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STONE DUALITY FOR
TOPOLOGICAL CONVEXITY
SPACES

Toby Kenney

Résumé. Un espace de convexité est un ensemble X équipé d’une famille
choisie de sous-ensembles (appelés les sous-ensembles convexes) fermée par
intersections arbitraires et unions dirigées. On s’intéresse beaucoup aux es-
paces qui ont a la fois la structure d’espace de convexité et la structure d’espace
topologique. Dans cet article, nous étudions la catégorie des espaces de
convexité topologiques et étendons la dualité de Stone entre les coframes
et les espaces topologiques 4 une adjonction entre la catégorie des espaces
de convexité topologiques et la catégorie des treillis et des homomorphismes
préservant le supremum. Cette adjonction peut etre factorisée a travers la
catégorie des espaces de préconvexité (parfois appelés espaces de fermeture)
Abstract. A convexity space is a set X with a chosen family of subsets
(called convex subsets) that is closed under arbitrary intersections and di-
rected unions. There is a lot of interest in spaces that have both a convexity
space and a topological space structure. In this paper, we study the cate-
gory of topological convexity spaces and extend the Stone duality between
coframes and topological spaces to an adjunction between topological con-
vexity spaces and sup-lattices. We factor this adjunction through the category
of preconvexity spaces (sometimes called closure spaces).

Keywords. Stone duality; Topological Convexity Spaces; Sup-lattices; Pre-
convexity Spaces; Partial Sup-lattices

Mathematics Subject Classification (2010). 18F70, 06D22
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1. Introduction

Stone duality is a contravariant equivalence of categories between categories
of spaces and categories of lattices. The original Stone duality was between
Stone spaces and Boolean algebras [15]. One of the most widely used exten-
sions of Stone duality is between the categories of sober topological spaces
and spatial coframes (or frames — since this is a 1-categorical duality, they
are the same thing). This duality extends to an idempotent adjunction be-
tween topological spaces and coframes, given by the functors that send a
topological space to its coframe of closed sets, and the functor that sends a
coframe to its space of points.

In this paper, we develop an idempotent adjunction between topologi-
cal convexity spaces and sup-lattices (the category whose objects are com-
plete lattices, and morphisms are functions that preserve arbitrary suprema).
Topological convexity spaces are sets equipped with both a chosen family
of closed sets and a chosen family of convex sets. A canonical example
is a metric space X with the usual metric topology, and convex sets being
sets closed under the betweenness relation given by y is between z and z if
d(x,z) = d(z,y) + d(y, z). Many of the properties of metric spaces extend
to topological convexity spaces. Homomorphisms of topological convexity
spaces are continuous functions for which the inverse image of a convex set
is convex.

Our approach to showing this adjunction goes via two equivalent inter-
mediate categories. The first is the category of preconvexity spaces. A pre-
convexity space is a pair (X, P) where P is a collection of subsets of X that
is closed under arbitrary intersections and empty unions. We will refer to
sets P € P as preconvex subsets of X. A homomorphism of preconvexity
spaces [ : (X,P)——(X',P’) is a function f : X —— X’ such that for
any P € P’, we have f~1(P) € P. This category of preconvexity spaces
was also studied by [4], and shown to be closed under arbitrary limits and
colimits.

The second intermediate category that is equivalent to the category of 7-
preconvexity spaces, is a full subcategory of Distributive Partial Sup lattices.
This category was studied in [11]. Objects of this category are complete lat-
tices with a chosen family of suprema which distribute over arbitrary infima.
Morphisms are functions that preserve all infima and the chosen suprema.

244



T. KENNEY DUALITY FOR TOPOLOGICAL CONVEXITY SPACES

The motivation for partial sup lattices was an adjunction between partial sup
lattices and preconvexity spaces, which is shown in [11].

Before we begin presenting the extension of Stone duality to topologi-
cal convexity spaces, Section 2 provides a review of the main ingredients
needed. While these reviews do not contain substantial new results, they
are presented with a different focus from much of the literature, so we hope
that the reviews offer a new perspective on these well-studied subjects. We
first recap the basics of topological convexity spaces. We then review Stone
duality for topological spaces. We then review the category of distributive
partial sup-lattices. This category was defined in [11], with the motivation
of modelling various types of preconvexity spaces. However, the definition
presented in this review is changed from the original definition in that paper
to make it cleaner in a categorical sense.

2. Preliminaries

2.1 Topological Convexity Spaces

Definition 2.1. A topological convexity space is a triple (X, F,C), where
X is a set; F is a collection of subsets of X that is closed under finite
unions and arbitrary intersections, i.e. the collection of closed sets for some
topology on X; and C is a collection of subsets of X that is closed under
directed unions and arbitrary intersections. Note that these include empty
unions and intersections, so X and & are in both F and C. Sets in F will be
called closed subsets of X and sets in C will be called convex subsets of X.

The motivation here is that (X, F) is a topological space, while (X, C) is
an abstract convexity space. Abstract convexity spaces are a generalisation
of convex subsets of standard Euclidean spaces. Abstract convexity spaces
were defined in [10], though in that paper, the definition did not require C to
be closed under nonempty directed unions. Closure under directed unions
was an additional property, called “domain finiteness”. Later authors incor-
porated closure under directed unions into the definition of an abstract con-
vexity space, and used the term preconvexity space for a set with a chosen
collection of subsets that is closed under arbitrary intersections and contains
the empty set [4].
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While the definition of an abstract convexity space captures many of the
important properties of convex sets in geometry, it also allows a large number
of interesting examples far beyond the original examples from classical ge-
ometry, including many examples from combinatorics and algebra. The re-
sulting category of convexity spaces has many natural closure properties [4].

