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WEAK FUSION 2-CATEGORIES

Thibault D. DECOPPET

Résumé. Nous introduisons un affaiblissement de la notion de 2-catégorie fu-
sion donnée dans [6]. Ensuite, nous établissons un nombre de propriétés des
2-catégories (multi)fusion. En particulier, nous démontrons que les duaux à
gauche et à droite d’un objet d’une 2-catégorie fusion coı̈ncident. Finalement,
nous décrivons la loi de fusion des 2-catégories fusion associées à certaines
catégories fusion tressées qui sont pointées.
Abstract. We introduce a weakening of the notion of fusion 2-category
given in [6]. Then, we establish a number of properties of (multi)fusion
2-categories. In particular, we prove that the left and the right duals of an
object in a multifusion 2-category coincide. Finally, we describe the fusion
rule of the fusion 2-categories associated to certain pointed braided fusion
categories.
Keywords. Multifusion 2-Categories, Fusion 2-Categories, Braided Fusion
Categories.
Mathematics Subject Classification (2020). 18M15, 18M20, 18N10, 18N25
(Primary), 18M05 (Secondary).

Introduction

We present an algebraic definition of fusion 2-categories that partially fills
the gap between the two existing definitions ([6] and [13]). In fact, we show
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that our definition is essentially equivalent to that of [6]. Further, it is pos-
sible to show that the (separable) fusion 2-categories of [13] are examples
of the objects we call fusion 2-categories. The proof is not difficult, but
requires developing the theory of fusion 2-categories much further, so we
postpone it to [5]. However, proving the converse is a much more delicate
problem. Namely, it essentially amounts to proving that every fusion 2-
category is a fully dualizable object in an appropriate symmetric monoidal 4-
category. We hope to return to this point in following work, but, in the mean-
time, we present some elementary results on the structure of (multi)fusion
2-categories.

Let us briefly describe the content of the different sections of the present
article. Section 1 contains results on monoidal 2-categories that we will
be needed. We begin by reviewing adjoints. Providing we are working in
a monoidal 2-category that has right adjoints, we show how these adjoints
can be assembled to give a monoidal 2-functor. We go on to review the
definitions of duals and of coherent duals. Further, given a 2-category that
has right duals, we explain how they can be put together to define a 2-functor.
We conjecture that this 2-functor is in fact monoidal. Finally, we explain
some properties of monoidal 2-categories that have right adjoints and right
duals.

Fusion 2-categories as defined in [6] are Gray monoids satisfying some
properties. In section 2, we generalize their definition by starting with a
monoidal 2-category in the sense of [15]. We also give a decomposition
result for multifusion 2-categories that is analogous to that of multifusion 1-
categories. Then, we show that our definition of a fusion 2-category is essen-
tially equivalent to that of Douglas-Reutter. We continue by deriving some
consequences of the existence of duals in multifusion 2-categories. Most
notably, we show that right and left duals agree. Next, we show that the
connected component of the unit in a fusion 2-category forms a fusion sub-
2-category, and we prove that connected fusion 2-categories correspond pre-
cisely to braided fusion categories. Finally, we explain how to compute the
fusion rule of the connected fusion 2-category associated to certain pointed
braided fusion categories, generalizing a result of [8]. We use this to com-
pute the fusion rules of some fusion 2-categories.
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1. Adjoints and Duals in Monoidal 2-Categories

1.1 Adjoints

The following definition is well-known.

Definition 1.1.1. Let C be a 2-category and f : A → B a 1-morphism in
C. A right-adjoint for f is a 1-morphism f ∗ : B → A together with 2-
morphisms ε : f ◦ f ∗ ⇒ IdB and η : IdA ⇒ f ∗ ◦ f satisfying the snake
equations

(ε ◦ f) · (f ◦ η) = Idf ,

(f ∗ ◦ ε) · (η ◦ f ∗) = Idf∗ ,

in which we have omitted the relevant coherence 2-isomorphisms. One de-
fines left-adjoints dually.

Remark 1.1.2. It is well-known that a right-adjoint for a 1-morphism f is
unique up to unique 2-isomorphism.

Notation 1.1.3. Let C be a 2-category. We denote by C2op the 2-category
obtained from C by reversing the direction of the 2-morphisms. Analogously,
we denote by C1op the 2-category obtained by reversing the direction of the
1-morphisms. If C is monoidal, then it is clear that so is C2op. The 2-category
C1op can also be given a monoidal structure, but this construction is slightly
trickier, as one needs to “invert” 1-morphisms. Using the algebraic definition
of monoidal 2-category given in [15], this poses no problem.

Lemma 1.1.4. Let C be a 2-category with right-adjoints. There is a 2-functor

(−)∗ : C→ C1op;2op

that is the identity on objects and sends a 1-morphism f to the 1-morphism
underlying a chosen right adjoint. Dually, if C has left-adjoints, there is
a 2-functor denoted by ∗(−) that sends 1-morphisms to their left adjoints.
Further, if C has left and right-adjoints, ∗(−) is a pseudo-inverse for (−)∗.
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Proof. The is well-known, for instance, see [11], or appendix A.1 below.

If we assume in addition that C is monoidal, then the 2-functor (−)∗ can
be made monoidal.

Lemma 1.1.5. Let C be a monoidal 2-category with right-adjoints. The
2-functor (−)∗ of lemma 1.1.4 can be made monoidal. If, in addition, C
has left-adjoints, then the monoidal 2-functors ∗(−) is a monoidal pseudo-
inverse for (−)∗.

Proof. See appendix A.1 below.

1.2 Duals

Some care has to be taken with respect to what one calls a dual in a monoidal
2-category C. For us, a right dual for an object A of C consists of an object
A], together with two 1-morphisms iA : I → A]�A and eA : A�A] → I
satisying the snake equations up to 2-isomorphisms. Similarly, one can give
a definition of a left dual forA. These definitions have the advantage of being
concise and easy to check, but they are not convenient to use in constructions.
That is why we shall also need to consider the refinement defined in [14]
called a coherent right dual.

Definition 1.2.1. Let A be an object of a monoidal 2-category C. A coherent
right dual for A consists of an object A] in C, 1-morphisms iA : I → A]�A
and eA : A�A] → I , and 2-isomorphisms1

CA : (eA�A) ◦ a•A,A],A ◦ (A�iA)⇒ IdA,

DA : IdA] ⇒ (A]�eA) ◦ aA],A,A] ◦ (iA�A
]),

satisfying the two swallowtail equations (depicted in figures 3 and 4 of [14]).
We will also say that the data (A,A], iA, eA, CA, DA) is a coherent dual pair,
or that (A,A], iA, eA, CA, DA) is a coherent left dual for A].

1The notation a•A,A],A is used in [15] to refer to the chosen ajoint pseudo-inverse of the
1-morphism aA,A],A.
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Remark 1.2.2. In the notation of definition 1.2.1, if we assume that C is a
strict cubical monoidal 2-category, the swallowtail equations simplify to[
eA ◦ (CA�A

])
]
·
[
φ(eA,IdI),(IdA�A] ,eA)

◦ (A�iA�A
])
]
·[eA ◦ (A�DA)] = IdeA ,[

(A]�CA) ◦ iA
]
·
[
(A]�eA�A) ◦ φ(iA,IdI),(IdA]�A,iA)

]
·[(DA�A) ◦ iA] = IdiA .

It is clear that every coherent right dual is a right dual. Hence, it is natural
to ask whether every right dual can be made into a coherent right dual. This
question was solved in [14].

Corollary 1.2.3. [14, Corollary 2.8] Every right dual can be made coherent,
and every left dual can be made coherent.

Definition 1.2.4. Let C be a monoidal 2-category. We say that C has right
duals, resp. left duals, if every object has a right dual, resp. left dual. We say
that C is rigid if it has right and left duals.

Using the above result from [14], we believe that one can construct a
right dual 2-functor on any monoidal 2-category with right duals.

Notation 1.2.5. Given C a monoidal 2-category with monoidal product �,
we denote by C�op the monoidal 2-category with the opposite monoidal
product.

Conjecture 1.2.6. Let C be a monoidal 2-category with right duals. There
exists a monoidal 2-functor

(−)] : C→ C�op;1op

that sends an object A to the object underlying a right dual for A. If, in
addition, C has left duals, there is a monoidal 2-functor, which we denote
by ](−) that sends an object to its left dual. Further, ](−) is a monoidal
pseudo-inverse for (−)].

Remark 1.2.7. We prove in lemma A.2.2 below that the underlying 2-functor
exists. However, checking the coherence axioms for a monoidal 2-category
involves making sure that big composites of interchangers agree, and we
have not found a satisfactory way to deal with these.
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The decategorified version of the next lemma is well-known.

Lemma 1.2.8. Let C be a monoidal 2-category, and A, B, and C be objects
of C.

1. If C has a right dual, there are natural equivalences

HomC(A,B�C) ' HomC(A�C], B),

HomC(C�A,B) ' HomC(A,C]�B).

2. If C has a left dual, there are natural equivalences

HomC(A�C,B) ' HomC(A,B�]C),

HomC(A,C�B) ' HomC(]C�A,B).

Proof. Without loss of generality, we may assume that C is strict cubical (this
follows from the coherence theorem of [12]). Let (C,C], iC , eC , CC , DC) be
a coherent dual pair. Then, the functors

HomC(A,B�C) � HomC(A�C], B)
f 7→ (B�eC) ◦ (f�C])

(g�C) ◦ (A�iC) ←[ g

form an adjoint equivalence with counit

[(A�CC) ◦ f ] · [(B�eC�C) ◦ φ(f,Id),(Id,iC)]

and unit
[φ(g,Id),(Id,eC) ◦ (A�iC�C

])] · [g ◦ (B�DC)].

The triangle identites follow from the swallowtail equations. The naturality
in A and B is clear from the definition.

Remark 1.2.9. The above lemma can be reformulated by saying that certain
2-functors form a 2-adjunction. For instance, if C has a right dual, then
(−)�C] is left 2-adjoint to (−)�C.
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1.3 Interactions

The monoidal 2-categories we will consider have both adjoints and duals.
That is why we now examine the properties of such monoidal 2-categories.

Lemma 1.3.1. Let A] be a right dual for A in C, a monoidal 2-category with
right adjoints, with unit iA and counit eA. Then A] has a right dual.

Proof. Using the monoidal 2-functor (−)∗ constructed in lemma 1.1.5, one
gets that the image of iA and eA under (−)∗ witness that A] is a right dual
for A in C1op;2op. This means that A is a right dual for A] in C.

Remark 1.3.2. Lemma 1.3.1 can be generalized to n-categories, see [1,
Lem. 4.1.2].

Corollary 1.3.3. Let C be a monoidal 2-category with right adjoints and
right duals. For any object A of C, A]] is equivalent to A.

Corollary 1.3.4. Let C be a monoidal 2-category with right adjoints. If C
has right duals, then it also has left duals.

2. Fusion 2-Categories

Throughout, we work over a fixed algebraically closed field k of character-
istic zero.

2.1 (Multi)Fusion 2-Categories

Definition 2.1.1. A multifusion 2-category C is a finite semisimple 2-category
([4] definition 2.1.3) equipped with a rigid k-linear monoidal structure. In
particular, it comes equipped with a bilinear 2-functor

� : C× C→ C,

and a monoidal unit I . A fusion 2-category is a multifusion 2-category
whose monoidal unit is simple.

Remark 2.1.2. By their very definition, all the standard results of monoidal
2-category theory (up to linearization) apply to multifusion 2-categories. For
instance, by [15], every multifusion 2-category is equivalent to a skeletal
multifusion 2-category.
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It is well-known that the monoidal unit of a multifusion category splits
as a direct sum of non-isomorphic simple objects (see [7] section 4.3). Using
the fact that every object of a finite semisimple 2-categories decomposes into
a direct sum of simple objects (see proposition 1.4.5 of [6] and lemma 2.1.5
of [4]), a similar result holds for multifusion 2-categories.

Lemma 2.1.3. Let C be a multifusion 2-category. Let Xi, i = 1, ..n be the
finitely many simple objects appearing in the decomposition of the monoidal
unit as a direct sum of simple objects, i.e.

I ' �n
i=1Xi.

Then, HomC(Xi, Xj) is non-zero if and only if i = j. Moreover, we have
that Xi�Xj is equivalent to Xi if i = j and to 0 otherwise.

Proof. For any i, we have Xi�I ' Xi. As Xi is simple, there exists pre-
cisely one j such that Xi�Xj is non-zero. Together with the reverse argu-
ment on j, this shows that

Xi ' Xi�Xj ' Xj.

If i 6= j, thenXi�I would have (Xi�Xi)�(Xi�Xj) as a summand, whence
would not be simple. Thus, we must have i = j and Xi�Xi ' Xi. More-
over, this shows that Xi is both a left and a right dual for Xi.

Let i, j be arbitrary. Then, we have:

HomC(Xi, Xj) ' HomC(Xi�(]Xj), I) ' HomC(δijXi, I).

The last term is non-zero precisely when i = j. This finishes the proof.

Remark 2.1.4. Lemma 2.1.3 can be seen as a generalization of the fact that
braided multifusion categories have no non-zero entries away from the diag-
onal (see lemma 5.3 of [3]).

Let C be a multifusion 2-category. We write iCj for the semisimple 2-
category Xi�C�Xj . The following result is a direct analogue of the usual
decomposition of a multifusion category.
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Lemma 2.1.5. The semisimple 2-categories iCi are fusion 2-categories, and
the finite semisimple 2-categories iCj are (iCi, jCj)-bimodule 2-categories.
Finally, the following matrix1C1 · · · 1Cn

... . . . ...
nC1 · · · nCn


represents the fusion rule of the multifusion 2-category C.

Example 2.1.6. The 2-category of representations of a finite 2-groupoid G
is semisimple and finite by [6]. It inherits a (symmetric) monoidal struc-
ture from the symmetric monoidal structure on 2Vect. The monoidal unit
is given by the constant 2-functor G → 2Vect with value Vect. This 2-
representation splits as the direct sum of the simple 2-representations that
are constant with value Vect on exactly one component of G and 0 on the
others.

2.2 Comparison with strict Fusion 2-Categories

Douglas and Reutter have used in [6] the term fusion 2-category to refer to
certain Gray monoids; We call such objects strict fusion 2-categories. Now,
we want to compare their definition with ours.

Lemma 2.2.1. Let C be a multifusion 2-category. There exists a multifusion
2-category D, whose underlying monoidal 2-category is a strict cubical k-
linear monoidal 2-category, that is linearly equivalent to C. Moreover, if C
is fusion, so is D.

Proof. Using a k-linear version of the coherence theorem of [12], we obtain
a strict cubical k-linear monoidal 2-category D that is linearly monoidally
equivalent to C. Observe that the underlying linear equivalence of 2-categories
witnesses that the 2-category D is a finite semisimple 2-category. Moreover,
rigidity is preserved by monoidal equivalences of 2-categories. This proves
the first part of the result. The last part follows from the Whitehead theorem
for monoidal 2-categories (see [15]).
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Lemma 2.2.2. There is a bijection between weak fusion 2-categories, whose
underlying monoidal 2-category is a strict cubical (or opcubical) k-linear
monoidal 2-category and strict fusion 2-categories.2

Proof. The k-linear version of [2] lemma 2.16 shows that there is a bijec-
tion between strict cubical k-linear monoidal 2-categories and k-linear Gray
monoids with one object. Moreover, the equivalence does not affect the un-
derlying 2-categories, and by lemma 2.1.4 of [4] its finite semisimple in the
sense of [6]. Thus, the only thing we have to prove is that this bijection re-
spects the existence of duals. This property follows from the fact that the
monoidal product with a fixed 1-morphism is invariant under this bijection
by construction.

Remark 2.2.3. In particular, we may invoke all the results that [6] have
proven for strict fusion 2-categories, and apply them to fusion 2-categories.

2.3 Duals in Multifusion 2-Categories

Specializing lemma 1.3.1 to multifusion 2-categories, we obtain the follow-
ing lemma.

Lemma 2.3.1. Let C be a multifusion 2-category, and let A] be a right dual
for A in C, then A is a right dual for A].

On the one hand, the decategorified analogue of the next result is well-
known: it says that left and right duals in a fusion category agree. The proof
relies crucially on the category being semisimple. On the other hand, in the
context of fusion 2-categories, the proof has a very distinct flavour; it uses
lemma 2.3.1, which applies in great generality (see corollary 1.3.3).

Corollary 2.3.2. Let C be a multifusion 2-category, and A an object of C.
Then, A]] is equivalent to A.

Corollary 2.3.3. Let C be a monoidal finite semisimple 2-category. If C has
right duals, then it also has left duals, i.e it is multifusion.

2This statement can be made rigorous using a set-theoretic argument. For instance, one
could use a bigger universe.
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As is the case in any multifusion category, the right dual of a simple
object is again a simple object.

Lemma 2.3.4. In any multifusion 2-category, the left and right duals of a
simple object are simple.

Proof. Let A be a simple object with right dual A]. Observe that the right
dual of a non-zero object has to be non-zero. Further, a right dual for a
direct sum is given by the direct sum of the right duals. Thus, if A] were not
simple, i.e. had two non-zero summands, then A]] would have two non-zero
summands. This contradicts the fact that A ' A]] is simple.

Lemma 2.3.4 implies that the operation of taking the right dual induces
a bijection on the set of equivalence classes of simple objects. Now, ob-
serve that lemma 1.2.8 also applies to multifusion 2-categories, yielding the
following results:

Corollary 2.3.5. Let C be a multifusion 2-category, and A, B two simple
objects such that HomC(A,B) is non-trivial. Then, HomC(A], B]) is non
trivial.

Proof. Note that it is enough to prove that HomC(B], A]) is non-trivial.
Namely, the 2-functor (−)∗ of lemma 1.1.4 provides us with a linear equiv-
alence:

HomC(A], B]) ' HomC(B], A]).

Now, using lemma 1.2.8, there are linear equivalences:

HomC(B], A]) ' HomC(A�B], I) ' HomC(A,B).

This concludes the proof.

Corollary 2.3.6. Let C be a fusion 2-category, and A, J two simple objects
such that J is in the component of the monoidal unit (i.e. HomC(I, J) is non-
zero), then J�A is a direct sum of simple objects in the connected component
of A.

Proof. Let B be a simple summand of J�A. There exists a non-trivial 1-
morphism between J�A and B. Thence, there is a non-trivial 1-morphism
between B�A] and J . By proposition 1.2.19 of [6], this implies that there
exists a non-trivial 1-morphism between B�A] and I , which is equivalent
to saying that A and B are in the same connected component.
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We examine the behaviour of simple objects under the monoidal product
and arbitrary 2-functors.

Lemma 2.3.7. Let C be a fusion 2-category and C, D two non-zero objects.
Then C�D is non-zero.

Proof. By rigidity,D has a right dualD]. In particular, the decomposition of
D�D] into simple objects contains a copy of J , a simple object in the con-
nected component of I . By definition, there exists a non-zero 1-morphism
f : I → J . Thus, we get a map

C�I
C�f // C�J �

� // C�D�D].

On one hand, if C�D were equivalent to zero, then C�J ' 0, whence we
would have C�f ' 0. On the other hand, f has a left adjoint ∗f , and the 2-
functor C�(−) preserves adjunctions. As IdI is a direct summand of ∗f ◦f ,
we find that C�f 6= 0. Consequently, C�D must be non-zero.

Proposition 2.3.8. Let F : C → D be a monoidal 2-functor from a fusion
2-category to a multifusion 2-category. For any non-zero object C of C, we
have that F (C) is non-zero.

Proof. As F is a monoidal 2-functor, we know that F (I) is non-zero. Now,
the evaluation 1-morphism eC : C�C] → I is non-zero, and has a left
adjoint. As F preserves adjunctions, we find that F (eC) is non-zero. Given
that F (C)�F (C]) ' F (C�C]), this implies that F (C) is non-zero.

2.4 Connected Fusion 2-Categories

The goal of this section is to study a special class of fusion 2-categories: con-
nected fusion 2-categories. They are ubiquitous both because the 2-category
of finite semisimple module categories associated to a braided fusion cate-
gory is connected, and because every fusion 2-category has a connected fu-
sion 2-category as a full sub-2-category. This is similar to the fact that every
topological monoid admits a connected submonoid given by the connected
component of the identity.

Definition 2.4.1. A connected fusion 2-category is a fusion 2-category whose
underlying finite semisimple 2-category is connected as in definition 1.2.22
of [6].
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Remark 2.4.2. By the categorical Schur lemma, i.e. proposition 1.2.19 of
[6], in order to show that a fusion 2-category is connected, it is enough to
check that the Hom-categories from the monoidal unit to any simple object
is non-trivial.

Given a fusion category C, we write Mod(C) := Cau(BC) for the
Cauchy completion of BC in the sense of [10]. By theorem 3.1.7 of [10],
we may also think of Mod(C) as the 2-category of separable algebras, bi-
modules, and bimodule maps in C. Thus, Mod(C) is a finite semisimple
2-category by theorem 1.4.8 of [6], and it is connected by proposition 2.3.5
of [4]. Further, by proposition 1.3.13 of [6], Mod(C) is equivalent to the
2-category of finite semisimple right C-module categories. The equivalence
sends a separable algebra A in C to ModC(A) the finite semisimple category
of right A-modules in C. Now, if we equip C with a braiding, more can be
said.

Proposition 2.4.3. [6, Construction 2.1.19] Let C be a braided fusion cate-
gory. Then, Mod(C) is a connected fusion 2-category, with monoidal prod-
uct given by �C the balanced Deligne tensor product.

Proof. Note that the monoidal 2-category BC is rigid. Thence, through
the proof of theorem 4.1.1 of [10], we find that its Cauchy completion,
Mod(C), is a multifusion 2-category with monoidal product �. Explic-
itly, the monoidal structure is as follows: Given two separable algebras A, B
in C, representing two right C-module categories ModC(A) and ModC(B),
their product A ⊗ B is again a separable algebra in C. The separable alge-
bra A ⊗ B represents an object ModC(A ⊗ B) in Mod(C), which is, by
construction, the monoidal product of ModC(A) and ModC(B). The result
follows from the equivalence of right C-module categories:

ModC(A) �C ModC(B) 'ModC(A) �C RModC(B
op)

' BimodC(A,B
op) 'ModC(A⊗B) = ModC(A)�ModC(B),

where we have used the equivalence of right C-module categories

ModC(B) ' RModC(B
op)

between the category of leftB-modules and the category of rightBop-modules.
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Definition 2.4.4. Let C be a fusion 2-category with monoidal unit I . We
denote by C0 the connected component of the identity, i.e. the full additive
sub-2-category on the simple objects that admit a non-zero morphism from
I .

Proposition 2.4.5. The 2-category C0 is a fusion sub-2-category of C that is
connected.

Proof. We begin by proving that C0 is finite semisimple. The only property
which is not obvious is that C0 has all condensates. Let (A, ...) be a 2-
condensation monad in C0, and let (A,B, f, g, ...) be an extension in C of
(A, ...) to a 2-condensation. Observe that for every simple summand C in
C of B, the composite of f with the projection B → C is a non-zero 1-
morphism A→ C. (If this 1-morphism was zero, (A,B, f, g, ...) would not
be a 2-condensation.) Thus, we find that C is in C0. Further, by definition,
we have that C0 is connected.

By corollary 2.3.6, the monoidal product of C restricts to give C0 a
monoidal structure. Finally, as I] ' I , we find by corollary 2.3.5 that this
monoidal structure is rigid, and C0 is clearly fusion.

Corollary 2.4.6. Let C be a fusion 2-category. Then, there is an equivalence
of monoidal 2-categories:

Mod(EndC(I)) ' C0.

Proof. As a consequence of the proof of the above proposition, we find that

BEndC(I) ↪→ C0

is a Cauchy completion. Further, this inclusion is monoidal, whence, by the
3-universal property of the Cauchy completion, we get the desired result.

Corollary 2.4.6 shows that the behavior of the monoidal product on the
connected component of the identity is completely determined by the braid-
ing on the fusion category EndC(I).

Proposition 2.4.7. There is an equivalence between the category of con-
nected fusion 2-categories and equivalence classes of monoidal linear 2-
functors, and the category of braided fusion categories and equivalence
classes of braided tensor functors.
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Proof. Let us denote byA the category of connected fusion 2-categories and
equivalence classes of monoidal linear 2-functors, and by B the category of
braided fusion categories and equivalence classes of braided tensor functors.
Taking the endomorphism category of the monoidal unit yields a functor

End(−)(I) : A → B,

and taking the Cauchy completion of the delooped braided fusion category
gives a functor

Mod(−) = Cau(B(−)) : B → A.
Using the 3-universal property of the Cauchy completion, one finds that
these functors are pseudo-inverses for one another.

2.5 Examples given by Pointed Braided Fusion Categories

Let C be a pointed braided fusion category. By results of [7], we know that
this corresponds equivalently to the data of a finite abelian groupA equipped
with an abelian 3-cocycle (ω, β). We will assume that ω is trivial. (If A has
odd order, this can always be done.) We denote the braided fusion category
associated to this data by VectβA. It is known that finite semisimple inde-
composable right module categories over VectβA correspond to pairs (E, φ),
where E is a subgroup of A and φ is 2-cocycle on E with value in k× (con-
sidered up to 2-coboundary). We denote the corresponding right module
category byM(E, φ). Proposition 3.16 of [9], explains how to compute the
relative Deligne tensor product of two right C-modules when β is trivial. We
now generalize this result.

