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DOUBLE GROUPOIDS AND

POSTNIKOV INVARIANTS

Antonio M. CEGARRA

Résumé. Dans cet article, nous prouvons un théorème de classification pour

les groupoı̈des doubles (satisfaisant à une condition de remplissage supplémentaire,

tout à fait naturelle) au moyen de troisièmes classes de cohomologie de groupoı̈des.

Dans une seconde étape, indépendante, nous montrons que la classe de coho-

mologie associée à un groupoı̈de double coı̈ncide avec l’unique k-invariant

non trivial de sa réalisation géométrique.

Abstract. In this paper, we prove a classification theorem for double groupoids

(satisfying an extra, quite natural, filling condition) by means of third co-

homology classes of groupoids. In a second, independent, step, we prove

that the cohomology class associated to a double groupoid coincides with the

unique non-trivial k-invariant of its geometric realization.

Keywords. Double groupoid, Cohomology of groupoids, Postnikov invari-

ant, weak equivalence, homotopy type.

Mathematics Subject Classification (2010). 18D05, 20L05, 55Q05, 55S45,

55U40.

Introduction and summary

Double groupoids (groupoid objects in the category of groupoids) go back to

Ehresmann [14, 15, 16]. Roughly, they consist of objects, two kinds of mor-

phisms between them, horizontal and vertical, and boxes whose boundaries
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A. M. CEGARRA CLASSIFYING DOUBLE GROUPOIDS

are squares with morphisms as edges, usually depicted

d
α

b
f
♦♦

c

y
❖❖

a ,

x
❖❖

g
♦♦

together with horizontal and vertical composition of morphisms and boxes

giving compatible groupoid structures and obeying middle four interchange

on boxes. The double groupoids we encounter in practice, and certainly

in this work, are small and satisfy a natural filling condition: Any filling

problem

d
∃?

·♦♦

c

y
❖❖

a ,

❖❖

g
♦♦

finds a solution in the double groupoid. This filling condition on double

groupoids is often assumed in the case of double groupoids arising in dif-

ferent areas of mathematics, such as in weak Hopf algebra theory or in dif-

ferential geometry (see, for instance, Andruskiewitsch and Natale [1] and

Mackenzie [23]), and it is satisfied for those double groupoids that have

emerged with an interest in algebraic topology, mainly thanks to the work of

Brown, Higgins, Spencer, et al., where the connection of double groupoids

with crossed modules and a higher Seifert-van Kampen Theory has been

established (see the surveys by Brown [3, 4, 5] and the references given

there). Thus, the filling condition is easily proven for edge symmetric dou-

ble groupoids (also called special double groupoids) with connections (see

Brown and Higgins [6], Brown and Spencer [7], Brown, Hardie, Kamps and

Porter [8] and Brown, Kamps and Porter [9]), for double groupoid objects

in the category of groups (also termed cat2-groups by Loday [22], see also

Porter [25] and Bullejos, Cegarra and Duskin [10]), or, for example, for 2-

groupoids (regarded as double groupoids where one of the side groupoids

of morphisms is discrete (see for instance Moerdijk and Svensson [24] and

Hardie, Kamps and Kieboom [20]).

Every (small) double groupoid G has a geometric realization, which is

the topological space defined by first taking the double nerve NNG, which

is a bisimplicial set, and then realizing geometrically the diagonal to obtain

a space: |G| = |△ NNG|. The usual definition of the homotopy invari-

ants of a double groupoid G involves only its underlying topological space
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A. M. CEGARRA CLASSIFYING DOUBLE GROUPOIDS

|G| and does not take into account the algebraic structure. Our main goal

in this paper is to give a combinatorial definition of the (unique) Postnikov

invariant of a double groupoid with the filling condition using only its al-

gebraic structure. Recall that a (2-dimensional) Postnikov system is a triple

(P,A,k), where P is a groupoid, A is an abelian group valued functor on

P , and k ∈ H3(P,A) is a three-cohomology class of P with coefficients in

A. Our definitions and constructions here are suggested by previous work

of the author and collaborators; particularly by the results in [11], where

we address the homotopy types realized from double groupoids satisfying

the filling condition. They are all the (not necessarily path-connected) ho-

motopy 2-types, that is, the homotopy types of all CW-complexes whose

homotopy groups at any base point vanish in degree 3 and higher.

After Section 1, where we briefly fix some notational conventions on

double groupoids, in Sections 2 and 3, we review several needed defini-

tions and results on the (algebraically defined) fundamental groupoid ΠG
and the homotopy groups π2(G, a) of a double groupoid G satisfying the fill-

ing condition. Section 4 contains the new definition of the Postnikov invari-

ant of such a double groupoid, which is the equivalence class of a Postnikov

system (ΠG, π2G,kG) where kG ∈ H3(ΠG, π2G) is a certain characteris-

tic cohomology class of the fundamental groupoid of G with coefficients in

the abelian group valued functor on ΠG which assigns the homotopy group

π2(G, a) to each object a of G. In Section 5, we mainly state and prove the

expected classification result:

“The assignment G 7→ (ΠG, π2G,kG) induces a bijective correspon-

dence between weak equivalence classes of double groupoids satisfying the

filling condition and equivalence classes of Postnikov systems.”

Finally, in Section 6 we prove

“The Postnikov invariant of a double groupoid G with the filling condi-

tion is equivalent to the Postnikov invariant of its geometric realization |G|.”

As a bonus, we find a new proof of the fact that the assignment G 7→ |G| in-

duces a bijective correspondence between weak-equivalence classes of dou-

ble groupoids satisfying the filling condition and homotopy 2-types.
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A. M. CEGARRA CLASSIFYING DOUBLE GROUPOIDS

1. Some conventions on double groupoids

The notion of double groupoid is well-known, we just specify in this prelim-

inary section some basic terminology and notational conventions. We will

work only with small double groupoids, so that in a double groupoid G we

have a set of objects (usually denoted by a, b, c, . . .), horizontal morphisms

between them (f, g, h, . . .), vertical morphisms between them (x, y, z, . . .),

both with composition written by juxtaposition, and boxes (α, β, γ, . . .), usu-

ally depicted as

d
α

b
f
♦♦

c

y
❖❖

a

x
❖❖

g
♦♦

(1)

where the horizontal morphisms f and g are, respectively, its vertical target

and source and the vertical morphisms y and x are its respective horizontal

target and source. The horizontal composition of boxes is denoted by the

symbol ◦h:

·
α′

·
f ′
♦♦

α

·
f ′
♦♦

7→
·

z
❖❖

·
g′
♦♦

❖❖

·g
♦♦

x
❖❖ ·

α′◦hα

·
f ′f
♦♦

·
z
❖❖

·
g′g
♦♦

x
❖❖

and, similarly, the vertical composition of boxes is denoted by the symbol

◦v:

·
α

·
f
♦♦

·
y
❖❖

α′

·♦♦

x
❖❖

7→

·
y′
❖❖

·
h
♦♦

x′
❖❖

·
α◦vα

′

·
f
♦♦

·
yy′
❖❖

·
xx′
❖❖

h
♦♦

Horizontal and vertical identities on objects and morphisms are respectively

denoted by Iha, Iva, Ihx, Ivf , and Ia := IvIha = IhIva, depicted as

a a a ·
Ihx

· ·
Ivf

·
f
♦♦ a

Ia

a

a ·
x
❖❖

·
x
❖❖

· ·
f
♦♦ a a
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A. M. CEGARRA CLASSIFYING DOUBLE GROUPOIDS

and horizontal and vertical inverses of boxes are respectively denoted by

α−h, α−v, and α−hv := (α−h)−v = (α−v)−h; that is,

·
α−h

·
f−1

♦♦ ·
α−v

·
g
♦♦ ·

α−hv

·
g−1

♦♦

·
x

❖❖

·
g−1

♦♦

y
❖❖

·
y−1

❖❖

·
f
♦♦

x−1

❖❖

·
x−1

❖❖

·
f−1

♦♦

y−1

❖❖

We will use several times the coherence theorem by Dawson and Paré

[13, Theorem 1.2], which assures us that if a compatible arrangement of

boxes in a double groupoid is composable in two different ways, the resulting

pasted boxes are equal. Throughout the paper, an equality between pasting

diagrams of boxes in a double groupoid means that the resulting pasted boxes

are the same.

The double groupoids we are interested in satisfy the so-called filling

condition: Any filling problem

· ·♦♦

∃?

·
y
❖❖

·g
♦♦

,
❖❖

has a solution; that is, for any horizontal morphism g and any vertical mor-

phism y such that the source of y coincides with the target of g, there is a

box whose vertical source is g and whose horizontal target is y. This con-

dition is more symmetric than it appears thanks to the following lemma by

Andruskiewitsch and Natale [1, Lemma 1.12].

Lemma 1.1. A double groupoid satisfies the filling condition if and only if

any filling problem such as the one below has a solution.

·
∃?

·
f
♦♦

·

❖❖

· ,
x
❖❖

♦♦

· ·♦♦

∃?

·

❖❖

·g
♦♦

x ,
❖❖ · ·

f
♦♦

∃?

·
y
❖❖

·♦♦

,
❖❖

Throughout the paper we make the assumption that the double groupoids

we work with are small and satisfy the filling condition.
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2. The fundamental groupoid ΠG

Let G be a double groupoid. If a0, a1 are objects of G, we define a path in G
from a0 to a1 to be a diagram (f, b, x) of the form

a1 b
f
♦♦

a0

x
❖❖

that is, where b is an object, f a horizontal morphism from b to a1, and x a

vertical morphism from a0 to b. Throughout the paper, we identify paths in

G of the form

a1 a0
f
♦♦

a0

a1 a1

a0

x
❖❖

with the morphisms f and x respectively; that is, we write

f = (f, a0, I
va0), x = (Iha1, a1, x).

If (f, b, x) and (g, c, y) are two paths from a0 to a1, then we say that

(f, b, x) is homotopic to (g, c, y), denoted by (f, b, x) ≃ (g, c, y), if there is

a box α in G of the form

b
α

c
f−1g
♦♦

b b

yx−1

❖❖ (2)

that is, whose horizontal target and vertical source are identities, its horizon-

tal source is yx−1, and its its vertical target is f−1g. We call such a box a

homotopy, and we often write α : (f, b, x) ≃ (g, c, y) whenever we wish to

display the homotopy.

Lemma 2.1. Homotopy is an equivalence relation on the set of paths in G
from a0 to a1.

Proof. Reflexivity: For any path (f, b, x), clearly Ib : (f, b, x) ≃ (f, b, x).
Symmetry: If α : (f, b, x) ≃ (g, c, y) is a homotopy, then the pasted box of

c

Iv(g−1f)

b
g−1f
♦♦

α−v

b

c b
g−1f

♦♦ c
f−1g

♦♦

xy−1

❖❖
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is a homotopy (g, c, y) ≃ (f, b, x).
Transitivity: Assume that α : (f, b, x) ≃ (g, c, y) and β : (g, c, y) ≃ (h, d, z).
Then, we find a homotopy γ : (f, b, x) ≃ (h, d, z) by pasting the diagram of

boxes

b
Iv(f−1g)

c
f−1g
♦♦

β

d
g−1h
♦♦

b
α

c
f−1g

♦♦ c

zy−1

❖❖

b c

yx−1

❖❖

Let [f, b, x] denote the homotopy class of a path (f, b, x) in G.

We define the fundamental groupoid ΠG of the double groupoid G to be

a category having as objects all the objects of G. An arrow in ΠG from an

object a0 to an object a1 is the homotopy class of a path in G from a0 to a1.

Composition in ΠG is as follows:

For each morphism in the fundamental groupoid ρ ∈ ΠG(a0, a1), let us

choose a representative path (fρ, bρ, xρ) of ρ,

a1 bρ
fρ
♦♦

a0,
xρ

❖❖
(3)

that is, such that ρ = [fρ, bρ, xρ]. If a2
ψ
← a1

ρ
← a0 are any two composable

morphisms in ΠG, by the filling condition on G, we can select a box θ in G
whose horizontal target is xψ and whose vertical source is fρ. Thus, we have

a diagram in G of the form

a2 bψ
fψ
♦♦

θ

b
f
♦♦

a1

xψ

❖❖

bρ

x

❖❖

fρ

♦♦

a0
xρ

❖❖

(4)

and we define the composite ψρ = [fψf, b, xxρ] ∈ ΠG(a0, a2).
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Lemma 2.2. The composite ψρ is well-defined, that is, it is independent of

the choices of representative paths of ρ and ψ and of the choice of θ in (4).

Proof. Suppose that αρ : (fρ, bρ, xρ) ≃ (gρ, cρ, yρ) and αψ : (fψ, bψ, xψ) ≃
(gψ, cψ, yψ) are homotopies and that we have selected boxes θ and θ′ as in

the diagrams below.

a2 bψ
fψ
♦♦

θ

b
f
♦♦

a1

xψ

❖❖

bρ

x

❖❖

fρ

♦♦

a0
xρ

❖❖

a2 cψ
gψ
♦♦

θ′

c
g
♦♦

a1

yψ
❖❖

cρ

y
❖❖

gρ
♦♦

a0
yρ

❖❖

Then, we get a homotopy α : (fψf, b, xxρ) ≃ (gψg, c, yyρ) by pasting the

diagram

b

θ−h

b2
αψ

f−1

♦♦ cψ
f−1

ψ
gψ

♦♦ c
g

♦♦

bψ
Ihxψ

bψ

yψx
−1

ψ

❖❖

θ′

bρ

x

❖❖

αρ

a2
f−1
ρ

♦♦

xψ
❖❖

a2

xψ
❖❖

cρgρ
♦♦

y

❖❖

bρ

Ihx−1

bρ

yρx
−1
ρ

❖❖

b

x−1

❖❖

b

x−1

❖❖

For each object a of G, let ida = [Iha, a, Iva] ∈ ΠG(a, a).

Theorem 2.3. With these definitions, ΠG is a groupoid.

Proof. Identity: For every arrow ρ = [fρ, bρ, xρ] ∈ ΠG(a0, a1), the diagrams

in G

a1 a1
Ivfρ

bρ
fρ
♦♦

a1 bρ
fρ

♦♦

a0

xρ
❖❖

a1 bρ
fρ
♦♦

Ihxρ

bρ

a0

xρ
❖❖

a0

xρ
❖❖

a0
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show that ida1ρ = ρ = ρ ida0 .

Associativity: if a3
φ
← a2

ψ
← a1

ρ
← a0 are any three composable mor-

phisms in ΠG, we can choose boxes θ, θ′ and θ′′ as in the diagram

a3 bφ
fφ
♦♦

θ′

b′

θ′′

f ′
♦♦ b′′

f ′′
♦♦

a2

xφ

❖❖

bψ

x′
❖❖

fψ

♦♦

θ

b

x′′
❖❖

f
♦♦

a1

x2

❖❖

bρ

x

❖❖

fρ

♦♦

a0

xρ
❖❖

whence,

(φψ)ρ = [fφf
′, b′, x′xψ] ρ = [fφf

′f ′′, b′′, x′′x′xρ] = φ [fψf, b, xρ] = φ(ψρ).

Inverse: For any morphism ρ ∈ ΠG(a0, a1), we can select a box γ in G
of the form

a0
γ

b
f
♦♦

bρ

x−1
ρ

❖❖

a1

x

❖❖

f−1
ρ

♦♦

and construct ρ−1 = [f, b, x] ∈ G(a1, a0). From the diagrams in G

a0 b
f
♦♦

γ−h

a0
f−1

♦♦

a1

x

❖❖

bρ

x−1
ρ

❖❖

fρ

♦♦

a0

xρ
❖❖

a1 bρ
fρ
♦♦

γ−v

a1
f−1
ρ
♦♦

a0

xρ

❖❖

b

x−1

❖❖

f
♦♦

a1

x

❖❖

it follows that ρ−1ρ = ida0 and ρρ−1 = ida1 .

Lemma 2.4. (i) For any two composable horizontal morphisms

a2
g
← a1

f
← a0
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and for any two composable vertical morphisms

a2

a1

y
❖❖

a0

x
❖❖

the equalities [g][f ] = [gf ] and [y][x] = [yx] hold in ΠG.

(ii) For any path (f, b, x) in G, [f, b, x] = [f ][x].

(iii) The filling problem in G

a1
∃?

b
f
♦♦

c

y
❖❖

a0

x

❖❖

g
♦♦

has a solution if and only if [y][g] = [f ][x] in ΠG.

Proof. (i) follows from the existence of the first two diagrams below and

(ii) by the third one.

a2 a1
g
♦♦

Ivf

a0
f
♦♦

a1 a0
f
♦♦

a0

a2 a2
Ihy

a2

a1

y
❖❖

a1

y
❖❖

a0

x
❖❖

a1 b
f
♦♦

Ib

b

b b

a0

x
❖❖

For (iii), suppose first θ is any solution to the given filling problem.

Then, the diagram

a1 a1
θ

b
f
♦♦

c

y
❖❖

a

x
❖❖

g
♦♦

a0

shows that [y][g] = [f, b, x]
(ii)
= [f ][x]. Conversely, assume that [y][x] =

[f ][x]
(ii)
= [f, b, x]. By the filling condition on G, we can select a box θ′ of the
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form

a1
θ′

b′
f ′
♦♦

c

y
❖❖

a0

x′
❖❖

g
♦♦

whence, by the already proven part, [y][g] = [f ′][x′] = [f ′, b′, x′]. It follows

that [f, b, x] = [f ′, b′, x′], and therefore there is a homotopy α : (f ′, b′, x′) ≃
(f, b, x) which gives us the solution θ that we are seeking for the filling

problem by pasting the diagram

a1
Ivf ′

b′

α

f ′
♦♦ b

f ′−1f
♦♦

d

θ′

b′

Ihx′

f ′
♦♦ b′

xx′−1

❖❖

c

y

❖❖

a0g
♦♦

x′
❖❖

a0

x′
❖❖

3. The functor π2G : ΠG → Ab

For each object a of G, let π2(G, a) denote the set of all boxes σ in G of the

form

a
σ

a

a a

that is, whose horizontal source and target are both Iva, the vertical iden-

tity of a, and whose vertical source and target are both Iha, the horizontal

identity of a. By the general Eckman-Hilton argument, the interchange law

on G implies that both operations ◦h and ◦v on π2(G, a) coincide and are

commutative. Thus, π2(G, a) is an abelian group with addition

σ + τ := σ ◦h τ = σ ◦v τ,

zero 0 := Ia, and opposites −σ := σ−v = σ−h.

The assignment a 7→ π2(G, a) is the function on objects of a functor

π2G : ΠG → Ab, which acts on morphism as follows. There is an abelian
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group valued functor on the groupoid of horizontal morphisms which assigns

to each horizontal morphism f : a0 → a1 the homomorphism

f∗ : π2(G, a0)→ π2(G, a1)

defined by f∗σ = Ivf ◦h σ ◦h I
vf−1,

a0
σ

a0
f∗
7→

a0 a0

a1
Ivf

a0
f
♦♦

σ

a0
Ivf−1

a1
f−1

♦♦

a1 a0
f
♦♦ a0 a1

f−1

♦♦

and, similarly, there is an abelian group valued functor on the groupoid of

vertical morphisms which assigns to each vertical morphism x : a0 → a1
the homomorphism

x∗ : π2(G, a0)→ π2(G, a1)

defined by x∗σ = Ihx ◦v σ ◦v I
hx−1,

a0
σ

a0
x∗7→

a0 a0

a1
Ihx

a1

a0

x
❖❖

σ

a0

x
❖❖

a0
Ihx−1

a0

a1

❖❖

x−1

a1
x−1
❖❖

Lemma 3.1. If

a1
θ

b
f
♦♦

c

y
❖❖

a0

x

❖❖

g
♦♦

is any box in G, then the diagram below commutes.

π2(G, a1) π2(G, b)
f∗
♦♦

π2(G, c)

y∗

❖❖

π2(G, a0)g∗
♦♦

x∗

❖❖
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Proof. Let us consider, for any σ ∈ π2(G, a0), the following pasting diagram

a1
θ

b

Ihx

f
♦♦ b

θ−h

a1
f−1

♦♦

c
Ivg

y
❖❖

a0
σ

x

❖❖

g
♦♦ a0

Ivg−1

x

❖❖

c
g−1

♦♦

y
❖❖

c
θ−v

a0
g

♦♦

Ihx−1

a0
θ−hv

c
g−1

♦♦

a1

y−1

❖❖

b
f

♦♦

❖❖

x−1

b
x−1

❖❖

a1
f−1

♦♦

y−1

❖❖

The two natural ways to paste this diagram yield, on the one hand, f∗x∗σ

and, on other hand, y∗g∗σ. Hence f∗x∗σ = y∗g∗σ.

For any morphism ρ ∈ ΠG(a0, a1), we define the homomorphism

ρ∗ := fρ∗xρ∗ : π2(G, a0)→ π2(G, a1),

where (fρ, bρ, xρ) is a representative path of ρ.

Lemma 3.2. The homomorphism ρ∗ : π2(G, a0) → π2(G, a1) does not de-

pend of the choice of representative path of ρ.

Proof. If (fρ, bρ, xρ) ≃ (gρ, cρ, yρ), there is a box in G as below.

bρ
α

c
f−1
ρ gρ
♦♦

bρ bρ

yρx
−1
ρ

❖❖

Then, by Lemma 3.1, f−1ρ∗ gρ∗yρ∗x
−1
ρ∗ = idπ2(G,bρ) or, equivalently, gρ∗yρ∗ =

fρ∗xρ∗.

Theorem 3.3. The assignments a 7→ π2(G, a), ρ 7→ ρ∗, define a functor

π2G : ΠG → Ab.

Proof. That (ida)∗ = id, for any object a of G, is clear. Let a2
ψ
← a1

ρ
← a0

be two composable morphisms in ΠG. For any box θ as in (4), we have

ψρ = [fψf, b, xxρ] Then, by Lemmas 3.2 and 3.1, (ψρ)∗ = fψ∗f∗x∗xρ∗ =
fψ∗fψ∗xψ∗xρ∗ = ψ∗φ∗.
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3.1 The action of π2G on boxes of G

For any box in G

d
θ

b
f
♦♦

c

y
❖❖

a

x
❖❖

g
♦♦

and any σ ∈ π2(G, d), we define the box σ+ θ (with the same edges as θ) by

d
σ+θ

b
f
♦♦

:=
c

y
❖❖

a

x
❖❖

g
♦♦

d
σ

d b
f
♦♦

=d
Ihy

d θ

c

y
❖❖

c

❖❖

ag
♦♦

x

❖❖ d
σ

d
Ivf

b
f
♦♦

=d
Ihy

d
θ

b♦♦

c

y
❖❖

c

❖❖

ag
♦♦

x
❖❖

d
σ

d
Ivf

b
f
♦♦

d d
θ

b♦♦

c

y
❖❖

ag
♦♦

x
❖❖

Clearly 0 + θ = θ and, for any τ, σ ∈ π2(G, d),

d
τ

d
σ

τ + (σ + θ) =

d
Ivf

b
f
♦♦

=d
Ihy

d
Ihy

d
θ

b♦♦

c

y
❖❖

c

❖❖

c

❖❖

ag
♦♦

x
❖❖

d
τ+σ

d
Ivf

b
f
♦♦

= (τ + σ) + θ.d
Ihy

d
θ

b♦♦

c

y
❖❖

c

❖❖

ag
♦♦

x
❖❖

(5)

Lemma 3.4. For any σ ∈ π2(G, d), any box θ as above, and any boxes

c
δ

a
g
♦♦

·

❖❖

·♦♦

❖❖ b
γ

·♦♦

a

x
❖❖

·♦♦

❖❖ ·
α

d
h
♦♦

·

❖❖

c♦♦

y
❖❖ ·

β

d♦♦

d

z

❖❖

b
f
♦♦

❖❖

the following equalities hold,

(σ + θ) ◦v δ = σ + (θ ◦v δ), (6)

(σ + θ) ◦h γ = σ + (θ ◦h γ), (7)

α ◦h (σ + θ) = h∗σ + (α ◦h θ), (8)

β ◦v (σ + θ) = z∗σ + (β ◦v θ). (9)

Moreover,

(σ + θ)−h = −f−1∗ σ + θ−h, (10)

(σ + θ)−v = −y−1∗ σ + θ−v. (11)
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Proof. (6) (the proof of (7) is dual):

d
σ

d

Ivf

(σ + θ) ◦v δ =

b
f
♦♦

= σ + (θ ◦v δ).
d

θ

d b♦♦

c
y

❖❖

δ

a
x

❖❖

g
♦♦

·

❖❖

·

❖❖

♦♦

(8) (the proof of (9) is dual):

·

α

d
h
♦♦

σ

α + (σ + θ) =

d
Ivf

b
f
♦♦

=d d
θ

b♦♦

·

❖❖

c♦♦

y
❖❖

ag
♦♦

x
❖❖

·
Ivh

d
h
♦♦

σ

d

Ivh−1

·
h−1

♦♦

Iv(hf)

d
hf
♦♦

·
α

d♦♦ d

θ

·♦♦ d♦♦

·

❖❖

c

y

❖❖

♦♦ ag
♦♦

x

❖❖

= h∗(σ) + α ◦h θ.

(10) (the proof of (11) is dual):

(σ + θ) ◦h (−f∗σ + θ−h)
(7)
= σ +

(

θ ◦h (−f∗σ + θ−h)
)

(9)
= σ +

(

− f∗f
−1
∗ σ + θ ◦h θ

−h
)

(5)
= (σ − σ) + Ihy = 0 + Ihy = Ihy.

Lemma 3.5. For any two boxes with the same edges

d
θ

b
f
♦♦

c

y
❖❖

a

x
❖❖

g
♦♦

d
θ′

b
f
♦♦

c

y
❖❖

a

x
❖❖

g
♦♦

there is a unique σ ∈ π2(G, d) such that σ + θ = θ′.
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Proof. Uniqueness. For any σ ∈ π2(G, d) and θ as above,

(σ + θ) ◦h θ
−h (8)

= σ + (θ ◦h θ
−h) = σ + Ihy = σ ◦v I

hy.

Hence, σ + θ determines σ as σ =
(

(σ + θ) ◦h θ
−h
)

◦v I
hy−1.

Existence. Taking

d

σ =
θ′

b
θ−h

f
♦♦ d

f−1

♦♦

c

y
❖❖

a

Ihy−1

g
♦♦

x
❖❖

c

y
❖❖

♦♦

g−1

d
y−1

❖❖

d
y−1

❖❖

we have σ+ θ =
(

(θ′ ◦h θ
−h) ◦v I

hy−1 ◦v I
hy
)

◦h θ = θ′ ◦h θ
−h ◦h θ = θ′

4. The Postnikov invariant [ΠG, π2G,kG]

Let P be a groupoid. The category Ab
P of functors A : P → Ab is abelian

and it has enough injectives and projective objects [19]. We can, thus, form

the right derived functors of the functor lim←− : AbP → Ab, which is given by

lim←−(A) =
{

(xa) ∈
∏

a∈ObP

A(a) | ρ∗xa = xb for every ρ : a→ b in P
}

,

where we write ρ∗x forA(ρ)(x). The cohomology groups of the groupoid P

with coefficients in a functor A : P → Ab [26], denoted by Hn(P,A), are

defined by

Hn(P,A) = (Rnlim←−)(A), n = 0, 1, · · · .

To exhibit an explicit cochain complex that computes these cohomology

groups, let NP be the nerve of P . That is, the simplicial set whose m-

simplices are the composable sequences β = (βm
βm
← · · ·

β1
← β0) of m

arrows in P (objects of P ifm = 0). The face diβ, for 0 < i < m, is obtained

from β by replacing the morphisms βi+1 and βi by their composition βi+1βi,

while d0β and dmβ are obtained by leaving out β0 and βm, respectively.

