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STONE DUALITY FOR

TOPOLOGICAL CONVEXITY

SPACES

Toby Kenney

Résumé. Un espace de convexité est un ensemble X équipé d’une famille

choisie de sous-ensembles (appelés les sous-ensembles convexes) fermée par

intersections arbitraires et unions dirigées. On s’intéresse beaucoup aux es-

paces qui ont à la fois la structure d’espace de convexité et la structure d’espace

topologique. Dans cet article, nous étudions la catégorie des espaces de

convexité topologiques et étendons la dualité de Stone entre les coframes

et les espaces topologiques á une adjonction entre la catégorie des espaces

de convexité topologiques et la catégorie des treillis et des homomorphismes

préservant le supremum. Cette adjonction peut etre factorisée à travers la

catégorie des espaces de préconvexité (parfois appelés espaces de fermeture)

Abstract. A convexity space is a set X with a chosen family of subsets

(called convex subsets) that is closed under arbitrary intersections and di-

rected unions. There is a lot of interest in spaces that have both a convexity

space and a topological space structure. In this paper, we study the cate-

gory of topological convexity spaces and extend the Stone duality between

coframes and topological spaces to an adjunction between topological con-

vexity spaces and sup-lattices. We factor this adjunction through the category

of preconvexity spaces (sometimes called closure spaces).

Keywords. Stone duality; Topological Convexity Spaces; Sup-lattices; Pre-

convexity Spaces; Partial Sup-lattices

Mathematics Subject Classification (2010). 18F70, 06D22
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T. KENNEY DUALITY FOR TOPOLOGICAL CONVEXITY SPACES

1. Introduction

Stone duality is a contravariant equivalence of categories between categories

of spaces and categories of lattices. The original Stone duality was between

Stone spaces and Boolean algebras [15]. One of the most widely used exten-

sions of Stone duality is between the categories of sober topological spaces

and spatial coframes (or frames — since this is a 1-categorical duality, they

are the same thing). This duality extends to an idempotent adjunction be-

tween topological spaces and coframes, given by the functors that send a

topological space to its coframe of closed sets, and the functor that sends a

coframe to its space of points.

In this paper, we develop an idempotent adjunction between topologi-

cal convexity spaces and sup-lattices (the category whose objects are com-

plete lattices, and morphisms are functions that preserve arbitrary suprema).

Topological convexity spaces are sets equipped with both a chosen family

of closed sets and a chosen family of convex sets. A canonical example

is a metric space X with the usual metric topology, and convex sets being

sets closed under the betweenness relation given by y is between x and z if

dpx, zq “ dpx, yq ` dpy, zq. Many of the properties of metric spaces extend

to topological convexity spaces. Homomorphisms of topological convexity

spaces are continuous functions for which the inverse image of a convex set

is convex.

Our approach to showing this adjunction goes via two equivalent inter-

mediate categories. The first is the category of preconvexity spaces. A pre-

convexity space is a pair pX,Pq where P is a collection of subsets of X that

is closed under arbitrary intersections and empty unions. We will refer to

sets P P P as preconvex subsets of X . A homomorphism of preconvexity

spaces f : pX,Pq // pX 1,P 1q is a function f : X //X 1 such that for

any P P P 1, we have f´1pP q P P . This category of preconvexity spaces

was also studied by [4], and shown to be closed under arbitrary limits and

colimits.

The second intermediate category that is equivalent to the category of T0-

preconvexity spaces, is a full subcategory of Distributive Partial Sup lattices.

This category was studied in [11]. Objects of this category are complete lat-

tices with a chosen family of suprema which distribute over arbitrary infima.

Morphisms are functions that preserve all infima and the chosen suprema.
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T. KENNEY DUALITY FOR TOPOLOGICAL CONVEXITY SPACES

The motivation for partial sup lattices was an adjunction between partial sup

lattices and preconvexity spaces, which is shown in [11].

Before we begin presenting the extension of Stone duality to topologi-

cal convexity spaces, Section 2 provides a review of the main ingredients

needed. While these reviews do not contain substantial new results, they

are presented with a different focus from much of the literature, so we hope

that the reviews offer a new perspective on these well-studied subjects. We

first recap the basics of topological convexity spaces. We then review Stone

duality for topological spaces. We then review the category of distributive

partial sup-lattices. This category was defined in [11], with the motivation

of modelling various types of preconvexity spaces. However, the definition

presented in this review is changed from the original definition in that paper

to make it cleaner in a categorical sense.

2. Preliminaries

2.1 Topological Convexity Spaces

Definition 2.1. A topological convexity space is a triple pX,F , Cq, where

X is a set; F is a collection of subsets of X that is closed under finite

unions and arbitrary intersections, i.e. the collection of closed sets for some

topology on X; and C is a collection of subsets of X that is closed under

directed unions and arbitrary intersections. Note that these include empty

unions and intersections, so X and H are in both F and C. Sets in F will be

called closed subsets of X and sets in C will be called convex subsets of X .

The motivation here is that pX,Fq is a topological space, while pX, Cq is

an abstract convexity space. Abstract convexity spaces are a generalisation

of convex subsets of standard Euclidean spaces. Abstract convexity spaces

were defined in [10], though in that paper, the definition did not require C to

be closed under nonempty directed unions. Closure under directed unions

was an additional property, called “domain finiteness”. Later authors incor-

porated closure under directed unions into the definition of an abstract con-

vexity space, and used the term preconvexity space for a set with a chosen

collection of subsets that is closed under arbitrary intersections and contains

the empty set [4].
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While the definition of an abstract convexity space captures many of the

important properties of convex sets in geometry, it also allows a large number

of interesting examples far beyond the original examples from classical ge-

ometry, including many examples from combinatorics and algebra. The re-

sulting category of convexity spaces has many natural closure properties [4].

The definition above does not include any interaction between the topo-

logical and convexity structures on X . While it will be convenient to deal

with such general spaces, it is also useful to include compatibility axioms be-

tween the convexity and topological structures. The following axioms from

[16] are often used to ensure suitable compatibility between topology and

convexity structure.

(i) All convex sets are connected.

(ii) All polytopes (convex closures of finite sets) are compact.

(iii) The hull operation is uniformly continuous relative to a metric which

generates the topology.

We will modify the third condition to not require the topology to come

from a metric space, giving the weaker condition that the convex closure

operation preserves compact sets.

Definition 2.2. We will call a topological convexity space compatible if it

satisfies the two conditions

(i) All convex sets are connected.

(ii) The convex closure of a (topologically) closed compact set is (topolog-

ically) closed and compact.

We will call a topological convexity space precompatible if it satisfies the

two conditions

(i) All convex sets are connected.

(ii’) The convex closure of a finite set is (topologically) compact.
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At this point, we will introduce some notation for describing topological

convexity spaces. For any subset A Ď X , we will write rAs for the intersec-

tion of all convex sets containing A. To simplify notation, when A is finite,

we will write ra1, . . . , ans instead of rta1, . . . , anus.

Examples 2.3.

1. If pX, dq is a metric space, then setting F to be the closed sets for the

metric topology, i.e.

F “

#
A Ď X

ˇ̌
ˇ̌
ˇp@x P Xq

˜ľ

yPA

dpx, yq “ 0 ñ x P A

¸+

and

C “ tA Ď X|p@x, y, z P Xq ppx, z P A ^ dpx, zq “ dpx, yq ` dpy, zqq ñ y P Aqu

we have that pX,F , Cq is a topological convexity space. To ensure

that convex sets are connected, we will often assume that geodesics

exist — that is, for any r ă dpx, yq, there is some z P rx, ys such

that dpx, zq “ r and dpy, zq “ dpx, yq ´ r, to ensure that convex

sets are connected. We will usually also require that open balls are

convex, and that the set tz P X|dpx, yq “ dpx, zq ` dpz, xqu is convex

(and therefore the interval rx, ys). For common examples where these

conditions hold, the convex closure of a compact set is compact, so that

the space is compatible. However, it is not easy to prove compatibility

of these spaces under simple conditions, or to find examples of metric

spaces where this structure is not compatible.

2. Let L be a complete lattice. We define a topological convexity space

structure by

F “

#č

iPI

Fi

ˇ̌
ˇ̌
ˇp@i P IqpDx1, . . . , xni

P XqpFi “ Ótx1, . . . , xni
uq

+
YtHu

and

C “ tI Ď X|p@x1, x2 P Iq pp@y ď x1qpy P Iq ^ px1 _ x2 P Iqqu
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That is, F is the set of arbitrary intersections of finitely generated

downsets, plus the emptyset (which are the closed sets for the weak

topology [9]) and C is the set of (possibly empty) ideals of L. This

topological convexity space is precompatible. To prove connected-

ness of convex sets, we want to show that an ideal cannot be covered

by two disjoint weak-closed sets. Suppose U and V are disjoint weak-

closed sets that cover I . Let a P I XU and b P I X V . Then a_ b P I ,

and if a _ b P U , then b P U contradicting disjointness of U and V .

Similarly if a _ b P V then a P V . This contradicts disjointness of U

and V . The ideal generated by a finite set of elements in L is clearly

principal, and therefore closed and compact. L is not in general com-

patible, since, for example, if L is the powerset of N, then singletons in

L are weak-closed, since for any set X 1 Ď X containing two elements

a and b, the downset Óttauc, tbucu is finitely generated, and contains

all singletons, but does not contain X 1.

3. Let n P Z
` be a positive integer. Let Sn be the group of permutations

on n elements. Let F consist of all subsets of Sn, and for any partial

order ĺ on n, let

Pĺ “ tσ P Sn|p@i, j P t1, . . . , nuqpi ĺ j ñ σpiq ď σpjqqu

where ď is the usual total order on Z
`. That is Pĺ is the set of permu-

tations σ such that ĺ is contained in σ´1pďq. let

C “ tPĺ| ĺ is a partial order on t1, . . . , nuu Y tHu

Since Sn is finite, to prove that pSn,F , Cq is a convexity space, we just

need to show that C is closed under intersection. This is straightfor-

ward. Since partial orders are closed under intersection, the poset of

partial orders on t1, . . . , nu, with a top element adjoined, is a lattice.

Thus the intersection Pĺ XPĎ “ Pĺ_Ď, so C is closed under intersec-

tion. This is a metric topology, with the metric given by dpσ, τq is the

Cayley distance from σ to τ , under the Coxeter generators. That is,

dpσ, τq is the length of the shortest word equal to τσ´1 in the genera-

tors tτi|i “ 1, . . . , n ´ 1u, where

τipjq “

$
&
%

i ` 1 if j “ i

i if j “ i ` 1

j otherwise
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is the transposition of i and i ` 1.

4. If G is a topological group, or more generally a universal algebra

equipped with a suitable topology, then we can define a topological

convexity space by making subgroups (or more generally subalgebras)

and the empty set convex, and keeping the closed sets from the topol-

ogy.

Having defined the objects in the category of topological convexity spaces,

we need to define the morphisms.

Definition 2.4. A homomorphism f : pX,F , Cq // pX 1,F 1, C 1q between

topological convexity spaces is a function f : X //X 1 such that for every

F P F 1, f´1pF q P F and for every C P C 1, f´1pCq P C.

The condition that f´1pF q P F is the condition that f is continuous

as a function between topological spaces. The condition that f´1pCq P C
is called monotone by [4], by analogy with the example of endofunctions

of the real numbers. This was in the context of convexity spaces without

topological structure. Dawson [4] uses the term Align for the category of

convexity spaces and monotone homomorphisms, and Convex for the cate-

gory of convexity spaces and functions whose forward image preserves con-

vex sets. However, this terminology has not been widely used, and later

authors have all considered the monotone homomorphisms as the natural

homomorphisms of abstract convexity spaces. In the case of topological

convexity spaces, the monotone condition is an even more natural choice

because it aligns well with the continuity condition and leads to the Stone

duality extension that we show in this paper.

Examples 2.5.

1. For the topological convexity space coming from a metric space, such

that intervals are of the form rx, ys “ tz P X|dpx, zq ` dpy, zq “
dpx, yqu, a homomorphism is a function f : X //Y such that when-

ever dpx, zq “ dpx, yq`dpy, zq, we have dpfpxq, fpzqq “ dpfpxq, fpyqq`
dpfpyq, fpzqq. That is, f embeds geodesics from X into the geodesics

in Y . To see that homomorphisms have this property, we have that

f´1prfpxq, fpzqsq is convex, and contains x and z, so if dpx, zq “

249



T. KENNEY DUALITY FOR TOPOLOGICAL CONVEXITY SPACES

dpx, yq ` dpy, zq, then f´1prfpxq, fpzqsq must contain y. This means

fpyq P rfpxq, fpzqs “ tv|dpfpxq, fpzqq “ dpfpxq, vq ` dpv, fpzqqu.

Conversely, if f has the given property, then for any convex A Ď Y , if

x, z P f´1pAq, then for any y such that dpx, zq “ dpx, yq `dpy, zq, we

have dpfpxq, fpzqq “ dpfpxq, fpyqq ` dpfpyq, fpzqq, so by convexity,

fpyq P A, making y P f´1pAq, so f´1pAq is convex.

2. If L and M are complete lattices with the weak topology and con-

vex sets are ideals, then topological convexity space homomorphisms

from L to M are exactly sup-homomorphisms. To see this, let f :

L //M be a sup-homomorphism. Let I Ď M be an ideal. Since f

is order-preserving, f´1pIq is clearly a downset, and for a, b P f´1pIq,

fpa_bq “ fpaq_fpbq P I . Since inverse image preserves intersection,

it is sufficient to show that the inverse image of a finitely-generated

downset F Ď M is weak-closed. Let F “ Ótm1, . . . ,mnu. For

i “ 1, . . . , n, let li “ f˚pmiq, where f˚ is the order-theoretic right ad-

joint of f (which exists because f is a sup-homomorphism). We have

fpxq ď mi, if and only if x ď li. Thus, f´1pF q “ Ótl1, . . . , lnu. Con-

versely suppose f : L //M is a topological convexity space homo-

morphism. Weak-closed ideals are easily seen to be principal ideals,

since if I is an ideal, and I Ď Ótx1, . . . , xnu, then if there are elements

yi P I with yi ę xi, then y1_¨ ¨ ¨_yn cannot be in Ótx1, . . . , xnu, which

is a contradiction, so we must have I Ď Ó xi for some i P t1, . . . , nu.

Thus the inverse image of a principal ideal is another principal ideal.

In particular, f´1pÓ
Ž

tfpaq|a P Au is a principal ideal containing A,

so it contains
Ž

A, and thus fp
Ž

Aq ď
Ž

tfpaq|a P Au as required.

For the partial order convexity on Sn from Example 2.3.3, describing the

topological convexity space morphisms is more challenging. We start by

looking at half-spaces (convex sets with convex complements). Half-spaces

of Sn are of the form Cij “ Pĺ, where ĺ is the partial order where the only

non-trivial comparison is i ĺ j. That is, Cij “ tσ P Sn|σpiq ď σpjqu. We

first consider automorphisms:

Lemma 2.6. If i, j, k and l are distinct, then the only half-spaces that contain

Cij X Ckl are Cij and Ckl.

Proof. For any half-space Cst R tCij, Cklu, we need to find some σ P Cij X
Ckl with σ R Cst. Suppose s “ j and t ‰ i, then we can find a permutation
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σ such that σpiq ă σpjq ă σptq ă σpkq ă σplq. This σ is in Cij X Ckl, but

not in Cst as required. Similar permutations work for all combinations.

Lemma 2.7. An automorphism f : pSn, P pSnq, Cq // pSn, P pSnq, Cq is of

the form fpσq “ θστ for some τ P Sn and some θ P te, ρu where e is the

identity permutation and ρ is the permutation which reverses the order of all

elements.

Proof. It is easy to see that for τ P Sn, fτ given by fτ pσq “ στ is an au-

tomorphism of pSn, P pSnq, Cq. Now we consider the stabiliser of the iden-

tity element. Since tCipi`1q|i “ 1, . . . , pn ´ 1qu is the only set of n ´ 1

half-spaces whose intersection contains only the identity permutation, any

automorphism which fixes the identity permutation must fix this set. Fur-

thermore, since Cpi´1qi X Cipi`1q Ď Cpi´1qpi`1q, it follows that

f´1pCpi´1qiq X f´1pCipi`1qq Ď f´1pCpi´1qpi`1qq

Since f is an automorphism, f´1pCpi´1qpi`1qq cannot be either f´1pCpi´1qiq
or f´1pCipi`1qq. By Lemma 2.6, it follows that f´1pCpi´1qiq and f´1pCipi`1qq
are adjacent half-spaces. Since the set of half-spaces

tCipi`1q|i “ 1, . . . , pn ´ 1qu

is permuted by f´1, the only possible permutations are the identity and the

reversal Cipi`1q ÞÑ Cpn´iqpn`1´iq. This reversal sends a permutation σ to ρσρ.

We want to show that these are the only elements in the stabiliser of the

identity. By applying ρσρ if necessary, we can change an element in the

stabiliser of e to one such that f´1 fixes every Cipi`1q. Now Cipi`2q is the

unique half-space that contains Cipi`1q XCpi`1qpi`2q that is not equal to either

Cipi`1q or Cpi`1qpi`2q, so it is also fixed by f´1. By induction, we can show

that every Cij is fixed by f´1, and thus f is the identity.

Proposition 2.8. f : Sn //Sm is a surjective topological convexity space

homomorphism, if and only if there is an injective function g : m //n,

such that f is either given by

1. fpτqpiq “ |tj P t1, . . . ,mu|τpgpjqq ď τpgpiqqu|. That is, fpτq is the

automorphism part of the automorphism—order-preserving-inclusion

factorisation of τg.
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n
τ // n

m
OO

g

OO

fpτq
// m
OO
i

OO

or

2. fpτqpiq “ |tj P t1, . . . ,mu|τpgpjqq ě τpgpiqqu|. That is, fpτq is the

automorphism part of the automorphism-order-preserving-inclusion

factorisation of ρτg, where ρ is the order-reversing permutation on

n.

n
τ // n

ρ
// n

m
OO

g

OO

fpτq
//m
OO
i

OO

Proof. Firstly, we show that for an injective function g : m //n, both the

functions

αgpσqpiq “ |tj P t1, . . . ,mu|σpgpjqq ď σpgpiqqu|

and

δgpσqpiq “ |tj P t1, . . . ,mu|σpgpjqq ě σpgpiqqu|

are surjective homomorphisms. We see that for any i ‰ j P t1, . . . ,mu,

αg
´1pCijq “ tσ P Sn|αgpσqpiq ă αgpσqpjqu “ tσ P Sn|σpgpiqq ă σpgpjqqu “ Cgpiqgpjq

and

δg
´1pCijq “ tσ P Sn|δgpσqpiq ă δgpσqpjqu “ tσ P Sn|σpgpiqq ą σpgpjqqu “ Cgpjqgpiq

so αg and δg are homomorphisms. For surjectivity, let φ P Sm. We need to

show that φ “ αgpτq for some τ P Sn. Given the injections m //
g

//n and

m
φ

//m
i //n for any injective order-preserving m // i //n, n moo

g
oo //

iφ
//n

is a partial permutation of n, so it extends to a full permutation τ with

αgpτq “ φ. Similarly, we have δgpρτq “ αgpτq “ φ, so αg and δg are

both surjective.
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Conversely, let f : Sn //Sm be a surjective homomorphism. Since

teu is convex, where e is the identity homomorphism, f´1pteuq is convex.

Furthermore, f´1pteuq “
Ş

iăj f
´1pCijq. Since f´1 preserves convex sets,

for every i ‰ j P t1, . . . ,mu f´1pCijq “ Cst for some s, t P t1, . . . , nu.

Furthermore, f´1pCij X Cjkq “ Cst X Ctu. Thus, we have f´1pteuq “
Ci1i2...im “ Ci1i2 X Ci2i3 ¨ ¨ ¨ X Cim´1im . If f´1pC12q “ Ci1i2 , then we can

define gpjq “ ij , and we have that f “ αg. If on the other hand f´1pC12q “
Cim´1im , then we let gpjq “ im`1´j and we have f “ δg.

Describing general homomorphisms between these topological convex-

ity spaces is more difficult, and outside the scope of this paper.

3. Preconvexity Spaces and the Adjunction with Topologi-

cal Convexity Spaces

Definition 3.1. A preconvexity space (sometimes called a closure space) is

a pair pX,Pq, where X is a set and P is a collection of subsets of X that is

closed under arbitrary intersections and contains the empty set (since X is

an empty intersection, we also have X P P).

This was [10]’s original definition of a convexity space. However, later

authors decided that closure under directed unions should be a required prop-

erty for a convexity space, and [4] introduced the term preconvexity space

for these spaces that do not require closure under directed unions.

Definition 3.2. A homomorphism pX,Pq
f

// pX 1,P 1q of preconvexity spaces

is a function X
f

//X 1 such that for any preconvex set P P P 1, the inverse

image f´1pP q P P .

Examples 3.3.

If pX,F , Cq is a topological convexity space, then pX,F X Cq is a precon-

vexity space. The underlying function of any topological convexity space

homomorphism pX,F , Cq
f

// pX 1,F 1, C 1q is a preconvexity homomorph-

ism. Conversely, if C 1 consists of directed unions from F 1 X C 1, and F 1
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consists of intersections of finite unions from F 1 X C 1, then any preconvex-

ity homomorphism pX,F XCq
g

// pX 1,F 1 XC 1q is a topological convexity

homomorphism.

Example 3.3 gives a functor ConvexTop CC //Preconvex that sends ev-

ery topological convexity space to the preconvexity space of closed convex

sets. The action on morphisms simply reinterprets the topological convexity

homomorphism as a preconvexity homomorphism.

This closed-convex functor has a right adjoint, IS, which sends the pre-

convexity space pX,Pq to pX,P , rPq where rP is the closure of P under

directed unions, and P is the closure of P under finite unions and arbitrary

intersections. We will show that this defines a topological convexity space

and is a right adjoint.

Lemma 3.4. For any preconvexity space pX,Pq, the set rP is the collection

t
Ť

D|D Ď P directedu.

Proof. Let Q “ t
Ť

D|D Ď P directedu. We need to show that Q is closed

under directed unions. Let D Ď Q be directed. For each D P D, there

is a directed DD Ď P such that D “
Ť

DD. Let rD be the closure ofŤ
tDD|D P Du under finite joins in P (which exist because P is closed

under arbitrary intersections). By definition, rD is directed. We will show

that
Ť

D “
Ť rD. Suppose x P

Ť
D. Then there is some D P D with x P D,

and since D “
Ť

DD, there is some P P DD Ď rD with x P P , so x P
Ť rD.

Conversely, if x P
Ť rD, then there is some P1, . . . , Pn P

Ť
tDD|D P Du

such that x P P1 _ ¨ ¨ ¨ _ Pn. Now let each Pi P DDi
for some Di P D.

This means that Pi Ď Di. Since D is directed, there is an element of D that

contains D1, . . . , Dn, and which must therefore contain P1 _ ¨ ¨ ¨ _ Pn.

Lemma 3.5. For any preconvexity space pX,Pq, the set rP is closed under

directed unions and arbitrary intersections.

Proof. By definition, rP is closed under directed unions, so we just need to

show that it is closed under intersections. Let tPi|i P Iu be a family of

elements of rP . By definition, for every i P I , there is a directed Di Ď P
with Pi “

Ť
Di. W.l.o.g. assume every Di is down-closed in P . We will
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show that č

iPI

Pi “
ď

f :I
//
P

p@iPIqfpiqPDi

č

iPI

fpiq (1)

That is, the intersection of the family tPi|i P Iu is the union over all choice

functions f , of the intersection of tfpiq|i P Iu. Every fpiq P P , so this

intersection
Ş

iPI fpiq is also in P , and the set of choice functions is di-

rected, since every Di is directed and down-closed, so for choice functions

f, g : I //P the join pf _ gqpiq “ fpiq _ gpiq is also a choice function.

Equation (1) therefore shows that
Ş

iPI Pi P rP .

To prove Equation (1), first let x P
Ş

iPI Pi. Since p@iqpx P Piq, and

Pi “
Ť

Di, there is some Di,x P Di with x P Di,x. Thus, we can take the

choice function fxpiq “ Di,x, and deduce x P
Ş

iPI fxpiq. Conversely, let

x P
ď

f :I
//
P

p@iPIqfpiqPDi

č

iPI

fpiq

There must be some choice function f with x P
Ş

iPI fpiq. Since fpiq P Di,

it follows that fpiq Ď Pi, so x P Pi for every i P I . Thus x P
Ş

iPI Pi.

Remark 3.6. The proof of Lemma 3.5 does not actually require the axiom of

choice, because there are canonical choices for all choice functions needed

— for each Pi, we need to choose a directed family Di with Pi “
Ť

Di. We

can let Di “ tP P P |P Ď Piu, and since every Di is a downset, we can set

Di,x “ txu for every i P I , where txu is the convex-closed closure of txu.

Lemma 3.7. Every F P P is of the form
Ş

F , where

F Ď tP1 Y ¨ ¨ ¨ Y Pn|P1, . . . , Pn P Pu

Proof. Let pP “ tP1 Y ¨ ¨ ¨ Y Pn|P1, . . . , Pn P Pu be the set of finite unions

from P . We need to show that the set
!Ş

F |F Ď pP
)

is closed under finite

unions. (By definition, it is closed under arbitrary intersections.) Let F1 “Ş
F1 and F2 “

Ş
F2 for F1,F2 Ď pP . Let

F12 “ tP1 Y P2|P1 P F1, P2 P F2u
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We will show that F1YF2 “
Ş

F12. Clearly, for every P1 P F1, and P2 P F2,

we have F1 Ď P1 and F2 Ď P2, so F1 Y F2 Ď P1 Y P2. Conversely, suppose

x R F1 YF2. Then there is some P1 P F1 and some P2 P F2 with x R P1 and

x R P2. It follows that x R P1 Y P2 P F12, so x R
Ş

F12.

Lemma 3.8.

1. For a set X , the identity function on X is a preconvexity homomorph-

ism pX,Pq // pX,P 1q if and only if P 1 Ď P .

2. For a set X , the identity function on X is a topological convexity

homomorphism pX,F , Cq // pX,F 1, C 1q if and only if F 1 Ď F and

C 1 Ď C.

Proof. This is immediate from the definition.

Proposition 3.9. The assignment IS that sends the preconvexity space pX,Pq

to the topological convexity space pX,P , rPq and the preconvexity homo-

morphism pX,Pq
f

// pX 1,P 1q to f considered as a topological convex-

ity homomorphism, is a functor, and is right adjoint to the functor CC :

ConvexTop //Preconvex.

Proof. Because the forgetful functor to Set sends IS to the identity functor,

the functoriality of IS is automatic provided it is well-defined. That is, if any

preconvexity homomorphism pX,Pq
f

// pX 1,P 1q is a topological convex-

ity homomorphism from pX,P , rPq to pX 1,P 1,ĂP 1q. For the adjunction, we

need to demonstrate that for any topological convexity space pX,F , Cq and

any preconvexity space pX 1,P 1q, a function f : X //X 1 is a topological

convexity space homomorphism pX,F , Cq
f

// pX 1,P 1,ĂP 1q if and only if it

is a preconvexity homomorphism pX,F X Cq
f

// pX 1,P 1q. The “only if”

part is obvious.

Suppose pX,FXCq
f

// pX 1,P 1q is a preconvexity homomorphism. Let

F P P 1. We want to show that f´1pF q P F . Now F P P 1 means F “
Ş

U

where U Ď xP 1. Now if P1 Y ¨ ¨ ¨ Y Pn P xP 1, then f´1pP1 Y ¨ ¨ ¨ Y Pnq “
f´1pP1q Y ¨ ¨ ¨ Y f´1pPnq is a finite union of sets from F X C, so since F is

closed under finite unions, f´1pP1 Y ¨ ¨ ¨ Y Pnq P F . Therefore f´1pF q “
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Ş
tf´1U |U P Uu and tf´1U |U P Uu Ď F , so as F is closed under arbitrary

intersections, f´1pF q P F . Similarly, let C “
Ť

D, where D Ď P 1 is a

directed downset. For every D P D, we have f´1pDq P C, and for any

D1, D2 P D, there is some D12 P D with D1 Ď D12 and D2 Ď D12. It

follows that f´1pD1q Ď f´1pD12q and f´1pD2q Ď f´1pD12q. Therefore,

tf´1pDq|D P Du is directed. Now

f´1pCq “ f´1p
ď

Dq “
ď

tf´1pDq|D P Du

Since tf´1pDq|D P Du Ď C, and C is closed under directed unions, it fol-

lows that f´1pCq P C. Thus f is a homomorphism of topological convexity

spaces.