The definition above does not include any interaction between the topo-
logical and convexity structures on X. While it will be convenient to deal
with such general spaces, it is also useful to include compatibility axioms be-
tween the convexity and topological structures. The following axioms from
[16] are often used to ensure suitable compatibility between topology and
convexity structure.

(i) All convex sets are connected.
(i) All polytopes (convex closures of finite sets) are compact.

(i11) The hull operation is uniformly continuous relative to a metric which
generates the topology.

We will modify the third condition to not require the topology to come
from a metric space, giving the weaker condition that the convex closure
operation preserves compact sets.

Definition 2.2. We will call a topological convexity space compatible if it
satisfies the two conditions

(i) All convex sets are connected.

(ii) The convex closure of a (topologically) closed compact set is (topolog-
ically) closed and compact.

We will call a topological convexity space precompatible if it satisfies the
two conditions

(i) All convex sets are connected.

(ii’) The convex closure of a finite set is (topologically) compact.
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At this point, we will introduce some notation for describing topological
convexity spaces. For any subset A € X, we will write [A] for the intersec-
tion of all convex sets containing A. To simplify notation, when A is finite,
we will write [aq, . .., a,] instead of [{ay, ..., a,}].

Examples 2.3.

1. If (X, d) is a metric space, then setting F to be the closed sets for the
metric topology, i.e.

Fz{AgX

(Vre X) (/\d(m,y) =0:>:L‘EA)}

yeA

and

C={Ac X|(Vz,y,z€ X)((z,z€ And(z,z) =d(z,y) + d(y,2)) =y A)}

we have that (X, F,C) is a topological convexity space. To ensure
that convex sets are connected, we will often assume that geodesics
exist — that is, for any r < d(z,y), there is some z € [z,y] such
that d(z,z) = r and d(y,z) = d(z,y) — r, to ensure that convex
sets are connected. We will usually also require that open balls are
convex, and that the set {z € X|d(x,y) = d(x, z) + d(z, )} is convex
(and therefore the interval [z, y]). For common examples where these
conditions hold, the convex closure of a compact set is compact, so that
the space is compatible. However, it is not easy to prove compatibility
of these spaces under simple conditions, or to find examples of metric
spaces where this structure is not compatible.

2. Let L be a complete lattice. We define a topological convexity space
structure by

f:{ﬂﬂ

el

(Vie[ﬂﬂxh.”,LMGJXXP}=l{fh-~a$m}X}UUZ}

and

C={Ic X|(Vay,zoe]) (Vy<zi)(yel) A (z1 v xye 1))}
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That is, F is the set of arbitrary intersections of finitely generated
downsets, plus the emptyset (which are the closed sets for the weak
topology [9]) and C is the set of (possibly empty) ideals of L. This
topological convexity space is precompatible. To prove connected-
ness of convex sets, we want to show that an ideal cannot be covered
by two disjoint weak-closed sets. Suppose U and V" are disjoint weak-
closed sets that cover I. Letae InUandbe I nV.Thenav be I,
and if a v b € U, then b € U contradicting disjointness of U and V.
Similarly if @ v b € V then a € V. This contradicts disjointness of U
and V. The ideal generated by a finite set of elements in L is clearly
principal, and therefore closed and compact. L is not in general com-
patible, since, for example, if L is the powerset of N, then singletons in
L are weak-closed, since for any set X’ < X containing two elements
a and b, the downset |{{a}¢, {b}¢} is finitely generated, and contains
all singletons, but does not contain X’.

3. Letn € Z* be a positive integer. Let .S, be the group of permutations
on n elements. Let F consist of all subsets of .S, and for any partial
order < on n, let

Po={oeS|(Vi,jell,....,n))i<j=a(i) <o(j)

where < is the usual total order on Z*. That is P is the set of permu-
tations o such that < is contained in 0! (<). let

C = {P-| < isapartial order on {1,...,n}} u {J}

Since S, is finite, to prove that (.S,, F, C) is a convexity space, we just
need to show that C is closed under intersection. This is straightfor-
ward. Since partial orders are closed under intersection, the poset of
partial orders on {1, ..., n}, with a top element adjoined, is a lattice.
Thus the intersection P~ N P- = P~ c, so C is closed under intersec-
tion. This is a metric topology, with the metric given by d(o, 7) is the
Cayley distance from o to 7, under the Coxeter generators. That is,
d(o, ) is the length of the shortest word equal to 70! in the genera-

tors {r;|i = 1,...,n — 1}, where
i+1 ifj =i
Ti(j) =4 9 ifj=i+1
7 otherwise
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is the transposition of 7 and 7 + 1.

4. If GG is a topological group, or more generally a universal algebra
equipped with a suitable topology, then we can define a topological
convexity space by making subgroups (or more generally subalgebras)
and the empty set convex, and keeping the closed sets from the topol-

ogy.

Having defined the objects in the category of topological convexity spaces,
we need to define the morphisms.

Definition 2.4. A homomorphism f : (X, F,C)—— (X', F',C’) between
topological convexity spaces is a function f : X —— X' such that for every
FeF, f~YF)e Fandforevery CeC', f71(C)eC.

The condition that f~!'(F) € F is the condition that f is continuous
as a function between topological spaces. The condition that f~1(C) € C
is called monotone by [4], by analogy with the example of endofunctions
of the real numbers. This was in the context of convexity spaces without
topological structure. Dawson [4] uses the term .Align for the category of
convexity spaces and monotone homomorphisms, and Convex for the cate-
gory of convexity spaces and functions whose forward image preserves con-
vex sets. However, this terminology has not been widely used, and later
authors have all considered the monotone homomorphisms as the natural
homomorphisms of abstract convexity spaces. In the case of topological
convexity spaces, the monotone condition is an even more natural choice
because it aligns well with the continuity condition and leads to the Stone
duality extension that we show in this paper.