Let (E, φ), and (F, ψ) be two pairs consisting of a subgroup of A, and an
appropriate 2-cocycle. LetAlt(φ) : E×E → k× andAlt(ψ) : F×F → k×

be the corresponding skew-symmetric bilinear forms, i.e.

Alt(φ)(e1, e2) := φ(e1, e2)/φ(e2, e1),

and similarly for Alt(ψ). We define a skew-symmetric bicharacter b on E ⊕
F by

b((e1, f1), (e2, f2)) := Alt(φ)(e1, e2)Alt(ψ)(f1, f2)β(f1, e2)/β(f2, e1).

The group E ∩ F embeds in E ⊕ F via e 7→ (e,−e), thus we can consider
its orthogonal complement (E ∩F )⊥ under the bicharacter b. Now, let H be
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the image of (E∩F )⊥ under the canonical map E⊕F → A. The restriction
of b to (E∩F )⊥ descends to a skew-symmetric bilinear form b′ onH , which
corresponds to an element of H2(H,k×) represented by a chosen 2-cocycle
ρ (see proposition 3.6 of [16]).

Proposition 2.5.1. Write C = VectβA, we have

M(E, φ) �CM(F, ψ) ' �m
i=1M(H, ρ),

where

m =
|(E ∩ F )⊥||(E ∩ F )|

|E||F |
.

Proof. Let A(E, φ) be the algebra in C whose underlying object is kE and
whose multiplication is given by φ, and similarly for A(F, ψ). By definition,
M(E, φ) = ModC(A(E, φ)), andM(F, ψ) = ModC(A(F, ψ)). The rela-
tive Deligne tensor product is given by the category of left modules over the
algebra A(E, φ)⊗A(F, ψ) in C. Note that the multiplication of this algebra
is twisted by the braiding β of C. More precisely, the multiplication is given
by the 2-cocycle τ on E ⊕ F defined by

((e1, f1), (e2, f2)) 7→ φ(e1, e2)ψ(f1, f2)β(f1, e2).

In particular, the corresponding skew-symmetric bicharacter onE⊕F is b as
defined above. Finally, using proposition 2.11 of [9], we obtain the desired
result.

Remark 2.5.2. It should be possible to generalize proposition 2.5.1 to the
case were ω is not assumed to be trivial. However, the above proof does
not immediately generalize because if ω is not trivial, then φ and ψ may
not be 2-cocycles, and thus Alt(φ) and Alt(ψ) may not be skew-symmetric
bicharacters.

Example 2.5.3. Recall the notation of example 2.1.12 of [4]. It is well-
known that the fusion category VectZ/pZ admits p distinct braided structures
(up to braided monoidal automorphisms of VectZ/pZ that are the identity on
objects). A braiding b on VectZ/pZ is determined by its value bk1,k1 = e

2πik
p ,

for any 0 ≤ k < p. If we allow arbitrary braided monoidal automorphisms,
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there are two distinct braided structures if p = 2, and three otherwise. The
symmetric or trivial braiding is specified by k = 0, and we denote the corre-
sponding braided fusion category by VecttrivZ/pZ. The other ones correspond
to the cases where 0 < k < p is either a quadratic residue or not. For sim-
plicity, we only treat the case where k is a quadratic residue, for which we
may assume k = 1, and denote the corresponding braided fusion category
by VectβZ/pZ. The other case is entirely analogous.

Let us begin by examining the monoidal product on the finite semisimple
2-category of finite semisimple right modules categories over C := VecttrivZ/pZ.
As C is the monoidal unit for the induced monoidal structure on Mod(C),
we only have to determine Vect �C Vect. Recall that as right VectZ/pZ-
module categories, we have Vect ' M(Z/pZ, triv) in the notations used
above. Now, a straightforward computation using proposition 2.5.1 shows:

Vect�C Vect ' �p
i=1Vect,

as right C-module categories.
We now turn our attention to the case D := VectβZ/pZ. As above, D is

the monoidal unit of the induced monoidal structure on Mod(D), whence
we only have to determine Vect�DVect. In order to use proposition 2.5.1,
we compute that 〈(1,−1)〉⊥ ⊆ Z/pZ ⊕ Z/pZ is precisely 〈(1,−1)〉. This
gives m = 1, and thus

Vect�D Vect 'M(0, triv) ' D.

This examples shows that the braiding we put on a fusion category can have
a big impact on the fusion rule of the associated fusion 2-category.

A. Two 2-Functors

A.1 The Adjoints Monoidal 2-Functor

Notation A.1.1. Let C be a (monoidal) 2-category. Given f : A → B a
1-morphism in C, we denote by {f}1op;2op : B → A the corresponding 1-
morphism in C1op;2op. We write ◦op for the composition of 1-morphisms in
C1op;2op. Given α : f ⇒ g a 2-morphism in C, we denote by {α}1op;2op :
{g}1op;2op ⇒ {f}1op;2op the corresponding 2-morphism in C1op;2op.
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Proof of lemma 1.1.4. This is well-known (for instance, see [11]), but let us
indicate briefly how to proceed. Thanks to the coherence theorem for 2-
categories, we can omit the coherence 2-isomorphisms for C. The 2-functor
(−)∗ is defined as follows:

It sends the obejct C of C to itself. Given a 1-morphism f , we set f ∗ :=
{f ′}1op;2op, where f ′ is a fixed right adjoint for f with unit ηf and counit εf .
Given a 2-morphism α : f ⇒ g, we define

α∗ := {(f ′ ◦ εg) · (f ′ ◦ α ◦ g′) · (ηf ◦ g′)}1op;2op.

Given two 1-morphisms f : A→ B, g : B → C, the structure 2-isomorphism
g∗◦opf ∗ ⇒ (g◦f)∗ in C1op;2op witnessing that (−)∗ respects the composition
of 1-morphisms is given by the 2-isomorphisms

{(f ′ ◦ g′ ◦ εg◦f ) · (f ′ ◦ ηg ◦ f ◦ (g ◦ f)′) · (ηf ◦ (f ◦ g)′)}1op;2op.

Similarly, the unitors are given by {η−1IdC}
1op;2op : Id∗C ⇒ IdC for every

object C of C. This data specifies the 2-functor (−)∗. The associativity of
composition follows from the triangle identities, and the unitality of compo-
sition is clear.

Further, if C also has left-adjoints, we can dually define a 2-functor ∗(−).
In particular, for any given 1-morphism f , we fix a left adjoint ′f with unit
ξf and counit κf . It is not hard to see that ∗(−) is a pseudo-inverse for
(−)∗ (see the footnote on page 3). For instance, a 2-natural equivalence
θ : (∗(−))∗ ⇒ Id is given by the identity 1-morphism on objects, and on a
1-morphism f by the 2-isomorphism (ε(′f) ◦ f) · ((′f)′ ◦ ξf ).

Lemma A.1.2. Let F : C→ D be a 2-functor. There is a 2-natural equiva-
lence e that fits into the following diagram:

C
F //

(−)∗
��

D

(−)∗
��

C1op;2op

e

4<

F 1op;2op
// D1op;2op.

Proof. As above, we omit the coherence 2-isomorphisms of C, and D. Given
an object C of C, we set eC := IdF (C). On the 1-morphism f : C → D, we
define ef as the following 2-isomorphism:
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{(ηF (f) ◦ F (f ′)) · (F (f)′ ◦ F−1f ′,f ) · (F (f)′ ◦ F (εf ))}1op;2op,

where Ff ′,f : F (f ′)◦F (f)⇒ F (f ′ ◦f) is the coherence 2-isomorphism
supplied by F . It is not hard to check that this defines a 2-natural equiva-
lence.

Proof of lemma 1.1.5. Thanks to the coherence theorem for monoidal 2-cate-
gories, there is an equivalence of monoidal 2-categories F : C → D such
that D is strict cubical. Below, we will endow the adjoint 2-functor (−)∗ of
D with a monoidal structure. Through the natural 2-equivalence of lemma
A.1.2, this shows that the adjoint 2-functor (−)∗ of C is equivalent as a 2-
functor to a monoidal one. Hence, it is monoidal itself.

In order to specify a monoidal structure on the 2-functor (−)∗ on D, we
need to give some data. To make this more digestible, we use the notations
of [15]. We begin by defining the 2-natural equivalence

χ : (−)∗�(−)∗ ⇒ ((−)�(−))∗.

Given two objects A, B we let χA,B := IdA�B. Given two 1-morphisms f :
A → B and g : C → D we let the 2-isomorphism χf,g : f ∗�g∗ ⇒ (f�g)∗

be given by

{
(
(f ′�g′) ◦ εf�g

)
·
(
φ−1(f ′,g′),(f,g) ◦ (f�g)′

)
·
(
(ηf�ηg) ◦ (f�g)′

)
}1op;2op.

It is not hard to see that χ is a 2-natural transformation. Further, it is
clearly an isomorphism; and we pick χ• to be its inverse.

We choose the 1-equivalence ι to be the identity 1-morphism on the
monoidal unit. The modifications ω, γ, δ are uniquely specified by the uni-
versal property of right adjoints. Namely, we let γC be the 2-isomorphism
{ηIdC}1op;2op in C and δC be the identity 2-morphism of {IdC}1op;2op, for ev-
ery object C of C. Further, for every A,B,C in C, the modification ωA,B,C
is given by the 2-isomorphism {εIdA�B�C

}1op;2op.
The commutativity of the coherence diagrams can be checked using the

uniqueness up to unique isomorphism of right adjoints. Similarly, one can
endow the 2-functor ∗(−) with a monoidal structure.
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T.D. DÉCOPPET WEAK FUSION 2-CATEGORIES

Finally, we need to construct monoidal 2-natural equivalences witness-
ing that (−)∗ and ∗(−) are pseudo-inverse monoidal 2-functors. We con-
struct the monoidal 2-natural equivalence (∗(−))∗ ⇒ Id, the other one can
be constructed analogously. Observe that using the argument at the begin-
ning of this proof, it is enough to construct this monoidal 2-natural equiva-
lence on D. As its underlying 2-natural equivalence we take the 2-natural
equivalence θ defined in the proof of lemma 1.1.4 above. Then, in the nota-
tion of [15], the 2-isomorphism M is given by the identity 2-morphism on
IdI , and the modification Π is specified on A,B in C by the 2-isomorphism
{ηIdA�B

}1op;2op.

A.2 The Duals 2-Functor

Notation A.2.1. Let C be a 2-category. Given f : A → B a 1-morphism in
C, we denote by {f}1op : B → A the corresponding 1-morphism in C1op.
We write ◦op for the composition of 1-morphisms in C1op. Given α : f ⇒ g a
2-morphism in C, we denote by {α}1op : {f}1op ⇒ {g}1op the corresponding
2-morphism in C1op.

Lemma A.2.2. Let C be a monoidal 2-category that has right duals. Then,
there is a 2-functor

(−)] : C→ C1op

that sends an object A in C to the object underlying a right dual for A.

Proof. We may assume that the monoidal 2-category C is strict cubical. For
every object A in C, choose a coherent right dual (A,A], iA, eA, CA, DA).
These choices allow us to define the following assignments towards defining
the 2-functor (−)]. An objectA in C is sent toA]. A 1-morphism f : A→ B
is sent to f ] := {f ′}1op, where

f ′ := (A]�eB) ◦ (A]�f�B]) ◦ (iA�B
]) : B] → A].

A 2-morphism α : f ⇒ g : A→ B is sent to α] := {α′}1op, where

α′ := (A]�eB) ◦ (A]�α�B]) ◦ (iA�B
]) : f ′ ⇒ g′.

Given two 1-morphisms f : A → B, g : B → C in C, then {−}1op of
the following 2-isomorphism in C:
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f ′ ◦ g′

(
A]�

(
eC ◦ (g�C])

))
◦
(
A]�

(
(eB�B) ◦ (A�iB)

)
�C]

)
◦
((

(A]�f) ◦ iA
)
�C]

)

(g ◦ f)′

φ

D−1
B

serves as the structure 2-isomorphism in C1op witnessing that (−)] re-
spects the composition of 1-morphisms. The unitor on A is provided by
{DA}1op. Using naturality of the interchangers, it is not hard to check the
coherence axioms, and so defines a 2-functor.
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Résumé. Une théorie de prétorsion pour la catégorie de toutes les catégories
est présentée. Les prénoyaux et préconoyaux associés sont calculés pour
chaque foncteur.
Abstract. A pretorsion theory for the category of all categories is presented.
The associated prekernels and precokernels are calculated for every functor.
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1. Introduction

In [3] it was shown that, in the category Preord of preordered sets, there is
a natural notion of pretorsion theory, in which the partially ordered sets are
the torsion-free objects and the sets endowed with an equivalence relation
are the torsion objects. The notion of pretorsion theory given in [3] general-
izes the notion of torsion theories for pointed categories given in [4].

In this paper we give what can be seen as an extension of the pretorsion
theory for preordered sets to categories. A torsion-free object is now a cate-
gory whose image by the well known reflection Cat→ Preord (cf. [6]) is a
partially ordered set. A torsion object is in turn the category whose image by
the same functor is an equivalence relation. They are called below respec-
tively the antisymmetric and the symmetric categories (see the beginning of

       VOLUME LXIII-1
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Section 3).

In this way, the trivial objects which were sets for Preord are now the
collections of monoids for the category of all categories Cat.

To assert that in fact this is a pretorsion theory, it was necessary to char-
acterize prekernels and precokernels (corresponding to kernels and cokernels
in torsion theories). The crucial result in this paper being the construction of
precokernels in Cat (see Proposition 4.2).

2. Pretorsion theory for a general category

Consider two full replete1 subcategories T and F of C. They are called
respectively the torsion and the torsion-free subcategories.

Set Z = T
⋂
F , the full subcategory of C determined by the objects

which are both in T and in F . These objects are called trivial.
Let TrivZ(X, Y ) be the set of all morphisms X → Y in C that factor

through an object of Z . Such morphisms will be called Z-trivial (or simply
trivial, if there is no doubt about the subcategories considered). Notice that
these trivial morphisms form an ideal of morphisms in the sense of [1].

The following definitions, proposition and example are to be considered
in the context of the data just presented.

Definition 2.1. A morphism k : X → A is a Z-prekernel (or simply, preker-
nel) of a morphism f : A→ A′ if the following two conditions are satisfied:

1. the composite f ◦ k is a trivial morphism;

2. whenever λ : Y → A is a morphism in C and f ◦λ is trivial, then there
exists a unique morphism λ′ : Y → X in C such that λ = k ◦ λ′.

Dually, one obtains the notion of (Z-)precokernel.

1I.e., whose objects are closed under isomorphisms.
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Proposition 2.2. Suppose that Z-prekernels and Z-precokernels exist in C.
Then, given any morphism f in C,

preker(precoker(prekerf)) ∼= prekerf

and

precoker(preker(precokerf)) ∼= precokerf,

where prekerf stands for the Z-prekernel of f , and precokerf stands for
the Z-precokernel of f .

Proof. This result is a consequence of the obvious Galois connections asso-
ciated to each object in C (cf. [5, §VIII.1], for the classic and similar case of
kernel and cokernel).

Definition 2.3. It is said that

A B C,- -
f g

is a short Z-preexact sequence (or simply, short preexact sequence) in C if
f is a (Z-)prekernel of g and g is a (Z-)precokernel of f .

Remark 2.4. The Proposition 2.2 gives canonical ways of constructing short
Z-preexact sequences, in a category with Z-prekernels and Z-precokernels
(cf. [5, §VIII.1], for the classic and similar case of kernel and cokernel).

Definition 2.5. The pair (T ,F) is a pretorsion theory provided the following
two conditions are satisfied:

1. HomC(T, F ) = TrivZ(T, F ), for every object T ∈ T and every ob-
ject F ∈ F;

2. for any object B of C, there is a short Z-preexact sequence

A B C,- -
f g

with A ∈ T and C ∈ F .
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Remark 2.6. The short Z-preexact sequence, given in condition (2) in Def-
inition 2.5 just above, is uniquely determined up to isomorphism (cf. Propo-
sition 3.1 in [2]).

Example 2.7. The pair (Equiv,Ord) is a pretorsion theory for the cate-
gory Preord, whose objects are the reflexive and transitive relations, and
the morphisms are the monotone maps. Equiv denotes the subcategory
of equivalence relations, and Ord the subcategory of partial orders, so that
Equiv

⋂
Ord = Set is the category of sets. Check [3] for details.

3. Symmetric and antisymmetric categories

Cat is the category whose objects are the small categories, and whose mor-
phisms are the functors.

CatEquiv will denote the full subcategory of Cat determined by the
symmetric categories T, meaning that for any T, T ′ ∈ T, if HomT(T, T ′) 6=
∅ then HomT(T ′, T ) 6= ∅.

CatOrd will denote the full subcategory of Cat determined by the an-
tisymmetric categories F: for any F, F ′ ∈ F, if HomF(F, F ′) 6= ∅ and
HomF(F ′, F ) 6= ∅, then F = F ′.

Therefore, CatMon = CatEquiv
⋂
CatOrd is the full (and replete)

subcategory of Cat whose objects are classes of monoids.
The trivial functors in TrivCatMon(A,B) (see the beginning of section

2), are going to be characterized in the following Lemma 3.1.

Lemma 3.1. The functor F : A → B is trivial if and only if, for every
A,A′ ∈ A, if HomA(A,A′) 6= ∅ then F (A) = F (A′).

Proof. If F : A → B is trivial, by definition F factors through some C ∈
CatMon:

A C B.- -
G H

.

Then, as C does not have morphisms between distinct objects, it follows
trivially that if there exists a morphism f : A→ A′ then G(A) = G(A′) and
F (A) = H(G(A)) = H(G(A′)) = F (A′).

Conversely, supposing that

∀A,A′∈AHomA(A,A′) 6= ∅ ⇒ F (A) = F (A′),
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it is obvious that
F = H ◦G :A C B,- -

G H
.

with obj(C) = obj(B) (C and B have the same objects) and

HomC(B,B′) =


HomB(B,B′) if B = B′

∅ otherwise,

H being the inclusion functor, and G the restriction of the functor F to the
codomain C. Finally, notice that C ∈ CatMon.

The following Proposition 3.2 asserts condition (1) in Definition 2.5. No-
tice that, in order to show that (CatEquiv, CatOrd) is a pretorsion theory
for Cat, it only remains to check condition (2) in Definition 2.5.

Proposition 3.2.

HomCat(T,F) = TrivCatMon(T,F),

for every T ∈ CatEquiv and every F ∈ CatOrd.

Proof. The proof follows immediately from the respective definitions of
symmetrical and antisymmetrical categories T and F, and from Lemma 3.1.

4. CatMon-Prekernels and CatMon-Precokernels

Proposition 4.1. Let F : A→ A′ be any functor in Cat.
Then, the functor K : X→ A is a prekernel of F , where

obj(X) = obj(A) (X and A have the same objects),

HomX(A,A′) =


HomA(A,A′) if F (A) = F (A′)

∅ otherwise (F (A) 6= F (A′))

for every A,A′ ∈ A,
and K is the inclusion functor.

Proof. First, one has to establish that X is a category:
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• 1A ∈ HomA(A,A) = HomX(A,A), hence the identity of each object
in A is also in X;

• consider in X the composable morphisms A A′ A′′,- -
f g

then, necessarily, by the definition of X,

F (A) = F (A′) = F (A′′)⇒ F (A) = F (A′′)

⇒ g ◦ f ∈ HomA(A,A′′) = HomX(A,A′′),

hence the composition of any two morphisms of X is also in X.

Secondly, one has to show that F ◦ K is a trivial functor (cf. Lemma
3.1): consider in X a morphism f : A → A′ with A 6= A′; one wants
to show that F ◦ K(A) = F ◦ K(A′); being K the inclusion functor,
F ◦ K(f) = F (f) : F (A) → F (A′), and F (A) = F (A′) by the con-
struction of X, that is F ◦K(A) = F ◦K(A′).

Thirdly and finally, one has to check the universal property given in Def-
inition 2.1: suppose Λ : Y → A is a functor such that F ◦ Λ is trivial; since
K is the inclusion functor, one has to show that Λ(Y) ⊆ K(X); suppose
by “reductio ad absurdum” that there is in Y a morphism g : Y → Y ′ such
that Λ(g) : Λ(Y ) → Λ(Y ′) is not in K(X); then, by the construction of X,
F (Λ(Y )) 6= F (Λ(Y ′)), which contradicts the assumption that F ◦Λ is trivial
(cf. Lemma 3.1).

In the following Proposition 4.2, a construction of a precokernel of any
functor is given.

Proposition 4.2. Let F : A→ A′ be a functor in Cat.
Consider the well-known adjunction (G,U, η) : Graph → Cat, where

G is the left-adjoint of the forgetful functor U from Cat into the category of
graphs, and η : 1Graph → UG is the unit of the adjunction (see [5, II.7]).

Let ζF be the equivalence relation on the set of objects of A′, obj(A′),
generated by {(F (A1), F (A2))|HomA(A1, A2) 6= ∅;A1, A2 ∈ A}.

Consider the graph morphism (1mor(A′), πζF ) : UA′ → P from the under-
lying graph of A′ into the graph P = (mor(A′), obj(A′)/ζF ), where 1mor(A′)

is the identity on the arrows and πζF is the canonical projection of the set of
nodes obj(A′) into its equivalence classes.
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Consider the unit morphism of P, ηP : P → UGP, in the adjunction
G a U .

Consider finally the canonical functor Π : GP → GP/ ≡, where ≡
stands for the least congruence (in the sense of [5, II.8]) onGP which makes
the graph morphism

Uπ = UΠ ◦ ηP ◦ (1mor(A′), πζF ) : UA′ → U(GP/ ≡)

a functor from A′ into GP/ ≡.

Then, π : A′ → GP/ ≡ is a precokernel of F : A→ A′.

Proof. Let F ′ : A′ → B be a functor such that the composite F ′ ◦ F is triv-
ial. One has to show that there is one and only one functor H ′ : GP/ ≡→ B
such that H ′ ◦ π = F ′.

Since F ′ ◦ F is trivial, there is one and only one morphism of graphs ϕ
such that ϕ ◦ (1mor(A′), πζF ) = UF ′ : UA′ → UB. In fact, define ϕ(g :
[A′

1] → [A′
2]) = F ′g : F ′(A′

1) → F ′(A′
2). It is well defined since, for

instance, if A′
0 ∈ [A′

1] then there exists a sequence of morphisms (“zigzag”)
A0 → · · · ← An such that F (A0) = A′

0 and F (An) = A′
1, which implies

that F ′(A′
0) = F ′(A′

1) because F ′ ◦ F is trivial (cf. Lemma 3.1).
There is also only one functor H : G(P) → B such that ϕ = UH ◦ ηP :

P → UB, being ηP the unit morphism of the adjunction U ` G : Graph →
Cat (cf. Theorem 1 in [5, II.7]).

There is also a unique functor H ′ from the quotient category GP/ ≡ into
B such that H ′ ◦ Π = H; in order to prove so, one has to show that (cf.
[5, II.8]) H identifies ηP ◦ (1mor(A′), πζF )(1A′) =< 1A′ > and 1[A′], for every
A′ ∈ A′, and thatH identifies ηP((1mor(A′), πζF )(g))◦ηP((1mor(A′), πζF )(f)) =
ηP(g) ◦ ηP(f) =< f, g > with ηP((1mor(A′), πζF )(g ◦ f)) = ηP(g ◦ f) =<
g ◦ f >, for every pair (g : A′

2 → A′
3, f : A′

1 → A′
2) of composable mor-

phisms in A′; this is obvious since UH ◦ ηP ◦ (1mor(A′), πζF ) = UF ′ and F ′

is a functor.

It was proved just above that there is a functorH ′ such thatH ′◦π = F ′. It
remains to check that such functor is the unique which satisfies H ′ ◦π = F ′.
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Suppose that S ′ is a functor such that S ′ ◦ π = F ′, then there is a functor
S such that S = S ′ ◦ Π, and then there is a graph morphism σ such that
US ◦ ηP = σ, with σ ◦ (1mor(A′), πζF ) = UF ′, which implies that σ = ϕ as
defined above, and so H ′ = S ′ going backwards.

5. Short CatMon-preexact sequences

Let A′ be any category, and let A be a category with the same objects,
obj(A) = obj(A′), and such that, for any objectsA,B ∈ A′, ifHomA(A,B) 6=
∅ then HomA′(A,B) 6= ∅ and HomA′(B,A) 6= ∅ and HomA(A,B) =
HomA′(A,B) and HomA(B,A) 6= ∅.

Let F : A→ A′ be the inclusion functor of A in A′, and π : A′ → GP/ ≡
the precokernel of F constructed as in Proposition 4.2.

It is an immediate consequence of the characterization ofCatMon-prekernel
in Proposition 4.1 that F is the prekernel of π, so that we have constructed a
short preexact sequence

A A′ GP/ ≡- -
F π

for each A′ ∈ Cat, with A ∈ CatEquiv.