Well-definedness of the functor IS also follows from the adjunction, be-

cause P Ď P X rP , so the identity function on X is always a preconvexity

homomorphism pX,P X rPq i // pX,Pq. Thus the composite

pX,P X rPq i // pX,Pq
f

// pX 1,P 1q

is a preconvexity homomorphism, so by the adjunction, it is a topological

convexity space homomorphism pX,P , rPq
f

// pX 1,P 1,ĂP 1q

Corollary 3.10. The adjunction CC % IS is idempotent.

Proof. The counit and unit of the adjunction are both the identity function

viewed as a homomorphism in the relevant category. The triangle identities

for the adjunction therefore give an isomorphism of spaces, showing that the

adjunction is idempotent.

For an idempotent adjunction, a natural question is what are the fixed

points?

Proposition 3.11. A topological convexity space X “ pX,F , Cq satisfies

IS ˝ CCpXq “ X if and only if X satisfies the conditions:

1. Every convex set is a directed union of closed convex sets.

2. For every V P F and any x P XzV , there are sets C1, . . . , Cn P F XC
such that V Ď C1 Y . . . Y Cn and x R C1 Y . . . Y Cn.
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Proof. The counit of the adjunction is the identity function on the underlying

sets. Thus pF X Cq Ď F and ČpF X Cq Ď C. Let A P C be convex in X . By

Condition 1, A is a directed union of sets in F X C. By definition, this is in
ČpF X Cq.

Now let V P F . For any W “ C1 Y ¨ ¨ ¨ Y Cn with Ci P F X C,

W P pF X Cq by definition. Thus, by Condition 2, for every x P XzV , there

is some W P pF X Cq with V Ď W and x R W . Now, clearly V is the

intersection of all these W for all x R V . Since pF X Cq is closed under

arbitrary intersections, this implies V P pF X Cq.

Conversely, if X is a fixed point of the adjunction, i.e. IS˝CCpXq “ X ,

then C “ ČpF X Cq, which is exactly Condition 1. Also F “ pF X Cq,

meaning that for every V P F , we have V “
Ş

U where U is a family of

finite unions of sets from F X C. Since V “
Ş

U , for any x R V , there

is some U P U with x R U . By definition, U “ C1 Y ¨ ¨ ¨ Y Cn for some

C1, . . . , Cn P F X C, which is Condition 2.

We will call a topological convexity space teetotal if the conditions of

Proposition 3.11 hold. The teetotal conditions are closely related to the com-

patible conditions from Definition 2.2. However, there are compatible spaces

which are not teetotal.

Example 3.12. l2 is the vector-space of square-summable sequences of real

numbers, with the l2 norm. Since l2 is a metric space, it is easy to check that

it is a compatible topological convexity space.

Let F be the unit sphere, which is a closed set, and let x “ 0. In order

for l2 to be teetotal, we need to find a finite family of closed convex subsets

C1, . . . , Cn such that F Ď C1 Y ¨ ¨ ¨ Y Cn and x R C1 Y ¨ ¨ ¨ Y Cn. For closed

convex Ci and x R Ci, since Ci is closed, there is an open ball containing x

disjoint from Ci. Let d “ suptr P R|Bpx, rq X Ci “ Hu be the distance

from x to Ci. Since Bpx, dq is the directed union of tBpx, rq|r ă du, it

follows that Bpx, dq X Ci “ H.

We first show that if C is a closed convex set that does not contain 0,

then there is a unique y P C that minimises ‖y‖. If there is no y P C that

minimises ‖y‖, then there must be a sequence a1, a2, . . . P C such that ‖ai‖
is strictly decreasing and

lim
nÑ8

‖an‖ “ inf
yPC

‖y‖
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Since ra1, . . . , ans is compact for every n, there is a point bn P ra1, . . . , ans
that minimises ‖b‖. In particular, this means that for any i ă n and any

0 ă ǫ ă 1, ‖bn ` ǫpbi ´ bnq‖ ě ‖bn‖. Squaring both sides gives

2ǫxbi, bny ´ 2ǫxbn, bny ` ǫ2xbi ´ bn, bi ´ bny ą 0

Taking the limit as ǫ Ñ 0 gives xbi, bny ą xbn, bny. Thus

‖bi ´ bn‖
2 “ ‖bi‖

2 ` ‖bn‖
2 ´ 2xbi, bny

ď ‖bi‖
2 ´ ‖bn‖

2

Since ‖bn‖
2 is a decreasing sequence, bounded below by 0, it converges to

some limit r. Thus ‖bi´bn‖
2 ď ‖bi‖

2´r for any i ă n. Thus bn is a Cauchy

sequence, so it converges to some limit b8. Now since C is closed, b8 P C,

and

‖b8‖ “ lim
nÑ8

‖bn‖ “ inf
yPC

‖y‖

Thus b8 is a nearest point in C to 0. If y is another point with minimal

norm, then y`b8

2
must have smaller norm. Thus b8 is the unique point with

smallest norm.

Now for any y P C, since C is convex, we have that ‖b8 ` ǫpy ´ b8q‖ ą
‖b8‖, and by the above argument, xy, b8y ě xb8, b8y. Thus C Ď tx P
l2|xx, b8y ą 1

2
‖b8‖

2u. That is, every closed convex set is contained in an

open half-space that does not contain x “ 0.

We can therefore find half-spaces H1, . . . , Hn with x R Hi and Ci Ď Hi.

Thus, we may assume that F Ď H1 Y ¨ ¨ ¨ Y Hn. Half-spaces that do not

contain the origin are sets of the form Hw,a “ tv P l2|xv, wy ą au for some

w P l2 and a P R
`. Given a finite family H1, . . . , Hn “ Hw1,a1 , . . . , Hwn,an ,

we can find a unit vector w that is orthogonal to all of w1, . . . , wn. This

means that w R Hi for all i, and w P F , contradicting the assumption that

F Ď H1 Y ¨ ¨ ¨ Y Hn. Therefore, l2 does not satisfy the teetotal axioms.

The teetotal interior IS ˝ CCpl2q has the same convex sets, but closed

sets are intersections of finite unions of closed half-spaces. We can check

that this is the product topology on l2 as a real vector space.

Example 3.13. Let pX, dq be a metric space, where X “
Ť

nPNrnsn is the

set of finite lists with entries bounded by list length. The distance is given

by dpu, vq “ lpuq ` lpvq ´ lpu X vq, where lpuq is the length of the list u
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and u X v is the longest list which is an initial sublist of both u and v. The

induced topology is clearly discrete. The complement of the empty list is not

contained in a finite union of convex subsets that does not contain the empty

list. In particular, a convex subset of X that does not contain H must consist

of lists that all start with the same first element. Since there are infinitely

many possible first elements, a finite collection of convex sets that do not

contain the empty list cannot cover XzH.

The space pX, dq is a metric space and every closed ball is compact.

However, it is not a fixed point of the adjunction between ConvexTop and

Preconvex.

For a (pre)compatible topological space to be teetotal, an additional prop-

erty is needed.

Proposition 3.14. If pX,F , Cq is a precompatible topological convexity space

with the following properties:

• There is a basis of open sets that are convex, whose closure is convex

and compact.

• pX,Fq is Hausdorff.

• If A is closed convex and x R A, then there is a closed convex set H

such that Hc is convex, with A Ď H and x R H . (This property, with-

out the topological constraints, is often used in the literature, where it

is called the Kakutani condition.)

then pX,F , Cq is fixed by the adjunction.

Proof. We need to show that for any closed V P F , and any x R V , there is

a finite set of closed convex sets whose union covers V but does not contain

x. Let U be an open subset of V c, containing x such that U is convex and

U is convex and compact. Let A “ UzU . For any a P A, by the Hausdorff

property, we can find an open Ua that contains a, whose closure does not

contain x. Since convex open sets with convex closure form a basis of open

sets, we can find a convex open U 1
a with convex closure that does not contain

x. Since A is compact, it is covered by a finite subset U 1
a1

Y ¨ ¨ ¨ Y U 1
an

. Now

each U 1
ai

is contained in a closed convex Hai which does not contain x, such

that Hc
ai

is also convex.
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For any y P V , since rx, ys is connected (by compatibility), it cannot be

the union prx, ysXUqY
`
rx, ys X U

c˘
, so rx, ysXA ‰ H. Let z P rx, ysXA.

Since Hai cover A, we have z P Hai for some i. Now if y P Hai
c, then

since Hai
c is convex and contains x, it follows that z P Hai

c contradicting

z P Hai . Thus, we must have y P Hai . Since y P V is arbitrary, we have that

V Ď Ha1 Y ¨ ¨ ¨ Y Han as required.

We also need to show that every convex set is a directed union of closed

convex sets. Let C P C be a convex set. Let D “ trF s|F Ď C, F finiteu be

the collection of finitely generated convex subsets of C. Since finite sets are

closed under binary unions, D is directed. Since the convex closure of any

finite set is closed, it follows that C is a directed union of closed convex sets

as required.

For a metric space, these conditions can be simplified to give more natu-

ral conditions.

Lemma 3.15. If X is a topological convexity space where intervals are

closed, satisfying the Kakutani property that every pair of disjoint closed

convex sets are separated by a closed half-space, then for any x, s, t, p, q, r P
X with s P rx, ps, t P rx, qs and r P rp, qs, we have rx, rs X rs, ts ‰ H.

Proof. If rx, rs X rs, ts “ H, then rx, rs and rs, ts are disjoint closed convex

sets, so by the Kakutani propery, there is a closed half-space H such that

rx, rs Ď H and rs, ts Ď Hc. Now if p P H , then since x P H and H is

convex, we get s P H , contradicting rs, ts Ď Hc. This is a contradiction, so

we must have p P Hc. A similar argument shows that q P Hc. However,

since Hc is convex, it follows that r P Hc, contradicting rx, rs Ď H . This

contradiction disproves rx, rs X rs, ts “ H, so rx, rs X rs, ts ‰ H

Lemma 3.16. If pX, dq is a metric space, such that every open ball is convex,

every pair of disjoint closed convex sets are separated by a closed half-space

(a closed convex set with convex complement), and every interval ra, bs is

isomorphic (as a topological convexity space) to the real interval r0, 1s then

for any convex compact A Ď X and any x P X , we have

rx,As “
ď

trx, ys|y P Au

Proof. We need to show that
Ť

trx, ys|y P Au is closed under the between-

ness relation. Let s, t P
Ť

trx, ys|y P Au, and let z P rs, ts. Let s P rx, ps
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and t P rx, qs for p, q P A. We will show that z P rx, rs for some r P rp, qs.
Since rs, ts – r0, 1s, we have that rs, ts “ rs, zs Y rz, ts. For r P rp, qs, if

rx, rs X rs, zs ‰ H and rx, rs X rz, ts ‰ H, then clearly z P rx, rs. Thus if

p@r P rp, qsqpz R rx, rsq, then

p@r P rp, qsqpprx, rs X rs, zs “ Hq _ prx, rs X rz, ts “ Hqq

so

rp, qs “ tr P rp, qs|rx, rs X rs, zs “ Hu Y tr P rp, qs|rx, rs X rz, ts “ Hu

and this union is disjoint by Lemma 3.15. By connectedness of rp, qs, we just

need to show that tr P X|rx, rsXrs, zs “ Hu and tr P X|rx, rsXrz, ts “ Hu
are open to reach a contradiction, which would prove z P rx, rs for some

r P rp, qs. Let U “ tr P X|rx, rs X rs, zs “ Hu, and let v P U . We want to

show that there is some ǫ such that Bpv, ǫq Ď U . Now rs, zs X rx, vs “ H,

which means p@w P rs, zsqpdpx, wq ` dpw, vq ‰ dpx, vqq. Since rs, zs is

compact, the function fpwq “ dpx, wq ` dpw, vq ´ dpx, vq is bounded away

from zero on rs, zs. Let δ be a lower bound. Now if v1 P B
`
v, δ

2

˘
, then for

any w P rs, zs, we have

dpx, wq ` dpw, v1q ě dpx, wq ` dpw, vq ´ dpv, v1q

ą dpx, vq ` δ ´
δ

2

ě dpx, v1q ´ dpv1, vq `
δ

2

ą dpx, v1q

Because the inequality is strict, we have w R rx, v1s for any w P rs, zs, i.e.

v1 P U . Thus B
`
v, δ

2

˘
Ď U , meaning U is open as required.

Corollary 3.17. If pX, dq is a metric space, such that every closed ball is

compact, every open ball is convex, every pair of disjoint closed convex sets

are separated by a closed half-space, and every interval ra, bs is isomorphic

to the real interval r0, 1s then the induced topological convexity space is fixed

by the adjunction.

Proof. We will show that the conditions of Proposition 3.14 hold in this case.

The Hausdorff condition is always true for metric spaces.
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The open balls form a basis for the topology, and are convex. By con-

nectedness, if dpx, yq “ r, then since rx, ys is connected, there is a se-

quence y1, . . . , yn Ñ y in rx, ys, so y1, . . . , yn P Bpx, rq. Thus, we have

Bpx, rq “ Bpx, rq “ ty P X|dpx, yq ď ru. Thus, the closure of an open

ball is compact. Also, Bpx, rq “
Ş

Rąr Bpx,Rq is an intersection of convex

sets, so closed balls are convex. Thus open balls are a basis of the topology

with the required property.

Next, we need to show that the convex closure of a finite set is compact.

We will do this inductively. By Lemma 3.16, we have that rx1, . . . , xns “Ť
trx1, ys|y P rx2, . . . , xnsu. By the induction hypothesis rx2, . . . , xns is

compact. This means that rx2, . . . , xns Ď Bpx1, rq for some r P R
`. It

follows that rx1, . . . , xns Ď Bpx1, rq, since Bpx1, rq is convex. Therefore, it

is sufficient to prove that rx1, . . . , xns is closed.

Let z R rx1, . . . , xns. We want to prove that there is some open ball

about z that is disjoint from rx1, . . . , xns. For any y P rx2, . . . , xns, we know

z R rx1, ys, so dpx1, zq ` dpz, yq ´ dpx1, yq ą 0. For y P rx2, . . . , xns,
let fpyq “ dpx1, zq ` dpz, yq ´ dpx1, yq. Then fpyq is a continuous func-

tion rx2, . . . , xns Ñ R
`. Since rx2, . . . , xns is compact, f attains its lower

bound, so in particular, there is some ǫ ą 0 such that fpyq ą ǫ for all

y P rx2, . . . , xns. Now if dpz, z1q ă ǫ
2
, then for any y P rx2, . . . , xns,

dpx1, z
1q ` dpz1, yq ą dpx1, zq ´

ǫ

2
` dpz, yq ´

ǫ

2
ą dpx1, yq

so z1 R rx1, ys because the inequality is strict and open balls are convex. It

follows that z1 R rx1, . . . , xns, so rx1, . . . , xns is closed, as required.

In the other direction, it is natural to ask which preconvexity spaces are

fixed by the monad CC ˝ IS. The functor CC ˝ IS sends a preconvexity

space, pX,Pq to the space pX,P X rPq. We will call a preconvexity space

pX,Pq geometric if P X rP “ P .

Proposition 3.18. If X is finite, then any preconvexity space pX,Pq is geo-

metric.

Proof. If X is finite, then rP “ P , so rP X P “ P as required.

A natural question is whether this extends to topologically discrete spaces.

In fact, there are preconvexity spaces where all sets are in both P and rP , but

not in P .
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Example 3.19. Let X “ N. Let P consist of all subsets of N whose comple-

ment is infinite or empty. Clearly every subset of N is a finite union from P ,

and also a directed union from P (as P contains all finite sets). Thus pX,Pq
is a non-geometric example where all sets are closed and all sets are convex.

Proposition 3.20. Every T0 preconvexity space (meaning for any x ‰ y,

there is a preconvex set containing exactly one of x and y) embeds in a

geometric preconvexity space.

Proof. For a T0 preconvexity space pX,Pq, let pY,Qq be given by Y “ P

and Q “
 

tS P P |S Ď Ru|R P P
(

. Now the inclusion X
i //Y given by

ipxq “
Ş

tP P P |x P P u, is an embedding of preconvexity spaces, meaning

that for A Ď X , we have A P P if and only if A “ i´1pBq for some B P Q.

Clearly if A P P , then tS P P |S Ď Au P Q. Now it is easy to see that

a P i´1
`
tS P P |S Ď Au

˘
if and only if ipaq Ď A, if and only if a P A.

Thus A “ i´1
`
tS P P |S Ď Au

˘
. Conversely, let R P Q. By definition,

there is some P P P such that R “ tS P P |S Ď P u. It is easy to see that

i´1pRq “ P .

We need to show that pY,Qq is geometric. Y is a complete lattice, or-

dered by set-inclusion, and Q is the set of principal downsets of Y . This

means that rQ is the set of ideals in Y , and Q is the set of closed sets of the

weak topology. From Examples 2.5.2, we know that the intersection of these

is Q.

This leads to the natural question is what subspaces of a geometric pre-

convexity space are geometric.

Proposition 3.21. If pX,Pq is a geometric preconvexity space and A P P ,

then the restriction pA,P |Aq is a geometric preconvexity space.

Proof. Since P is closed under intersection, P |A Ď P . Now let C Ď A be

both a directed union of sets from P |A and an intersection of finite unions of

sets from P |A. Since P |A Ď P , C is both a directed union of sets from P and

an intersection of finite unions of sets from P . Since pX,Pq is geometric, it

follows that C P P , and since C Ď A, we have C P P |A as required.

On the other hand, closed or convex subspaces of geometric preconvexity

spaces are not necessarily geometric.
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Example 3.22. Let X “ R
2ztp0, 0qu, and let

Y “ tpx, yq P r0, 1s2|p|2x ´ 1| ´ 1qp|2y ´ 1| ´ 1q “ 0u

be the unit square with one corner at the origin. It is straightforward to check

that X and Y , with the preconvexities coming from closed convex subsets

of R2, are geometric. However, X X Y is a closed subspace of X , and a

convex subspace of Y , but the subset tpx, yq P X X Y |x ą 0 or y “ 1u is

both closed and convex, but is not closed convex, so X XY is not geometric.

4. Stone Duality

4.1 Stone Duality for Topological Spaces

In this section, we review Stone duality for topological spaces. While a lot

of what we review is well-known, some parts are written from an unusual

perspective, and are not as well-known as they might be.

Given a topological space, the collection of closed sets form a coframe.

(Many authors refer to the frame of open sets, but for our purposes the closed

sets are more natural, and since we are not considering 2-categorical aspects,

it does not matter since Coframe “ Frameco.) Furthermore, the inverse im-

age of a continuous function between topological spaces is by definition a

coframe homomorphism between the coframes of closed spaces. This in-

duces a functor C : Top // Coframeop. Not every coframe arises as closed

sets of a topological space. Coframes that do arise in this way are called

spatial and are said to “have enough points”.

In some cases, there can be many topological spaces that have the same

coframe of closed sets. If multiple points have the same closure, then there is

no way to separate them by looking at the coframe of closed sets. Therefore,

we restrict our attention to T0 spaces, where the function from X to CpXq

sending a point to its closure is injective. The functor T0-Top
C // Coframeop

is faithful.

We can recover a T0 topological space from its lattice of closed sets and

from the subset S Ă CpXq consisting of the closures of singletons. For a

coframe L, the elements which could arise as closures of singletons for a

topological space corresponding to L are non-zero elements that cannot be
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written as a join of two strictly smaller elements (called join-irreducible ele-

ments). These are called the “points” of L since they correspond to coframe

homomorphisms f : L // 2, where the 2-element coframe, 2, is the ter-

minal object in Coframeop. If we let PL Ď L be the set of points, a topo-

logical space X corresponds to a coframe L “ CpXq with a chosen subset

S Ď PL such that for every x P L, we have x “
Ž

pS X Ó xq (that is, S

is join-dense in L). Continuous functions X
g

//Y correspond to coframe

homomorphisms CpY q
Cpgq

//CpXq whose left adjoint CpXq
Cpgq˚

//CpY q (in

the category of order-preserving maps) sends SX to SY . We can express this

left adjoint condition topologically as: for every s P SX , Cpgq´1pÓ sq is a

principal downset in CpY q, and the top element is in SY , where SX Ď PCpXq

and SY Ď PCpY q are the chosen sets of points that correspond to elements of

X and Y respectively.

More formally, let SpatialCoframe˚ be the category of pointed spatial

coframes. Objects are pairs pL, Sq where L is a coframe and S Ď PL is

a join dense set of points of L (meaning p@a P Lqpa “
Ž

pS X Ó aqq).

These pairs are introduced in [6, 7], where they are called prime-based com-

plete lattices. Morphisms pM,T q
g

// pL, Sq are coframe homomorphisms

M
g

//L whose left adjoint L
g˚

//M as order-preserving homomorphisms

restricts to a function S
g˚

S //T .

Proposition 4.1 ([6]). The category of T0 topological spaces and continuous

functions is equivalent to the category SpatialCoframe
op
˚ .

Proof. The functor C : T0-Top //SpatialCoframe
op
˚ sends a topological

space X to the pair
´
CpXq,

!
txu

ˇ̌
ˇx P X

)¯
, where CpXq is the coframe

of closed subsets of X . It sends a continuous function f : X //Y to

f´1 : CpY q //CpXq. We need to show that this is a homomorphism in

SpatialCoframe˚. It is clearly a coframe homomorphism, so we need to

show that for any x P X ,
ľ!

t P
!

tyu
ˇ̌
ˇy P Y

)ˇ̌
ˇtxu ď f´1ptq

)
P ttyu|y P Y u

We will show that
Ź!

t P
!

tyu
ˇ̌
ˇy P Y

)ˇ̌
ˇtxu ď f´1ptq

)
“ tfpxqu. We need

to show that txu Ď f´1

´
tfpxqu

¯
, and if txu Ď f´1 pAq for any closed

266



T. KENNEY DUALITY FOR TOPOLOGICAL CONVEXITY SPACES

A Ď Y , then tfpxqu Ď A. Clearly, x P f´1

´
tfpxqu

¯
, so f´1

´
tfpxqu

¯

is a closed set containing x, so txu ď f´1

´
tfpxqu

¯
. On the other hand,

suppose txu ď f´1 pAq. Then x P f´1 pAq, so fpxq P A, so tfpxqu ď A.

Thus f´1 is a morphism in SpatialCoframe
op
˚ .

In the opposite direction, the functor P : SpatialCoframe
op
˚

//T0-Top
sends the pair pL, Sq to the topological space with elements S and closed sets

tS X Ó a|a P Lu. For the morphism pL, Sq
f

// pM,T q, we define T
f˚

//S

as the restriction of the left adjoint of f to T . By definition of SpatialCoframe˚,

this is a well-defined function. For any F P L, we have f˚ptq P ÓF if and

only if t ď fpF q by definition, so pf˚q´1pÓF XSq “ T X Ó fpF q is a closed

subset of P pM,T q. Thus f˚ is continuous.

Finally, we need to show that the two functors defined above form an

equivalence. For a topological space X , we see that PCX has the same

elements as X and closed sets of PCX are of the form ÓF X
!

txu
ˇ̌
ˇx P X

)

for F P CpXq. It is clear that txu ď F if and only if x P F , so closed sets

of PCX are exactly closed sets of X , so PCX – X .

For a coframe L with a chosen subset S Ď L, we want to show that

CP pL, Sq – pL, Sq. By definition, elements of CP pL, Sq are tÓa X S|a P Lu.

Since p@a P Lqpa “
Ž

pÓa X Sqq, it follows that the coframe of CP pL, Sq

is isomorphic to L. The chosen elements are
!

tsu
ˇ̌
ˇs P S

)
, where tsu is the

closure of tsu in P pL, Sq. Closed sets of P pL, Sq are of the form ÓaXS for

a P L, so in particular tsu “ Ós X S. This clearly induces an isomorphism

pL, Sq – CP pL, Sq.

An alternative approach due to [17] is take the embedding of the coframe

of closed sets into the completely distributive lattice of arbitrary unions

of closed sets. That is, for pL, Sq a pointed spatial coframe, we have the

coframe inclusion L // //DS, where DS is the completely distributive lat-

tice of down-closed subsets of S (where S is viewed as a sub-poset of L). In

topological terms, S is the collection of points of the space, with the special-

isation order. Downsets of S correspond to arbitrary unions of closed sets,

and the inclusion of L into DS is the obvious inclusion. In lattice theoretic

terms, the inclusion L // //DS sends x P L to ts P S|s ď xu. For a homo-

morphism f : pM,T q // pL, Sq, the condition that f˚ restricts to a func-
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tion S
f˚

//T means that the inverse image function Df˚ : DT //DS is

a complete lattice homomorphism. Furthermore, the diagram

M
f

//
��

��

L
��

��

DT
Df˚

// DS

commutes, since Df˚ sends T X Óx to

ts P S|f˚psq P TXÓxu “ ts P S|f˚psq ď xu “ ts P S|s ď fpxqu “ SXÓfpxq

The condition that S Ď L means that all totally compact elements of DS

(elements x P DS such that for any A Ď DS, if
Ž

A ě x, then there is

some a P A such that a ě x) are in L, so every element of DS is a join

of elements in L. We will refer to such lattice inclusions as dense. Thus

the category of T0 topological spaces is equivalent to the category of dense

inclusions of spatial coframes into totally compactly generated completely

distributive lattices.

The collections Lop of open subsets of the topological space, and DS of

arbitrary unions of closed sets, generate the open sets of a larger topology,

called the Skula topology [14]. Putting these three lattices together gives a

structure called the Skula biframe. A biframe [2], consists of a frame L0

with two chosen subframes L1 and L2, such that L1 Y L2 generates L0. The

biframe pL0, L1, L2q is strictly zero-dimensional if every element of L1 is

complemented in L0, and the complement is in L2. Every zero-dimensional

biframe is determined by the complement inclusion pL1qop // //L2, so the

functor that sends a topological space to the Skula biframe is one half of an

equivalence between the category of T0 topological spaces and the category

of strictly zero-dimensional biframes [13].

For all of these representations of T0 topological spaces, the fibres of the

forgetful functor

T0-Top
C //SpatialCoframeop

correspond to additional structure on the coframe, and are partially ordered

by inclusion of this additional structure. Every fibre has a top element, which

gives an adjoint to the forgetful functor C, sending a spatial coframe to the

top element of the fibre over it. (In fact, this adjoint extends to all coframes,
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because spatial coframes are reflective in all coframes). These top elements

of the fibres are exactly the sober spaces.

Not all fibres have bottom elements. However, a large number of the fi-

bres of the forgetful functor T0-Top
C //SpatialCoframeop do have bottom

elements and are actually complete Boolean algebras. This is probably easi-

est to see from the representation as coframes with a chosen set of elements

which are closures of points of the topological space. If S0 is the smallest

such set of closed sets that can arise as closures of points, and S1 is the largest

set, then any set between S0 and S1 is a valid set of points, making the poset

of possible sets of points isomorphic to the Boolean algebra P pS1zS0q. The

topological spaces that can occur as the bottom elements of fibres are spaces

where the closure of every point cannot be expressed as a union of closed

sets not containing that point. That is, for every x P X , txuztxu is closed.

Spaces with this property are called TD spaces [1].

Clearly, all T1 spaces are TD because in a T1 space txuztxu “ H is

closed. However, even if we restrict to T1 spaces and atomic spatial coframes,

the assignment of an atomic spatial coframe to the bottom element in the cor-

responding fibre is not functorial, since the adjoint to a coframe homomorph-

ism between TD spaces does not necessarily preserve join-indecomposable

elements, or even atoms. This is why the focus of attention in most of the

literature has been on sober spaces, rather than TD spaces. In order to model

the morphisms between TD spaces, we need to restrict to coframe homo-

morphisms whose adjoint preserves join-indecomposable elements. While

most of the topological spaces of interest are TD, many of the fibres of the

forgetful functor T0-Top
C //SpatialCoframeop contain only a singleton T0

topological space, which is therefore both sober and TD. (Several equivalent

characterisations of when this occurs are given in [8].) Thus many important

topological spaces are sober.