Examples 2.5.

1. For the topological convexity space coming from a metric space, such
that intervals are of the form [x,y] = {z € X|d(z,2) + d(y,2) =
d(x,y)}, ahomomorphism is a function f : X ——Y such that when-
ever d(x, z) = d(x,y)+d(y, z), wehave d(f(x), f(2)) = d(f(x), f(y))+
d(f(y), f(2)). Thatis, f embeds geodesics from X into the geodesics
in Y. To see that homomorphisms have this property, we have that
F7Y[f(x), f(2)]) is convex, and contains = and z, so if d(x,z) =
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d(z,y) + d(y, 2), then f~Y([f(x), f(2)]) must contain y. This means
fy) € [f(2), f(2)] = {vld(f(2), f(2)) = d(f(x),v) + d(v, [(2))}.
Conversely, if f has the given property, then for any convex A < Y/, if
z,z € f~1(A), then for any y such that d(z, z) = d(z,y) + d(y, z), we
have d(f (), f(2)) = d(f(x), f(y)) + d(f(y), f(2)), so by convexity,
f(y) € A, making y € f~1(A), so f~1(A) is convex.

2. If L and M are complete lattices with the weak topology and con-
vex sets are ideals, then topological convexity space homomorphisms
from L to M are exactly sup-homomorphisms. To see this, let f :
L—— M be a sup-homomorphism. Let I < M be an ideal. Since f
is order-preserving, f~1(I) is clearly a downset, and for a,b € f~1(I),
flavd) = f(a)v f(b) € I. Since inverse image preserves intersection,
it is sufficient to show that the inverse image of a finitely-generated
downset F' < M is weak-closed. Let F' = |{my,...,m,}. For
i=1,...,n,letl; = f.(m;), where f, is the order-theoretic right ad-
joint of f (which exists because f is a sup-homomorphism). We have
f(x) < my, if and only if x < I;. Thus, f~'(F) = |{l,...,l,}. Con-
versely suppose f : L—— M is a topological convexity space homo-
morphism. Weak-closed ideals are easily seen to be principal ideals,
since if I is anideal, and I < |{z1,...,x,}, then if there are elements
y; € I withy; € z;, theny; v+ - - vy, cannotbein |{x1, ..., z,}, which
is a contradiction, so we must have / < | z; for some i € {1,...,n}.
Thus the inverse image of a principal ideal is another principal ideal.
In particular, f~'(| \/{f(a)|a € A} is a principal ideal containing A,
so it contains \/ A, and thus f(\/ A) < \/{f(a)|a € A} as required.

For the partial order convexity on .5, from Example 2.3.3, describing the
topological convexity space morphisms is more challenging. We start by
looking at half-spaces (convex sets with convex complements). Half-spaces
of S, are of the form C;; = P, where < is the partial order where the only
non-trivial comparison is ¢ < j. Thatis, C;; = {0 € S,|o(i) < o(j)}. We
first consider automorphisms:

Lemma 2.6. If, j, k and [ are distinct, then the only half-spaces that contain
Cij M Okl are Oij and Olcl-

Proof. For any half-space Cy; ¢ {C;;, C}, we need to find some o € Cj; N
Ciy with 0 ¢ Cy. Suppose s = j and ¢t # 4, then we can find a permutation
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o such that 0(i) < o(j) < o(t) < o(k) < o(l). This o is in C;; N C, but
not in Cj; as required. Similar permutations work for all combinations. [

Lemma 2.7. An automorphism f : (S,, P(S,),C)——(S,, P(S,),C) is of
the form f(o) = OoT for some T € S, and some 0 € {e, p} where e is the
identity permutation and p is the permutation which reverses the order of all
elements.

Proof. Tt is easy to see that for 7 € S,, f, given by f,(0) = o7 is an au-
tomorphism of (.5, P(S,),C). Now we consider the stabiliser of the iden-
tity element. Since {Cj;n)|i = 1,...,(n — 1)} is the only set of n — 1
half-spaces whose intersection contains only the identity permutation, any
automorphism which fixes the identity permutation must fix this set. Fur-
thermore, since C;_1); N Ci(it1) S Cli—1)(i+1) it follows that

fﬁl(c(i—l)i) a ffl(ci(iﬂ)) < fﬁl(C(i—l)(i+1))

Since f is an automorphism, f~'(C(;_1)+1)) cannot be either [~ (C;_1y;)
or f~1(Cyi11)). By Lemma 2.6, it follows that f~!(C(;_1y;) and f~'(Cj(i+1)
are adjacent half-spaces. Since the set of half-spaces

{CV'L(er1)|2 =1,... ) (TL - 1)}

is permuted by f~!, the only possible permutations are the identity and the
reversal Cj(; 1) = C(n—i)(n+1—i)- This reversal sends a permutation o to pop.

We want to show that these are the only elements in the stabiliser of the
identity. By applying pop if necessary, we can change an element in the
stabiliser of e to one such that f~! fixes every Ci(i+1)- Now Cj(i49) is the
unique half-space that contains C;(; 11y N C;41)(i+2) that is not equal to either
Cigi+1) of Ciz1)(i+2)» S0 it is also fixed by f~1. By induction, we can show
that every Cj; is fixed by f~', and thus f is the identity. ]

Proposition 2.8. f: S,—— S, is a surjective topological convexity space
homomorphism, if and only if there is an injective function g : m——n,
such that f is either given by

Lo f(r)(@) = {j e {1,....m}|7(9(4)) < 7(g()}|- That is, f() is the
automorphism part of the automorphism—order-preserving-inclusion
factorisation of Tg.
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n———

n
0 It
m——m
f(r)

or

2. f(0)@) = {7 € {1,....m}|7(g(j)) = 7(g(i)}| Thatis, f(T) is the
automorphism part of the automorphism-order-preserving-inclusion
factorisation of pTg, where p is the order-reversing permutation on
n.