Suppose that, one requires the category A just defined to satisfy in ad-
dition: for every A,B ∈ A′, if HomA′(A,B) 6= ∅ and HomA′(B,A) 6= ∅
then HomA(A,B) 6= ∅. Then, since obj(GP/ ≡) = obj(A′)/ζF and by
the nature of ηP and Π (cf. Proposition 4.2 and [5, II.7,8]), it is clear that
GP/ ≡ ∈ CatOrd.

It was proved that, for every category A′ ∈ Cat, there is a shortCatMon-
preexact sequence

A→ A′ → A′′

with A ∈ CatEquiv and A′′ ∈ CatOrd.
Hence, the following Theorem can be stated.
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Theorem 5.1. The pair (CatEquiv, CatOrd) is a pretorsion theory for the
category of all categories Cat.
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Résumé. Les variétés lisses ont toujours été intuitivement perçues comme
étant des espaces munis d’une géométrie affine à l’échelle infinitésimale.
Nous précisons cette notion en Géométrie Différentielle Synthétique en mon-
trant que chaque variété est naturellement munie d’une structure d’espace
infinitésimal affine, que nous interprétons comme l’action du clone des com-
binaisons affines sur une structure infinitésimale du premier ordre construite
à partir du premier voisinage de la diagonale. Nous définissons une structure
infinitésimale du second ordre basée sur le second voisinage de la diagonale
et montrons que sur toute variété une connexion affine symétrique s’étend
en une structure infinitésimale affine du second ordre en utilisant la bijection
log-exp induite par la connexion.

Abstract. Smooth manifolds have been always understood intuitively as
spaces with an affine geometry on the infinitesimal scale. We make this no-
tion precise within Synthetic Differential Geometry by showing that every
manifold carries a natural structure of an infinitesimally affine space, which
we interpret as the action of the clone of affine combinations on a first-order
infinitesimal structure constructed from the first neighbourhood of the diag-
onal. We define a second-order infinitesimal structure based on the second
neighbourhood of the diagonal and show that on any manifold a symmetric

       VOLUME LXIII-1
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affine connection extends to a second-order infinitesimally affine structure
using the log-exp bijection induced by the connection.

Keywords. Infinitesimally affine space, higher-order infinitesimal structure,
affine connection, Synthetic Differential Geometry.
Mathematics Subject Classification (2010). 51K10, 03C30, 53B05

1. Introduction

A deeply rooted intuition about smooth manifolds is that of spaces that be-
come linear spaces in the infinitesimal neighbourhood of each point. On the
infinitesimal scale the geometry underlying a manifold is thus affine geom-
etry. To make this intuition precise requires a good theory of infinitesimals
as well as defining precisely what it means for two points on a manifold to
be infinitesimally close. As regards infinitesimals we make use of Synthetic
Differential Geometry (SDG) and adopt the neighbourhoods of the diago-
nal from Algebraic Geometry to define when two points are infinitesimally
close. The key observations on how to proceed have been made by Kock in
[5]: 1) The first neighbourhood of the diagonal exists on formal manifolds
and can be understood as a symmetric, reflexive relation on points, saying
when two points are infinitesimal neighbours, and 2) we can form affine
combinations of points that are mutual neighbours.

It remains to make precise in which sense a manifold becomes a model of
the theory of affine spaces. This has been done in [1]. Firstly, one abstracts
from Kock’s infinitesimal simplices of mutual infinitesimally neighbouring
points to what is called an infinitesimal structure. (See also section 2 for a
definition.) An infinitesimal structure serves then as the domain of definition
for the operations of affine combinations. A space together with an infinites-
imal structure (i-structure) and an action of the clone of affine operations on
that infinitesimal structure is called an infinitesimally affine space (i-affine
space).

Formal manifolds and affine schemes (considered as either duals of com-
mutative rings, or C∞-rings) are examples of i-affine spaces. The i-structures
are generated by the first neighbourhood of the diagonal. In this paper we
shall construct an i-structure from the second-order neighbourhood of the di-
agonal on Rn for a ring R satisfying the Kock-Lawvere axioms for second-
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order infinitesimals. The definition of this i-structure is guided by the re-
quirement that it is preserved by all maps f : Rn → Rm (hence can be
defined on formal manifolds as well) and that the affine structure of Rn re-
stricts to an i-affine space on the second-order i-structure. Both of these hold
true for the i-structure generated by the first neighbourhood of the diagonal.
In contrast to the first neighbourhood of the diagonal the i-affine structure
on the second-order neighbourhood is not preserved by all maps anymore.
Therefore, whereas a manifold carries a second-order i-structure, an i-affine
structure has to be imposed as an additional piece of data.

We show that any second-order i-affine structure on a manifold induces
a symmetric affine connection, and, conversely, any symmetric affine con-
nection extends to a second-order i-affine structure in such a way that the
latter is of the same affine-algebraic form as the canonical connection on an
affine space. The second-order i-affine structure is constructed by using the
second-order log-exp bijection induced by the connection as introduced by
Kock in [5, chap. 8.2]. With the help of the log-exp bijection the infinites-
imally linear (i-linear) structure on the tangent space can be transported to
the formal manifold. For affine combinations this is independent of the cho-
sen base point and thus defines an i-affine structure on the second-order
i-structure. The log-exp bijection yields also a natural geometric interpre-
tation of an affine combination as the geometric addition of geodesic line
segments extending the familiar vector parallelogram construction from the
affine plane to curved space.

2. Infinitesimally affine and linear spaces

We shall work mostly within naive axiomatic SDG, as it is done in [5], for
example. Let A be a space. An i-structure on A amounts to give an n-ary
relationA〈n〉 for each n ∈ N that defines which n points inA are considered
as being ‘infinitesimally close’ to each other.

Definition 2.1 (i-structure). Let A be a space. An i-structure on A is an
N-indexed family n 7→ A〈n〉 ⊆ An such that

(1) A〈1〉 = A, A〈0〉 = A0 = 1 (the ‘one point’ space, or terminal object)

(2) For every map h : m → n of finite sets and every (P1, . . . , Pn) ∈ A〈n〉
we have (Ph(1), . . . , Ph(m)) ∈ A〈m〉
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The first condition is a normalisation condition. The second condition
makes sure that the relations are compatible: if we have a family of points
that are infinitesimally close to each other, then so is any subfamily of these
points, or any family created from repetitions. In particular, we obtain that
the A〈n〉 are symmetric and reflexive relations. An n-tuple (P1, . . . , Pn) ∈
An that lies in A〈n〉 will be denoted by 〈P1, . . . , Pn〉 and we shall refer to
these as i-n-tuples. A map f : A→ X that maps i-n-tuples to i-n-tuples for
each n ∈ N, i.e. fn(A〈n〉) ⊆ X〈n〉, is called an i-morphism.

Two trivial examples of i-structures on A are the discrete and the indis-
crete i-structure obtained by taking A〈n〉 to be the diagonal ∆n, respectively
the whole An. The i-structures that are of main interest in SDG are the
i-structures generated by the first neighbourhood of the diagonal (as rela-
tions). We call them nil-square i-structures. For example, let R be a ring1.
Recall that

D(n) = {(d1, . . . , dn) ∈ Rn | didj = 0, 1 ≤ i, j ≤ n}

On Rn the first neighbourhood of the diagonal is given by

{(P1, P2) | P2 − P1 ∈ D(n)}

This is a symmetric and reflexive relation and we can construct an i-structure
from it: take the first neighbourhood of the diagonal as Rn〈2〉 and define the
nil-square i-structure on Rn by

Rn〈m〉 = {(P1, . . . , Pm) | (Pi, Pj) ∈ Rn〈2〉, 1 ≤ i, j ≤ m}

This i-structure is thus generated by Rn〈2〉. Not all i-structures A〈−〉 of
interest need to be generated by A〈2〉. The second-order i-structure defined
in section 3 is not, for example.

If the ring R satisfies the Kock-Lawvere axiom, that is for every n ∈ N
and every map t : D(n)→ R there are unique a0, . . . , an ∈ R such that

t(d1, . . . , dn) = a0 +
n∑

j=1

ajdj, (d1, . . . , dn) ∈ D(n),

1All rings are assumed to be commutative.
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then every map f : Rn → Rm is an i-morphism of the nil-square i-structures.
This is due to the following two facts: linear maps Rn → Rm map D(n) to
D(m), and for P2 − P1 ∈ D(n)

f(P2)− f(P1) = ∂f(P1)[P2 − P1] (1)

where ∂f(P1) denotes the derivative of f at P1. The stated property of linear
maps can be checked by direct computation; the existence and uniqueness of
the linear map ∂f(P1) are both a consequence of the Kock-Lawvere axiom.

The nil-square i-structure induces i-structures on subspaces U ↪→ Rn by
restriction. For formally open subspaces U ↪→ Rn, which are stable under
infinitesimal perturbations at each point (see [4, I.17] or [1, def. 3.2.5] for a
definition), each map f : U → Rm has a derivative; hence every map f :
U → V between formally open subspaces is an i-morphism. Furthermore,
it is possible to glue the i-structures on formally open subspaces together to
get an i-structure on a formal manifold and show that every map between
formal manifolds is an i-morphism. (See [4, prop. I.17.5] and [1, thm. 3.2.8]
for proofs.)

Definition 2.2 (i-affine space). LetA〈−〉 be an i-structure onA. SetA(n) =
{(λ1, ..., λn) ∈ Rn |

∑n
j=1 λj = 1}. The space A is said to be an i-affine

space (over R), if for every n ∈ N there are operations

A(n)× A〈n〉 → A, ((λ1, . . . , λn), 〈P1, . . . , Pn〉) 7→
n∑

j=1

λjPj

satisfying the axioms

• (Neighbourhood) Let λk ∈ A(n), 1 ≤ k ≤ m. If 〈P1, . . . , Pn〉 ∈ A〈n〉
then ( n∑

j=1

λ1jPj, . . . ,
n∑

j=1

λmj Pj

)
∈ A〈m〉

• (Associativity) Let λk ∈ A(n), 1 ≤ k ≤ m, µ ∈ A(m) and
〈P1, . . . , Pn〉 ∈ A〈n〉. We have

m∑
k=1

µk

( n∑
j=1

λkjPj

)
=

n∑
j=1

( m∑
k=1

µkλ
k
j

)
Pj
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(Note that the left-hand side is well-defined due to the neighbourhood
axiom.)

• (Projection) Let n ≥ 1 and let enk ∈ Rn denote the kth standard basis
vector for 1 ≤ k ≤ n. For every 〈P1, . . . , Pn〉 ∈ A〈n〉 it holds

n∑
j=1

(enk)jPj = Pk

In particular, we have for n = 1 that 1P = P , P ∈ A.

The neighbourhood axiom makes sure that we can compose affine com-
binations as we are used to, provided we are working over a fixed i-tuple.
The associativity and projection axioms make sure the algebra of affine com-
binations follows the same rules as in all the Rn. A consequence of the
neighbourhood axiom is that every i-tuple generates an affine space over R.
This makes precise the statement that the geometry of the space A is affine
on the infinitesimal scale.

It is not difficult to show by direct calculation that the affine space Rn

satisfies the neighbourhood axiom for the nil-square i-structure making it an
i-affine space2. Moreover, due to (1) it follows that every map f : Rn → Rm

preserves not only the nil-square i-structure but the i-affine combinations as
well. Each map f is an i-affine map.

The nil-square structure of Rn restricts to its formally open subspaces.
Due to (1) all maps between formally open subspaces become i-affine maps
for these i-structures. Like with the i-structures also the i-affine structures on
formally open subspaces can be glued together to an i-affine structure on a
formal manifold. All maps between formal manifolds become i-affine maps
for these i-affine structures [1, thm. 3.2.8]. Any manifold in the sense of
classical differential geometry is a formal manifold3, so any manifold is an
i-affine space and any smooth map between manifolds is i-affine.

2This is also a consequence of the more general [1, cor. 3.1.6 and 2.3.3].
3This is to be understood in the context of well-adapted models of SDG [3], where we

have a fully faithful embedding of the category of smooth manifolds into a Grothendieck
topos that admits a model of the Kock-Lawvere axioms. This embedding maps the real line
R to R, analytical derivatives to derivatives in SDG and it maps open covers to covers by
formally open spaces [3], [4, III.3].
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Affine schemes (considered as either duals of commutative rings, or C∞-
rings) become examples of i-affine spaces over their respective nil-square
i-structure [1, cor. 2.3.3 and 3.1.6]. Every morphism of affine schemes be-
comes an i-morphism. Affine C∞-schemes, for example, form a category of
spaces generalising smooth manifolds. Besides manifolds the category fully
faithfully embeds locally closed subsets of Euclidean space with smooth
maps between them [7, prop. 1.5]. This provides us with a wealth of ex-
amples of i-affine spaces. Furthermore, i-affine spaces are surprisingly well-
behaved under taking colimits of the underlying spaces [1, chap. 2.6], [2].
This and their algebraic nature makes them a suitable type of space to study
geometric notions based on infinitesimals.

Besides i-affine spaces we shall also consider i-linear spaces. The defi-
nition is almost identical to that of i-affine spaces; the main difference being
that an i-linear space has a constant, the zero vector 0.

Definition 2.3 (i-linear space). Let V 〈−〉 be an i-structure on V . Set L(n) =
Rn, n ∈ N. The space V is said to be an i-linear space (over R), if for every
n ∈ N there are operations

L(n)× V 〈n〉 → V, ((λ1, . . . , λn), 〈v1, . . . , vn〉) 7→
n∑

j=1

λjvj

where we denote the constant L(0)×V 〈0〉 ∼= 1→ V by 0. These operations
satisfy the axioms

• (Neighbourhood) Let λk ∈ L(n), 1 ≤ k ≤ m. If 〈v1, . . . , vn〉 ∈ V 〈n〉
then ( n∑

j=1

λ1jvj, . . . ,
n∑

j=1

λmj vj
)
∈ V 〈m〉

• (Associativity) Let λk ∈ L(n), 1 ≤ k ≤ m, µ ∈ L(m) and
〈v1, . . . , vn〉 ∈ V 〈n〉. We have

m∑
k=1

µk

( n∑
j=1

λkjvj
)

=
n∑

j=1

( m∑
k=1

µkλ
k
j

)
vj

and for 0 ∈ L(n) and 0 ∈ V
n∑

j=1

0 vj = 0
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• (Projection) Let n ≥ 1 and let enk ∈ Rn denote the kth standard basis
vector for 1 ≤ k ≤ n. For every 〈v1, . . . , vn〉 ∈ A〈n〉 it holds

n∑
j=1

(enk)jvj = vk

In particular, we have for n = 1 that 1v = v, v ∈ V .

The existence of the constant 0 ∈ V implies that for any 〈v1, . . . , vn〉 ∈
V 〈n〉 we have 〈0, v1, . . . , vn〉 ∈ V 〈n+ 1〉. This follows from combining the
associativity axiom

n∑
j=1

0 vj = 0

with the projection and neighbourhood axioms. In particular, 0 has to be in-
finitesimally close to any other vector v ∈ V , which has a major implication
on the size of V .

An example of an i-linear space is D(n) ⊂ Rn with the restriction (=
pullback) of the nil-square i-structure and theR-linear structure onRn. More
generally, for any KL vector space V the space

D(V ) = {v ∈ V | φ[v]2 = 0 for any bilinear map φ : V 2 → R}

becomes an i-linear space with the i-structure andR-linear structure induced
by V . Writing φ[v]` for an `-linear map φ means that we evaluate φ on the
`-tuple (v, . . . , v). Indeed, recall that an R-vector space V is called KL if it
satisfies the Kock-Lawvere axiom 4 for all maps t : D(n) → V and n ∈ N.
For the case of V = Rn we have D(V ) = D(n) [5, prop. 1.2.2] and, like
Rn, each KL vector space V carries a nil-square i-structure generated by

{(v1, v2) | v2 − v1 ∈ D(V )}

A KL vector space is called finite-dimensional if V ∼= Rn for some n ∈ N.
It follows from (1) that any map f : V → W between finite-dimensional
KL vector spaces satisfying f(0) = 0 is an i-morphism preserving the linear
combinations and thus restricts to an i-linear map D(V )→ D(W ).

4As with R, a KL vector space maybe required to satisfy more axioms from the Kock-
Lawvere axiom scheme based on the context. See [5, chap. 1.3], for example.
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An important class of examples of i-linear spaces is given by the subse-
quent general construction. For an i-affine space A and P ∈ A we define the
monad around P

M(P ) = {Q ∈ A | 〈P,Q〉 ∈ A〈2〉}

as the set of points infinitesimally close to P . It carries a natural i-structure

M(P )〈n〉 = {(Q1, . . . , Qn〉) ∈M(P )n | 〈P,Q1, . . . , Qn〉 ∈ A〈n+ 1〉}

Using the i-affine structure of A we can define a natural action of L(n) for
each n ∈ N

L(n)×M(P )〈n〉 →M(P ),

((λ1, . . . , λn), 〈Q1, . . . , Qn〉) 7→
(
1−

n∑
j=1

λj
)
P +

n∑
j=1

λjQj

making M(P ) into an i-linear space with P the zero vector. Any i-affine
map f induces an i-linear map

f : M(P )→M(f(P ))

This is just the familiar construction of a vector space from an affine space
for a given base point P re-phrased in infinitesimal algebra. Indeed, in
the case of A being an affine space with the indiscrete i-structure we have
M(P ) = A, i-affine maps are precisely the affine maps and the base-point
dependency of this construction disappears. We shall denote the action of
λ ∈ L(n) on 〈Q1, . . . , Qn〉 ∈M(P )〈n〉 by

P +
n∑

j=1

λj(Qj − P )

As D(V ) = M(0) for a KL vector space V equipped with the nil-square
i-structure the monad construction subsumes the first class of examples.
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3. Second-order infinitesimal structures

The important examples of i-structures so far have all been the nil-square
i-structures, which are constructed from the first neighbourhood of the diag-
onal. In this section we wish to define an i-structureA2 = A2〈−〉 onA = Rn

such that A2〈2〉 is the second neighbourhood of the diagonal

{(P1, P2) | P2 − P1 ∈ D2(n)}

where D2(n) is the space of second-order infinitesimals

D2(n) = {(d1, . . . , dn) ∈ Rn | any product of three dj vanishes}

The i-structure A2〈−〉 shall satisfy

1) All maps f : Rn → Rm become i-morphisms for the respective second-
order i-structures on Rn and Rm

2) The affine space A = Rn becomes an i-affine space over A2〈−〉.

To be able to study 1) we assume henceforth that R is a Q-algebra that sat-
isfies the Kock-Lawvere axiom for D2(n) with n ≥ 1.5 This amounts to
say that each map t : D2(n) → R is a polynomial function for a uniquely
determined polynomial in R[X1, . . . , Xn] of total degree ≤ 2, i.e.

t(d1, . . . , dn) = a0 +
n∑

j=1

ajdj +
∑

1≤j≤k≤n

ajkdjdk

for uniquely determined aj ∈ R and ajk ∈ R. An important consequence is
that every map f : A→ Rm has a Taylor representation

f(P )− f(Q) = ∂f(Q)[P −Q] +
1

2
∂2f(Q)[P −Q]2

for P − Q ∈ D2(n). Here ∂2f(Q) stands for the second derivative of f at
Q, which is a symmetric bilinear map (Rn)2 → Rm. The following charac-
terisation of D2(n) in [5, prop. 1.2.2] will be useful

D2(n) = {d ∈ Rn | φ[d]3 = 0 for all trilinear φ : (Rn)3 → R}
5This requirement is not an overly restrictive one. For example, in a well-adapted model,

where R is taken to be the embedding of the smooth manifold R, the R-algebra R satisfies
the whole Kock-Lawvere axiom scheme [3, thm. 4.5], [7, prop. V.7.2].
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It allows us to define D2(V ) for any R-linear space V . Let V ∼= Rn be a
finite-dimensional KL vector space6. We define DN2(V ) to be the space

DN2(V ) = {(v1, v2, v3) ∈ D2(V )3 |
For any trilinear map φ : V 3 → R, φ[v1, v2, v3] = 0}

In the subsequent definition and discussion we will use A = V to mean the
(affine) space induced by the R-linear space V .

Definition 3.1 (Second-order i-structure on Rn). Let A = V ∼= Rn be a
finite-dimensional KL vector space. We define the second-order i-structure
A2 on A by

(1) A2〈1〉 = A, A2〈0〉 = A0 = 1

(2) For m ≥ 2

A2〈m〉 = {(P1, . . . , Pm) ∈ Am |
(Pi1 − Pj1 , Pi2 − Pj2 , Pi3 − Pj3) ∈ DN2(V ),

for all i`, j` ∈ {1, . . . ,m}, 1 ≤ ` ≤ 3}

From the definition it follows readily that A2 is indeed an i-structure and
that

A2〈2〉 = {(P1, P2) ∈ A2 | P2 − P1 ∈ D2(n)}

is the second neighbourhood of the diagonal, as desired.
The following two results show that the second-order i-structure A2 is

natural and makes any finite-dimensional KL vector space V into an i-affine
space.

Theorem 3.2. Every map f : V → W between two finite-dimensional KL
vector spaces is an i-morphism for the respective second-order i-structures.

Proof. Let 〈P1, . . . , Pn〉 ∈ V2〈n〉 for an index n ≥ 2. We have to show

〈f(P1), . . . , f(Pn)〉 ∈ W2〈n〉
6Note that V is also assumed to satisfy the respective V -valued Kock-Lawvere axiom

for all D2(n).
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By definition this amounts to show

φ[f(Pi1)− f(Pj1), f(Pi2)− f(Pj2), f(Pi3)− f(Pj3)] = 0

for all i`, j` ∈ {1, . . . , n}, 1 ≤ ` ≤ 3 and any trilinear form φ on W . Since
each Pi` − Pj` ∈ D2(V ) we can apply Taylor expansion

f(Pi`)− f(Pj`) = ∂f(Pj`)[Pi` − Pj` ] +
1

2
∂2f(Pj`)[Pi` − Pj` ]

2

Substituting each f(Pi`) − f(Pj`) with its respective Taylor expansion in φ
and applying multilinearity to expand the three sums yields a sum of mul-
tilinear forms on V of the order 3 or higher with arguments being com-
binations of Pi` − Pj` for i`, j` ∈ {1, . . . , n}, 1 ≤ ` ≤ 3. Because of
〈P1, . . . , Pn〉 ∈ A2〈n〉 each such multilinear form evaluates to 0, hence does
the sum. This shows that

φ[f(Pi1)− f(Pj1), f(Pi2)− f(Pj2), f(Pi3)− f(Pj3)] = 0

as required. We conclude that f is an i-morphism as claimed.

Theorem 3.3. The affine structure on the KL vector space A = V restricts
to the second-order i-structure A2, making A2 an i-affine subspace of the
affine space A (equipped with the indiscrete i-structure).

Proof. To show A2 an i-affine subspace of A it suffices to show that the
affine operations on A satisfy the neighbourhood axiom for A2.

Let λi ∈ A(n) for 1 ≤ i ≤ m and 〈P1, . . . , Pn〉 ∈ A2〈n〉. We have to
show 〈 n∑

j=1

λ1jPj, . . . ,

n∑
j=1

λmj Pj

〉
∈ A2〈m〉

Let φ be a trilinear form on V and i`, j` ∈ {1, . . . ,m} for all 1 ≤ ` ≤ 3.
Using

∑n
j=1 λ

i
j = 1 for all 1 ≤ i ≤ m yields

φ
[ n∑
i=1

λi1i Pi −
n∑

j=1

λj1j Pj,

n∑
i=1

λi2i Pi −
n∑

j=1

λj2j Pj,

n∑
i=1

λi3i Pi −
n∑

j=1

λj3j Pj

]
= φ

[ n∑
i,j=1

λi1i λ
j1
j (Pi − Pj),

n∑
i,j=1

λi2i λ
j2
j (Pi − Pj),

n∑
i,j=1

λi3i λ
j3
j (Pi − Pj)

]
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Applying the trilinearity of φ yields a sum of trilinear forms with arguments
being combinations of Pi` −Pj` for i`, j` ∈ {1, . . . , n}, 1 ≤ ` ≤ 3, which all
evaluate to zero by assumption. We conclude

〈 n∑
j=1

λ1jPj, . . . ,
n∑

j=1

λmj Pj

〉
∈ A2〈m〉

as required.

The definitions of the second-order i-structure A2 together with theo-
rems 3.2 and 3.3 can be generalised to a formally open subspace A of Rn

directly. This allows us to glue together the second-order i-structures to a
second-order i-structure on a formal manifold and all maps between formal
manifolds will preserve that structure.

Theorem 3.4. Let A be a formal manifold.

(i) A carries a unique i-structure A2 with the universal property that any
map f : A→M is an i-morphism, if and only if it is an i-morphism on
the charts of A.

(ii) All maps between formal manifolds become i-morphisms for the re-
spective second-order i-structures.

Proof. (i) (Essentially, this part is theorem 2.6.19 in [1] applied to the i-
structure only. See also [2].) We consider a chart ι : U ↪→ A of A, i.e.
a formally open subspace of A that is also a formally open subspace of
Rn. Pulling back the second-order i-structure on Rn yields a second-
order i-structure U2. For each n ≥ 1 we define A2〈n〉 as the join of the
images of U2〈n〉 over all the charts. It is easy to see that this yields an
i-structure on A with the desired universal property.