4.2 Stone Duality for Preconvexity Spaces

There is in many ways, a very similar picture for the category of preconvex-

ity spaces. Instead of the coframe of closed sets, the structure that defines the

preconvexity spaces is the complete lattice of preconvex sets P . Because the

inverse image function for a preconvexity space homomorphism preserves

preconvex sets, it induces an inf-homomorphism between the lattices of pre-
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convex sets. Thus, we have a functor Preconvex
P // Inf op, where Inf is

the category of complete lattices with infimum-preserving homomorphisms

between them, sending every preconvexity space to its lattice of preconvex

sets, and every homomorphism to the inverse image function. This has many

of the nice properties of the Stone duality functor Top
F // Coframeop.

As in the topology case, there is an equivalent category of sup-lattices

with a set of chosen elements. Let T CGPartialSup be the category whose

objects are pairs pL, Sq, where L is a complete lattice and S Ď LztKu is

sup-dense, i.e. p@x P Lqpx “
Ž

pS X Óxqq. Morphisms pL, Sq
f

// pM,T q

in T CGPartialSup are sup-homomorphisms L
f

//M with the property

that p@x P Sqpfpxq P T q. These pairs are called based complete lattices

in [6].

Proposition 4.2 ([6]). The categories T CGPartialSup and T0-Preconvex

are equivalent.

Proof. There is a functor T0-Preconvex
F // T CGPartialSup given by

F pX,Pq “
´
P ,

!
txu

ˇ̌
ˇx P X

)¯
on objects and F pfq % f´1 on morphisms,

where the adjoint is as a partial order homomorphism and exists because

f´1 is an inf-homomorphism. To show this is well-defined, since F pfq is

a left adjoint, it is a sup-homomorphism, and can be given explicitly by

F pfqpAq “
Ş

tB P P 1|A Ď f´1pBqu. In particular, if A “ txu, then

F pfqpAq “
č

tB P P 1|x P f´1pBqu “
č

tB P P 1|fpxq P Bu “ tfpxqu

To complete the proof that F is well-defined, we need to show that
!

txu
ˇ̌
ˇx P X

)

is sup-dense in P . For any P P P , and any x P P , we have txu Ď P . Thus

P “
Ť!

txu
ˇ̌
ˇx P P

)
as required. Thus F is well-defined, and functoriality

is obvious.

In the other direction, we define G : T CGPartialSup //Preconvex
by GpL, Sq “ pS, tS X Ó x|x P Luq on objects and Gpfqpsq “ fpsq on

morphisms. To show well-definedness, for pL, Sq
f

// pM,T q a morphism

of T CGPartialSup, we need to show that Gpfq is a preconvexity homo-

morphism. That is, for any s P S, we have fpsq P T , and for any m P M ,
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Gpfq´1pT X Ómq “ S X Ó x for some x P L. The first condition is by def-

inition of a homomorphism. Since f is a sup-homomorphism, it has a right

adjoint f˚ given by f˚pmq “
Ź

tx P L|fpxq ě mu. Now

Gpfq´1pTXÓmq “ ts P S|fpsq ď mu “ ts P S|s ď f˚pmqu “ SXÓ f˚pmq

which gives the required homomorphism property. Finally, we want to show

that F and G form an equivalence of categories. For a preconvexity space

pX,Pq, we have that

GF pX,Pq “ G
´
P ,

!
txu|x P X

)¯
“
´!

txu|x P X
)
,
!!

txu|x P X
)

X ÓP
ˇ̌
ˇP P P

)¯

It is obvious that the function sending x to txu is a natural isomorphism of

preconvexity spaces. In the other direction, for pL, Sq P obpT CGPartialSupq,

we have

FGpL, Sq “ F pS, tS X Ó x|x P Luq “
´

tS X Ó x|x P Lu,
!

tsu
ˇ̌
ˇs P S

)¯

For s P S, tsu “ S X Ó s, so the function L
i // tS X Ó x|x P Lu given by

ipxq “ S X Ó x is easily seen to be an isomorphism in T CGPartialSup.

Thus we have shown the equivalence of categories.

Under this equivalence (and the adjoint isomorphism Sup – Inf op),

the functor T0-Preconvex
P // Inf op corresponds to the forgetful functor

T CGPartialSup U //Sup sending pL, Sq to L. As in the topological case,

it is easy to see that the fibres of the functor U are partial orders. Each fibre

clearly has a top element setting S “ L. This induces a right adjoint to U .

Furthermore, we can show that this right adjoint extends to all preconvexity

spaces.

Proposition 4.3. The preconvex set lattice functor Preconvex
U //Sup has

a right adjoint Sup P //Preconvex.

Proof. The right adjoint P is defined by P pLq “ pL, tHu Y tÓx|x P Luq.

That is, it sends the complete lattice L to L with the preconvexity where

only principal downsets are preconvex. From the equivalence, between T0-

Preconvex and T CGPartialSup, this P sends L to the pair pL,Lq, which
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is clearly the top element of the fibre of the forgetful functor, U , when re-

stricted to T0 preconvexity spaces. To show that P is right adjoint to U , we

need to show the hom-sets SuppUX,Lq and PreconvexpX,PLq are nat-

urally isomorphic. For f P SuppUX,Lq, the corresponding element of

PreconvexpX,PLq is f̂ given by f̂pxq “ fptxuq. It is easy to see that f̂

is a preconvexity homormophism, since preconvex sets in PL are principal

downsets of L, and

pf̂q´1pÓpyqq “ tx P X|fpxq ď yu “ tx P X|txu Ď f˚pyqu “ f˚pyq

is preconvex. For f P PreconvexpX,PLq, the corresponding element of

SuppUX,Lq is f̃ given by f̃pAq “
Ž

xPA fpxq. Since f is a preconvexity

homomorphism, we have that f´1pÓpyqq is preconvex for any y P L. For

A Ď UX , we want to show that f̃p
Ž

Aq ď
Ž

APA f̃pAq. If y is an upper

bound for tf̃pAq|A P Au, then since f is a preconvexity homomorphism,

f´1pÓ yq is preconvex, and for any A P A, we have f̃pAq ď y, so A Ď
f´1pÓ yq. Thus f´1pÓ yq is an upper bound for A, in the lattice of preconvex

subsets of X , so it contains
Ž

A, as required.

Bottom elements of the fibres are of the form pL, Sq where S is the small-

est subset of L satisfying p@x P Lqpx “
Ž

S X Ó xq. For any x P L, if we

can find a downset D Ď L with
Ž

D “ x and x R D, then clearly if pL, Sq P
ob T CGPartialSup, then pL, pSztxuq Y Dq P ob T CGPartialSup, so if

there is a minimum set S, then we cannot have x P S. Conversely, if the

only downset whose supremum is x is the principal downset Ó x, then for

any pL, Sq in T CGPartialSup, we must have x P S. Thus, if there is a

smallest element of the fibre above L, it must be given by pL, Sq, where

S “
!
x P L

ˇ̌
ˇp@D Ď Lq

´´ł
D “ x

¯
ñ x P Dq

¯)

This is similar to the total compactness condition on elements of a sup-

lattice, but an element x is called totally compact if it satisfies

p@D Ď Lq
´´ł

D ě x
¯

ñ pDy P Dqpx ď yq
¯

which is a stronger condition. This condition is that x is totally compact in

the sub-lattice Ó x.
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As in the topological case, when bottom elements of the fibre exist, they

are usually the spaces of greatest interest. For example, spaces where every

singleton set is preconvex are always the bottom elements of the correspond-

ing fibre. However, the fibres of the forgetful functor are very rarely single-

tons, so the top elements of the fibres are not of as much interest as in the

topological case.

It is also worth noting that we have the chain of adjunctions

ConvexTop
CC //
K Preconvex
IS

oo

U //
K Sup
P

oo

which gives an adjunction between the category of topological convexity

spaces and the category of sup-lattices. This adjunction sends a topological

convexity space pX,F , Cq to the lattice of sets FXC ordered by set inclusion,

and a topological convexity space homomorphism to the left adjoint of its

inverse image. The right adjoint sends a sup-lattice L to the topological

convexity space pL,S, Iq, where S is the set of weak-closed subsets of L,

namely intersections of finitely-generated downsets in L, and I is the set of

ideals in L.

Theorem 4.4. There is an adjunction between the category of topological

convexity spaces and the category of sup-lattices. The left adjoint sends a

topological convexity space pX,F , Cq to the lattice F X C of closed convex

sets, ordered by inclusion, and a topological convexity space homomorph-

ism X
f

//Y to the adjoint of its inverse image function. The right adjoint

sends a sup-lattice L to the topological convexity space pL,S, Iq from Exam-

ple 2.3(2), and a sup-homomorphism L
f

//K to f viewed as a topological

convexity space homomorphism.

Proof. It is straightforward to check that these functors are the composites

of the adjunctions

ConvexTop
CC //
K Preconvex
IS

oo

U //
K Sup
P

oo

shown in Proposition 3.9 and Proposition 4.3.
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Remark 4.5. In the abstract, we described the relation between topological

convexity spaces and inf-lattices as an extension to the Stone duality between

topological spaces and coframes. Any topological space is a topological con-

vexity space with the discrete convexity, where all sets are convex. Similarly,

the category of coframes is a subcategory of the category of inf-lattices. The

following diagram commutes:

Top

C
��

// D // ConvexTop

UCC
��

Coframeop // // Inf op

However, the adjoint ISP to UCC does not restrict to an adjoint to the

closed set coframe functor, C, because ISP pLq is not in general a topolog-

ical space, even if L is a coframe. For ISP pLq to be a topological space,

all subsets of L would need to be ideals, which is impossible for non-trivial

lattices. Thus only the forgetful functor is truly an extension, and the duality

is not an extension.

4.3 Distributive Partial-Sup Lattices

The equivalence T0-Preconvex – T CGPartialSup is based on previous

work [11]. We present this work in a more abstract framework here. The idea

is that for a preconvexity space pX,Pq, the sets in P are partially ordered by

inclusion. This partial order has an infimum operation given by intersection,

but union of sets only gives a partial supremum operation because a union of

preconvex sets is not necessarily preconvex. (Because of the existence of ar-

bitrary intersections, there is a supremum operation given by union followed

by the induced closure operation, but this supremum is not related to the

structure of the preconvexity space. Unions of preconvex sets better reflect

the structure of the preconvexity space. We therefore add a partial operation

to the structure to describe these unions where possible.) For a preconvexity

space, the operations are union and intersection, so we have a distributivity

law between the partial join operation and the infimum operation. This can

be neatly expressed by saying that the partial join structure is actually a par-

tial join structure in the category Inf . We define a partial join structure as

a partial algebra for the downset monad. The downset monad exists in the

category of partial orders, and also in the category of inf-lattices.
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We begin by recalling the following definitions:

Definition 4.6 ([12]). A KZ-doctrine on a 2-category C is a monad pT, η, µq

on C with a modification Tη
λ

+3ηT such that λη, µλ and µTµλT are all

identity 2-cells.

Definition 4.7 ([3]). A 2-functor C
F //D is sinister if for every morphism

f in C, Ff has a right adjoint in D.

In particular, if F is sinister, then it gives rise to a functor from the cate-

gory of partial maps in C, to D, sending the partial map X Aoo
aoo

f
//Y to

the map FX
pFaq˚

//FA
Ff

//FY .

Definition 4.8. A lax partial algebra for a sinister KZ-doctrine in an order-

enriched category is a partial map TX
θ /X such that

X
η

//

1X !!

TX

θ
�

X
commutes and there is a 2-cell

TTX
Tθ //

µX

��

ð

TX

θ
�

TX
θ

/ X

A homomorphism of lax partial algebras from pX, θq to pY, τq is a morph-

ism X
f

//Y , together with a 2-cell

TX

θ
�

Tf
//

ñ

TY

τ
�

X
f

// Y

Remark 4.9. It is possible to define lax partial algebras for KZ monads in

general 2-categories. However, this requires more careful consideration of

coherence conditions, so to focus on the particular case of distributive partial

sup-lattices, we have restricted attention to Ord-enriched categories, where

Ord is the category of partially-ordered sets and order-preserving functions

between them.
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Definition 4.10. A partial sup-lattice is a lax partial algebra for the sinister

KZ doctrine pD, Ó,
Ť

q in Ord, where D is the downset functor, ÓX is the

function sending an element x P X to the principal downset it generates,

and
Ť

X : DDX //DX sends a collection of downsets to its union.

A distributive partial sup-lattice is a lax partial algebra for the sinister

KZ doctrine pD, Ó,
Ť

q in Inf , where D is the downset functor, ÓX is the

function sending an element x P X to the principal downset it generates,

and
Ť

X : DDX //DX sends a collection of downsets to its union.

The definition given in [11] is

Definition 4.11 ([11]). A partial sup lattice is a pair pL, Jq where L is a com-

plete lattice, J is a collection of downsets of L with the following properties:

• J contains all principal downsets.

• J is closed under arbitrary intersections.

• If A P J has supremum x, then any downset B with A Ď B Ď Ó x has

B P J .

• If A Ď J is down-closed, Y P J has
Ž

Y “ x and for any a P Y ,

there is some A P A with
Ž

A ě a, then there is some B Ď
Ť

A with

B P J and
Ž

B ě x.

A partial sup-lattice, pL, Jq, is distributive if for any D Ď J , we haveŹ
t
Ž

D|D P Du “
ŽŞ

D.

An inf-homomorphism L
f

//M is a partial sup-lattice homomorphism

pL, Jq
f

// pM,Kq if for any A P J , we have Ótfpaq|a P Au P K, andŽ
Ótfpaq|a P Au “ f p

Ž
Aq.

Proposition 4.12. Definitions 4.10 and 4.11 give equivalent definitions of

distributive partial sup lattices.

Proof. We need to show that if DL
θ /L is a lax partial algebra for the

downset monad in Inf , then there is some J Ď DL satisfying the conditions

of Definition 4.11. We will show that setting J as the domain of the partial

algebra morphism DL
θ /L works. We will let j denote the inclusion
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J // //DL, and write j´1 for the inverse image map DDL
j´1

//DJ that is

right adjoint to Dj.

From the unit condition

L
Ó
//

1L
((

DL Joo
j

oo

θ
��

L
we have that all principal downsets must be contained in J . This allows us

to show that θ is the join whenever it is defined. For A P J , if x “
Ž

A,

then A ď Ó x in J , and for any a P A, we have Ó a ď A in J . Since θ is

order-preserving, this gives a “ θ pÓ aq ď θpAq ď θ pÓ xq “ x, so θpAq is

an upper bound of A, and is below x “
Ž

A. Thus θpAq “
Ž

A. Since

the inclusion J //
j

//DL is an inf-homomorphism, we get that J is closed

under arbitrary intersections. Suppose A P J has supremum x, and B P DL

satisfies A Ď B Ď Ó x. We want to show that B P J .

The lax partial algebra condition gives

DDL
j´1

//

Ť

��

DJ
Dθ // DL

ě J
OO
j

OO

θ
��

DL Joo
j

oo θ // L
In particular, since A P J X ÓB, we have DθpJ X ÓBq “ Ó x, and since

θpÓ xq “ x is defined, we have that the upper composite partial morphism is

defined on J X ÓB. For the lower composite, we have
Ť

pJ X ÓBq “ B, so

for the lower composite to be defined, we must have B P J .

Finally if A P DJ , Y P J has
Ž

Y “ x and for any a P Y , there is some

Aa P A with
Ž

Aa ě a, then clearly Aa X Ó a P J , and since J
θ //L is

an inf-homomorphism,
Ž

pAa X Ó aq “ θpAa X Ó aq “ a. Thus, setting B “
Ó tAa X Ó a|a P Y u gives Dθ pBq “ Y , so the upper composite is defined for

B, and is equal to x. Thus, the lower composite gives B “
Ť

B P J with

θpBq “ x, which proves the last condition.

Conversely, suppose that pL, Jq is a distributive partial sup lattice as in

Definition 4.11. We want to show that DL Joo
j

oo

Ž
//L is a lax partial
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algebra for the downset KZ monad. That is, we want to show that

X
Ó
//

1X ""

DX

θ
�

X
commutes, and

DDX
Dθ //

Ť
��

ě

DX

θ
�

DX
θ

/ X

We expand the partial morphisms to get the following diagrams

L // J
��

j
�� Ž

��

L
Ó
//

1L
((

DL

L

DDL

µL

��

j´1

// DJ
D

Ž
// DL

ě J
OO
j

OO

Ž
��

DL Joo
j

oo Ž // L

The first diagram commutes because J contains all principal downsets. For

the second diagram, if the upper-right composite of the diagram is defined

for A, we have j´1pAq “ A X J , and Y “ Ó t
Ž

A|A P A X Ju P J . By

definition, for every a P Y , there is some Aa P A X J such that
Ž

Aa ě a.

Now, by the fourth condition in Definition 4.11, there is some B Ď
Ť

A,

with B P J and
Ž

B ě
Ž

Y . For x P
Ť

A, we have Ópxq P A X J ,

so x P Y , and therefore
Ž

Y “
Ž

p
Ť

Aq, so
Ž

B “
Ž

Y “
Ž

p
Ť

Aq.

Now by the third condition of Definition 4.11, it follows that
Ť

A P J , so

the lower-left composite is defined for A, giving the required inequality of

partial maps.

Proposition 4.13. The definition of distributive partial sup-lattice homo-

morphisms given in Definition 4.11 is equivalent to a lax partial algebra

homomorphism between lax partial algebras.

Proof. Because θ is the restriction of the supremum operation, the lax par-

tial algebra homomorphism condition is exactly that J factors through the

pullback
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K˚ //
��

��

K
��

��

DL
Df

// DM

and for any A P J , f p
Ž

Aq ď
Ž

Ótfpaq|a P Au.

The pullback is given by K˚ “ tA P DL|DfpAq P Ku. Thus the

inclusion is equivalent to the condition for any A P J , Ótfpaq|a P Au P K.

Since f is order-preserving, for a P A, we have that fpaq ď f p
Ž

Aq, so

f p
Ž

Aq is an upper bound for Ótfpaq|a P Au, and thus
Ž

Ótfpaq|a P Au ď
f p

Ž
Aq. Thus the second condition that

Ž
Ótfpaq|a P Au ě f p

Ž
Aq is

equivalent to
Ž

Ótfpaq|a P Au “ f p
Ž

Aq as required.

Definition 4.14. An element a of a partial sup-lattice pL, Jq is totally com-

pact if for any downset D P J ,
Ž

D ě a ñ a P D. (Note that H P J , so

K is not totally compact.) A partial sup-lattice pL, Jq is totally compactly

generated if for any x P L, there is some C Ď L such that every c P C is

totally compact, and such that ÓC P J and
Ž

C “ x.

Proposition 4.15. The full subcategory of totally compactly generated dis-

tributive partial sup-lattices and partial sup-lattice homomorphisms is equiv-

alent to the category T CGPartialSupop defined at the start of Section 4.2.

Proof. Given a totally compactly generated distributive partial sup-lattice

pL, Jq, let K Ď L be the set of totally compact elements of pL, Jq. Then

pL,Kq is an element of T CGPartialSup. Conversely, for the object pL, Sq P
ob T CGPartialSup, let J “ tD P DL|S X Ó p

Ž
Dq Ď Du be the set of

downsets of L that contain all totally compact elements below their supre-

mum. It is clear that performing these two constructions gives an isomor-

phic structure. To show an equivalence of categories, we need to show

that L
f

//M is a distributive partial sup-lattice homomorphism if and only

if it is a morphism in T CGPartialSupop. Since distributive partial sup-

lattice homomorphisms preserve infima, they have left adjoints. If f is a

partial sup-lattice homomorphism, and f˚ is its left adjoint, then f˚ is a

sup-homomorphism, and for any totally compact a P M , if B P J hasŽ
B ě f˚paq, then the adjunction gives f p

Ž
Bq ě a. Since f is a partial

sup-homomorphism, we have f p
Ž

Bq “
Ž

tfpbq|b P Bu ě a. As a is
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totally compact, we must have a ď fpbq for some b P B. By the adjunction,

this gives f˚paq ď b. Thus we have shown that if B P J has
Ž

B ě f˚paq,

then f˚paq P B. That is, f˚paq is totally compact.

Conversely, if g is a sup-homomorphism between totally compactly gen-

erated distributive partial sup-lattices, that preserves totally compact ele-

ments, then its right adjoint is a partial sup-homomorphism, since if B P J

has
Ž

B “ x, then if a ď g˚pxq is totally compact, then gpaq ď x is

also totally compact, so gpaq P B. It follows that a P Ótg˚pbq|b P Bu, soŽ
Ótg˚pbq|b P Bu “ g˚pxq as required.

5. Final Remarks and Future Work

We have extended the left adjoint functor from Stone duality, sending a topo-

logical space to its coframe of closed sets to a functor sending a topological

convexity spaces to its sup-lattice of closed convex sets. As in the topologi-

cal Stone duality, this functor has a right adjoint. This right adjoint is not an

extension of the topological case.

In many ways, the theory is nicer in this situation than in the topologi-

cal case. For example, there are no non-spatial sup-lattices: every sup-lattice

arises as the closed convex sets of a topological convexity space. However, in

some ways this nicer theory makes the results less useful, because in topol-

ogy, the non-spatial locales fill some problematic gaps in the category of

topological spaces. With every sup-lattice arising as the closed convex sets

of a topological convexity space, there are no new spaces to be added, so we

are not filling the gaps.

Another significant difference between this and Stone duality for topo-

logical spaces is that for the topological Stone duality, many interesting topo-

logical spaces are in the singleton fibres of the functor, meaning that the

closed set functor is full and faithful for these spaces, so we can study the

categorical structure of large classes of interesting topological spaces using

the category of coframes. For topological convexity spaces, there are no

singleton fibres, and the top elements of fibres (on which the functor is full

and faithful) are not very interesting topological convexity spaces. The most

interesting topological convexity spaces are the bottom elements of their fi-

bres, and when we restrict the functor to these spaces, it is faithful, but not

full, meaning that from a categorical perspective, ConvexTop and Sup are
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not so closely related.

The adjunction between topological convexity spaces and sup-lattices

factors through the category of preconvexity spaces, or the equivalent cat-

egory of totally compactly-generated distributive partial sup-lattices. The

adjunction between topological convexity spaces and preconvexity spaces

is potentially more interesting, with most interesting topological convexity

spaces being fixed-points of the induced comonad on ConvexTop. We have

characterised which topological convexity spaces are fixed by this comonad

in Proposition 3.11, and given some important examples in Proposition 3.14.

In the opposite direction, for the question of which preconvexity spaces are

fixed by the induced monad on Preconvex, we have only been able to show

this for a few special cases.

5.1 Future Work

The study of topological convexity spaces is an extremely promising area

of research, including some classical geometric examples and also some

very interesting combinatorial examples. The adjunctions from this paper

are likely to prove extremely valuable in the study of topological convexity

spaces. In this section, we discuss a number of important problems about

topological convexity spaces that may be addressed using these adjunctions.

5.1.1 Restricting this to a Duality

In topology, it is often convenient to restrict Stone duality to an isomor-

phism of categories between sober topological spaces and spatial locales.

Sober topological spaces can be described in a number of topologically nat-

ural ways. Similarly, spatial locales can be easily described. It is easy to

describe the topological convexity spaces from this adjunction, as they come

directly from lattices. However, for the intermediate adjunction between

topological convexity spaces and preconvexity spaces, the conditions for

fixed points are less clear. The characterising conditions in Proposition 3.11

are not particularly natural, while the natural and commonly used conditions

in Proposition 3.14 exclude a number of interesting combinatorial examples.

A result between these two that includes the interesting combinatorial ex-

amples but also consists of natural, easy-to-understand conditions would be
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extremely valuable. In the other direction, describing the geometric precon-

vexity spaces is more challenging, and could lead to a lot of fruitful research.

5.1.2 Euclidean Spaces

The motivating examples for topological convexity spaces are real vector

spaces, particularly finite-dimensional ones. The author has nearly com-

pleted a characterisation of these spaces within the category of topological

convexity spaces, which will be presented in another paper.

5.1.3 Convexity Manifolds

In differential geometry, a manifold is a space which has a local differential

structure. That is, the space is covered by a family of open sets, each of

which has a local differential structure. There are examples of spaces with

a cover by open subsets with a local convexity structure. The motivating

example here is real projective space. We cannot assign a global convexity

structure to projective space, but if we remove a line from the projective

plane, then the remaining space is isomorphic to the Euclidean plane, and so

has a canonical convexity space. Furthermore, these convexity spaces have a

certain compatibility condition — given a subset C of the intersection which

is convex in both convexity spaces, the convex subsets of C are the same in

both spaces. This gives us the outline for a definition of convexity manifolds.

Further work is needed to identify the Euclidean projective spaces within the

category of convexity manifolds, and to determine what geometric structure

is retained at this level of generality.

5.1.4 Metrics and Measures

There are connections between metrics and measures. For example, on the

real line, any metric that induces the usual convexity space structure corre-

sponds to a monotone function R
d //R with 0 as a fixed point. Such a

function naturally induces a measure on the Lebesgue sets of R. Conversely,

for every measure on the Lebesgue sets of R, we obtain a monotone endo-

function of R by integrating. Thus, for the real numbers, there is a bijective

correspondence between metrics that induce the usual topological convexity
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structure and measures on R. This property is specific to R, and does not

generalise to other spaces like R
2.

There is a more general connection between topological convexity spaces,

sigma algebras, measures and metrics.

Example 5.1. Let pX,Bq be a Σ-algebra. There is a topological convexity

space pB,F , Iq where I is the set of intervals in the lattice B and F is the

set of collections of measurable sets closed under limits of characteristic

functions. That is, for B1, B2, . . . P B, say B is the limit of B1, B2, . . . if for

any x P B, there is some k P Z
` such that x R Bi ñ i ă k, and for any

x R B, there is some k P Z
` such that x P Bi ñ i ă k. F is the collection

of subsets F Ď B such that for any B1, B2, . . . P F , if B is the limit of

B1, B2, . . ., then B P F .

Proposition 5.2. If µ is a finite measure on pX,Bq such that no non-empty

set has measure zero, then d : BˆB //R given by dpA,Bq “ µpA△Bq, is

a metric and induces the topological convexity space structure pB,F , Iq or a

finer structure. Furthermore, all metrics inducing this topological convexity

space structure on B are of this form.

Proof. We have dpA,Aq “ µpHq “ 0 and dpA,Bq “ dpB,Aq, so we need

to prove the triangle inequality. That is, for A,B,C P B, we have dpA,Cq ď
dpA,Bq ` dpB,Cq. This is clear because A△C Ď A△B Y B△C. Thus d

is a metric. To prove that it induces this topological convexity structure, we

note that dpA,Cq “ dpA,Bq`dpB,Cq if and only if A△C “ A△B>B△C.

This only happens if A X C Ď B Ď A Y C, which means that convex sets

must be intervals. Finally, we need to show the topology from the metric is

finer than F . That is, if B is the limit of B1, B2, . . ., then dpBi, Bq Ñ 0. By

definition,
Ş8

i“1
Bi△B “ H. Thus, we need to show that for a sequence

Ai “ Bi△B of measurable sets with empty intersection, µpAiq Ñ 0. Let

Ci “
Ť

jěi Aj . Since Ai Ñ H, we get
Ş8

i“1
Ci “ H. Since the Ci are

nested, we have limiÑ8 µpCiq “ µ
`Ş8

i“1
Ci

˘
“ 0.

To show that every metric is of that form, let d : B ˆ B //R be a

metric on B whose induced topology and convexity are finer than F and I
respectively. We want to show that there is a finite measure µ on pX,Bq
such that dpA,Bq “ µpA△Bq. By the convexity, whenever A “ B > C is a

disjoint union, we have dpA,Bq`dpB,Hq “ dpH, Aq “ dpH, Cq`dpC,Aq
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and dpB,Hq ` dpH, Cq “ dpB,Cq “ dpB,Aq ` dpA,Cq. It follows that

2dpA,Bq ` dpB,Hq ` dpA,Cq “ dpA,Cq ` dpB,Hq ` 2dpH, Cq

so dpA,Bq “ dpC,Hq. For general B, we have A X B is between A and B,

so

dpA,Bq “ dpA,AXBq`dpAXB,Bq “ dpH, AzBq`dpH, BzAq “ dpH, A△Bq

Thus, if we define µpBq “ dpH, Bq, then d is defined by dpA,Bq “ µpA△Bq.