3

g

.

m-———m
f(7)

Proof. Firstly, we show that for an injective function g : m ——n, both the
functions

ag(o)(i) = {j e {L,-...m}o(g(4)) < o(g(i))}]
and

dg(0)(i) = [{j € {1,....,m}o(g(s)) = a(g(i))}]
are surjective homomorphisms. We see that for any i # j € {1,...,m},

oy (Cyj) = {0 € Silag(0) (i) < ag(0)(5)} = {0 € Sila(g(i) < a(9(4))} = Cygti)

and

8y (Ciy) = {o € Suld,y(0) (i) < 0,(0) ()} = {0 € Silo(g(3)) > a(9(/))} = Cotinat
so a, and 0, are homomorphisms. For surjectivity, let ¢ € .S,,. We need to

show that ¢ = a,(7) for some 7 € S,,. Given the injections m ——n and
m—2—m——n for any injective order-preserving m Ly, ne—l<my © n
is a partial permutation of n, so it extends to a full permutation 7 with
ay(1) = ¢. Similarly, we have 0,(p7) = ay(T) = ¢, so a, and J, are
both surjective.
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Conversely, let f : S,—— 5, be a surjective homomorphism. Since
{e} is convex, where ¢ is the identity homomorphism, f~!({e}) is convex.
Furthermore, ~'({e}) = (;_,; /' (Ci;). Since ! preserves convex sets,
forevery i # j € {1,...,m} f71(Cy;) = Cy for some s,t € {1,...,n}.
Furthermore, f~'(Ci; n Cjr) = Cg N Cp,. Thus, we have f~1({e}) =
Ci1i2...im = Ci1i2 N 01‘21'3 e M Oimfl'im' If f_1(012) = Ol‘”'Q, then we can
define g(j) = i;, and we have that f = «,. If on the other hand f~*(C}2) =
C then we let g(j) = 4,,,+1—; and we have f = §,.

m—1%m>

]

Describing general homomorphisms between these topological convex-
ity spaces is more difficult, and outside the scope of this paper.

3. Preconvexity Spaces and the Adjunction with Topologi-
cal Convexity Spaces

Definition 3.1. A preconvexity space (sometimes called a closure space) is
a pair (X, P), where X is a set and P is a collection of subsets of X that is
closed under arbitrary intersections and contains the empty set (since X is
an empty intersection, we also have X € P).

This was [10]’s original definition of a convexity space. However, later
authors decided that closure under directed unions should be a required prop-
erty for a convexity space, and [4] introduced the term preconvexity space
for these spaces that do not require closure under directed unions.

Definition 3.2. A homomorphism (X, P) AN (X', P’") of preconvexity spaces
is a function X X such that for any preconvex set P € P’, the inverse
image f~1(P) e P.

Examples 3.3.

If (X, F,C) is a topological convexity space, then (X, F n C) is a precon-
vexity space. The underlying function of any topological convexity space

homomorphism (X, F,C) L>(X ', F',C') is a preconvexity homomorph-
ism. Conversely, if C’ consists of directed unions from F' n C’, and F’
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consists of intersections of finite unions from F’ n C’, then any preconvex-
ity homomorphism (X, F n C)—2— (X', F' n (') is a topological convexity
homomorphism.

Example 3.3 gives a functor Convex%p%ﬂ“econvex that sends ev-
ery topological convexity space to the preconvexity space of closed convex
sets. The action on morphisms simply reinterprets the topological convexity
homomorphism as a preconvexity homomorphism.

This closed-convex functor has a right adjoint, 7.5, which sends the pre-
convexity space (X, P) to (X,P,P) where P is the closure of P under
directed unions, and P is the closure of P under finite unions and arbitrary
intersections. We will show that this defines a topological convexity space
and is a right adjoint.

Lemma 3.4. For any preconvexity space (X, P), the set P is the collection
{UD|D < P directed}.

Proof. Let @ = {|JD|D < P directed}. We need to show that Q is closed
under directed unions. Let D < Q be directed. For Sach D e D, there
is a directed Dp < P such that D = | JDp. Let D be the closure of
\U{Dp|D € D} under finite joins in P (which exist because P is closed
under arbitrary intersections). By definition, D is directed. We will show
that | JD = | JD. Suppose = € | D. Then there is some D € D with x € D,
and since D = | JDp, there is some P € Dp < D with z € P,soxe Uf)
Conversely, if 2 € | J D, then there is some P,..., P, € | J{Dp|D € D}
such that z € P, v --- v P,. Now let each P, € Dp, for some D; € D.
This means that P; = D;. Since D is directed, there is an element of D that
contains Dy, ..., D,, and which must therefore contain P, v --- v P,. [

Lemma 3.5. For any preconvexity space (X, P), the set P is closed under
directed unions and arbitrary intersections.

Proof. By definition, P is closed under directed unions, so we just need to
show that it is closed under intersections. Let {P;|i € I} be a family of
elements of P. By definition, for every ¢ € [, there is a directed D; < P
with P, = [ JD;. W.Lo.g. assume every D; is down-closed in P. We will
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show that
Nr= U Nro (1)
el f;[—}p el
(Viel) f (i)eD;

That is, the intersection of the family {P;|i € I} is the union over all choice
functions f, of the intersection of {f(i)|z € I}. Every f(i) € P, so this
intersection (),_; f(¢) is also in P, and the set of choice functions is di-
rected, since every D; is directed and down-closed, so for choice functions
f,g : I——P the join (f v g)(i) = f(i) v g(i) is also a choice function.
Equation (1) therefore shows that ﬂie Pie P.