The degeneracies siβ are obtained by inserting in β the identity morphism

idβi. This simplicial set NP is a Kan complex whose fundamental groupoid

is P (and whose homotopy groups vanish in degree 2 and higher). Thus,
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every functor A : P → Ab defines a local coefficient system on NP and

the cohomology groups Hn(NP,A) are defined [17, 18, 21]. By Illusie [21,

Chap.VI, (3.4.2)] and Gabriel and Zisman [17, Appendix II, Prop. 3.3], there

are natural isomorphisms

Hn(P,A) ∼= Hn(NP,A) ∼= HnC•(P,A), n = 0, 1, · · · .

where

C•(P,A) : 0→ C0(P,A)→ · · · → Cm−1(P,A)
∂
→ Cm(P,A)→ · · · ,

denotes the complex of normalized cochains of P with coefficients in A.

Here, a normalized m-cochain c ∈ Cm(P,A) is a function

c : NPm →
⊔

a∈ObP

A(a)

such that c(β) ∈ A(βm) and c(β) = 0 whenever some βi is an identity. Each

Cm(P,A) is an abelian group with pointwise addition, and the coboundary

∂ : Cm−1(P,A)→ Cm(P,A) is given by

∂c(β) =
m−1
∑

i=0

c(diβ) + (−1)mβm∗c(dmβ).

As usually, we write Zn(P,A) for the groups of n-cocycles of the com-

plex C•(P,A).
In this paper, we will only use the cohomology groups H3(P,A). For

future reference let us specify that a normalized 3-cocycle k ∈ Z3(P,A) is

a function assigning to each three composable morphisms in the groupoid

a3
φ
← a2

ψ
← a1

ρ
← a0 an element k(φ, ψ, ρ) ∈ A(a3) such that, for any four

composable morphisms a4
δ
← a3

φ
← a2

ψ
← a1

ρ
← a0, the 3-cocycle condition

k(δ, φ, ψ)− k(δ, φ, ψρ) + k(δ, φψ, ρ)− k(δφ, ψ, ρ) + δ∗k(φ, ψ, ρ) = 0.

holds, and k(φ, ψ, ρ) = 0 if one of the morphisms φ, ψ or ρ is an identity.

A normalized 2-cochain c ∈ C2(P,A) is a function assigning to each

pair of composable morphisms a2
φ
← a1

ψ
← a0 an element c(φ, ψ) ∈ A(a2),
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such that c(φ, ψ) = 0 whenever φ = ida1 or ψ = ida0 . The coboundary of

such a 2-cochain is the 3-cocycle ∂c given by

∂c(φ, ψ, ρ) = c(φ, ψ)− c(φ, ψρ) + c(φψ, ρ)− φ∗c(ψ, ρ).

Two normalized 3-cocycles k, k′ ∈ Z3(P,A) are cohomologous if and only

if there is a normalized 2-cochain c ∈ C2(P,A) such that k′ = k + ∂c.

Definition 4.1. A (2-dimensional) Postnikov system (P,A,k) consists of a

groupoid P , an abelian group valued functor A : P → Ab, and a coho-

mology class k ∈ H3(P,A). Two such Postnikov systems (P,A,k) and

(P ′,A′,k′) are equivalent if there exists an equivalence f : P ∼→ P ′ and a

natural isomorphism F : A ∼= f∗A′ such that f∗(k′) = F∗(k), where

f∗ : H3(P ′,A′) ∼= H3(P, f∗A′), F∗ : H
3(P,A) ∼= H3(P, f∗A′)

are the corresponding induced isomorphisms in cohomology.

Let [P,A,k] denote the equivalence class of a Postnikov system (P,A,k).

Let G be a double groupoid. We associate to G a Postnikov system

(ΠG, π2G,kG) as follows. For each morphism in the fundamental groupoid

ρ ∈ ΠG(a0, a1), let us choose a representative path (fρ, bρ, xρ) of ρ, as in (3).

In particular, if ρ = ida for some object a of G, we take (Iha, a, Iva) as its

representative path.

If a2
ψ
← a1

ρ
← a0 are any two composable morphisms in ΠG, by Lemma

2.4, we have [fψ][xψ][fρ][xρ] = ψρ = [fψρ][xψρ], whence

[xψ][fρ] = [f−1ψ ][fψρ][xψρ][x
−1
ρ ] = [f−1ψ fψρ][xψρx

−1
ρ ]

= [f−1ψ fψρ, bψρ, xψρx
−1
ρ ],

and therefore we can select a box θψ,ρ in G as below.

bψ
θψ,ρ

bψρ
f−1

ψ
fψρ

♦♦

a1

xψ

❖❖

bρ

xψρx
−1
ρ

❖❖

fρ

♦♦

(12)

In particular, we choose

θida1,ρ = Ivfρ, θψ,ida0 = Ihxψ. (13)
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If a3
φ
← a2

ψ
← a1

ρ
← a0 are any three composable morphisms in ΠG, pasting

in the diagrams

bφψ
θ−h

φ,ψ

bφ
f−1

φψ
fφ

♦♦

θφ,ψρ

bφψρ
f−1

φ
fφψρ

♦♦

bφ

xφψx
−1

ψ

❖❖

a2
f−1

ψ

♦♦

❖❖

bψρ
fψρ

♦♦

xφψρx
−1

ψρ

❖❖
bφψ

θφψ,ρ

bφψρ
f−1

φψ
fφψρ

♦♦

a1

xφψ
❖❖

θ−v

ψ,ρ

bρ

xφψρx
−1
ρ

❖❖

♦♦

bψ

x−1

ψ

❖❖

bφψ

xρx
−1

ψρ

❖❖

f−1

ψ
fψρ

♦♦

yields two boxes with the same edges, and therefore, by Lemma 3.5 and

the isomorphism fφψ∗ : π2(G, bφψ) ∼= π2(G, a3), there is a unique element

kG(φ, ψ, ρ) ∈ π2(G, a3) such that

f−1φψ∗k
G(φ, ψ, ρ) + (θ−hφ,ψ ◦h θφ,ψρ) = θφψ,ρ ◦v θ

−v
ψ,ρ. (14)

Note that composing horizontally with θφ,ψ on the left in (14), by (8), gives

f−1φ∗ k
G(φ, ψ, ρ) + θφ,ψρ = θφ,ψ ◦h (θφψ,ρ ◦v θ

−v
ψ,ρ). (15)

More explicitly,

a3

IvfφkG(φ, ψ, ρ) =

bφ
fφ

♦♦

θφ,ψ

bφψ
f−1

φ
fφψ

♦♦

θφψ,ρ

bφψρ
f−1

φψ
fφψρ

♦♦ a3
f−1

φψρ
♦♦

Ivf−1

φψρ
a1

xφψ
❖❖

θ−v

ψ,ρ

bρ♦♦
fρ

xφψρx
−1
ρ

❖❖

a2

xφ

❖❖

bψ
fψ

♦♦

x−1

ψ

❖❖

θ−v

φ,ψρ

bψρ
f−1

ψ
fψρ

♦♦

xρx
−1

ψρ

❖❖

a3 bφ
fφ

♦♦

x−1

φ

❖❖

bφψρ
f−1

φ
fφψρ

♦♦

xψρx
−1

φψρ

❖❖

a3
f−1

φψρ

♦♦

(16)

In fact, composing vertically with θ−vφ,ψρ on the right in (15) yields

f−1φ∗ k
G(φ, ψ, ρ) + Iv(f−1φ fφψρ) =

(

θφ,ψ ◦h (θφψ,ρ ◦v θ
−v
ψ,ρ)

)

◦v θ
−v
φ,ψρ,
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whence

Ivfφ ◦h

(

(

θφ,ψ ◦h (θφψ,ρ ◦v θ
−v
ψ,ρ)

)

◦v θ
−v
φ,ψρ

)

◦h I
vf−1φψρ

= Ivfφ ◦h
(

f−1φ∗ k(φ, ψ, ρ) + Iv(f−1φ fφψρ)
)

◦h I
vf−1φψρ

(8)
= kG(φ, ψ, ρ) + Iv(fφf

−1
φ fφψρf

−1
φψρ)

= kG(φ, ψ, ρ) + 0 = kG(φ, ψ, ρ).

Lemma 4.2. So defined, kG ∈ Z3(ΠG, π2G), that is, kG is normalized 3-

cocycle of ΠG with coefficients in π2G.

Proof. That kG is a normalized cochain, that is, kG(φ, ψ, ρ) = 0 whenever

one of the morphisms φ, ψ or ρ is an identity, follows from the selection in

(13). For instance, if φ = ida2 , then kG(ida2 , ψ, ρ) = 0 since

θ−hida2,ψ
◦h θida2,ψρ = Ivf−1ψ ◦h ◦hI

vfψρ = Iv(f−1ψ fψρ) = θψ,ρ ◦v θ
−v
ψ,ρ

= θida2ψ,ρ ◦v θ
−v
ψ,ρ.

To prove that kG is a 3-cocycle, suppose a4
δ
← a3

φ
← a2

ψ
← a1

ρ
← a0

are morphisms in ΠG. By using first horizontal composition in the diagram

below, we see, from (16), that the pasted boxes of the inner regions labeled

with (A), (B) and (C) are

(A) = Ivf−1δ ◦h k
G(δ, φ, ψ) ◦h I

vfδφψρ,

(B) = Ivf−1δ ◦h k
G(δ, φψ, ρ) ◦h I

vfδφψρ,

(C) = Ivf−1δ ◦h δ∗k
G(φ, ψ, ρ) ◦h I

vfδφψρ.
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bδ

(A)

θδ,φ

bδφ
f−1

δ
fδφ

♦♦

θδφ,ψ

bδφψ
f−1

δφ
fδφψ

♦♦ bδφψρ
f−1

δφψ
fδφψρ

♦♦

Ibδφψρ

bδφψρ

a2

θ−v

φ,ψ

xδφ

❖❖

bψ♦♦
fψ

xδφψx
−1

ψ

❖❖

Iv(f−1

δφψ
fδφψρ)

a3

xδ

❖❖

θ−v

δ,φψ

bφ♦♦
fφ

x−1

φ

❖❖

bφψ♦♦

f−1

φ
fφψ

xψx
−1

φψ

❖❖

bδ

(B)

x−1

δ

❖❖

θδ,φψ

bδφψ

θδφψ,ρ

xφψx
−1

δφψ

❖❖

♦♦

f−1

δ
fδφψ

bδφψρ♦♦

f−1

δφψ
fδφψρ

Ih(xδφψρx
−1

φψρ
)

bδφψρ

a1

θ−v

φψ,ρ

xδφψ

❖❖

bρ♦♦
fρ

xδφψρx
−1
ρ

❖❖

a3

xδ

❖❖

Ihx−1

δ

bφ
fφ

♦♦ bφψ♦♦

f−1

φ
fφψ

x−1

φψ

❖❖

bφψρ♦♦

f−1

φψ
fφψρ

xρx
−1

φψρ

❖❖

a3♦♦

f−1

φψρ

θ−v

δ,φψρ

bφψρ
fφψρ

♦♦

xδφψρx
−1

φψρ

❖❖

bδ

(C)

x−1

δ

❖❖

Ihxδ

bδ

x−1

δ

❖❖

Iv(f−1

δ
fδφψρ)

bδφψρ
f−1

δ
fδφψρ

♦♦

xφψρx
−1

δφψρ

❖❖

a3

xδ

❖❖

Ivfφ

bφ
fφ

♦♦

θφ,ψ

bφψ

θφψ,ρ

f−1

φ
fφψ

♦♦ bφψρ

Ivf−1

φψρ

f−1

φψ
fφψρ

♦♦ a3
f−1

φψρ
♦♦

xδ

❖❖

a1

xφψ

❖❖

θ−v

ψ,ρ

bρ♦♦
fρ

xφψρx
−1
ρ

❖❖

a2

xφ

❖❖

θ−v

φ,ψρ

bψ♦♦
fψ

x−1

ψ

❖❖

bψρ

xρx
−1

ψρ

❖❖

♦♦

f−1

ψ
fψρ

a3

Ihx−1

δ

bφ
fφ

♦♦

x−1

φ

❖❖

bφψρ♦♦

f−1

φ
fφψρ

xψρx
−1

φψρ

❖❖

a3♦♦

f−1

φψρ

bδ

x−1

δ

❖❖

bδ

x−1

δ

❖❖

bδφψρ
f−1

δ
fδφψρ

♦♦
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Hence, using now vertical composition of inner boxes in it, we see that

Ivf−1δ ◦h
(

kG(δ, φ, ψ) + kG(δ, φψ, ρ) + δ∗k
G(φ, ψ, ρ)

)

◦h I
vfδφψρ =

bδ

θδ,φ

bδφ
f−1

δ
fδφ

♦♦ bδφψ
f−1

δφ
fδφψ

♦♦ bδφψρ
f−1

δφψ
fδφψρ

♦♦

Ih(xδφψρx
−1

φψρ
)

bδφψρ

θδφ,ψ

θ−v

φ,ψ

◦v

θδφψ,ρ
◦v

θ−v

φψ,ρ

a3

xδ

❖❖

Ihx−1

δ

bφ♦♦
fφ

❖❖

bφψ♦♦

f−1

φ
fφψ

❖❖

bφψρ♦♦

f−1

φψ
fφψρ

❖❖

a3♦♦

f−1

φψρ

θ−v

δ,φψρ

bφψρ
fφψρ

♦♦

xδφψρx
−1

φψρ

❖❖

bδ

x−1

δ

❖❖

Ihxδ

bδ

x−1

δ

❖❖

Iv(f−1

δ
fδφψρ)

bδφψρ
f−1

δ
fδφψρ

♦♦

xφψρx
−1

δφψρ

❖❖

a3

xδ

❖❖

Ivfφ

bφ
fφ

♦♦

θφ,ψ

bφψ

θφψ,ρ

♦♦
f−1

φ
fφψ

bφψρ

Ivf−1

φψρ

♦♦
f−1

φψ
fφψρ

a3♦♦
f−1

φψρ

xδ

❖❖

a1

xφψ

❖❖

θ−v

ψ,ρ

bρ
fρ

♦♦

xφψρx
−1
ρ

❖❖

a2

xφ

❖❖

θ−v

φ,ψρ

bψ
fψ

♦♦

x−1

ψ

❖❖

bψρ

xρx
−1

ψρ

❖❖

♦♦

f−1

ψ
fψρ

a3

Ihx−1

δ

bφ
fφ

♦♦

x−1

φ

❖❖

bφψρ♦♦

f−1

φ
fφψρ

xψρx
−1

φψρ

❖❖

a3♦♦

f−1

φψρ

bδ

x−1

δ

❖❖

bδ

x−1

δ

❖❖

bδφψρ
f−1

δ
fδφψρ

♦♦
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bδ

=

θδ,φ

bδφ
f−1

δ
fδφ

♦♦ bδφψ
f−1

δφ
fδφψ

♦♦ bδφψρ
f−1

δφψ
fδφψρ

♦♦

Ih(xδφψρx
−1

φψρ
)

bδφψρ

θδφ,ψ

θ−v

φ,ψ

◦v

θδφψ,ρ
◦v

θ−v

φψ,ρ

a3

xδ

❖❖

Ivfφ

bφ♦♦

❖❖

θφ,ψ

bφψ♦♦

θφψ,ρ

❖❖

bφψρ♦♦

❖❖

a3
f−1

φψρ
♦♦

Ivfφψρ

bφψρ
fφψρ

♦♦

xδφψρx
−1

φψρ

❖❖

a1

❖❖

θ−v

ψ,ρ

bρ♦♦

xφψρx
−1
ρ

❖❖

Ivf−1

φψρ

a2

xφ

❖❖

θ−v

φ,ψρ

bψ♦♦

❖❖

bψρ♦♦

xρx
−1

ψρ

❖❖

a3

Ihx−1

δ

bφ
fφ

♦♦

x−1

φ

❖❖

bφψρ♦♦

f−1

φ
fφψρ

xψρx
−1

φψρ

❖❖

a3♦♦

f−1

φψρ

θ−v

δ,φψρ

bφψρ
fφψρ

♦♦

bδ

x−1

δ

❖❖

bδ

x−1

δ

❖❖

bδφψρ
f−1

δ
fδφψρ

♦♦

xφψρx
−1

δφψρ

❖❖

bδ

= θδ,φ

bδφ
f−1

δ
fδφ

♦♦

θδφ,ψ

bδφψ
f−1

δφ
fδφψ

♦♦

θδφψ,ρ

bδφψρ
f−1

δφψ
fδφψρ

♦♦

a1

xδφ

❖❖

θ−v

ψ,ρ

bρ♦♦
fρ

xδφψρx
−1
ρ

❖❖

a2

xδφ

❖❖

θ−v

φ,ψρ

bψ
fψ

♦♦

x−1

ψ

❖❖

bψρ♦♦

f−1

ψ
fφρ

xρx
−1

ψρ

❖❖

a3

xδ

❖❖

θ−v

δ,φψρ

bφ
fφ

♦♦

x−1

φ

❖❖

bφψρ♦♦

f−1

φ
fφψφ

xψρx
−1

φψρ

❖❖

bδ

x−1

δ

❖❖

bδφψρ
f−1

δ
fδφψρ

♦♦

xφψρx
−1

δφψρ

❖❖

(17)

Now, we realize that the diagram (17) above is also obtained by using
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vertical composition of inner boxes in the following diagram

bδ

(D) Iv(f−1

δ
fδφ)

bδφ
f−1

δ
fδφ

♦♦

θδφ,ψ

bδφψ
f−1

δφ
fδφψ

♦♦

θδφψ,ρ

bδφψρ
f−1

δφψ
fδφψρ

♦♦

a1

xδφψ
❖❖

θ−v

ψ,ρ

bρ♦♦
fρ

xδφψρx
−1
ρ

❖❖

a2

xδφ

❖❖

θ−v

δφ,ψρ

bψ
fψ

♦♦

x−1

ψ

❖❖

bψρ♦♦

f−1

φ
fψρ

xρx
−1

ψρ

❖❖

bδ

(E)

θδ,φ

bδφ♦♦
f−1

δ
fδφ

x−1

δφ

❖❖

θδφ,ψρ

bδφψρ♦♦
f−1

δφ
fδφψρ

xψρx
−1

δφψρ

❖❖

a2

xδφ
❖❖

θ−v

φ,ψρ

bψρ♦♦
fφψ

xδφψρx
−1

ψρ

❖❖

a3

xδ

❖❖

θ−v

δ,φψρ

bφ♦♦
fφ

x−1

φ

❖❖

bφψρ♦♦

f−1

φ
fφψρ

xψρx
−1

φψρ

❖❖

bδ

x−1

δ

❖❖

bδφψρ
f−1

δ
fδφψρ

♦♦

xφψρx
−1

δφψρ

❖❖

where the pasted boxes of the inner regions labeled with (D) and (E) are

easily recognized, by (16), to be

(D) = Ivf−1δ ◦h k
G(δφ, ψ, ρ) ◦h I

vfδφψρ,

(E) = Ivf−1δ ◦h k
G(δ, φ, ψρ) ◦h I

vfδφψρ.

So, the resulting pasted box of the diagram (17) is also

Ivf−1δ ◦h (k
G(δφ, ψ, ρ) + kG(δ, φ, ψρ)) ◦h I

vfδφψρ.

This proves the 3-cocycle condition, that is,

kG(δφ, ψ, ρ)+kG(δ, φ, ψρ) = kG(δ, φ, ψ)+kG(δ, φψ, ρ)+δ∗k
G(φ, ψ, ρ).

Next, we observe the effect of different choices of (fρ, bρ, xρ) and θψ,ρ in

the construction of the 3-cocycle kG .

Lemma 4.3. (i) If the choice of the boxes θψ,ρ in (12) is changed, then kG

is changed to a cohomologous cocycle. By suitably changing the boxes θψ,ρ,

kG may by changed to any cohomologous cocycle.
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(ii) If the choice of the representative paths (fρ, bρ, xρ) in (3) is changed,

then a suitable new selection of the boxes θψ,ρ leaves the cocycle kG unal-

tered.

Proof. (i) Let, for each two composable morphisms a2
ψ
← a1

ρ
← a0 in ΠG,

bψ
θ′ψ,ρ

bψρ
f−1

ψ
fψρ

♦♦

a1

xψ

❖❖

bρ

xψρx
−1
ρ

❖❖

fρ

♦♦

be any other selection of boxes in (3), and let k′
G ∈ Z3(ΠG, π2) be the

corresponding 3-cocycle.

By Lemma 3.5 and the isomorphism fψ∗ : π2(G, bψ) ∼= π2(G, a2), we

can write θ′ψ,ρ = f−1ψ∗ c(ψ, ρ)+ θψ,ρ for a unique element c(ψ, ρ) ∈ π2(G, a2),
and a normalized 2-cochain c ∈ C2(ΠG, π2G) becomes so defined. Then,

for every composable morphisms a3
φ
← a2

ψ
← a1

ρ
← a0, we have

f−1φ∗ k
′G(φ, ψ, ρ) + f−1φ∗ c(φ, ψρ) + θφ,ψρ

(15)
= (f−1φ∗ c(φ, ψ) + θφ,ψ)◦h

(

(f−1φψ∗c(φψ, ρ) + θφψ,ρ)◦v(f
−1
ψ∗ c(ψ, ρ) + θψ,ρ)

−v
)

(11)
= (f−1φ∗ c(φ, ψ)+θφ,ψ)◦h

(

(f−1φψ∗c(φψ, ρ)+θφψ,ρ)◦v(−x
−1
ψ∗f

−1
ψ∗ c(ψ, ρ)+θ

−v
ψ,ρ)

)

(9)
=(f−1φ∗ c(φ, ψ)+θφ,ψ)◦h(f

−1
φψ∗c(φψ, ρ)−xφψ∗x

−1
ψ∗f

−1
φ∗ c(ψ, ρ)+θφψ,ρ◦vθ

−v
ψ,ρ)

(8)
= f−1φ∗ c(φ, ψ) + f−1φ∗ c(φψ, ρ)− f

−1
φ∗ fφψ∗xφψ∗x

−1
ψ∗f

−1
ψ∗ c(ψ, ρ)

+ θφ,ψ◦h(θφψ,ρ◦vθ
−v
ψ,ρ)

(15)
= f−1φ∗ c(φ, ψ) + f−1φ∗ c(φψ, ρ)− f

−1
φ∗ fφψ∗xφψ∗x

−1
ψ∗f

−1
ψ∗ c(ψ, ρ)

+ f−1φ∗ k
G(φ, ψ, ρ) + θφ,ψρ

whence, by Lemma 3.5,

k′
G
(φ, ψ, ρ) + c(φ, ψρ)

= c(φ, ψ) + c(φψ, ρ)− fφψ∗xφψ∗x
−1
ψ∗f

−1
ψ∗ c(ψ, ρ) + kG(φ, ψ, ρ).

As, by Theorem 3.3 and Lemma 2.4,

fφψ∗xφψ∗x
−1
ψ∗ = (φψ)∗x

−1
ψ∗ = φ∗ψ∗x

−1
ψ∗ = φ∗fψ∗xψ∗x

−1
ψ∗ = φ∗fψ∗,
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we finally conclude that

k′
G
(φ, ψ, ρ) = c(φ, ψ)− c(φ, ψρ) + c(φψ, ρ)− φ∗c(ψ, ρ) + kG(φ, ψ, ρ)

= ∂c(φ, ψ, ρ) + kG(φ, ψ, ρ).

Thus, k′
G = ∂c+ kG and therefore kG and k′

G
are cohomologous.

Conversely, suppose c ∈ C2(ΠG, π2G) is any normalized 2-cochain and

k = ∂c + kG . Then f−1ψ∗ c(ψ, ρ) + θψ,ρ is an allowable choice of θ′ψ,ρ, for

each pair of composable morphisms (ψ, ρ) in ΠG, for which, by the already

shown above, the corresponding 3-cocycle just becomes k′
G = ∂c+kG = k.

(ii) Suppose we have choosen another representative path (gρ, cρ, yρ) of

each morphism ρ in ΠG. Then, we can select homotopies αρ : (fρ, bρ, xρ) ≃

(gρ, cρ, yρ) and construct, for each two morphisms a2
ψ
← a1

ρ
← a0, the box

=

cψ

α−h

ψ

bψ
g−1

ψ
fψ

♦♦ bψρ
f−1

ψ
fψρ

♦♦

αψρ

cψρ
f−1

ψρ
gψρ

♦♦

cψ

θ′ψ,ρ

cψρ
g−1

ψ
gψρ

♦♦ bψ

yψx
−1

ψ

❖❖

Ihxψ

bψ
θψ,ρ

bψρ

Ih(xψρx
−1
ρ )

bψρ

yψρx
−1

ψρ

❖❖

a1

yψ

❖❖

cρgρ
♦♦

yψρy
−1
ρ

❖❖

a1

xψ

❖❖

bρ

α−v
ρ

❖❖

bρ

xψρx
−1
ρ

❖❖

a1

xψ

❖❖

a1 bρ
fρ

♦♦ cρ
f−1
ρ gρ

♦♦

xρy
−1
ρ

❖❖

which, by the already proven part (i), we can use to define the corresponding

3-cocycle k′
G ∈ Z3(ΠG, π2G) from the new selected representative paths.

Then, for any three composable morphisms a3
φ
← a2

ψ
← a1

ρ
← a0,

Ivg−1φ ◦h k
′G(φ, ψ, ρ) ◦h I

vgφψρ =
(

θ′φ,ψ ◦h (θ
′
φψ,ρ ◦v θ

′−v
ψ,ρ)

)

◦v θ
′−v
φ,ψρ =
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cφ

α−h

φ

bφ
g−1

φ
fφ

♦♦ bφψ
f−1

φ
fφψ

♦♦

αφψ

cφψ
f−1

φψ
gφψ

♦♦

α−h

φψ

bφψ
g−1

φψ
fφψ

♦♦ bφψρ
f−1

φψ
fφψρ

♦♦

αφψρ

cφψρ
f−1

φψρ
gφψρ

♦♦

bφ

yφx
−1

φ

❖❖

Ih

bφ

θφ,ψ

bφψ bφψ

❖❖

Ih

bφψ

θφψ,ρ

bφψρ

Ih

bφψρ

yφψρx
−1

φψρ

❖❖

a1

xφψ

❖❖

bρ

❖❖

α−v
ρ

bρ

xφψρx
−1
ρ

❖❖

a1

xφψ

❖❖

Ih

a1

θ−v

φ,ψ

bρ
fρ

♦♦

αρ

cρ

xρy
−1
ρ

❖❖

♦♦

a1 bρ

Ih

bρ

yρx
−1
ρ

❖❖

a2

xφ

❖❖

bψ

❖❖

α−v

ψ

bψ

x−1

ψ

❖❖

α−vh

ψ

bψ

x−1

ψ

❖❖
Ih

bψρ

❖❖

α−v

ψρ

bψρ

xρx
−1

ψρ

❖❖

a2

xφ

❖❖

Ih

a2

θ−v

φ,ψρ

bψ
fψ

♦♦ cψ
f−1

ψ
gψ

♦♦

❖❖

bψ
g−1

ψ
fψ

♦♦ bψρ
f−1

ψ
fψρ

♦♦

αψρ

cψρ

xψρy
−1

ψρ

❖❖

♦♦

a2 bψρ

Ih

bψρ

yψρx
−1

ψρ

❖❖

bφ

x−1

φ

❖❖

α−hv

φ

bφ

x−1

φ

❖❖

bφψρ

❖❖

α−v

φψρ

bφψρ

xψρx
−1

φψρ

❖❖

cφ

xφy
−1

φ

❖❖

bφ
g−1

φ
fφ

♦♦ bφψρ
f−1

φ
fφψρ

♦♦ cφψρ
f−1

φψρ
gφψρ

♦♦

xφψρy
−1

φψρ

❖❖
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cφ

= Iv(g−1

φ
fφ)

bφ
g−1

φ
fφ

♦♦

θφ,ψ

bφψ
f−1

φ
fφψ

♦♦

θφψ,ρ

bφψρ
f−1

φψ
fφψρ

♦♦ cφψρ
f−1

φψρ
gφψρ

♦♦

a1

xφψ

❖❖

θ−v

ψ,ρ

bρ♦♦
fρ

xφψρx
−1
ρ

❖❖

Iv(f−1

φψρ
gφψρ)

a2

xφ

❖❖

bψ♦♦
fψ

x−1

ψ

❖❖

θ−v

φ,ψρ

bψρ♦♦

f−1

ψ
fψρ

xρx
−1

ψρ

❖❖

cφ bφ
g−1

φ
fφ

♦♦

x−1

φ

❖❖

bφψρ
f−1

φ
fφψρ

♦♦

xψρx
−1

φψρ

❖❖

cφψρ
f−1

φψρ
gφψρ

♦♦

= Ivg−1φ ◦h k
′G(φ, ψ, ρ) ◦h I

vgφψρ.