We need to show that µ is a measure on pX,Bq. That is, that if A and B

are disjoint, we have µpA Y Bq “ µpAq ` µpBq and if B1 Ď B2 Ď ¨ ¨ ¨ ,

then µp
Ť8

i“1
Biq “ lim8

i“1 µpBiq. We have already shown that the first

of these comes from the convexity. The second comes from the topology.

Consider the sequence Ai “
´Ť8

j“1
Bj

¯
zBi. By the convexity, we have

µpAiq “ µ
´Ť8

j“1
Bj

¯
´ µpBiq, so it is sufficient to show that µpAiq Ñ 0,

when pAiq
8
i“1 is a decreasing sequence with empty intersection. If pAiq

8
i“1

is a decreasing sequence with empty intersection, then for any x P X , we

have pDk P Z
`qpx R Akq. Thus H is a limit of pAiq

8
i“1. Thus we have

µpAiq Ñ µpHq “ 0 as required.

5.1.5 Sheaves

A lot of information about topological spaces can be obtained by studying

their categories of sheaves. A natural question is whether a similar category

of sheaves can be constructed for a topological convexity space. Part of the

difficulty here is that the usual construction of the sheaf category is described

in terms of open sets. However, for topological convexity spaces, closed

sets are more fundamental, so it is necessary to redefine sheaves in terms of

closed sets. This is conceptually strange. One interpretation of sheaves is as

sets with truth values given by open sets. In this interpretation, closed sets

correspond to the truth values of negated statements, such as inequality. [5]

argues that inequality is a more fundamental concept for studying lattices

of equivalence relations as a form of logical statement, so a definition of

sheaves in terms of closed sets could be linked to this work.
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PICARD GROUPOIDS AND Γ-CATEGORIES

Amit Sharma

Résumé. Dans cet article, nous construisons une catégorie de modèles fermée monoı̈dale

symétrique de groupoı̈des de Picard commutatifs cohérents. Nous construisons une

autre structure de catégorie de modèles sur la catégorie des (petites) catégories per-

mutatives dont les objets fibrants sont des groupoı̈des de Picard (permutatifs). Le

résultat principal de cet article est que le foncteur nerf de Segal est un foncteur de

Quillen droit d’une équivalence de Quillen entre les deux catégories de modèles sus-

mentionnées. Sur la base de notre résultat principal, nous donnons une nouvelle

preuve du résultat classique selon lequel les groupoı̈des de Picard modélisent des

monotypes d’homotopie stables.

Abstract. In this paper we construct a symmetric monoidal closed model category

of coherently commutative Picard groupoids. We construct another model category

structure on the category of (small) permutative categories whose fibrant objects are

(permutative) Picard groupoids. The main result of this paper is that the Segal’s

nerve functor is a right Quillen functor of a Quillen equivalence between the two

aforementioned model categories. Based on our main result, we give a new proof of

the classical result that Picard groupoids model stable homotopy one-types.

Keywords. Your keywords come here.

Mathematics Subject Classification (2010). Your MSC numbers come here.

1. Introduction

Picard groupoids are interesting objects both in topology and algebra. A ma-

jor reason for interest in topology is because they model stable homotopy

1-types which is a classical result appearing in various parts of the litera-

ture [JO12][Pat12][GK11][MOP+20]. The category of Picard groupoids is the

archetype example of a 2-Abelian category, see [Dup08]. A theory of 2-chain com-

plexes of Picard groupoids was developed in [dRMMV05]. A simplicial cohomol-

ogy with coefficients in Picard groupoids was introduced in the paper [CMM04].
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1 INTRODUCTION

This cohomology was used in [SV] to construct a TQFT called the Dijkgraaf-Witten

theory. This (Picard) groupoidification of cohomology played a vital role in explain-

ing a mysterious integration theory introduced in [FQ93], [Shab] which is pivotal

in constructing the aforementioned TQFT functor.

A tensor product of Picard groupoids was defined in [Sch08]. However, a

shortcoming of the category of Picard groupoids remains: unlike the category of

abelian groups, it is not a symmetric monoidal closed category. In this paper we

address this problem by proposing another model for Picard groupoids based on

Γ- categories. A Γ- category is a functor from the (skeletal) category of finite based

sets Γop into the category of all (small) categories Cat. We denote the category

of all Γ- categories and natural transformations between them by ΓCat. Along

the lines of the construction of the stable Q-model category in [Sch99], we con-

struct a symmetric monoidal closed model category ΓPic. The underlying category

of ΓPic is ΓCat and we refer to it as the model category structure of coherently

commutative Picard groupoids. A Γ- category X is called a coherently commuta-

tive Picard groupoid if it satisfies the Segal condition, see [Seg74] and moreover it

has homotopy inverses. These Γ- categories are fibrant objects in our model cate-

gory ΓPic. The main objective of this paper is to compare a (model) category of all

(small) Picard groupoids with the model category of coherently commutative Picard

groupoids ΓPic. We construct another model category structure on Perm whose

fibrant objects are (permutative) Picard groupoids. This model category is denoted

by (Perm,Pic) and called the model category of Picard groupoids. The main re-

sult of this paper, theorem 5.2, states that the following adjoint pair is a Quillen

equivalence:

L : ΓPic ⇄ (Perm,Pic) : K, (1)

where K is the classical Segal’s nerve functor which was originally defined in

[Seg74] and a different description of it has recently appeared in[Shac].

A second aspect of our paper is about establishing a Quillen equivalence be-

tween a second pair of model category structures on the same two underlying cate-

gories, namely Perm and ΓCat. We first construct another cartesian closed (com-

binatorial) model category structure on Cat, denoted by (Cat,Gpd), whose fi-

brant objects are groupoids. We then transfer this model category structure on the

category of all permutative categories Perm. Fibrant objects in this model cate-

gory are permutative groupoids and it is denoted by (Perm,Gpd). We localize

the model category of coherently commutative monoidal categories to get another

symmetric monoidal closed model category ΓGpd⊗. The fibrant objects of this

model category can be described as coherently commutative monoidal groupoids.

These two model categories are instrumental in the construction of the model cate-
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gories featuring in our main result. A second prominent result of this paper is that

the following adjunction is a Quillen equivalence:

L : ΓGpd⊗
⇄ (Perm,Gpd) : K (2)

The Quillen equivalences (1) and (2) are proved in section 5. We first prove (2) and

then use that to prove our main result (1).

In the last section of this paper we use our main result to prove a version of

the stable homotopy hypothesis for Picard groupoids: the homotopy category of

(Perm,Pic) is equivalent to a homotopy category of stable homotopy one-types.

We recall that a stable homotopy one-type is a connective spectrum whose stable

homotopy groups are trivial in all degrees greater than one.

We would like to mention that the Quillen equivalence (2) proved in theorem

5.1 can also be proved by an adaptation of some results of [dBM17] to (a suit-

able model category of) groupoids. This approach goes through the theory of den-

droidal groupoids, more concretely, the approach appeals to the abstract relations

between dendroidal groupoids and algebras over operads in groupoids and den-

droidal groupoids and Γ-groupoids. In this paper we establish this Quillen equiva-

lence without using any theory of dendroidal groupoids. Our approach is direct and

is based on the results of [Shac].

Acknowledgments. The author would like to thank Ieke Moerdijk for helping him un-

derstand the relation of his current and previous work with the theory of dendroidal

categories. The author thanks André Joyal for several enlightening conversations

regarding the paper. The author would also like to thank the anonymous referee for

pointing out several inaccuracies in the paper and for making some helpful sugges-

tions that have contributed to an improvement of the paper.

2. The Setup

In this section we will collect the machinery needed for the development of this

paper. We begin with a review of permutative categories. We will also give a quick

review of Γ- categories and collect some useful results about them. We will also

construct a cartesian closed (simplicial) model category structure on the category of

(small) categories Cat which will be used throughout this paper.

2.1 Review of Permutative categories

In this subsection we will briefly review the theory of permutative categories and

monoidal and oplax functors between them. The definitions reviewed here and the

notation specified here will be used throughout this paper.
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2.2 Review of Γ- categories 2 THE SETUP

Definition 2.1. A symmetric monoidal category C is called a permutative category

or a strict symmetric monoidal category if its monoidal structure is strictly associa-

tive and unital.

Definition 2.2. An oplax symmetric monoidal functor F is a triple (F, λF , ǫF ),
where F : C → D is a functor between symmetric monoidal categories C and D,

λF : F ◦ (−⊗
C
−) ⇒ (−⊗

D
−) ◦ (F × F )

is a natural transformation and ǫF : F (1C) → 1D is a morphism in D, such that the

following three conditions OL.1, OL.2 and OL.3 in [Shac, Defn. 2.4] are satisfied.

Notation 2.3. We will say that a functor F : C → D between two symmetric

monoidal categories is unital or normalized if it preserves the unit of the symmetric

monoidal structure i.e. F (1C) = 1D. In particular, we will say that an oplax

symmetric monoidal functor is a unital (or normalized) oplax symmetric monoidal

functor if the morphism ǫF is the identity.

Definition 2.4. An oplax symmetric monoidal functor F = (F, λF , ǫF ) is called a

strong symmetric monoidal functor (or just a symmetric monoidal functor) if λF is

a natural isomorphism and ǫF is also an isomorphism.

Definition 2.5. An oplax symmetric monoidal functor F = (F, λF , ǫF ) is called

a strict symmetric monoidal functor if it is unital and λF is the identity natural

transformation.

Definition 2.6. The category of elements of a Cat valued functor F : C → Cat,

denoted by
∫ c∈C

F (c) or elF , is a category whose objects are pairs (c, d), where

c ∈ C and d ∈ F (c). A map from (c, d) to (a, b) in
∫ c∈C

F (c) is a pair (f, α),
where f : c → a is an arrow in C and α : F (f)(d) → b is an arrow in F (a).

Notation 2.7. Throughout this paper we will denote by J : Cat → Gpd, a right

adjoint of the inclusion functor i : Gpd → Cat. For a category C, the groupoid

J(C) is obtained by discarding all non-invertible arrows of C.

2.2 Review of Γ- categories

In this subsection we will briefly review the theory of Γ- categories. We begin by

introducing some notations which will be used throughout the paper.

Notation 2.8. We will denote by n the finite set {1, 2, . . . , n} and by n+ the based

set {0, 1, 2, . . . , n} whose basepoint is the element 0.
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2.3 Natural model category structure on Cat 2 THE SETUP

Notation 2.9. We will denote by N the skeletal category of finite unbased sets

whose objects are n for all n ≥ 0 and maps are functions of unbased sets. The

category N is a (strict) symmetric monoidal category whose symmetric monoidal

structure will be denoted by +. For two objects k, l ∈ N their tensor product is

defined as follows:

k + l := k + l.

Notation 2.10. We will denote by Γop the skeletal category of finite based sets

whose objects are n+ for all n ≥ 0 and maps are functions of based sets.

Notation 2.11. Given a morphism f : n+ → m+ in Γop, we denote by Supp(f) the

largest subset of n whose image under f does not contain the basepoint of m+. The

set Supp(f) inherits an order from n and therefore could be regarded as an object

of N . We denote by Supp(f)+ the based set Supp(f) ⊔ {0} regarded as an object

of Γop with order inherited from n.

Definition 2.12. A map f : n+ → m+ in Γop is called inert if its restriction to the

set Supp(f)+ is a bijection.

Definition 2.13. A morphism f in Γop is called active if f−1({0}) = {0} i.e. the

pre-image of {0} is the singleton set {0}.

Notation 2.14. A map f : n → m in the category N uniquely determines an active

map in Γop which we will denote by f+ : n+ → m+. This map agrees with f on

non-zero elements of n+.

Remark 1. Each morphism in Γop can be factored into a composite of an inert map

followed by an active map in Γop. The factorization is unique up to a unique iso-

morphism.

Definition 2.15. Each n+ ∈ Γop determines n projection maps δni : n+ → 1+ for

1 ≤ i ≤ n which are defined by δni (i) = 1 and δni (j) = 0 for j 6= i and j ∈ n+.

Definition 2.16. Each n+ ∈ Γop determines a multiplication map mn : n+ → 1+

which is the unique active map from n+ to 1+.

2.3 The model category structure of groupoids on Cat

In this subsection we will construct another model category structure on the category

of all small categories Cat wherein an object is fibrant if and only if it is a groupoid

and which we will refer to as the model category structure of groupoids. We remark

that the model structure constructed here is different from the two well known model
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structures on Cat, namely the natural model structure wherein all categories are

fibrant and the Thomason model category structure which is Quillen equivalent to

the Kan model category of simplicial sets (sSets,Kan). We will show that the

weak equivalences in this model structure are those functors which induce a weak

homotopy equivalence on their nerve. The model category structure is obtained by

a left Bousfield localization of the natural model category structure on Cat with

respect to the singleton set {i : 0 → I , where I is the category 0 → 1 and i(0) = 0.

We review the definition and an existence result of left Bousfield localizations of

model categories in appendix A.

Proposition 2.17. A category C is local with respect to the singleton set {i : 0 → I}
if and only if it is a groupoid.

Proof. Let J denote the groupoid 0 ∼= 1. This groupoid is equipped with an in-

clusion functor ι : I →֒ J . A category C is a groupoid if and only if J([ι, C]) :
J([J , C]) → J([I, C]) is an equivalence of categories.

Since each object of the natural model category Cat is both cofibrant and fi-

brant, for any pair of categories C and D, the homotopy function complex is given

as follows:

Maph
Cat(C,D) = N(J([C,D])).

This implies that a category C is {i}-local if and only if the following functor is an

equivalence of groupoids:

J([i, C]) : J([I, C]) → J(C).

Now we consider the following commutative diagram:

J([I, C])
J([i,C])

// J(C)

J([J , C])

J([ι,C])

ff

J([j,C])

OO

where j is the inclusion functor 0 →֒ J . In light of the observation that the functor

J([j, C]) is an equivalence of groupoids, the result now follows from the above

commutative diagram of groupoids.

Theorem 2.18. There is a combinatorial model category structure on the category

of (small) categories Cat in which a functor F : A → B is

1. a cofibration if it is monic on objects.
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2. a weak equivalence if the following functor

[i, F ] : [B,Z] → [A,Z]

is an equivalence of categories for each groupoid Z.

3. a fibration if it has the right lifting property with respect to functors which

satisfy both (1) and (2).

Proof. We want to carry out a left Bousfield localization of the natural model cate-

gory of (small) categories with respect to the singleton set {i : 0 → I . The existence

of this localization follows from theorem A.2. (1) follows from the aforementioned

theorem. (2) follows from proposition 2.17 and [Shac, Lemma E.4]. (3) follows

from the fact that fibrations in any model category are completely determined by

cofibrations and weak equivalences.

Notation 2.19. We will refer to the above model category structure as the model cat-

egory structure of groupoids on Cat and denote the model category by (Cat,Gpd).
We will refer to a fibration in this model category as a path fibration of categories

and refer to a weak equivalence as a groupoidal equivalence of categories.

Remark 2. Every category is cofibrant in the model category of groupoids. A cate-

gory is fibrant if and only if it is a groupoid.

Remark 3. A groupoidal equivalence between groupoids is an equivalence of cate-

gories.

Proposition 2.20. The nerve of a path fibration of categories between two groupoids

is a Kan fibration of simplicial sets.

Proof. Let p : C → D be a path fibration of categories such that both C and D

are groupoids. Since C and D are fibrant in (Cat,Gpd), which is a left Bous-

field localization of the natural model category structure on Cat, therefore p is an

isofibration from [Sha20, Lem. 4.17].

The nerve functor takes an isofibrations to a pseudo-fibration i.e. a fibration in

the Joyal model category on simplicial sets so N(p) : N(C) → N(D) is a pseudo-

fibration. However both N(C) and N(D) are Kan complexes. Now it follows that

N(p) is a Kan fibration , by the same aforementioned result [Sha20, Lem. 4.17]

because (sSets,Kan) is a left Bousfield localization of the Joyal model category

of quasi-categories (sSets,Q).
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Next we are interested in providing a characterization of weak equivalences

and fibrations in the model category of groupoids. We first recall the notion of a

homotopy reflection:

Definition 2.21. A Quillen adjunction (F,G) is called a homotopy reflection if the

right derived functor of G is fully-faithful.

Lemma 2.22. The adjunction τ1 : sSets ⇄ Cat : N is a Quillen adjunction

between the model category of groupoids and the Kan model category of simplicial

sets. Further the adjunction is also a homotopy reflection.

Proof. The first statement follows from the observation that the adjunction in con-

text is a composite of the following two Quillen adjunctions:

τ1 : (sSets,Kan) ⇄ Cat : N

and

id : Cat ⇄ (Cat,Gpd) : id

where Cat denotes the natural model category of (small) categories.

The second statement follows from the observation that both of the aforemen-

tioned Quillen adjunctions are homotopy reflections and the fact that a composite of

homotopy reflections is again a homotopy reflection.

The following corollary is an easy consequence of the above lemma:

Corollary 2.23. A functor F : G → H between groupoids is a groupoidal equiva-

lence if and only if it’s nerve, N(F ), is a homotopy equivalence of Kan complexes.

The inclusion functor Gpd → Cat, where Gpd is the full subcategory whose

objects are groupoids, has a left adjoint which we denote by Π1 : Cat → Gpd.

The groupoid Π1(C) is obtained from the category C by formally inverting all ar-

rows in C i.e. Π1(C) = C[Ar(C)−1].

Remark 4. In the paper [JT08] a model category structure was constructed on the

full subcategory of Cat whose objects are groupoids Gpd. We will refer to this

model category as the natural model category of groupoids. The functor Π1 is a left

Quillen functor of a Quillen adjunction

Π1 : Cat ⇋ Gpd : i

where Cat is endowed with the model category structure of groupoids and Gpd

is the natural model category of groupoids. This Quillen adjunction is a Quillen

equivalence.
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The following proposition will be used repeatedly in this paper:

Proposition 2.24. The free groupoid functor Π1 : Cat → Gpd preserves prod-

ucts.

Proposition 2.25. A functor F : C → D is a groupoidal equivalence if and only if

the induced functor Π1(F ) : Π1(C) → Π1(D) is an equivalence of categories.

Proof. The unit of the adjunction Π1 ⊣ i gives the following commutative diagram:

C //

F

��

Π1(C)

Π1(F )
��

D // Π1(D)

where both vertical functors are inclusions. We will first prove that these two inclu-

sion maps are both weak equivalences. Since Π1 is a left adjoint to the inclusion

functor i therefore the inclusion functor ιC : C → Π1(C) induces the following

bijection for each groupoid G:

Cat(Π1(C), G) ∼= Cat(C,G).

Consider the following chain of bijections:

Cat(I, [Π1(C), G]) ∼= Cat(I ×Π1(C), G) ∼= Cat(Π1(C), [I,G])
∼= Cat(C, [I,G]) ∼= Cat(I × C,G) ∼= Cat(I, [C,G]).

The above two bijections together imply that we have the following equivalence of

functor categories:

[ιC , G] : [Π1(C), G] → [C,G].

Now Theorem 2.18 (2) implies that the two inclusion maps are weak equivalences

in the model category structure of groupoids. Now the theorem follows from the

two out of three property of weak equivalences in a model category.

Finally we would like to show that the groupoidal model category structure on

Cat is cartesian closed.

Proposition 2.26. The groupoidal model category structure on Cat is cartesian

closed.

Proof. The proposition follows from an application of theorem A.3 to the cartesian

closed natural model category Cat with respect to the singleton set of maps {i0}.
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Proposition 2.27. The model category of groupoids is a simplicial model category.

Proof. The proposition follows by an application of [Bar07, lem. 3.6] to the Quillen

adjunction (τ1, N) from lemma 2.22. The simplicial Hom is defined by the com-

posite bifunctor:

Catop ×Cat
[−,−]
→ Cat

N
→ sSets.

The cotensor is defined by the following bifunctor:

sSetsop ×Cat → Catop
τ1×id
× Cat

[−,−]
→ Cat

The tensor product bifunctor is defined by the following composite:

Cat× sSets
id×τ1→ Cat×Cat

−×−
→ Cat.

3. Two model category structures on Perm

We denote by Perm the category whose objects are permutative categories, namely

symmetric monoidal categories which are strictly unital and strictly associative.

The morphisms of this category are strict symmetric monoidal functors, namely

those symmetric monoidal functors which preserve the symmetric monoidal struc-

ture strictly. A model category structure on Perm was described in [Shac, Thm.

3.1]. This model category structure was obtained by transferring the natural model

category structure on Cat to Perm and therefore it is aptly called the natural

model category structure of permutative categories. In this section we will describe

two new model category structures on Perm which can be described as the model

category of permutative groupoids and the model category of (permutative) Picard

groupoids.

3.1 The model category structure of Permutative groupoids

In this subsection we will construct the desired model category structure of permu-

tative groupoids on Perm namely a model category structure whose fibrant objects

are groupoids equipped with a permutative or strict symmetric monoidal structure.

Before doing so we recall the following adjunction and also a permutative groupoid

structure inherited by the fundamental groupoid of a permutative category:

F : Cat ⇋ Perm : i (3)
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where i is the forgetful functor and F is its left adjoint namely the free permuta-

tive category functor. The following lemma recalls the aforementioned permutative

structure:

Lemma 3.1. The fundamental groupoid of a permutative category is a permutative

groupoid.

Proof. Let C be a permutative category and let − ⊗ − : C × C → C be bifunctor

giving the permutative structure. From proposition 2.24, we have the isomorphism

Π1(C × C) ∼= Π1(C)×Π1(C). Since Π1(C) is a groupoid, the universal property

of Π1(C ×C) and the above isomorphism imply that we have a dotted arrow in the

following diagram which makes the diagram commutative:

C × C
−⊗−

//

��

C

��

Π1(C)×Π1(C) // Π1(C)

This bifunctor, represented by the dotted arrow in the above diagram, provides a

permutative structure on the groupoid Π1(C). The symmetry natural transformation

of C is a functor

γC : C × C × J → C

Once again by proposition 2.24 the free groupoid generated by C × C × J is

Π1(C) × Π1(C) × J . Again, the universal property of Π1(C × C × J) and the

above isomorphism imply that we have a dotted arrow in the following diagram:

C × C × J
γC

//

��

C

��

Π1(C)×Π1(C)× JγΠ1(C)

// Π1(C)

which is the symmetry natural isomorphism of Π1(C).

Remark 5. The functor Π1 restricts to a functor on Perm such that the following

diagram commutes:

Cat
Π1

// Gpd

Perm

i

OO

Π1

// PGpd

i

OO
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where PGpd denotes the category of permutative groupoids i.e., the full subcat-

egory of Perm having as objects those permutative categories whose underlying

categories are groupoids.

We recall from [Shac] that Γ1 is the representable Γ- category which is also the

unit of the symmetric monoidal structure on the functor category ΓCat which is

tensored over Cat. The inclusion map i0 : 0 →֒ I gives us the following map of

Γ- categories by tensoring with Γ1:

Γ1 ⊗ i0 : Γ
1 → Γ1 ⊗ I (4)

We further recall from [Shac] the Quillen equivalence L : ΓCat ⇄ Perm : K.

The image of the above map under the left Quillen functor L gives us the following

strict symmetric monoidal functor which is the generator of the model structure to

be constructed later in this subsection:

L(Γ1 ⊗ i0) : L(Γ
1) → L(Γ1 ⊗ I) (5)

Remark 6. The above strict symmetric monoidal functor L(Γ1 ⊗ i0) has cofibrant

domain and codomain.

Now we state the main theorem of this subsection:

Theorem 3.2. There is a model category structure on the category of all small per-

mutative categories and strict symmetric monoidal functors Perm in which

1. A cofibration is a strict symmetric monoidal functor which is a cofibration in

the natural model category structure on Perm

2. A weak-equivalence is an {L(Γ1 ⊗ i0)}-local equivalence.

3. A fibration is a strict symmetric monoidal functor having the right lifting

property with respect to all maps which are both cofibrations and weak equiv-

alences.

Further, this model category structure is combinatorial and left-proper.

Proof. The desired model category structure is a left-Bousfield localization of the

left-proper, combinatorial natural model category structure on Perm with respect

to the singleton {L(Γ1 ⊗ i0)}. The existence follows from A.2.

The following proposition characterizes fibrant objects of the above model cat-

egory:
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Proposition 3.3. A permutative category is fibrant in the above model category if

and only if it’s underlying category is a groupoid.

Proof. Let C be a permutative category. In light of 2.17, it is sufficient to show that

C is fibrant in the above model category if and only if J([i, C]) : J([I, C]) → J(C)
is an equivalence of groupoids. It follows from the results of [Shac, appendix D]

that the two homotopy function complexes in context can be defined as follows:

Maph(L(Γ1 ⊗ I), C) = N(J([L(Γ1 ⊗ I), C]str
⊗ ))

and

Maph(L(Γ1), C) = N(J([L(Γ1), C]str
⊗ )).

Further, the simplicial map Maph(L(Γ1 ⊗ i0), C) is an equivalence of Kan com-

plexes if and only if J([L(Γ1 ⊗ i0), C]str
⊗ ) is an equivalence of groupoids. Now

the result can be deduced by the following commutative diagram in the category of

groupoids:

J([L(Γ1 ⊗ I), C]str
⊗ )

J([L(Γ1⊗i0),C]str
⊗ )

��

∼=
// J(MapΓCat(Γ

1 ⊗ I,K(C)))

∼=
��

J(MapΓCat(Γ
1,homΓCat(I,K(C))))

J(MapΓCat
(Γ1,homΓCat(i0,K(C))))

��

∼=
// J([I, C])

J([i,C])

��

J([L(Γ1), C]str
⊗ ) ∼=

// J(MapΓCat(Γ
1,K(C))) ∼=

// J(C)

where −⊗−, MapΓCat(−,−) and homΓCat(−,−) are the tensor product, cate-

gorical Hom and cotensor of ΓCat over Cat. See [Shac, Sec. 4] for details.

Notation 3.4. We will refer to the above model category as the model category of

permutative groupoids and will be denoted by (Perm,Gpd).

The following proposition presents a characterization of weak-equivalences in

(Perm,Gpd):

Proposition 3.5. A strict symmetric monoidal functor F : C → D is a weak-

equivalence in (Perm,Gpd) if and only if its image U(F ), under the forgetful

functor U : Perm → Cat, is a groupoidal equivalence of (ordinary) categories.

Proof. The proof has two parts. In the first part we show that (Π1, i) is a fibrant

replacement functor on (Perm,Gpd). To show this it suffices to show that for
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each permutative category C, the map i : C → Π1(C) is an acyclic cofibration

in (Perm,Gpd). It is easy to see that i is a cofibration in Perm in light of the

observation that Ob(i) is the identity function and [Shac, Lem. 3.8]. In order to

show that i is also a weak-equivalence we observe the following diagram:

C

i
��

ic
// Cf

if

��

Π1(C)

::

Π1(C)

where i = if ◦ ic is a factorization of i into an acyclic cofibration ic and a fibration

if in (Perm,Gpd). Since if is a fibration in (Perm,Gpd) therefore Cf is a per-

mutative groupoid. Further, a fibration between permutative groupoids is a fibration

in the natural model category Perm which is an isofibration. Thus if is a fibration

in (Cat,Gpd). Since i is an acyclic cofibration in (Cat,Gpd) therefore we have

a (dotted) lifting arrow which makes the whole diagram commutative. Since the two

horizontal arrows in the above diagram are weak-equivalences in (Perm,Gpd),
by the two out of six property of weak-equivalences in model categories we con-

clude that i is also a weak-equivalence in (Perm,Gpd).
In the second part of the proof we establish the desired result. Since (Π1, i) is a

fibrant replacement functor therefore F is a weak-equivalence in (Perm,Gpd) if

and only if Π1(F ) is one. However, Π1(F ) is a weak-equivalence in (Perm,Gpd)
if and only if it is a weak-equivalence in the natural model category Perm. Thus

Π1(F ) is a weak-equivalence in (Perm,Gpd) if and only if U(Π1(F )) is an

equivalence of categories. Now the result follows from proposition 2.25.

The natural model category structure on Perm is a Cat-model category struc-

ture [Shac, Thm. 3.1]. We recall that the cotensor of this enrichment is given by the

bifunctor

[−,−] : Catop ×Perm
id×U
→ Cat×Cat

[−,−]
→ Perm (6)

where [−,−] is the internal Hom of Cat but it takes values in Perm if the codomain

category is permutative. The categorical Hom is the category of strict symmetric

monoidal functors is given by the bifunctor

[−,−]str
⊗ : Permop ×Perm → Cat (7)

The tensor product of this enrichment is does not have a simple description but we

will denote it as follows:

−⊠− : Cat×Perm → Perm (8)
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Proposition 3.6. The model category of permutative groupoids (Perm,Gpd) is a

(Cat,Gpd)-model category.