To prove Equation (1), first let © € (),_; P,. Since (Vi)(z € P,;), and
P, = | D, there is some D, , € D; with x € D,,. Thus, we can take the
choice function f,(¢) = D;,, and deduce z € (),_; f.(¢). Conversely, let

fia—p €l
(Viel) f(i)eD;

There must be some choice function f with z € (),_; f(¢). Since f(i) € D;,
it follows that f(i) € P,,sox € P, forevery i€ I. Thusz € (|, P. O

Remark 3.6. The proof of Lemma 3.5 does not actually require the axiom of
choice, because there are canonical choices for all choice functions needed
— for each P;, we need to choose a directed family D; with P, = | D;. We
canlet D; = {P € P|P < P}, and since every D; is a downset, we can set
D, , = {z} for every i € I, where m is the convex-closed closure of {x}.

Lemma 3.7. Every F € P is of the form (| F, where
Fc{Pu---uP,|P,...,P,eP}

Proof. Let P = {PLu---u P,|P,..., P, € P} be the set of finite unions
from P. We need to show that the set {ﬂ F|F < 73} is closed under finite

unions. (By definition, it is closed uAnder arbitrary intersections.) Let [} =
() Fi and F, = [\ F; for Fy, F» < P. Let

.F12:{P1UP2’P1€.F1,P26.F2}
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We will show that 'y U Fy = () Fyz. Clearly, forevery P, € Fi, and P, € F,
we have [, € Py and F5, € Py, s0 Fy u Fy, € P; u P,. Conversely, suppose
x ¢ I U F,. Then there is some P; € F; and some P, € J5 with x ¢ P; and
x ¢ Py. It follows that z ¢ P, U Py € Fia,80 ¢ | Fio. O

Lemma 3.8.

1. For a set X, the identity function on X is a preconvexity homomorph-
ism (X, P)—— (X, P) ifand only if P < P.

2. For a set X, the identity function on X is a topological convexity
homomorphism (X, F,C)—— (X, F',C) if and only if F' < F and
C'cC.

Proof. This is immediate from the definition. [

Proposition 3.9. The assignment 1S that sends the preconvexity space (X, P)
to the topological convexity space (X, P, P) and the preconvexity homo-

morphism (X, P)L(X’,P’) to f considered as a topological convex-
ity homomorphism, is a functor, and is right adjoint to the functor C'C :
ConvexJop—— Preconvex.

Proof. Because the forgetful functor to Set sends IS to the identity functor,
the functoriality of /.S is automatic provided it is well-defined. That s, if any

preconvexity homomorphism (X, P) SN (X’,P’) is a topological convex-

ity homomorphism from (X, P, P) to (X', P, 737) For the adjunction, we
need to demonstrate that for any topological convexity space (X, F,C) and
any preconvexity space (X', P’), a function f : X —— X’ is a topological
convexity space homomorphism (X, F,C) 7, (X', P',P') if and only if it

is a preconvexity homomorphism (X, F n C) SN (X',P’). The “only if”
part is obvious.

Suppose (X, FnC) AN (X', P’) is a preconvexity homomorphism. Let
F € P’. We want to show that f~'(F) € F. Now F € P’ means F' = (U
where U < P Now if P, u---uU P, € 7/3\’, then f~1 (P, U ---UP,) =
f7YP) v f7H(P,) is a finite union of sets from F N C, so since F is
closed under finite unions, f~*(P, u --- U B,) € F. Therefore f~'(F) =
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(W/'UIU e U} and {f~'U|U e U} < F, so as F is closed under arbitrary
intersections, f~!(F) € F. Similarly, let C = | JD, where D < P’ is a
directed downset. For every D € D, we have f~1(D) € C, and for any
D1, Dy € D, there is some D5 € D with Dy € Dy and Dy © Dqs. It
follows that f~!(D;) < f~'(D12) and f~*(Dy) < f~'(D1a). Therefore,
{f~Y(D)|D € D} is directed. Now

(o =tr ' (0)|DeD)

Since {f~Y(D)|D € D} < C, and C is closed under directed unions, it fol-
lows that f~*(C) € C. Thus f is a homomorphism of topological convexity
spaces.

Well-definedness of the functor /.S also follows from the adjunction, be-
cause P = P n P, so the identity function on X is always a preconvexity

homomorphism (X, P ~ P)—— (X, P). Thus the composite

(XPmP) (X,P)— (X', P

is a preconvexity homomorphism, so by the adjunction, it is a topological

convexity space homomorphism (X, P, 73) N (X', P, 7/37)
O

Corollary 3.10. The adjunction CC — 1S is idempotent.

Proof. The counit and unit of the adjunction are both the identity function
viewed as a homomorphism in the relevant category. The triangle identities
for the adjunction therefore give an isomorphism of spaces, showing that the
adjunction is idempotent. 0

For an idempotent adjunction, a natural question is what are the fixed
points?

Proposition 3.11. A ropological convexity space X = (X, F,C) satisfies
IS oCC(X) = X ifand only if X satisfies the conditions:

1. Every convex set is a directed union of closed convex sets.

2. ForeveryV € F and any x € X\V, there are sets Cy,...,C, € FnC
suchthatV< Ciu...uCyandx ¢ Cy u...uUC,.
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Proof. The counit of the adjunction is the identity function on the underlying

sets. Thus (F nC) < F and (m) < C. Let A € C be convex in X. By
C/()Elgion 1, A is a directed union of sets in F N C. By definition, this is in
(FnC).