(ii) Let f : A→M be a map between two formal manifolds equipped with
the second-order i-structure as defined in (i) and 〈P1, . . . , Pn〉 ∈ A2〈n〉.
By construction there is an A-chart ι : U ↪→ A, φ : U ↪→ Rn, and
〈x1, . . . , xn〉 ∈ U2〈n〉 such that ι(x`) = P`, 1 ≤ ` ≤ n.

We also find an M -chart j : V ↪→ M containing f(P1). Pulling back
j along f yields a formally open subspace f ∗j : f−1(V ) ↪→M , which
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becomes a chart after taking the intersection with ι

ι∗f ∗j : U ∩ f−1(V ) ↪→ A, (ι∗f ∗j)∗φ : U ∩ f−1(V ) ↪→ Rn

(Recall that formally open subspaces are stable under pullback.) Let
W = U ∩ f−1(V ). The restriction of f : W → V is a map be-
tween formally open subspaces of Rn and Rm, respectively, and thus
an i-morphism by theorem 3.2 and the constructions of W2 and V2.
Since x1 ∈ W ⊂ U and W is a formally open subspace of U , we find
〈x1, . . . , xn〉 ∈ W2〈n〉 and hence 〈f(x1), . . . , f(xn)〉 ∈ V2〈n〉; but this
implies that

〈f(P1), . . . , f(Pn)〉 = 〈j(f(x1)), . . . , j(f(xn))〉 ∈M2〈n〉

and that f is an i-morphism as claimed.

Remark 3.5. Instead of forming the union over all charts in the construction
of A2 in the proof of part (i), it is sufficient to consider the union over a
covering family, i.e. an atlas of A. Moreover, f is an i-morphism if and only
if all its restriction to the charts of the atlas are i-morphisms.

Indeed, any chart of ι : U ↪→ A can be covered by restrictions of charts
of the chosen atlas, which are formally open subspaces of both A and some
Rn. The same argument as presented in the proof of (ii) above shows that ι
is an i-morphism when applied to U and the charts of the atlas.

Note that theorem 3.4 does not extend to the i-affine structures. Maps
are not going to preserve the i-affine structure on U2 for a formally open
subspace U ↪→ Rn, in general. Only special classes of maps will have that
property. Indeed, the Taylor expansion of a map f to second order contains
quadratic terms, in general, hence can only preserve affine combinations up
to quadratic terms. Therefore, unlike Rn a formal manifold does not carry a
canonical i-affine structure on its canonical second-order i-structure.

This is in contrast to the nil-square i-structure on Rn, where the i-affine
structure is preserved by all maps and therefore induces a canonical i-affine
structure on the canonical nil-square i-structure of a formal manifold [1,
thm. 3.2.8].
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4. Affine connections and second-order i-affine structures

In differential geometry affine connections on a manifold come in three
equivalent notions: a geometric notion of parallel transport of tangent vec-
tors along paths, and two algebraic notions; that of a covariant derivative on
vector fields and the horizontal subbundle of the iterated tangent bundle. In
SDG we can study these notions from the infinitesimal viewpoint by either
using tangent vectors [6], [5], which are ‘infinitesimal paths’ t : D → A in
SDG, or using points [5].

Befitting our consideration of the infinitesimal algebra of points we shall
consider Kock’s affine connection for points as defined in [5, chap. 2.3]7. It
is based on the idea of completing three points P,Q, S to a parallelogram
PQRS. Here 〈P,Q〉 and 〈P, S〉 are first-order neighbours, but Q and S
don’t need to be. The resulting point R is a first-order neighbour of Q and
of S, hence it is a second-order neighbour of P . If we follow [5] and denote
the point R by λ(P,Q, S) then an affine connection (on points) λ is a map
mapping a triple (P,Q, S) with 〈P,Q〉, 〈P, S〉 ∈ A〈2〉 to a point λ(P,Q, S)
such that

λ(P,Q, P ) = Q

λ(P, P, S) = S

These properties are sufficient to derive the other nil-square neighbourhood
relationships [5, chap. 2.3]. An affine connection is called symmetric, if

λ(P,Q, S) = λ(P, S,Q)

For A = Rn a symmetric affine connection is induced by its affine structure

λ(P,Q, S) = Q+ S − P

Geometrically, this corresponds to the addition of vectors using parallel trans-
port to construct a vector parallelogram at P . In fact, any i-affine structure
on A2 induces a symmetric affine connection in this way.

7Note that all the other notions of affine connection can be derived from that of a point-
wise affine connection.
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Proposition 4.1. LetA be a formal manifold that admits an i-affine structure
on A2, then A admits a symmetric affine connection on points.

Proof. We wish to define the symmetric affine connection λ by

λ(P,Q, S) := Q+ S − P

where the right hand side denotes the i-affine combination in A2. For this to
be well-defined we need to show 〈P,Q, S〉 ∈ A2〈3〉. We work in a chart.
First note that Q− P, S − P,Q− S ∈ D2(n). Let φ be a trilinear map. We
find

φ[Q−P, S−P,Q−S] = φ[Q−P, S−P,Q−P ]−φ[Q−P, S−P, S−P ] = 0

as the two trilinear maps on the right hand side are quadratic in Q − P ∈
D(n), respectively in S − P ∈ D(n). This is sufficient to show 〈P,Q, S〉 ∈
A2〈3〉. The defining properties showing λ an affine connection are immedi-
ate consequence of the algebra of affine combinations.

We wish to show the converse, i.e. that any symmetric affine connec-
tion λ on a formal manifold A extends to a second-order i-affine structure.
Our strategy is to construct the i-affine structure on A2 by transporting the
second-order i-affine structure from the tangent space

TPA = {t ∈ AD | t(0) = P}

to the manifold A using the second-order log-exp bijection induced by λ as
defined in [5, chap. 8.2].

To begin with note that each tangent vector t ∈ TPA is an i-morphism
and hence factors through the monad M(P ) induced by the nil-square i-
structure on A. Moreover, any n tangent vectors t1, . . . , tn ∈ TPA satisfy

〈t1(d), . . . , tn(d)〉 ∈M(P )〈n〉, ∀d ∈ D

(See [5, chap. 4.2] or [1, chap. 3.3.2] for the details for n = 2, which implies
the general case.) The R-linear structure on TPA is obtained pointwise from
the i-linear structure on M(P ) making TPA a finite-dimensional KL vector
space over R [5, chap. 4.2].
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Using the i-linear structure on M(P ) for each Q ∈M(P ) we can define
a tangent vector logP (Q) ∈ TPA by logP (Q)(d) = P + d (Q − P ). This
yields an i-linear map

logP : M(P )→ D(TPA), Q 7→ logP (Q)

The map logP has the exponential map expP as an inverse [5, thm. 4.3.2],
which is given in a chart U ↪→ A as

expP (t) = P + v

Here v ∈ D(n) ⊂ Rn is the principal part of t ∈ D(TPA) considered in U ;
that is the unique vector v satisfying t(d) = P + d v, for all d ∈ D.

As a finite-dimensional KL vector space TPA is an i-affine space for
the second-order i-structure by theorem 3.3. This makes D2(TpA), which is
the monad for the second-order i-structure at the zero vector, into an i-linear
space. On the other hand, the second-order i-structure onA induces a monad
M2(P ). Kock has shown that using the symmetric affine connection λ we
can extend the log-exp bijection to a bijection

logP : M2(P )→ D2(TPA), expP : D2(TPA)→M2(P )

This bijection can now be used to transport the i-linear structure to M2(P ).
Since this can be done for any point P ∈ A, we can use it to define an action
of A(n) on A2. We state our main result:

Theorem 4.2. Let A be a formal manifold and λ a symmetric affine connec-
tion on A.

(1) The second-order log-exp bijection induced by the connection λ defines
an i-affine structure on A2 by

µ · 〈P1, . . . , Pn〉 = expP1

( n∑
j=1

µj logP1
(Pj)

)
(2)

where 〈P1, . . . , Pn〉 ∈ A2〈n〉 and µ ∈ A(n).

(2) The i-affine structure on A2 as defined in (1) is an extension of λ in the
sense that

λ(P,Q, S) = (−1, 1, 1)〈P,Q, S〉
for all (P,Q, S) ∈ A3 such that 〈P,Q〉, 〈P, S〉 ∈ A〈2〉.
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F. BÁR CONNECTIONS AND 2ND-ORDER AFFINE STRUCTURES

Proof. (1) We shall proceed in two steps. First we note that logP (and hence
expP ) are i-morphisms. Indeed, any chart mapping P to 0 ∈ Rn induces
a bijection M2(P ) ∼= D2(n). Since TPA is a finite-dimensional KL
vector space any map D2(n) → TPA has a unique extension to a map
Rn → TPA; but any such map must be an i-morphism by theorem 3.2.
Due to the construction of A2 from charts in theorem 3.4(i), as well as
the definition of the induced i-structures on the respective monads, logP

must be an i-morphism.

With this and the log-exp bijection we can see that the i-structure
M2(P )〈−〉 becomes an i-linear space for each P ∈ A. Moreover, the
action of each L(n) is given by the same formula as in (2). In the next
step we need to show that the action as defined in (2) is independent of
the base point P .

Lemma 4.3. Let µ ∈ A(n) and 〈Q,P, P1, . . . , Pn〉 ∈ A2〈n+ 2〉, then

expP

( n∑
j=1

µj logP (Pj)
)

= expQ

( n∑
j=1

µj logQ(Pj)
)

With the base point independence all the three axioms of an i-affine
structure follow from the respective axioms of the i-linear structure on
M2(P ) for a suitably chosen P ∈ A (for example, choosing the first
point in the respective i-tuple). To conclude the proof of (1) it remains
to show lemma 4.3.

Proof. (Lemma) It is sufficient to show this in a chart U . In U we find

λ(P,Q, S) = Q+ S − P + ΓP [Q− P, S − P ]

for a symmetric bilinear map ΓP [5, chapter 2.3], which we will refer
to as the connection symbol of the connection λ as it is done in [5]8.
The second-order extensions logP and expP have the following local

8Note that ΓP is the negative of the classically defined connection symbol of a covariant
derivative. In [5] the connection symbol is referred to as the Christoffel symbol.
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representations [5, chap. 8.2]

logP (Q)(d) = P + d
(
(Q− P )− 1

2
ΓP [Q− P ]2

)
expP (t) = P + v +

1

2
ΓP [v]2

for Q ∈M2(P ) ⊂ U and t ∈ D2(TPU) with principal part v ∈ D2(n).
We use this to derive a local formula for the second-order i-affine com-
bination

expP

( n∑
j=1

µj logP (Pj)
)

= P +
n∑

j=1

µj

(
(Pj − P )− 1

2
ΓP [Pj − P ]2

)
+

1

2
ΓP

[ n∑
j=1

µj

(
(Pj − P )− 1

2
ΓP [Pj − P ]2

)]2

In the next step we expand the last connection symbol. Since
〈P, P1, . . . , Pn〉 ∈ U〈n+1〉 all the multilinear occurrences of order three
and four in the Pj −P vanish. Using

∑n
j=1 µj = 1 the above expression

thus simplifies to the local representation

expP

( n∑
j=1

µj logP (Pj)
)

=
n∑

j=1

µjPj +
1

2

(
ΓP

[ n∑
j=1

µj Pj − P
]2 − n∑

j=1

µjΓP [Pj − P ]2
)
(3)

The respective local representation for the base point Q is obtained by
replacing P with Q in the above equation.
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The base point independence is equivalent to the identity

ΓP

[ n∑
j=1

µj Pj − P
]2 − n∑

j=1

µjΓP [Pj − P ]2

= ΓQ

[ n∑
j=1

µj Pj −Q
]2 − n∑

j=1

µjΓQ[Pj −Q]2
(4)

We use that Q − P ∈ D2(n) and represent ΓQ = ΓP+(Q−P ) using a
Taylor expansion of order two

ΓQ

[ n∑
j=1

µj Pj −Q
]2

= ΓP

[ n∑
j=1

µj Pj −Q
]2

+ ∂ΓP

[
Q− P

][ n∑
j=1

µj Pj −Q
]2

+
1

2
∂2ΓP

[
Q− P

]2[ n∑
j=1

µj Pj −Q
]2

Due to 〈Q,P, P1, . . . , Pn〉 ∈ U2〈n+ 2〉 this simplifies to

ΓQ

[ n∑
j=1

µj Pj −Q
]2

= ΓP

[ n∑
j=1

µj Pj −Q
]2 (5)

In the same vein we obtain
n∑

j=1

µjΓQ

[
Pj −Q

]2
=

n∑
j=1

µjΓP

[
Pj −Q

]2 (6)

Expanding

ΓP

[ n∑
j=1

µj Pj −Q
]2

= ΓP

[ n∑
j=1

µj Pj − P + (P −Q)
]2
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yields

ΓP

[ n∑
j=1

µj Pj −Q
]2

= ΓP

[ n∑
j=1

µj Pj − P
]2

+ ΓP

[
P −Q

]2
+ 2 ΓP

[ n∑
j=1

µj Pj − P, P −Q
]

= ΓP

[ n∑
j=1

µj Pj − P
]2

+ ΓP

[
P −Q

]2
+ 2

n∑
j=1

µjΓP

[
Pj − P, P −Q

]
,

where we have used
∑n

j=1 µj = 1 in the last step. Expanding

ΓP

[
Pj −Q

]2
= ΓP

[
Pj − P + (P −Q)

]2
yields

ΓP

[
Pj −Q

]2
= ΓP

[
Pj − P

]2
+ ΓP

[
P −Q

]2
+ 2 ΓP

[
Pj − P, P −Q

]
and thus

n∑
j=1

µjΓP

[
Pj −Q

]2
=

n∑
j=1

µjΓP

[
Pj − P

]2
+ ΓP

[
P −Q

]2
+ 2

n∑
j=1

µjΓP

[
Pj − P, P −Q

]
Combining equations (5) and (6) with the above expansions yields equa-
tion (4) and thus establishes the independence of (2) from the chosen
base point.

(2) It remains to show that λ agrees with the affine combination of the
second-order i-affine structure as given by (2) for µ = (−1, 1, 1). As

- 55 -
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shown in proposition 4.1 we have 〈P,Q, S〉 ∈ A2〈3〉. We consider ev-
erything in a chart U . Combining equations (2) and (3) we get

(−1, 1, 1) · 〈P,Q, S〉 = −P +Q+ S +
1

2

(
ΓP [Q− P + S − P ]2

− ΓP [Q− P ]2 − ΓP [S − P ]2
)

Expanding the symmetric bilinear map ΓP thus results in

(−1, 1, 1) · 〈P,Q, S〉 = λ(P,Q, S)

as claimed.

5. Conclusion

An action of (the clone of) affine combinations on an i-structure is an al-
gebraic model that makes precise the long-standing idea of differential ge-
ometry and of calculus that a (smooth) space has a geometry that is affine
at the infinitesimal scale. These algebraic structures have been extracted by
the author from Kock’s work [4], [5]. The author has then generalised and
studied them as infinitesimal models of algebraic theories in [1].

Within the framework of Synthetic Differential Geometry, in particular
within the algebraic and well-adapted models of SDG there is a wealth of
examples of i-affine spaces besides that of smooth and formal manifolds.
This means that the same infinitesimal constructs and the same algebra of
infinitesimals can be applied much more widely and beyond the context of
(smooth) manifolds. However, so far (almost) all these examples have been
based on the nil-square i-structure only9.

In this paper we have shown that besides the canonical nil-square i-
structure, a formal manifold carries a natural second-order i-structure (the-
orem 3.4). The affine structure on Rn induces an i-affine structure on the
second-order i-structure (theorem 3.3). In contrast to the nil-square i-affine
structure the second-order i-affine structure is not preserved by all maps

9The only exception has been the pointwise i-affine structure on function spaces studied
in [1, chap. 3.3.2].
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Rn → Rm, and is hence not natural anymore. However, as we have shown
for formal manifolds, there is a correspondence between symmetric affine
connections (on points) and second-order i-affine structures (theorem 4.2).
This provides us with a first example that a higher-order i-affine structure can
be obtained from the data of a higher-order geometric structure on a formal
manifold. Moreover, the log-exp bijection yields also a natural geometric
interpretation of an affine combination as the geometric addition of geodesic
line segments extending the familiar vector parallelogram construction from
the affine plane to curved space.

Does a manifold admit 3rd and higher-order i-affine structures? First-
ly, it is possible and straight forward to generalise the construction of a
second-order i-structure on Rn to kth-order i-structures that are preserved
by all maps Rn → Rm; the idea being that any (k+ 1)-linear occurrences of
difference vectors formed from an i-n-tuple has to vanish. Due to the general
gluing theorems in [1] it is then possible to show that any formal manifold
carries a natural kth-order i-structure. Theorem 3.3 generalises to kth-order
i-structures, too, but like with the second-order i-affine structure, kth-order
i-affine structures are not preserved by maps Rn → Rm.

As regards the construction of a 3rd-order i-affine structure on formal
manifolds the author has obtained two results pointing towards the problem
being more intricate than anticipated. Firstly, assuming the existence of a
3rd-order log-exp bijection theorem 4.2 does not seem to generalise to 3rd-
order i-affine structures. However, assuming that the formal manifold is a
retract of a formally open subset of some Rn it seems possible to project
the 3rd-order i-affine structure of Rn to the manifold. Understanding this
discrepancy as well as the geometric obstruction responsible for the failure
of the log-exp bijection in order three is subject to current research.

Does a symmetric affine connection determine an i-affine structure uni-
quely? We have shown that a symmetric affine connection extends to a
second-order i-affine structure on formal manifolds. What we have not ad-
dressed is the question whether the second-order i-affine structure is unique-
ly determined by the connection, or, if not, what structure parametrises the
possible freedom of choice.

The author was able to show that in a well-adapted model each smooth
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manifold A carries only one i-affine structure on the first-order i-structure
A1. Studying the uniqueness of second-order i-affine structures is current
work in progress.
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MOBI SPACES AND GEODESICS FOR
THE N-SPHERE

Jorge P. FATELO and Nelson MARTINS-FERREIRA

Résumé. Nous introduisons une structure algébrique, appelée mobi space,
qui peut être utilisée comme modèle pour les espaces où il existe des chemins
géodésiques entre deux points quelconques. Cette nouvelle structure est sem-
blable aux modules sur un anneau. Nous présentons des exemples diversifiés
et montrons que la formule d’interpolation linéaire sphérique, qui reproduit
les géodésiques sur les n-sphères, est un exemple de mobi space.
Abstract. We introduce an algebraic system, called mobi space, which can
be used as a model for spaces with geodesic paths between any two of their
points. This new algebraic structure is similar to modules over a ring. We
present various examples and show that the formula for spherical linear in-
terpolation, which gives geodesics on the n-sphere, is an example of a mobi
space.
Keywords. Mobility algebra, mobi algebra, mobi space, affine space, affine
mobi space, unit interval, ternary operation, geodesic path, geodesics, sphere,
n-sphere, Slerp, damped harmonic oscillator, projectiles.
Mathematics Subject Classification (2010). 08A99, 03G99, 20N99, 08C15.

1. Introduction

The purpose of this work is to introduce an algebraic system which can be
used to model spaces with geodesics. The main idea stems from the interplay
between algebra and geometry. In affine geometry the notion of affine space
is well suited for this purpose. Indeed, in an affine space we have scalar

       VOLUME LXIII-1
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multiplication, addition and subtraction and so it is possible to parametrize,
for any instant t ∈ [0, 1], a straight line between points x and y with the
formula (1 − t)x + ty. Such a line is clearly a geodesic path from x to
y. In general terms, we may use an operation q = q(x, t, y) to indicate the
position, at an instant t, of a particle moving in a space X from a point x to
a point y. If the particle is moving along a geodesic path then this operation
must certainly verify some conditions. The aim of this project is to present an
algebraic structure, (X, q), with axioms that are verified by any operation q
representing a geodesic path in a space between any two of its points.

First results concerning this investigation were presented in [5] where a
binary operation, obtained by fixing t to a value that positions the particle
at half way from x to y, is studied. The whole movement of a particle
on a geodesic path is captured when the variable t is allowed to range over
a set of values, of which the unit interval is the most natural choice. The
investigation of those structures and properties relevant to our study led us to
the discovery of a new algebraic structure that was called mobi algebra [6]. A
mobi algebra (or mobility algebra), besides being a suitable algebraic model
for the unit interval, offers an interesting comparison with rings. A slogan
may be used to illustrate that comparison: a mobi algebra is to the unit
interval in the same way as a ring is to the set of reals. A mobi algebra is
an algebraic system (A, p, 0, 1⁄2, 1) consisting of a set together with a ternary
operation p and three constants (see Definition 2.1). Every ring in which 2
is invertible has a mobi algebra structure, while a mobi algebra in which the
element 1⁄2 is invertible has a ring structure [6].

Following the analogy with rings, and extending it to modules over a
ring, we have arrived at a new structure, called mobility space (mobi space
for short). If A is a mobi algebra then a mobi space, say (X, q), is defined
over a mobi algebra in the sense that q = q(x, t, y) operates on x, y ∈ X
and t ∈ A. The axioms defining a mobi space (Definition 2.2) are similar to
the ones defining a mobi algebra. Several significant examples illustrate the
strength of these axioms.

Every space with unique geodesics can be given a mobi space struc-
ture [9]. However, when geodesics are not unique (for instance when con-
necting antipodal points on the sphere) it is still possible to define a mobi
space structure on that space. This is done by making appropriate choices
and it is illustrated in the last section of this paper. The example of the sphere
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is considered with spherical linear interpolation (Slerp) whose formula gives
rise to a mobi space structure.

2. Mobi space

In this section we give the definition of a mobi space over a mobi algebra.
Its main purpose is to serve as a model for spaces with a geodesic path con-
necting any two points. It is similar to a module over a ring in the sense that
it has an associated mobi algebra which behaves as the set of scalars. In [8],
we show that the particular case of an affine mobi space is indeed the same as
a module over a ring when the mobi algebra is a ring. In the last section, we
present examples of geodesics on the n-sphere and on an hyperbolic n-space
as mobi spaces over the unit interval.

Let us begin by briefly recalling the notion of a mobi algebra, introduced
in [6].

Definition 2.1. A mobi algebra is a system (A, p, 0, 1⁄2, 1), in which A is a
set, p is a ternary operation and 0, 1⁄2 and 1 are elements of A, that satisfies
the following axioms:

(A1) p(1, 1⁄2, 0) = 1⁄2

(A2) p(0, a, 1) = a

(A3) p(a, b, a) = a

(A4) p(a, 0, b) = a

(A5) p(a, 1, b) = b

(A6) p(a, 1⁄2, b1) = p(a, 1⁄2, b2) =⇒ b1 = b2

(A7) p(a, p(c1, c2, c3), b) = p(p(a, c1, b), c2, p(a, c3, b))

(A8) p(p(a1, c, b1), 1⁄2, p(a2, c, b2)) = p(p(a1, 1⁄2, a2), c, p(b1, 1⁄2, b2)).

In this paper, the structure (A, p, 0, 1
2
, 1) with A = [0, 1] and

p(a, b, c) = a+ b(c− a), (1)
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is called the canonical mobi algebra. Note that 1⁄2 is used to denote an ele-
ment in an arbitrary mobi algebra, whereas 1

2
is the real number in [0, 1].

A mobi space is defined over a mobi algebra as follows.

Definition 2.2. Let (A, p, 0, 1⁄2, 1) be a mobi algebra. An A-mobi space
(X, q), consists of a set X and a map q : X × A×X → X such that:

(X1) q(x, 0, y) = x

(X2) q(x, 1, y) = y

(X3) q(x, a, x) = x

(X4) q(x, 1⁄2, y1) = q(x, 1⁄2, y2) =⇒ y1 = y2

(X5) q(q(x, a, y), b, q(x, c, y)) = q(x, p(a, b, c), y)

The axioms (X1) to (X5) are the natural generalizations of axioms (A3)
to (A7) of a mobi algebra. A natural generalization of (A8) is

q(q(x1, a, y1), 1⁄2, q(x2, a, y2)) = q(q(x1, 1⁄2, x2), a, q(y1, 1⁄2, y2)). (2)

This condition, however, is too restrictive and is not in general verified by
geodesic paths. That is the reason why we do not include it. When condition
(2) is satisfied for all x1, x2, y1, y2 ∈ X and a ∈ A, we call the A-mobi space
(X, q) affine and speak of an A-mobi affine space (see Subsection 3.4 for
examples and counterexamples, see also [8]).

If we write x ⊕ y instead of q(x, 1⁄2, y) and consider the special case of
equation (2) when a = 1⁄2 then we get the usual medial law

(x1 ⊕ y1)⊕ (x2 ⊕ y2) = (x1 ⊕ x2)⊕ (y1 ⊕ y2).

As an illustration of the fact that the medial law does not hold true in gen-
eral for geodesic paths, let us consider the example of the unit sphere. The
midpoint a⊕ b of two points a and b on the equator is again on the equator.
Midpoint of North Pole n and any point c on equator is on the 45th parallel.
But the geodesic midpoint of two points on the 45th parallel does not live on
the 45th parallel, but somewhat to the North of it; the 45th parallel is not a
geodesic. So (a⊕ b)⊕ (n⊕ n) is on the 45th parallel, but (a⊕ n)⊕ (b⊕ n)
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is not, but is north of it. This phenomenon is an aspect of the Gaussian
curvature of the sphere.