Proof. Let i : U → V be a functor which is monic on objects and j : W → X be

a cofibration in (Perm,Gpd). We will show that the following map in Perm is a

cofibration in (Perm,Gpd) which is acyclic whenever i or j is acyclic:

i✷j : (V ⊠W ) ⊔
U⊠W

(U ⊠X) → V ⊠X.

Since the cofibrations in the natural model category structure on Perm are the same

as those in (Perm,Gpd) and the natural model category is a Cat-model category,

therefore i✷j is a cofibration in (Perm,Gpd).
Let us further assume that i is an acyclic cofibration in (Cat,Gpd). We will

show that now i✷j is an acyclic cofibration. We recall a well-known fact that a

map is an acyclic cofibration in a model category if and only if it has the left-lifting

property with respect to all fibrations between fibrant objects. Let p : A → B be a

fibration between permutative groupoids. By adjointness, the map i✷j has the left

lifting property with respect to p if and only if there exists a (dotted) lifting arrow in

the following diagram:

U

i

��

// [X,A]str
⊗

(j∗,p∗)

��

V //

L

77

[X,B]str
⊗ ×

[W,B]str
⊗

[W,A]str
⊗

Since the natural model category Perm is a Cat-model category with categorical

Hom given by [−,−]str
⊗ , therefore the assumptions on j and p together imply that the

map (j∗, p∗) is a fibration in the natural model structure on Cat namely an isofibra-

tion. However, it is an isofibration between groupoids, therefore it is a fibration in

(Cat,Gpd). Hence there exists a(dotted) lifting arrow L which makes the whole

diagram commutative. Thus, we have shown that i✷j is an acyclic cofibration when

i is one.

A similar argument applied to j shows that if j is an acyclic cofibration in

(Perm,Gpd), then so is i✷j.

The (Cat,Gpd)-model category structure described in the proposition above

induces a simplicial model category structure on (Perm,Gpd):
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Proposition 3.7. The model category of permutative groupoids (Perm,Gpd) is a

simplicial model category.

Proof. The proof follows from [Bar07, lem. 3.6] and the Cat-model category struc-

ture on the natural model category Perm. However, we will describe the three bi-

functors involved in this enrichment: The simplicial Hom bifunctor is defined to be

the composite:

Permop ×Perm
[−,−]str

⊗
→ Cat

N
→ sSets. (9)

This cotensor is defined as follows:

sSetsop ×Perm
τ
op
1 ×id
→ Catop ×Perm

[−,−]
→ Perm (10)

The tensor product bifunctor is defined by the following composite:

sSets×Perm
τ1×id
→ Cat×Perm

−⊠−
→ Perm. (11)

3.2 The model category of Picard groupoids

In this subsection we will construct yet another model category structure on Perm

in which the fibrant objects are Picard groupoids. We obtain the desired model

category by carrying out a left Bousfield localization of the model category con-

structed in the previous subsection, namely (Perm,Gpd). The model category

we construct inherits an enrichment over (Cat,Gpd) and the Kan model category

of simplicial sets from its parent model category.

Definition 3.8. A Picard groupoid G is a permutative groupoid such that one of the

following two functors is an equivalences of categories:

G×G
(−⊗

G
−,p1)

→ G×G and G×G
(−⊗

G
−,p2)

→ G×G, (12)

where p1 and p2 are the two obvious projection maps.

Remark 7. If one of the two functors in the above definition is an equivalence of

categories, then the permutative structure on the groupoid G in the above definition

implies the other functor is also an equivalence.

Remark 8. A permutative groupoid is a Picard groupoid if and only if for each

object g ∈ Ob(G) there exists another object g−1 ∈ Ob(G) and the following two

isomorphisms in G:

g ⊗
G
g−1 ∼= 1G, g−1 ⊗

G
g ∼= 1G
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We recall the construction of the permutative category L(1) from [Shac]. The

permutative category L(1) is a groupoid whose object set consists of all finite se-

quences (s1, s2, . . . , sr), where either si = 1 or si = 0 for all 1 ≤ i ≤ r. For

an object S = (s1, s2, . . . , sr) in L(1) we denote by S the sum
r
+
i=1

si. A map

S = (s1, s2, . . . , sr) → T = (t1, t2, . . . , tk) in L(1) is a bijection f : S → T . The

symmetric monoidal structure on L(1) is given by concatenation. It follows from

[Shac, Lem. 3.8] that L(1) is cofibrant in the natural model category Perm.

Proposition 3.9. For any permutative groupoid G, the evaluation map

ev(1) : [L(1), G]str
⊗ → G

is an equivalence of categories.

Proof. The free permutative category F(1), see (3), can be described as follow: The

objects are finite sets n for all n ≥ 0. A morphism is a bijection between finite sets.

The permutative category F(1) is cofibrant in the natural model category Perm.

This category has the property that the evaluation functor on the object 1:

ev1 : [F(1), C]str
⊗ → C

is an isomorphism for any permutative category C. This category is equipped with

an inclusion functor

i : F(1) → L(1),

such that i(1) = (1), which is an equivalence of categories. Now the 2 out of 3 and

the following commutative diagram prove the proposition:

[L(1), G]str
⊗

ev(1)
//

[i,G]str
⊗

��

G

[F(1), G]str
⊗

∼=

::

The maps of finite sets m2 : 2+ → 1+, δ21 : 2+ → 1+ and δ22 : 2+ → 1+

together induce the following two maps in Perm

L(1) ∨ L(1)
(L(m2),L(δ21))→ L(2) and L(1) ∨ L(1)

(L(δ21),L(δ
2
2))→ L(2) (13)
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Remark 9. For each n ∈ N, the permutative groupoid L(n) [Shac, Defn. 5.4] is

canonically isomorphic to the permutative groupoid L(Γn), where L : ΓCat →
Perm is the left adjoint of the Segal’s nerve functor, see [Shac, Sec. 5]. This im-

plies that the map (L(m2),L(δ
2
1)) is isomorphic to L(Γ(m2,δ

2
1)) and (L(m2),L(δ

2
2))

is isomorphic to L(Γ(m2,δ
2
2)), where the maps Γ(m2,δ

2
1) and Γ(m2,δ

2
2) are defined in

(17) and (18) respectively.

Remark 10. The above remark and the fact that L is a left Quillen functor together

imply that the permutative groupoid L(n) is cofibrant in the natural model category

Perm. The symmetric monoidal structure on L(n) is concatenation.

By [Shac, Lemma 5.29] the strict symmetric monoidal functor (L(δ21),L(δ
2
2))

is an acyclic cofibration in the natural model category structure on Perm. This

implies that for any permutative category C, we have the following equivalence of

categories:

[(L(δ21),L(δ
2
2)), C]str

⊗ : [L(2), C]str
⊗ → [L(1), C]str

⊗ × [L(1), C]str
⊗ . (14)

Lemma 3.10. A permutative groupoid G is a Picard groupoid if and only if it is a

{(L(m2),L(δ
2
1))}-local object.

Proof. The permutative groupoid G is {(L(m2),L(δ
2
1))}-local if and only if we

have the following weak homotopy equivalence of simplicial sets:

Maph((L(m2),L(δ
2
1)), G) : Maph(L(2), G) → Maph(L(1) ∨ L(1), G)

We recall that the function complex for a pair of permutative categories C and D in

(Perm,Gpd), where C is cofibrant and D is a permutative groupoid is defined as

follows:

Maph
(Perm,Gpd)(C,D) := N([C,D]str

⊗ )

which implies that Maph((L(m2),L(δ
2
1)), G) is a homotopy equivalence if and

only if the functor:

[(L(m2),L(δ
2
1)), G]str

⊗ : [L(2), G]str
⊗ → [L(1)∨L(1), G]str

⊗
∼= [L(1), G]str

⊗×[L(1), G]str
⊗ .

is an equivalence of categories. Thus we get the following (composite) weak equiv-

alence in (Perm,Gpd):

[L(2), G]str
⊗

p
→ [L(1), G]str

⊗ × [L(1), G]str
⊗

(ev(1),ev(1))
→ G×G (15)

where p = [(L(m2),L(δ
2
1)), G]str

⊗ . There is another composite map in Perm which

is the following:

[L(2), G]str
⊗

q
→ [L(1), G]str

⊗ × [L(1), G]str
⊗

(ev(1),ev(1))
→ G×G

r
→ G×G (16)
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where q = [(L(δ21),L(δ
2
2)), G]str

⊗ and the map r = (− ⊗
G

−, p2). We will now

construct a natural isomorphism (in Cat) H : (ev(1), ev(1))◦p ⇒ r◦(ev(1), ev(1))◦q
between the above two functors. For each F ∈ [L(2), G]str

⊗ let us denote F ((2))
by g12. The isomorphism p12 : (2) ∼= ({1}, {2}) in L(2) gives an isomorphism

F (p12) : g12 ∼= g1⊗g2, where g1 = F (({1})) and g2 = F (({2})). We observe that

r ◦ (ev(1), ev(1)) ◦ q(F ) = (g1 ⊗ g2, g1) and (ev(1), ev(1)) ◦ p(F ) = (g12, g1). We

define H(F ) := F (p12). Let σ : F ⇒ G be a (monoidal) natural transformation

and denoting G((2)) by g′12, G((1)) by g′1 and G((2)) by g′2 we get an isomorphism

G(p12) : g
′
12

∼= g′1 ⊗ g′2. The following diagram commutes:

g12
H(F )

//

σ((2))
��

g1 ⊗ g2

σ(({1},{2}))
��

g′12 H(G)
// g′1 ⊗ g′2

because σ is a natural isomorphism. Hence we have constructed the desired natural

isomorphism H . The construction of H implies that the strict symmetric monoidal

functor r◦(ev(1), ev(1))◦q is a groupoidal equivalence if and only if (ev(1), ev(1))◦p
is one. We know that the functors q and (ev(1), ev(1)) are both equivalence of cate-

gories. Let us assume that G is a aforementioned local object then (ev(1), ev(1)) ◦ p
is a groupoidal equivalence and, by the above argument, so is the composite functor

r ◦ (ev(1), ev(1)) ◦ q. By two out of three property of weak equivalences this implies

that r is a weak equivalence which implies that G is a Picard groupoid. Conversely,

let us assume that G is a Picard groupoid in which case r is a groupoidal equiva-

lence which means that both r◦(ev(1), ev(1))◦q and (ev(1), ev(1))◦p are groupoidal

equivalences. Again by the two out of three property, p is a groupoidal equivalence

which implies that G is local.

Theorem 3.11. There is a combinatorial model category structure on the category

of (small) permutative categories Perm in which a functor F : A → B is

1. a cofibration if it is a cofibration in the natural model category structure on

Perm.

2. a weak equivalence if the following functor

Maph
(Perm,Gpd)(F, P ) : Maph

(Perm,Gpd)(B,P ) → Maph
(Perm,Gpd)(A,P )

is a homotopy equivalence of simplicial sets for each Picard groupoid P .
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3. a fibration if it has the right lifting property with respect to the set of maps

which are both cofibrations and weak equivalences.

A permutative category is a fibrant objects of this model category if and only if it ia

a Picard groupoid.

Proof. We will prove this theorem by localizing the model category of permutative

groupoids (Perm,Gpd) with respect to the map

L(1) ∨ L(1)
(L(m2),L(δ21))→ L(2).

The existence of this left Bousfield localization follows from theorem A.2. A left

Bousfield localization preserves cofibrations therefore the cofibrations in the new

model category are the same as those in (Perm,Gpd). Lemma 3.10 above tells us

that a permutative groupoid is a {(L(m2),L(δ
2
1))}-local object if and only if it is a

Picard groupoid.

Notation 3.12. We will refer to the above model category as the model category of

Picard groupoids. We denote this model category by (Perm,Pic).

Adaptations of arguments used in the proof of propositions 3.6 and 3.7, to the

model category (Perm,Pic) prove the following two analogous propositions:

Proposition 3.13. The bifunctors (8), (6) and (7) equip the model category of Picard

groupoids (Perm,Pic) with a (Cat,Gpd)-model category structure.

and

Proposition 3.14. The bifunctors (11), (10) and (9) equip the model category of

Picard groupoids (Perm,Pic) with a simplicial model category structure.

4. The model category structures

A Γ- category is a functor from Γop to Cat. The category of functors from Γop

to Cat and natural transformations between them [Γop,Cat] will be denoted by

ΓCat. The main objective of this section is to construct two new symmetric monoidal

closed model category structures on ΓCat. Some notations used in this section have

been defined in [Shac, Sec. 4]. We recall the following definition:

Definition 4.1. A Q-cofibration is a cofibration in the strict (or projective) model

category structure on ΓCat.
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4.1 Coherently commutative monoidal groupoids

In the paper [Shac, Sec. 4] a symmetric monoidal closed model category struc-

ture was constructed on ΓCat whose fibrant objects are coherently commutative

monoidal categories, see definition [Shac, Defn. 4.15]. These objects should be

understood as categories equipped with a multiplication which is associative, unital

and commutative only up to higher coherence data. In this subsection we want to

construct another symmetric monoidal closed model category structure on ΓCat

whose fibrant objects are groupoids equipped with a multiplication which is asso-

ciative, unital and commutative only up to higher coherence data. In other words,

the underlying category of a fibrant object in the desired model category is a fibrant

object in the groupoidal model category (Cat,Gpd). We will construct the desired

model category as a left Bousfield localization of the model category of coherently

commutative monoidal categories with respect to the map Γ1 ⊗ i0 : Γ1 → Γ1 ⊗ I ,

see (4).

Definition 4.2. We will refer to a {Γ1 ⊗ i0}-local equivalence as an equivalence of

coherently commutative monoidal groupoids.

Definition 4.3. We will refer to a fibrant {Γ1 ⊗ i0}-local object as a coherently

commutative monoidal groupoid.

Proposition 4.4. A Γ- category X is a coherently commutative monoidal groupoid

if and only if the following two conditions are satisfied:

1. For each k+ ∈ Ob(Γop), X(k+) is a groupoid.

2. For each k+, l+ ∈ Ob(Γop)

(X(δk+l
k ), X(δk+l

l )) : X((k + l)+) → X(k+)×X(l+)

is a groupoidal equivalence.

Proof. The model category of coherently commutative monoidal categories is a

Cat-model category and its categorical Hom MapΓCat(−,−) is defined in [Shac,

Sec. 4]. Now it follows from [Shac, Appendix D] that for any cofibrant C and

fibrant X in the model category of coherently commutative monoidal categories

Maph
ΓCat(C,X) = N (J (MapΓCat(C,X))) .

We begin by observing that conditions (1) and (2) are satisfied by X if and only

if X is a coherently commutative monoidal category and X(1+) is a groupoid. Now
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it is sufficient to show that X is a coherently commutative monoidal groupoid if and

only if X(1+) is a groupoid and X is a coherently commutative monoidal category.

The Γ- category X is a coherently commutative monoidal groupoid if and only if it

is a coherently commutative monoidal category and the following simplicial map is

a weak homotopy equivalence:

N
(

J
(

MapΓCat(Γ
1 ⊗ i0, X)

))

: N
(

J
(

MapΓCat(Γ
1 ⊗ I,X)

))

→

N
(

J
(

MapΓCat(Γ
1, X)

))

.

This simplicial map of Kan complexes is a homotopy equivalence if and only if the

following functor between groupoids is a groupoidal equivalence:

(

J
(

MapΓCat(Γ
1 ⊗ i0, X)

))

:
(

J
(

MapΓCat(Γ
1 ⊗ I,X)

))

→
(

J
(

MapΓCat(Γ
1, X)

))

.

By adjointness, the above functor is a groupoidal equivalence if and only if the

following functor is a groupoidal equivalence:

(

J
(

MapΓCat(Γ
1,homΓCat(i0, X))

))

:
(

J
(

MapΓCat(Γ
1,homΓCat(I,X))

))

→
(

J
(

MapΓCat(Γ
1, X)

))

∼= J
(

X(1+)
)

.

Unwinding definition, the functor
(

J
(

MapΓCat(Γ
1,homΓCat(i0, X))

))

is iso-

morphic to the following functor:

J [i0;X(1+)] : J [I;X(1+)] → J(X(1+)).

This implies that X is a coherently commutative monoidal groupoid if and only if

it is a coherently commutative monoidal category and X(1+) is a groupoid i.e. a

i0-local object in Cat.

A left-Bousfield localization with respect to the map {Γ1 ⊗ i0} gives us the

following model category.

Theorem 4.5. There is a left proper, combinatorial model category structure on the

category of Γ- categories, ΓCat, in which

1. The class of cofibrations is the same as the class of Q-cofibrations of Γ- categories.
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2. The weak equivalences are equivalences of coherently commutative monoidal

groupoids.

An object is fibrant in this model category if and only if it is a coherently com-

mutative monoidal groupoid.

Proof. The model category structure follows from an application of A.2 to the

model category of coherently commutative monoidal categories with respect to the

singleton set {Γ1 ⊗ i0}. The characterization of fibrant objects also follows from

the same theorem.

Notation 4.6. We will refer to the above model category as the model category of

coherently commutative monoidal categories and denote it by ΓGpd⊗

The following proposition will be useful in proving the main result of this sub-

section:

Proposition 4.7. The model category ΓGpd⊗ is a (Cat,Gpd)-model category.

The rest of this subsection is devoted to showing that the model category ΓGpd⊗

is a symmetric monoidal closed model category under the Day convolution. In order

to do so we will need the following result:

Lemma 4.8. For each Q-cofibrant Γ- category W , the mapping object Map
ΓCat

(W,A)
is a coherently commutative monoidal groupoid if A is one.

Proof. Since A is also a coherently commutative monoidal category i.e. a fibrant

object in the model category of coherently commutative monoidal categories, the

symmetric monoidal closed structure on the aforementioned model category, [Shac,

Thm. 4.27], implies that Map
ΓCat

(W,A) is a coherently commutative monoidal

category. Now, in light of proposition 4.4, it is sufficient to show that Map
ΓCat

(W,A)(k+)

is a groupoid, for all k+ ∈ Γop. Since W is cofibrant, therefore we have the follow-

ing equality:

Map
ΓCat

(W,A)(k+) = MapΓCat(W ∗ Γk, A).

We recall that Γk is a Q-cofibrant Γ- category. Since W is Q-cofibrant by assump-

tion therefore W ∗Γk is also Q-cofibrant by [Shac, Thm. 4.27]. The result now fol-

lows from the above observation that the domain Γ- category W ∗Γk is Q-cofibrant

and the model category ΓGpd⊗ is a (Cat,Gpd)-model category which together

imply that the category MapΓCat(W ∗ Γk, A) is a groupoid.
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The following theorem is the main result of this section:

Theorem 4.9. The model category of coherently commutative monoidal groupoids

ΓGpd⊗ is a symmetric monoidal closed model category under the Day convolution

product.

Proof. The generating cofibrations in the model category of coherently commuta-

tive monoidal categories are maps between Q-cofibrant objects. For a Q-cofibrant

object W and a coherently commutative monoidal groupoid A, the mapping object

Map
ΓCat

(W,A) is a coherently commutative monoidal groupoid by lemma 4.8.

The model category of coherently commutative monoidal categories is symmetric

monoidal closed under the Day convolution product by [Shac, Thm. 4.27]. Now the

result follows from Theorem A.3.

4.2 Coherently commutative Picard groupoids

In this subsection we will introduce a notion of a coherently commutative Picard

groupoid. We will go on to construct another model category structure on ΓCat

whose fibrant objects are the aforementioned objects. A prominent result of this

section is that this new model category is symmetric monoidal closed under the Day

convolution product thereby giving us a tensor product of Picard groupoids.

The mode of construction of this new model category will be localization. The

following two pairs of maps, see definitions 2.16 and 2.15, of based sets:

m2 : 2
+ → 1+ and δ21 : 2+ → 1+

and

m2 : 2
+ → 1+ and δ22 : 2+ → 1+

induce two maps of Γ- categories

Γ(m2,δ
2
1) : Γ1 ∨ Γ1 → Γ2 (17)

and

Γ(m2,δ
2
2) : Γ1 ∨ Γ1 → Γ2 (18)

Remark 11. We recall that for each k ≥ 0, the representatble Γ- category Γk is

Q-cofibrant. Further the coproduct of two Q-cofibrant Γ- categories is again Q-

cofibrant. This implies that the above two maps are between Q-cofibrant Γ- categories.

Notation 4.10. We denote the set {Γ(m2,δ
2
1)} by P∞.
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Definition 4.11. A coherently commutative Picard groupoid is a coherently com-

mutative monoidal groupoid which is also a P∞-local object.

Unravelling the above definition gives us the following characterization of a

coherently commutative Picard groupoid:

Proposition 4.12. A Γ- category X is a coherently commutative Picard groupoid if

and only if it satisfies the following three conditions:

1. For each k+ ∈ Ob(Γop), X(k+) is a groupoid.

2. For each k+, l+ ∈ Ob(Γop)

(X(δk+l
k ), X(δk+l

l )) : X((k + l)+) → X(k+)×X(l+)

is a groupoidal equivalence.

3. One of the following two maps, and hence both maps, are groupoidal equiva-

lences:

(X(m2), X(δ21)) : X(2+) → X(1+)×X(1+) and (X(m2), X(δ22)) : X(2+) → X(1+)×X(1+)

Definition 4.13. A stable equivalence of Γ- categories is a P∞-local equivalence.

An application of theorem A.2 to the model category ΓGpd⊗ with respect to

the set P∞ gives us the following model category:

Theorem 4.14. There is a left proper, combinatorial model category structure on

the category of Γ- categories, ΓCat, in which

1. The class of cofibrations is the same as the class of Q-cofibrations of Γ- categories.

2. The weak equivalences are stable equivalences of Γ- categories.

An object is fibrant in this model category if and only if it is a coherently com-

mutative Picard groupoid.

Notation 4.15. We denote the above model category by ΓPic.

The following lemma will be useful in the proof of the main result of this sec-

tion:

Lemma 4.16. For each Q-cofibrant Γ- category W , the mapping object Map
ΓCat

(W,A)
is a coherently commutative Picard groupoid if A is one.
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Proof. If A is a coherently commutative Picard groupoid then it is also a fibrant

object in the model category of coherently commutative monoidal groupoids, the

symmetric monoidal closed structure on the aforementioned model category, 4.9,

implies that Map
ΓCat

(W,A) is a coherently commutative monoidal groupoid be-

cause W is Q-cofibrant by assumption. Thus we have verified (1) and (2) in propo-

sition 4.12. In order to verify (3) in the same proposition we need to show that the

following functor is a groupoidal equivalence:

MapΓCat(W ∗ Γ(m2,δ
2
1), A) : MapΓCat(W ∗ Γ2, A) →

MapΓCat(W ∗ Γ1, A)×MapΓCat(W ∗ Γ1, A)

By adjointness, the morphism of Γ- categories MapΓCat(W ∗ Γ(m2,δ
2
1), A) is a

groupoidal equivalence if and only if its adjunct map

MapΓCat(W,Map
ΓCat

(Γ(m2,δ
2
1), A)) : MapΓCat(W,Map

ΓCat
(Γ2, A)) →

MapΓCat(W,Map
ΓCat

(Γ1, A))×MapΓCat(W,Map
ΓCat

(Γ1, A))

is one. Since W is Q-cofibrant, it is sufficient to show that the morphism

Map
ΓCat

(Γ(m2,δ
2
1), A) : Map

ΓCat
(Γ2, A) → Map

ΓCat
(Γ1, A)×Map

ΓCat
(Γ1, A)

is a strict equivalence of Γ- groupoids. Since the Γ- categories Map
ΓCat

(Γ2, A)

and Map
ΓCat

(Γ1, A) are both coherently commutative monoidal groupoids there-

fore the morphism Map
ΓCat

(Γ(m2,δ
2
1), A) will be a strict equivalence of Γ- groupoids

if and only if (Map
ΓCat

(Γ(m2,δ
2
1), A))(1+) is a groupoidal equivalence. The fol-

lowing commutative diagram :

Map
ΓCat

(Γ2, A)(1+)
U
//

∼=
��

Map
ΓCat

(Γ1, A)(1+)×Map
ΓCat

(Γ1, A)(1+)

∼=
��

A(2+)
A((m2,δ

2
1))

// A(1+)×A(1+)

where U = (Map
ΓCat

(Γ(m2,δ
2
1), A))(1+), implies that this map is a groupoidal

equivalence because A is a coherently commutative Picard groupoid by assumption.

Theorem 4.17. The model category of coherently commutative Picard groupoids

ΓPic is a symmetric monoidal closed model category under the Day convolution

product.
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Proof. The generating cofibrations of ΓGpd⊗ are maps between Q-cofibrant ob-

jects. For a Q-cofibrant object W and a coherently commutative Picard groupoid A,

the mapping object Map
ΓCat

(W,A) is a coherently commutative Picard groupoid

by lemma 4.16. Now an application of theorem A.3 to the model category ΓGpd⊗

with the set of morphisms S = P∞, see (4.10), proves the theorem.

5. The Quillen equivalences

In this section we prove that the following two adjoint pairs are Quillen equivalences

:

L : ΓPic ⇄ (Perm,Pic) : K

and

L : ΓGpd⊗
⇄ (Perm,Gpd) : K

where K is the classical Segal’s nerve functor, see [Seg74], [Man10],[EM06] [Shac].

We begin with a proof of the later result:

Theorem 5.1. The Quillen pair (L,K) is a Quillen equivalence between the model

category of coherently commutative permutative groupoids ΓGpd⊗ and the model

category of permutative groupoids (Perm,Gpd).

Proof. We recall that the model category of coherently commutative monoidal groupoids

ΓGpd⊗ is a left Bousfield localization of the model category of coherently commu-

tative monoidal categories [Shac, Thm. 4.20] with respect to a single map Γ1 ⊗ i0,

see (4). By remark 11, this is a map between Q-cofibrant Γ- categories. We fur-

ther recall that the model category of permutative groupoids (Perm,Gpd) is a left

Bousfield localization of the natural model category Perm with respect to the im-

age of Γ1⊗i0 under the left adjoint L. Moreover, the adjoint pair (L,K) is a Quillen

equivalence between the model category of coherently commutative monoidal cat-

egories and the natural model category Perm [Shac, Cor. 6.19]. Now the result

follows from [Hir02, Thm. 3.3.20.].

Now we prove the main result of this paper:

Theorem 5.2. The Quillen pair (L,K) is a Quillen equivalence between the model

category of coherently commutative Picard groupoids ΓPic and the model category

of permutative groupoids (Perm,Pic).

Proof. We recall that the model category of coherently commutative Picard groupoids

ΓPic is a left Bousfield localization of the model category of coherently commuta-

tive monoidal groupoids ΓGpd⊗ with respect to a single map Γ(m2,δ
2
1), see (17).
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We observe that this is a map between Q-cofibrant Γ- categories. We further re-

call that the model category of Picard groupoids (Perm,Pic) is a left Bousfield

localization of the model category (Perm,Gpd) with respect to a single map

(L(m2),L(δ
2
1)) which is isomorphic to the image of Γ(m2,δ

2
1) under the left adjoint

L, see remark (9). Further, the adjoint pair (L,K) is a Quillen equivalence between

the model category of coherently commutative monoidal groupoids ΓGpd⊗ and

the model category (Perm,Gpd) by theorem 5.1. Now the result follows from

[Hir02, Thm. 3.3.20.].

In light of the natural weak-equivalence [Shac, Cor. 6.19] between the Segal’s

nerve functor K and the thickened Segal’s nerve functor K, constructed in [Shac,

Sec. 6], the following two theorems follow from the above two Quillen equiva-

lences:

Theorem 5.3. The Quillen pair (L,K) is a Quillen equivalence between the model

category of coherently commutative permutative groupoids ΓGpd⊗ and the model

category of permutative groupoids (Perm,Gpd).

Theorem 5.4. The Quillen pair (L,K) is a Quillen equivalence between the model

category of coherently commutative Picard groupoids and the model category of

permutative groupoids (Perm,Pic).