Now let Ve F. Forany W = Cy u --- u C, with C; € F n C,
W e (F n C) by definition. Thus, by Condition 2, for every x € X \V/, there
issome W e (FnC)withV € W and xz ¢ W. Now, clearly V is the
intersection of all these W for all x ¢ V. Since (F n C) is closed under
arbitrary intersections, this implies V' € (F n C).

Conversely, if X is a fixed point of the adjunction, i.e. [SoCC(X) = X,

then C = (F n C), which is exactly Condition 1. Also F = (F n (),
meaning that for every V' € F, we have V = [\U where U is a family of
finite unions of sets from F n C. Since V = ﬂZ/{, for any x ¢ V, there
is some U € U with x ¢ U. By definition, U = C; U --- u C,, for some
Ci,...,C, € F nC, which is Condition 2. H

We will call a topological convexity space feetotal if the conditions of
Proposition 3.11 hold. The teetotal conditions are closely related to the com-
patible conditions from Definition 2.2. However, there are compatible spaces
which are not teetotal.

Example 3.12. [? is the vector-space of square-summable sequences of real
numbers, with the /2 norm. Since [? is a metric space, it is easy to check that
it is a compatible topological convexity space.

Let F' be the unit sphere, which is a closed set, and let z = 0. In order
for 2 to be teetotal, we need to find a finite family of closed convex subsets
Ci,...,Cysuchthat Fc Chu---uC,andx ¢ Cy U ---u C),. For closed
convex C; and x ¢ C}, since C; is closed, there is an open ball containing x
disjoint from C;. Let d = sup{r € R|B(x,r) n C; = ¢} be the distance
from z to C;. Since B(z,d) is the directed union of {B(x,r)|r < d}, it
follows that B(z,d) n C; = (.

We first show that if C' is a closed convex set that does not contain 0,
then there is a unique y € C' that minimises ||y||. If there is no y € C that
minimises ||y, then there must be a sequence ay, as, ... € C such that ||a;||
is strictly decreasing and

lim [|a,,[| = inf |[y|]
n—o0 yeC
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Since [ay, . .., a,] is compact for every n, there is a point b,, € [ay, ..., a,]
that minimises ||b||. In particular, this means that for any i < n and any
0<e<l1,| b, +e(b; —by)|| = ||bnl]]. Squaring both sides gives

2¢(b;, by — 2€{bp, by + €2(b; — by, b; — by) > 0
Taking the limit as € — 0 gives {b;, b, > {by,b,,). Thus

16 = bull* = [1B:[]* + (1w 1* = 2bi, ba)
< J10ill* = 16 1®

Since ||b,||* is a decreasing sequence, bounded below by 0, it converges to
some limit 7. Thus ||b; — b, ||* < ||b;]|* — 7 for any i < n. Thus b, is a Cauchy
sequence, so it converges to some limit b,,. Now since C'is closed, b, € C,
and

[boo| = Tim [|b,,[| = inf]|y]]
n— yeC'

Thus by, is a nearest point in C' to 0. If y is another point with minimal
norm, then % must have smaller norm. Thus by, is the unique point with
smallest norm.

Now for any y € C, since C' is convex, we have that ||by, + €(y — by) || >
|bwo||, and by the above argument, {y,bx) = (b, by). Thus C < {z €
1?[{x, by > 3|bso||?}. That is, every closed convex set is contained in an
open half-space that does not contain z = 0.

We can therefore find half-spaces Hy, ..., H, withx ¢ H; and C; < H,.
Thus, we may assume that F* < H; U --- U H,. Half-spaces that do not
contain the origin are sets of the form H,, , = {v € [*|{v, w) > a} for some
w € [* and a € R™. Given a finite family H1,..., H, = Huy a1y - Hu, 0 »
we can find a unit vector w that is orthogonal to all of wy,...,w,. This
means that w ¢ H; for all 7, and w € F, contradicting the assumption that
F c H, U ---u H,. Therefore, I does not satisfy the teetotal axioms.

The teetotal interior 1S o C'C(I?) has the same convex sets, but closed
sets are intersections of finite unions of closed half-spaces. We can check
that this is the product topology on [? as a real vector space.

Example 3.13. Let (X, d) be a metric space, where X = [ J, [n]" is the
set of finite lists with entries bounded by list length. The distance is given
by d(u,v) = l(u) + l(v) — l(u N v), where [(u) is the length of the list u
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and u M v is the longest list which is an initial sublist of both v and v. The
induced topology is clearly discrete. The complement of the empty list is not
contained in a finite union of convex subsets that does not contain the empty
list. In particular, a convex subset of X that does not contain ¢ must consist
of lists that all start with the same first element. Since there are infinitely
many possible first elements, a finite collection of convex sets that do not
contain the empty list cannot cover X\ .

The space (X, d) is a metric space and every closed ball is compact.
However, it is not a fixed point of the adjunction between ConvexTop and
‘Preconvex.

For a (pre)compatible topological space to be teetotal, an additional prop-
erty is needed.

Proposition 3.14. If (X, F, C) is a precompatible topological convexity space
with the following properties:

» There is a basis of open sets that are convex, whose closure is convex
and compact.

* (X, F) is Hausdorff.

o If A is closed convex and x ¢ A, then there is a closed convex set H
such that H€ is convex, with A < H and x ¢ H. (This property, with-
out the topological constraints, is often used in the literature, where it
is called the Kakutani condition.)

then (X, F,C) is fixed by the adjunction.