Hence k′
G(φ, ψ, ρ) = kG(φ, ψ, ρ), and the 3-cocycle kG is unchanged.

Lemmas 4.2 and 4.3 prove that each double groupoid G has a three-

dimensional cohomology class kG = [kG] ∈ H3(ΠG, π2G) associated with

it. We refer to

[ΠG, π2G,kG]

as the Postnikov invariant of G.

A double functor F : G → G ′ between double groupoids takes objects,

horizontal and vertical morphisms, and boxes in G to objects, horizontal and

vertical morphisms, and squares in G ′, respectively, in such a way that all the

structure categories are preserved. Clearly, such a double functor induces a

functor ΠF : ΠG → ΠG ′,





a1 b
f
♦♦

a0

x
❖❖



 7→







Fa1 b
Ff
♦♦

Fa0

Fx

❖❖






,

and a natural transformation π2F : π2G → (ΠF )∗π2G
′, which consists of the

homomorphisms π2(F, a) : π2(G, a)→ π2(G
′, Fa) given by

a
σ

a
7→

a a

Fa
Fσ

Fa

Fa Fa.
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We say that the double functor F is a weak equivalence, and write

F : G ∼→ G ′,

whenever ΠF is an equivalence of groupoids and π2F is an isomorphism.

If, for any double groupoid G we define

π0G = π0(ΠG),

the set of iso-classes of objects of its fundamental groupoid, and, for each

object a of G,

π1(G, a) = ΠG(a, a),

the group of automorphisms of a in its fundamental groupoid, this notion

of weak equivalence is similar to the usual topological notion. Indeed, one

readily verifies that a double functor F : G → G ′ is a weak equivalence if

and only if F induces an isomorphism of sets π0G ∼= π0G
′ and for every

object a of G isomorphisms of groups πi(G, a) ∼= πi(G
′, Fa) for i = 1, 2 (cf.

[11, 3.4]).

We define two double groupoid G and G ′ to be weak equivalent if there

exists a zig-zag chain of weak equivalences

G = G0
∼→ G1

∼← G2
∼→ · · · ∼← Gk = G

′.

connecting G and G ′ (see Corollary 5.4).

Let [G] denote the weak equivalence class of a double groupoid G.

Theorem 4.4. The Postnikov invariant [ΠG, π2G,kG] of a double groupoid

G only depends on its weak equivalence class [G].

Proof. Let F : G ∼→ G ′ be a weak equivalence between double groupoids.

Suppose that the construction of kG ∈ Z3(ΠG, π2G) has been made by means

of representative paths (fρ, bρ, xρ) of the morphisms ρ in ΠG, as in (3), and

boxes θψ,ρ for each pair of composable morphisms (ψ, ρ), as in (12). Then,

for the construction of kG
′

∈ Z3(ΠG ′, π2G
′), we can choose (Ffρ, F bρ, Fxρ)

as representative paths of the morphisms ΠFρ in ΠG ′ as well as the boxes

θΠFψ,ΠFρ = Fθψ,ρ. If we do this, it follows from (16) that, for any triplet

(φ, ψ, ρ) of composable morphisms in ΠG,

kG
′

(ΠFφ,ΠFψ,ΠFρ) = FkG(φ, ψ, ρ).

This means that (ΠF )∗(kG
′

) = (π2F )∗(k
G), whence (ΠF )∗(kG) = (π2F )∗(kG).

Thus, [ΠG, π2G,kG] = [ΠG ′, π2G
′,kG ′].
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5. The Classification Theorem

Theorem 5.1. The mapping [G] 7→ [ΠG, π2G,kG] establishes a bijective

correspondence between weak equivalence classes of double groupoids and

equivalence classes of Postnikov systems.

Proof. This follows from the following construction of a double groupoid Gk

associated to each normalized 3-cocycle k ∈ Z3(P,A), of any groupoid P

with coefficients in a functor A : P → Ab, and Proposition 5.3 bellow.

Let P be a groupoid, A : P → Ab a functor and k ∈ Z3(P,A) a

normalized 3-cocycle of P with coefficients in A. We construct a double

groupoid, denoted by Gk, as follows.

• The objects of Gk are the arrows of P .

• For any two arrows of P , there is a unique horizontal (resp. vertical)

morphism in Gk between them whenever they have the same target (resp.

source), whereas if they have different target (resp. source) then there are

no horizontal (resp. vertical) morphisms between them. Compositions and

identities are defined in the obvious manner. Thus, a path in Gk

ξ1 η♦♦

ξ0

❖❖

consists of three morphisms of P such that ξ0 and η have the same source

and η and ξ1 have the same target. Notice that such a path writes uniquely as

ξ1 η♦♦

=

ξ0

❖❖
φψ φψρ♦♦

ψρ

❖❖

with ρ = ξ−11 η, φ = ηξ−10 and ψ = ξ0η
−1ξ1 are three composable arrows

a3
φ
← a2

ψ
← a1

ρ
← a0 in the groupoid P .

• A box (φ, ψ, ρ; u) in Gk, with boundary as below

φψ
(φ,ψ,ρ;u)

φψρ♦♦

ψ

❖❖

ψρ,

❖❖

♦♦

(18)
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consists of three composable arrows in P , a3
φ
← a2

ψ
← a1

ρ
← a0, together

with an element u ∈ A(a3).

• For any four composable arrows in P , a4
δ
← a3

φ
← a2

ψ
← a1

ρ
← a0,

u ∈ A(a3) and v ∈ A(a4), the vertical composition of the boxes

δφψ
(δ,φψ,ρ;v)

δφψρ♦♦

φψ

❖❖

(φ,ψ,ρ;u)

φψρ,

❖❖

♦♦

ψ

❖❖

ψρ♦♦

❖❖

(19)

is given by

(δ, φψ, ρ; v)◦v(φ, ψ, ρ; u) (20)

=
(

δφ, ψ, ρ; v + δ∗u+ k(δ, φ, ψ)− k(δ, φ, ψρ)
)

.

• For any four composable arrows in P , a4
φ
← a3

ψ
← a2

ρ
← a1

λ
← a0, and

u, v ∈ A(a4), the horizontal composition of the boxes

φψ
(φ,ψ,ρ;u)

φψρ
(φ,ψρ,λ;v)

♦♦ φψρλ♦♦

ψ

❖❖

ψρ

❖❖

♦♦ ψρλ,

❖❖

♦♦

(21)

is given by

(φ, ψ, ρ; u) ◦h (φ, ψρ, λ; v) =
(

φ, ψ, ρλ; u+ v
)

. (22)

• The vertical and horizontal identity boxes are respectively defined by

φ
(ida2 ,φ,ψ;0)Iv(φ←φψ)=

φψ♦♦

φ φψ♦♦

φψ

(φ,ψ,ida0 ;0)Ih
(

↑

)

=
ψ

φψ
φψ

ψ

❖❖

ψ

❖❖
(23)

for any two composable arrows a2
φ
← a1

ψ
← a0 in P .

Lemma 5.2. With these definitions, Gk is a double groupoid (satisfying the

filling condition).
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Proof. We first observe that the vertical composition of boxes in Gk is asso-

ciative thanks to the 3-cocycle condition of k. In fact, let

γδφψ
(γ,γδφψ,ρ;w)

γδφψρ♦♦

δφψ
(δ,φψ,ρ;v)

❖❖

δφψρ♦♦

❖❖

φψ

❖❖

(φ,ψ,ρ;u)

φψρ,

❖❖

♦♦

ψ

❖❖

ψρ♦♦

❖❖

be three vertically composable boxes, defined by five arrows

a5
γ
← a4

δ
← a3

φ
← a2

ψ
← a1

ρ
← a0

of P and elements u ∈ A(a3), v ∈ A(a4) and w ∈ A(a5). Then,

(

(γ, γδφψ, ρ;w) ◦v (δ, φψ, ρ; v)
)

◦v (φ, ψ, ρ; u)

=
(

γδ, φψ, ρ;w + γ∗v + k(γ, δ;φψ)− k(γ, δ, φψρ)
)

◦v (φ, ψ, ρ; u)

=
(

γδφ, ψ, ρ;w + γ∗v+k(γ, δ, φψ)− k(γ, δ;φψρ) + γ∗δ∗u

+ k(γδ, φ, ψ)− k(γδ, φ, ψρ)
)

,

and, on the other hand,

(γ, γδφψ, ρ;w) ◦v
(

(δ, φψ, ρ; v) ◦v (φ, ψ, ρ; u)
)

= (γ, γδφψ, ρ;w) ◦v
(

δφ, ψ, ρ; v + δ∗(u) + k(δ, φ, ψ)− k(δ, φ, ψρ)
)

=
(

γδφ, ψ, ρ;w+γ∗v + γ∗δ∗u+ γ∗k(δ, φ, ψ)− γ∗k(δ, φ, ψρ)

+ k(γ, δφ, ψ)− k(γ, δφ, ψρ)
)

.

Hence the result follows by comparison, using that the cocycle condition of

k applied to the lists of arrows a5
γ
← a4

δ
← a3

φ
← a2

ψρ
← a0 and a5

γ
← a4

δ
←

a3
φ
← a2

ψ
← a1 gives the equalities

γ∗k(δ, φ, ψρ) + k(γ, δφ, ψρ) = k(γδ, φ, ψρ) + k(γ, δ, φψρ)− k(γ, δ, φ),

γ∗k(δ, φ, ψ) + k(γ, δφ, ψ) = k(γδ, φ, ψ) + k(γ, δ, φψ)− k(γ, δ, φ).
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The associativity of the horizontal composition of boxes is easier. Let

φψ
(φ,ψ,ρ;u)

φψρ
(φ,ψρ,λ;v)

♦♦ φψρλ♦♦

(φ,ψρλ,µ;w)

φψρλµ♦♦

ψ

❖❖

ψρ

❖❖

♦♦ ψρλ

❖❖

♦♦ ψρλµ

❖❖

♦♦

be boxes, defined by arrows a5
φ
← a4

ψ
← a3

ρ
← a2

λ
← a1

µ
← a0 of P and

elements u, v, w ∈ A(a5). Then,
(

(φ, ψ, ρ; u) ◦h (φ, ψρ, λ; v)
)

◦h (φ, ψρλ, µ;w)

= (φ, ψ, ρλ; u+ v) ◦h (φ, ψρλ, µ;w)

= (φ, ψ, ρλµ; u+ v + w) = (φ, ψ, ρ; u) ◦h (φ, ψρ, λµ; v + w)

= (φ, ψ, ρ; u) ◦h
(

(φ, ψρ, λ; v)
)

◦h (φ, ψρλ, µ;w)
)

.

For any box (φ, ψ, ρ; u) as in (18), its respective vertical and horizontal

inverses

ψ

(φ,ψ,ρ;u)−v

ψρ♦♦

φψ

❖❖

φψρ♦♦

❖❖
φψρ

(φ,ψ,ρ;u)−h

φψ♦♦

ψρ

❖❖

ψ,

❖❖

♦♦

are given by
{

(φ, ψ, ρ; u)−v=(φ−1, φψ, ρ; k(φ−1, φ, ψρ)−k(φ−1, φ, ψ)−φ−1∗ u),

(φ, ψ, ρ; u)−h=(φ, ψ, ρ−1;−u).
(24)

The only non-straightforward verification here is that

(φ, ψ, ρ; u) ◦v (φ, ψ, ρ; u)
−v = Iv(φψ ← φψρ).

which is as follows

(φ, ψ, ρ; u) ◦v (φ
−1, φψ, ρ; k(φ−1, φ, ψρ)− k(φ−1, φ, ψ)− φ−1∗ u)

=
(

idd, ψψ, ρ; u+ φ∗k(φ
−1, φ, ψρ)− φ∗k(φ

−1, φ, ψ)− u

+ k(φ−1, φ, φψ)− k(φ−1, φ, φψρ)
)

=
(

ida3 , ψψ, ρ;φ∗k(φ
−1, φ, ψρ)− φ∗k(φ

−1, φ, ψ) + k(φ−1, φ, φψ)

− k(φ−1, φ, φψρ)
)

(25)
=

(

ida3 , φψ, ρ; k(φ, φ
−1, φ)− k(φ, φ−1, φ)

)

= (ida3 , φψ, ρ; 0)

= Iv(φψ ← φψρ),
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where we have used the equality

φ∗k(φ
−1, φ, ψ)− k(φ, φ−1, φψ) = k(φ, φ−1, φ) (25)

which follows from the 3-cocycle and normalization conditions of k for the

sequence of arrows a3
φ
← a2

φ−1

← a3
φ
← a2

ψ
← a1 in P .

All other requirements are easily verified, except perhaps the interchange

law which is proved as follows. Suppose given boxes

δφψ
(δ,φψ,ρ;v)

δφψρ♦♦

(δ,φψρ,λ;v′)

δφψρλ♦♦

φψ

❖❖

(φ,ψ,ρ;u)

φψρ,

❖❖

♦♦

(φ,ψρ,λ;u′)

φψρλ♦♦

❖❖

ψ

❖❖

ψρ♦♦

❖❖

ψρλ♦♦

❖❖

defined by arrows of P , a5
δ
← a4

φ
← a3

ψ
← a2

ρ
← a1

λ
← a0, and elements

v, v′ ∈ A(a5) and u, u′ ∈ A(a4). Then,

(

(δ, φψ, ρ; v) ◦v (φ, ψ, ρ; u)
)

◦h
(

(δ, φψρ, λ; v′) ◦v (φ, ψρ, λ; u
′)
)

=
(

δφ, ψ, ρ; v + δ∗u+ k(δ, φ, ψ)− k(δ, φ, ψρ)
)

◦h
(

δφ, ψρ, λ; v′

+ δ∗u
′ + k(δ, φ, ψρ)− k(δ, φ, ψρλ)

)

=
(

δφ, ψ, ρλ; v + δ∗u+ v′ + δ∗u
′ + k(δ, φ, ψ)− k(δ, φ, ψρλ)

)

= (δ, φψ, ρλ; v + v′) ◦v (φ, ψ, ρλ; u+ u′)

=
(

(δ, φψ, ρ; v) ◦h (δ, φψρ, λ; v
′)
)

◦v
(

(φ, ψ, ρ; u) ◦h (φ, ψρ, λ; u
′)
)

.

Proposition 5.3. (i) Let (P,A,k) be a Postnikov system. For any represen-

tative 3-cocycle k ∈ Z3(P,A) of k, the Postnikov invariant of the double

groupoid Gk is equivalent to (P,A,k), that is,

[ΠGk, π2G
k,kGk] = [P,A,k].

(ii) Suppose (P,A,k) and (P ′,A′,k′) are equivalent Postnikov systems.

Then, for any representative 3-cocycles k ∈ Z3(P,A) and k′ ∈ Z3(P ′,A′)
of k and k

′ respectively, there is a weak equivalence Gk ∼→ Gk
′

.
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(iii) Let G be a double groupoid. For any 3-cocycle k ∈ Z3(ΠG, π2G)
representative of the cohomology class kG, there is a weak equivalence

Gk ∼→ G.

Proof. Firstly notice that the homotopy relation between paths in Gk is triv-

ial. In fact, suppose

ξ1 η♦♦

≃
ξ0

❖❖
ξ1 µ♦♦

ξ0

❖❖

are two homotopic paths in Gk. This means that there is a box in Gk of the

form

η
(φ,ψ,ρ;u)

µ♦♦

η η

❖❖

for some composable arrows a3
φ
← a2

ψ
← a1

ρ
← a0 in P and some u ∈

A(a3). But then, we have the equalities ψ = η = ψρ = φψ and φψρ = µ

which imply η = µ.

(i) There is a functor fk : P → ΠGk which carries each object a of

P to the identity morphism ida, regarded as an object of Gk, and carries a

morphism ρ : a0 → a1 of P to the path

ida1
fkρ =

ρ♦♦

ida0 .

❖❖

If ψ : a1 → a2 is another morphism in P , the equality fk(ψρ) = fkψ fkρ

follows from the diagram in G

ida2 ψ♦♦

(ψ,ida1 ,ρ;0)

ψρ♦♦

ida1

❖❖

ρ♦♦

❖❖

ida0

❖❖

and, for any object a of P ,

ida
fkida =

ida
= idfka.

ida
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So, fk is actually a functor which is clearly fully faithful. Indeed, it is an

equivalence of groupoids since any object ρ : a0 → a1 is isomorphic in ΠGk

to the object fka0 = ida0 because of the path

ida0 ida0

ρ.

❖❖

Now, for any object a of P , the abelian group π2(G
k, fa) just consists of

all the boxes in Gk of the form

ida
(ida,ida,ida;u)

ida

ida ida

with u ∈ A(a). The mapping Fk : A(a)→ π2(G
k, fka),

u 7→ (ida, ida, ida; u),

is clearly an isomorphism of groups, for any object a of P , and thus we see

that we are in presence of a natural isomorphism Fk : A ∼= f∗π2G
k.

To complete the proof, it is enough to prove that fk∗(kGk) = Fk∗(k).
Indeed, we are going to prove that fk∗(kG

k

) = Fk∗(k) once we select, for each

pair of composable arrows a2
ψ
← a1

ρ
← a0 in P , the box

ψ
(ψ,ida1 ,ρ;0)θfkψ,fkρ =

ψρ♦♦

ida1

❖❖

ρ

❖❖

♦♦

in the construction of the 3-cocycle kG
k

. In fact, for any given composable

arrows a3
φ
← a2

ψ
← a1

ρ
← a0 in P , by (16), the element

fk∗(kG
k

)(φ, ψ, ρ) = kG
k

(fkφ, fkψ, fkρ) ∈ π2(G
k, fka3)
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is the pasted box of the diagram

ida3

Iv(ida3←φ)

φ♦♦

(φ,ida2 ,ψ;0)

φψ♦♦

(φψ,ida2 ,ρ;0)

φψρ♦♦ ida3
♦♦

Iv(φψρ←ida3 )

ida1

❖❖

(ψ,ida1 ,ρ;0)
−v

ρ♦♦

❖❖

ida2

❖❖

ψ♦♦

❖❖

(φ,ida2 ,ψρ;0)
−v

ψρ♦♦

❖❖

ida3 φ♦♦

❖❖

φψρ♦♦

❖❖

ida2
♦♦

Since, by (23) and (24),






















Iv(ida3 ← φ) = (ida3 , ida3 , φ; 0),

Iv(φψρ← ida3) = (ida3 , φψρ, (φψρ)
−1; 0),

(ψ, ida1 , ρ; 0)
−v = (ψ−1, ψ, ρ;−k(ψ−1, ψ, ρ)),

(φ, ida2 , ψρ; 0)
−v = (φ−1, φ, ψρ;−k(φ−1, φ, ψρ)),

a direct computation, using (22) and (22), gives

kG
k

(fφ, fψ, fρ)

=
(

ida3 , ida3 , ida3 ;−φ∗ψ∗k(ψ
−1, ψ, ρ) + k(φψ, ψ−1, ψρ)− k(φψ, ψ−1, ψ)

− φ∗k(φ
−1, φ, ψρ) + k(φ, φ−1, φψρ)− k(φ, φ−1, φ)

)

(25)
=

(

ida3 , ida3 , ida3 ;−φ∗ψ∗k(ψ
−1, ψ, ρ)+k(φψ, ψ−1, ψρ)−k(φψ, ψ−1, ψ)

)

.

Moreover, since the cocycle condition of k on the sequence

a3
φψ
← a1

ψ−1

← a2
ψ
← a1

ρ
← a0

yields

φ∗ψ∗k(ψ
−1, ψ, ρ)− k(φ, ψ, ρ)− k(φψ, ψ−1, ψρ) + k(φψ, ψ−1, ψ) = 0

we conclude that

kG
k

(fkφ, fkψ, fkρ) =
(

ida3 , ida3 , ida3 ; k(φ, ψ, ρ)
)

= Fkk(φ, ψ, ρ)

= Fk∗(k)(φ, ψ, ρ).
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(ii) By hypothesis, there is an equivalence f : P ∼→ P ′, a natural isomor-

phism F : A ∼= f∗A′, and a normalized 2-cochain c ∈ C2(P, f∗A′) such that

f∗(k′) = F∗(k) + ∂c. A weak equivalence F : Gk ∼→ Gk
′

is then defined by

the following assignments on objets, horizontal and vertical morphisms, and

boxes

ρ 7→ fρ,
(

ψ ← ψρ
)

7→
(

fψ ← fψ fρ
)

,





φψ

ψ

❖❖



 7→
fφ fψ

fψ

❖❖

φψ

(φ,ψ,ρ;u)

φψρ♦♦

7→

ψ

❖❖

ψρ,

❖❖

♦♦

fφ fψ
(

fφ,fψ,fρ;Fu+c(φ,ψ)−c(φ,ψρ)
)

fφ fψ fρ♦♦

fψ

❖❖

fψ fρ.

❖❖

♦♦

So defined, one verifies easily that F : Gk → Gk
′

is actually a double

functor. That F is a weak equivalence follows from the commutativity of

the diagrams

P
fk
✴✴

f

✎✎

ΠGk

ΠF
✎✎

P ′
fk

′

✴✴ ΠGk
′

A(a)
Fk
✴✴

F

✎✎

π2(G
k, fka)

π2F
✎✎

A′(fa)
Fk

′

✴✴ π2(G
k′ , fk

′

a)

where f, fk and fk
′

are equivalences of groupoids and, for any object a of P ,

F, Fk and Fk
′

are isomorphisms of groups.

(iii) By Lemma 4.3 (i), we can assume that k = kG for a certain selection

of representative paths (fρ, bρ, xρ) of the morphisms ρ in ΠG and the boxes

θψ,ρ, as in (3) and (12). Then, a double functor F : Gk ∼→ G is defined by

the following assignments on objets, horizontal and vertical morphisms, and

boxes

F (ρ) = bρ, F (ψ ← ψρ) = (bψ bψρ)
f−1

ψ
fψρ

♦♦ ,

bψρ
F





ψρ

↑
ρ



 =
bρ

xψρx
−1
ρ

❖❖

,
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F







φψ

(φ,ψ,ρ;u)

φψρ♦♦

ψ

❖❖

ψρ

❖❖

♦♦






=

bφψ
f−1

φψ∗
(σ)+θ−h

φ,ψ
◦hθφ,ψρ

bφψρ
f−1

φψ
fφψρ

♦♦

bψ

❖❖

xφψx
−1

ψ

bψρ
f−1

ψ
fψρ

♦♦

xφψρx
−1

ψρ

❖❖

.

Many of the details to confirm that F , so defined, is a double functor are

routine and easily verifiable, so are left to the reader. For instance, if φ, ψ, ρ

are any three composable morphisms in G,

F (φ← φψ)F (φψ ← φψρ) = f−1φ f−1φψ fφψf
−1
φψρ = f−1φ f−1φψρ = F (φ← φψρ)

and thus we see that F preserves horizontal composition of morphisms. The

proof that F preserves composition of boxes is as follows. Suppose two

vertically composable boxes in Gk, as in (19). Then,

F (δ, φψ, ρ; τ) ◦v F (φ, ψ, ρ; τ)

= (f−1δφψ∗τ + θ−hδ,φψ ◦h θδ,φψρ) ◦v (f
−1
φψ∗σ + θ−hφ,ψ ◦h θφ,ψρ)

(14)
=

(

f−1δφψ∗(τ − k(δ, φψ, ρ)) + θδφψ,ρ ◦v θ
−v
φψ,ρ

)

◦v
(

f−1φψ∗(σ − k(φ, ψ, ρ))

+ θφψ,ρ ◦v θ
−v
ψ,ρ

)

(9)
= f−1δφψ∗(τ − k(δ, φψ, ρ)) + xδφψ∗x

−1
φψ∗f

−1
φψ∗(σ − k(φ, ψ, ρ))

+ θδφψ,ρ ◦v θ
−v
φψ,ρ ◦v θφψ,ρ ◦v θ

−v
ψ,ρ

2.4
= f−1δφψ∗(τ − k(δ, φψ, ρ)) + f−1δφψ∗fδ∗xδ∗(σ − k(φ, ψ, ρ)) + θδφψ,ρ ◦v θ

−v
ψ,ρ

2.4
= f−1δφψ∗(τ − k(δ, φψ, ρ)) + f−1δφψ∗δ∗(σ − k(φ, ψ, ρ)) + θδφψ,ρ ◦v θ

−v
ψ,ρ

= f−1δφψ∗(τ + δ∗σ) + f−1δφψ∗(−k(δ, φψ, ρ)− δ∗k(φ, ψ, ρ)) + θδφψ,ρ ◦v θ
−v
ψ,ρ,

F
(

(δ, φψ, ρ; τ) ◦v (φ, ψ, ρ; τ)
)

(20)
= F (δφ, ψ, ρ; τ + δ∗σ + kG(δ, φ, ψ)− kG(δ, φ, ψρ))

= f−1δφψ∗(τ + δ∗σ + kG(δ, φ, ψ)− kG(δ, φ, ψρ)) + θ−hδφ,ψ ◦h θδφ,ψρ
(14)
= f−1δφψ∗(τ + δ∗σ) + f−1δφψ∗

(

kG(δ, φ, ψ)− kG(δ, φ, ψρ))− kG(δφ, ψ, ρ)
)

+ θδφψ,ρ ◦v θ
−v
ψ,ρ,
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and the result follows from Lemma 3.5, thanks to the 3-cocycle condition

of k. To prove that Γ preserves horizontal composition of boxes is easier.

Suppose two horizontally composable boxes in Gk, as in (21). Then,

F (φ, ψ, ρ; σ) ◦h F (φ, ψρ, λ; τ)

= (f−1φψ∗σ + θ−hφ,ψ ◦h θφ,ψρ) ◦h (f
−1
φψρ∗τ + θ−hφ,ψρ ◦h θφ,ψρλ)

(8)
= f−1φψ∗σ + f−1φψ∗τ + θ−hφ,ψ ◦h θφ,ψρ ◦h θ

−h
φ,ψρ ◦h θφ,ψρλ

= f−1φψ∗(σ + τ) + θ−hφ,ψ ◦h θφ,ψρλ

= F (φ, ψ, ρλ; σ + τ) = F
(

(φ, ψ, ρ; σ) ◦h (φ, ψρ, λ; τ)
)

.

That F preserves identity boxes is also easily checked. For instance,

F Iv(φ← φψ) = F (id, φ, ψ; 0) = θ−hid,φ ◦h θid,φψ = Ivf−1φ Ivfφψ

= Iv(f−1φ fφψ) = IvF (φ← φψ).

This double functor F is a weak equivalence. In fact, the induced functor

on fundamental groupoids ΠF : ΠGk → ΠG is an equivalence since its

composition with the equivalence fk : ΠG ≃ ΠGk is the identity functor on

ΠG: for any morphism ρ ∈ ΠG(a, b),

ΠF (fkρ) = ΠF





idb ρ♦♦

ida

❖❖



 =







b bρ
fρ
♦♦

a

xρ
❖❖






= [fρ, bρ, xρ] = ρ.

Furthermore, for any object a of G, the induced map

π2F : π2(G
k, ida)→ π2(G, a)

is the obvious isomorphism

ida
(ida,ida,ida;σ)

ida

ida ida

7→

a

σ

a

a a

.

Corollary 5.4. Two double groupoids G and G ′ are weak equivalent if and

only if there is a double groupoid G ′′ with weak equivalences G ∼← G ′′ ∼→ G ′.
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Proof. Suppose G and G ′ are weak equivalent. By Theorem 4.4, they have

the same Postnikov invariant, that is, the Postnikov systems (ΠG, π2G,kG)
and (ΠG ′, π2G

′,kG ′) are equivalent. Then, by Proposition 5.3 (ii) and (iii),
for any representative 3-cocycles of kG and kG ′, say k and k′ respectively,

there is a sequence of weak equivalences

G ∼← Gk ∼→ Gk
′

∼→ G ′.