6. Stable homotopy hypothesis for Picard groupoids

In this section we give a new proof of the classical result that Picard groupoids

model stable homotopy one-types. This result has been referred to in the literature

as the stable homotopy hypothesis for Picard groupoids. The main objective of this

section is to show that the homotopy category of our model category ΓPic is equiv-

alent to a (suitably defined) homotopy category of stable homotopy one-types. We

use the language of relative categories in this section, see [BK12]. We define two

relative categories for the objects in context: a relative category (Pic, Str) of Pi-

card groupoids whose homotopy category is equivalent to that of (Perm,Pic) and

another relative category of stable homotopy one-types (ΓS f
•[1], Str). We prove a

stronger result, namely we establish a homotopy equivalence of the two aforemen-

tioned relative categories which implies that their homotopy categories are equiv-

alent. Our proof of the homotopy equivalence is based on the main result of this

paper, namely theorem 5.4. A short time before the first version of this paper

was released, a different proof of another version of the aforementioned homotopy

equivalence was given in the paper [MOP+20]. This proof is based the stable ho-

motopy hypothesis proved in the same paper. In this section we will be dealing with
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the model category of pointed spaces (sSets•,Kan) and we recall that a map in

this model category is a weak equivalence if and only if its underlying (unpointed)

simplicial map is a weak homotopy equivalence.

Definition 6.1. A stable homotopy one type is a functor X : Γop → sSets• such

that the following conditions are satisfied:

1. For each n+ ∈ Γop, the (pointed) simplicial set X(n+) is a Kan complex.

2. All homotopy groups of pointed simplicial set X(1+) vanish in degree greater

than one i.e., πn(X(1+)) = ∗ for n ≥ 2.

3. For each pair of objects k+, l+ ∈ Γop, the following simplicial map is a weak

homotopy equivalence:

(X(δk+l
k ), X(δk+l

l )) : X((k + l)+) → X(k+)×X(l+)

4. One of the following two maps, and hence both maps:

(X(m2), X(δ21)) : X(2+) → X(1+)×X(1+) and (X(m2), X(δ22)) : X(2+) → X(1+)×X(1+)

are homotopy equivalences of pointed simplicial sets.

Remark 12. Each stable homotopy one type is a fibrant object in the stable Q-model

category constructed in [Sch99].

Remark 13. Each stable homotopy one-type determines a connective spectrum with

at most two non-trivial homotopy groups in degree zero or one, see [BF78].

Remark 14. The adjoint pair of functors (τ,N) induce an adjunction

[Γop, τ ] : ΓCat ⇋ ΓS : [Γop, N ]

This adjunction is a Quillen pair with respect to the strict (or projective) model cat-

egory structure on the two functor categories, see [Lur09, Remark A.2.8.6]. Since

the counit of (τ,N) is the identity, therefore the counit of the induced adjunction is

also identity.

We recall from [Shaa] the adjoint pair ((−)nor, U) which determines a Quillen

equivalence between the JQ-model category of Γ-spaces [Sha20, Notation 4.11]

and the JQ-model category of normalized Γ-spaces [Sha20, Notation C.19]. We

recall from [Sha20] that a normalized Γ-space is a functor from X : Γop → sSets•
such that X(0+) = ∗. It is easy to see that each coherently commutative monoidal

Picard groupoid X determines a Γ-space upon composition with the nerve functor,

we denote this Γ-space by N(X). Applying the left adjoint gives us a normalized

Γ-space (N(X))nor. This leads us to the following proposition:
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Proposition 6.2. For each coherently commutative Picard groupoid X , the normal-

ized Γ-space (N(X))nor is a stable homotopy one-type.

Proof. The nerve functor preserves products, maps groupoids to Kan complexes

and also maps groupoidal equivalences between two groupoids to homotopy equiv-

alences of simplicial sets therefore N(X) is a coherently commutative monoidal

quasi-category in which N(X)(k+) is a Kan complex for each k+ ∈ Γop. It follows

that the following simplicial maps:

N(X(m2), X(δ21)) : N(X(2+)) → N(X(1+))×N(X(1+))

and

N(X(m2), X(δ22)) : N(X(2+)) → N(X(1+))×N(X(1+))

are both homotopy equivalences of Kan complexes. It follows from [Shaa, Prop.

6.6] that the unit simplicial map ηN(X) : N(X) → U((N(X))nor) is a strict JQ-

equivalence of Γ-spaces. This implies that the normalized Γ-space (N(X))nor is a

stable homotopy one-type.

We recall that a relative category C = (C,W ) consists of a pair of categories

(C,W ) which have the same set of objects and the set arrows of W is a subset of

arrows of C and the maps of W are called weak-equivalences of C. A morphism of

relative categories F : (C,W ) → (D,X) is a functor F : C → D that preserves

weak-equivalences i.e. F (W ) ⊆ X . A morphism of relative categories is called a

functor of relative categories.

Definition 6.3. A strict homotopy between two functors of relative categories F :
(C,W ) → (D,X) and G : (C,W ) → (D,X) is a natural transformation H :
F ⇒ G such that for each object c ∈ C, the map H(c) lies in X , i.e., it is a

weak-equivalence in D.

More generally, we will say that there exists a homotopy between F and G if

they can be joined by a finite zig-zag of strict homotopies.

Based on the notion of homotopy, we define another notion of homotopy equiv-

alence:

Definition 6.4. A functor of relative categories F : (C,W ) → (D,X) is called

a strict homotopy equivalence if there exists another functor of relative categories

F−1 : (D,X) → (C,W ) and two strict homotopies η : id ⇒ F−1 ◦ F and

ǫ : F ◦ F−1 ⇒ id.

F will be called a homotopy equivalence if η and ǫ are just homotopies, namely,

zig-zags of strict homotopies.
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Remark 15. A homotopy equivalence induces an equivalence on the homotopy cat-

egories of its domain and codomain relative categories.

Next we will construct three relative categories:

Definition 6.5. We denote by (Pic, Str) the relative category in which Pic is the

category whose objects are permutative Picard groupoids and arrows are strict sym-

metric monoidal functors. The morphisms of Str are those strict symmetric monoidal

functors whose underlying functors are equivalences of categories.

Remark 16. The homotopy category of the relative category (Pic, Str) is equivalent

to the homotopy category of the model category (Perm,Pic).

Definition 6.6. We denote by (ΓPicf, Str) the relative category in which ΓPicf

is the full subcategory of ΓCat whose objects are coherently commutative Picard

groupoids. The morphisms of Str are strict equivalences of Γ- categories.

Remark 17. The homotopy category of the relative category (ΓPicf, Str) is equiv-

alent to the homotopy category of the model category of coherently commutative

Picard groupoids ΓPic.

Definition 6.7. We denote by (ΓS f
•[1], Str) the relative category in which ΓSf

• [1]
is the full subcategory of ΓS• (the category of normalized Γ-spaces, see [Shaa])

whose objects are stable homotopy one types, see definition (6.1). The morphisms

of Str are strict JQ-equivalences of normalized Γ-spaces, see [Shaa].

Remark 18. The homotopy category of the relative category (ΓS f
•[1], Str) is equiv-

alent to the full subcategory of the homotopy category of the stable Q-model cate-

gory, constructed in [Sch99], whose objects are normalized Γ-spaces having at most

two non-zero stable homotopy groups only in degree zero or one.

We recall the classical result that the homotopy theory of one-types i.e., Kan

complexes (fibrant simplicial sets) whose homotopy groups are trivial in degrees 2
and above is equivalent to the homotopy theory of groupoids. This result can be

expressed by the following (strict) homotopy equivalence:

τ1 : (sSets
1,WH) ⇋ (Gpd,Eq.) : N (19)

where sSets1 denotes the full subcategory of sSets whose objects are one-types

and the maps in WH are homotopy equivalences of simplicial sets. The functors in

Eq are equivalences of categories.
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Notation 6.8. We denote by Nnor(−) the composite functor

ΓCat
N
→ ΓS

(−)nor

→ ΓS•

where N denotes the functor [Γop, N ] : ΓCat → ΓS .

Proposition 6.2 above implies that the functor Nnor(−) restricts to:

Nnor(−) : ΓPicf → ΓSf
• [1]. (20)

Lemma 6.9. The functor Nnor(−) is a homotopy equivalence of relative categories.

Proof. We begin by observing that the following composite functor:

ΓS•
U
→ ΓS

τ1→ ΓCat,

restricts to a functor

τ un(−) : ΓSf
• [1] → ΓPicf .

This follows by an argument similar to the one in the proof of Proposition 6.2 based

on the fact that U and τ1 preserve strict JQ-equivalences as well as products. We

claim that this functor τ un(−) is a homotopy inverse of Nnor(−). We observe that

the functor Nnor(−) is a functor of relative categories because N = [Γop, N ] is

a right Quillen functor and therefore preserves weak-equivalences (strict equiva-

lences) between fibrant objects. The functor (−)nor preserves strict equivalences

by [Shaa, Prop. 6.2]. Similarly, the functor τ un(−) preserves strict equivalences

because both U and τ1 = [Γop, τ1] do so.

Next , we will construct a (strict) homotopy βc : id ⇒ τ un(−) ◦Nnor(−) with

the identity (relative) functor on (ΓPicf, Str). For each X ∈ Ob(ΓPicf ), the unit of

the Quillen equivalence ((−)nor, U) provides a strict equivalence of Γ-spaces ηX :
N(X) → U(N(X)nor). Applying the left Quillen functor τ1, we get a weak equiv-

alence in (ΓPicf, Str), namely, τ1(ηX) : X = τ1(N(X)) → τ1(U(N(X)nor)). We

define βc
X = τ1(ηX). One can easily check that this defines a natural transformation

βc. Now we define a (strict) homotopy βu : id ⇒ Nnor(−) ◦ τ un(−). Let Y be a

stable homotopy one type. The unit map of the Quillen adjunction (τ1, N) gives a

map ηY : U(Y ) → N(τ1(U(Y ))). Since Y is a stable homotopy one type therefore

this map is a weak homotopy equivalence by (19). Now applying the functor (−)nor,

we get a weak homotopy equivalence

(ηY )
nor : Y = (U(Y ))nor → N(τ(U(Y )))nor.

Now we define βu
Y = (ǫY )

nor. One can easily check that this defines a natural

transformation. Thus we have established a (strict) homotopy equivalence.
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It follows from theorem [Shac, 6.17] that the left adjoint functor L restricts to a

functor of relative categories

L : (ΓPicf, Str) → (Pic, Str).

Further, it follows from [Shac, lem. 6.14] that the right Quillen functor K restricts

to a functor of relative categories:

K : (Pic, Str) → (ΓPicf, Str).

This leads us to the final lemma of this section:

Lemma 6.10. The pair of functors of relative categories (L,K) determines a (strict)

homotopy equivalence between the relative categories (ΓPicf, Str) and (Pic, Str).

The proof follows from the two observations above, namely K and L are func-

tors of relative categories and theorem 5.4. Now the previous two lemms give us the

main result of this section:

Theorem 6.11. The composite functor of relative categories Nnor(−) ◦ K is a ho-

motopy equivalence between the relative categories (Pic, Str) and (ΓS f
•[1], Str).

A. Localization in model categories

In this appendix we review the definition and a fundamental existence theorem of a

left Bousfield localization of a model category. The original result of this section is

theorem A.3 which formulates a condition on a symmetric monoidal closed model

category so that a left Bousfield localization preserves the symmetric monoidal

closed structure. A thorough exposition on homotopy function complexes in model

categories can be found in [Hir02], [DK80].

Definition A.1. Let M be a model category and let S be a class of maps in M.

The left Bousfield localization of M with respect to S is a model category structure

LSM on the underlying category of M such that

1. The class of cofibrations of LSM is the same as the class of cofibrations of

M.

2. A map f : A → B is a weak equivalence in LSM if it is an S-local equiva-

lence, namely, for every fibrant S-local object X , the induced map on homo-

topy function complexes

f∗ : MaphM(B,X) → MaphM(A,X)
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is a weak homotopy equivalence of simplicial sets. Recall that an object X is

called fibrant S-local if X is fibrant in M and for every element g : K → L

of the set S , the induced map on homotopy function complexes

g∗ : MaphM(L,X) → MaphM(K,X)

is a weak homotopy equivalence of simplicial sets.

We recall the following theorem which will be the main tool in the construction

of the desired model category. This theorem first appeared in an unpublished work

[Smi] but a proof was later provided by Barwick in [Bar07].

Theorem A.2. [Bar07, Theorem 2.11] If M is a left proper, combinatorial model

category and S is a small set of homotopy classes of morphisms of M, the left

Bousfield localization LSM of M along any set representing S exists and satisfies

the following conditions.

1. The model category LSM is left proper and combinatorial.

2. As a category, LSM is simply M.

3. The cofibrations of LSM are exactly those of M.

4. The fibrant objects of LSM are the fibrant S-local objects Z of M.

5. The weak equivalences of LSM are the S-local equivalences.

The next theorem provides a condition for a left Bousfield localization to pre-

serves the symmetric monoidal model category structure:

Theorem A.3. Let MO be a combinatorial model category such that the generating

cofibrations in MO are maps between cofibrant objects. Let the underlying category

of MO, denoted by M, have a symmetric monoidal closed structure which endows

on MO a symmetric monoidal closed model category structure. Let us denote by

MS the model category, which is a left Bousfield localization of MO, with respect

to a set of maps S in M. If the internal mapping object MapM(X,Y ) is an S-local

object whenever X is cofibrant in MO and Y is an S-local object, then the model

category MS is also symmetric monoidal closed.

Proof. Let i : U → V be a cofibration in MS and j : Y → Z be another cofibration

in MS . We will prove the theorem by showing that the following pushout product

morphism

i✷j : U ∗ Z
∐

U∗Y

V ∗ Y → V ∗ Z
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is a cofibration in MS which is also an S-local equivalence whenever either i

or j is one. We first deal with the case of i being a generating cofibration in MO.

The assumption of a symmetric monoidal closed model category structure on MO

implies that i✷j is a cofibration in MO and we recall that the cofibrations in MS

are exactly cofibration in MO. Thus i✷j is a cofibration in MS . Let us assume

that j is an acyclic cofibration i.e. j is a cofibration in MS and also an S-local

equivalence. We recall that the fibrant objects of MS are exactly S-local objects

and fibrations in MS between S-local objects are fibrations in MO. According to

[Shac, Proposition 4.22] the cofibration i✷j is an S-local equivalence if and only if

it has the left lifting property with respect to all fibrations in MS between S-local

objects. Let p : W → X be a fibration in MS between two S-local objects. A

(dotted) lifting arrow would exists in the following diagram

U ∗ Z
∐

U∗Y

V ∗ Y //

��

W

p

��

V ∗ Z

99

// Y

if and only if a (dotted) lifting arrow exists in the following adjoint commutative

diagram

X //

j

��

MapM(V,W )

(i∗,p∗)

��

Y

55

// MapM(U,X) ×
MapM(U,Y )

MapM(V, Y )

The map (i∗, p∗) is a fibration in MO by [Hov99, lem. 4.2.2] and the assumption

that MO is a symmetric monoidal closed model category with internal Hom denoted

by MapM(−,−). Further the assumption of cofibrancy on both V and U and the

assumption on internal mapping objects together imply that (j∗, p∗) is a fibration in

MO between S-local objects and therefore a fibration in the model category MS .

Since j is an acyclic cofibration in MS by assumption, therefore the (dotted) lifting

arrow exists in the above diagram. Thus, we have shown that if i is a generating

cofibration in MO and j is a cofibration in MO which is also an S-local equivalence

then i✷j is an acyclic cofibration in the model category MS . Now we deal with the

general case of i being an arbitrary cofibration in MO. Consider the following set:

I = {i : U → V | i✷j is an acyclic cofibration in MS}

We have proved above that the set I contains all generating cofibration in MS .

We observe that the set I is closed under pushouts, transfinite compositions and
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retracts. Thus, I contains all cofibration in MO. Thus, we have proved that i✷j

is a cofibration which is acyclic if j is acyclic. The same argument as above when

applied to the second argument of the Box product (i.e., in the variable j) shows that

i✷j is an acyclic cofibration whenever i is an acyclic cofibration in MS .
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FUNCTORIALITY OF PRINCIPAL

BUNDLES AND CONNECTIONS

Gustavo Amilcar Saldaña Moncada & Gregor Weingart

RÂesumÂe. L’une des plus importantes contributions de la thÂeorie de jauge en

mathÂematiques est de souligner l’importance des foncteurs d’association. En

mettant l’accent sur la thÂeorie des catÂegories nous caractÂerisons ces derniers

en utilisant deux de leurs propriÂetÂes naturelles. Cette caractÂerisation est en-

suite utilisÂee pour Âetablir une Âequivalence entre la catÂegorie des fibrÂes princi-

paux et une certaine catÂegorie de foncteurs. Du point de vue de la gÂeomÂetrie

differentielle nous dÂecrivons la particularisation des connexions non±linÂeaires

ou d’Ehresmann au cas principal ou linÂeaire. La propriÂetÂe d’universalitÂe des

courbures principales, par ailleurs bien connue et largement utilisÂee, est alors

employÂee afin de caractÂeriser les fibrÂes vectoriels dans l’image d’un foncteur

d’association donnÂe.

Abstract. Perhaps the most important contribution of gauge theory to general

mathematics is to point out the importance of association functors. Emphasiz-

ing category theory we characterize association functors by two of their natu-

ral properties and use this characterization to establish an equivalence between

the category of principal bundles and a suitably defined category of functors.

From the point of view of differential geometry we detail the specialization of

non±linear or Ehresmann to principal and linear connections and discuss the

widely known and very useful universality of principal curvature in order to

characterize the vector bundles in the image of a given association functor.
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1 Introduction

Principal bundles and their association functors play a fundamental role in

differential geometry and mathematical physics. Spin structures in pseudo±

Riemannian geometry are defined right away as special principal bundles

and the basic tenet of harmonic analysis is that the canonical association

functor of a pointed homogeneous space is an equivalence of categories to

the category of homogeneous fiber bundles. Last but not least the choice

of principal bundle corresponds to the choice of vacuum sector in quantum

field gauge theories. Nevertheless principal bundles tend to obfuscate cal-

culations due to some inevitable arbitrariness, as one can see for example in

Cartan geometries and in the botched proof of Blunder 5.24 in the otherwise

excellent reference [LM]. Explicit calculations are more easily done using

only the existence of association functors and the universality of curvature,

arguably one of the most useful theorems in all of differential geometry.

En nuce this article brings these reservations against the use of principal

bundles to a point: We show that a principal bundle GM over a manifold

M is completely determined by its association functor AssGM . Conversely

every functor F from a suitable category of model fibers to the category

of fiber bundles over M satisfying two more or less self±evident axioms

agrees with the association functor for some principal bundle overM . Under

natural transformations the class of all such functors F becomes the category

GTSM of gauge theory sectors over M , which turns out to be equivalent to

the category PBM of principal bundles over the manifold M .

Category theory is usually not considered to be of particular importance

to differential geometry, the text books [KMS] and [L] as well as the article

[SM] are notable exceptions to this rule. Besides the characterization of

associated vector bundles as geometric vector bundles in the sense of [SW]

the common differential geometer may find little of interest in this article.

Our main motivation for studying categorical properties of principal bundles

nevertheless is the need to formulate the proper analogue of the concepts

of principal bundles and connections in non±commutative geometry along

the lines of [D1], [D2] and [D3]. Every definition of quantum bundles with

quantum connections like the one presented in [Sa] will necessarily reflect

functorial properties of principal bundles in classical differential geometry.

In order to provide a more detailed outline of this article we consider a Lie
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groupG and the category MFG of manifolds F endowed with a smooth left

action ⋆ : G ×F −→ F under smooth G±equivariant maps. Every prin-

cipal G±bundle GM over a manifold M defines a functor from the category

MFG of model fibers to the category FBM of fiber bundles over M

AssGM : MFG −→ FBM , F 7−→ GM ×G F ,

which we may promote to a functor AssωGM : MFG −→ FB∇
M to the cate-

gory of fiber bundles with connections in the presence of a principal connec-

tion ω on GM . This association functor maps Cartesian products in MFG

to Cartesian products in FB∇
M and maps a manifold F endowed with the

trivial G±action to the trivial fiber bundle M ×F . Our first main theorem

stipulates that these two properties already characterize association functors

as the reader can appreciate in Theorem 5.1

Let us now consider the category PB∇
M of principal bundles with connec-

tions over M : Objects are triples (G, GM, ω ) formed by a Lie group G
and a principal G±bundle GM over M endowed with a principal connec-

tion ω, while morphisms are tuples (φgrp, φ ) consisting of a parallel map

φ : GM −→ ĜM of the underlying principal bundles, which is equivari-

ant over the homomorphism φgrp : G −→ Ĝ of Lie groups. The canonical

factorization of the model homomorphism φgrp entails a factorization of φ

φ : GM
pr
−→ GM/ker◦ φgrp

pr
−→ GM/ker φgrp

φ
−→ ĜM

into a parallel projection, a covering and a parallel injective immersion. In

this sense every morphism in the category PB∇
M of principal bundles with

connections over M is a product of just three basic types: The removal of a

connected isospin subgroup, a covering pr of principal bundles, a general-

ized spin structure, and a holonomy reduction φ.

In order to translate this description of generalized spin structures and

holonomy reductions as basic type morphism between principal bundles into

a truly functorial description we consider the category GTS∇
M of gauge the-

ory sectors with connections over M . Its objects are tuples (G, F ) of a Lie

group G together with a functor F : MFG −→ FB∇
M satisfying the as-

sumptions of Theorem 5.1. A morphism (φgrp, Φ ) between two such gauge

theory sectors is a natural transformation Φ : F ◦ φ∗
grp −→ F̂ between the
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functors twisted by the pull back φ∗
grp : MFĜ −→MFG of the action along

the homomorphism φgrp : G −→ Ĝ of Lie groups:

Corollary 5.2 (Association Functor as Equivalence of Categories)

For every smooth manifold M the association functor Ass provides us with

an equivalence of categories from the category PB∇
M of principal bundles to

the category GTS∇
M of gauge theory sectors with connections:

Ass : PB∇
M

≃
−→ GTS∇

M , (G, GM, ω ) 7−→ (G, AssωGM ) .

In particular two principal G±bundles endowed with principal connections

on M are isomorphic via a parallel, G±equivariant homomorphism of fiber

bundles, if and only if their association functors are naturally isomorphic.

A direct consequence of Corollary 5.2 is that association functors are not

in general full functors, this is they are not surjective on morphisms, sim-

ply because the action pull back functor φ∗
grp : MFĜ −→ MFG is not a

full functor unless the image of G in Ĝ is dense. In other words there will

be more parallel smooth homomorphisms of associated fiber bundles than

there are G±equivariant smooth maps between their model fibers unless the

principal connection ω has dense holonomy group.

According to Corollary 5.2 a spin structure on an oriented pseudo±Rie-

mannian manifold (M, g ) can be defined as a functor extending the associ-

ation functor MFSO(T ) −→ FB∇
M determined by the oriented orthonormal

frame bundle of M to a functor MFSpin(T ) −→ FB∇
M still satisfying the

assumptions of Theorem 5.1, the corresponding spinor bundle $M is simply

the image of the irreducible Clifford module under the extended functor. A

fundamental problem in differential geometry related to spin structures is to

characterize the vector and fiber bundles in the image of a given associa-

tion functor. A partial answer to this problem is given in Proposition 4.6,

which opens the way to an axiomatic characterization of spinor bundles and

highlights the universality of principal curvatures.

This paper breaks down into five sections. Section 2 is a leisurely introduc-

tion to non±linear or Ehresmann connections on fiber bundles; we relate their

curvature to the commutator of iterated covariant derivatives and discuss how

non±linear connections specialize to principal and linear connections. In

Section 3 we generalize objects of group type in categories with Cartesian
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SALDAÑA & WEINGART FUNCTORIALITY OF PRINCIPAL BUNDLES

products to principal objects. Association functors are studied in Section 4,

the universality of curvature is formulated in Proposition 4.4. Having proved

Theorem 5.1 in Section 5 we define the category of gauge theory sectors and

establish the equivalence of categories formulated in Corollary 5.2.

The research project described in this article was inspired by the first part of

the article [N] and can be seen as a direct analogue of this work in the frame-

work of differential instead of algebraic geometry, moreover we address the

additional complications brought about by the presence of connections.

2 Fiber Bundles and Non±Linear Connections

Perhaps the single most important concept in differential geometry is the

notion of connections or the closely related notion of covariant derivatives

on a vector or more general on a fiber bundle over a fixed manifoldM . In this

section we will modify the standard category FBM of fiber bundles over M
to a category more useful for our study, the category FB∇

M of fiber bundles

with non±linear connections over M . Moreover we will discuss principal

and linear connections in the framework of this category.

In general a fiber bundle over a manifold M with model fiber manifold F is

a manifold FM endowed with a smooth projection map π : FM −→ M ,

which is locally trivializable. The preimage of a point p ∈ M under π is

called the fiber of the bundle over p, it is a submanifold FpM := π−1( p ) ⊂
FM of the total space FM diffeomorphic to the model fiber F . Fiber

bundles over M are the objects in the category FBM , morphisms in this

category are smooth maps φ : FM −→ F̂M between the total spaces

which commute with the respective projections π̂ ◦ φ = π and thus map the

fibers of FM to the fibers of F̂M . Terminal objects in the category FBM

correspond to diffeomorphisms π : M̂ −→ M thought of as fiber bundles

over M with single point fiber.

The Cartesian product of two fiber bundles FM and F̂M in FBM is called

the fibered product in differential geometry FM ×M F̂M and it is defined

as the equalizer of π ◦ prL and π̂ ◦ prR in the manifold product FM×F̂M .

In order to study connections in the context of category theory we prefer the

following definition:
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Definition 2.1 (Non±linear Connections on Fiber Bundles)

A non±linear connection on a fiber bundle FM over a manifoldM is a field

P
∇ ∈ Γ(FM, EndTFM ) of projections (P∇)2 = P

∇ on the tangent

bundle TFM such that its image distribution equals the vertical foliation:

im
(

P
∇
f : TfFM −→ TfFM

)

!
= VertfFM .

Every non±linear connection P
∇ on a fiber bundle FM allows us to define

the first order differential operator

D∇ : Γ(M, TM ) × Γloc(M, FM ) −→ Γloc(M, VertFM ) (1)

such that

( D∇
Xf )p :=

(

TpM
f∗, p
−→ Tf(p)FM

P∇

f(p)
−→ Vertf(p)FM

)

Xp ,

which is the non±linear analogue of the classical definition of covariant

derivatives on vector bundles. Somewhat annoyingly this covariant deriva-

tive D∇
Xf contains the redundant information f = πFM ◦ D

∇
Xf , where

πFM denotes the vertical tangent bundle projection VertFM −→ FM ,

the simplicity of linear and principal connections stems from the fact that we

can get rid of this redundancy altogether, the reduced covariant derivative

∇Xf captures only the partial derivatives of the section f .

The Nijenhuis or curvature tensor of a non±linear connection P
∇ on a

fiber bundle FM over a manifold M is the horizontal 2±form R∇ on the

total space FM of the fiber bundle with values in the vertical tangent bundle

defined for two arbitrary vector fields X, Y on FM by:

R∇( X, Y ) = − P
∇ [ ( id − P

∇ )X, ( id − P
∇ )Y ] . (2)

In particular the curvature R∇ measures exactly the failure of the horizontal

distribution ker P∇ ⊆ TFM associated to P
∇ to be integrable. An in-

terpretation of the curvature tensor along classical lines as a commutator of

covariant derivatives is shown in [SaW]

Definition 2.2 (Parallel Homomorphisms between Fiber Bundles)

A parallel homomorphism between fiber bundles FM and F̂M over the
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same manifold M endowed with connections P
∇ and P

∇̂ respectively is a

homomorphism φ : FM −→ F̂M of fiber bundles such that the following

diagram commutes:
T FM T F̂M

T FM T F̂M

✲φ∗

✲φ∗
❄

P∇

❄
P∇̂

The constraint π̂ ◦ φ = π characterizing homomorphisms of fiber bundles

in the category FBM readily implies φ∗( VertFM ) ⊂ Vert F̂M , hence

the homomorphism φ of fiber bundles is parallel, if and only if φ∗ maps the

horizontal distribution of FM to the horizontal distribution of F̂M :

φ parallel ⇐⇒ φ∗( ker P
∇ ) ⊂ ker P

∇̂ .

Modifying the category FBM we define the category FB∇
M of fiber bundles

with connection over M , in this category morphisms are parallel homomor-

phisms of fiber bundles.