In a mobi algebra (A, p, 0, 1⁄2, 1), a ∈ A is defined for each element a ∈ A
as a = p(1, a, 0), which in the canonical case corresponds to a = 1−a. Note
that 1⁄2 ∈ A is the unique element with 1⁄2 = 1⁄2. As an immediate consequence
of the axioms of a mobi space, we get:

q(x, a, y) = q(y, a, x). (3)

Other properties of mobi spaces can be found in [7].
With the purpose of finding a general procedure to construct mobi spaces,

let us consider a simple example with the variables x, y ∈ R and t ∈ [0, 1].
First, let us define a map

q(x, t, y) = x cos (t) + y sin (t)

and observe that it satisfies q(x, 0, y) = x but not q(x, 1, y) = y. If we put

q(x, t, y) = x cos
(
t
π

2

)
+ y sin

(
t
π

2

)
then we have q(x, 0, y) = x and q(x, 1, y) = y but axiom (X3), namely
q(x, t, x) = x, fails for all values other than x = 0 or t = 0, 1.

If we change the map q to be

q(x, t, y) = x cos2
(
t
π

2

)
+ y sin2

(
t
π

2

)
(4)

then we get axioms (X3) and (X4) but the axiom (X5) is not verified. Take
for example, x = 1, y = 0, r = t = 1

3
and s = 1 and observe that

q(x, r + t(s− r), y) = cos2

(
5π

18

)
while

q(q(x, r, y), t, q(x, s, y)) = cos4
(π

6

)
and they are not equal.

One might expect that in order to fix this problem it would be sufficient
to find a map θ such that

q(x, θ(r + t(s− r)), y) = q(q(x, θ(r), y), θ(t), q(x, θ(s), y)).
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However, this is not so simple. Indeed, perhaps a first guess would be to
consider the map θ(t) = 2

π
arcsin(t). With this modification, (4) would

become
q(x, θ(t), y) = x+ (y − x)t2.

This new formula, however, still does not satisfy axiom (X5).
There is, nevertheless, a general procedure that leads to a mobi space out

of the formula h(x, t, y) = x + (y − x)t2, but it involves some extra work.
We have to introduce one extra dimension, while solving a certain system of
equations (see Proposition 2.3 below).

First we solve the system of two equations{
A+ (B − A) r2 = x
A+ (B − A) s2 = y

which has a unique solution for every x, y ∈ R, r, s ∈ R+ and s 6= r, namely(
A
B

)
=

1

s2 − r2

(
s2 −r2

−(1− s2) 1− r2

)(
x
y

)
. (5)

The mobi space on the set R × R+ (over the unit interval) is thus given
by the formula

q((x, r), t, (y, s)) = (h(A, r + t(s− r), B), r + t(s− r))

with s 6= r and A, B obtained from equation (5). When s = r we put

q((x, r), t, (y, s)) = (x+ t(y − x), r).

We end up with the operation q : (R×R+)× [0, 1]× (R×R+)→ (R×R+)
defined by

q
(
(x, r), t, (y, s)

)
=

(
x+ (y − x)2rt+(s−r)t2

r+s
, r + t(s− r)

)
, if s 6= r(

x+ t(y − x), r
)

, if s = r
,

(6)

turning (R× R+, q) into a mobi space over the unit interval canonical mobi
algebra. This procedure, which provides a way to construct examples of
mobi spaces, is detailed in the next proposition and generalized in Section 4.
Further examples are given in the next section. In particular, example 3.3(1)
gives a physical intuition on this construction.
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Proposition 2.3. Let ([0, 1], p, 0, 1
2
, 0) be the canonical mobi algebra. Con-

sider two real valued functions f and g, of one real variable, and let (I, τ)
be a mobi space such that:

1. I ⊆ R is an interval of the real numbers;

2. the map τ : I × [0, 1]× I → I is defined as

τ(s, a, t) = s+ a(t− s);

3. for any s, t ∈ I , with t 6= s,

f(s) g(t) 6= f(t) g(s). (7)

For any real vector space V and any function K : I → V , the structure
(V × I, q) is a mobi space where q : (V × I)× [0, 1]× (V × I)→ V × I
is defined when t 6= s by the formula (τa = τ(s, a, t))

q((x, s), a, (y, t)) = (f(τa)A+ g(τa)B −K(τa), τa), (8)

with A,B ∈ V the unique solutions of the system of equations{
f(s)A+ g(s)B = x+K(s)
f(t)A+ g(t)B = y +K(t)

, (9)

whereas
q((x, s), a, (y, s)) = ((1− a)x+ ay, s). (10)

Proof. This proposition is a particular case of Theorem 4.1 with U = V =
X a real vector space and h(A, t, B) = Af(t) + Bg(t)−K(t). The unique
solution (A,B) to the system{

h(A, s,B) = x
h(A, t, B) = y

,

for every x, y ∈ V and s, t ∈ I, s 6= t, is guaranteed by condition (7).

Several applications of Proposition 2.3 are presented in Subsections 3.2
and 3.3.
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3. Examples

In the following list of examples, the underlying mobi algebra structure is
the canonical mobi algebra ([0, 1], p, 0, 1

2
, 1) with p as in (1). In each case,

we present a set X and a ternary operation q(x, a, y) ∈ X , for all x, y ∈ X ,
and a ∈ [0, 1], verifying the axioms of Definition 2.2. We also explain how
to obtain some examples as an instance of a more general construction.

3.1 The canonical mobi space

1. Vector spaces provide examples. For instance:

X = Rn (n ∈ N)

and
q(x, a, y) = (1− a)x+ a y.

2. The well known technique of transporting the structure provides us with
other ways of presenting the canonical structure. For every bijective map
F : X → X ′, with X ′ ⊆ Rn a convex set, we get a mobi space (X, q)
with

q(x, a, y) = F−1((1− a)F (x) + aF (y)).

For instance, in the case of dimension one:

(a) If F (x) = log x, X = R+ and X ′ = R then we get the mobi space
(X, q), with

q(x, a, y) = x1−aya.

(b) If F (x) = 1
x
, then (R+, q) is a mobi space with

q(x, a, y) =
xy

ax+ (1− a)y
.

3.2 Examples obtained directly from Proposition 2.3

To apply Proposition 2.3, we need three functions f , g and K such that
f(s)g(t) 6= f(t)g(s) for all s, t ∈ I, s 6= t. If g is a non-zero constant
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function, this condition just imply the injectivity of f . Let us begin with
K = 0, g = 1 and a function f injective in I .

1. With f : R+ → R; x 7→ x2, we obtain

X = R× R+

with the formula

q((x, s), a, (y, t)) =

(
x+ (y − x)

2 s a+ (t− s)a2

t+ s
, s+ a(t− s)

)
.

This is, in fact, the example displayed in equation (6). Note that, since
r, s ∈ R+, the second branch in (6) is not necessary.

2. With f : R+ → R; x 7→ 1
x
, we get the set

X = R× R+

with the formula

q((x, s), a, (y, t)) =

(
x+ (y − x)

a t

(1− a)s+ a t
, s+ a(t− s)

)
.

3. With f : R→ R; x 7→ x3, we can consider the set

X = R2

and the formula

q((x, s), a, (y, t)) =(
x+ (y − x)

3 s2 a+ 3 s(t− s)a2 + (t− s)2 a3

s2 + s t+ t2
, s+ a(t− s)

)
,

if (s, t) 6= (0, 0), and

q((x, 0), a, (y, 0)) = (x+ a (y − x), 0) .
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4. In general, applying Proposition 2.3 with g = 1,K = 0 and f an injective
real function of one variable, we get a mobi space in any set X ⊆ R2 for
which the formula

q((x, s), a, (y, t)) =(
x+ (y − x)

f(s+ (t− s)a)− f(s)

f(t)− f(s)
, s+ a(t− s)

)
,

(11)

if s 6= t, and

q((x, s), a, (y, s)) = (x+ a (y − x), s) ,

defines a map q : X × [0, 1]×X → X , as it is the case when X is a
convex set.

Let us confirm, with a direct proof, that this operation q verify property
(3) of mobi spaces. For t 6= s, (11) implies

q((x, s), 1− a, (y, t))

=

(
x+ (y − x)

f(t+ a(s− t))− f(s)

f(t)− f(s)
, t+ a(s− t)

)
=

(
y + (x− y)

f(t+ a(s− t))− f(t)

f(s)− f(t)
, t+ a(s− t)

)
= q((y, t), a, (x, s)).

We will now see some examples obtained from physics.

3.3 Examples with physical interpretation

The following examples, from classical mechanics, can be viewed as an
application of Proposition 2.3 with specific expressions for f , g and K.

1. Consider a constant acceleration motion, with x ∈ Rn, and the following
position equation

x(t) = x0 + v0 t− k t2.
We can think, for instance, of a projectile motion in the plane R2 where
k would be (0, g

2
) with g being the gravitational acceleration near the
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Earth’s surface. The constants x0 and v0 correspond to the usual initial
conditions x(0) = x0 and x′(0) = v0. Imposing boundary conditions like
x(0) = x0 and x(1) = x1, lead to:

x(t) = x0 + (x1 − x0) t+ k t (1− t).

Note that the operation q defined as q(x0, t, x1) = x(t) is not a mobi op-
eration: in particular, idempotency q(x, t, x) = x is not verified because a
body could go up vertically and then down back to the same place; axiom
(X5) is not verified either. The way to obtain a mobi space in this context
is to let the variable t flow freely in an extra dimension with boundary
conditions like x(t0) = x0 and x(t1) = x1. These conditions lead to:

x(t0 + a(t1 − t0)) = x0 + a(x1 − x0) + k a (1− a)(t1 − t0)2.

In the scope of Proposition 2.3, we could say that f(t) = t, g(t) = 1 and
K(t) = k t2. For any k ∈ Rn, we have then a mobi space (X, q) over the
canonical mobi algebra by taking the set

X = Rn+1

with the formula

q((x, s), a, (y, t)) =

(x+ a(y − x) + k a (1− a)(t− s)2, s+ a (t− s)) . (12)

Remarks:

(a) This example could be generalized to Special Relativity [4]. In
this case, however, the operation q is a partial operation because,
in Minkowski spacetime, not every two points can be reached from
one another if one point is not inside the light cone of the other.

(b) The result (12) may also be obtained from the geodesic equations in
coordinates (x, t), given by ẍ = −2k ṫ2 and ẗ = 0, in a space where
the invariant square of an infinitesimal line element is

dx2 + 4 k t dx dt+ (4k2t2 − c2)dt2,

for any constant c 6= 0.
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2. The solutions for the one-dimension motion of the well-known damped
harmonic oscillator are of the form

Af(t) +Bg(t)−K(t),

where A and B are real parameters. If the oscillator is not driven, K(t)=0.
Depending on the circumstances, we can have

(a) overdamping: f(t) = eα t, g(t) = eβ t, α 6= β;

(b) critical damping: f(t) = eα t, g(t) = t eα t;

(c) underdamping: f(t) = eα t sin(β t), g(t) = eα t cos(β t), β 6= 0;

(d) no damping: f(t) = sin(βt), g(t) = cos(βt), β 6= 0,

where α, β ∈ R depend on the oscillatory system. For the first two cases,
the determinant of the matrix (7) is non-zero for all s, t ∈ R, with t 6= s
and therefore we can apply Proposition 2.3.

(a) In the overdamping case and for any α, β ∈ R, α 6= β, we obtain
the mobi space (R2, q) over the canonical mobi algebra where q is
defined, for t 6= s, by

q((x, s), a, (y, t)) =
(eα(1−a)(s−t) − eβ(1−a)(s−t)

eαs+βt − eαt+βs
e(α+β)t x

+
eβa(t−s) − eαa(t−s)

eαs+βt − eαt+βs
e(α+β)s y, s+ a(t− s)

)
,

and, for t = s, by q((x, s), a, (y, s)) = (x+ a(y − x), s).

(b) In the critical damping case and for any α ∈ R, we obtain a mobi
space (R2, q) over the canonical mobi algebra with the formula

q((x, s), a, (y, t)) =(
(1− a)x eαa(t−s) + a y eα(1−a)(s−t), s+ a(t− s)

)
.

(c) For the case of underdamping, we can still apply Proposition 2.3 if
we restrict the possible values of s and t to, for instance, I = [0, π[.
The case α = 0 and β = 1 is presented in the next item.
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(d) Consider the case f(t) = sin(t) and g(t) = cos(t). Then, we obtain
the mobi space (R× [0, π[, q) with q defined, for t 6= s, by

q((x, s), a, (y, t)) =(
sin[(1− a)(t− s)]

sin(t− s)
x+

sin[a(t− s)]
sin(t− s)

y, s+ a(t− s)
)
.

The similarity between this formula and the mobi operation (31) of Sec-
tion 5 will be analysed in a future work.

3.4 Affineness of the examples

We end this section with some comments on whether the examples pre-
sented verify the affine condition (2) or not. Examples like those correspond-
ing to example 3.2.4 are, in general, not affine in the sense that they don’t
verify

q

(
q[(x1, s1), a, (y1, t1)],

1

2
, q[(x2, s2), a, (y2, t2)]

)
= q

(
q[(x1, s1),

1

2
, (x2, s2)], a, q[(y1, t1),

1

2
, (y2, t2)]

)
.

Indeed, in example 3.2.1 for instance, we have that

q

(
q[(0, 0),

1

3
, (0, 1)],

1

2
, q[(1, 1),

1

3
, (0, 0)]

)
=

(
5

27
,
1

2

)
but

q

(
q[(0, 0),

1

2
, (1, 1)],

1

3
, q[(0, 1),

1

2
, (0, 0)]

)
=

(
1

6
,
1

2

)
.

Similarly, in example 3.2.3, we have for instance:

q

(
q[(0, 0),

1

3
, (0, 1)],

1

2
, q[(1, 1),

1

3
, (0, 0)]

)
=

(
19

189
,
1

2

)
while

q

(
q[(0, 0),

1

2
, (1, 1)],

1

3
, q[(0, 1),

1

2
, (0, 0)]

)
=

(
1

12
,
1

2

)
.
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Of course, the canonical mobi spaces 3.1 are affine. Examples 3.2.2, 3.3.1
and 3.3.2b correspond also to affine mobi spaces while 3.3.2a does not. In-
deed, for 3.3.2a, we have for instance that

q
(
q[(0, 0), 1

3
, (0, 1)], 1

6
, q[(1, 1), 1

3
, (0, 0)]

)
=

(
(eα/18 − eβ/18)(eα/3 + eβ/3)

eα − eβ
,

7

18

)
but

q
(
q[(0, 0), 1

6
, (1, 1)], 1

3
, q[(0, 1), 1

6
, (0, 0)]

)
=

(
e2(α+β)/3 (e−4α/9 − e−4β/9)(eβ/6 − eα/6)

(e2α/3 − e2β/3)(eα − eβ)
,

7

18

)
.

The two results are different if α 6= β. However, in the limit situation when
β → α, the critical case is recovered and the two results are naturally equal.
The example 3.3.2c is not affine either.

In the following section we will thoroughly analyse a procedure to con-
struct examples of mobi spaces which in general are not affine mobi spaces.
In a sequel to this work we will investigate the case of spaces with geodesics
and how to construct mobi spaces out of them.

4. General construction for mobi spaces

We present here a general result from which Proposition 2.3 can be deduced.
In general, the examples that are obtained in this way are not affine.

Theorem 4.1. Let (X, qX) and (I, qI) be two mobi spaces over a mobi
algebra (A, p). Suppose the existence of two sets U , V and a function
h : U × I × V → X such that the system{

h(α, t0, β) = x0

h(α, t1, β) = x1
(13)

has a unique solution for every x0, x1 ∈ X and any t0, t1 ∈ I with t1 6= t0,
namely {

α = α(x0, t0, x1, t1)
β = β(x0, t0, x1, t1)

. (14)
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Then, (X × I, q) is a mobi space over the mobi algebra (A, p) where

q : (X × I)× A× (X × I)→ (X × I)

is defined using the map χ, via (14),

χ(x0, t0, a, x1, t1) =

{
h[α, qI(t0, a, t1), β] if t1 6= t0

qX(x0, a, x1) if t1 = t0
(15)

as
q ((x0, t0), a, (x1, t1)) = (χ(x0, t0, a, x1, t1), qI(t0, a, t1)) .

Proof. The axioms (X1), (X2) and (X3) are direct consequences of (13) and
the fact that qX and qI are operations of mobi spaces. To prove (X4), we first
observe that

q [(x0, t0), 1⁄2, (x1, t1)] = q [(x0, t0), 1⁄2, (x′1, t
′
1)] (16)

implies qI(t0, 1⁄2, t1) = qI(t0, 1⁄2, t′1) and hence t′1 = t1. If t1 = t0, we also get
qX(x0, 1⁄2, x1) = qX(x0, 1⁄2, x′1) and consequently x′1 = x1. When t1 6= t0,
t′1 = t1 and (16) imply

h[α, qI(t0, 1⁄2, t1), β] = h[α′, qI(t0, 1⁄2, t1), β′] ≡ x2,

where α′ = α(x0, t0, x
′
1, t1) and β′ = β(x0, t0, x

′
1, t1). Now, because t1 6=

t0 ⇒ qI(t0, 1⁄2, t1) 6= t0, the system{
h(α, t0, β) = x0

h(α, qI(t0, 1⁄2, t1), β) = x2

has a unique solution, we then conclude that α = α′ and β = β′ and conse-
quently that

x′1 = h(α′, t1, β
′) = h(α, t1, β) = x1.

Let us now prove (X5). We have to prove that Q1 = Q2 where:

Q1 ≡ q [(x0, t0), p(a, b, c), (x1, t1)]

Q2 ≡ q
(
q [(x0, t0), a, (x1, t1)] , b, q [(x0, t0), c, (x1, t1)]

)
.

To simplify the presentation of the proof, the following notations are used:

ta = qI(t0, a, t1), tc = qI(t0, c, t1),

χa = h(α, ta, β), χc = h(α, tc, β).
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• Considering t0 6= t1 and ta 6= tc, we have

Q1 = (h[α, qI(t0, p(a, b, c), t1), β], qI [t0, p(a, b, c), t1])

= (h[α, qI(ta, b, tc), β], qI [ta, b, tc])

and
Q2 = q

[
(χa, ta), b, (χc, tc)

]
= (h[α̃, qI(ta, b, tc), β̃], qI [ta, b, tc])

,

where α̃ and β̃ are the unique solutions of the system{
h(α̃, ta, β̃) = χa
h(α̃, tc, β̃) = χc

which imply that α̃ = α and β̃ = β, by definition of χa and χc and because
ta 6= tc, therefore Q1 = Q2.

• Considering t0 = t1, and hence ta = tc = t0, we have

Q1 =
(
qX [x0, p(a, b, c), x1], qI [t0, p(a, b, c), t1]

)
=

(
qX [qX(x0, a, x1), b, qX(x0, c, x1)], t0

)
and

Q2 = q
(

(qX [x0, a, x1], ta), b, (qX [x0, c, x1], tc)
)

=
(
qX [qX(x0, a, x1), b, qX(x0, c, x1)], qI(ta, b, tc)

)
=

(
qX [qX(x0, a, x1), b, qX(x0, c, x1)], t0

)
implying that Q1 = Q2.

• Considering t0 6= t1 and ta = tc, hence χa = χc, we have

Q1 = (h[α, qI(ta, b, tc), β], qI [ta, b, tc])
= (χa, ta)
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and
Q2 = q

[
(χa, ta), b, (χc, tc)

]
=

(
qX [χa, b, χc], qI [ta, b, tc])

)
= (χa, ta)

= Q1.

As an example, consider U = X = V = R+, I = R+
0 , (A, p) the

canonical mobi algebra and h(α, t, β) = αβt. Then, for t0 6= t1,

h[α(x0, t0, x1, t1), t, β(x0, t0, x1, t1)] = x
t−t1
t0−t1
0 x

t0−t
t0−t1
1 ,

and if t is qI(t0, a, t1) = t0 + a (t1 − t0), we get:

q [(x0, t0), a, (x1, t1)] = (x1−a
0 xa1, t0 + a (t1 − t0)).

This expression is well-defined even for t1 = t0. This leaves no option for qX
if we want a continuous operation, as the only possibility is qX(x0, a, x1) =
x1−a

0 xa1. But any other mobi operation is allowed when t1 = t0 and we can
write:

q [(x0, t0), a, (x1, t0)] = (qX(x0, a, x1), t0).

This example compares with Example 3.1.2a. Note that in Example 3.2.3,
the branch corresponding to (s, t) = (0, 0) cannot be obtained by continuity
due to the fact that the limit (s, t) → (0, 0) does not exist. However, the
canonical expression at (0, 0) is the choice which corresponds to approach-
ing the origin through the path t = s.

A useful particular case is when X is a vector space and h(α, t, β) =
αf(t) + βg(t) − K(t) for some scalar maps f , g and vector map K. The
following proposition is a slight generalization of Proposition 2.3. Here,
the canonical mobi algebra is replaced by an arbitrary one (A, p), the real
interval I together with the map τ is replaced by a mobi space (I, qI) and
the real vector space V is replaced by the vector space X over a field F .
Moreover qX may be any mobi operation on X rather than qX(x, a, y) =
(1− a)x+ ay as considered in Proposition 2.3.
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Proposition 4.2. Let (X, qX) and (I, qI) be two mobi spaces over a mobi
algebra (A, p). Suppose moreover that X is a vector space over a scalar
field F and let f : I → F and g : I → F be two functions such that, for any
t0, t1 ∈ I with t0 6= t1, the following inequality holds

f(t0) g(t1) 6= g(t0) f(t1). (17)

Furthermore, we consider a function K : I → X . Then (X× I, q) is a mobi
space over (A, p) considering that

q : (X × I)× A× (X × I)→ (X × I)

is defined as

q [(x0, t0), a, (x1, t1)] =
(
χa(x0, t0, x1, t1), qI(t0, a, t1)

)
with

χa (x0, t0, x1, t1)

=
g(t1) (x0 +K(t0))− g(t0) (x1 +K(t1))

f(t0) g(t1)− f(t1) g(t0)
f [qI(t0, a, t1)]

−f(t1) (x0 +K(t0))− f(t0) (x1 +K(t1))

f(t0) g(t1)− f(t1) g(t0)
g[qI(t0, a, t1)]

−K[qI(t0, a, t1)],

when t1 6= t0 and χa (x0, t, x1, t) = qX(x0, a, x1) otherwise.

Proof. This is just Theorem 4.1 for the case

h(α, t, β) = α f(t) + β g(t)−K(t).

With U = V = X , the system (13) simply reads(
f(t0) g(t0)

f(t1) g(t1)

)(
α

β

)
=

(
x0 +K(t0)

x1 +K(t1)

)
.
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To illustrate this proposition, Example 3.2.4 can be generalized using an
arbitrary mobi space I . Consider h(α, t, β) = α f(t) + β, in any set X for
which the next formula is well defined. Then, when t0 6= t1,

q [(x0, t0), a, (x1, t1)] =

(x0 + (x1 − x0)
f(qI(t0, a, t1))− f(t0)

f(t1)− f(t0)
, qI(t0, a, t1)).

When t0 = t1, q [(x0, t0), t, (x1, t0)] = (qX(x0, a, x1), t0) for any mobi oper-
ation qX .

Even when the system of equations (13) does not have a unique solution,
then, in some cases, it is still possible to define a mobi-space. This will be il-
lustrated with the formula for spherical linear interpolation giving geodesics
on the n-sphere.

5. Geodesics on the n-sphere

The purpose of this section is to show that a mobi space can be obtained
using the geodesic curves on the n-sphere

Sn = {x ∈ Rn+1 | 〈x, x〉E = 1}

and on one sheet of the two-sheeted hyperbolic n-space [15], as for instance

Hn = {x ∈ Rn+1 | 〈x, x〉L = −1, x1 > 0}.

The notations 〈 , 〉E and 〈 , 〉L are used for the usual Euclidean and Lorentzian
inner products, respectively. For the construction of the mobi operation for
both cases at once, it is convenient to consider the family of functions

f(a) =
eαa − e−αa

2α
and g(a) =

eαa + e−αa

2
, (18)

where a ∈ R and the parameter α is a non-zero complex number. These
functions are real functions if and only if α is a real number or a pure imag-
inary number. In particular, we have that:

• α = 1⇒ f(a) = sinh a and g(a) = cosh a;
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• α = i⇒ f(a) = sin a and g(a) = cos a;

• α→ 0⇒ f(a) = a and g(a) = 1.

For our purpose, we want to consider only real functions and therefore, for
the rest of this section, it is understood that α is such that f and g are real.
In any case, the functions (18) verify the following properties:

−α2f 2(a) + g2(a) = 1 (19)
f(a)g(b) + f(b)g(a) = f(a+ b) (20)

α2f(a)f(b) + g(a)g(b) = g(a+ b) (21)
f(−a) = −f(a) , g(−a) = g(a) (22)

f(0) = 0 , g(0) = 1. (23)

In general terms, let us consider an interval I ∈ R containing 0 where g
is injective. Let V be an inner product space, with the inner product denoted
by 〈 , 〉, and a subspace X ⊆ {x ∈ V | 〈x, x〉 = −α2}. Inner product here
means a nondegenerate symmetric bilinear form. We are going to show that
when there exists a unique function

θ : X ×X → I

such that −α2g[θ(x, y)] = 〈x, y〉, X can be given the structure of a mobi
space. For instance, if X is Sn, θ may be defined as

θ(x, y) = arccos(〈x, y〉E) with I = [0, π]

and if X = Hn, θ may be defined as

θ(x, y) = arccosh(−〈x, y〉L) with I = [0,+∞[.