6. Geometric realization

Theorem 6.1. The Postnikov invariant of a double groupoid G agrees with

the Postnikov invariant of its geometric realization |G|.

Proof. This follows from Proposition 6.2 below.

For a groupoid P , let us recall from the beginning of Section 4 that NP
denotes its nerve, that is, the simplicial set with m-simplices the composable

sequences β = (βm
βm
← · · ·

β1
← β0) of m arrows in P . If (P,A,k) is any

Postnikov system and we select any normalized 3-cocycle k ∈ Z3(P,A)
representative of the cohomology class k ∈ H3(P,A), then the equivalence

class [P,A,k] is justly realized as the unique Postnikov invariant of (the

geometric realization of) the simplicial set homotopy colimit of the functor

K(A, 2) : P → Sset, a 7→ K(A(a), 2),

twisted by the 3-cocycle k (see, for instance, Goerss and Jardine [18, Chapter

VI, Lemma 5.8]). This simplicial set, which we denote by

hocolim
P

K(A, 2; k), (26)

has the same simplices as the ordinary homotopy colimit hocolim
P

K(A, 2),

that is, its set of m-simplices is

⊔

β∈NPm

K(A(βm), 2)m.
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Its face and degeneracy maps are also the same as those of non-twisted ho-

motopy colimit, except the last face maps which are here canonically af-

fected by the cocycle k. This twisted homotopy colimit (26) becomes a

Kan complex that is coskeletal in dimensions higher than three and whose

3-truncation can be described explicitly as below

⊔

β∈NP3

A(β3)3
✴✴
✴✴

d0
✴✴
✴✴

d3

⊔

β∈NP2

A(β2) ✴✴

d0
✴✴

d2

✴✴

s2①①⑤⑤ ①①

s0

⑧⑧

NP1

d0
✴✴

d1

✴✴

s1⑤⑤

s0

��

NP0

s0
✇✇

where, for any β ∈ NP2 and σ ∈ A(β2)

di(β, σ) = diβ, 0 ≤ i ≤ 2,

for any β ∈ NP3 and (σ0, σ1, σ2) ∈ A(β3)
3,

di(β, σ0, σ1σ2) =

{

(diβ, σi) if 0 ≤ i ≤ 2,
(

d3β, β
−1
3∗ (k(β) + σ2 − σ1 + σ0)

)

if i = 3,

for any β ∈ NP1,

si(β) = (siβ, 0), i = 0, 1,

and, for any β ∈ NP2 and σ ∈ A(β2),

si(β, σ) =











(s0β, σ, σ, 0) if i = 0,

(s1β, 0, σ, σ) if i = 1,

(s2β, 0, 0, σ) if i = 2.

Now, for a double groupoid G, let NNG denote its double nerve, that is,

the bisimplicial set where a (p, q)-simplex is a subdivision of a box of G as
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a matrix of p× q horizontally and vertically composable boxes of the form

apq
θp,q

ap−1q
fpq

♦♦ · · · a1q
θ1,q

a0q
f1q
♦♦

apq−1
↑

xpq
❖❖

ap−1q−1
↑

xp−1q

❖❖

fpq−1

♦♦ · · · a1q
↑

x1q
❖❖

a0q−1
↑

f1q−1

♦♦

x0q
❖❖

...
...

...
...

↑
ap1

θp,1

↑
ap−11

fp1
♦♦ · · ·

↑
a11

θ1,1

↑
a01

f11
♦♦

ap0

xp1
❖❖

ap−10
fp0

♦♦

p−11
❖❖

· · · a10

x11

❖❖

a00

x01

❖❖

f10

♦♦

The bisimplicial face maps are the natural ones, induced by horizontal and

vertical composition of boxes in G, and the degeneracy ones by appropriate

identity boxes. We picture NNG so that the set of (p, q)-simplices is the

set in the p-th row and q-th column. Thus, its p-th column, NNGp•, is the

nerve of the “vertical” groupoid whose objects are strings ·
fp
← · · ·

f1
← · of p

composable horizontal arrows in G and whose arrows are length p sequences

of horizontally composable boxes

·
θp

·
gp
♦♦

···

·
θ2

·
θ1

♦♦ ·
g1
♦♦

·

❖❖

·

❖❖

fp

♦♦ ·

❖❖

·

❖❖

♦♦ ·
f1

♦♦

❖❖

Similarly, the q-th column, NNG•q, is the nerve of the “horizontal” groupoid

whose objects are length q sequences of composable vertical morphisms in

G and whose arrows are sequences of q vertically composable boxes. In

particular, NNG0• and NNG•0 are, respectively, the nerves of the groupoids

of vertical and horizontal morphisms of G.

The geometric realization |G| of the double groupoid G is, by definition,

the geometric realization of the simplicial set diagonal of its double nerve,

that is, |G| = |△ NNG|. By Cegarra-Remedios [12, Therem 1.1] or Zisman

[27], |G| can be also realized, up to homotopy equivalence, as the geomet-

ric realization of the Artin-Mazur total simplicial set [2, Section III] (aka
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codiagonal or W ) of the double nerve, ∇NNG. A direct analysis of this

simplicial set tell us that it is a Kan complex in which any simplex of dimen-

sion higher than two is determined by any three of its faces. In particular, it

is coskeletal in dimensions higher than 3, so that it is completely determined

by its 3-truncation, which is explicitly described as follows. Its vertices are

the objects a of G. The 1-simplices ξ1 are the paths of G

a11
ξ1 :

a01
f11
♦♦

a00

x01
❖❖

whose faces are d0ξ1 = a11 and d1ξ1 = a00. The 2-simplices ξ2 are the

diagrams in G

a22

ξ2 :

a12
f22
♦♦

θ12

a02
f12
♦♦

a11

x12
❖❖

a01

x02
❖❖

f11

♦♦

a00

x01
❖❖

with faces

a22
d0ξ2 =

a12
f22
♦♦

a11,

x12

❖❖
a22

d1ξ2 =
a02

f22f12
♦♦

a00,

x02x01

❖❖
a11

d2ξ2 =
a01

f11
♦♦

a00,

x01

❖❖

and its 3-simplices ξ3 are the diagrams in G

a33

ξ3 :

a23
f33
♦♦

θ23

a13
θ13

f23
♦♦ a03

f13
♦♦

a22

x23

❖❖

a12

❖❖

x13

f22

♦♦

θ12

a02

x03

❖❖

♦♦
f12

a11

x12

❖❖

a01

x02
❖❖

f11

♦♦

a00

x01

❖❖
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with faces

a33

d0ξ3 =

a23
f33
♦♦

θ23

a13
f23
♦♦

a22

x23

❖❖

a12

x13
❖❖

f22

♦♦

a11,

x12

❖❖

a33

d1ξ3 =

a23
f33
♦♦

θ23◦hθ13

a03
f23f13
♦♦

a22

x23

❖❖

a02

x03
❖❖

f22f12

♦♦

a00,

x02x01

❖❖

a33

d2ξ3 =

a13
f33f23
♦♦

θ13◦vθ12

a03
f13
♦♦

a11

x13x12

❖❖

a01

x03x02
❖❖

f11

♦♦

a00,

x01

❖❖

a22

d3ξ3 =

a12
f22
♦♦

θ12

a02
f12
♦♦

a11

x12

❖❖

a01

x02
❖❖

f11

♦♦

a00.

x01

❖❖

Degeneracies are defined by

a
s0a =

a

a

a11
s0ξ1 =

a01
f11
♦♦

Ihx01

a01

a11

❖❖

a01

x01
❖❖

a00

a11
s1ξ1 =

a11
Ivf11

a01
f11
♦♦

a11 a01♦♦

a00

x01
❖❖

a22

s0ξ2 =

a12
f22
♦♦

θ12

a02
Ihx02

f12
♦♦ a02

a11

x12
❖❖

a01

❖❖

f11

♦♦

Ihx01

a01

x02
❖❖

a00

❖❖

a00

x01
❖❖

a00

a22

s1ξ2 =

a12
f22
♦♦

Ihx12

a12
θ12

a02
f12
♦♦

a11

x12
❖❖

a11

❖❖

Ivf11

a01

x02
❖❖

♦♦

a11 a01
f11

♦♦

a00

x01
❖❖

a22

s2ξ2 =

a22
Ivf22

a12
Ivf12

f22
♦♦ a02

f12
♦♦

a22 a12♦♦

θ12

a02♦♦

a11

x12

❖❖

a01

x02
❖❖

f11

♦♦

a00

x01
❖❖
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Proposition 6.2. Let G be a double groupoid. For any normalized 3-cocycle

k ∈ Z3(ΠG, π2G) representing the cohomology class kG, there is a weak

equivalence of simplicial sets

Γ : hocolim
ΠG

K(π2G, 2; k)
∼−→ ∇NNG.

Proof. By Lemma 4.3 (i), we can assume that k = kG for a certain selection

of representative paths (fρ, bρ, xρ) of the morphisms ρ in ΠG and the boxes

θψ,ρ, as in (3) and (12). The claimed simplicial map Γ, which is completely

defined by its 3-truncation

⊔

β∈NΠG3

π2(G, β3)
3

✴✴
✴✴

d0
✴✴
✴✴

d3

Γ3

✎✎

⊔

β∈NΠG2

π2(G, β2) ✴✴

d0
✴✴

d2

✴✴

s2✇✇③③ ✇✇

s0

⑥⑥

Γ2

✎✎

NΠG1
d0

✴✴

d1

✴✴

s1②②

s0

⑥⑥

Γ1

✎✎

NΠG0

s0
✉✉

Γ0

∇NNG3
✴✴
✴✴

d0
✴✴
✴✴

d3

∇NNG2 ✴✴

d0
✴✴

d2

✴✴

s2①①④④ ①①

s0

⑥⑥

∇NNG1
d0
✴✴

d1

✴✴

s1
③③

s0

⑥⑥

∇NNG0,

s0
✉✉

is given as follows: Γ0 is the identity map on the objects of the double

groupoid G. For any morphism ρ ∈ ΠG(a0, a1),

a1
Γ1(ρ) =

bρ
fρ
♦♦

a0,

xρ
❖❖

If a2
ψ
← a1

ρ
← a0 are any two morphisms in ΠG and σ ∈ π2(G, a2),

a2

Γ2(ψ, ρ; σ) =

bψ
fψ

♦♦

f−1

ψ∗
(σ)+θψ,ρ

bψρ
f−1

ψ
fψρ

♦♦

a1

xψ

❖❖

bρ

xψρx
−1
ρ

❖❖

fρ

♦♦

a0,

xρ
❖❖
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and, for any a3
φ
← a2

ψ
← a1

ρ
← a0 in ΠG and (σ0, σ1, σ2) ∈ π2(G, a3)

3,

a3

Γ3(φ, ψ, ρ; σ0, σ1, σ2) =

bφ
fφ

♦♦

f−1

φ∗
(σ0)+θφ,ψ

bφψ

f−1

φψ∗
(σ1−σ0)

+

θ−h

φ,ψ
◦hθφ,ψρ

f−1

φ
fφψ

♦♦ bφψρ
f−1

φψ
fφψρ

♦♦

a2

xφ

❖❖

bψ

❖❖

fψ

♦♦

f−1

ψ∗
φ−1
∗ (σ0−σ1+σ2)

+
f−1

ψ∗
φ−1
∗ k(φ,ψ,ρ)
+
θψ,ρ

bψρ

xφψρx
−1

ψρ

❖❖

♦♦

a1

xψ

❖❖

bρ

xψρx
−1
ρ

❖❖

fρ

♦♦

a0.

xρ

❖❖

So defined, all the simplicial identities to verify that Γ is actually a sim-

plicial map are easily checked, except perhaps that diΓ3 = Γ2di for i = 1, 2.

For i = 1, the required equality d1Γ3(φ, ψ, ρ, σ0, σ1, σ2) = Γ2(φ, ψρ, σ1)
follows from the equalities

(

f−1φ∗ (σ0)+θφ,ψ
)

◦h
(

f−1φψ∗(σ1 − σ0) + θ−hφ,ψ ◦h θφ,ψρ
)

(7)(8)
= f−1φ∗ (σ0) + f−1φ∗ (σ1 − σ0) + θφ,ψ ◦h θ

−h
φ,ψ ◦h θφ,ψρ

= f−1φ∗ (σ1) + θφ,ψρ.

The case i = 2 is somewhat more complicated. In this case, the required

equality

d2Γ3(φ, ψ, ρ, σ0, σ1, σ2) = Γ2(φψ, ρ, σ2)
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follows from the equalities

(

f−1φψ∗(σ1−σ0)+θ
−h
φ,ψ◦hθφ,ψρ

)

◦v
(

f−1ψ∗ φ
−1
∗ (σ0−σ1+σ2+k(φ, ψ, ρ)+θψ,ρ

)

(9)
= f−1φψ∗(σ1−σ0) + xφψ∗x

−1
ψ∗f

−1
ψ∗

φ−1∗ (σ0−σ1+σ2+k(φ, ψ, ρ))

+ (θ−hφ,ψ ◦h θφ,ψρ) ◦v θψ,ρ
2.4(ii)
= f−1φψ∗(σ1−σ0)+xφψ∗ψ

−1
∗ φ−1∗ (σ0 − σ1 + σ2 + k(φ, ψ, ρ))

+ (θ−hφ,ψ ◦h θφ,ψρ) ◦v θψ,ρ
3.3
= f−1φψ∗(σ1 − σ0) + xφψ∗(φψ)

−1
∗ (σ0 − σ1 + σ2 + k(φ, ψ, ρ))

+ (θ−hφ,ψ ◦h θφ,ψρ) ◦v θψ,ρ
2.4(ii)
= f−1φψ∗(σ1−σ0)+xφψ∗x

−1
φψ∗f

−1
φψ∗(σ0−σ1+σ2+k(φ, ψ, ρ))

+ (θ−hφ,ψ ◦h θφ,ψρ) ◦v θψ,ρ

= f−1φψ∗σ2 + f−1φψ∗k(φ, ψ, ρ) + (θ−hφ,ψ ◦h θφ,ψρ) ◦v θψ,ρ
(14)
= f−1φψ∗σ2 + θφψ,ρ.

That Γ induces an isomorphism on the fundamental groupoids follows

from the observation that homotopies (f, b, x) ≃ (g, c, y) in G between two

paths from an object a0 to an object a1, as in (2), are in bijection with homo-

topies (f, b, x) ≃ (g, c, y) in the simplicial set∇NNG, by the mapping

b
α

c
f−1g
♦♦

7→
b b

yx−1

❖❖

a1 a1
Ivf◦hα

c
g
♦♦

a1 b
f
♦♦

yx−1

❖❖

a0

x

❖❖

Furthermore, for any object a of G, the induced homomorphism by Γ on the

second homotopy groups with base a,

π2
(

hocolim
ΠG

K(π2G, 2; k), a
)

→ π2(∇NNG, a),
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is explicitly given by

a a
σ

a

(ida, ida; σ)
✤ Γ2

✴✴ a a

a

and clearly is an isomorphism.

Since the homotopy groups of hocolim
ΠG

K(π2G, 2; k) and of∇NNG van-

ish in degree 3 and higher, Γ is actually a weak homotopy equivalence.

As a consequence of Theorems 5.1 and 6.1, we get a new proof of the

following fact (cf. [12, Theorem 13] for a more general result).

Corollary 6.3. The mapping G 7→ |G| induces a bijective correspondence

between weak equivalence classes of double groupoids and weak homotopy

classes of 2-types.
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COMPARING THE NON-UNITAL AND

UNITAL SETTINGS FOR DIRECTED

HOMOTOPY

Philippe GAUCHER

Résumé. Cette note explore le lien entre la structure de modèles de type

Quillen des ots et la structure de modèles de Ilias sur les petites catégories

enrichies sur les espaces topologiques. Les deux ont des équivalences faibles

qui induisent des équivalences sur les (semi)catégories fondamentales. La

structure de modèles de Ilias ne peut pas être transférée sur les ots le long de

l’adjoint à gauche qui ajoute le morphismes identité. La structure de modèles

minimale sur les ots ayant comme cobrations le transfert le long de ce

foncteur des cobrations de la structure de modèles de Ilias a comme catégorie

homotopique l’ensemble totalement ordonné à 3 éléments. La structure de

modèles de type Quillen des ots peut être transférée le long de l’adjoint à

droite oubliant les morphismes identité. On obtient une catégorie de modèle

minimale telle que les équivalences faibles induisent une équivalence sur les

catégories fondamentales. Le foncteur identité de la catégorie des petites

catégories enrichies sur les espaces topologiques n’est ni un adjoint de Quillen

à gauche, ni un adjoint de Quillen à droite entre la structure de modèles de

type Quillen et la structure de modèles de Ilias.

Abstract. This note explores the link between the q-model structure of

ows and the Ilias model structure of topologically enriched small categories.

Both have weak equivalences which induce equivalences of fundamental

(semi)categories. The Ilias model structure cannot be left-lifted along the left

adjoint adding identity maps. The minimal model structure on ows having as

cobrations the left-lifting of the cobrations of the Ilias model structure has
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a homotopy category equal to the 3-element totally ordered set. The q-model

structure of ows can be right-lifted to a q-model structure of topologically

enriched small categories which is minimal and such that the weak equiva-

lences induce equivalences of fundamental categories. The identity functor

of topologically enriched small categories is neither a left Quillen adjoint

nor a right Quillen adjoint between the q-model structure and the Ilias model

structure.

Keywords. Directed homotopy, ow, Dwyer-Kan equivalence, combinatorial

model category, minimal model category, locally presentable category, topo-

logically enriched category.

Mathematics Subject Classication (2020). 18C35,18D20,55U35,68Q85.

1. Introduction

1.1 Presentation

The time ow of a concurrent process can be modelled by a topologically

enriched small semicategory [8] or by a topologically enriched small category

[4, 27]. The objects represent the states of the concurrent process and the

nonidentity morphisms represent the execution paths, the topology modelling

concurrency [6]. The primary reason for excluding identity morphisms in [8,

Denition 4.11] is to obtain functorial constructions for the branching and

merging homology theories (see [8, Section 20]). It enables us to prove the

invariance by renement of observation in [10, Corollary 11.3], and therefore

to x Goubault-Jensen’s construction of [19]. The main technical tool is

the minimal model category introduced in [8], called the q-model structure

(of ows) after [17, Theorem 7.6]. The examples coming from computer

science are non-unital as well because they are modelled by precubical

sets (e.g. [12, 13, 20, 31]) and because precubical sets have non-unital

geometric realizations [12, Denition 7.2]. The transverse degeneracy maps

of precubical sets, introduced for the functorial formalization of the parallel

product with synchronization of process algebra [13, Theorem 3.1.15 and

Denition 4.2.2], belong to the non-unital world as well. The transverse

degeneracy maps lead to a vast generalization of Raussen’s notion of natural

d-path in [18]. The non-unital setting is also necessary to construct the

underlying homotopy type functor which is geometrically the homotopy type
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of the space obtained after forgetting the temporal information [11, Section 6]

[15, Proposition 8.16].

On the other hand, the mathematical literature provides several con-

structions of model structures on enriched small categories such that the

weak equivalences are the so-called Dwyer-Kan equivalences of [5]: for

simplicially enriched small categories [3], for topologically enriched small

categories [25] and for small categories enriched in a given monoidal model

category [2]. The generating cobrations of the q-model structure of ows

of [8] are almost those obtained by transfer along the left adjoint formally

adding identity maps from the generating cobrations of the Ilias model

structure constructed in [25]. The only difference is the presence of the ow

cobration R : 0, 1 → 0 which has no counterpart in the Ilias model

structure (see Proposition 3.3). This leads to the question of comparing the

model structures on ows and on topologically enriched small categories.

The following sequence of theorems answers the question.

Theorem. (Theorem 3.5) The Ilias model structure on topologically enriched

small categories [25] cannot be transferred to the category of ows along the

left adjoint formally adding identity maps.

Theorem. (Corollary 4.10) The minimal model structure on ows with respect

to the transfer of the cobrations of the Ilias model structure along the left

adjoint formally adding identity maps has three homotopy types.

Theorem. (Theorem 5.2) The q-model structure of ows can be transferred

along the right adjoint forgetting the identity maps to the category of topolog-

ically enriched small categories. We obtain a combinatorial model structure

which is minimal. Its weak equivalences induce equivalences of fundamental

categories. The left Quillen adjoint formally adding identity maps from ows

to enriched small categories is not a left Quillen equivalence.

The model category of Theorem 5.2 on topologically enriched small

categories seems to be new. With the same argument, the h-model structure

and the m-model structure of ows constructed in [17, Theorem 7.4] can be

transferred along the right adjoint forgetting the identity maps to the category

of topologically enriched small categories as well. We obtain a h-model

structure and a m-model structure on topologically enriched small categories

which are both accessible as model categories.
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The following table of minimal model categories summarizes the results

of this note. The symbol  means that the weak equivalences induce equiva-

lences of fundamental (semi)categories. The symbol  means that they do

not.

R is a cobration R is not a cobration

Flow  q-model structure of [8]  Corollary 4.10

Cat  Theorem 5.2  Ilias model structure of [25]

The conclusion that must be drawn from this note is that the ow co-

bration R : 0, 1 → 0 is much more important in a globular approach of

directed homotopy than what was expected in [8].

1.2 Prerequisites and notations

We refer to [1] for locally presentable categories, to [7, 22, 29] for combina-

torial and accessible model categories. We refer to [23, 24] for more general

model categories. We work with a locally presentable convenient category

of topological spaces Top for doing algebraic topology. The internal hom

is denoted by TOP(−,−). The category of ∆-generated spaces or of ∆-

Hausdorff ∆-generated spaces (cf. [16, Section 2 and Appendix B]) are two

such examples. The category Top is equipped with its q-model structure (we

use the terminology of [26]). What follows is some notations and conventions:

∅ is the initial object, 1 is the nal object, IdX is the identity of X . A model

structure (C,F ,W) means that the class of cobrations is C, that the class of
brations is F and that the class of weak equivalences isW . A combinatorial

model structure onK is minimal if the class of weak equivalences is the small-

est Grothendieck localizer with respect to its set of generating cobrations

[21, 30]. Note that in [30], the adjective left-determined is used instead. When

all objects of a model category are brant, any Grothendieck localizer which

is strictly smaller than the class of weak equivalences never induces a model

structure. By [21, Theorem 1.4], every tractable combinatorial model cate-

gory with brant objects is minimal. The notation f  g means that g satises

the right lifting property (RLP) with respect to f ; C = g, ∀f ∈ C, g  f;
C = inj(C) = g, ∀f ∈ C, f  g; cof(C) = (C); cell(C) is the class of
transnite compositions of pushouts of elements of C. A cellular object X
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of a combinatorial model category is an object such that the canonical map

∅ → X belongs to cell(I) where I is the set of generating cobrations.

In this paper, the transfer of a model structure of Flow along the right

adjointCat ⊂ Flow of Proposition 2.7 is called the right-lifting of the model

structure of Flow. Similarly, the transfer of a model structure of Cat (of a

weak factorization system resp.) along the left adjoint I+ : Flow → Cat

of Proposition 2.7 is called the left-lifting of the model structure of Cat (of

the weak factorization system resp.). See the introductions of [7, 22] and the

beginning of [7, Section 2] for further explanations.

1.3 Acknowledgments

I thank Simon Henry for a useful discussion about semicategories. I thank the

anonymous referee for the suggestions to improve and clarify the presentation.

2. The adjunction I+ : Flow ⇆ Cat :⊃

Denition 2.1. [8, Denition 4.11] A ow is a small semicategory enriched

over the closed monoidal category (Top,×). The corresponding category is

denoted by Flow.

A owX consists of a topological space PX of execution paths, a discrete

space X0 of states, two continuous maps s and t from PX to X0 called the

source and target map respectively, and a continuous and associative map

∗ : (x, y) ∈ PX × PX; t(x) = s(y) −→ PX such that s(x ∗ y) = s(x)
and t(x ∗ y) = t(y). Let Pα,βX = x ∈ PX  s(x) = α and t(x) = β.
Note that the composition is denoted by x ∗ y, not by y ◦ x.

Every set can be viewed as a ow with an empty space of execution paths.

The obvious functor Set ⊂ Flow from the category of sets to that of ows

is limit-preserving and colimit-preserving. The following examples of ows

are important for the sequel:

Example 2.2. For a topological space Z, let Glob(Z) be the ow dened by

Glob(Z)0 = 0, 1, PGlob(Z) = P0,1Glob(Z) = Z, s = 0, t = 1

This ow has no composition law. The directed segment is the ow
−→
I =

Glob(0).
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Example 2.3. Denote by B (like branching) the ow 1 ← 0 → 1 with three

states and two execution paths. This ow has no composition law.

Notation 2.4. Let n ⩾ 1. Denote by Dn = b ∈ R
n, b ⩽ 1 the n-

dimensional disk, and by Sn−1 = b ∈ R
n, b = 1 the (n− 1)-dimensional

sphere. By convention, letD0 = 0 and S−1 = ∅.

Notation 2.5. Let

Igl = cn : Glob(Sn−1) ⊂ Glob(Dn)  n ⩾ 0,

Jgl = Glob(Dn × 0) ⊂ Glob(Dn × [0, 1]  n ⩾ 0,

C : ∅ → 0, R : 0, 1 → 0

Notation 2.6. The category of small categories enriched overTop is denoted

by Cat. The set of objects of an enriched small category X is denoted by

Obj(X) and the space of morphisms from A to B by X(A,B).

Proposition 2.7. (well-known) The inclusionCat ⊂ Flow has a left adjoint 1

denoted by I+ : Flow −→ Cat. It consists of adding identity maps as

isolated points in the spaces of morphisms. This functor is faithful.

What follows is an adaptation of [6, Denition 4.37].

Denition 2.8. Let X be an object of Flow. The fundamental semicategory

of X is the small semicategory −→π 1(X) having X0 for the set of objects

and the set of morphisms between two objects is the set of path-connected

components of the space of execution paths between these two objects. If

X ∈ Cat ⊂ Flow, then −→π 1(X) is a small category which is called the

fundamental category of X .

For allX ∈ Flow, I+(−→π 1(X)) is also a small category which is called the

fundamental category ofX . ForX ∈ Cat, the canonical map I+(−→π 1(X)) →
−→π 1(X) is not an equivalence of categories.

1It has also a right adjoint, the enriched small category of idempotents of a ow, which is

not used in this note.
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3. Left-lifting the Ilias model structure

Theorem 3.1. [25, Theorem 2.4] There exists one and only one combinatorial

model structure (Cat)DK = (CDK ,FDK ,WDK) on Cat with the following

properties:

• A set of generating cobrations is the set of maps I+(Igl  C).

• The weak equivalences are the DK-equivalences: there are the maps of

enriched functors F : C → D such that −→π 1(F ) : −→π 1(C) →
−→π 1(D) is an

equivalence of categories and such that for all pairs of objects (α, β) of C,
there is a weak homotopy equivalence C(α, β) → D(F (α), F (β)).

• A set of generating trivial cobrations is given by the set of maps I+(Jgl) 
I+(0) → (0 ∼= 1)cof where 0 ∼= 1 is the small category with two
isomorphic objects 0 and 1.

It is called the Ilias model structure. All objects are brant.

Theorem 3.1 is the topological analogue of the Bergner model structure

on simplicially enriched small categories [3]. The weak equivalences are

the Dwyer-Kan equivalences of [5]. The combinatorial model category is

minimal since all objects are brant. The weak equivalences of WDK induce

equivalences of fundamental categories by denition.