In the resulting category terminal objects are still diffeomorphisms con-

sidered as fiber bundles with single point fibers endowed with the zero con-

nection P
∇ = 0. Besides terminal objects the category FB∇

M has Cartesian

products: The fibered product FM ×M F̂M of two fiber bundles FM and

F̂M over M with connections P
∇ and P

∇̂ carries the product connection

(P∇ ⊕ P
∇̂) : T (FM ×M F̂M) −→ VertFM ⊕ Vert F̂M defined by

d

dt

∣

∣

∣

∣

0

( ft, f̂t ) 7−→ P
∇
( d

dt

∣

∣

∣

∣

0

ft

)

⊕ P
∇̂
( d

dt

∣

∣

∣

∣

0

f̂t

)

,

where t 7−→ ft and t 7−→ f̂t are smooth curves in FM and F̂M subject

to the fibered product constraint π(ft) = π̂(f̂t) for all t. In light of all

these definitions the Cartesian product with the base manifold M becomes a

functor from the category MF of smooth manifolds to the category FB∇
M

M × : MF −→ FB∇
M , F 7−→ M × F , (3)

because every trivial fiber bundle M × F over M comes along with the

trivial connection P
triv, namely the projection to the tangent bundle of F :

T (M ×F )
∼=
−→ TM × TF

π×id
−→ M × TF ∼= Vert(M ×F ) .
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Evidently the horizontal distribution TM × F ⊂ T (M × F ) is an in-

tegrable foliation with leaves M × {f} for every trivial connection P
triv,

in consequence Rtriv = 0 vanishes necessarily. The product functor M×
defined in equation (3) will feature prominently in Sections 3 and 5.

Having discussed general non±linear connections on fiber bundles in some

detail we now want to specialize to principal and linear connections in the

second part of this section. Recall first of all that a principal bundle modeled

on a Lie group G is a smooth fiber bundle GM with model fiber G endowed

with a smooth right ρ, fiber preserving action of G on its total space GM .

Also it is possible to define the affine product \ : GM ×M GM −→ G.

The automorphism group bundle of a principal bundle GM over a manifold

M is the Lie group bundle Aut GM over M defined by

AutGM := { (p, ψ) | ψ : GpM −→ GpM is G±equivariant } (4)

with the bundle projection πAutGM : AutGM −→ M, ( p, ψ ) 7−→ p. In

mathematical physics the FrÂechet±Lie group Γ(M, AutGM ) of all global

sections of the automorphism bundle is called the gauge group of GM .

The fiber of the Lie group bundle Aut GM over a point p ∈ M is a

Lie group AutpGM isomorphic, although not canonically so, to the original

group G, in particular its Lie algebra autpGM ∼= g is isomorphic to the Lie

algebra ofG. All these Lie algebras assemble into a smooth Lie algebra bun-

dle autGM , whose global sections Γ(M, autGM ) form the FrÂechet±Lie

algebra of the gauge group Γ(M, AutGM ) of the principal bundle GM .

Definition 2.3 (Principal Connections)

A principal connection on a principal G±bundle GM over a manifold M
is a non±linear connection P

∇ on the fiber bundle GM , which is invariant

under the right action of G on GM in the sense that the right translations

Rγ : GM −→ GM, g 7−→ gγ, are parallel automorphisms for all γ ∈ G.

In difference to general fiber bundles the vertical tangent bundle of a princi-

pal bundle GM is trivializable by

vtriv : VertGM −→ GM × g,
d

dt

∣

∣

∣

∣

0

gt 7−→ (g0,
d

dt

∣

∣

∣

∣

0

g−1
0 gt).

This allows to establish the following well±known result
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Lemma 2.4 (Principal Connection Axiom)

On every principalG±bundleGM the association P
∇ ←→ ω characterized

by ω := vtriv◦P∇ induces a bijection between principal connections in the

sense of Definition 2.3 and g±valued 1±forms ω on GM satisfying the axiom

ωg0γ0

( d

dt

∣

∣

∣

∣

0

gt γt

)

= Adγ−1
0
ωg0

( d

dt

∣

∣

∣

∣

0

gt

)

+
d

dt

∣

∣

∣

∣

0

γ−1
0 γt

for all choices of smooth curves t 7−→ gt in GM and curves t 7−→ γt in G.

Cartan’s Second Structure Equation [B] is a convenient description of the

image of the composition of the curvature tensor R∇ with the vertical trivi-

alization vtriv in terms of the exterior derivative of the connection form

Ω := vtriv ◦ R∇ !
= dω +

1

2
[ω ∧ ω ] , (5)

where 1
2
[ω ∧ ω ](X, Y ) := [ω(X), ω(Y ) ].

The strategy persued for linear connections on vector bundles VM follows

the model of principal connections closely. The tangent bundle of a vector

space is canonically trivializable TV ∼= V × V by taking actual derivatives

and this becomes via [ VertVM ]p = T (VpM ) the vertical trivialization

vtriv : VertVM
∼=
−→ VM ⊕ VM,

d

dt

∣

∣

∣

∣

0

vt 7−→ v0 ⊕ lim
t→0

1

t
(vt − v0).

This map can be used to project out∇Xv := vtriv(D∇
Xv) the redundant in-

formation from the covariant derivative D∇
Xv of a section v ∈ Γ(M, VM ):

Definition 2.5 (Linear Connections on Vector Bundles)

A linear connection on a vector bundle VM on M is a non±linear connec-

tion P
∇ on VM such that the reduced covariant derivative is R±bilinear:

∇ : Γ(M, TM ) × Γ(M, VM ) −→ Γ(M, VM ) .

In [SaW] it is showed a proof of the following lemma.

Lemma 2.6 (Characterization of Linear Connections)

A non±linear connection P
∇ on a vector bundle gives rise to an R±bilinear

covariant derivative ∇ : Γ(M, TM ) × Γ(M, VM ) −→ Γ(M, VM ), if

and only if the multiplication by every λ ∈ R is a parallel endomorphism:

Λλ : VM −→ VM, v 7−→ λ v .
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3 Principal Objects in Categories

In every category C with terminal objects and Cartesian products the notion

of a group so fundamental to all of mathematics can be generalized to the

notion of a group like object in C . In this section we take this beautiful idea

to characterize homogeneous spaces with trivial stabilizers, generally known

as principal homogeneous or affine group spaces, in terms of their structure

morphisms. Moreover we apply this characterization of affine group spaces

to the category FB∇
M of fiber bundles with connections over a manifold M

in order to characterize principal bundles with principal connections.

A group like object in a category C with terminal objects and Cartesian

products is an object G ∈ OBJ C together a choice of structure morphisms

m : G × G −→ G ι : G −→ G ϵ : ∗ −→ G

in C called the multiplication, the inverse and the neutral element respec-

tively with an arbitrary fixed terminal object ∗ such that the three diagrams

G×G×G

G×G G

G×G

❄
m×id

❄
m

✲m

✲id×m
G

G×G G

G×G

❄
e×id

❄
m

❍❍❍❍❍❍❍❥

id

✲m

✲id×e
G

G×G G

G×G

❄
ι×id

❄
m

❍❍❍❍❍❍❍❥

e

✲m

✲id×ι

all commute, where e = ϵ ◦ term equals the composition of ϵ with the ter-

minal morphism term : G −→ ∗. In the category Set of sets for example

the terminal objects are sets with exactly one element, hence ϵ : ∗ −→ G es-

sentially corresponds to an element of G. In turn the commutative diagrams

above convert respectively into the associativity, the existence of a neutral

element and the existence of inverses axiom in the definition of a group. In

other words group like objects in Set are just plain groups.

In categories more complicated than Set the classification of group like

objects can be simplified by the use of functors: Every covariant functor

F : C −→ Ĉ , which maps terminal objects to terminal objects and preserves

Cartesian products, maps group like objects in the category C to group like

objects in Ĉ . The standard forgetful functor MF −→ Set from manifolds

to sets for examples maps a group like object in MF to a group, albeit a Lie

group whose multiplication and inverse are smooths maps.
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In the same vein group like objects G in the category Grp of groups

carry two different group structures, one for being an object in Grp and the

other due to the forgetful functor Grp −→ Set. It is a rather insightful

exercise to verify that these two group structures actually agree so that G
is necessarily abelian, because its multiplication m : G × G −→ G is a

morphism in Grp. In consequence the fundamental group π1(G, e ) of a

topological group G is always abelian, because the functor π1 maps terminal

objects to terminal objects and preserves Cartesian products.

With these examples of the usefulness of functors in combination with a

categorical definition of groups in mind we want to describe the concept of

an affine group or principal homogeneous space in terms of category theory.

Given a group like object G in a category C we define a (right) principal G±

object to be an object X ∈ OBJ C endowed with two structure morphisms

ρ : X × G −→ X \ : X × X −→ G (6)

in C called action and left division respectively such that the action diagrams

X X×G

X

✲id×e

❅
❅
❅❘

id
�

�
�✠

ρ

X×G×G

X×G X

X×G

❄
ρ×prR

❄
ρ

✲ρ

✲prL×m

(7)

and the following diagrams encoding simple transitivity all commute:

X×X X×G

X

✲prL×\

❅
❅
❅❘

prR
�

�
�✠

ρ

X×G X×X

G

✲prL×ρ

❅
❅
❅❘

prR
�

�
�✠

\ (8)

In these diagrams prL and prR denote the projections to the leftmost and

rightmost factor respectively, moreover m : G × G −→ G denotes mul-

tiplication in G and e : X −→ G the composition of ϵ with the terminal

morphism term : X −→ ∗. Left principal objects can be defined in com-

plete analogy simply by switching left and right factors.

Intuitively, a principal object is essentially the group object itself, where

we have forgotten the neutral element, in fact every group like object G in
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a category C becomes a principal object over itself under the two structure

morphisms ρ := m and \ := m ◦ (ι× id). In the category Set of sets for

example a principal object over a group G is a set X endowed with a right

action ρ : X × G −→ X, (x, g) 7−→ xg, due to the commutative diagrams

in (7) and an additional application \ : X × X −→ G, (x, y) 7−→ x−1y,
such that the following two axioms are met for all x, y ∈ X and g ∈ G

x ( x−1 y ) = y x−1 ( x g ) = g ,

which reflect the commutative diagrams in (8). In consequence the right

action of G on X is transitive with trivial stabilizers, once we have declared

an arbitrary point x ∈ X to be the neutral element a principal objectX ̸= ∅
becomes indiscernible from the group G. In linear algebra for example it

would be appropriate to define an affine space to be a principal object V ̸= ∅
under the additive group underlying a vector space V over a field K.

Lemma 3.1 (Group Like and Principal Objects in FB∇
M )

For every Lie group G the trivial fiber bundle M × G over a manifold M
endowed with the trivial connection and the obvious structure morphisms is

a group like object in the category FB∇
M of fiber bundles with non±linear

connections over M . Principal M × G±objects are exactly the principal

G±bundles GM over M endowed with a principal connection ω.

Proof: The product functor M× : MF −→ FB∇
M , F 7−→ M ×F , maps

of course terminal objects in MF to terminal objects in FB∇
M and preserves

Cartesian products, hence it maps the Lie group G, a group like object in the

category MF, to the group like objectM×G in the category FB∇
M . Consider

now a principal M × G±object in FB∇
M , this is a fiber bundle GM over M

endowed with a non±linear connection∇ and structure homomorphisms:

ρ : GM ×M (M×G ) −→ GM \ : GM ×M GM −→ M×G .

The obvious diffeomorphismGM ×M (M×G) ∼= GM ×G of fiber bundles

provides GM with a fiber preserving right action ρ : GM × G −→ GM
such that each fiber GpM becomes a principal G±object in the category Set,

this is to say that the action ρ is simply transitive on fibers. For every γ ∈ G
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the element morphism γ : {∗} −→ G in the category MF induces moreover

a parallel homomorphism in the category FB∇
M of fiber bundles

GM
id×term
−→ GM ×M (M × {∗} )

id×γ
−→ GM ×M (M ×G )

ρ
−→ GM ,

which is just the right multiplication Rγ : GM −→ GM, g 7−→ gγ. In

turn the non±linear connection P
∇ present on the object GM in FB∇

M arises

from a principal connection ω in the sense of Definition 2.3. ■

A general group like object in the category FBM of fiber bundles over a

manifold M is just a bundle of Lie groups over M , a fiber bundle GM en-

dowed with the structure of a Lie group on each fiber such that the multipli-

cation m : GM ×M GM −→ GM , the inverse ι : GM −→ GM and the

neutral element section ϵ : M −→ GM are smooth. Somewhat stronger is

the concept of a Lie group bundle: A bundle GM of Lie groups, which can

be trivialized locally by group isomorphisms. Evidently this stronger condi-

tion is necessary and sufficient for the existence of a non±linear connection

P
∇, under which GM becomes a group like object in the category FB∇

M .

4 Association Functors and Principal Bundles

Principal bundles are in a sense universal fiber bundles, every given princi-

pal bundle induces myriad fiber bundles with a large variety of model fibers

over the same base manifold. The construction of all these fiber bundles is

functorial in nature and best thought of as a functor, the association functor

AssωGM , from a suitably defined category MFG of model fibers to the cat-

egory FB∇
M of fiber bundles with connections over a manifold M . In this

section we study the more important properties of association functors, the

universality of principal connections and their curvature and characterize all

vector bundles in the image of a fixed association functor.

Besides the categories FBM and FB∇
M of fiber bundles we are interested in

the category MFG of manifolds F acted upon by a fixed Lie group G under

smooth G±equivariant maps φ : F −→ F̂ as morphisms. Terminal objects

are one point manifolds {∗} and Cartesian products in the category MFG

see G acting diagonally on the Cartesian product F × F̂ of the manifolds
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underlying two objects F and F̂ . Interestingly the category MFG comes

along with a canonical endofunctor, the tangent bundle endofunctor

T : MFG −→ MFG, F −→ TF ,

which sends an object F ∈ OBJ MFG to the tangent bundle of its under-

lying manifold considered as a manifold TF in its own right, on which the

Lie group G acts by the differential of its characteristic action ⋆ on F :

⋆TF : G × TF −→ TF ,
(

γ,
d

dt

∣

∣

∣

∣

0

ft

)

7−→
d

dt

∣

∣

∣

∣

0

γ ⋆ ft .

In order to define the tangent bundle functor on morphisms we observe that

the differential φ∗ : TF −→ T F̂ of a G±equivariant map φ : F −→ F̂

is again G±equivariant and this observation suggests Tφ := φ∗. It should

be noted that the Lie group G provides a distinguished object in the category

MFG, namely its Lie algebra g := TeG considered just as a manifold en-

dowed with the adjoint representation Ad : G× g −→ g. The infinitesimal

action links this distinguished object to the tangent bundle endofunctor:

Definition 4.1 (Infinitesimal Action)

Consider a smooth left action ⋆ : G ×F −→ F , (γ, f) 7−→ γ ⋆ f, of a

Lie group G on a smooth manifold F . The infinitesimal action of the Lie

algebra g of the group G associated to this smooth action ⋆ is defined by

⋆inf : g × F −→ TF ,
( d

dt

∣

∣

∣

∣

0

γt, f
)

7−→
d

dt

∣

∣

∣

∣

0

γt ⋆ f ,

where t 7−→ γt with γ0 = e represents the tangent vector d
dt

∣

∣

0
γt ∈ g.

En nuce the infinitesimal action is a natural transformation from the endo-

functor g× to the tangent bundle endofunctor. In fact ⋆inf : g×F −→ TF

is G±equivariant and thus a morphism in MFG for all objects F due to

γ ⋆TF (X ⋆inff ) =
d

dt

∣

∣

∣

∣

0

( γ γt γ
−1 ) ⋆ ( γ ⋆ f ) = (AdγX ) ⋆inf ( γ ⋆ f )

for all f ∈ F and all tangent vectors X = d
dt

∣

∣

0
γt at γ0 = e, moreover

⋆inf intertwines with the differential φ∗ of every G±equivariant smooth map

φ : F −→ F̂ in the identity φ∗(X ⋆inf f) = X ⋆inf φ(f).
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Definition 4.2 (Association Functor)

Consider a Lie group G and a principal G±bundle GM over a manifold M .

Every smooth action ⋆ : G ×F −→ F of the group G on a manifold F

extends to a free and smooth right action of the group G on the Cartesian

product GM × F via ( g, f ) ⋆ γ := ( gγ, γ−1 ⋆ f ). The quotient of

GM ×F by this free action is a fiber bundle over M with model fiber F

AssGM(F ) = GM ×G F := (GM × F )/G

called the fiber bundle associated to GM and F ∈ OBJ MF. Every G±

equivariant map φ : F −→ F̂ induces a homomorphism of fiber bundles

AssGM(φ ) : GM ×G F −→ GM ×G F̂ , [ g, f ] 7−→ [ g, φ(f) ] ,

which is well±defined in terms of representatives (g, f) of the equivalence

class [g, f ]. In other words AssGM : MFG −→ FBM , F 7−→ GM ×G F ,
is a functor from MFG to the category FBM of fiber bundles over M .

Recall now that the each of the categories MFG and FBM has a canonical

endofunctor associated with it, namely the tangent bundle endofunctor T
for the category MFG of manifolds with G±action and the vertical tangent

bundle functor Vert for the category FBM . Considered as a fiber bundle

overM the vertical tangent bundle has fiber [ VertFM ]p = T [FpM ] over

every p ∈ M and so we may suspect that the following diagram commutes

MFG

MFG

FBM

FBM .

✲AssGM

✲AssGM
❄

T
❄
Vert (9)

up to a natural isomorphism Vert(GM ×G F )
∼=
−→ GM ×G TF given by:

d

dt

∣

∣

∣

∣

0

[

gt, ft

]

7−→
[

g0,
d

dt

∣

∣

∣

∣

0

( g−1
0 gt ) ⋆ ft

]

. (10)

Of course this isomorphism is motivated by [ gt, ft ] = [ g0, (g
−1
0 gt) ⋆ ft ],

whenever the representative curve t 7−→ [ gt, ft ] for a vertical tangent vector

to GM ×G F has been chosen such that gt stays in the fiber of g0 for all t.
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Remark 4.3 (Action of Automorphism Group Bundle)

The automorphism group bundle of a principal bundle GM acts naturally

⋆ : AutGM×M FM −→ FM on every fiber bundle FM := GM×GF

associated to GM and an object F ∈ OBJ MFG by means of

( p, ψ ) ⋆ [ g, f ] := [ψ( g ), f ]

for all ( p, ψ ) ∈ AutpGM and [ g, f ] ∈ Fπ(g)M in the fibers of AutGM
and FM over the same point p = π(g) of the base manifold M .

In concrete examples the automorphism group bundle AutGM is usually

more readily identified than the principal bundle GM itself due to its om-

nipresent action on associated fiber bundles. Consider the orthonormal frame

bundle of a pseudo±Riemannian manifold (M, g ) for example

O(M, g ) := { ( p, F ) | p ∈ M and F : T −→ TpM isometry } ,

where T is a pseudo±euclidean model vector space of the correct signature

and O(T ) acts from the right by precomposition ( p, F ) γ = ( p, F ◦ γ ).
The automorphism group bundle of the orthonormal frame bundle O(M, g )
equals the Lie group bundle of all infinitesimal isometries of tangent spaces

O(TM, g ) := { ( p, ψ ) | ψ : TpM −→ TpM isometry }

acting by postcomposition ( p, ψ ) ⋆ ( p, F ) = ( p, ψ ◦ F ); it just as well

acts on the tangent bundle TM and all kinds of the tensor bundles etc.

For a general principal bundle GM we can use the same idea to identify

the automorphism group bundle AutGM as a Lie group bundle overM with

the image of a group object in the category MFG. Letting G act on itself by

conjugation ⋆ : G×G −→ G, (γ, g) 7−→ γgγ−1, we obtain in fact a group

object Gad ∈ OBJ MFG, whose image under the association functor is a

Lie group bundle AssGM(Gad ) over M acting G±equivariantly on GM by

AssGM(Gad ) ×M GM −→ GM, ( [ g, γ ], ĝ ) 7−→ gγ( g−1ĝ ) (11)

for all γ ∈ G and all g, ĝ ∈ GM in the same fiber. In particular AutpGM
is isomorphic, but not naturally so, to the Lie group G in every p ∈ M .
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Under this identification AssGM(Gad ) = AutGM of Lie group bun-

dles the natural action of AutGM on associated fiber bundles GM ×G F

pointed out in Remark 4.3 becomes the functorial extension of the original

action ⋆ considered as a G±equivariant smooth map ⋆ : Gad ×F −→ F .

In the same vein the functor AssGM converts the infinitesimal action of Def-

inition 4.1 considered as a G±equivariant map ⋆inf : g×F −→ TF into

AssGM( ⋆inf ) : (GM ×G g ) ×M (GM ×G F ) −→ (GM ×G TF ) ,

which in turn becomes the infinitesimal action associated to Remark 4.3:

⋆inf : aut GM ×M (GM ×G F ) −→ Vert(GM ×G F ) .

Before we proceed to prove the universality of principal connections and

their curvature we want to digress a little to discuss the gauge principle, a

fundamental principle in the study of principal bundles allowing us to trans-

late calculations on GM to statements about M . In its most basic formula-

tion the gauge principle is the assertion that we have a canonical bijection

[ Ω•
hor(GM, V ) ]G

∼=
−→ Ω•(M, GM ×G V ), η 7−→ GP[ η ] (12)

between the horizontal differential forms η ∈ Ω•
hor(GM, V ) on GM with

values in some representation V of G satisfying R∗
γη = γ ⋆ η for all γ ∈ G

and general differential forms on the base manifold M with values in the

associated vector bundle GM ×G V . Explicitly this gauge principle reads

GP[ η ]p(X1, . . . , Xr ) := [ g, ηg( X̃1, . . . , X̃r ) ]

for arbitrary lifts X̃1, . . . , X̃r ∈ TgGM of the argument tangent vectors

X1, . . . , Xr ∈ TpM to an arbitrary point g ∈ GpM in the fiber over

p ∈ M . Due to horizontality the resulting differential form GP[ η ] does not

depend on the choice of lifts and the assumption R∗
γη = γ ⋆ η ensures that

GP[ η ] does not depend on the choice of g ∈ GpM either. The gauge prin-

ciple converts the curvature 2±form Ω ∈ Ω2
hor(GM, g ) of Cartan’s Second

Structure Equation (5) into a 2±form on M with values in autGM :

Rω := GP[ Ω ] ∈ Ω2(M, autGM ) (13)
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Proposition 4.4 (Universality of Principal Curvature)

Every choice of a principal connection ω on a principal G±bundle GM al-

lows us to promote the association functor AssGM : MFG −→ FBM to a

functor to the category of fiber bundles overM with non±linear connections:

AssωGM : MFG −→ FB∇
M , F 7−→ GM ×G F .

In other words ω induces a natural connection ∇ on GM ×G F for every

G±manifold F ∈ OBJ MFG. The curvature R∇ of this induced connection

is determined by the infinitesimal action of the Lie algebra bundle autGM

⋆inf : aut GM ×M (GM ×G F ) −→ Vert(GM ×G F )

and the 2±form Rω ∈ Ω2(M, autGM ). More precisely for all local sec-

tions f ∈ Γloc(M,GM ×G F ) and all X, Y ∈ Γ(M,TM ) we find:

R∇
X,Y f = Rω(X, Y ) ⋆inf f .

Proof: By definition GM ×G F is the quotient of the Cartesian product

GM × F by a free right action of the Lie group G. In turn the canonical

projection pr : GM ×F −→ GM ×G F defines a tower of fiber bundles

GM × F

GM ×G F

M

❄
pr

❄
π

(14)

over M , which becomes U × (G × F )
pr
−→ U × F

π
−→ U in a local

equivariant trivialization of GM . The central idea of the proof is to choose

the connection P
∇ on GM ×G F such that pr is parallel with respect to

the product Pω × P
triv of the principal connection ω on GM and the trivial

connection P
triv on M ×F .

For this purpose we consider a curve t 7−→ ( gt, ft ) in GM × F and

choose a curve t 7−→ γt in G with γ0 = e representing the tangent vector
d
dt

∣

∣

0
γt = ωg0(

d
dt

∣

∣

0
gt ) ∈ g. The Principal Connection Axiom 2.4 ensures

ωg0e

( d

dt

∣

∣

∣

∣

0

gt γ
−1
t

)

= Ad−1
e ωg0

( d

dt

∣

∣

∣

∣

0

gt

)

+
d

dt

∣

∣

∣

∣

0

e−1 γ−1
t = 0
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and so t 7−→ gtγ
−1
t represents a horizontal tangent vector. In turn

(Pω × P
triv )

( d

dt

∣

∣

∣

∣

0

( gt, ft )
)

= (Pω × P
triv )

( d

dt

∣

∣

∣

∣

0

( gtγ
−1
t γ0, f0 ) +

d

dt

∣

∣

∣

∣

0

( g0 γ
−1
0 γt, ft )

)

=
d

dt

∣

∣

∣

∣

0

( g0 γt, ft ) ,

because the first summand is horizontal and the second vertical in GM×F .

Projecting this identity to equivalence classes in GM ×G F we find

P
∇
( d

dt

∣

∣

∣

∣

0

[ gt, ft ]
)

:=
d

dt

∣

∣

∣

∣

0

[ g0, γt ⋆ ft ]

=

[

g0,
d

dt

∣

∣

∣

∣

0

ft + ωg0

( d

dt

∣

∣

∣

∣

0

gt

)

⋆inf f0

]

due to the Definition 4.1 of the infinitesimal action and the choice of the

curve t 7−→ γt. In light of the isomorphism (10) the right hand side denotes

a vertical tangent vector to GM ×G F and so the latter formula defines a

non±linear connection P
∇ on the fiber bundle GM ×G F .

With respect to this non±linear connection P
∇ the canonical projection

pr : GM × F −→ GM ×G F is parallel, because it maps horizontal

tangent vectors d
dt

∣

∣

0
[ gt, f0 ] with ωg0(

d
dt

∣

∣

0
gt) = 0 to horizontal vectors. The

construction of P∇ is natural in the category MFG as well: The functorial

extension AssGM(φ ) : GM ×G F −→ GM ×G F̂ , [ g, f ] 7−→ [ g, φ(f) ],

of every G±equivariant smooth map φ : F −→ F̂ is parallel

P
∇̂
( d

dt

∣

∣

∣

∣

0

[ gt, φ(ft) ]
)

=

[

g0,
d

dt

∣

∣

∣

∣

0

φ(ft) + ωg0

( d

dt

∣

∣

∣

∣

0

gt

)

⋆inf φ(f0)

]

= AssGM(φ∗ ) P
∇
( d

dt

∣

∣

∣

∣

0

[ gt, ft ]
)

due to the infinitesimal equivarianceX⋆inf φ(f) = φ∗(X⋆inf f). In order to

calculate the curvature of the connection P
∇ we use the fact that in a tower

of fiber bundles like (14) with a parallel submersion pr the curvature of the

image connection P
∇ is just the image of the preimage connection P

ω×P
triv
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under the differential pr∗. Using arbitrary lifts X̃, Ỹ ∈ TgGM of tangent

vectors X, Y ∈ TpM to a point g ∈ GpM we calculate in this way

R∇
[ g, f ]( X̃, Ỹ ) = pr∗, ( g, f )R

ω×triv
( g, f ) ( X̃, Ỹ )

=
d

dt

∣

∣

∣

∣

0

[

g exp
(

tΩg( X̃, Ỹ )
)

, f
]

= [ g, Ωg(X̃, Ỹ ) ] ⋆inf [ g, f ] = Rω
p (X, Y ) ⋆inf [ g, f ] ,

where Rω := GP[ Ω ] ∈ Ω2(M, autGM ) is the 2±form with values in

autGM the gauge principle (12) associates to Ω := dω + 1
2
[ω ∧ ω ]. For-

mulated in terms of local sections f ∈ Γloc(M, GM ×G F ) the latter

identity becomes R∇
X,Y f = Rω(X, Y ) ⋆inf f . ■

One of the most important properties of association functors is that they

intertwine the actions of smooth functors on the categories RepG and VBM .