The expressions are similar for any pure imaginary or non-zero real num-
ber α. The next two propositions show explicitly how to construct a mobi
operation on X using the functions f , g and θ. This construction is based
on the spherical linear interpolation (Slerp) used in computer graphics [14].
The first proposition is for the cases where the geodesic between two points
is unique which occur when the only zero of f , in I , is zero. This is what hap-
pens for Hn but not for Sn because sin(π) = 0. Nevertheless, the Proposi-
tion 5.1 could still be applied to a portion of the n-sphere which does not con-
tain antipodal points, such as for example {x ∈ Rn+1 | 〈x, x〉E = 1, x1 > 0}.
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Proposition 5.1. Consider the real functions f and g, of one real variable,
verifying the properties (19) to (23) for some number α. Suppose that g is
injective in an interval I containing 0 and that, for a ∈ I , we have

f(a) = 0⇐⇒ a = 0.

Let (V, 〈 , 〉) be a real inner vector space and consider a subspace

X ⊆ {x ∈ V | 〈x, x〉 = −α2}.

If there exists a unique function θ : X ×X → I such that

〈x, y〉 = −α2g[θ(x, y)] (24)

and θ(x, y) = 0⇐⇒ y = x, then (X, q) is a mobi space over the canonical
mobi algebra where the ternary operation q : X×[0, 1]×X → X is defined,
for x 6= y, by

q(x, t, y) =
f [θ(x, y) (1− t)]

f [θ(x, y)]
x+

f [θ(x, y) t]

f [θ(x, y)]
y, (25)

and, otherwise, by q(x, t, x) = x.

Proof. To simplify the presentation, we use the notation Ω ≡ θ(x, y). First,
we have to prove that, when x, y ∈ X , q(x, t, y) is still in X . The case y = x
is obvious. For y 6= x:

〈q(x, t, y), q(x, t, y)〉 =
f 2(Ω(1− t))

f 2(Ω)
〈x, x〉+

f 2(Ωt)

f 2(Ω)
〈y, y〉

+ 2
f(Ω(1− t))f(Ωt)

f 2(Ω)
〈x, y〉

= − α2

f 2(Ω)
(f 2(Ω(1− t)) + f 2(Ωt) + 2f(Ω(1− t))f(Ωt)g(Ω))

= − α2

f 2(Ω)
(f(Ω− Ωt)(f(Ω)g(Ωt) + f(Ωt)g(Ω)) + f 2(Ωt))

= − α2

f 2(Ω)
(f 2(Ω)g2(Ωt) + f 2(Ωt)(1− g2(Ω))

= −α2(g2(Ωt)− α2f 2(Ωt)) = −α2.
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Now, as X is a subspace containing x and y and q(x, t, y) is a linear combi-
nation of x and y, we conclude that it is also in X . Axioms (X1), (X2), (X3)
of a mobi space are a direct consequence of the definition of q. To prove
(X4) we will use the notation Ω′ ≡ θ(x, y′). If x 6= y and x 6= y′, we have
that q

(
x, 1

2
, y
)

= q
(
x, 1

2
, y′
)

implies

f
(

Ω
2

)
f(Ω)

(x+ y) =
f
(

Ω′

2

)
f(Ω′)

(x+ y′) (26)

Applying the inner product with x in both sides of this equation and using
properties (19) to (21) in the form

f(Ω) = 2f

(
Ω

2

)
g

(
Ω

2

)
and 1 + g(Ω) = 2g2

(
Ω

2

)
,

we get

1

2g
(

Ω
2

)〈x, x+ y〉 =
1

2g
(

Ω′

2

)〈x, x+ y′〉

⇒ 1

2g
(

Ω
2

)(−α2 − α2g(Ω)) =
1

2g
(

Ω′

2

)(−α2 − α2g(Ω′))

⇒ g

(
Ω

2

)
= g

(
Ω′

2

)
6= 0.

Going back to (26) with this result, we conclude y = y′. If x = y and x 6= y′,
then q

(
x, 1

2
, y
)
6= q

(
x, 1

2
, y′
)
. Indeed, q

(
x, 1

2
, x
)

= q
(
x, 1

2
, y′
)

would imply

x =
f
(

Ω′

2

)
f(Ω′)

(x+ y′)⇒ 〈x, x〉 =
1

2g
(

Ω′

2

) 〈x, x+ y′〉

⇒ 1 =
1

2g
(

Ω′

2

) (1 + g(Ω′))⇒ g
(

Ω′

2

)
= 1⇒ y′ = x,

in contradiction with the hypothesis. The case x 6= y and x = y′ is similar.
Obviously (X4) is also verified if x = y and x = y′. The proof of (X5) begin
with the observation that:

g[θ(q(x, a, y), q(x, c, y))] = g[θ(x, y)(c− a)]. (27)
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Indeed, beginning with the left-hand side of (27), if y 6= x:

− 1

α2
〈f(Ω(1− a))

f(Ω)
x+

f(Ωa)

f(Ω)
y,
f(Ω(1− c))

f(Ω)
x+

f(Ωc)

f(Ω)
y〉

=
f(Ω(1− a))f(Ω(1− c))

f 2(Ω)
+
f(Ωa)f(Ωc)

f 2(Ω)

+

(
f(Ω(1− a))f(Ωc) + f(Ω(1− c))f(Ωa)

f 2(Ω)

)
g(Ω)

=
f 2(Ω)g(Ωa)g(Ωc)− g2(Ω)f(Ωa)f(Ωc) + f(Ωa)f(Ωc)

f 2(Ω)

= g(Ωa)g(Ωc)− α2f(Ωa)f(Ωc)

= g(Ωa− Ωc) = g(Ωc− Ωa)

If y = x, then

g[θ(q(x, a, y), q(x, c, y))] = − 1

α2
〈q(x, a, y), q(x, c, y)〉

= − 1

α2
〈x, x〉

= 1 = g(0) = g[θ(x, y)(c− a)].

Now, because a, c ∈ [0, 1] and Ω ∈ I imply Ω|c− a| ∈ I , we can conclude,
since g is injective in I, that

|θ(q(x, a, y), q(x, c, y))| = |θ(x, y)(c− a)| = |Ω(c− a)|. (28)

By (22), this also imply that, for any b ∈ [0, 1], the following relation is true:

f [θ(q(x, a, y), q(x, c, y)) b]

f [θ(q(x, a, y), q(x, c, y))]
=
f [Ω(c− a) b]

f [Ω(c− a)]
.

With these results, we are able to prove (X5). For simplification, we use the
notation ĉ ≡ c− a. First, for q(x, a, y) 6= q(x, c, y) and x 6= y:
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q[q(x, a, y), b, q(x, c, y)]

=
f [Ω ĉ(1− b)]

f [Ω ĉ]
q(x, a, y) +

f [Ω ĉ b]

f [Ω ĉ]
q(x, ĉ+ a, y)

=
g[Ω ĉ b]f [Ω(1− a)]− f [Ω ĉ b]g[Ω(1− a)]

f(Ω)
x

+
g[Ω ĉ b]f [Ω a] + f [Ω ĉ b]g[Ω a]

f(Ω)
y

=
f [Ω(1− a− ĉ b)]

f(Ω)
x+

f [Ω(a+ ĉ b)]

f(Ω)
y

= q[x, a+ (c− a)b, y].

If q(x, a, y) = q(x, c, y), then q(q(x, a, y), b, q(x, c, y)) = q(x, a, y). On the
other hand, from (27), we conclude that x = y or c = a and in both cases
q(x, a+ b(c− a), y) = q(x, a, y).

Before going to Proposition 5.2 that will explain how we can still get a
mobi space out of a Slerp type formula on the n-sphere despite the fact that
geodesics between antipodal points are not unique, let us take a closer look
to the formula (25) in the case of Sn. This formula just gives the intersection
between Sn and a plane that contains the origin and the points x and y, when
x and y are not collinear. Starting at x when t = 0, a particle that goes to y
on that plane at constant speed will be, at an instant t ∈ [0, 1] at

q(x, t, y) = cos(Ω t)x+ sin(Ω t) z (29)

where
cos(Ω)x+ sin(Ω) z = y. (30)

Because 〈x, x〉E = 〈y, y〉E = 1 and Ω ≡ θ(x, y) = arccos〈x, y〉E , we have
that 〈x, z〉E = 0 and 〈z, z〉E = 1. When sin(Ω) 6= 0, we can just solve (30)
to obtain z and then (29) reads as expected:

q(x, t, y) =
sin[Ω (1− t)]

sin(Ω)
x+

sin[Ω t]

sin(Ω)
y. (31)

When Ω = 0, which means x = y, there is no journey to make: q(x, t, x) =
x. When Ω = π, which means y = −x, we have to choose the plane we
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wish to travel on. Equivalently, we have to chose the direction v(x) ∈ Rn+1

we want to be playing the role of z. Of course, we still need 〈x, v(x)〉E = 0
and 〈v(x), v(x)〉E = 1. There is one more condition: to get a mobi space,
we also need v to be an even map because, from property (3), q(x, t,−x) =
q(−x, 1 − t, x) which means that in a round trip, the going and the return
must be done on the same path.

Proposition 5.2. Consider the euclidean n-sphere

X = {x ∈ Rn+1 | 〈x, x〉 = 1},

a map v : X → X such that

v(−x) = v(x) and 〈x, v(x)〉 = 0,

and the map θ : X ×X → [0, π] defined by

θ(x, y) = arccos(〈x, y〉).

With q : X × [0, 1]×X → X defined by

q(x, t, y) =
sin[θ(x, y) (1− t)]

sin[θ(x, y)]
x+

sin[θ(x, y) t]

sin[θ(x, y)]
y , if θ(x, y) ∈]0, π[

cos[θ(x, y) t]x+ sin[θ(x, y) t] v(x) , if θ(x, y) ∈ {0, π}
,

(X, q) is a mobi space over the canonical mobi algebra.

Proof. Most of the proof is the same as the proof of Proposition 5.1. We
just have to consider the extra case y = −x corresponding to Ω ≡ θ(x, y) =
π. When Ω = π, we have q(x, 0, y) = cos(0)x + sin(0)v(x) = x and
q(x, 1, y) = cos(π)x + sin(π)v(x) = −x = y, so Axioms (X1), (X2)
and (X3) of a mobi space are verified. Regarding (X4), when Ω = π and
Ω′ ∈]0, π[, we have that q

(
x, 1

2
, y
)
6= q

(
x, 1

2
, y′
)
. Indeed q

(
x, 1

2
, y
)

=
q
(
x, 1

2
, y′
)

implies

v(x) =
sin
(

Ω′

2

)
sin(Ω′)

(x+ y′)⇒ 0 = cos

(
Ω′

2

)
⇒ Ω′ = π,
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in contradiction with Ω′ ∈]0, π[. The case Ω = π and Ω′ = 0 is also in-
compatible with q

(
x, 1

2
, y
)

= q
(
x, 1

2
, y′
)

because v(x) 6= x. Interchanging
y and y′ in the previous situations gives similar results. The case Ω = π and
Ω′ = π implies y = −x = y′, therefore (X4) is verified. Regarding (X5), we
first observe that (27) is valid for all x, y ∈ X . Indeed, if y = −x, then

cos[θ(q(x, a, y), q(x, c, y))] = 〈q(x, a, y), q(x, c, y)〉
= 〈cos(πa)x+ sin(πa) v(x), cos(πc)x+ sin(πc) v(x)〉
= cos(πa) cos(πc) + sin(πa) sin(πc)

= cos[π(a− c)].

So, we have that, ∀x, y ∈ X:

θ(q(x, a, y), q(x, c, y)) = θ(x, y)|c− a|. (32)

From equation (32), we conclude that θ(q(x, a, y), q(x, c, y)) = π if and only
if Ω = π and |c − a| = 1 and that θ(q(x, a, y), q(x, c, y)) = 0 if and only if
Ω = 0 or c = a. Therefore, besides the cases already proved in Proposition
5.1, we have to consider the following four situations:

1. θ(q(x, a, y), q(x, c, y)) = π, Ω = π and

(a) c = 0, a = 1

(b) c = 1, a = 0

2. θ(q(x, a, y), q(x, c, y)) = 0, Ω = π and c = a

3. θ(q(x, a, y), q(x, c, y)) ∈]0, π[, Ω = π, c 6= a and |c− a| 6= 1.

For the situation (1a):

q[q(x, a, y), b, q(x, c, y)] = q(−x, b, x) = cos(πb)(−x) + sin(πb) v(−x)

q[x, a+ b(c− a), y] = q(x, 1− b,−x)

= cos(π − πb)x+ sin(π − πb) v(x)

= − cos(πb)x+ sin(πb) v(x).

The Axiom (X5) is ensured through the hypothesis v(−x) = v(x). For the
situation (1b):

q[q(x, a, y), b, q(x, c, y)] = q(x, b,−x) = cos(πb)x+ sin(πb) v(x)

q[x, a+ b(c− a), y] = q(x, b,−x) = cos(πb)x+ sin(πb) v(x).
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In situation (2), c = a and (X3) implies (X5). Using ĉ ≡ c− a, we have for
the situation (3):

q[q(x, a, y), b, q(x, c, y)]

=
sin[π(c− a)(1− b)]

sin[π(c− a)]
(cos(πa)x+ sin(πa) v(x))

+
sin[π(c− a)b]

sin[π(c− a)]
(cos(πc)x+ sin(πc) v(x))

=
sin[πĉ(1− b)] cos(πa) + sin[πĉ b] cos(π(ĉ+ a))

sin[π ĉ]
x

+
sin[πĉ(1− b)] sin(πa) + sin[πĉ b] sin(π(ĉ+ a))

sin[π ĉ]
v(x)

= cos[π ĉ b] cos(πa)− sin[π ĉ b] sin[πa]x

+ cos[π ĉ b] sin(πa) + sin[π ĉ b] cos[πa] v(x)

= cos[π(a+ ĉ b)]x+ sin[π(a+ ĉ b)] v(x)

= q(x, a+ b(c− a), y)

To finish this section, we present three examples of the map v used in
Proposition 5.2. First, consider the 1-sphere i.e. the circle. We can choose to
move between antipodal points in the anticlockwise direction when starting
somewhere at the top of the circle and in the clockwise direction when start-
ing at the bottom. More specifically, if x = (cos θ, sin θ), θ ∈ [0, 2π[, then v
is defined as

v(x) =

{
(− sin θ, cos θ) if θ ∈ [0, π[
(sin θ,− cos θ) if θ ∈ [π, 2π[

.

Secondly, let us choose to connect two antipodal points on S2, different from
the poles, through the north pole and link the poles (on the z-axis) through
the positive x-axis. This gives the following choice for v, considering x2

1 +
x2

2 + x2
3 = 1:

v(x1, x2, x3) =


(−x1x3, −x2x3, 1− x2

3)√
1− x2

3

if x3 6= ±1

(1, 0, 0) if x3 = ±1

.
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As a third example, consider the 2-sphere parametrized in spherical coordi-
nates as:

{(sinϕ cos θ, sinϕ sin θ, cosϕ), (θ, ϕ) ∈ ([0, 2π[×]0, π[) ∪ (0, 0) ∪ (0, π)}.

A possible map v is the following:

v(sinϕ cos θ, sinϕ sin θ, cosϕ)

=

{
(− sin θ, cos θ, 0) if ϕ ∈

[
0, π

2

[
or
(
ϕ = π

2
, θ ∈ [0, π[

)
(sin θ,− cos θ, 0) if ϕ ∈

]
π
2
, π
]

or
(
ϕ = π

2
, θ ∈ [π, 2π[

) .

In this example, v is on the equator in a plane rotated π
2

around the z-axis
from the meridian of x. The choice θ = 0 for the poles connects them
through the positive y-axis. The other antipodal points are connected through
a path that stays between the parallels of the two points, with an arbitrary
choice for antipodal points on the equator.

6. Conclusion

We have introduced a new algebraic structure which captures some features
of geodesic paths. Several examples were used to illustrate the difficulty in
generating non-trivial examples (other than the affine case) and a general
procedure was given in Theorem 4.1. This general construction, however,
has the effect of raising an extra dimension. The construction commonly
named as Slerp was used to show that mobi spaces include the example of
geodesics on the n-sphere. It can be seen as a particular case of our general
construction if we fix t0 = 0 and let t1 be a function of the end points x0, x1

as t1 = θ(x0, x1). In that case there is no need to use the extra dimension,
I , because q can be defined through q(x0, a, x1) = h(α, qI(0, a, θ(x0, x1), β)
with α and β being the solutions to the system of equations (13). This,
however, is done at the expense of imposing some tight conditions on the
maps h and θ and needs further investigations. Similarly, when h is ob-
tained as a geodesic flow (in a space with unique geodesics) we can take
t0 = 0 and t1 = 1 in Theorem 4.1 and observe that (X, q) is a mobi space
with q(x0, a, x1) = h(α, a, β). Once again there is no need for the extra
I-dimension but it comes with a cost of imposing extra conditions on the
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map h. It turns out that when h is a geodesic flow in a space with unique
geodesics then the required conditions are satisfied ([9]).

Some lines of future study include the connection with affine geometry
[1, 10, 11] or the geometry of geodesics [2, 3]. As well as the study of affine
mobi spaces per se [8]. The presence of an operation x ⊕ y = q(x, 1⁄2, y)
admitting cancellation, together with the property x⊕y = y⊕x, tells us that
the category of mobi spaces is a weakly Mal’tsev category [13, 12]. This was
in fact the starting point that originated our investigation on mobi spaces.

Acknowledgement: This work was supported by
- Fundação para a Ciência e a Tecnologia (FCTUID-Multi-04044-2019);
- Centro2020 (PAMI – ROTEIRO/0328/2013- 022158);
- Polytechnic of Leiria through the projects CENTRO-01-0247-FEDER:
069665, 069603, 039958, 039969, 039863, 024533.

References
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Résumé. En utilisant des fibrations convexes de Grothendieck, nous
caractérisons l’entropie de von Neumann comme un foncteur des espaces de
probabilité non commutatifs de dimension finie et des ∗-homomorphismes
préservant l’état aux nombres réels. Nos axiomes reproduisent ceux de
Baez, Fritz et Leinster caractérisant la différence d’entropie de Shannon.
L’existence de désintégrations pour les espaces de probabilité classiques joue
un rôle crucial dans notre caractérisation.
Abstract. Using convex Grothendieck fibrations, we characterize the
von Neumann entropy as a functor from finite-dimensional non-commutative
probability spaces and state-preserving ∗-homomorphisms to real numbers.
Our axioms reproduce those of Baez, Fritz, and Leinster characterizing the
Shannon entropy difference. The existence of disintegrations for classical
probability spaces plays a crucial role in our characterization.
Keywords. Convex category, disintegration, Grothendieck fibration, Lan-
dauer’s principle, optimal hypothesis, quantum entropy.
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1 Introduction and outline
In 2011, Baez, Fritz, and Leinster (BFL) characterized the Shannon entropy
(difference) of finite probability distributions as the only non-vanishing con-
tinuous affine functor FinProb → BR≥0 from finite probability spaces
to non-negative numbers up to an overall non-negative constant [4]. Here,
FinProb is the category of finite sets equipped with probability measures as
objects and probability-preserving functions as morphisms. The codomain
category, BR≥0, is the category consisting of a single object and whose mor-
phisms from that object to itself are all non-negative real numbers equipped
with addition as the composition.

A natural follow-up question is whether the von Neumann (or finite-
dimensional Segal) entropy can be characterized in a similar manner by re-
placing FinProb with NCFinProb, the category of finite quantum (i.e.
non-commutative) probability spaces, consisting of unital finite-dimensional
C∗-algebras equipped with states as objects and state-preserving unital ∗-
homomorphisms as morphisms. Physically, such objects correspond to hy-
brid classical/quantum systems and the morphisms describe deterministic
dynamics, which includes tracing out subsystems. Although this question
was partially explored by Baez and Fritz [2], a suitably similar set of axioms
was never obtained. The present manuscript accomplishes this task.

There are two difficulties with extending BFL’s result to the quantum set-
ting. The first issue is that the difference of von Neumann entropies need not
have a fixed sign. There are state-preserving unital ∗-homomorphisms that
increase the entropy as well as decrease the entropy. The sign of the entropy
difference is closely related to the fact that Landauer’s principle holds for
classical systems [25], but could fail for quantum systems [8, 39]. The root
of the increase stems from the uncertainty principle and entanglement.

Using our axioms, we show that the existence of disintegrations [36]
(called optimal hypotheses in [3]) implies the non-negativity of the entropy
difference. Since disintegrations always exist for finite-dimensional classical
systems, this proves one of the key assumptions of BFL in their functorial
characterization of the Shannon entropy [4].
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The second difficulty when attempting to extend BFL’s work to quan-
tum systems is that the objects of NCFinProb are not convex generated
by any single object in that category. Note that this occurs for FinProb,
where an arbitrary probability space (X, p), with X a finite set and p a prob-
ability measure on X , can be decomposed into a convex sum as (X, p) ∼=⊕

x∈X px1, where 1 is the (essentially) unique probability space consisting
of a single element and px is the probability of x ∈ X . In NCFinProb, a
quantum probability space such as (Mm, ω) cannot be expressed as a convex
combination of lower-dimensional probability spaces. Here, m ∈ N,Mm is
the C∗-algebra of m×m matrices, and ω is a state onMm.

In this manuscript, we simultaneously address both these issues and pro-
vide a functorial characterization of the von Neumann entropy. This is
done by introducing Grothendieck fibrations of convex categories and fi-
bred affine functors. The category NCFinProb forms a fibration over
fdC*-Alg, the category of finite-dimensional unital C∗-algebras and uni-
tal ∗-homomorphisms, by sending each quantum probability space (A, ω) to
the underlying C∗-algebra A. The von Neumann entropy (difference) pro-
vides a functor

NCFinProb BR

fdC*-Alg 1

H //

� � ��
//

, (1.1)

where 1 is the category consisting of a single object and just the identity
morphism, BR is the one-object category whose morphisms consist of all
real numbers with composition rule given by addition, and the left vertical
arrow is the fibration just mentioned.

The fibres of the left and right fibrations in (1.1) are convex categories.
Over each C∗-algebraA on the left, one has the convex set of states S(A) on
A, which is viewed as a discrete convex category. A morphism f : B → A
of C∗-algebras gets lifted to the morphism S(f) : S(A)→ S(B) that acts as
the pullback of states, sending ω to ω ◦ f . On the right, BR is also a convex
category, with convex combinations of real numbers as the convex operation.

This entropy difference functor sends a state ω ∈ S(A) together with
a morphism f : B → A to a real number Hf (ω). Given another state
ξ ∈ S(A) and a number λ ∈ [0, 1], one obtains the inequality

Hf

(
λω + (1− λ)ξ

)
≥ λHf (ω) + (1− λ)Hf (ξ), (1.2)

which is of fundamental importance in quantum information theory. The

- 91 -



A. PARZYGNAT FUNCTORIAL VON NEUMANN ENTROPY

non-negativity of the quantity

χf (λ;ω, ξ) := Hf

(
λω + (1− λ)ξ

)
− λHf (ω)− (1− λ)Hf (ξ) (1.3)

is related to the monotonicity of entropy under partial trace, which is known
to be equivalent to strong subadditivity [46]. A special case of this inequality,
when f :=!A : C→ A is the unique unital ∗-homomorphism intoA, leads to
the fact that mixing always increases entropy. It is actually only this weaker
property that will play a role in our current characterization.

For more general algebras, if ω and ξ have orthogonal supports, and if
f : B → A preserves this orthogonality, then equality in (1.2) is obtained.
This condition, which we call orthogonal affinity, is what replaces the affine
assumption of entropy difference made by BFL. However, orthogonal affin-
ity and (1.2) are not enough to guarantee that HA(ω) := H!A(ω) vanishes on
pure states ω. If one imposes this additional assumption, one can show that
it is no longer necessary to assume χf (λ;ω, ξ) ≥ 0 for all inputs. Instead,
one can demand the simpler assumption that HA(ω) ≥ 0 for all states ω.
In other words, one can replace BFL’s non-negativity assumption for clas-
sical entropy difference with the assumption that HA(ω) ≥ 0 for all states
ω on C∗-algebras A, with equality for pure states. The relationships be-
tween these assumptions will be made precise in the body of the present
manuscript. Our main theorem can then be phrased as follows.

Theorem 1.4 (A functorial characterization of quantum entropy (Theo-
rem 4.26 in body)). Let H : NCFinProb → BR be a continuous and
orthogonally affine fibred functor, as in (1.1), for which HA(ω) ≥ 0 for all
states ω ∈ S(A), with equality on all pure states, for all finite-dimensional
C∗-algebras A. Then there exists a constant c ≥ 0 such that

Hf (ω) = c
(
S(ω)− S(ω ◦ f)

)
for all ∗-homomorphisms B f−→ A of finite-dimensional C∗-algebras and
states ω ∈ S(A).