Proposition 3.2. Let f : X → Y be a map of ows. Let i : A → B ∈
Igl  C. Consider a commutative square of Cat

I+(A)
ϕ

//

I+(i)



I+(X)

I+(f)



I+(B)
ϕ

// I+(Y )

Then either I+(B)⊔I+(A) I
+(X) ∼= I+(X), or the canonical map I+(B)⊔I+(A)

I+(X) → I+(Y ) is of the form I+(g) for some unique map of ows g :
B ⊔A X → Y .
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Proof. That there is at most one such a map g is a consequence of the fact

that I+ is faithful. A commutative diagram of enriched small categories of

the form

∅ //



I+(X)

I+(f)



I+(0) // I+(Y )

is the image by the functor I+ : Flow → Cat of the commutative diagram

of ows

∅ //



X

f



0 // Y

Thus, in this case, g exists by the universal property of the pushout. Consider

now a commutative diagram (C) of enriched small categories of the form

I+(Glob(Sn−1))
ϕ

//



I+(X)

I+(f)



I+(Glob(Dn))
ϕ

// I+(Y )

with n ⩾ 0. If ϕ(0) ̸= ϕ(1) are two different objects of I+(X), then the latter

commutative diagram of enriched small categories is the image by the functor

I+ : Flow → Cat of the commutative diagram (D) of ows

Glob(Sn−1)
ϕ

//



X

f



Glob(Dn) // Y

We conclude the existence of g as above. It remains the case ϕ(0) = ϕ(1). In
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this case, we have the commutative diagram of topological spaces

Sn−1 ϕ
//



Idϕ(0) ⊔ Pϕ(0),ϕ(1)X

f



Dn ϕ
// Idϕ(0) ⊔ Pϕ(0),ϕ(1)Y

If n ⩾ 1 and since Dn is connected, then either ϕ(Dn) ⊂ Idϕ(0) and

ϕ(Sn−1) ⊂ Idϕ(0) or ϕ(Dn) ⊂ Pϕ(0),ϕ(1)Y and ϕ(Sn−1) ⊂ Pϕ(0),ϕ(1)X . If

n = 0, then Sn−1 = ∅ and either ϕ(Dn) ⊂ Idϕ(0) or ϕ(Dn) ⊂ Pϕ(0),ϕ(1)Y .

In the rst alternative in both cases, there is the pushout diagram of

enriched small categories

I+(Glob(Sn−1))
ϕ

//



I+(X)

I+(f)



I+(Glob(Dn)) // I+(X)

In the second alternative in both cases, the commutative diagram (C) is
the image by the functor I+ : Flow → Cat of the commutative diagram (D)
and we conclude the existence of g as above.

By [7, Theorem 2.6], the left-lifting of the small weak factorization system

(CDK ,FDK WDK) along the left adjoint I+ : Flow → Cat exists and is

accessible. In fact, we have the proposition:

Proposition 3.3. The left-lifting of the small weak factorization system

(CDK ,FDK  WDK) along the left adjoint I+ : Flow → Cat is small,

being generated by Igl  C.

Proof. It sufces to prove that I+
−1
(CDK) = cof(Igl  C). We have

I+(Igl  C) ⊂ CDK by Theorem 3.1. Since I+ : Flow → Cat is a

left adjoint, we obtain the inclusion cell(Igl  C) ⊂ I+
−1
(CDK). And

using the fact that every map of cof(Igl  C) is a retract of a map of

cell(Igl C), we obtain the inclusion cof(Igl C) ⊂ I+
−1
(CDK) since
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the class of maps CDK is closed under retract. Conversely, let f : X → Y

be a map of ows such that I+(f) : I+(X) → I+(Y ) is a cobration of

Cat. By using the small object argument of [24, Theorem 2.1.14], we factor

I+(f) as a composite I+(X) → Z → I+(T ) such that the map I+(X) → Z

belongs to cell(I+(Igl  C)) and such that the map Z → I+(T ) belongs
to inj(I+(Igl  C)). Since I+ is a left adjoint, by an immediate transnite

induction, there exists a transnite tower (Xα)α<λ of Flow with X = X0

and Z = I+(Xλ) such that each map Xα → Xα+1 for α < λ is a pushout

of a map of Igl  C. By induction on α ⩾ 0, let us prove that the map of

enriched small categories I+(Xα) → I+(T ) is the image by the functor I+

of a map of ows gα : Xα → T . There is nothing to prove for α = 0. The
passage from α to α + 1 is ensured by Proposition 3.2. Finally, the statement

holds for a limit ordinal α since I+ is colimit-preserving. We deduce that

the map of enriched small categories Z → I+(T ) is of the form I+(g) for
some map of ows g : Xλ → T : take g = gλ. The lift ℓ in the commutative

diagram of enriched small categories

I+(X) //

I+(f)



I+(Xλ)

I+(g)



I+(T )

ℓ

;;

I+(T )

exists since I+(f) is a cobration of Cat by hypothesis. For all α ∈ T 0, the

commutativity of the diagram of spaces

Idα ⊔ Pα,αT
ℓ

// Idℓ(α) ⊔ Pℓ(α),ℓ(α)Xλ

I+(g)
// Idα ⊔ Pα,αT

implies that ℓ(Pα,αT ) ⊂ Pℓ(α),ℓ(α)Xλ, and therefore that ℓ = I+(ℓ) for some

map of ows ℓ : T → Xλ. Since the functor I
+ is faithful, we obtain the

commutative diagram of ows

X //

f



Xλ

g



T

ℓ

>>

T
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It means that the map of ows f : X → T is a retract of the map of

ows X → Xλ. We deduce f ∈ cof(Igl  C), the map X → Xλ

belonging to cell(Igl  C) by construction. We deduce the inclusion

I+
−1
(CDK) ⊂ cof(Igl  C).

Lemma 3.4. Let f : X → Y be a map of Flow such that Y is a set. ThenX

is a set as well.

Proof. It is a consequence of the lack of identity maps for the objects of

Flow.

Theorem 3.5. The model category (Cat)DK cannot be left-lifted along the

left adjoint I+ : Flow → Cat.

Proof. By Proposition 3.3 and Lemma 3.4, the map R : 0, 1 → 0
satises the RLP with respect to I+

−1
(CDK) because it satises the RLP with

respect to C : ∅ → 0. But I+(R) ∈ WDK . It means that the left acyclicity

condition I+
−1
(CDK)

 ⊂ I+
−1
(WDK) fails and that the left-induced model

structure does not exist by [7, Proposition 2.3].

Theorem 3.5 can be proved without using Proposition 3.3. Indeed, thanks

to Lemma 3.4, the only maps of ows f belonging to I+
−1
(CDK) such that

there exists a morphism in the category of maps of ows from f to R are the

set maps of cell(C) = cof(C), i.e. the one-to-one set maps. Proposition 3.3

is proved because it is used in Corollary 4.10.

4. Left-lifting the cobrations of the Ilias model structure

We need to recall:

Theorem 4.1. [17, Theorem 7.6] There exists one and only one combinatorial

model structure (Flow)q on Flow with the following properties:

• A set of generating cobrations is the set of maps Igl  C,R.

• The weak equivalences are the maps of ows f : X → Y inducing a

bijection f 0 : X0 ∼= Y 0 and a weak homotopy equivalence Pf : PX →
PY .
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• A set of generating trivial cobrations is given by the set of maps Jgl.

It is called the q-model structure. The cobrations (brations resp.) are

called q-cobrations (q-brations resp.). All ows are q-brant.

The weak equivalences of (Flow)q induce isomorphisms of fundamental

semicategories. The q-model structure of ows is minimal by [21, Theo-

rem 1.4] since it is combinatorial and all its objects are brant 2.

Denition 4.2. The class of maps of owsWDK consists of the maps of ows

f : X → Y such that either X = Y = ∅, or X and Y are both nonempty

sets, or X and Y both contain at least one execution path.

As an immediate consequence of the denition above, we obtain:

Proposition 4.3. All maps of ows

I
gl
⩾1 = cn  n ⩾ 1, C+ : 0 ⊂ 0, 1,

c+0 = Id−→

I
⊔c0 :

−→
I ⊔Glob(S−1) ⊂

−→
I ⊔Glob(D0)

belong toWDK .

We recall the four following propositions for the convenience of the

reader.

Proposition 4.4. [8, Proposition 13.2] Let i : U → V be a map of Top. A

morphism of ows f : X → Y satises the RLP with respect to Glob(i) :
Glob(U) → Glob(V ) if and only if for all (α, β) ∈ X0 × X0, the map

Pα,βX → Pf(α),f(β)Y satises the RLP with respect to i.

Proposition 4.5. ([24, Theorem 2.1.19]) Let I and J be two sets of maps

of a locally presentable category K. Let W be a class of maps satisfy-

ing the two-out-of-three property and which is closed under retract. If

cell(J) ⊂ W  cof(I), inj(I) ⊂ W  inj(J) and W  cof(I) ⊂ cof(J),
then (cof(I), inj(J),W) is a model structure on K.

2[14, Theorem 4.3] gives another argument which does not require to use a locally

presentable setting.
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Proposition 4.6. ([24, Lemma 5.2.6]) Let M be a model category. Consider

a pushout diagram ofM of the form

X 



//

≃



Y



Z // T

such that X, Y, Z are cobrant, such that the top horizontal map is a cobra-

tion and such that the left vertical map is a weak equivalence. Then the right

vertical map Y → T is a weak equivalence.

Proposition 4.7. [14, Proposition 3.7] The globe functor Glob : Top →
Flow preserves connected colimits (i.e. colimits such that the underlying

small category is connected).

Notation 4.8. Let 3 be the small category associated with the poset 0 ⩽

1 ⩽ 2.

Theorem 4.9. There exists one and only one model structure on Flow such

that

• A set of generating cobrations is Igl  C.

• A set of generating trivial cobrations is C+, c+0   Jgl  I
gl
⩾1.

• The class of weak equivalences isWDK .

• The homotopy category of this model structure is the category 3: every ow

is weakly equivalent either to the initial or terminal ow, or to a singleton.

• The cobrant ows are the q-cobrant ows.

• The brant ows are the ows X such that PX = ∅ (i.e. the sets) and the

owsX such that for all (α, β) ∈ X0×X0, the space Pα,βX is contractible.

In particular, not all ows are brant.

Moreover, this combinatorial model structure is minimal.
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Proof. The uniqueness comes from the fact that a model structure is charac-

terized by its cobrations and its trivial cobrations. Note that 3 is the full

subcategory of Flow generated by the initial and terminal ows and by the

singleton. Consider the functor w : Flow → 3 characterized as the unique

functor which takes a ow X to 0 if X0 = ∅, to 1 if X0 ̸= ∅ and PX = ∅,

and to 2 otherwise. ThenWDK is the inverse image by w of the identity maps

of 3. We deduce that the classWDK has the two-out-of-three property and

that it is closed under retract.

All maps of cell(C+, c+0   Jgl  I
gl
⩾1) are q-cobrations which are one-

to-one on states, which implies cell(C+, c+0 JglI
gl
⩾1) ⊂ cof(IglC).

Every map of cell(C+, c+0 J
glIgl⩾1) is either between nonempty sets or be-

tween ows containing execution paths, hence the inclusion cell(C+, c+0  
Jgl  I

gl
⩾1) ⊂ WDK .

We obtain the inclusion cell(C+, c+0   Jgl  I
gl
⩾1) ⊂ WDK  cof(Igl 

C). An element f : X → Y of inj(IglC) is surjective on states. There-
foreX0 = ∅ if and only if Y 0 = ∅ and f ∈ inj(C+). By Proposition 4.4, ev-
ery map Pα,βX → Pf(α),f(β)Y for all (α, β) ∈ X0×X0 is a trivial q-bration

of spaces. Consequently,X contains execution paths if and only if Y contains

execution paths. We deduce that f ∈ WDK . By Proposition 4.4 again, we

deduce that f ∈ inj(Jgl  Igl). We obtain the inclusions inj(Igl  C) ⊂
WDK  inj(C+  Jgl  Igl) ⊂ WDK  inj(C+, c+0   Jgl  I

gl
⩾1).

Finally, a map f ∈ WDK  cof(Igl  C) is a q-cobration which is

one-to-one on states such that either the source and the target are empty,

or the source and the target are nonempty set (in this case, f belongs to

cof(C+)), or such that both the source and the target contain execution

paths. In the latter case, it belongs to cof(c+0   I
gl
⩾1). We deduce that

WDK  cof(Igl  C) ⊂ cof(C+, c+0   Jgl  I
gl
⩾1).

The proof of the existence of the model structure is complete thanks to

Proposition 4.5.

Since all ows are q-brant, a ow X is brant if and only if the canon-

ical map X → 1 satises the RLP with respect to C+, c+0   I
gl
⩾1. Since

inj(C+)  Set is equal to the surjective set maps union the set maps starting

from the empty set by [9, Lemme 4.4(3)], the canonical map X → 1 always

satises the RLP with respect to C+. Thus a ow X is brant if and only

if the canonical map X → 1 satises the RLP with respect to c+0   I
gl
⩾1.
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We deduce that all sets viewed as ows are brant. Consider now a ow X

such that PX ̸= ∅. Then the map X → 1 satises the RLP with respect to

c+0 if and only it satises the RLP with respect to c0. The characterization of

brant objects is complete thanks to Proposition 4.4.

Since not all ows are brant for this model structure, an additional

argument is required to prove that it is indeed minimal.

Consider a model structure (C,F ,W) on Flow such that C = cof(Igl 
C). The cobrant ows are the q-cobrant ows and the cobrations are the
q-cobrations which are one-to-one on states. All trivial q-brations are trivial

brations since they satisfy the RLP with respect to IglC ⊂ IglC,R.
Observe at rst that R : 0, 1 → 0 is a trivial bration. We have

RC+ = Id{0}. By the two-out-of-three property, we deduce that C
+ : 0 ⊂

0, 1 is a weak equivalence. It means that two nonempty sets viewed as

ows are always weakly equivalent.

We are going to prove by induction on n ⩾ 1 that the map

cn : Glob(Sn−1) ⊂ Glob(Dn)

is a trivial cobration. From the pushout diagram (see Example 2.3)

1 ⊔ 1 //



B



1 // Glob(S0)

and Proposition 4.6, we deduce that the map B → Glob(S0) is a weak

equivalence. From the fact that the composite map B → Glob(S0) →
−→
I

is a trivial bration and the two-out-of-three property, we deduce that the

unique map of ows Glob(S0) →
−→
I is a weak equivalence. Consider the

commutative diagram of ows

Glob(S0)

c1



Glob(S0)



Glob(D1) //

−→
I
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The bottom horizontal map Glob(D1) →
−→
I is a weak equivalence, being

a trivial q-bration. By the two-out-of-three property, we deduce that c1 :
Glob(S0) → Glob(D1) is a weak equivalence as well, and therefore a trivial

cobration since it is a q-cobration which is one-to-one on states. The

induction hypothesis is therefore proved for n = 1. Suppose that the induction
hypothesis is proved for n ⩾ 1. Using Proposition 4.7 and the pushout

diagram of spaces

Sn−1 //



Dn



Dn // Sn

we obtain the commutative diagram of ows

Glob(Sn−1)
cn

//

cn



Glob(Dn)



//

−→
I

Glob(Dn) // Glob(Sn)
cn+1

// Glob(Dn+1) //

−→
I

Using the induction hypothesis, we deduce that the map Glob(Dn) →
Glob(Sn) is a trivial cobration, being a pushout of the trivial cobration

cn. All maps Glob(DN) →
−→
I for N ⩾ 0 are trivial q-brations, and hence

trivial brations. Using the two-out-of-three property, we obtain the induction

hypothesis for n + 1. We have proved that all maps of cell(Igl⩾1) are trivial
cobrations.

Now we can conclude the proof as follows. Let X be a ow containing

at least one execution path and let Xcof be a q-cobrant replacement of X .

Consider the owMon(Xcof ) dened by the pushout diagram of ows

X0 //



Xcof



0 // Mon(Xcof )

By Proposition 4.6, the canonical map Xcof → Mon(Xcof ) is a weak

equivalence. Consequently, we can suppose without loss of generality that
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X0 = 0 and that X is a cellular object of the q-model structure of ows.

Write the canonical map ∅ → X as a composite ∅ −→ X0 −→ X1 −→ X

such that the map X0 → X1 belongs to cell(c0) and such that X1 → X

belongs to cell(Igl⩾1). In particular, the map X1 → X is a trivial cobration

by the rst part of the proof. Factor the canonical map X1 → 1 as a com-

posite X1 → X∞ → 1 such that the left-hand map belongs to cell(Igl⩾1) and

such that the right-hand map belongs to inj(Igl⩾1). It means that X is weakly

equivalent toX∞. Since the mapX∞ → 1 is bijective on states, it is injective

with respect to C : ∅ → 0. Since, moreover, X∞ contains an execution

path, it is also injective with respect to c0 : Glob(S−1) ⊂ Glob(D0). Thus,
the map X∞ → 1 is a weak equivalence, being a trivial bration. We deduce

that every ow in (C,F ,W) is weakly equivalent to ∅, 0 or 1. Since the
full subcategory of Flow generated by the three objects ∅, 0 and 1 is

3, the homotopy category of (C,F ,W) is then a categorical localization of
3. We deduce the inclusionWDK ⊂ W . The set of generating cobrations

IglC is tractable. Therefore, by [21, Theorem 1.4], there exists a minimal

model structure (C,F ,W) with respect to the set of generating cobrations
IglC. In this case, there is also the inclusionW ⊂ WDK and the proof is

complete since a model structure is characterized by its classes of cobrations

and weak equivalences.

Corollary 4.10. The minimal model structure on ows with respect to the

left-lifting of the cobrations of the Ilias model structure has three homotopy

types.

Proof. It is a consequence of Proposition 3.3 and Theorem 4.9.

5. Right-lifting the q-model structure of ows

We want to prove that the q-model structure of ows can be transferred along

the right adjoint Cat ⊂ Flow. At rst, we recall:

Theorem 5.1. (Kan-Quillen, see [28, proof of Theorem 1 of Section II.4 ] and

[23, Theorem 11.3.2] or for an abstract presentation [22, Theorem 2.2.1])

Let M and N be two locally presentable categories. Let (C,F ,W) be a

combinatorial model structure of M such that all objects are brant. Con-

sider a categorical adjunction L : M ⊣ N : U . Suppose that there exists a
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factorization of the diagonal ofN as a compositeX
τ
→ Path(X)

π
→ X ×X

such that U(τ) is a weak equivalence of M and such that U(π) is a bration

ofM for all objectsX ofN . Then there exists a unique combinatorial model

structure on N such that the class of brations is U−1(F) and such that the
class of weak equivalences is U−1(W). If the set of generating (trivial resp.)

cobrations of (C,F ,W) is I (J resp.), then the set of generating (trivial

resp.) cobrations of the model structure of N is L(I) (L(J) resp.).

In the terminology of this note, Theorem 5.2 means that the q-model

structure of ows has a right-lifting to the category of small topologically

enriched categories which is minimal.

Theorem 5.2. There exists a unique model structure (Cat)q = (Cq,Fq,Wq)
on Cat such that:

• The set of generating cobrations is I+(Glob(Sn−1)) ⊂ I+(Glob(Dn)) 
n ⩾ 0  I+(C), I+(R).

• The set of generating trivial cobrations is I+(Glob(Dn × 0)) ⊂
I+(Glob(Dn × [0, 1]))  n ⩾ 0.

• A map of small enriched categories f : X → Y is a weak equivalence if

and only if Obj(f) : Obj(X) → Obj(Y ) is a bijection and for all (α, β) ∈
Obj(X) × Obj(X), the continuous map X(α, β) → X(f(α), f(β)) is a
weak homotopy equivalence.

• A map of small enriched categories f : X → Y is a bration if and only

if for all (α, β) ∈ Obj(X) × Obj(X), the continuous map X(α, β) →
X(f(α), f(β)) is a q-bration of spaces.

Moreover, this model structure is minimal and all objects are brant. The left

Quillen adjoint I+ : (Flow)q → (Cat)q is not a left Quillen equivalence.

Proof. Consider the right adjoint Cat ⊂ Flow. Let X be a small enriched

category. Let Path(X) be the small enriched category having the same

objects asX and such that the space of morphisms Path(X)(α, β) is equal to
the topological spaceTOP([0, 1], X(α, β)) with the continuous composition
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law dened for any triple (α, β, γ) of objects of X as the composite:

TOP([0, 1], X(α, β))×TOP([0, 1], X(β, γ))
∼= TOP([0, 1], X(α, β)×X(β, γ))

−→ TOP([0, 1], X(α, γ))

The composition law is clearly associative. The identity of Path(X)(α,α)
(the space of morphisms in Path(X) from α to itself) is the constant map

Idα : [0, 1] → X(α,α). For all small enriched categories X , for all

(α, β) ∈ Obj(X) × Obj(X), the map X(α, β) ∼= TOP(0, X(α, β)) →
TOP([0, 1], X(α, β)) = Path(X)(α, β) is a trivial q-bration of spaces and
the map

Path(X)(α, β) = TOP([0, 1], X(α, β)) → TOP(0, 1, X(α, β))
∼= X(α, β)×X(α, β)

is a q-bration of spaces. Using Theorem 5.1, the q-model structure of Flow

right induces a combinatorial model structure on Cat. The model structure

is minimal because it is combinatorial and all its objects are brant.

Let X be an enriched small category. In Flow, the map Xcof →
X is a trivial q-bration of ows. It means that for all α ∈ Obj(X),
Pα,αX

cof → Pα,αX is a trivial q-bration of spaces. Therefore the map

I+(Xcof )(α,α) = Idα ⊔ Pα,αX
cof → X(α,α) = Pα,αX cannot be a

weak homotopy equivalence. It implies that the map I+(Xcof ) → X cannot

be a weak equivalence of (Cat)q. We deduce that the left Quillen adjoint

(Flow)q → (Cat)q is not homotopically surjective, and therefore that it is

not a left Quillen equivalence.

We have I+(0) → (0 ∼= 1)cof ∈ (CDK WDK)\(Cq Wq). Thus,
Id : (Cat)DK → (Cat)q cannot be a left Quillen adjoint. We have R :
0, 1 → 0 ∈ Cq\CDK . It implies that Id : (Cat)q → (Cat)DK cannot be

a left Quillen adjoint either.
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determinedness. Cah. Topol. Géom. Différ. Catég., LXI-2:208–226,

2020.

[15] P. Gaucher. Homotopy theory of Moore ows (II). Extr. Math.,

36(2):157–239, 2021.

[16] P. Gaucher. Left properness of ows. Theory Appl. Categ., 37(19):562–

612, 2021.

[17] P. Gaucher. Six model categories for directed homotopy. Categ. Gen.

Algebr. Struct. Appl., 15(1):145–181, 2021.

[18] P. Gaucher. Directed degeneracy maps for precubical sets, 2022. arXiv.

[19] E. Goubault and T. P. Jensen. Homology of higher-dimensional au-

tomata. In CONCUR’92 (Stony Brook, NY, 1992), volume 630 of

Lecture Notes in Comput. Sci., pages 254–268. Springer, Berlin, 1992.

[20] E. Goubault and S. Mimram. Directed homotopy in non-positively

curved spaces. Log. Methods Comput. Sci., 16(3):55, 2020. Id/No 4.

[21] S. Henry. Minimal model structures, 2020. arXiv.
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Cartesian Differential Comonads and

New Models of Cartesian Differential

Categories

Sacha IKONICOFF and Jean-Simon Pacaud LEMAY

Résumé. Les catégories différentielles cartésiennes (CDC) sont équipées

d’un combinateur différentiel qui formalise l’opération de dérivation du

calcul différentiel à plusieurs variables, et fournissent aussi la sémantique du

lambda-calcul différentiel. Une source importante d’exemple de CDCs

provient des catégories coKleisli des comonades structurelles des categories

différentielles, ce dernier concept fournissant la sémantique catégorique de

la logique linéaire différentielle. Dans cet article, nous généralisons cette

construction en introduisant la notion de comonade différentielle

cartésienne, qui sont précisemment les comonades dont la catégorie de

coKleisli est une CDC, ce qui offre une plus large gamme d’exemples. Nous

construisons ainsi de nouveaux exemples de CDC provenant de comonades

différentielles cartésiennes faisant intervenir les séries formelles, les

algèbres à puissances divisées, et les algèbres de Zinbiel.

Abstract. Cartesian differential categories (CDC) come equipped with a

differential combinator that formalizes the derivative from multi-variable

differential calculus, and also provide the categorical semantics of the

differential λ-calculus. An important source of examples of CDCs are the

coKleisli categories of the comonads of differential categories, where the

latter concept provides the categorical semantics of differential linear logic.

In this paper, we generalize this construction by introducing Cartesian

differential comonads, which are precisely the comonads whose coKleisli

categories are CDCs, and thus allows for a wider variety of examples of
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CDCs. As such, we construct new examples of CDCs from Cartesian

differential comonads based on power series, divided power algebras, and

Zinbiel algebras.

Keywords. Cartesian Differential Categories, Cartesian Differential

Comonads, Power Series, Divided Powers, Zinbiel Algebras.

Mathematics Subject Classification (2010). 13F25, 18B99, 18C20,

18D99.

1. Introduction

Cartesian differential categories (CDC), introduced by Blute, Cockett, and

Seely in [4], formalize the theory of multivariable differential calculus by

axiomatizing the (total) derivative, and also provide the categorical

semantics of the differential λ-calculus, as introduced by Ehrhard and

Regnier in [18]. Briefly, a CDC (Def 2.3) is a category with finite products

such that each homset is a commutative monoid, which allows for zero

maps and sums of maps (Def 2.1), and equipped with a differential

combinator D, which for every map f : A → B produces its derivatives

D[f ] : A × A → B. The differential combinator satisfies seven axioms,

known as [CD.1] to [CD.7], which formalize the basic identities of the

(total) derivative from multi-variable differential calculus such as the chain

rule, linearity in the vector argument, symmetry of the partial derivatives,

etc. Two main examples of CDCs are the category of Euclidean spaces and

real smooth functions between them (Ex 2.7), and the Lawvere Theory of

polynomials over a commutative (semi)ring (Ex 2.6). An important class of

examples of CDCs, especially for this paper, are the coKleilsi categories of

the comonads of differential categories [4, Propostion 3.2.1].

Differential categories, introduced by Blute, Cockett, and Seely in [3],

provide the algebraic foundations of differentiation and the categorical

semantics of differential linear logic [17]. Briefly, a differential category

(Ex 3.12) is a symmetric monoidal category with a comonad !, with

comonad structure maps δA : !(A) → !!(A) and εA : !(A) → A, such that

for each object A, !(A) is a cocommutative comonoid with comultiplication

∆A : !(A) → !(A) ⊗ !(A) and counit eA : !(A) → I , and equipped with a

deriving transformation, which is a natural transformation

dA : !(A) ⊗ A → !(A). The deriving transformation satisfies five axioms,

199



S. IKONICOFF & J.-S. P. LEMAY CART. DIFF. COMONADS

this time called [d.1] to [d.5], which formalize basic identities of

differentiation such as the chain rule and the product rule. In the opposite

category of a differential category, called a codifferential category, the

deriving transformation is a derivation in the classical algebra sense.

Examples of differential categories include the opposite category of the

category of vector spaces over a field where ! is induced by the free

symmetric algebra [3, 6], as well as the opposite category of the category of

real vector spaces where ! is instead induced by free C∞-rings [15].

In a differential category, a smooth map from A to B is a map of type

!(A) → B. In other words, the (infinitely) differentiable maps are precisely

the coKleisli maps. The interpretation of coKleisli maps as smooth can be

made precise when the differential category has finite (bi)products where

one uses the deriving transformation to define a differential combinator on

the coKleisli category. Briefly, for a coKleisli map f : !(A) → B (which

is a map of type A → B in the coKleisli category), its derivative D[f ] :
!(A×A) → B (which is a map of type A×A → B in the coKleisli category)

is defined as JfK◦dA◦(1!(A)⊗εA)◦(!(π0)⊗!(π1))◦∆A×A, where composition

◦ is the one of the base category and where πi are the product projection

maps. One then uses the five deriving transformations axioms [d.1] to [d.5]

to prove that D satisfies the seven differential combinator axioms [CD.1] to

[CD.7]. Thus, for a differential category with finite (bi)products, its coKleisli

category is a CDC. For the examples where ! is the free symmetric algebra

or given by free C∞-rings, the resulting coKleisli category can respectively

be interpreted as the category of polynomials or real smooth functions over

possibly infinite variables (but that will still only depend on a finite number

of them), of which the Lawvere theory of polynomials or category of real

smooth functions is a sub-CDC.