Proof. We need to show that for any closed V' € F, and any x ¢ V/, there is
a finite set of closed convex sets whose union covers V' but does not contain
x. Let U be an open subset of V¢, containing = such that U is convex and
U is convex and compact. Let A = U\U. For any a € A, by the Hausdorff
property, we can find an open U, that contains a, whose closure does not
contain x. Since convex open sets with convex closure form a basis of open
sets, we can find a convex open U, with convex closure that does not contain
x. Since A is compact, it is covered by a finite subset U; U --- U U, . Now
each @ is contained in a closed convex f,, which does not contain z, such
that H; is also convex.
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For any y € V, since |z, y] is connected (by compatibility), it cannot be
the union ([z, y]nU)u ([2,y] nT"),s0 [z,y]n A # &. Letz € [z, y] n A.
Since H,, cover A, we have z € H,, for some i. Now if y € H,.°, then
since H,,* is convex and contains z, it follows that z € H,,° contradicting
z € H,,. Thus, we must have y € H,,. Since y € V is arbitrary, we have that
VcH, v---uH, asrequired.

We also need to show that every convex set is a directed union of closed
convex sets. Let C' € C be a convex set. Let D = {[F']|F' < C, F finite} be
the collection of finitely generated convex subsets of C'. Since finite sets are
closed under binary unions, D is directed. Since the convex closure of any
finite set is closed, it follows that C is a directed union of closed convex sets
as required. [

For a metric space, these conditions can be simplified to give more natu-
ral conditions.

Lemma 3.15. If X is a topological convexity space where intervals are
closed, satisfying the Kakutani property that every pair of disjoint closed
convex sets are separated by a closed half-space, then for any x, s, t,p,q,r €
X with s € [x,p], t € [x,q] and r € [p, q], we have [z,7] N [s,t] # &.

Proof. If [x,r] N [s,t] = &, then [z, r] and [s, t] are disjoint closed convex
sets, so by the Kakutani propery, there is a closed half-space H such that
[z,7] € H and [s,t] < H. Now if p € H, then since x € H and H is
convex, we get s € H, contradicting [s,t] < H®. This is a contradiction, so
we must have p € H¢. A similar argument shows that ¢ € H¢. However,
since H¢ is convex, it follows that r € H¢, contradicting [z, r] < H. This
contradiction disproves [z, 7] N [s,t] = &, so [z, r] N [s,t] # & O

Lemma 3.16. If (X, d) is a metric space, such that every open ball is convex,
every pair of disjoint closed convex sets are separated by a closed half-space
(a closed convex set with convex complement), and every interval [a,b] is
isomorphic (as a topological convexity space) to the real interval |0, 1] then
for any convex compact A < X and any v € X, we have

[, A] = | il ylly € A)

Proof. We need to show that | J{[z,y]|y € A} is closed under the between-
ness relation. Let s,t € | J{[x,y]|ly € A}, and let z € [s,t]. Let s € [z, p]
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and t € [z, q| for p,q € A. We will show that z € [z, r] for some 7 € [p, q|.
Since [s,t] = [0, 1], we have that [s,t] = [s,z] U [z,t]. Forr € [p,q], if
[z,7] N [s,2] # & and [z,7] N [2,t] # O, then clearly z € [z, r]. Thus if
(Vr € [p, q])(z ¢ [z, r]), then

(Vre [pa)(([z, 7]~ [s,2] = D) v ([, 7] 0 [2,1] = D))

SO

[p.al = {r e lp.dlllz, vl s, 2] = Sy v {r e [p,dlllz, 7] 0 [2,t] = T}

and this union is disjoint by Lemma 3.15. By connectedness of [p, ¢], we just
need to show that {r € X|[z,r]n[s, z] = T} and {r € X|[z,r]n[z,t] = T}
are open to reach a contradiction, which would prove z € [z, r] for some
r € [p,q]. LetU = {r e X|[z,r] n [s,2z] = &}, and let v € U. We want to
show that there is some € such that B(v,¢) < U. Now [s, z] n [z,v] = &,
which means (Yw € [s, z])(d(z, w) + d(w,v) # d(z,v)). Since [s, 2] is
compact, the function f(w) = d(z,w) + d(w,v) — d(x,v) is bounded away
from zero on [s, z]. Let § be a lower bound. Now if v’ € B (v, 2), then for
any w € [s, z|, we have

d(z,w) + d(w,v") = d(z,w) + d(w,v) — d(v,v")

> d(z,v) +5—g
> d(z,v") —d(v',v) +g
> d(z,v)

Because the inequality is strict, we have w ¢ [x,v'] for any w € [s, z], i.e.
v' € U. Thus B (v, g) c U, meaning U is open as required. 0

Corollary 3.17. If (X, d) is a metric space, such that every closed ball is
compact, every open ball is convex, every pair of disjoint closed convex sets
are separated by a closed half-space, and every interval |a, b] is isomorphic
to the real interval |0, 1] then the induced topological convexity space is fixed
by the adjunction.

Proof. We will show that the conditions of Proposition 3.14 hold in this case.
The Hausdorff condition is always true for metric spaces.
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The open balls form a basis for the topology, and are convex. By con-
nectedness, if d(x,y) = r, then since [x,y]| is connected, there is a se-
quence y1,...,Y, — yin [z,y], sOo y1,...,y, € B(z,r). Thus, we have
B(z,r) = B(x,r) = {y € X|d(z,y) < r}. Thus, the closure of an open
ball is compact. Also, B(z,7) = (-, B(z, R) is an intersection of convex
sets, so closed balls are convex. Thus open balls are a basis of the topology
with the required property.

Next, we need to show that the convex closure of a finite set is compact.
We will do this inductively. By Lemma 3.16, we have that [z, ..., z,] =
U{[z1,y]ly € [x2,...,2,]}. By the induction hypothesis [z2, ..., z,] is
compact. This means that [xs,...,2,] € B(zy,r) for some r € R*. It
follows that [z, ..., z,] € B(xy,r), since B(xy,r) is convex. Therefore, it
is sufficient to prove that [x1, ..., x,] is closed.