A smooth functor is an endofunctor S : Vect×
R
−→ Vect×

R
of the category

of finite dimensional vector spaces under linear isomorphisms such that

MORVect
×

R

(V, V ) −→ MORVect
×

R

( SV, SV ), φ 7−→ S(φ ),

is a smooth map between the smooth manifolds MORVect
×

R

(V, V ) = GLV

and MORVect
×

R

(SV, SV ) for every finite dimensional vector space V over

R. Smooth functors extend naturally to endofunctors of the category RepG

of representations V of a Lie group G by letting G act on SV via:

⋆ : G × SV −→ SV, ( γ, s ) 7−→ S( γ ⋆ : V
∼=
−→ V ) s .

This extension to representations makes the classification of smooth func-

tors an exercise in the representation theory of general linear groups: Every

smooth functor is naturally isomorphic S ∼= S1 ⊕ . . . ⊕ Sr to a finite direct

sum of Schur functors S1, . . . , Sr twisted by density lines [FH].

In the same vein every smooth functor S extends naturally to an endo-

functor of the category VB∇
M of vector bundles with connections over a

manifold M . The smoothness of S allows us to define a differentiable struc-

ture on the disjoint union of vector spaces obtained by applying S fiberwise

S VM :=
⋃

p∈M

S VpM
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to obtain a new vector bundle SVM over M ; every connection ∇ on the

original vector bundle VM extends naturally to a connection ∇S on SVM
by the requirement that parallel transport with respect to this connection

along an arbitrary curve t 7−→ pt in the manifold M is simply the image

(

PT∇S

t : S Vp0M
∼=
−→ S VptM

)

= S

(

PT∇
t : Vp0M

∼=
−→ VptM

)

of parallel transport with respect to ∇ under the functor S. Because parallel

transport in associated vector bundles is essentially the image of parallel

transport in the principal bundleGM itself, every association functor AssωGM

intertwines the two extensions of a smooth functor S to the categories RepG

of representations and VB∇
M of vector bundles with connections:

RepG VB∇
M

RepG VB∇
M .

✲AssωGM

✲AssωGM
❄

S

❄
S (15)

Classically the vector bundles of the form STM on a manifold M with

a smooth functor S are called pseudotensor bundles, their sections pseu-

dotensors, and they comprise exactly the natural vector bundles of order one.

Some modern authors however seem to confuse the classical concept of ten-

sors with the property of having a value defined at every point.

Lemma 4.5 (Properties of Association Functors)

Consider a principal G±bundle GM over a manifold M endowed with a

principal connection ω and the corresponding association functor from the

category MFG of manifolds endowed with smoothG±actions to the category

FB∇
M of fiber bundles over M endowed with non±linear connections:

1. The association functor AssωGM preserves Cartesian products:

GM ×G (F × F̂ ) = ( GM ×G F ) ×M ( GM ×G F̂ ) .

2. On the full subcategory MF ⊂ MFG of manifolds with trivial G±

action the association functor AssωGM agrees with the product functor:

AssωGM |MF : MF −→ FB∇
M , F 7−→ M × F .
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3. Restricted to the subcategory RepG ⊂ MFG of finite dimensional

smooth representations of the Lie groupG underG±equivariant linear

maps the association functor AssωGM takes values in the subcategory

VB∇
M of vector bundles over M endowed with linear connections:

AssωGM |RepG
: RepG −→ VB∇

M , V 7−→ GM ×G V .

Proof: Of course all three statements of this lemma are easily proved directly

by unwrapping all the definitions made above; the second statement for ex-

ample is an elaborate description of the trivial fiber bundle isomorphism

GM ×G F
=
−→ GM/G × F

∼=
−→ M × F ,

whenever G acts trivially on F and thus effectively only on the first factor

of GM × F in the construction of the quotient GM ×G F . This fiber

bundle isomorphism is evidently natural, it is compatible with all the fiber

bundle homomorphisms induced by smooth maps φ : F −→ F̂ between

manifolds F and F̂ with trivial G±action.

Nevertheless we think the lemma is quite interesting, because the third is

actually a consequence of the first two statements. Combining the existence

of additive inverses and the unity axiom ∀v : 1 · v = v into the axiom

∀v : v + (−1) · v = 0 we see that only three structure maps are needed to

formulate all axioms for a vector space object V in a category C in terms of

commutative diagrams provided we have specified a field object K:

· : K × V −→ V + : V × V −→ V 0 : {∗} −→ V .

In the category MFG for example we may take the manifold R with the

trivial G±action as the field object K = R
triv, the corresponding vector

space objects are smooth representations of the Lie group G over R.

On the other hand the first and second statement of the lemma assert

that the association functor AssωGM preserves Cartesian products and agrees

with the product functor M × on the full subcategory MF ⊂ MFG. In

consequence AssωGM sends terminal objects in MFG to terminal objects in

FB∇
M and a representation V to a fiber bundle VM := GM ×G V with

three parallel structure maps, the zero section 0 : M −→ VM and:

· : R × VM −→ VM + : VM ×M VM −→ VM .
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According to Lemma 2.6 the parallelity of the scalar multiplication map

alone suffices to force the non±linear connection P
∇ on VM ∈ OBJ FB∇

M

to be a linear connection in the sense of Definition 2.5. ■

Historically the concept of principal bundles and principal connections arose

from Cartan’s beautiful idea of moving frames, which asserts that every vec-

tor bundle VM with connection∇ lies in the image of the association functor

AssωGM for some principal bundle with connection. A suitable choice for the

principal bundle GM is the frame bundle with model vector space V

GL(M, VM ) := { ( p, F ) | p ∈ M and F : V
∼=
−→ VpM } ,

which is a principal GLV ±bundle over M with right multiplication given

by precomposition (p, F ) γ = (p, F ◦ γ). The tautological diffeomorphism

GL(M, VM ) ×GLV V
∼=
−→ VM, [ ( p, F ), v ] 7−→ Fv ,

is a parallel isomorphism for the principal connection on GL(M,VM)

ω
( d

dt

∣

∣

∣

∣

0

( pt, Ft )
)

:=
d

dt

∣

∣

∣

∣

0

F−1
0 ◦ (PT∇

t )−1 ◦ Ft ∈ End V

constructed from the parallel transport PT∇
t : Vp0M −→ VptM with respect

to∇ along the curve t 7−→ pt; the principal connection axiom of Lemma 2.4

is particularly easy to verify using this definition for ω.

In consequence of this moving frames argument it does not make too

much sense to ask, whether or not a vector bundle with connection is in the

image of some association functor. The appropriate answer to this question

for an association functor fixed in advance is definitely more interesting and

was given in the master thesis of one of the authors. A closely related concept

is the concept of geometric vector bundles defined in [SW]:

Proposition 4.6 (Images of Association Functors)

Let G be a simply connected Lie group and let GM be a principal G±bundle

over a simply connected manifold M endowed with a principal connection

ω. A vector bundle VM with a linear connection P
∇ over M is isomorphic

in the vector bundle category VB∇
M to a vector bundle in the image of the

association functor AssωGM , if and only if there exists a parallel bilinear map

⋆inf : aut GM ×M VM −→ VM, (X, v ) 7−→ X ⋆ v ,
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which is a representation of the Lie algebra autpGM at every p ∈ M

( ⋆inf )p : autpGM × VpM −→ VpM

with the additional property that the curvature of the given connection ∇
agrees with the pointwise action of the curvature Rω ∈ Ω2(M, autGM ):

R∇
X,Y v = Rω

X, Y ⋆inf v .

Proof: Consider to begin with the vector bundle VM := GM ×G V associ-

ated to a representation V of the Lie group G. According to our discussion

of the infinitesimal action following Definition 4.1 the composition

⋆inf : g × V
⋆inf−→ TV

∼=
−→ V × V

prR−→ V

is G±equivariant and thus gives rise to a parallel R±bilinear map, which is a

representation ( ⋆inf )p of the Lie algebra autpGM on VpM in every point:

⋆inf : aut GM ×M VM −→ VM .

Conversely assume that ⋆inf : autGM ×M VM −→ VM is a parallel

representation of the Lie algebra bundle autGM on a vector bundle VM
with a linear connection P

∇. According to equation (11) the fiber Lie group

AutpGM is isomorphic to G in every point p ∈ M and so simply con-

nected, in consequence the infinitesimal action ( ⋆inf )p of its Lie algebra

autpGM integrates to a representation of the Lie group AutpGM on the

vector space VpM . Though slightly technical it is straightforward to prove

that the integrated representation depends smoothly on the point p ∈ M

⋆ : AutGM ×M VM −→ VM , (16)

the details of this argument are left to the reader. In addition to the vector

bundle VM with its connection P
∇ we consider the vector bundleGM×GV

associated to some representation V of G endowed with the linear con-

nection P
ω induced by the principal connection ω in Proposition 4.4. The

two connections determine a linear connection P
(ω,∇) on the vector bundle

Hom(GM ×G V, V M ) characterized by the fact that its parallel transport

PT
(ω,∇)
t : Hom(Gp0M ×G V, Vp0M ) −→ Hom(GptM ×G V, VptM )
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along an arbitrary curve t 7−→ pt makes the following diagram commute

Gp0M ×G V

GptM ×G V

Vp0M

VptM

✲F

✲PT
(ω,∇)
t F❄

PTω
t

❄

PT∇
t

(17)

for all linear maps F : Gp0M ×G V −→ Vp0M , where PTω
t and PT∇

t are

the parallel transports along the same curve with respect to P
ω and P

∇.

The principal idea of the proof is now to construct a parallel and actually flat

vector subbundle of the vector bundle Hom(GM ×G V, V M ) over M . For

this purpose we consider the family of vector subspaces of the fibers
[

HomAutGM(GM ×G V, V M )
]

p

:= { F : GpM ×G V −→ VpM | linear and AutpGM equivariant }

of the vector bundle Hom(GM ×G V, V M ) in each point p ∈ M . In

order to show that this family of subspaces is the family of fibers of a vector

subbundle of Hom(GM ×G V, V M ) we observe that the parallel transport

PTω
t : Gp0M ×G V

∼=
−→ GptM ×G V PT∇

t : Vp0M
∼=
−→ VptM

in both vector bundles GM ×G V and VM along a curve t 7−→ pt is equiv-

ariant over the parallel transport with respect to the Lie group connection P
ω

on the automorphism bundle AutGM induced by ω. More precisely we find

PT∇
t

(

( p0, ψ ) ⋆ v
)

= PTω
t ( p0, ψ ) ⋆ PT∇

t v

for the vector bundle VM , because ⋆inf : autGM ×M VM −→ VM is

parallel by assumption. In consequence the parallel transport PT(ω,∇) with

respect to the linear connection P
(ω,∇) specified in diagram (17) induces for

all t ∈ R vector space isomorphisms F 7−→ PT∇
t ◦F ◦ (PTω

t )
−1 between:

[

HomAutGM(GM×GV, V M )
]

p0

∼=
−→

[

HomAutGM(GM×GV, V M )
]

pt

.

By assumption the underlying manifold M is (simply) connected, and hence

all vector subspaces [ HomAutGM(GM ×G V, V M ) ]p have the same di-

mension. With parallel transport depending smoothly on the curve we con-

clude that HomAutGM(GM ×G V, V M ) is a genuine vector subbundle of
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SALDAÑA & WEINGART FUNCTORIALITY OF PRINCIPAL BUNDLES

Hom(GM ×G V, V M ), moreover it is a parallel subbundle as it is invariant

under parallel transport along arbitrary curves.

On the other hand the curvature of the linear connection P
(ω,∇) on the

vector bundle Hom(GM ×G V, V M ) is determined by the universality of

principal curvature discussed in Proposition 4.4, namely it holds true that

R
(ω,∇ )
X,Y F = R∇

X,Y ◦ F − F ◦ (Rω
X, Y ⋆inf )

for all tangent vectors X, Y ∈ TpM and F ∈ Homp(GM ×G V, V M ).
Due to equivariance the curvature of the connection P

(ω,∇) restricted to the

parallel vector subbbundle HomAutGM(GM ×G V, V M ) vanishes identi-

cally, put differently HomAutGM(GM ×G V, V M ) is a flat vector bundle

over M under the restriction of the connection P
(ω,∇).

In the argument presented so far the actual choice of the representation

V did not play any role. In order to make a diligent choice we fix a frame

g ∈ GpM over a point p ∈ M and consider the Lie group isomorphism

Φ : G
∼=
−→ AutpGM, γ 7−→

(

p, ĝ 7−→ gγ(g−1ĝ)
)

,

which is essentially the Lie group bundle isomorphism (11) restricted to the

fiber of p. This Lie group isomorphism allows us to pull back the integrated

representation (16) of AutpGM on the vector space V := VpM to a smooth

representation ⋆ : G× V −→ V enjoying the critical property that

Φ : GpM ×G V
∼=
−→ V

=
−→ VpM, [ ĝ, v ] 7−→ Φ( g−1ĝ ) ⋆ v

is an equivariant vector space isomorphism under AutpGM in the sense:

Φ
(

Φ( γ ) [ ĝ, v ]
)

= Φ
(

[ gγ(g−1ĝ), v ]
)

= Φ
(

g−1gγ(g−1ĝ)
)

⋆ v = Φ( γ ) Φ
(

[ ĝ, v ]
)

.

In consequence the fiber of the vector bundle HomAutGM(GM×GV, V M )
over the chosen point p ∈ M contains the vector space isomorphism Φ,

which translates under parallel transport along arbitrary curves with respect

to the flat connection P
(ω,∇) into a parallel, globally defined section Φ on

the simply connected manifold M . Evaluation of this parallel section in the

points of M converts it into a parallel isomorphism of vector bundles:

Φ : GM ×G V
∼=
−→ VM, [ ĝ, v ] 7−→ Φπ(ĝ)[ ĝ, v ] . ■
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5 The Category of Gauge Theory Sectors

Every association functor is in a sense a reproducing functor, there exists in

its source category an object, whose image in its target category is isomor-

phic to the principal bundle defining the association functor in the first place.

Based on this simple observation we characterize the association functors

among all functors from MFG to FB∇
M in this section, moreover we estab-

lish an equivalence of categories between the category of principal bundles

and a suitably defined category of functors called gauge theory sectors.

Consider the smooth action of a given Lie group G on its underlying mani-

fold by left multiplication ⋆ : G × G −→ G, (γ, g) 7−→ γg, which defines

an object Gleft ∈ OBJ MFG in the category of G±manifolds. The image of

Gleft under the functor AssωGM is isomorphic as a fiber bundle to GM

AssωGM(Gleft )
∼=
−→ GM, [ g, γ ] 7−→ g γ , (18)

and the inverse isomorphism g 7−→ [g, e] is easily verified to be parallel with

P
∇
( d

dt

∣

∣

∣

∣

0

[ gt, e ]
)

=
[

g0,
d

dt

∣

∣

∣

∣

0

e + ω
( d

dt

∣

∣

∣

∣

0

gt

)

⋆inf e
]

= 0

whenever d
dt

∣

∣

0
gt is horizontal in the sense ω( d

dt

∣

∣

0
gt) = 0. This reproducing

property of AssωGM lies at the heart of the proof of the following theorem:

Theorem 5.1 (Characterization of Association Functors)

Consider a covariant functor F : MFG −→ FB∇
M from the category of

G±manifolds to the category of fiber bundles with connection over M . If the

functor F preserves Cartesian products and agrees with the product functor

M × : MF −→ FB∇
M , F 7−→ M × F ,

on the full subcategory MF ⊂ MFG of manifolds with trivial G±action,

then F is naturally isomorphic to the association functor corresponding to

some principal G±bundle GM endowed with a principal connection ω.

Proof: Consider a functor F : MFG −→ FB∇
M from the category of G±

manifolds to the category of fiber bundles over M endowed with non±linear

351
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connections, which preserves Cartesian products and agrees with the prod-

uct functor M× : MF −→ FB∇
M on the full subcategory of trivial G±

manifolds. At least three different objects in the domain category MFG of

the functor F have underlying manifold equal to the Lie group G:

Gleft Gad Gtriv .

The difference between these three objects in MFG resides in their actions,

which is by left multiplication γ ⋆ g := γg and conjugation γ ⋆ g := γgγ−1

respectively for Gleft and Gad, whereas G acts trivially on Gtriv. Every ter-

minal object in the category MFG is a zero±dimensional manifold point

{∗} with necessarily trivial G±action, hence F maps it to the terminal ob-

ject M × {∗} in the category FB∇
M . In other words the functor F maps

terminal objects to terminal objects and preserves Cartesian products and in

consequence turns group like and principal objects in the category MFG into

group like and principal objects in the category FB∇
M .

With G acting by automorphisms on both Gad and Gtriv both objects are

group like objects in the category MFG under the multiplication and inverse

inherited from G. The significance of the group like object F(Gad ) in the

category FB∇
M may be somewhat obscure at this point, the group like object

F(Gtriv ) = M × G however is just the trivial G±bundle over M endowed

with the trivial connection. Moreover the original Lie group multiplication

defines G±equivariant structure maps in analogy to definition (6)

ρ : Gleft × Gtriv −→ Gleft \ : Gleft × Gleft −→ Gtriv

by means of ρ(g, ĝ) := gĝ and \(g, ĝ) := g−1ĝ, which naturally enough

turn Gleft into a Gtriv±principal object in the category MFG. According to

Lemma 3.1 the image of Gleft is a principal G±bundle GM := F(Gleft )
over the manifold M endowed with a principal connection ω. In passing we

observe that the group like object Gad acts G±equivariantly on Gleft via

⋆ : Gad × Gleft −→ Gleft, ( γ, g ) 7−→ γ g ,

and this action identifies the group like object F(Gad ) in the category FB∇
M

with the gauge group bundle AutGM of GM by means of the action:

F( ⋆ ) : F(Gad ) ×M GM −→ GM .
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It remains to show that the original functor F is naturally isomorphic to the

association functor AssωGM . For this purpose we consider a general object

F ∈ OBJ MFG; replacing its G±action by the trivial G±action on the

same underlying manifold we project it to an object F triv ∈ OBJ MF in

the subcategory of manifolds with trivial G±action. The G±equivariant map

Ψ : Gleft × F
∼=
−→ Gleft × F

triv, ( g, f ) 7−→ ( g, g−1 ⋆ f )

is actually an isomorphism in MFG with inverse ( g, f ) 7−→ ( g, g ⋆ f ),
which fits for an arbitrary element γ ∈ G into the commutative diagram

Gleft ×F

Gleft ×F

Gleft ×F triv

Gleft ×F triv

F

✲Ψ

❅
❅
❅❅❘

prR

�
�

��✠
⋆

✲Ψ
�
�
��✒prR

❅
❅

❅❅■ ⋆

❄

ργ×id

❄

ργ×(γ−1⋆) (19)

in the category MFG, where ργ : Gleft −→ Gleft, g 7−→ gγ, denotes the

right multiplication by γ and ⋆ the original G±action characterizing the ob-

ject F thought of as a G±equivariant (sic!) map ⋆ : Gleft ×F triv −→ F .

Writing the right multiplication ργ in the category MFG as a composition

Gleft id×term
−→ Gleft × {∗}

id×γ
−→ Gleft × Gtriv ρ

−→ Gleft

factorizing over the element morphism γ : {∗} −→ Gtriv in the subcate-

gory MF ⊂ MFG we conclude that F( ργ ) : GM −→ GM agrees with

the right multiplication Rγ : GM −→ GM, g 7−→ gγ, in the principal

bundle GM induced by F( ρ ) : GM × G −→ GM , because F preserves

Cartesian products and agrees with the product functor M× on the trivial

G±manifolds {∗} and Gtriv. In consequence the commutative diagram (19)

translates under the functor F into the following commutative diagram

GM ×M FM

GM ×M FM

GM ×F

GM ×F

FM

✲Ψ

❅
❅
❅❅❘

prR

�
�

��✠
F( ⋆ )

✲Ψ
�
�
��✒prR

❅
❅

❅❅■ F( ⋆ )

❄

Rγ×id

❄

Rγ×(γ−1⋆) (20)
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in the category FB∇
M with FM := F(F ), because F preserves Cartesian

products, hence preserves projections and agrees on manifolds with trivial

G±action like F triv with the product functor M×. The parallel homomor-

phism F( ⋆ ) : GM ×F −→ FM thus descends to the quotient

F( ⋆ ) : GM ×G F −→ FM

of GM × F by the right G±action defining the associated fiber bundle

GM ×G F , which lets γ ∈ G act by Rγ × (γ−1⋆). It goes without saying

that the projection prR : GM ×M FM −→ FM factors through the quo-

tient of GM ×M FM by the right G±action on the principal bundle GM ,

the commutative diagram (20) ensures moreover that the quotient diagram

(GM/G)×M FM GM ×G F

FM

✲Ψ

❅
❅

❅
❅❘

prR

�
�

�
�✠

F( ⋆ )

still commutes. With prR : M ×M FM
∼=
−→ FM and Ψ being parallel

diffeomorphisms of fiber bundles with connections overM we conclude that

F( ⋆ ) : GM ×G F
∼=
−→ FM

is actually an isomorphism in the category FB∇
M , moreover the construction

of this parallel fiber bundle isomorphism F( ⋆ ) : AssωGMF −→ F(F ) for

a given object F ∈ OBJ MFG is natural under morphisms in MFG and

comprises a natural isomorphism F( · ) : AssωGM −→ F of functors. ■

In order to press the point of Theorem 5.1 home let us define two rather spe-

cial categories associated to a smooth manifold M . Objects in the category

PB∇
M of principal bundles with connections overM are triples (G, GM, ω )

formed by a Lie group G and a principal G±bundle GM over M endowed

with a principal connection ω. Every morphism between two such objects

(φgrp, φ ) : ( G, GM, ω ) −→ ( Ĝ, ĜM, ω̂ )

consists of a parallel homomorphism φ : GM −→ ĜM of fiber bundles

which is G±equivariant over the Lie group homomorphism φgrp : G −→ Ĝ.

354
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Objects in the category GTS∇
M of gauge theory sectors on M with connec-

tions are on the other hand tuples (G, F ) formed by a Lie group G and a

covariant functor F : MFG −→ FB∇
M which preserves Cartesian products

and agrees with the product functor on the full subcategory MF ⊂ MFG

of manifolds with trivial G±action. In GTS∇
M morphisms are again tuples

(φgrp, Φ ) : ( G, F ) −→ ( Ĝ, F̂ )

consisting of a group homomorphism φgrp : G −→ Ĝ between the two Lie

groups and a natural transformation Φ : F ◦ φ∗
grp −→ F̂ between the two

functors MFĜ −→ FB∇
M involved, where the action pull back functor

φ∗
grp : MFĜ −→ MFG, ( F̂ , ⋆Ĝ ) −→ ( F̂ , ⋆G )

induced by φgrp lets G act via g ⋆G f := φgrp(g) ⋆Ĝ f on a Ĝ±manifold F̂ .

We want to interpret the construction of the association functor as a functor

Ass : PB∇
M −→ GTS∇

M

with (G, GM, ω ) 7−→ (G, AssωGM ) on objects, hence we still have to spe-

cify Ass on morphisms: Every morphism in the source category PB∇
M is a

parallel fiber bundle homomorphism φ : GM −→ ĜM equivariant over

φgrp : G −→ Ĝ, in the the target category GTS∇
M such a morphism be-

comes the natural transformation Φφ defined for F̂ ∈ OBJ MFĜ by:

Φφ( F̂ ) : GM ×G F̂ −→ ĜM ×Ĝ F̂ , [ g, f̂ ] 7−→ [φ(g), f̂ ] .

Corollary 5.2 (Association Functor as Equivalence of Categories)

For every smooth manifold M the association functor Ass provides an equi-

valence of categories from the category PB∇
M of principal bundles to the

category GTS∇
M of gauge theory sectors over M with connections:

Ass : PB∇
M

≃
−→ GTS∇

M , (G, GM, ω ) 7−→ (G, AssωGM ) .

In particular two principal G±bundles endowed with principal connections

on M are isomorphic via a parallel, G±equivariant homomorphism of fiber

bundles, if and only if their association functors are naturally isomorphic.
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Proof: According to Theorem 5.1 every gauge theory sector with connec-

tion (G, F ) is isomorphic in the category GTS∇
M to an association functor

AssωGM for a suitable principal G±bundle GM with a principal connection

ω. In order to prove Corollary 5.2 we thus need to show that the association

functor Ass induces for two arbitrary objects in PB∇
M a bijection of sets:

Ass : MORPB∇

M

(

(G, GM, ω ), ( Ĝ, ĜM, ω̂ )
)

∼=
−→ MORGTS∇

M

(

(G, AssωGM ), ( Ĝ, Assω̂
ĜM

)
)

Consider for this purpose a morphism (φgrp, Φ ) in the category GTS∇
M

from the image object (G, AssωGM ) to the image object ( Ĝ, Assω̂
ĜM

). The

natural transformation Φ applies to every object in MFĜ, specifically for

the object Ĝleft describing the action of Ĝ on itself by left multiplication the

natural transformation Φ provides a parallel homomorphism of fiber bundles

Φ( Ĝleft ) : GM ×G Ĝ −→ ĜM ×Ĝ Ĝ ,

which we may use to define φ : GM −→ ĜM as the composition:

φ : GM −→ GM ×G Ĝ
Φ( Ĝleft )
−→ ĜM ×Ĝ Ĝ

∼=
−→ ĜM

g 7−→ [ g, ê ] [ ĝ, γ̂ ] 7−→ ĝ γ̂ .
(21)

The argument we used in equation (18) to show that the right hand side iso-

morphism ĜMĜĜ −→ ĜM is parallel implies that GM −→ GM ×G Ĝ is

parallel as well, in consequence φ : GM −→ ĜM is a parallel homomor-

phism of fiber bundles.

In order to show that φ is equivariant over the group homomorphism

φgrp : G −→ Ĝwe use the characteristic property of natural transformations

like Φ for the right multiplication morphism ργ̂ : Ĝleft −→ Ĝleft, ĝ 7−→ ĝγ̂:

GM ×G Ĝ ĜM ×Ĝ Ĝ

GM ×G Ĝ ĜM ×Ĝ Ĝ

✲Φ( Ĝleft )

✲Φ( Ĝleft )❄

(AssωGM ◦ φ
∗
grp)( ργ̂ )

❄

Assω̂
ĜM

( ργ̂ )
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Of course the association functors AssωGM ◦ φ
∗
grp and Assω̂

ĜM
are explicitly

specified on morphisms in Definition 4.2 and both vertical arrows turn out to

be the right multiplication [ g, Γ̂ ] 7−→ [ g, Γ̂γ̂ ] by γ̂ ∈ Ĝ. In turn we find

φ(gγ) = Φ(Ĝleft) [ gγ, ê ] = Φ(Ĝleft) [ g, φgrp(γ) ] = φ(g)φgrp(γ)

for all g ∈ GM and γ ∈ G and conclude that φ is equivariant over φgrp.

Eventually we consider for an arbitrary object F̂ ∈ OBJ MFĜ the orbit

map orbf̂ : Ĝleft −→ F̂ , γ̂ 7−→ γ̂ ⋆ f̂ , associated to an element f̂ ∈ F̂ as

a morphism in the category MFĜ with associated commutative diagram:

GM ×G Ĝ ĜM ×Ĝ Ĝ

GM ×G F̂ ĜM ×Ĝ F̂ .

✲Φ( Ĝleft )

✲Φ( F̂ )❄

(AssωGM ◦ φ
∗
grp)( orbf̂ )

❄

Assω̂
ĜM

( orbf̂ )

Definition 4.2 provides again an explicit description of the two vertical ar-

rows and the top arrow reads [ g, γ̂ ] 7−→ [φ(g), γ̂ ], the commutativity of the

diagram thus implies that Φ( F̂ ) is given by [ g, f̂ ] 7−→ [φ(g), f̂ ]. In other

words the two natural transforms Φ and Φφ agree on arbitrary objects and so

the functor Ass is full, this is surjective on morphisms. In order to show that

Ass is injective on morphisms or faithful the reader may simply verify that

the equivariant map GM −→ ĜM defined in equation (21) equals φ in case

we start with the natural transformation Φ = Φφ. ■

Mutatis mutandis the arguments presented in this section work without tak-

ing connections into account: A functor F : MFG −→ FBM is natu-

rally isomorphic to the association functor AssGM for some principal bun-

dle GM , if and only if F preserves Cartesian products and agrees with the

product functor M× : MF −→ FBM on the full subcategory of trivial G±

manifolds. Suitably defined categories of principal bundles and gauge theory

sectors then turn the association functor into an equivalence of categories:

Ass : PBM
≃
−→ GTSM , (G, GM ) 7−→ (G, AssGM ) .
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