Let us take another look at the construction of the differential

combinator for the coKleisli category. Define the natural transformation

∂A : !(A× A) → !(A) as ∂A = dA ◦ (1!(A) ⊗ εA) ◦ (!(π0)⊗ !(π1)) ◦∆A×A.

Then the differential combinator is simply defined by precomposing a

coKleisli map f : !(A) → B with ∂, so D[f ] := f ◦ ∂A. It is important to

stress that this is the composition in the base category and not the

composition in the coKleisli category. Thus, the properties of the

differential combinator D in the coKleisli category are fully captured by the

properties of the natural transformation ∂ in the base category, which in
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turn are a result of the axioms of the deriving transformation d. However,

observe that the type of ∂A : !(A × A) → !(A) does not involve any

monoidal structure. In fact, if one starts with a comonad whose coKleisli

category is a CDC, it is always possible to construct ∂, and to show that

D[−] = − ◦ ∂, but it is not always possible to extract a monoidal structure

on the base category. Thus, if one’s goal is simply to build CDCs from

coKleisli categories, then a monoidal structure ⊗ or a deriving

transformation d, or even a comonoid structure ∆ and e, are not always

necessary. Therefore, the objective of this paper is to precisely characterize

the comonads whose coKleisli categories are CDCs. To this end, in this

paper we introduce the novel notion of a Cartesian differential comonad.

Cartesian differential comonads are precisely the comonads whose

coKleisli categories are CDCs. Briefly, a Cartesian differential comonad is

a comonad ! on a category with finite biproducts equipped with a

differential combinator transformation, which is a natural transformation

∂A : !(A × A) → !(A) which satisfies six axioms called [dc.1] to [dc.6]

(Def 3.1). The axioms of a differential combinator transformation are

analogues of the axioms of a differential combinator. Thus, the coKleisli

category of a Cartesian differential comonad is a CDC where the

differential combinator is defined by precomposition with the differential

combinator transformation (Thm 3.4). This is proven by reasonably

straightforward calculations, but one must be careful when translating back

and forth between the base category and the coKleisli category. Conversely,

a comonad on a category with finite biproduct whose coKleisli category is a

CDC is in fact a Cartesian differential comonad, where the differential

combinator transformation is the derivative of the identity map

1!(A) : !(A) → !(A) seen as a coKleisli map A → !(A) (Prop 3.5). Using

this, since we already know that the coKleisli category of a differential

category is a CDC, it immediately follows that the comonad of a differential

category is a Cartesian differential comonad, where the differential

combinator transformation is precisely the one defined above. Therefore,

Cartesian differential comonads and differential combinator

transformations are indeed generalizations of differential categories and

deriving transformations. However, Cartesian differential comonads are a

strict generalization since, as mentioned, they can be defined without the

need of a monoidal structure. A very simple separating example is the
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identity comonad on any category with finite biproducts, where the

differential combinator transformation is simply the second projection map

(Ex 3.15). While this example is trivial, it recaptures the fact that any

category with finite biproducts is a CDC and this example clearly works

without any extra monoidal structure, and thus is not a differential category

example. Therefore, Cartesian differential comonads allow for a wider

variety of examples of CDCs. As such, in this paper we present three new

interesting examples of Cartesian differential comonads, which are not

differential categories, and their induced CDCs. These three examples are

respectively based on formal power series, divided power algebras, and

Zinbiel algebras. It is worth mentioning that these new examples arise more

naturally as coCartesian differential monads (Ex 3.13), the dual notion of

Cartesian differential comonads, and thus it is the opposite of the Kleisli

category which is a CDC.

The first example (Sec 5) is based on reduced power series. Recall that

a formal power series is said to be reduced if it has no constant/degree 0

term. While the composition of arbitrary multivariable formal power series

is not always well defined, due to their constant terms, the composition of

reduced multivariable power series is always well-defined [7, Sec 4.1], and

so we may construct categories of reduced power series. Also, it is well

known that power series are always and easily differentiable, similarly to

polynomials, and that the derivative of a reduced multivariable power series

is again reduced. Motivated by capturing power series differentiation, we

show that the free reduced power series algebra monad [20, Sec 1.4.3] is a

coCartesian differential monad whose monad structure is based on reduced

power series composition and whose differential combinator transformation

is induced by standard power series differentiation (Prop 5.1). Furthermore,

the Lawvere theory of reduced power series (Ex 5.2) is a sub-CDC of the

opposite category of the resulting Kleisli category.

The second new example (Sec 6) is based on divided power algebras.

Divided power algebras, defined by Cartan [8], are commutative non-unital

associative algebras equipped with additional operations (−)[n] for all

strictly positive integer n, satisfying some relations (Def 6.1). In

characteristic 0, divided power algebras correspond precisely to

commutative non-unital associative algebras. In positive characteristics,

however, the two notions diverge. There exist free divided power algebras
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and we show that the free divided power algebra monad [28, Sec 10,

Théorème 1 and 2] is a coCartesian differential monad (Prop 6.2). Free

divided power algebras correspond to the algebra of reduced divided power

polynomials. Thus the differential combinator transformation of this

example captures differentiating divided power polynomials [25]. In

particular, the Lawvere theory of reduced divided power polynomials (Ex

6.3) is a sub-CDC of the opposite category of the Kleisli category of the

free divided power algebra monad.

The third new example (Sec 7), and perhaps the most exotic example in

this paper, is based on Zinbiel algebras. The notion of Zinbiel algebra was

introduced by Loday [27] and also further studied by Dokas [16]. A Zinbiel

algebra is a vector space A endowed with a non-associative and

non-commutative bilinear operation <. Using the Zinbiel product, every

Zinbiel algebra can be turned into a commutative non-unital associative

algebra. The underlying vector space of free Zinbiel algebras is the same as

the underlying vector space of the non-unital tensor algebra. Therefore, free

Zinbiel algebras are spanned by (non-empty) associative words and

equipped with a product < (which is sometimes referred to as the

semi-shuffle product). The resulting commutative associative algebra is

then precisely the non-unital shuffle algebra over V . We show that the free

Zinbiel algebra monad [27, Prop 1.8] is a coCartesian differential monad

whose differential combinator transformation (Prop 7.2) corresponds to

differentiating non-commutative polynomials with respect to the Zinbiel

product. The resulting CDC can be understood as the category of reduced

non-commutative polynomials where the composition is defined using the

Zinbiel product, which we simply call Zinbiel polynomials. As such, the

Lawvere theory of Zinbiel polynomials is a new exotic example of a CDC.

It is worth mentioning that the shuffle algebra has been previously studied

as an example of another generalization of differential categories in [1], but

not from the point of view of Zinbiel algebras.

An important class of maps in a CDC are the D-linear maps (Def 2.4),

also often simply called linear maps [4]. A map f : A → B is D-linear if its

derivative D[f ] : A × A → B is equal to f evaluated in its second

argument, that is, D[f ] = f ◦ π1 (where π1 is the projection map of the

second argument). A D-linear map should be thought of as being of degree

1, and thus does not have any higher-order derivative. Thus, in many
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examples, D-linearity often coincides with the classical notion of linearity.

For example, in the CDC of real smooth functions, a smooth function is

D-linear if and only if it is R-linear. For a Cartesian differential comonad,

every map of the base category provides a D-linear map in the coKleisli

category. However, it is not necessarily the case that the base category is

isomorphic to the subcategory of D-linear maps of the coKleisli category.

Indeed, a simple example of such a case is the trivial Cartesian differential

comonad which maps every object to the zero object and thus every

coKleisli map is a zero map. Clearly, if the base category is non-trivial it

will not be equivalent to the subcategory of D-linear maps. Instead, it is

possible to provide necessary and sufficient conditions for the base category

to be isomorphic to the subcategory of D-linear maps of the coKleisli

category. It turns out that this is precisely the case when the Cartesian

differential comonad comes equipped with a D-linear unit, which is a

natural transformation ηA : A → !(A) satisfying two axioms [du.1] and

[du.2] (Def 3.7). If it exists, a D-linear unit is unique and it is equivalent to

an isomorphism between the base category and the subcategory of D-linear

maps of the coKleisli category (Prop 3.10). In the context of differential

categories, specifically in categorical models of differential linear logic, the

D-linear unit is precisely the codereliction [3, 6, 17]. The Cartesian

differential comonads based on power series, or divided power algebras, or

Zinbiel algebras all come equipped with D-linear units.

In [5], Blute, Cockett, and Seely give a characterization of the CDCs

which are the coKleisli categories of differential categories. Generalizing

their approach, it is also possible to precisely characterize the CDCs which

are the coKleisli categories of Cartesian differential comonads (Sec 4). To

this end, we must work with abstract coKleisli categories (Def 4.1), which

gives a description of coKleisli categories without starting from a comonad.

Abstract coKleisli categories are the dual notion of Führmann’s

thunk-force-categories [22], which instead do the same for Kleisli

categories. Every abstract coKleisli category is canonically the coKleisli

category of a comonad on a certain subcategory (Lem 4.3), and conversely,

the coKleisli category of any comonad is an abstract coKleisli category

(Lem 4.11). In this paper, we introduce Cartesian differential abstract

coKleisli categories (Def 4.8) which are abstract coKleisli categories that

are also CDCs such that the differential combinator and the abstract
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coKleisli structure are compatible. Every Cartesian differential abstract

coKleisli category is canonically the coKleisli category of a Cartesian

differential comonad over a certain subcategory of D-linear maps (Prop

4.9), and conversely, the coKleisli category of a Cartesian differential

comonad is a Cartesian differential abstract category (Prop 4.15).

In conclusion, Cartesian differential comonads give a minimum general

construction to build coKleisli categories which are CDCs. The theory of

Cartesian differential comonads also highlights the interaction between the

coKleisli structure and the differential combinator. While Cartesian

differential comonads recapture some of the notions of differential

categories, they are more general. Therefore, Cartesian differential

comonads open the door to a variety of new, interesting, and exotic

examples of CDCs. New examples will be particularly important and of

interest, especially since applications of CDCs keep being developed,

especially in the fields of machine learning and automatic differentiation.

Remark: In order to stay within the journal’s page limits, the majority of

the heavy technical proofs have been removed (as approved by the editors).

All proofs in full details and extra commutative diagrams for definitions can

be found in an extended version of this paper here [24].

Conventions: In an arbitrary category, we use the classical notation for

composition as opposed to diagrammatic order which was used in other

papers on differential categories (such as in [4, 26] for example). The

composite map g ◦ f : A → C is the map that first does f : A → B then

g : B → C. We denote identity maps as 1A : A → A.

2. Cartesian Differential Categories

In this background section we review CDCs [4].

The underlying structure of a CDC is that of a Cartesian left additive

category (CLAC), which in particular allows one to have zero maps and

sums of maps, while also allowing for maps which do not preserve said sums

or zeros. Maps which do preserve the additive structure are called additive

maps. Then a CLAC is a left additive category with finite products such that

the product structure is compatible with the commutative monoid structure,

that is, the projection maps are additive. Note that since we are working

with commutative monoids, we do not assume that our CLACs necessarily
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come equipped with additive inverses, or in other words negatives. For a

category with (chosen) finite products we denote the (chosen) terminal object

as ⊤, the binary product of objects A and B by A×B with projection maps

π0 : A×B → A and π1 : A×B → B and pairing operation 〈−,−〉, so that

for maps f : C → A and g : C → B, 〈f, g〉 : C → A×B is the unique map

such that π0 ◦ 〈f, g〉 = f and π1 ◦ 〈f, g〉 = g. As such, the product of maps

h : A → B and k : C → D is the map h× k : A× C → B ×D defined as

h× k = 〈h ◦ π0, k ◦ π1〉.

Definition 2.1. A left additive category [4, Def 1.1.1] is a category X such

that each hom-set X(A,B) is a commutative monoid, with binary addition

+ : X(A,B)×X(A,B) → X(A,B), (f, g) 7→ f + g and zero 0 ∈ X(A,B),
and such that pre-composition preserves the additive structure, that is, for

any maps f : A → B, g : A → B, and x : A′ → A, we have that

(f + g) ◦ x = f ◦ x + g ◦ x and 0 ◦ x = 0. A map f : A → B is said

to be additive [4, Def 1.1.1] if post-composition by f preserves the additive

structure, that is, for any maps x : A′ → A and y : A′ → A, we have that

f ◦ (x+ y) = f ◦x+ f ◦ y and f ◦ 0 = 0. A Cartesian left additive category

(CLAC) [26, Def 2.3] is a left additive category X which has finite products

and such that all the projection maps π0 : A×B → A and π1 : A×B → B

are additive.

We note that the definition of a CLAC presented here is not precisely

that given in [4, Def 1.2.1], but was shown to be equivalent in [26, Lem 2.4].

Also note that in a CLAC, the unique map to the terminal object ⊤ is the

zero map 0 : A → ⊤. Here are now some important maps for CDCs that can

be defined in any CLAC:

Definition 2.2. In a CLAC X, define the injection maps ι0 : A → A × B

and ι1 : B → A × B as ι0 := 〈1A, 0〉 and ι1 := 〈0, 1B〉; the sum map

∇A : A × A → A as ∇A := π0 + π1; the lifting map ℓA : A × A →
(A × A) × (A × A) as ℓ := ι0 × ι1; and lastly the interchange map cA :
(A× A)× (A× A) → (A× A)× (A× A) as cA := 〈π0 × π0, π1 × π1〉.

It is important to note that while c is natural in the expected sense, the

injection maps ιj , the sum map ∇, and the lifting map ℓ are not natural

transformations. Instead, they are natural only with respect to additive maps.

In particular, since the injection maps are not natural map for arbitrary maps,
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it follows that these injection maps do not make the product a coproduct,

and therefore not a biproduct. However, the biproduct identities still hold

in a CLAC in the sense that πi ◦ ιj = 0 if i 6= j and πi ◦ ιi = 1, and also

ι0 ◦ π0 + ι1 ◦ π1 = 1A×B. With all this said, it turns out that a category with

finite biproducts is precisely a CLAC where every map is additive [23, Ex

2.3.(ii)]. In that case, note the injection maps and the sum map as defined

above are precisely the injection maps and codiagonal of the coproduct.

CDCs are CLACs which come equipped with a differential combinator,

which in turn is axiomatized by the basic properties of the directional

derivative from multivariable differential calculus. There are various

equivalent ways of expressing the axioms of a CDC. Here we have chosen

the one found in [26, Def 2.6] (using the notation for CLACs introduced

above). It is important to notice that in the following definition, unlike in

the original paper [4] and other early works on CDCs, we use the

convention used in the more recent works where the linear argument of

D[f ] is its second argument rather than its first argument.

Definition 2.3. A Cartesian differential category (CDC) [4, Def 2.1.1] is

a CLAC X equipped with a differential combinator D, which is a family of

operators D : X(A,B) → X(A × A,B), which sends a map f : A → B to

a map D[f ] : A× A → B, and such that the following seven axioms hold:

[CD.1] D[f + g] = D[f ] + D[g] and D[0] = 0
[CD.2] D[f ] ◦ (1A ×∇A) = D[f ] ◦ (1A × π0) + D[f ] ◦ (1A × π1) and

D[f ] ◦ ι0 = 0
[CD.3] D[1A] = π1, D[π0] = π0 ◦ π1, and D[π1] = π1 ◦ π1

[CD.4] D[〈f, g〉] = 〈D[f ],D[g]〉
[CD.5] D[g◦f ] = D[g]◦〈f◦π0,D[f ]〉

[CD.6] D [D[f ]] ◦ ℓA = D[f ]
[CD.7] D [D[f ]] ◦ cA = D [D[f ]]

For a map f : A → B, D[f ] : A× A → B is called the derivative of f .

A discussion on the intuition for the differential combinator axioms can

be found in [4, Remark 2.1.3]. It is also worth mentioning that there is a

sound and complete term logic for CDCs [4, Sec 4]. An important class of

maps in a CDC is the class of linear maps. In this paper, however, we borrow

the terminology from [23] and will instead call them D-linear maps. This

terminology will help distinguish between the classical notion of linearity

from commutative algebra and the CDC notion of linearity.
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Definition 2.4. In a CDC X with differential combinator D, a map f is said

to be D-linear [4, Def 2.2.1] if D[f ] = f ◦ π1. Define the subcategory of

linear maps D-lin[X] to be the category whose objects are the same as X and

whose maps are D-linear in X, and let U : D-lin[X] → X be the obvious

forgetful functor.

By [4, Lem 2.2.2], every D-linear is additive, and therefore it follows that

D-lin[X] has finite biproducts, and is thus also a CLAC (where every map

is additive) such that the forgetful functor U : D-lin[X] → X preserves the

Cartesian left additive structure strictly. It is important to note that although

additive and linear maps often coincide in many examples of CDC, in an

arbitrary CDC, not every additive map is necessarily linear. However it is

always possible to linearize a map. For any map f : A → B, define L[f ] :
A → B, called the linearization of f [14, Def 3.1], as L[f ] = D[f ]◦ ι1. Then

L[f ] is D-linear, and f : A → B is D-linear if and only if f = L[f ]. For

other properties of linear maps, see [4, Cor 2.2.3].

We conclude this section with some examples of well-known CDCs and

their D-linear maps. The first three examples are based on the standard

notions of differentiating linear functions, polynomials, and smooth

functions respectively.

Example 2.5. Any category X with finite biproduct is a CDC where the

differential combinator is defined by precomposing with the second

projection map: D[f ] = f ◦ π1. In this case, every map is D-linear by

definition and so D-lin[X] = X. As a particular example, let F be a field and

let F-VEC be the category of F-vector spaces and F-linear maps between

them. Then F-VEC is a CDC where for an F-linear map f : V → W , its

derivative D[f ] : V × V → W is defined as D[f ](v, w) = f(w).

Example 2.6. Let F be a field. Define the category F-POLY whose object

are n ∈ N, where a map P : n → m is a m-tuple of polynomials in n

variables, that is, P = 〈p1(~x), . . . , pm(~x)〉 with pi(~x) ∈ F[x1, . . . , xn].
F-POLY is a CDC where the differential combinator is given by the

standard differentiation of polynomials, that is, for a map P : n → m, with

P = 〈p1(~x), . . . , pm(~x)〉, its derivative D[P ] : n × n → m is defined as the

tuple of the sum of the partial derivatives of the polynomials pi(~x),

D[P ](~x, ~y) :=
(

∑n
i=1

∂pj(~x)

∂xi
yi

)m

j=1
. A map P : n → m is D-linear if it of
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the form: P = 〈
∑n

i=0 ri,mxi〉
m

j=1. In other words, P = 〈p1(~x), . . . , pm(~x)〉

is D-linear if and only if each pi(~x) induces an F-linear map Fn → F. As

such, D-lin[F-POLY] is equivalent to the category F-LIN whose objects are

the finite powers Fn for each n ∈ N (including the singleton F0 = {0}) and

whose maps are F-linear maps Fn → Fm. We note that this example can be

generalized to the category of polynomials over an arbitrary commutative

(semi)ring.

Example 2.7. Let R be the set of real numbers. Define SMOOTH as the

category whose objects are the Euclidean real vector spaces Rn and whose

maps are the real smooth functions F : Rn → Rm between them.

SMOOTH is a CDC, arguably the canonical example, where the differential

combinator is defined as the directional derivative of a smooth function. So

for a smooth function F : Rn → Rm, its derivative is the smooth function

D[F ] : Rn × Rn → Rm defined as: D[F ](~x, ~y) :=
〈

∑n
i=1

∂fj
∂xi

(~x)yi

〉m

j=1
.

Note that R-POLY is a sub-CDC of SMOOTH. A smooth function

F : Rn → Rm is D-linear if and only if it is R-linear in the classical sense.

Therefore, D-lin[SMOOTH] = R-LIN.

Example 2.8. An important source of examples of CDCs, especially for

this paper, are those which arise as the coKleisli category of a differential

category [3, 5]. We will review this example in Ex 3.12.

There are many other interesting (and sometimes very exotic) examples

of CDCs in the literature. See [14, 23] for lists of more examples of CDCs.

3. Cartesian Differential Comonads

In this section, we introduce the main novel concept of study in this paper:

Cartesian differential comonads, which are precisely the comonads whose

coKleisli category is a CDC. This is a generalization of [4, Prop 3.2.1],

which states that the coKleisli category of the comonad of a differential

category is a CDC. The generalization comes from the fact that a Cartesian

differential comonad can be defined without the need for a monoidal

product or cocommutative comonoid structure on the comonad’s

coalgebras. As such, this allows for a wider variety of examples of CDCs.

Briefly, a Cartesian differential comonad is a comonad on a category with
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finite biproducts, which comes equipped with a differential combinator

transformation, which generalizes the notion of a deriving transformation in

a differential category [3, 6]. The induced differential combinator is defined

by precomposing a coKleisli map with the differential combinator

transformation (with respect to composition in the base category).

Conversely, a comonad whose coKleisli category is a CDC is a Cartesian

differential comonad, where the differential combinator transformation is

defined using the coKleisli category’s differential combinator. We point out

that this statement, regarding comonads whose coKleisli categories are

CDCs, is a novel observation and shows us that even if one cannot extract a

monoidal product on the base category from the coKleisli category, it is

possible to obtain a natural transformation which captures differentiation.

Lastly, we will also study the case where the D-linear maps of the coKleisli

category correspond to the maps of the base category. The situation arises

precisely in the presence of what we call a D-linear unit, which generalizes

the notion of a codereliction from differential linear logic [3, 6, 17, 19].

If only to introduce notation, recall that a comonad on a category X is a

triple (!, δ, ε) consisting of a functor ! : X → X, and two natural

transformations δA : !(A) → !!(A), called the comonad comultiplication,

and εA : !(A) → A, called the comonad counit, and such that

δ!(A) ◦ δA = !(δA) ◦ δA and ε!(A) ◦ δA = 1!(A) = !(εA) ◦ δA.

Definition 3.1. For a comonad (!, δ, ε) on a category X with finite

biproducts, a differential combinator transformation on (!, δ, ε) is a

natural transformation ∂A : !(A × A) → !(A) such that the following

equalities hold (where ιj , ∇, ℓ, and c are defined as in Def 2.2):

[dc.1] Zero Rule: ∂A ◦ !(ι1) = 0;

[dc.2] Additive Rule: ∂A ◦ !(1A ×∇A) = ∂A ◦ (!(1A × π0) + !(1A × π1));

[dc.3] Linear Rule: εA ◦ ∂A = π1 ◦ εA×A;

[dc.4] Chain Rule: δA ◦ ∂A = ∂!(A) ◦ ! (〈!(π0), ∂A〉) ◦ δA×A;

[dc.5] Lift Rule: ∂A ◦ ∂A×A ◦ !(ℓA) = ∂A;

[dc.6] Symmetry Rule: ∂A ◦ ∂A×A ◦ !(cA) = ∂A ◦ ∂A×A.
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A Cartesian differential comonad on a category X with finite biproducts

is a quadruple (!, δ, ε, ∂) consisting of a comonad (!, δ, ε) and a differential

combinator transformation ∂ on (!, δ, ε).

For commutative diagram versions of the axioms [dc.1] to [dc.6] see the

extended version [24]. As the name suggests, the differential combinator

transformations axioms correspond to some of the axioms a differential

combinator. The zero rule [dc.1] and the additive rule [dc.2] correspond to

[CD.2], the linear rule [dc.3] corresponds to [CD.3], the chain rule [dc.4]

corresponds to [CD.5], the lift rule corresponds to [CD.6], and lastly the

symmetry rule [dc.6] corresponds to [CD.7].

Our goal is now to show that the coKleisli category of a Cartesian

differential comonad is a CDC. As we will be working with coKleisli

categories, we will use the notation found in [5] and use interpretation

brackets J−K to help distinguish between composition in the base category

and coKleisli composition. So for a comonad (!, δ, ε) on a category X, let

X! denote its coKleisli category, which is the category whose objects are the

same as X and where a map A → B in the coKleisli category is map of type

!(A) → B in the base category, that is, X!(A,B) = X(!(A), B).
Composition of coKleisli maps JfK : !(A) → B and JgK : !(B) → C is

defined as Jg ◦ fK = JgK ◦ ! (JfK) ◦ δA. The identity maps in the coKleisli

category is given by the comonad counit: J1AK := εA. Let F! : X → X! be

the standard inclusion functor which is defined on objects as F!(A) = A and

on maps f : A → B as follows: JF!(f)K = f ◦ εA. A key map in this story

is the coKleisli map whose interpretation is the identity map in the base

category. So for every object A, define the map ϕA : A → !(A) in the

coKleisli category as JϕAK = 1!(A). It is a well-known result that if the base

category has finite products, then so does the coKleisli category.

Lemma 3.2. [30, Dual of Proposition 2.2] Let (!, δ, ε) be a comonad on a

category X with finite products. Then the coKleisli category X! has finite

products where the product × on objects and terminal object are defined as

as in X and the projection maps Jπ0K : !(A×B) → A and Jπ1K : !(A×B) →
B are defined respectively as JπiK = πi ◦ εA×B. Furthermore, F! : X →
X! preserves the finite product strictly, that is, F!(A × B) = A × B and

F!(⊤) = ⊤, and also that JF!(πi)K = JπiK, JF! (〈f, g〉)K = J〈F!(f), F!(g)〉K,

and JF! (f × g)K = JF!(f)× F!(g)K.
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If the base category is also Cartesian left additive, then so is the coKleisli

category in a canonical way, that is, where the additive structure is simply

that of the base category.

Lemma 3.3. [4, Prop 1.3.3] Let (!, δ, ε) be a comonad on a CLAC X with

finite products. Then the coKleisli category X! is a CLAC where the finite

product structure is given in Lem 3.2, the sum of coKleisli maps

JfK : !(A) → B and JgK : !(A) → B is defined as in X,

Jf + gK = JfK + JgK, and the zero J0K : !(A) → B is the same as in X,

J0K = 0. Furthemore, F! : X → X! preserves the additive structure strictly,

that is, JF!(0)K = 0 and JF!(f + g)K = JF!(f) + F!(g)K.

Now since every category X with finite biproducts is a CLAC, it follows

that for every comonad (!, δ, ε) on X, the coKleisli category X! is a CLAC.

It is important to point out that even if all maps in X are additive maps, the

same is not true for X!. This is due to the fact that !(f + g) and !(0) do not

necessarily equal !(f) + !(g) and 0 respectively.

We now provide the first main result of this paper: that the coKleisli

category of a Cartesian differential comonad is a CDC.

Theorem 3.4. Let (!, δ, ε, ∂) be a Cartesian differential comonad on a

category X with finite biproducts. Then the coKleisli category X! is a CDC

where the Cartesian left additive structure is defined as in Lem 3.3 and the

differential combinator D is defined as follows: for a map JfK : !(A) → B,

its derivative JD[f ]K : !(A × A) → B is defined as JD[f ]K = JfK ◦ ∂A.

Furthermore:

(i) For every object A in X, JD[ϕA]K = ∂A.

(ii) A coKleisli map JfK : !(A) → B is D-linear in X! if and only if the

following equality holds: JfK ◦ ∂A ◦ !(ι1) = JfK;

(iii) For every map f : A → B in X, JF!(f)K is D-linear in X!.

(iv) There is a functor FD-lin : X → D-lin[X!] which is defined on objects

as FD-lin(A) = A and on maps f : A → B as JFD-lin(f)K = f ◦ εA =
JF!(f)K, and such that F! = U ◦ FD-lin.

Proof. See extended version [24].
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The converse of Thm 3.4 is also true and states that a comonad whose

coKleisli category is a CDC is indeed a Cartesian differential comonad.