Let z ¢ [x1,...,2,]. We want to prove that there is some open ball
about z that is disjoint from [z1, ..., x,]. Forany y € [z, ..., z,], we know
z ¢ [x1,y], so d(zy,2) + d(z,y) — d(x1,y) > 0. Fory € [za,...,2,],
let f(y) = d(z1,2) + d(z,y) — d(x1,y). Then f(y) is a continuous func-

tion [z, ...,x,] — R*. Since [zo,...,z,] is compact, f attains its lower
bound, so in particular, there is some ¢ > 0 such that f(y) > e for all
y € [12,...,2,]. Nowif d(z, 2') < §, then for any y € [z3, ..., 2,],

d(z1,2') +d(,y) > d(xy,2) — % +d(z,y) — % > d(z1,y)

so 2’ ¢ [x1,y] because the inequality is strict and open balls are convex. It
follows that 2’ ¢ [z1,...,x,], so [x1,...,x,] is closed, as required. O

In the other direction, it is natural to ask which preconvexity spaces are
fixed by the monad C'C' o I.S. The functor CC' o IS sends a preconvexity
space, (X, P) to the space (X, P n P). We will call a preconvexity space
(X, P) geometric if P n P = P.

Proposition 3.18. If X is finite, then any preconvexity space (X, P) is geo-
metric.

Proof. If X is finite, then P = P, so PAP ="Pas required. O

A natural question is whether this extends to topologically discrete spaces.
In fact, there are preconvexity spaces where all sets are in both P and P, but
not in P.
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Example 3.19. Let X = N. Let P consist of all subsets of N whose comple-
ment is infinite or empty. Clearly every subset of N is a finite union from P,
and also a directed union from P (as P contains all finite sets). Thus (X, P)
is a non-geometric example where all sets are closed and all sets are convex.

Proposition 3.20. Every T\, preconvexity space (meaning for any x # v,
there is a preconvex set containing exactly one of x and y) embeds in a
geometric preconvexity space.

Proof. For a T preconvexity space (X, P), let (Y, Q) be given by Y = P

and Q = {{S € P|S < R}|R € P}. Now the inclusion X —Y given by
i(x) = [(){P € P|x € P}, is an embedding of preconvexity spaces, meaning
that for A = X, we have A € P if and only if A = :~!(B) for some B € Q.
Clearly if A € P, then {S € P|S < A} € Q. Now it is easy to see that
a€it({S e P|Sc A} if and only if i(a) = A, if and only if a € A.
Thus A = z'_l({S e PIS < A}) Conversely, let R € Q. By definition,
there is some P € P such that R = {S € P|S < P}. Itis easy to see that
iY(R) = P.

We need to show that (Y, Q) is geometric. Y is a complete lattice, or-
dered by set-inclusion, and Q is the set of principal downsets of Y. This
means that O is the set of ideals in Y, and Q is the set of closed sets of the
weak topology. From Examples 2.5.2, we know that the intersection of these
is O. O

This leads to the natural question is what subspaces of a geometric pre-
convexity space are geometric.

Proposition 3.21. If (X, P) is a geometric preconvexity space and A € P,
then the restriction (A, P|a) is a geometric preconvexity space.

Proof. Since P is closed under intersection, P|4 < P. Now let C' < A be
both a directed union of sets from P| 4 and an intersection of finite unions of
sets from P| 4. Since P|4 < P, C'is both a directed union of sets from P and
an intersection of finite unions of sets from P. Since (X, P) is geometric, it
follows that C' € P, and since C' © A, we have C' € P|,4 as required. O

On the other hand, closed or convex subspaces of geometric preconvexity
spaces are not necessarily geometric.
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Example 3.22. Let X = R?\{(0,0)}, and let
Y ={(z,y) € [0,1]*(122 — 1] = 1)(|2y — 1| — 1) = 0}

be the unit square with one corner at the origin. It is straightforward to check
that X and Y, with the preconvexities coming from closed convex subsets
of R2, are geometric. However, X n Y is a closed subspace of X, and a
convex subspace of Y, but the subset {(x,y) € X n Y|z > Oory = 1} is
both closed and convex, but is not closed convex, so X n'Y is not geometric.

4. Stone Duality

4.1 Stone Duality for Topological Spaces

In this section, we review Stone duality for topological spaces. While a lot
of what we review is well-known, some parts are written from an unusual
perspective, and are not as well-known as they might be.

Given a topological space, the collection of closed sets form a coframe.
(Many authors refer to the frame of open sets, but for our purposes the closed
sets are more natural, and since we are not considering 2-categorical aspects,
it does not matter since Coframe = Frame®.) Furthermore, the inverse im-
age of a continuous function between topological spaces is by definition a
coframe homomorphism between the coframes of closed spaces. This in-
duces a functor C' : Jop——Coframe®. Not every coframe arises as closed
sets of a topological space. Coframes that do arise in this way are called
spatial and are said to “have enough points”.

In some cases, there can be many topological spaces that have the same
coframe of closed sets. If multiple points have the same closure, then there is
no way to separate them by looking at the coframe of closed sets. Therefore,
we restrict our attention to 7 spaces, where the function from X to C'(X)

sending a point to its closure is injective. The functor 7T-Top BRENG oframe®?P
is faithful.

We can recover a 7{ topological space from its lattice of closed sets and
from the subset S — C'(X) consisting of the closures of singletons. For a
coframe L, the elements which could arise as closures of singletons for a
topological space corresponding to L are non-zero elements that cannot be
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written as a join of two strictly smaller elements (called join-irreducible ele-
ments). These are called the “points” of L since they correspond to coframe
homomorphisms f : L——2, where the 2-element coframe, 2