weak equivalence if f ‘h’H = Fun(EH, f )H is a weak equivalence for

every finite subgroup H ⊂ G.

Theorem 4.10. The functor

Fun(EG, ±) : G-CatG-global → G-Catproper (4.5)
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is homotopical. The induced functor of homotopy categories is is a (Bous-

field) localization at the G-equivariant ‘homotopy’ weak equivalences, and

it is the third term in a sequence of four adjoints.

Proof. We claim that the diagram

G-CatG-global G-Catproper

EM-G-CatG-global EM-G-CatE-weak equivalences

←

→
Fun(EG,±)

←→Fun(EM,±) ←→ trivEM

←

→
id

(4.6)

of homotopical functors commutes up to a zig-zag of levelwise weak equiv-

alences. Before we prove this, let us show how it implies the theorem: the

vertical maps induce equivalences of homotopy categories by Theorem 4.3

and Proposition 3.31, respectively. Thus, the top arrow induces a localiza-

tion at those maps that are inverted by the functor induced by the lower com-

posite. As the E-weak equivalences are saturated (being the weak equiv-

alences of a model structure), these are precisely those maps f such that

Fun(EM, f ) is an E-weak equivalence, which we as before identify with the

G-equivariant ‘homotopy’ weak equivalences. Finally, (±)REM is a local-

ization of Ho(EM-G-CatG-global) at the E-weak equivalences by Proposi-

tion 3.31, hence equivalent to the functor induced by

id : EM-G-CatG-global → EM-G-CatE-weak equivalences. (4.7)

As (±)REM is the third term in a sequence of four adjoints by the aforemen-

tioned proposition, so is the functor induced by (4.7), and hence also the one

induced by Fun(EG, ±) as desired.

It remains to construct a zig-zag of natural levelwise weak equivalences

filling (4.6). For this we will show more generally that for any EM-G-

category C the maps

Fun(EG, C)→ Fun(EG × EM, C)← Fun(EM, C)

induced by the projections EG ← EG × EM → EM are E-weak equiva-

lences, for which it is enough that the projections are H-equivariant equiva-

lences for every universal H ⊂ M and every injective 𝜑 : H → G (when we

let H act on G via 𝜑). This follows as before as both G andM are free right

H-sets with respect to these actions. □
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Remark 4.11. Using a similar argument as in the proof of Proposition 4.8 it

is not hard to show that (4.5) is right Quillen for the thick G-global model

structure whenever the cardinality of G is at most |M|, so that we have a

Quillen adjunction

EG × ±: G-Catproper ⇄ G-Catthick G-global :Fun(EG, ±).

Remark 4.12. Already an ordinary global space has an underlying G-space

for every finite group. In [Sch19, Example 3.21], Schwede gives an explicit

model of this in terms of a Quillen adjunction

EG ×G ±: G-CatG-equivariant ⇄ CatG :Fun(EG, ±) (4.8)

with homotopical right adjoint for a certain model structure on Cat with the

same weak equivalences as the global one, but more cofibrations.

The induced adjunction on homotopy categories is in fact a shadow of

Theorem 4.10: for every 𝛼 : G → H, the functor 𝛼∗ : H-Cat → G-Cat is

easily seen to be right Quillen with respect to the thick H-global and thick

G-global model structure, respectively. Specializing this to H = 1 we obtain

together with the previous remark a chain of Quillen adjunctions

G-CatG-equivariant G-Catthick G-global Catthick global

←

→
EG×±

←

→

Fun(EG,±)

←

→
(±)/G

←

→

trivG

with homotopical right adjoints, whose composition agrees with (4.8).

As an application of the above comparison, we can now introduce a new

model structure on G-Cat representing proper G-equivariant homotopy the-

ory, whose weak equivalences are tested on ‘homotopy’ fixed points:

Theorem 4.13. There is a unique model structure on G-Cat in which a map

f is a weak equivalence or fibration if and only if Fun(EG, f )H is a weak

equivalence or fibration, respectively, in the Thomason model structure on

Cat for each finite subgroup H ⊂ G. We call this the thick G-equivariant

‘homotopy’ fixed point model structure; its weak equivalences are precisely

the G-equivariant ‘homotopy’ weak equivalences. This model structure is

combinatorial with generating cofibrations

{EG ×H G × (h Sd2 𝜕Δn ↩→ h Sd2
Δ

n) : H ⊂ G finite, n ≥ 0}
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and generating acyclic cofibrations

{EG ×H G × (h Sd2
Λ

n
k
↩→ h Sd2

Δ
n) : H ⊂ G finite, 0 ≤ k ≤ n}

and proper; a commutative square is a homotopy pushout or pullback if

and only if the induced square on H-‘homotopy’ fixed points is a homotopy

pushout or pullback, respectively, in the Thomason model structure on Cat

for each finite H ⊂ G. Moreover, filtered colimits in this model structure are

homotopical.

Likewise, there is a G-equivariant ‘homotopy’ fixed point model structure

on G-Cat in which a map f is a weak equivalence or fibration if and only

if f ‘h’H = Fun(EH, f )H is a weak equivalence or fibration, respectively, in

the Thomason model structure for every finite H ⊂ G. It is again proper

with the above characterization of homotopy pushouts and pullbacks, and it

is morover combinatorial with generating cofibrations

{EH ×H G × (h Sd2 𝜕Δn ↩→ h Sd2
Δ

n) : H ⊂ G finite, n ≥ 0}

and generating acyclic cofibrations

{EH ×H G × (h Sd2
Λ

n
k
↩→ h Sd2

Δ
n) : H ⊂ G finite, 0 ≤ k ≤ n}.

Finally, the adjunctions

id : G-CatG-‘homotopy’ ⇄ G-Catthick G-‘homotopy’ : id (4.9)

EG × ±: G-Catproper G-equivariant ⇄ G-Catthick G-‘homotopy’ :Fun(EG, ±)

(4.10)

are Quillen equivalences.

Proof. To construct the model structures and to establish the above proper-

ties, it is enough to verify the assumptions (1)±(3) of Proposition 2.2, which

can be done just as in the proof of Proposition 4.8. The same argument as

in Lemma 4.4 and the aforementioned proposition then shows that (4.9) is a

Quillen adjunction and that both sides have the same weak equivalences, so

that it is even a Quillen equivalence.

For the final statement we observe that Fun(EG, ±) preserves (and re-

flects) weak equivalences as well as fibrations by definition; in particular,

(4.10) is a Quillen adjunction. It only remains to show that Fun(EG, ±) de-

scends to an equivalence, which is immediate from Theorem 4.10. □
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