Proposition 3.5. Let X be a category with finite biproducts and let (!, δ, ε)
be a comonad on X. Suppose that the coKleisli category X! is a CDC with

differential combinator D such that the underlying Cartesian left additive

structure of X! is the one from Lem 3.3 and for every map f : A → B

in X, JF!(f)K is a D-linear map in X!. Define the natural transformation

∂A : !(A × A) → !(A) as ∂A = JD[ϕA]K. Then (!, δ, ε, ∂) is a Cartesian

differential comonad and furthermore for every coKleisli map JfK : !(A) →
B, JD[f ]K = JfK ◦ ∂A.

Proof. See extended version [24].

As a result, we obtain the following bijective correspondence:

Corollary 3.6. Let X be a category with finite biproducts and let (!, δ, ε) be a

comonad on X. Then there is a bijective correspondence between differential

combinator transformations ∂ on (!, δ, ε) and differential combinators D on

the coKleisli category X! with respect to the Cartesian left additive structure

from Lem 3.3 and such that for every map f in X, JF!(f)K is a D-linear map

in X! via the constructions of Thm 3.4 and Prop 3.5. via

Proof. See extended version [24].

We now turn our attention back to the D-linear maps in the coKleisli

category of a Cartesian differential comonad. Specifically, we wish to

provide necessary and sufficient conditions for when the subcategory of

D-linear maps is isomorphic to the base category. Explicitly, we wish to

study when FD-lin : X → D-lin[X!] as defined in Thm 3.4.(iv) is an

isomorphism. The answer, as it turns out, is requiring that the comonad

counit has a section.

Definition 3.7. Let (!, δ, ε, ∂) be a Cartesian differential comonad on a

category X with finite biproducts. A D-linear unit on (!, δ, ε, ∂) is a natural

transformation ηA : A → !(A) such that the following equalities hold:

[du.1] Linear Rule: εA ◦ ηA = 1A;

[du.2] Linearization Rule: εA ◦ ηA = ∂A ◦ !(ι1).

213



S. IKONICOFF & J.-S. P. LEMAY CART. DIFF. COMONADS

For commutative diagram versions of the axioms [du.1] to [du.6] see the

extended version [24]. Note that the definition of a D-linear unit essentially

says that ∂A ◦ !(ι1) is a split idempotent via ηA and εA. Our first observation

is that D-linear units are unique.

Lemma 3.8. For a Cartesian differential comonad, if a D-linear unit exists,

then it is unique.

Proof. See extended version [24].

For a Cartesian differential comonad with a D-linear unit, the D-linear

maps in the coKleisli category correspond precisely to the maps in the base

category. We also have the following useful identity:

Lemma 3.9. Let (!, δ, ε, ∂) be a Cartesian differential comonad on a

category X with finite biproducts. Then JL[ϕA]K = ∂A ◦ !(ι1).

Proof. See extended version [24].

Proposition 3.10. Let (!, δ, ε, ∂) be a Cartesian differential comonad on a

category X with finite biproducts. Then FD-lin : X → D-lin[X!] is an

isomorphism (where FD-lin is defined as in Thm 3.4.(iv)) if and only if

(!, δ, ε, ∂) has a D-linear unit ηA : A → !(A).

Proof. See extended version [24].

As a result, in the presence of a D-linear unit, we obtain the following

characterizations of D-linear maps.

Corollary 3.11. Let (!, δ, ε, ∂) be a Cartesian differential comonad on a

category X with finite biproducts. If (!, δ, ε, ∂) has a D-linear unit η, then

the following are equivalent for a coKleisli map JfK : !(A) → B,

(i) JfK is D-linear in X!

(ii) There exists a (necessarily unique) map g : A → B in X such that

JfK = g ◦ εA = JF!(g)K.

(iii) JfK ◦ ηA ◦ εA = JfK

We conclude this section with some examples.
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Example 3.12. The main example of a Cartesian differential comonad is

the comonad of a differential category. Briefly, a differential

category [3, Def 2.4] is an additive symmetric monoidal category X

equipped with a comonad (!, δ, ε), two natural transformations

∆A : !(A) → !(A) ⊗ !(A) and eA : !(A) → I such that !(A) is a

cocommutative comonoid, and a natural transformation called a deriving

transformation dA : !(A) ⊗ A → !(A) satisfying certain coherences which

capture the basic properties of differentiation [6, Def 7]. By [4, Prop 3.2.1],

for a differential category X with finite products, its coKleisli category X! is

a CDC where the differential combinator is defined using the deriving

transformation. For a coKleisli map JfK : !A → B, its derivative

JD[f ]K : !(A × A) → B is defined as:

JD[f ]K = JfK ◦ dA ◦ (1!(A) ⊗ εA) ◦ (!(π0) ⊗ !(π1)) ◦∆A×A. Applying Prop

3.5, we obtain a differential combinator transformation:

dA ◦ (1!(A) ⊗ εA) ◦ (!(π0) ⊗ !(π1)) ◦ ∆A×A. Furthermore, if there exists a

natural transformation uA : I → !(A) such that eA ◦ uA = 1I and

uA ◦ eA = !(0), then we obtain a D-linear unit defined as

ηA = dA ◦ (uA ⊗ 1A);λ
−1
A , where λA : I ⊗ A ∼= A. Readers familiar with

differential linear logic will note that any differential storage

category [3, Def 4.10] has such a map u and that in this case the D-linear

unit is precisely the codereliction [6, Sec 5]. However, we stress that it is

possible to have a D-linear unit for differential categories that are not

differential storage categories. We invite the reader to see [6, Sec 9]

and [23, Ex 4.7] for lists of examples of differential categories.

Example 3.13. Our three main novel examples of Cartesian differential

comonads that we introduce in Sec 5, 6, and 7 below, arise instead more

naturally as the dual notion, which we simply call coCartesian differential

monads. Following the convention in the differential category literature for

the dual notion of differential categories, we have elected to keep the same

terminology and notation for the dual notion of a differential combinator

transformation. Briefly, a coCartesian differential monad on a category X

with finite biproducts is a quadruple (S, µ, η, ∂) consisting of a monad

(S, µ, η) (where µA : SS(A) → S(A) and ηA : A → S(A)) and a natural

transformation ∂A : S(A) → S(A × A), again called a differential

combinator transformation, such that the dual diagrams of Def 3.1

commute. By the dual statement of Prop 3.5, the opposite category of the
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Kleisli category of a coCartesian differential monad is a CDC. The dual

notion of a D-linear unit is called a D-linear counit, which would be a

natural transformation εA : S(A) → A such that the dual diagrams of Def

3.7 commute. By the dual statement of Prop 3.10, the existence of a

D-linear counit implies that the opposite of the base category is isomorphic

to the subcategory of the D-linear of the opposite of the Kleisli category.

The following are two “trivial” examples of CDCs any category with

finite biproducts. While both are “trivial” in their own way, they both provide

simple separating examples. Indeed, the first is an example of a Cartesian

differential comonad without a D-linear unit, while the second is a Cartesian

differential comonad which is not induced by a differential category.

Example 3.14. Let X be a category with finite biproducts, and let ⊤ be the

chosen zero object. Then the constant comonad C which sends every object

to the zero object C(A) = ⊤ and every map to zero maps C(f) = 0 is a

Cartesian differential comonad whose differential combinator

transformation is simply 0. This Cartesian differential comonad has a

D-linear unit if and only if every object of X is a zero object.

Example 3.15. Let X be a category with finite biproducts. Then the

identity comonad 1X is a Cartesian differential comonad whose differential

combinator transformation is the second projection π1 : A × A → A and

has a D-linear unit given by the identity map 1A : A → A. The resulting

coKleisli category is simply the entire base category X and whose

differential combinator the same as in Ex 2.5. As such, this example

recaptures Ex 2.5 that every category with finite biproducts is a CDC where

every map is D-linear.

4. Cartesian Differential Abstract coKleisli Categories

The goal of this section is to give a precise characterization of the CDCs

which are the coKleisli categories of Cartesian differential comonads. This

is a generalization of the work done by Blute, Cockett, and Seely in [5],

where they characterize which CDCs are the coKleisli categories of the

comonads of differential categories. This was achieved using the concept of

abstract coKleisli categories [5, Sec 2.4], which is the dual notion of
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thunk-force-categories as introduced by Führmann in [22]. Abstract

coKleisli categories provide a direct description of the structure of coKleisli

categories in such a way that the coKleisli category of a comonad is an

abstract coKleisli category and, conversely, every abstract coKleisli

category is canonically the coKleisli category of a comonad on a certain

subcategory. As such, here we introduced Cartesian differential abstract

coKleisli categories which, as the name suggests, are abstract coKleisli

categories that are also CDCs such that the differential combinator and

abstract coKleisli structure are compatible. We show that the coKleisli

category of a Cartesian differential comonad is a Cartesian differential

abstract coKleisli categories and that, conversely, every Cartesian

differential abstract coKleisli category is canonically the coKleisli category

of a Cartesian differential comonad on a certain subcategory. We will also

study the D-linear maps of Cartesian differential abstract coKleisli

categories.

We will start from the abstract coKleisli side of the story.

Definition 4.1. An abstract coKleisli structure on a category X is a triple

(!, ϕ, ǫ) consisting of an endofunctor ! : X → X, a natural transformation

ϕA : A → !(A), and a family of maps ǫA : !(A) → A (which are not

necessarily natural), such that ǫ!(A) : !!(A) → !(A) is a natural

transformation, and that ǫA ◦ ϕA = 1A = ǫ!A ◦ !(ϕA) and

ǫA ◦ ǫ!A = ǫA ◦ !(ǫA) hold. An abstract coKleisli category [5, Def 2.4.1] is a

category X equipped with an abstract coKleisli structure (!, ϕ, ǫ).

Below in Lem 4.11, we will review how every coKleisli category is an

abstract coKleisli category. In order to obtain the converse, we first need

from an abstract coKleisli category to construct a category with comonad.

In an abstract coKleisli category, there are an important class of maps called

the ǫ-natural maps (which are the dual of thunkable maps in thunk-force

categories [22, Def 7]). These ǫ-natural maps form a subcategory which

comes equipped with a comonad, and the coKleisli category of this comonad

is the starting abstract coKleisli category.

Definition 4.2. In an abstract coKleisli category X with abstract coKleisli

structure (!, ϕ, ǫ), a map f : A → B is said to ǫ-natural if εB ◦ !(f) = f ◦εA.

Define the subcategory of ǫ-natural maps ǫ-nat[X] to be the category whose
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objects are the same as X and whose maps are ǫ-natural in X, and let Uǫ :
ǫ-nat[X] → X be the obvious forgetful functor.

As we will discuss in Lem 4.12, in the context of a coKleisli category

of a comonad, these ǫ-natural maps should be thought of as the maps in

the base category. We now review in detail how every abstract coKleisli

category is isomorphic to the coKleisli category of a canonical comonad on

the subcategory of ǫ-natural maps.

Lemma 4.3. [22, Dual of Thm 4] Let X be an abstract coKleisli category

with abstract coKleisli structure (!, ϕ, ǫ). Define the natural transformation

βA : !(A) → !!(A) as βA = !(ϕA). Then (!, β, ǫ) is a comonad on ǫ-nat[X]
such that the functor Gǫ : X → ǫ-nat[X]! defined on objects as Gǫ(A) = A

and on a map f : A → B as JGǫ(f)K = ǫB ◦ !(f), is an isomorphism with

inverse G−1
ǫ : ǫ-nat[X]! → X defined on objects as Gǫ(A) = A and on a

coKleisli map JfK : !(A) → B as G−1
ǫ (JfK) = JfK ◦ ϕA.

We now wish to equip abstract coKleisli categories with Cartesian

differential structure. To do so, we must first discuss Cartesian left additive

structure for abstract coKleisli categories. We start with the finite product

structure:

Definition 4.4. A Cartesian abstract coKleisli category [5, Def 2.4.1] is an

abstract coKleisli category X with abstract coKleisli structure (!, ϕ, ǫ) such

that X has finite products and all the projection maps π0 : A× B → A and

π1 : A× B → B are ǫ-natural.

For a Cartesian abstract coKleisli category X, it follows that ǫ-natural

maps are closed under the finite product structure.

Lemma 4.5. [5, Sec 2.4] Let X be a Cartesian abstract coKleisli category

with abstract coKleisli structure (!, ϕ, ǫ). Then ǫ-nat[X] has finite products

(which is defined as in X).

Next we discuss Cartesian left additive structure for abstract coKleisli

categories, where we require that ǫ-natural maps are closed under the

additive structure.
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Definition 4.6. A Cartesian left additive abstract coKleisli category is a

Cartesian abstract coKleisli category X with abstract coKleisli structure

(!, ϕ, ǫ) such that X is also a CLAC, zero maps 0 : A → B are ǫ-natural,

and if f : A → B and g : A → B are ǫ-natural, then their sum

f + g : A → B is ǫ-natural.

For a Cartesian left additive abstract coKleisli category, the subcategory

of ǫ-natural maps also form a CLAC. It is important to stress however that

ǫ-natural maps are not assumed to be additive, and therefore the subcategory

of ǫ-natural maps does not necessarily have biproducts.

Lemma 4.7. Let X be a Cartesian left additive abstract coKleisli category

with abstract coKleisli structure (!, ϕ, ǫ). Then ǫ-nat[X] is a CLAC (where

the necessary structure is defined as in X). Furthermore, ǫA ◦ !(0) = 0
and if f : A → B and g : A → B are ǫ-natural, then εB ◦ !(f + g) =
ǫB ◦ !(f) + ǫB ◦ !(g).

Proof. See extended version [24].

We are now in a position to define Cartesian differential abstract

coKleisli categories.

Definition 4.8. A Cartesian differential abstract coKleisli category is a

CDC X, with differential combinator D, such that X is also a Cartesian left

additive abstract coKleisli category with abstract coKleisli structure

(!, ϕ, ǫ) and every ǫ-natural map is D-linear.

We will now show that for a Cartesian differential abstract coKleisli

category, the canonical comonad on the subcategory of ǫ-natural maps is a

Cartesian differential comonad and that the coKleisli category is

isomorphic to the starting Cartesian differential abstract coKleisli category.

Proposition 4.9. Let X be a Cartesian differential abstract coKleisli

category with differential combinator D and abstract coKleisli structure

(!, ϕ, ǫ). Then ǫ-nat[X] is a category with finite biproducts and (!, β, ǫ, ∂)
(where (!, β, ǫ) is defined as in Lem 4.3) is a Cartesian differential comonad

on ǫ-nat[X] where the differential combinator transformation

∂A : !(A) → !(A × A) is defined as ∂A = ǫ!(A) ◦ ! (D[ϕA]). Furthermore,

Gǫ : X → ǫ-nat[X]! is a Cartesian differential isomorphism, so
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JGǫ(D[f ])K = JD [Gǫ(f)]K and G−1
ǫ (JD[f ]K) = D [G−1

ǫ (JfK)], where the

differential combinator on the coKleisli category ǫ-nat[X]! is defined as in

Thm 3.4.

Proof. See extended version [24].

It is important to note that while ǫ-natural maps are assumed to be D-

linear, the converse is not necessarily true. It turns out that all D-linear maps

are ǫ-natural precisely when the Cartesian differential comonad has a D-

linear unit.

Lemma 4.10. Let X be a Cartesian differential abstract coKleisli category

with differential combinator D and abstract coKleisli structure (!, ϕ, ǫ).
Define the natural transformation ηA : A → !(A) as ηA := L[ϕA]. Then the

following are equivalent:

(i) ǫ-nat[X] = D-lin[X], that is, every D-linear map is ǫ-natural;

(ii) For every object A, ηA is ǫ-natural;

(iii) η is a D-linear unit for (!, β, ǫ, ∂).

Proof. See extended version [24].

We turn our attention to the converse of Prop 4.9. We will now explain

how every coKleisli category of a Cartesian differential comonad is a

Cartesian differential abstract coKleisli category. To do so, let us first

quickly review how every coKleisli category is an abstract coKleisli

category.

Lemma 4.11. [5, Prop 2.6.3] Let (!, δ, ε) be a comonad on a category X.

Then define the endofunctor !! : X! → X! on objects as !!(A) = !(A) and on

a coKleisli map JfK : !(A) → B as J!!(f)K = ! (JfK) ◦ δA ◦ ε!(A). Also define

the family of coKleisli maps JǫAK : !!(A) → A as JǫAK = εA ◦ ε!(A). Then

the coKleisli category X! is an abstract coKleisli category with abstract

coKleisli structure (!!, ϕ, ǫ), where ϕ is defined as JϕAK = 1!(A).

Furthermore,

(i) A coKleisli map JfK : !(A) → B is ǫ-natural if and only if JfK◦ε!(A) =
JfK ◦ !(εA).
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(ii) For every map f : A → B in X, JF!(f)K : !(A) → B is ǫ-natural;

(iii) There is a functor Fǫ : X → ǫ-nat[X!] which is defined on objects as

Fǫ(A) = A and on maps f : A → B as JFǫ(f)K = f ◦ εA = JF!(f)K,

and such that F! = U ◦ Fǫ.

A natural question to ask is when the subcategory of ǫ-natural maps of a

coKleisli category is isomorphic to the base category. The answer is when

the comonad is exact (for monads, this is called the equalizer requirement

[22, Def 8]).

Lemma 4.12. [22, Dual of Thm 9] Let (!, δ, ε) be a comonad on a category

X. Then Fǫ : X → ǫ-nat[X!] is an isomorphism if and only if the comonad

(!, δ, ε) is exact [5, Sec 2.6], that is, the following is a coequalizer diagram:

!!(A)
ε!(A)

//

!(εA)
//
!(A)

εA
// A

In the case of an exact comonad, the base category can be recovered from

the coKleisli category using the subcategory of ǫ-natural maps. For abstract

coKleisli categories, note that the comonad from Lem 4.3 is always exact.

For a comonad on the category with finite products, the coKleisli

category is a Cartesian abstract coKleisli category.

Lemma 4.13. [5, Sec 2.6] Let (!, δ, ε) be a comonad on a category X with

finite products. Then the coKleisli category X! is a Cartesian abstract

coKleisli category with abstract coKleisli structure as defined in Lem 4.11.

For a comonad on a CLAC, the coKleisli category is a Cartesian left

additive abstract coKleisli category.

Lemma 4.14. Let (!, δ, ε) be a comonad on a CLAC X. Then the coKleisli

category X! is a Cartesian left additive abstract coKleisli category with

abstract coKleisli structure as defined in Lem 4.11 and Cartesian left

additive structure as defined in Lem 3.3.

Proof. See extended version [24].

We will now show that for a Cartesian differential comonad, its coKleisli

category is a Cartesian differential abstract coKleisli category.
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Proposition 4.15. Let (!, δ, ε) be a Cartesian differential comonad on a

category X with finite biproducts. Then X! is a Cartesian differential

abstract coKleisli category with Cartesian differential structure defined in

Thm 3.4 and abstract coKleisli structure (!!, ϕ, ǫ) as defined in Lem 4.11.

Proof. See extended version [24].

We conclude this section by showing that for a Cartesian differential

comonad with a D-linear unit, the underlying comonad is exact and that a

coKleisli map is D-linear if and only if it ǫ-natural.

Lemma 4.16. Let (!, δ, ε, ∂) be a Cartesian differential comonad on a

category X with finite biproducts. Then (!, δ, ε, ∂) has a D-linear unit

ηA : A → !(A) if and only if (!, δ, ε) is exact and for each object A, the

D-linear map JL[ϕA]K : !(A) → !(A) is ǫ-natural.

Proof. See extended version [24].

Corollary 4.17. Let (!, δ, ε, ∂) be a Cartesian differential comonad with a

D-linear unit η on a category X with finite biproducts. Then for a coKleisli

map JfK : !(A) → B, JfK is D-linear in X! if and only if JfK is ǫ-natural in

X!. As such, X ∼= ǫ-nat[X!] ∼= D-lin[X!]

5. Example: Reduced Power Series

In this section we construct a Cartesian differential comonad (in the

opposite category) based on reduced formal power series, which therefore

induces a CDC of reduced formal power series. To the extent of the

authors’ knowledge, this is a new observation. This is an interesting and

important non-trivial example of a Cartesian differential comonad which

does not arise from a differential category. Unsurprisingly, the differential

combinator will reflect the standard differentiation of arbitrary

multivariable power series. However, the problem with arbitrary power

series lies with composition. Indeed, famously, power series with degree 0

coefficients, also called constant terms, cannot be composed, since in

general this results in an infinite non-converging sum in the base field.

Thus, multivariable formal power series do not form a category, since their

composition may be undefined. Reduced formal power series are power
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series with no constant term. These can be composed [7, Sec 4.1] and thus,

we obtain a Lawvere theory of reduced power series. The total derivative of

a reduced power series is again reduced, and therefore, we obtain a CDC of

reduced power series. Futhermore, this CDC of reduced power series is in

fact a subcategory of the opposite category of the Kleisli category of the

coCartesian differential monad P, the free reduced power series algebra

monad, which can be seen as the free complete algebra functor induced by

the operad of commutative algebras [20, Sec 1.4.4]. Lastly, it is worth

mentioning that, while in this section we will work with vector spaces over

a field, we note that all the constructions easily generalize to the category of

modules over a commutative (semi)ring.

Let F be a field. For an F-vector space V , define P(V ) as

P(V ) =
∏∞

n=1 (V
⊗n)S(n) where (V ⊗n)S(n) denotes the vector space of

symmetrized n-tensors, that is, classes of tensors of length n under the

action of the symmetric group which permutes the factors in V ⊗n. An

arbitrary element t ∈ P(V ) is then an infinite ordered list t = (t(n))∞n=1

where t(n) ∈ (V ⊗n)S(n). Therefore, an arbitrary element of P(V ) can be

written in the form t = (t(n))∞n=1 =
(
∑m

i=1 v(n,i,1) . . . v(n,i,n)
)∞

n=1
where

v(n,k,1) . . . v(n,k,n) denotes the class of v(n,k,1) ⊗ . . . ⊗ v(n,k,n) ∈ V ⊗n under

the action of the symmetric group. If X is basis of V , then

P(V ) ∼= FJXK+ [20, Sec 1.4.4], where FJXK+ is the non-unital associative

ring of reduced power series over X , that is, power series over X with no

constant/degree 0 term. Therefore, P(V ) is a non-unital associative

F-algebra. The algebra structure is induced by concatenation of classes of

tensors ∗ : v1 . . . vn ⊗ w1 . . . wk 7→ v1 . . . vnw1 . . . wk, which provides a

commutative, associative multiplication:

∗ : (V ⊗n)S(n) ⊗ (V ⊗k)S(k) → (V ⊗n+k)S(n+k). It is worth pointing out that

P(V ) does not have a unit element. More specifically, P(V ) will not come

equipped with a natural map of type F → P(V ). So P(V ) will not induce

an algebra modality, and therefore will not induce a differential category

structure on F-VECop.

This induces a monad P on F-VEC [20, Sec 1.4.3]. Define the functor

P : F-VEC → F-VEC as mapping an F-vector space V to P(V ), as defined

above, and mapping an F-linear map f : V → W to the F-linear map

P(f) : P(V ) → P(W ) defined on elements t as above by

P(f)(t) =
(
∑m

i=1 f(v(n,i,1)) . . . f(v(n,i,n))
)∞

n=1
. Define the monad unit
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ηV : V → P(V ) by ηV (v) = (v, 0, 0, . . .). From a power series point of

view, if X is a basis of V , ηV maps a basis element x ∈ X to its associated

monomial of degree 1. For the monad multiplication, let us first consider an

element s ∈ PP(V ), which is a list of symmetrized tensor products of lists

of symmetrized tensor products, s = (s(n))∞n=1, s(n) ∈ ((P(V ))⊗n)S(n) and

thus, s(n) is of the form s(n) =
∑m

i=1 s(n)(i,1) . . . s(n)(i,n) for some

s(n)(i,j) ∈ P(V ). Now for every partition of n not involving 0, that is, for

every n1 + . . . + nk = n with nj ≥ 1, define s(n1, . . . , nk) ∈ (V ⊗n)S(n) as

s(n1, . . . , nk) =
∑m

i=1 s(k)(i,1)(n1) ∗ . . . ∗ s(k)(i,k)(nk), where ∗ is the

concatenation multiplication defined above. Lastly, define

µV : PP(V ) → P(V ) as µV (s) =
(
∑n

k=1

∑

n1+...+nk=n s(n1, . . . , nk)
)∞

n=1
This monad multiplication corresponds to the composition of multivariable

reduced power series, as defined explicitly in [7, Sec 4.1].

We now introduce the differential combinator transformation for P, that

will correspond to differentiating power series. Define the map ∂V : P(V ) →
P(V × V ) by setting:

∂V (t)=

(

m
∑

i=1

n
∑

j=1

(

(v(n,i,1), 0) . . . ̂(v(n,i,j), 0) . . . (v(n,i,n), 0)
)

(0, vn,i,j)

)∞

n=1

,

where t is an arbitrary element of P(V ) as above and ̂(v(n,i,j), 0) indicates

the omission of the factor (v(n,i,j), 0) in the product. If X is a basis of V , the

differential combinator transformation can described as a map

∂V : FJXK+ → FJX ⊔XK+ which maps a reduced power series t(~x) to its

sum of its partial derivatives: ∂V (t(~x)) =
∑

xi∈~x
∂t(~x)
∂xi

x∗
i , where x∗

i denotes

the element xi in the second copy of X in the disjoint union X ⊔ X . Note

that even if t(~x) depends on an infinite list of variables, ∂V (t(~x)) is

well-defined as a formal power series. It is worth insisting on the fact that ∂

cannot be induced by a deriving transformation in the sense of Ex 3.12.

Indeed, as a map, ∂ does not factor through a map P(V ) → P(V ) ⊗ V .

Note that a power series could have infinite partial derivatives and, since

infinite sums and ⊗ are generally incompatible, the derivative of a power

series could not be described as an element of P(V ) ⊗ V . Moreover, we

already noted the lack of unit: a differential operator of type

P(V ) → P(V ) ⊗ V would not be able to properly derive degree 1

monomials without a unit argument to put in the P(V ) component. We also

224



S. IKONICOFF & J.-S. P. LEMAY CART. DIFF. COMONADS

have a D-linear counit εV : P(V ) → V defined as simply the projection

onto V : εV (t) = t(1). From a power series point of view, ε projects out the

degree 1 coefficients of a reduced power series. So (P, µ, η, ∂) is a

coCartesian differential monad with D-linear counit ε, or in other words:

Proposition 5.1. (P, µ, η, ∂) is a Cartesian differential comonad on

F-VECop with D-linear unit ε. Therefore F-VEC
op
P

is a CDC and

D-lin [F-VEC
op
P
] ∼= F-VECop.

Proof. See extended version [24].

The CDC F-VEC
op
P

can be interpreted as the category whose objects are

F-vector spaces and whose maps are reduced power series between them.

As a result, focusing on the finite-dimensional vector spaces, specifically

Fn, one obtains a CDC of reduced power series over finite variables. We

describe this category in detail.

Example 5.2. Let F be a field. Define the category F-POWred whose object

are n ∈ N, where a map P : n → m is a m-tuple of reduced power series

(i.e. power series with no degree 0 coefficients) in n variables, that is,

P = 〈p1(~x), . . . , pm(~x)〉 with pi(~x) ∈ FJx1, . . . , xnK+. The identity maps

1n : n → n are the tuples 1n = 〈x1, . . . , xn〉 and where composition is

given by multivariable power series substitution [7, Sec 4.1]. F-POWred is a

CLAC where the finite product structure is given by n × m = n + m with

projection maps π0 : n×m → n and π1 : n×m → m defined as the tuples

π0 = 〈x1, . . . , xn〉 and π1 = 〈xn+1, . . . , xn+m〉, and where the additive

structure is defined coordinate-wise via the standard sum of power series.

F-POWred is also a CDC where the differential combinator is given by the

standard differentiation of power series, that is, for a map P : n → m, with

P = 〈p1(~x), . . . , pm(~x)〉, its derivative D[P] : n × n → m is defined as the

tuple of the sum of the partial derivatives of the power series pi(~x), so

D[P](~x, ~y) :=
〈

∑n
i=1

∂pj(~x)

∂xi
yi

〉m

j=1
. It is important to note that even if pj(~x)

has terms of degree 1, every partial derivative
∂pj(~x)

∂xi
yi will still be reduced

(even if
∂pj(~x)

∂xi
has a degree 0 term), and thus the differential combinator D

is indeed well-defined. A map P : n → m is D-linear if it of the form

P = 〈
∑n

i=0 ri,jxi〉
m

j=1
. Thus D-lin[F-POWred] is equivalent to F-LIN (as
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defined in Ex 2.6). We note that this example generalize to the category of

reduced formal power over an arbitrary commutative (semi)ring.