In this theorem, S(ω) is the von Neumann entropy of ω, which is given
by S(ω) = −tr(ρ log ρ) in the special case when ω = tr(ρ · ) is a state on
Mm represented by a unique density matrix ρ, with tr the (un-normalized)
trace and · signifying the input of the function, i.e. Mm 3 A 7→ tr(ρA).
More generally, when A :=

⊕
x∈XMmx , a state ω on A can be described

- 92 -



A. PARZYGNAT FUNCTORIAL VON NEUMANN ENTROPY

by a collection of states ωx ∈ S(Mmx) and a probability measure p on X
such that ω(Ax) = pxωx(Ax) for Ax ∈ Mmx . In this case, the entropy of ω
is

S(ω) = −
∑
x∈X

px log(px)−
∑
x∈X

pxtr(ρx log ρx). (1.5)

Since all finite-dimensional unital C∗-algebras are of this form (up to iso-
morphism), this specifies the functor H everywhere, since entropy is invari-
ant under isomorphism.

The present manuscript is broken up as follows. We begin by review-
ing states, mutual orthogonality, and entropy in Section 2. In particular, we
provide translations between some operator-algebraic and physical concepts.
Section 3 introduces fiberwise convex structures, fibered functors, and con-
tinuity of fibered functors. Section 4 contains our main result and several
others of potential interest. In particular, we prove that our axioms imply
the non-negativity of Hf (ω) for commutative C∗-algebras by using the fact
that disintegrations exist for morphisms of commutative probability spaces.
More generally, we prove that if a disintegration of (f, ω) exists for an arbi-
trary quantum probability space (A, ω), then Hf (ω) ≥ 0. We also include a
brief historical account of axiomatizations of the von Neumann entropy and
how our characterization compares with some of them.

2 States on finite-dimensional C∗-algebras
In this section, we set up notation and compile several standard facts that will
be used throughout. All C∗-algebras will be unital and finite-dimensional
and all ∗-homomorphisms will be unital unless stated otherwise. We will
work in the Heisenberg picture, as will be explained in Example 2.10. Since
all of our C∗-algebras will be finite-dimensional, they will always be ∗-
isomorphic to direct sums of matrix algebras, so that most of our analysis
will involve only linear algebra. An especially suitable reference includ-
ing more than enough background is Farenick’s linear algebra text [12] (see
Theorem 5.20 and Proposition 5.26 in [12] for the statement regarding all
finite-dimensional C∗-algebras).

Definition 2.1 (Basic definitions). Given a C∗-algebraA, an element a ∈ A
is positive iff there exists an x ∈ A such that a = x∗x. The set of positive
elements inA is denoted byA+.An element a ∈ A is self-adjoint iff a∗ = a.
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An element p ∈ A is a projection iff p∗p = p. The orthogonal complement
of a projection p ∈ A is the element p⊥ := 1A− p (and is also a projection).
Positivity defines a partial order on self-adjoint elements and one writes a ≥
a′ or a′ ≤ a iff a − a′ ∈ A+. Given another C∗-algebra B, a positive map1

B ϕ A is a linear map such that ϕ(B+) ⊆ A+. A weight on a C∗-algebra
A is a positive map A ω C. A weight is called a state iff it is unital. The
set of states on a C∗-algebra A are denoted by S(A).

A non-commutative/quantum probability space is a pair (A, ω) consist-
ing of a C∗-algebra together with a state ω ∈ S(A). A state-preserving map
(a ∗-homomorphism or a positive map) from one non-commutative proba-

bility space (B, ξ) to another (A, ω) is a map B f A such that ξ = ω ◦ f .
A state ω ∈ S(A) is pure iff it cannot be expressed as a non-trivial convex
combination of some pair of distinct states. For the C∗-algebra of m × m
matrices Mm, which is referred to as a matrix algebra, the involution is
the conjugate transpose and is denoted by † instead of ∗. If m = 1, then
M1
∼= C and z is used to denote the complex conjugate of z ∈ C.

Example 2.2 (Density matrices, states, and expectation values). Self-
adjointness and positive semidefiniteness of an m × m matrix coincides
with the C∗-algebraic definition of positivity onMm. Every state ω onMm

can be expressed as ω = tr(ρ · ) for some unique density matrix ρ ∈ Mm,
which is a positive matrix such that tr(ρ) = 1. Here, and everywhere else in
this manuscript, tr denotes the un-normalized trace.

When A :=
⊕

x∈XMmx , with X a finite set and mx ∈ N, a state ω on
A can be described by a collection of states ωx ∈ S(Mmx) and a probability
measure p on X such that ω(Ax) = pxωx(Ax) for Ax ∈ Mmx [36, Sec-
tion 5]. Here, and elsewhere in the manuscript, px is used to denote the prob-
ability of x with respect to p. Since each state ωx corresponds to a density
matrix ρx ∈Mmx , ω can equivalently be expressed as ω(Ax) = pxtr(ρxAx)
for Ax ∈Mmx . We will also use all of the following notations

ω ≡
∑
x∈X

pxωx ≡
∑
x∈X

pxtr(ρx · )

to indicate the same state. In this way, states encode the data of families of
1Motivated by stochastic Gelfand–duality [16,35], ∗-homomorphisms are always drawn

with straight arrows→, while linear maps between algebras are drawn with squiggly arrows
// , in order to distinguish between deterministic maps and stochastic maps.
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expectation values. Since every C∗-algebraA is isomorphic to a finite direct
sum of matrix algebras, this is a full description of states on C∗-algebras.

The usefulness of using C∗-algebras as opposed to just matrix algebras
is to allow for a combination of classical and quantum setups, such as mea-
surement. Furthermore, direct sums of matrix algebras are used in describing
superselection sectors [38, 53], while ensembles, preparations, instruments,
etc. are all naturally described by positive maps between certain C∗-algebras
that are not just matrix algebras [37, Section 4].

Lemma 2.3 (The support of a weight). Associated to every weight ω on a
C∗-algebra A is a projection Pω ∈ A satisfying

ω(PωA) = ω(APω) = ω(PωAPω) = ω(A) ∀ A ∈ A

and such that Pω ≤ Q for every other projection Q satisfying this condition
(with Q replacing Pω).

Definition 2.4 (Supports and mutually orthogonal weights). The projection
Pω in Lemma 2.3 is called the support of ω. Two weights ω, ξ on a finite-
dimensional C∗-algebra A are mutually orthogonal, written ω ⊥ ξ, iff any
of the following equivalent conditions hold.2

1. If for any weight χ on A such that χ ≤ ω and χ ≤ ξ, then χ = 0.

2. PωPξ = 0 (which implies PωPξ = PξPω).

A ∗-homomorphism B f−→ A preserves the mutual orthogonality ω ⊥ ξ iff
(ω ◦ f) ⊥ (ξ ◦ f).

Lemma 2.5 (The image of a support). Let B f−→ A be a ∗-homomorphism
and let A ω C be a state. Then f(P⊥ω◦f ) ≤ P⊥ω and f(Pω◦f ) ≥ Pω.

Proof. The first inequality follows from the fact that f sends projections to
projections and f(Nω◦f ) ⊆ Nω [36, Section 3], where

Nξ := {A ∈ A : ξ(A∗A) = 0} (2.6)

denotes the nullspace associated to a state ξ. The two inequalities are equiv-
alent because

f(Pω◦f ) = f(1B − P⊥ω◦f ) = f(1B)− f(P⊥ω◦f )

= 1A − f(P⊥ω◦f ) = f(P⊥ω◦f )
⊥ ≥ Pω,

(2.7)

2For the thermodynamic meaning of mutual orthogonality of states, see [38, Section 2].
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where the last inequality used f(P⊥ω◦f ) ≤ P⊥ω . A similar calculation shows
the converse. �

Example 2.8 (External convex sums for finite probability spaces). Let
X,X ′, Y, Y ′ be finite sets, let p and q be probability measures on X and
Y , respectively, and let X

φ−→ X ′ and Y
ψ−→ Y ′ be two functions. Let

λp⊕ (1− λ)q denote the probability measure on X q Y (the disjoint union)
given by

(λp⊕ (1− λ)q)z :=

{
λpz if z ∈ X
(1− λ)qz if z ∈ Y

.

Set A := CX and B := CY to be the C∗-algebras of functions on X and
Y , and similarly A′ := CX′ and B′ := CY ′ . Let ω and ξ be the states on A
and B associated to p and q, i.e. ω(A) =

∑
x∈X pxA(x) for all A ∈ CX (and

similarly for ξ and q). Let A′ f−→ A and B′ g−→ B be the ∗-homomorphisms
associated to φ and ψ via pullback. Namely, if A′ ∈ CX′ is a function on
X ′, then f(A′) := A′ ◦ φ. The disjoint union function X q Y φqψ−−→ X ′ q Y ′
corresponds to the direct sum ∗-homomorphism

CX′qY ′ ∼= A′ ⊕ B′ f⊕g−−→ A⊕ B ∼= CXqY .

Let ω̃ and ξ̃ denote the states on A ⊕ B given by ω̃(A ⊕ B) := ω(A) and
ξ̃(A ⊕ B) := ξ(B) for all A ∈ A and B ∈ B. From these definitions, the
state on A⊕ B associated to λp⊕ (1− λ)q is λω̃ + (1− λ)ξ̃. Furthermore,
ω̃ ⊥ ξ̃ holds and f ⊕ g preserves ω̃ ⊥ ξ̃. This construction of convex sums
is one of the main ingredients in BFL’s characterization of entropy [4].

Notation 2.9 (Internal direct sum). Letm ∈ N, Y a finite set, {ny}y∈Y a col-
lection of natural numbers satisfying m =

∑
y∈Y ny, and {By ∈ Mny}y∈Y

a collection of matrices. Given an ordering of the elements of Y , set

�
y∈Y

By :=

B1 0
. . .

0 B|Y |

 ≡ diag(B1, . . . , B|Y |) ∈Mm.

This notation will be frequently used, sometimes without explicitly stating
that an order has been chosen.3

3This is not to be confused with the (external) direct sum
⊕

y∈Y By ∈
⊕

y∈Y Mny
,

which does not use an ordering on Y and, more importantly, is an element of a different
(non-isomorphic) algebra.
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Example 2.10 (The partial trace). Working with unital ∗-homomorphisms
between C∗-algebras corresponds to the Heisenberg picture description of
quantum mechanics, as opposed to the more commonly used Schrödinger
picture in the quantum information theory community. The relationship be-
tween the two goes roughly as follows.

If B = Mn, A = Mm, and B f−→ A is a ∗-homomorphism, then there
exists a p ∈ N such that m = pn and a unitary U ∈ Mm such that f =
AdU ◦ g, where AdU(A) := UAU † for all A ∈ A, and where g is

B 3 B 7→ g(B) := 1p ⊗B

(cf. [1], [52, Lecture 10]). The adjoint, g∗, of g with respect to the Hilbert–
Schmidt or Frobenius inner product on the vector space of linear maps be-
tween A and B is given by

A ∼=Mp ⊗Mn 3 A⊗B 7→ g∗(A⊗B) = tr(A)B.

It is often written as trMp and is called the partial trace (see [36, Section 3]
or [32, Section 2.4.3] for more details). The adjoint of f is g∗ ◦ AdU† .

Lemma 2.11 (The partial trace on direct sums). Let B :=
⊕

y∈Y Mny

f−→⊕
x∈XMmx =: A be a ∗-homomorphism and let ω =

∑
x∈X pxtr(ρx · ) be

a state on A (cf. Example 2.2). Then the following facts hold.

1. There exists a collection {cxy} of non-negative numbers, with cxy
called the multiplicity of the factor Mny inside Mmx associated to
f , such that mx =

∑
y∈Y cxyny for all x ∈ X .

2. There exist unitaries Ux ∈Mmx such that f is of the form

⊕
y∈Y

Mny 3
⊕
y∈Y

By
f7−→
⊕
x∈X

Ux

(
�
y∈Y

diag(

cyx times︷ ︸︸ ︷
By, · · · , By)

)
U †x.

3. The pullback state ξ := ω ◦ f can be expressed as

ξ =
∑
y∈Y

qytr(σy · ), where qyσy =
∑
x∈X

pxf
∗
xy(ρx) ∀ y ∈ Y

and f ∗xy denotes the (Hilbert–Schmidt) adjoint of fxy :Mny →Mmx ,
which is the component of f mapping between the factors as indicated.
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Proof. See [13, Sections 1.1.2 and 1.1.3], [12, Theorem 5.6], and [37,
Lemma 6.7]. �

Lemma 2.12 (∗-isomorphisms preserve mutual orthogonality). Let B f−→ A
be a ∗-isomorphism and let ω, ξ be any two states onA. Then ω ⊥ ξ implies
(ω ◦ f) ⊥ (ξ ◦ f). Furthermore, ζ ∈ S(A) is pure if and only if ζ ◦ f is pure.

Proof. If Pω and Pξ are the supports of ω and ξ, respectively, then the claim
will follow if we prove f−1(Pω) and f−1(Pξ) are the supports of ω ◦ f and
ξ ◦ f , respectively, because

f−1(Pω)f−1(Pξ) = f−1(PωPξ) = f−1(0) = 0. (2.13)

It suffices to focus on ω. First, note that f−1(Pω) is a projection since f−1 is
a ∗-homomorphism. Furthermore,

(ω ◦ f)
(
f−1(Pω)B

)
= ω

(
Pωf(B)

)
= ω

(
f(B)

)
= (ω ◦ f)(B) (2.14)

for all B ∈ B, which proves that f−1(Pω) satisfies the first condition of
a support for ω ◦ f in Lemma 2.3. Suppose that Q is another projection
satisfying (ω ◦ f)(QB) = (ω ◦ f)(B) for all B ∈ B. Then f(Q) satisfies

ω
(
f(Q)A

)
= (ω ◦ f)

(
Qf−1(A)

)
= (ω ◦ f)

(
f−1(A)

)
= ω(A) (2.15)

for all A ∈ A. Hence, since Pω is the minimal such projection, Pω ≤ f(Q).
Since ∗-homomorphisms preserve the ≤ order structure, f−1(Pω) ≤ Q. �

Example 2.16 (Channels that do not preserve orthogonality). There are
many examples of ∗-homomorphisms B → A that do not always preserve
mutual orthogonality. A simple example is !C2 : C → C2, where every pair
of mutually orthogonal states gets pulled back to 1. A non-classical example
is the ∗-homomorphismM2 →M2 ⊗M2, sending B to B ⊗ 12, and any
two density matrices on C2 ⊗ C2 corresponding to any two orthogonal Bell
states [32, Section 2.3]. In either case, the pullback state is 1

2
tr.

Lemma 2.17 (Overlapping states remain overlapping under evolution). Let
B f−→ A be ∗-homomorphism and let ω, ξ be two states on A that are not
mutually orthogonal. Then ω ◦f and ξ ◦f are also not mutually orthogonal.
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Proof. Suppose, to the contrary, that Pω◦fPξ◦f = 0. Then

0 = f(0) = f(Pω◦fPξ◦f ) = f(Pω◦f )f(Pξ◦f ). (2.18)

But, by Lemma 2.5, f(Pω◦f ) ≥ Pω and f(Pξ◦f ) ≥ Pξ so that their product
cannot vanish by the assumption PωPξ 6= 0. This is a contradiction. �

Physics 2.19 (Evolving states with overlapping supports). The interpretation
of Lemma 2.17 is that if two states have overlapping supports, then no quan-
tum operation will ever completely separate them. In contrast, Lemma 2.12
says that reversible dynamics (such as unitary evolution) cannot mix states.

Now that we have defined the objects and morphisms of interest, we can
define entropy and its generalizations to matrix algebras and C∗-algebras.

Definition 2.20 (Shannon, von Neumann, and Segal entropy). Let ω be a
state on A as in Example 2.2. The Segal entropy of ω is the non-negative
number

SSe(ω) := SSh(p) +
∑
x∈X

pxSvN(ρx),

where SSh(p) := −
∑

x∈X px log(px) is the Shannon entropy of a proba-
bility measure p on X and SvN(ρ) := −tr

(
ρ log ρ

)
is the von Neumann

entropy of a density matrix ρ on Cn. The convention 0 log 0 := 0 is used.
On occasion, the letter S will exclusively be used to refer to any of these

three entropies, using the input to distinguish which formula should be used.
As such, entropy will refer to any of these three, while quantum entropy
will refer to either SSe or SvN.4

We recall the following useful fact about the entropy of convex combi-
nations.

Lemma 2.21 (Concavity inequalities for entropy). Let {ρx}x∈X be a collec-
tion of density matrices on a Hilbert space indexed by a finite set X . Then

∑
x∈X

pxSvN(ρx) ≤ SvN

(∑
x∈X

pxρx

)
≤ SSh(p) +

∑
x∈X

pxSvN(ρx)

4The Segal entropy was actually defined much more generally for certain
infinite-dimensional systems [41]. The Segal entropy also equals SSe(ω) =
−
∑

x∈X tr
(
pxρx log(pxρx)

)
.
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for any probability distribution p on X . Furthermore, the second inequality
becomes an equality if and only if ρx ⊥ ρx′ for all distinct x, x′ ∈ X such
that px 6= 0 and px′ 6= 0.

Proof. The first inequality is the concavity of the von Neumann entropy.
Proofs of these claims can be found in [32, Theorem 11.8 (4)] as well [27,
Corollary pg 247] and [28, Equation (2.2)]. �

We now come to our main definition for the entropy change along a mor-
phism.

Definition 2.22 (The entropy change along a morphism). Let B f−→ A be
a ∗-homomorphism of C∗-algebras and let ω be a state on A. The entropy
change of ω along f is the number

Sf (ω) := SSe(ω)− SSe(ω ◦ f).

The following lemma contains a crucial observation that distinguishes
the entropy change along a morphism between commutative versus non-
commutative C∗-algebras.

Lemma 2.23 (The entropy change along certain morphisms). Recall the no-
tation from Definition 2.22.

1. If f is a ∗-isomorphism, then Sf (ω) = 0 for all states ω ∈ S(A).

2. IfA andB are commutativeC∗-algebras, then Sf (ω) ≥ 0 for all states

ω ∈ S(A) and ∗-homomorphisms B f−→ A.

3. IfA is not commutative and f is not a ∗-isomorphism, then there exists
a state ω ∈ S(A) such that Sf (ω) < 0.5

Proof. you found me!

1. Let A,B, ω, f , and ξ be as in Example 2.2. Since f is a ∗-
isomorphism, there exists a bijection X

φ−→ Y and a collection of
unitaries Ux ∈Mmx such that

mx = nφ(x) and pxUxρxU
†
x = qφ(x)σφ(x) ∀ x ∈ X (2.24)

by Lemma 2.11. The claim Sf (ω) = 0 then follows from the func-
tional calculus and Definition 2.20.

5If B is not commutative, then a ∗-homomorphism B → A does not exist if A is com-
mutative.
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2. Since every commutative finite-dimensional C∗-algebra is isomorphic
to functions on a finite set as described in Example 2.8, the Segal en-
tropy becomes the Shannon entropy. If p and q are the probability
measures on X and Y corresponding to ω and ω ◦f , respectively, then

Sf (ω) = SSe(ω)− SSe(ω ◦ f) = SSh(p)− SSh(q), (2.25)

which is shown to be non-negative in [4] (see Proposition 4.7 for a
more general and abstract proof using disintegrations).

3. If A is not commutative, then it has some matrix algebra Mm as a
factor with m > 1. Let ρ be a rank 1 density matrix in A with support
in Mm (so that ρ is a pure state). Let A be a self-adjoint m × m
matrix that does not commute with ρ (such a matrix necessarily exists
because the center ofMm consists of multiples of the identity). Let
σ(A) denote the spectrum of A. Let B := Cσ(A) f−→ A send eλ, the
function on σ(A) whose value at λ is 1 and is 0 elsewhere, to Pλ in
Mm, the projection onto the λ-eigenspace. Then ω ◦ f is not a pure
state, in the sense that the associated measure on σ(A) is not a Dirac
measure. Thus, the entropy change is Sf (ω) = SSe(ω)−SSe(ω ◦ f) =
0− SSe(ω ◦ f) < 0. �

Item 2 in Lemma 2.23 was used as an axiom by BFL to characterize the
entropy change in the classical setting. Since it fails when one includes non-
commutative C∗-algebras, we will have to replace this axiom with one that
more accurately reflects the properties of entropy in quantum mechanics.

Physics 2.26 (Negative conditional entropy). As another example illustrat-
ing the validity of item 3 in Lemma 2.23 using only matrix algebras, take
ω on M2 ⊗M2

∼= M4 to be a Bell state and let M2
f−→ M2 ⊗M2 be

the inclusion into one of the factors. Then Sf (ω) = − log(2) (cf. Exam-

ple 2.16). More generally, set A := Mm, B := Mn, A f−→ A ⊗ B the
standard inclusion, and ω = tr(ρAB · ), where ρAB is a density matrix in
A ⊗ B with marginals ρA := trB(ρAB) and ρB := trA(ρAB) (cf. Exam-
ple 2.10). Then the entropy difference Sf (ω) = SvN(ρAB)− SvN(ρA) is the
quantum conditional entropy, which, if negative, necessarily implies that
ρAB is entangled (see near Equation (21) in [23]). The example we chose
in the proof of Lemma 2.23 is meant to illustrate that entanglement is not
necessary for Sf (ω) to be negative.
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Physics 2.27 (Information loss or gain and Landauer’s principle). In [4],
BFL interpreted the non-negative entropy difference between commutative
algebras as information loss. Indeed, a state-preserving ∗-homomorphism
between commutative probability spaces corresponds to a probability-
preserving map of finite sets equipped with probabilities. Such a map may
identify points in an irreversible manner (in the sense that a probability-
preserving inverse need not exist). When two points get identified, the
corresponding probabilities add (cf. Definition 4.6) and there is a decrease
in entropy. This is closely related to Landauer’s principle [25], which states
that erasure (information loss) entails the dissipation of energy (in the form
of heat) into the environment.

For non-commutative probability spaces, i.e. quantum systems, informa-
tion and work can be gained in certain situations, violating Landauer’s prin-
ciple. The information can be later used for state merging protocols [21, 22]
or the corresponding energy can be used to do thermodynamic work [8]. A
precise reformulation of the principle has been recently stated and proved in
the case of finite-dimensional matrix algebras [39].

We now end this section with a summary of the categories that will be
used throughout.

Notation 2.28 (Categories used in this work). In all categories that follow,
except the very last one, the composition rule will be function composition.

1. FinSet is the category whose objects are finite sets and whose mor-
phisms are functions.

2. FinProb is the category whose objects are finite probability spaces,
which are pairs (X, p), with X a finite set and p a probability measure
on X . A morphism from (X, p) to (Y, q) is a probability-preserving
function, i.e. a function X

φ−→ Y such that qy =
∑

x∈φ−1({y}) px for all
y ∈ Y , where φ−1({y}) := {x ∈ X : φ(x) = y}.

3. fdC*-Alg is the category whose objects are (finite-dimensional uni-
tal) C∗-algebras and morphisms are (unital) ∗-homomorphisms.

4. NCFinProb is the category whose objects are (finite-dimensional)
non-commutative probability spaces and whose morphisms are state-
preserving (unital) ∗-homomorphisms.
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5. BR (BR≥0) is the category consisting of a single object and whose
morphisms from that object to itself are all real numbers (non-negative
real numers) equipped with addition as the composition rule.

Finally, here are some additional categorical notations and terminologies that
will be used. Given two categories C and D, let C ×D denote their cartesian
product. Let C × D γ−→ D × C be the functor that swaps the two inputs. Let
C ∆−→ C×C be the diagonal functor sending an object x to (x, x) and similarly
for morphisms. There are two projection functors, denoted by C × D π1−→ C
and C × D π2−→ D.

3 Fibrations and local convex structures
Fibrations provide a convenient setting to formulate the notion of entropy
change as a functor. Non-commutative probability spaces form a discrete
fibration over C∗-algebras and the real numbers viewed as a one-object cate-
gory form an ordinary (Grothendieck) fibration over the trivial category. The
fibre over each algebra is the space of states, which has a convex structure.
Since real numbers have a convex structure as well, one can make sense
of convexity, concavity, or affinity of the functor that computes the entropy
change along a morphism of non-commutative probability spaces. The ref-
erences for fibrations that we follow include [20, 29, 30].

Definition 3.1 (Discrete fibration). A functor E π−→ X is a discrete fibration
iff for each morphism x

f−→ y in X and for each object v in E such that
π(v) = y, there exists a unique morphism u

β−→ v such that π(β) = f . A
morphism u

β−→ v such that π(β) = f is called a lift of f .