Observe that F-POWred(n, 1) = FJx1, . . . , xnK+ ∼= F-VEC
op
P
(Fn,F),

which then implies that F-POWred(n,m) ∼= F-VEC
op
P
(Fn,Fm). Thus we

have that F-POWred is isomorphic to the full subcategory of F-VEC
op
P

whose

objects are the finite dimensional F-vector spaces. In the finite dimensional

case, the differential combinator transformation corresponds precisely to the

differential combinator on F-POWred: ∂Fn(p(~x)) = D[p](~x, ~y). Therefore,

F-POWred is a sub-CDC of F-VEC
op
P

, where the latter allows for power series

over infinite variables.

6. Example: Divided Power Algebras

In this section, we show that the free divided power algebra monad is a

coCartesian differential monad, and therefore, we obtain a CDC of divided

power polynomials [29, Sec 12]. Divided power algebras were introduced

by Cartan [8] to study the homology of Eilenberg-MacLane spaces with

coefficients in a prime field of positive characteristic. Such structures

appear notably on the homotopy of simplicial algebras [8, 21], and in the

study of D-modules and crystalline cohomology [2]. The free divided

power algebra monad Γ was first introduced by Roby in [28] and

generalized in the context of operads by Fresse in [21]. Much as for

reduced power series, the composition of divided power polynomials is

only well-defined when they are reduced, that is, have no constant term.

More generally, the study of divided power algebras has been widely

developed in the non-unital setting [21]. Since the monad we study encodes

a structure of non-unital algebras, this provides another example of a

Cartesian differential comonad which is not induced by a differential

category. We begin by reviewing the definition of a divided power algebra.

Definition 6.1. Let F be a field. A divided power algebra [8, Sec 2] over

F is a commutative associative (non-unital) F-algebra (A, ∗), where A is

the underlying F-vector space and ∗ is the F-bilinear multiplication, which

comes equipped with a divided power structure, that is, a family of functions

(−)[n] : A → A, a 7→ a[n], indexed by strictly positive integers n, such that

the following identities hold:
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[dp.1] (λa)[n] = λna[n] for all a ∈ A and λ ∈ F.

[dp.2] a[m] ∗ a[n] =
(

m+n
m

)

a[m+n] for all a ∈ A.

[dp.3] (a+ b)[n] = a[n] +
(
∑n−1

l=1 a[l] ∗ b[n−l]
)

+ b[n] for all a ∈ A, b ∈ A.

[dp.4] a[1] = a for all a ∈ A.

[dp.5] (a ∗ b)[n] = n!a[n] ∗ b[n] = a∗n ∗ b[n] = a[n] ∗ b∗n for all a ∈ A, b ∈ A.

[dp.6] (a[n])[m] = (mn)!
m!(n!)m

a[mn] for all a ∈ A.

The function (−)[n] is called the n-th divided power operation.

When the base field F is of characteristic 0, the only divided power

structure on a commutative associative algebra (A, ∗) is given by a[n] = a∗n

n!
,

which justifies the name “divided powers”. Therefore, in the characteristic

0 case, a divided power algebra is simply a commutative associative

(non-unital) algebra. However, in general, for non-zero characteristics, the

two notions diverge. Examples of divided power algebras include the

homology of Eilenberg-MacLane spaces [8, Sec 5 and 8], the homotopy of

simplicial commutative algebras [8, Théorème 1], and all Zinbiel algebras

(which we review in the next section) [16, Thm 3.4]. Furthermore, there

exists a notion of free divided power algebras, which we review now.

Let F be a field. For an F-vector space V , define

Γn(V ) = (V ⊗n)S(n) ⊆ V ⊗n as the subspace of tensors of length n of V

which are fixed under the action of the symmetric group S(n), that is,

invariant under all n-permutations σ ∈ S(n). Categorically speaking,

Γn(V ) is the joint equalizer of the n-permutations. Define Γ(V ) as

Γ(V ) =
⊕∞

n=1 Γn(V ). The vector space Γ(V ) is endowed with a divided

power algebra structure, and is the free divided power algebra over

V [8, Sec 2]. Explicitly, the divided power operations and the product are

defined on generators v, w ∈ V by: v[n] = v⊗n and v ∗ w = v ⊗ w + w ⊗ v.

An arbitrary element of Γ(V ) can then be expressed as a finite sum of

divided power monomials [9, Sec 4], which are elements of the form:

v
[r1]
1 ∗ . . . ∗ v

[rn]
n for v1, . . . , vn ∈ V , where ∗ is the multiplication of Γ(V ),

and (−)[rj ] are the divided power operations. Note that this decomposition

in monomials is not unique in general. Later on, we will define the
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differential combinator on monomials. In order to check that this

combinator is well defined, one can use the explicit form of such a

monomial v
[r1]
1 ∗ . . . ∗ v

[rn]
n =

∑

σ∈S(n)/S(r1,...,rn)
σ(v⊗r1

1 ⊗ . . . ⊗ v⊗rn
n ),

where S(r1, . . . , rn) = S(r1) × . . . × S(rp) is the Young subgroup of the

symmetric group S(r1 + . . .+ rp).
Free divided power algebras induce a monad Γ on F-VEC [21, Prop

1.2.3]. Note that it is sufficient to define the monad structure maps on

divided power monomials and then extend by linearity. Define the

endofunctor Γ : F-VEC → F-VEC which sends a F-vector space V to its

free divided power algebra Γ(V ), and which sends an F-linear map

f : V → W to the F-linear map Γ(f) : Γ(V ) → Γ(W ) defined on divided

powers monomials as Γ(f)(v
[r1]
1 ∗ . . . ∗ v

[rn]
p ) = (f(v1))

[r1] ∗ . . . ∗ (f(vn))
[rn],

which we then extend by linearity. The monad unit ηV : V → Γ(V ) is the

injection map of V into Γ(V ): ηV (v) = v[1]. Note that, with this notation,

the zero element of Γ(V ) will here be denoted by 0[1]. The monad

multiplication µV : Γ(Γ(V )) → Γ(V ) is defined as follows on divided

power monomials of divided power monomials, using [dp.5] and [dp.6]:

µV

(

(v
[q1,1]
1,1 ∗ . . . ∗ v

[q1,k1 ]

1,k1
)[r1] ∗ . . . ∗ (v

[qp,1]
p,1 ∗ . . . ∗ v

[qp,kp ]

p,kp
)[rp]
)

=

(

p
∏

i=1

1

ri!

ki
∏

j=1

(riqi,j)!

qi,j!ri

)

v
[r1q1,1]
1,1 ∗ . . . ∗ v

[r1q1,k1 ]

1,k1
∗ . . . ∗ v

[rpqp,kp ]

p,kp

which we then extend by linearity. Note that the functor Γ, and the monad

structure we described, can be constructed from the operad of commutative

(non-unital) algebras [21, Prop 1.2.3]. Furthermore, note that the algebras of

the monad Γ are precisely the dividied power algebras [28, Sec 10, Thm 1

and 2].

Observe that Γ will not be an algebra modality since Γ(V ) is non-unital.

Therefore, Γ will provide an example of Cartesian differential comonad that

is not induced from a differential category structure. We now define the

differential combinator transformation for Γ. Define ∂V : Γ(V ) → Γ(V ×V )
as follows on divided power monomials:

∂V (v
[r1]
1 ∗ . . . ∗ v[rn]n )

=
n
∑

i=1

(v1, 0)
[r1] ∗ . . . ∗ (vi, 0)

[ri−1] ∗ . . . ∗ (vn, 0)
[rn] ∗ (0, vi)

[1]
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which we then extend by linearity. If ri = 1, we use the following

convention:

(v1, 0)
[r1] ∗ . . . ∗ (vi, 0)

[ri−1] ∗ . . . ∗ (vn, 0)
[rn] ∗ (0, vi)

[1]

= (v1, 0)
[r1] ∗ . . . ∗ (vi−1, 0)

[ri−1] ∗ (vi+1, 0)
[ri+1] ∗ . . . ∗ (vn, 0)

[rn] ∗ (0, vi)
[1]

We will see below that ∂ corresponds to taking the sum of the partial

derivatives of divided power polynomials. Note that a consequence of the

lack of a unit in Γ(V ) is that ∂V does not factor through a map

Γ(V ) → Γ(V ) ⊗ V since such a map would be undefined on the divided

power monomials of degree 1, v[1]. We also have a D-linear counit

εV : Γ(V ) → V defined as follows on divided power monomials:

εV (v
[1]) = v, and εV (v

[r1]
1 ∗ . . . ∗ v

[rn]
n ) = 0 otherwise, which we extend by

linearity. Thus εV picks out the divided power monomials of degree 1, v[1]

for all v ∈ V , while mapping the rest to zero.

Proposition 6.2. (Γ, µ, η, ∂) is a Cartesian differential comonad on F-VECop

with D-linear unit ε. Therefore F-VEC
op
Γ

is a CDC and D-lin [F-VEC
op
Γ
] ∼=

F-VECop.

Proof. See extended version [24].

The Kleisli category F-VECΓ is closely related to the notion of

(reduced) divided power polynomials. For a set X , we denote by F⌈X⌉ the

ring of reduced divided power polynomials over the set X , which is by

definition the free divided power algebra over the F-vector space with basis

X [29, Sec 12]. In other words, a reduced divided polynomial with

variables in X is an F-linear composition of commutative monomials of the

type x
[k1]
1 . . . x

[kn]
n where x1, . . . , xn is a tuple of n different elements of X

and k1, . . . , kn are strictly positive integers. By reduced, we mean that these

polynomials do not have degree 0 terms. Multiplication is given by

concatenation, multilinearity and the relation [dp.2] of Def 6.1.

Composition of divided polynomials can be deduced from the relations

[dp.1], [dp.3], [dp.5] and [dp.6] of 6.1. For example, if p(x) = x[n], and

q(y, z) = y[m]z, then: p(q(y, z)) = (mn)!
(m!)n

y[mn]z[n]. We can define a notion of

formal partial derivation for divided polynomials. For x ∈ X , define the

linear map d
dx

: F⌈X⌉→ F⌈X⌉ ⊕ F on monomials (which we then extend
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by linearity). For all monomial m = x
[k1]
1 . . . x

[kn]
n , (i) d

dx
(m) = 0 if x 6= xi

for all i ∈ {1, . . . , n}; (ii) d
dx
(m) = x

[k1]
1 . . . x

[kj−1]
j−1 x

[kj−1]
j x

[kj+1]
j+1 . . . x

[kn]
n if

x = xj and kj > 1; (iii) d
dx
(m) = x

[k1]
1 . . . x

[kj−1]
j−1 x

[kj+1]
j+1 . . . x

[kn]
n if x = xj ,

kj = 1, and n > 1; and finally (iv) d
dx
(x) = 1F where 1F ∈ F is a generator

of the second term of the direct sum F⌈X⌉ ⊕ F given by the unit of F. We

note that, in the case where X is a singleton, these definitions correspond to

the notion of derivation for formal divided power series, also called Hurwitz

series, as defined by Keigher and Pritchard in [25]. We can restrict to the

finite dimensional case and obtain a sub-CDC of F-VEC
op
Γ

which is

isomorphic to the Lawvere theory of reduced divided power polynomials.

Example 6.3. Let F be a field. Define the category F-DPOLY whose object

are n ∈ N, where a map P : n → m is a m-tuple of reduced divided

polynomials in n variables, that is, P = 〈p1(~x), . . . , pm(~x)〉 with

pi(~x) ∈ F⌈x1, . . . , xn⌉.The identity maps 1n : n → n are the tuples of the

form 1n = 〈x
[1]
1 , . . . , x

[1]
n 〉 and composition is given by divided power

polynomial substitution as explained above. F-DPOLY is a CLAC where

the finite product structure is given by n × m = n + m with projection

maps π0 : n×m → n and π1 : n×m → m defined as the tuples

π0 = 〈x
[1]
1 , . . . , x

[1]
n 〉 and π1 = 〈x

[1]
n+1, . . . , x

[1]
n+m〉, and where the additive

structure is defined coordinate-wise via the standard sum of divided power

polynomials. F-DPOLY is also a CDC where for a map P : n → m, with

P = 〈p1(~x), . . . , pm(~x)〉, its derivative D[P ] : n × n → m is defined as the

tuple of the sum of the partial derivatives of the divided power polynomials

pi(~x): D[P ](~x, ~y) :=
(

∑n
i=1

dpj(~x)

dxi
y
[1]
i

)m

j=1
. It is important to note that even

if pj(~x) has terms of degree 1, every partial derivative
dpj(~x)

dxi
y
[1]
i will still be

reduced (even if
dpj(~x)

dxi
may have a degree 0 term), and thus, the differential

combinator D is indeed well-defined. A map P : n → m is D-linear if it of

the form P =
〈

∑n
i=0 λi,jx

[1]
i

〉m

j=1
. Thus, D-lin[F-DPOLY] is equivalent to

F-LIN (as defined in Ex 2.6).

We have that F-DPOLY(n, 1) = F⌈x1, . . . , xn⌉ ∼= F-VEC
op
Γ
(Fn,F),

which then implies that F-DPOLY(n,m) ∼= F-VEC
op
Γ
(Fn,Fm). Therefore,

F-DPOLY is indeed isomorphic to the full subcategory of F-VEC
op
Γ

whose

objects are the finite dimensional F-vector spaces. In the finite dimensional
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case, the differential combinator transformation corresponds precisely to

the differential combinator on F-DPOLY: ∂Fn(p(~x)) = D[p](~x, ~y). Thus,

F-DPOLY is a sub-CDC of F-VEC
op
P

, where the latter allows for divided

power polynomials over infinite variables (but will still only depend on a

finite number of them).

7. Example: Zinbiel Algebras

In this section, we show that the free Zinbiel algebra monad is a

coCartesian differential monad, and therefore we construct a CDC based on

non-commutative polynomials equipped with the half-shuffle product.

Zinbiel algebras were introduced by Loday in [27], as Koszul dual to the

classical notion of Leibniz algebra. Zinbiel algebras were further studied by

Dokas [16], who shows that they are closely related to divided power

algebras. The free Zinbiel algebra is given by the non-unital shuffle algebra.

Therefore, this example corresponds to differentiating non-commutative

polynomials with a type of polynomial composition defined using the

Zinbiel product. Due to the strangeness of the composition, the differential

combinator transformation is very different from previous examples.

Nevertheless, this is yet another interesting Cartesian differential comonad

which does not arise as a differential category. Furthermore, it is worth

mentioning that, while the (unital) shuffle algebra has been previously

studied in a generalization of differential categories in [1], the Zinbiel

algebra perspective was not considered. In future work, it would be

interesting to study the link between these two notions.

Definition 7.1. Let F be a field. A Zinbiel algebra [27, Def 1.2] over F, also

called dual Leibniz algebra, is an F-vector space A equipped with a bilinear

operation < such that (a < b) < c = (a < (b < c)) + (a < (c < b)) for all

a, b, c ∈ A.

It is important to insist on the fact that the bilinear product < is not

assumed to be associative, commutative, or have a distinguished unit

element. That said, it is interesting to point out that any Zinbiel algebra is

equipped with an associative and commutative bilinear product ∗ defined as

a ∗ b = a < b + b < a. Thus, a Zinbiel algebra is also a non-unital

commutative, associative algebra [27, Prop 1.5]. The underlying vector
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space of free Zinbiel algebras is the same as for free non-unital tensor

algebras. Readers familiar with the latter will note that the tensor algebra is

non-commutative when the multiplication is given by concatenation.

However, there is another possible multiplication which is commutative,

called the shuffle product. The tensor algebra equipped with the shuffle

product is called the shuffle algebra. Furthermore, it turns out that the

shuffle product is the commutative associative multiplication ∗ one obtains

from the free Zinbiel algebra. Thus, the free Zinbiel algebra and the shuffle

algebra are the same object. For the purposes of this paper, we only need to

work with the Zinbiel product <.

Let F be a field. For an F-vector space V , define Zin(V ) as Zin(V ) =
⊕∞

n=1 V
⊗n. It is known that Zin(V ) is the free Zinbiel algebra over V [27,

Prop 1.8] with Zinbiel product < defined on pure tensors by (v1⊗. . .⊗vn) <
(w1⊗. . .⊗wm) =

∑

σ∈S(n+m)/S(n)×S(m) v1⊗σ·(v2⊗. . .⊗vn⊗w1⊗. . .⊗wm),

which we then extend by linearity. Thus, Zin(V ) is spanned by words of

elements of V . Free Zinbiel algebras induce a monad Zin on F-VEC [27,

Prop 1.8]. Similar to previous examples, note that it is sufficient to define the

monad structure maps on pure tensors and then extend by linearity. Define

the endofunctor Zin : F-VEC → F-VEC which sends an F-vector space

V to its free Zinbiel algebra Zin(V ), and which sends an F-linear map f :
V → W to the F-linear map Zin(f) : Zin(V ) → Zin(W ) defined on pure

tensors as Zin(f) (v0 ⊗ . . .⊗ vn) = f(v0) ⊗ . . . ⊗ f(vn), which we then

extend by linearity. The monad unit ηV : V → Zin(V ) is the injection of V

into Zin(V ), ηV (v) = v, and the monad multiplication µV : ZinZin(V ) →
Zin(V ) is defined on pure tensors by taking their Zinbiel product starting

from the right, so defined on a pure tensor v1⊗ . . .⊗vn ∈ ZinZin(V ), where

vi ∈ Zin(V ), by µV (v1 ⊗ . . .⊗ vn) = v1 < (. . . (vn−1 < vn) . . .), which we

then extend by linearity. Unsurprisingly, the algebras of the monad Zin are

precisely the Zinbiel algebras. Similar to the other examples, due to a lack

of unit, Zin will not be an algebra modality and therefore this will result in

another example of a Cartesian differential comonad which does not come

from a differential category.

We can now define the differential combinator transformation for Zin.

Define ∂V : Zin(V ) → Zin(V × V ) on pure tensors as follows:

∂V (v1 ⊗ v2 . . .⊗ vn) = (0, v1)⊗ (v2, 0)⊗ . . .⊗ (vn, 0)
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which we then extend by linearity. Note that this differential combinator

transformation is quite different from the other examples in appearance.

Below, we will explain how this differential combinator transformation

corresponds to a sum of partial derivative for non-commutative polynomials

with the multiplication given by the Zinbiel product. We also have a

D-linear counit εV : Zin(V ) → V which projects out the V component of

Zin(V ), that is, it is defined on pure tensors as ε(v) = v and

εV (v1 ⊗ . . .⊗ vn) = 0 otherwise, and which we extend by linearity.

Proposition 7.2. (Zin, µ, η, ∂) is a Cartesian differential comonad on

F-VECop with D-linear unit ε. Therefore, F-VEC
op
Zin

is a CDC and

D-lin [F-VEC
op
Zin

] ∼= F-VECop.

Proof. See extended version [24].

The Kleisli category F-VECZin is closely related to non-commutative

polynomials. For a set X , let F〈X〉 be the set of non-commutative

polynomials and F〈X〉+ be the set of reduced non-commutative

polynomials, that is, those without any constant terms. As a vector space,

F〈X〉+ over a set X is isomorphic to the underlying vector space of the free

Zinbiel algebra over the free vector space generated by X . Thus, to

distinguish between polynomials and non-commutative polynomials, we

will use the tensor product ⊗. For example, xy = yx is the commutative

polynomial, while x ⊗ y and y ⊗ x are two different non-commutative

polynomials. Composition in the Kleisli category corresponds to using the

Zinbiel product < to define a new kind of substitution of non-commutative

polynomials. We use the term Zinbiel polynomials to refer to reduced

non-commutative polynomials with the Zinbiel product and the Zinbiel

substitution. We are now in a position to define partial derivatives on

non-commutative polynomials. For x ∈ X , define d
dx

: F〈X〉 → F〈X〉 as

follows on Zinbiel monomials (which we then extend by linearity):
d(x1⊗x2⊗...⊗xn)

dx
= x2 ⊗ . . .⊗ xn if x1 = x and

d(x1⊗x2⊗...⊗xn)
dx

= 0 otherwise.

We use the convention that
d(x)
dx

= 1. We can also restrict to the

finite-dimensional case and obtain a sub-CDC F-VEC
op
Zin

which is

isomorphic to the Lawvere theory of Zinbiel polynomials, and where the

differential combinator is defined using their partial derivatives.
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Example 7.3. Let F be a field. Define the category F-ZIN whose object are

natural numbers n ∈ N, where a map P : n → m is an m-tuple of reduced

non-commutative polynomials in n variables, so P = 〈p1(~x), . . . , pm(~x)〉
with pi(~x) ∈ F〈x1, . . . , xn〉+. The identity maps 1n : n → n are the tuples

1n = 〈x1, . . . , xn〉 and where composition is given by Zinbiel substitution,

as defined above. F-ZIN is a CLAC where the finite product structure is

given by n × m = n + m with projection maps π0 : n×m → n and

π1 : n×m → m defined as the tuples of the form π0 = 〈x1, . . . , xn〉 and

π1 = 〈xn+1, . . . , xn+m〉, and where the additive structure is defined

coordinate wise via the standard sum of non-commutative polynomials.

F-ZIN is also a CDC where the differential combinator is given by the

differentiation of Zinbiel polynomial given above, that is, for a map

P : n → m, with P = 〈p1(~x), . . . , pm(~x)〉, its derivative D[P ] : n× n → m

is defined as the tuple of the sum of the partial derivatives of the Zinbiel

polynomials pi(~x), D[P ](~x, ~y) :=
〈

∑n
i=1 yi ⊗

dpj(~x)

dxi

〉m

j=1
. It is important to

note that even if pi(~x) has terms of degree 1, every partial derivative

yi ⊗
dpj(~x)

dxi
will still be reduced. Indeed, the polynomial of the form

yi ⊗ 1 ∈ F〈x1, . . . , xn, y1, . . . , yn〉 are identified with the reduced

polynomial yi ∈ F〈x1, . . . , xn, y1, . . . , yn〉+, and so, for example,

yi ⊗
d(x)
x

= yi. Thus, the differential combinator D is indeed well-defined.

A map P : n → m is D-linear if it of the form P = 〈
∑n

i=0 ri,jxi〉
m

j=1. Thus

D-lin[F-ZIN] is equivalent to F-LIN (as defined in Ex 2.6). We note that this

example generalize to the category of Zinbiel polynomials over an arbitrary

commutative (semi)ring.

Observe that F-ZIN(n, 1) = F 〈x1, . . . , xn〉+ ∼= F-VEC
op
Zin

(Fn,F), which

then implies that F-Zin(n,m) ∼= F-VEC
op
Zin

(Fn,Fm). Therefore, we have

that F-Zin is isomorphic to the full subcategory of F-VEC
op
Γ

whose objects

are the finite dimensional F-vector spaces. In the finite dimensional case,

the differential combinator transformation corresponds precisely to the

differential combinator on F-ZIN: ∂Fn(p(~x)) = D[p](~x, ~y). Thus, F-ZIN is a

sub-CDC of F-VEC
op
P

, where the latter allows for Zinbiel polynomials over

infinite variables (but will still only depend on a finite number of them).

It is worth noting the link between divided power algebras and Zinbiel

algebra. Any Zinbiel algebra is endowed with a divided power algebra

structure [16, Thm 3.4], and this results in an inclusion of the free divided
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power algebra into the free Zinbiel algebra, Γ(V ) → Zin(V ) [16, Sec 5]. As

such, this inclusion can be extended to a monic monad morphism Γ ⇒ Zin.

However, it is not compatible with the differential combinators. For

instance, let V be the vector space spanned by x and y, and let ∂Γ and ∂Zin

denote the differential combinator transformation for the respective monad.

Let p(x, y) = x[1] ∗ y[1] ∈ Γ(V ). On one hand, the injection Γ(V ) → Zin(V )
identifies p(x, y) to p(x, y) = x ⊗ y + y ⊗ x and so we have that

∂Zin

V (p)(x, y, x∗, y∗) = x∗ ⊗ y + y∗ ⊗ x. On the other hand, we have that

∂Γ

V (p)(x, y, x
∗, y∗) = (x∗)[1] ∗ y[1] + (y∗)[1] ∗ x[1], which the injection

Γ(V × V ) → Zin(V × V ) identifies to

∂Zin

V (p)(x, y, x∗, y∗) = x∗ ⊗ y + y ⊗ x∗ + y∗ ⊗ x+ x⊗ y∗.

8. Future Work

Beyond finding and constructing new interesting examples of Cartesian

differential comonads, and therefore also new examples of CDCs, there are

many other interesting possibilities for future work with Cartesian

differential comonads. We conclude this paper by listing three potential

ideas.

I. In [23], it was shown that every CDC embeds into the coKleisli

category of a differential (storage) category [23, Thm 8.7]. In principle, this

already implies that every CDC embeds into the coKleisli category of a

Cartesian differential comonad. However, Cartesian differential comonads

can be defined without the need for a symmetric monoidal structure. Thus,

it is reasonable to expect that there is a finer (and possibly simpler)

embedding of a CDC into the coKleisli category of a Cartesian differential

comonad.

II. In this paper, we studied the (co)Kleisli categories of (co)Cartesian

differential (co)monads. A natural follow-up question to ask is: what can

we say about the (co)Eilenberg-Moore categories of (co)Cartesian

differential (co)monads? As discussed in [13], for differential categories the

answer is tangent categories [10]. Indeed, the Eilenberg-Moore category of

any codifferential category is always a tangent category [13, Thm 22],

while the coEilenberg-Moore category of a differential (storage) category

with sufficient limits is a (representable) tangent category [13, Thm 27]. As

such, it is reasonable to expect the same to be true for (co)Cartesian
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differential (co)monads, that is, that the (co)Eilenberg-Moore category of

(co)Cartesian differential (co)monad is a tangent category by generalizing

the constructions found in [13]

III. An important part of the theory of calculus is integration,

specifically its relationship to differentiation given by antiderivatives and

the Fundamental Theorems of Calculus. Integration and antiderivatives

have found their way into the theory of differential categories [12, 17] and

CDCs [11]. In future work, it would therefore be of interest to define

integration and antiderivatives for (co)Cartesian differential (co)monads.

We conjecture that integration in this setting would be captured by an

integral combinator transformation, which should be a natural

transformation of the opposite type of the differential combinator

transformation, that is, of type
∫

A
: !(A) → !(A × A). The axioms of an

integral combinator transformation should be analogue to the axioms of an

integral combinator [11, Sec 5] in the coKleisli category. Some of the

examples presented in this paper seem to come equipped with an integral

combinator transformation. For example, there is a well-established notion

of integration for power series which should induce integral combinator

transformations in an obvious way. In the case of divided power

polynomial, there is a notion of integration in the one-variable case

(see [25] for the integration of formal divided power series in one variable).

However, it is unclear to us how integration for multivariable divided power

polynomials would be defined, which is necessary if we wish to construct

an integral combinator transformation. In the case of Zinbiel algebras, we

conjecture that
∫

V
: Zin(V × V ) → Zin(V ) defined as:

∫

(a1,0, a1,1) ⊗ . . . ⊗ (an,0, an,1) =
∑

f :{1,...,n}→{0,1} a1,f(1) ⊗ . . . ⊗ an,f(n) is

a candidate for an integral combinator transformation (in the dual sense). In

a differential category, one way to build an integration operator is via the

notion of antiderivatives [12, Def 6.1], which is the assumption that a

canonical natural transformation KA : !(A) → !(A) be a natural

isomorphism. Another goal for future work would be to generalize

antiderivatives (in the differential category sense) for Cartesian differential

comonads.

In conclusion, there are many potential interesting paths to take for future

work with Cartesian differential comonads.
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