Example 3.2 (The discrete fibration of non-commutative probability
spaces). The functor π : NCFinProb → fdC*-Alg, which sends (A, ω)

to A and (B, ξ) f−→ (A, ω) to B f−→ A, is a discrete fibration. Indeed, given
ω ∈ S(A) and B f−→ A, the unique lift is f itself together with the state on B
given by ξ = ω◦f . Similarly, the functor FinProbop → FinSetop sending
a probability space (X, p) to X and a probability-preserving function to the
underlying function between sets is a discrete fibration.
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Definition 3.3 (Cartesian morphisms and fibrations). Let E and X be two
categories and let E π−→ X be a functor. A morphism u

β−→ v in E is cartesian
iff for any morphism x

f−→ π(u) in X and any morphism w
γ−→ v in E such

that π(β) ◦ f = π(γ), there exists a unique morphism w
α−→ u in E such

that π(α) = f and β ◦ α = γ. Let Ex be the subcategory of E consisting
of the objects u in E such that π(u) = x and π(β) = idx for all morphisms
u

β−→ v with π(u) = x = π(v). The category Ex is called the fibre of π
over x and the morphisms in Ex are called vertical morphisms of π over x.
Given a morphism x

f−→ y in X and an object v in Ey, a cartesian lifting of f
with target v is a cartesian morphism u

β−→ v such that π(β) = f . A functor
π : E → X is a fibration iff for any morphism x

f−→ y in X and an object v
in Ey, a cartesian lifting exists. When π is a fibration, X is called the base. A
fibration for which a cartesian lifting has been chosen for every pair (f, v),
with f a morphism in X and v an object in Ey, is called a cloven fibration.

Lemma 3.4 (The reindexing functor). Let E π−→ X be a cloven fibration and
let f ∗(v)

fv−→ v be the choice of cartesian lifting of x
f−→ y with target v.

These data determine a canonical functor Ex
f∗←− Ey sending v to f ∗(v). For

each vertical morphism w
κ−→ v in Ey, let f ∗(w)

f∗(κ)−−−→ f ∗(v) be the unique
morphism in Ex obtained by the universal property of fv being cartesian.
Then f ∗ defines a functor, called the reindexing functor associated to f .

Proof. This is a standard fact that follows from the uniqueness in the univer-
sal property of cartesian morphisms. The details are left as an exercise. �

To incorporate convex structures on our main examples, we define (strict)
convex categories, affine functors, and fibrewise convex structures on fibra-
tions. The following definition of a convex object is an internalization of the
algebraic definition of a convex space [14, 15, 18, 19, 31, 42, 43, 50].

Definition 3.5 (Convex category). Given two numbers λ, µ ∈ [0, 1] set

λxµ := λµ and λyµ :=

{
λ(1−µ)
1−λµ if λµ 6= 1

arbitrary if λ = µ = 1
,

where “arbitrary” means that one can assign any value to the quantity. A con-
vex category (or more generally a convex object in some cartesian monoidal
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category) is a category C (object) together with a family of functors Fλ :
C × C → C (morphisms) indexed by λ ∈ [0, 1] such that

C × C C

F0

""

π2

<< ,

C

C × C

C

∆
DD

Fλ

��

idC
//

,

C × C C × C

C

γ //

Fλ
��

F1−λ
��

, and

C × C × C C × C

C × C C

Fµ×idC //

idC×Fλyµ
��

Fλ
��

Fλxµ
//

commute for all λ, µ ∈ [0, 1] (see Definition 2.28 for notation). The notation
λx+ (1− λ)y := Fλ(x, y) will be implemented on occasion.

Example 3.6 (Examples of convex categories). hello!

(a) Every convex set is a convex category when viewed as a discrete cate-
gory. In particular, S(A), the set of states on a C∗-algebraA, is a convex
category.

(b) The convex combination of real numbers turns BR into a convex cate-
gory. If R≥0 := {r ∈ R : r ≥ 0}, then BR≥0 is also a convex category.

Note, however, that the convex categories of BFL [4] are not examples of
Definition 3.5 (cf. Remark 3.24).

Definition 3.7 (Affine functors). An affine functor from one convex cate-
gory (C, {Fλ}) to another one (D, {Gλ}) is a functor S : C → D such that

C × C D ×D

C D

S×S //

Fλ
��

S
//

Gλ
� �

commutes for all λ ∈ [0, 1].

Example 3.8 (The pullback of states is an affine functor). Let B f−→ A be a ∗-
homomorphism between C∗-algebras. Then the pullback S(A)

S(f)−−→ S(B),
sending ω to ω ◦ f , is an affine functor (cf. Example 3.6 (a)) since(
λω+(1−λ)ξ

)
◦f = λ(ω◦f)+(1−λ)(ξ◦f) ∀ λ ∈ [0, 1], ω, ξ ∈ S(A).
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Example 3.9 (Entropy is almost affine). Given B f−→ A, the assignment

S(A)
Sf−→ BR sending ω to Sf (ω) from Definition 2.22 is not affine. How-

ever, the inequality

Sf
(
λω + (1− λ)ξ

)
≥ λSf (ω) + (1− λ)Sf (ξ)

holds as a corollary of the work of Lieb and Ruskai [26, Theorem 1] and
Lindblad [28, Lemma 3]. Nevertheless, and more importantly for our char-
acterization theorem, equality does hold when ω ⊥ ξ and (ω ◦ f) ⊥ (ξ ◦ f).
The proof of this will be given in Proposition 3.19.

Definition 3.10 (Fibrewise convex structures). A fibrewise convex structure
on a fibration E π−→ X is a cloven fibration where each fibre is a convex
category and each reindexing functor Ex

f∗←− Ey (as described in Lemma 3.4)
is an affine functor. A cloven fibration equipped with a fibrewise convex
structure is called a fibrewise convex fibration.

Example 3.11 (Examples of fibrewise convex structures). hello!

(a) The discrete fibration NCFinProb → fdC*-Alg has S(A) as the
fibre over each C∗-algebra A. The set of states S(A) on a C∗-algebra
A has a natural convex structure. Furthermore, each ∗-homomorphism

B f−→ A has the pullback S(B)
S(f)←−− S(A) as its reindexing functor.

This functor is affine, as discussed in Example 3.8.

(b) By a similar argument, FinProbop → FinSetop has a natural fibrewise
convex structure coming from the convex combination of probability
measures and the fact that the pushforward of measures is linear. The
fibre over a finite set X is isomorphic to the standard simplex ∆|X|−1 :={

(p1, . . . , p|X|) ∈ R|X|≥0 :
∑|X|

i=1 pi = 1
}

.

(c) The fibration BR→ 1 has a convex structure on the only fiber BR over
the single object in the base, as described in Example 3.6.

Definition 3.12 (Morphisms of fibrations). Let E π−→ X and F ρ−→ Y be
fibrations. A fibred functor6 from π to ρ is a pair of functors E Φ−→ F and

6Our terminology differs from that of [30], who use ‘functor’ when the base category is
fixed (φ = id) and ‘1-cell’ for when the base category changes.
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X φ−→ Y such that
E F

X Y

Φ //

π
��

φ
//

ρ
��

commutes and such that Φ(β) is cartesian for every cartesian β.

Remark 3.13 (Fibrewise convex structures as internal convex objects). One
can equivalently define a fibrewise convex structure as an internal convex
object in the category of fibrations over a fixed based, analogous to the fibre-
wise monoidal structure in [30, Section 3.1].

Briefly, a convex object E π−→ X in the category of fibrations over a fixed
based X provides the data of a family of fibred functors Fλ : E ×π E → E
with a fixed based, where E ×π E is the (strict) pullback. The functors Fλ
define a convex category structure for every fibre Ex. In addition, they also
provide an assignment on morphisms since a pair (t

α−→ u, v
β−→ w) over

x
f−→ y gets sent to

λt+ (1− λ)v
λα+(1−λ)β≡Fλ(α,β)−−−−−−−−−−−−→ λu+ (1− λ)w

over x
f−→ y. This assignment guarantees that the associated reindexing

functor Ex
f∗←− Ey from Lemma 3.4 can be chosen to be affine as in Def-

inition 3.10. Indeed, if one chooses cartesian liftings f ∗(u)
fu−→ u and

f ∗(v)
fv−→ v of u and v over x

f−→ y, respectively, then

λf ∗(u) + (1− λ)f ∗(v)
λfu+(1−λ)fv−−−−−−−→ λu+ (1− λ)v

can be taken as the lift of λu+ (1− λ)v over f .
For example, in the fibrewise convex fibration NCFinProb →

fdC*-Alg, if (B, η)
g−→ (A, ω) and (B, ζ)

h−→ (A, ξ) are two morphisms
over B f−→ A, then g = h = f and their convex combination, λg+ (1− λ)h,
is just f . In the fibrewise convex fibration BR→ 1, the convex combination
of objects in the fibre is trivial, while the convex combination of morphisms
(elements in R) is the usual convex combination of real numbers.
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Definition 3.14 (Convergence in NCFinProb). A sequence N 3 n 7→(
(Bn, ξn)

fn−→ (An, ωn)
)

converges to (A, ξ) f−→ (B, ω) in the category
NCFinProb iff there exists an N ∈ N such that An = A, Bn = B, fn = f
for all n ∈ N, limn→∞ ωn = ω, and limn→∞ ξn = ξ, where the last two
limits are with respect to the standard topologies on the state spaces S(A)
and S(B), respectively.

Remark 3.15 (Justifying the definition of convergence of sequences in
NCFinProb). The definition of convergence of a sequence of morphisms
in NCFinProb is motivated by the one in FinProb from [4, page 4].
However, some justification regarding why the morphisms are assumed to
stabilize, i.e. are equal after some N ∈ N, is needed.

In the case of FinProb, a sequence (Xn, pn)
fn−→ (Yn, qn) converges

to (X, p)
f−→ (Y, q) iff the sets Xn, Yn and the underlying set functions fn

stabilize after a finite natural number in the sequence and limn→∞ pn = p and
limn→∞ qn = q. The sets must stabilize because their associated simplices
of probability distributions are distinct and the cardinality of the set dictates
which simplex one is using for the space of probability distributions. The
functions must stabilize because the set of functions between two finite sets
is also a finite set, which has the discrete topology. However, the probability
distributions pn on X and qn on Y may continue to vary as long as they
converge to p and q in the topology associated with the simplices ∆|X|−1 and
∆|Y |−1.

In the case of C∗-algebras, the collection hom(B,A) of (unital) ∗-
homomorphisms from B to A is not just a discrete set since the collection
of unitary matrices has a non-trivial topology. Nevertheless, one can
assume the fn eventually stabilize. To see this, it suffices to assume
A =

⊕
x∈XMmx and B =

⊕
y∈Y Mny for some finite sets X and Y and

mx, ny ∈ N. In this case, a ∗-homomorphism B f−→ A is described by
its multiplicities and by a unitary as in Lemma 2.11. The multiplicities
entail the constraint mx =

∑
y∈Y cxyny, but there could be several such

multiplicities satisfying these constraints. Indeed, if

sx :=

∣∣∣∣∣
{
Y 3 y 7→ cxy ∈ Z≥0 : mx =

∑
y∈Y

cxyny

}∣∣∣∣∣
denotes the number of such solutions, then the number of connected com-
ponents in hom(B,A) is s :=

∏
x∈X sx (for example, if B = Mn is a
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matrix algebra, there is only one such component). Hence, a sequence of
∗-homomorphisms converging to another one must necessarily have multi-
plicities that stabilize. Within such a component, since ω ◦ f = (ω ◦AdU) ◦
(AdU† ◦ f) for every unitary U , one can always choose f to be of the form⊕

y∈Y

Mny 3
⊕
y∈Y

By 7→
⊕
x∈X

(
�
y∈Y

1cyx ⊗By

)
by conjugating with some appropriate unitary U (cf. Lemma 2.11). This
unitary can then be transferred to the state.

Therefore, it suffices to assume the algebras and ∗-homomorphisms sta-
bilize in a convergent sequence, but not necessarily the states.

Definition 3.16 (Continuous fibred functors). A continuous fibred functor
from NCFinProb → fdC*-Alg to BR → 1 is a fibred functor H such
that to every sequence N 3 n 7→

(
(Bn, ξn)

fn−→ (An, ωn)
)

converging to

(A, ξ) f−→ (B, ω) in the category NCFinProb,

lim
n→∞

H
(

(Bn, ξn)
fn−→ (An, ωn)

)
= H

(
(B, ξ) f−→ (A, ω)

)
,

where the convergence is for a sequence of real numbers.

Notation 3.17 (The function Hf : S(A) → R). For a fibred functor H :
NCFinProb→ BR, set

Hf (ω) := H
(

(B, ξ) f−→ (A, ω)
)

for the image of H along a morphism f in NCFinProb. For a fixed ∗-
homomorphism B f−→ A, this defines a function Hf : S(A)→ R.

The next definition is the appropriate quantum generalization of the affin-
ity condition used by BFL in their characterization of Shannon entropy [4].
Why this is so will be explained towards the end of this section as well as
Proposition 4.13 and Remark 4.20.

Definition 3.18 (Orthogonally affine fibred functor). A fibred functor H
from NCFinProb → fdC*-Alg to BR → 1 is orthogonally affine iff
to each pair of C∗-algebras B andA, each pair of mutually orthogonal states
ω, ξ ∈ S(A), and each ∗-homomorphism B f−→ A such that (ω◦f) ⊥ (ξ◦f),

Hf

(
λω + (1− λ)ξ

)
= λHf (ω) + (1− λ)Hf (ξ) ∀ λ ∈ [0, 1].

- 109 -



A. PARZYGNAT FUNCTORIAL VON NEUMANN ENTROPY

Proposition 3.19 (Entropy difference is continuous and orthogonally affine).
The entropy change functor from Definition 2.22 is a continuous and orthog-
onally affine fibred functor. In fact, if for anyC∗-algebraA and any pair ω, ξ
of mutually orthogonal states on A, a ∗-homomorphism B f−→ A preserves
the orthogonality ω ⊥ ξ if and only if

Sf
(
λω + (1− λ)ξ

)
= λSf (ω) + (1− λ)Sf (ξ) ∀ λ ∈ [0, 1].

Before proving this, we introduce a shorthand for the deviation from Sf
being affine on the states ω and ξ. The name for this deviation is motivated
by [32, Section 12.1.1].

Definition 3.20 (The Holevo information change along a morphism). The
Holevo information change along a ∗-homomorphism B f−→ A associated
to ω, ξ ∈ S(A) and λ ∈ [0, 1] is the number

χf (λ;ω, ξ) := Sf
(
λω + (1− λ)ξ

)
− λSf (ω)− (1− λ)Sf (ξ).

Proposition 3.19 says, in particular, that this deviation vanishes when
ω ⊥ ξ and (ω ◦ f) ⊥ (ξ ◦ f).

Proof of Proposition 3.19. Continuity of the entropy change follows from
continuity of the von Neumann entropy [32, Section 11.3], [11]. To prove
the statement regarding orthogonal affinity, suppose ω ⊥ ξ. Let ω′ := ω ◦ f
and ξ′ := ξ ◦ f . If f preserves the mutual orthogonality, then ω′ ⊥ ξ′ and

χf (λ;ω, ξ) = S
(
λω + (1− λ)ξ

)
− S

(
λω′ + (1− λ)ξ′

)
− λSf (ω)− (1− λ)Sf (ξ)

Lem 2.21
===== S(λ, 1− λ) + λS(ω) + (1− λ)S(ξ)

− S(λ, 1− λ)− λS(ω′)− (1− λ)S(ξ′)

− λSf (ω)− (1− λ)Sf (ξ)

= 0,

(3.21)

where S(λ, 1 − λ) is the Shannon entropy of the probability (λ, 1 − λ) on
a two element set. Conversely, suppose χf (λ;ω, ξ) = 0. Since ω ⊥ ξ, a
similar calculation gives

0 = χf (λ;ω, ξ)
Lem 2.21
==== S(λ, 1−λ) + λS(ω′) + (1−λ)S(ξ′)− S

(
λω′+(1−λ)ξ′

)
,

(3.22)

which gives ω′ ⊥ ξ′ by the ‘only if’ part of Lemma 2.21. �

- 110 -



A. PARZYGNAT FUNCTORIAL VON NEUMANN ENTROPY

In the last part of this section, we recall the convex combinations and
affine functors introduced by BFL [4]. By the next section, we will have
enough facts to relate BFL’s definition to ours.

Definition 3.23 (An external convex structure on FinProb). For every λ ∈
[0, 1], define the convex sum Fλ on objects of FinProb by

λ(X, p)⊕ (1− λ)(Y, q) :=
(
X q Y, λp⊕ (1− λ)q

)
,

where λp⊕(1−λ)q is defined in Example 2.8. The convex sum of morphisms
(X, p)

φ−→ (X ′, p′) and (Y, q)
ψ−→ (Y ′, q′) is defined to be the disjoint union

φq ψ as in Example 2.8. The collection of functors {Fλ}λ∈[0,1] is called the
external convex structure on FinProb.

The motivation for calling this an external convex structure comes from
the distinction between internal and external monoidal fibrations [30, Sec-
tion 3.1], as will be explained shortly.

Remark 3.24 (The external convex structure on FinProb does not give a
convex category). FinProb with this family of functors is not a convex cat-
egory in the sense of Definition 3.5. It is, however, a weak convex category
(called a convex category in [34, Chapter 4]).

A completely analogous definition can be made for the fibration
NCFinProb→ fdC*-Alg using the (external) direct sum of C∗-algebras.

Definition 3.25 (An external convex structure on NCFinProb). For ev-
ery λ ∈ [0, 1], define the convex sum Fλ on objects of NCFinProb by
λ(A, ω) ⊕ (1 − λ)(B, ξ) :=

(
A ⊕ B, λω ⊕ (1 − λ)ξ

)
, where

(
λω ⊕ (1 −

λ)ξ
)
(A⊕ B) := λω(A) + (1− λ)ξ(B) for all A ∈ A, B ∈ B. The convex

sum of morphisms is the direct sum.

This convex structure on NCFinProb restricts to the one on FinProb
on the subcategory of commutative C∗-algebras since CXqY ∼= CX ⊕ CY .

Definition 3.26 (Externally affine functor). A functor H : NCFinProb→
BR is externally affine iff

H
(
λf ⊕ (1− λ)g

)
= λH(f) + (1− λ)H(g)

for all morphisms f, g in NCFinProb and all λ ∈ [0, 1].
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Example 3.27 (Examples of externally affine functors). you found me!

(a) The difference of Shannon entropies studied by BFL [4] is a continuous
externally affine functor FinProb→ BR. In fact, it is characterized as
the unique one whose image always lands in BR≥0 (cf. Theorem 3.28).

(b) An example of a continuous externally affine functor S : NCFinProb→
BR is the difference of Segal entropies from Definition 2.22.

(c) If f : (B, ξ) f−→ (A, ω) is as in Lemma 2.11, then Kf (ω) := S(p) −
S(q), the difference of the Shannon entropies associated to the proba-
bility distributions, defines a continuous externally affine functor K :
NCFinProb→ BR.

Notice that both K and S agree with the Shannon entropy difference on the
subcategory of commutative algebras, yet they are not proportional.7

For reference, we recall BFL’s characterization theorem [4].

Theorem 3.28 (BFL’s functorial characterization of the Shannon entropy).
If H : FinProb → BR≥0 is a continuous externally affine functor, then
there exists a constant c ≥ 0 such that Hφ(p) = c

(
S(p) − S(q)

)
for every

probability-preserving function (X, p)
φ−→ (Y, q).

Without reference to the entropy formulas from Definition 2.22, we will
relate internal and external affinity in Proposition 4.13 after developing some
general results.

4 Characterizing entropy
This section contains our main result, Theorem 4.26, which is a functorial
characterization of the entropy difference in the non-commutative setting.
Continuity and orthogonal affinity alone are not quite enough to characterize
the von Neumann entropy difference, though they come quite close. By

7The existence of these two distinct continuous (externally) affine functors illustrates
that continuous affine functors NCFinProb → BR are not characterized by their values
on FinProbop (when viewed as a subcategory of NCFinProb). In particular, this condi-
tion does not characterize the von Neumann entropy difference. This answers a question of
John Baez in the negative [2] (see specifically the original post as well as the post on June
7, 2011 at 8:12 AM).
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Lemma 2.23, we cannot assume that Sf (ω) ≥ 0 for all ∗-homomorphisms
f and states ω on the codomain of f , since this inequality fails for non-
commutative C∗-algebras.

We propose a close replacement, namely SA(ω) ≥ 0 for all states ω ∈
S(A), with equality on pure states, for all C∗-algebras A. While this may
sound quite different, this assumption is a consequence of BFL’s assumption
Sf (ω) ≥ 0 on commutative C∗-algebras. Furthermore, in Proposition 4.7,
we prove that the non-negativity of entropy difference for commutative C∗-
algebras is a consequence of the fact that state-preserving ∗-homomorphisms
between commutative C∗-algebras always have disintegrations. More gen-
erally, we show that the existence of disintegrations (with non-commutative
probability spaces included) implies the non-negativity of entropy differ-
ence.

Notation 4.1 (!A and HA). If A is a C∗-algebra, then C !A−→ A will always
refer to the unique (unital) ∗-homomorphism. If H : NCFinProb → BR
is a functor, set HA := H!A . Also, FinProbop will be viewed as the full
subcategory of NCFinProb consisting of commutative probability spaces.

Lemma 4.2 (H is a coboundary). Given any ∗-homomorphism B f−→ A and
a state A ω C, any functor H : NCFinProb→ BR satisfies

Hf (ω) = HA(ω)−HB(ω ◦ f).

Proof. This follows from C being an initial object in fdC*-Alg. �

Lemma 4.3 (Non-negativity of Hf implies vanishing of HA on pure states).
Let H : FinProbop → BR be a functor satisfying Hf (ω) ≥ 0 for all ω ∈
S(A) and ∗-homomorphisms B f−→ A between commutative C∗-algebras.

1. If f has a left or right inverse, then Hf (ω) = 0 for all ω ∈ S(A).

2. HA(ω) ≥ 0 for all states ω ∈ S(A), with equality on all pure states.

Proof. you found me!

1. Suppose f has a right inverseA g−→ B. Then functoriality ofH implies
0 = HidA(ω) = Hg(ω ◦f)+Hf (ω) by Lemma 4.2. Since each term is
non-negative by assumption, Hf (ω) ≥ 0. A similar calculation proves
the same inequality if f has a left inverse.
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2. First, HA(ω) = H!A(ω) ≥ 0 by assumption. By invariance of H
under ∗-isomorphisms, it suffices to takeA = CX , with X a finite set.
Any pure state ξ on CX is necessarily supported on some x ∈ X . Let
CX πx−→ C be the projection onto that component. Then πx pulls the

unique state 1 on C back to ξ on CX and the composite C
!CX−−→ CX πx−→

C equals idC. Thus, HCX (ξ) = 0 by the first item. �

A partial converse to Lemma 4.3 will illustrate that our axioms for en-
tropy change imply those of BFL. We first prove a lemma about invariance
under ∗-isomorphisms given our axioms. The proof is quite different from
the one in Lemma 4.3, and it uses the convex structure in a crucial way.

Lemma 4.4 (H is invariant under ∗-isomorphisms). Suppose H :
NCFinProb → BR is an orthogonally affine fibred functor for which
HA(ξ) = 0 for all pure states ξ on A and all C∗-algebras A. If B f−→ A is a
∗-isomorphism, then Hf (ω) = 0 for all ω ∈ S(A).

Proof. Let ω be a state on A. Then there exists a convex decomposition
ω =

∑
x∈X pxωx of ω in terms of mutually orthogonal pure states ωx and a

nowhere-vanishing probability measure p on some finite set X . Thus,

Hf (ω)
Lem 2.12

======
Defn 3.18

∑
x∈X

pxHf (ωx)

Lem 4.2
=====

∑
x∈X

px

(
HA(ωx)−HB(ωx ◦ f)

)
= 0

(4.5)

since ωx ◦ f is pure by Lemma 2.12. �

Definition 4.6 (Disintegrations on finite probability spaces). you found me!
Let (X, p) and (Y, q) be probability spaces and
let φ : X → Y be a probability-preserving func-
tion, i.e. q = φ ◦ p. A disintegration of (φ, p, q)
(or simply of φ if p and q are clear from context)

is a stochastic map Y
ψ

X such that

{•}

X Y

p

��

q

��

ψ
oo

and

X

YY

ψ

ZZ
φ

��

idY
oo

q

,

X

Y

φ ψ
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the latter diagram signifying commutativity q-a.e.8 Here, a stochastic map
Y

ψ
X associates to each y ∈ Y a probability measure ψy on X . Com-

position of stochastic maps is defined via the Chapman–Kolmogorov equa-
tion [35, Section 2].

The main fact we will use about disintegrations on finite probability
spaces is that they always exist [36, Section 2].

Proposition 4.7 (Positivity of entropy difference on commutative
C∗-algebras). Suppose H : NCFinProb → BR is an orthogonally
affine fibred functor for which HA(ω) ≥ 0 for all states ω ∈ S(A), with
equality on all pure states, for all C∗-algebras A. Then for commu-
tative C∗-algebras A and B, Hf (ω) ≥ 0 for all states ω ∈ A and all

∗-homomorphisms B f−→ A.

Proof. By invariance of H for ∗-isomorphisms (Lemma 4.4), it suffices to
assume B = CY and A = CX for finite sets X and Y . In this case, let ω
be represented by a probability measure p on X , let X

φ−→ Y be the function
associated to B f−→ A, and let q := φ ◦ p be the pushforward measure corre-
sponding to ω ◦ f =: ξ (cf. Example 2.8). Every such probability measure is
decomposed as q =

∑
y∈Y qyδy, where δy is the Dirac delta measure at y de-

fined by δy(y′) ≡ δyy′ , which is 1 if y′ = y and 0 otherwise. This expresses
q as a convex sum of mutually orthogonal measures since δy ⊥ δy′ for all
y 6= y′. Set

Nq := {y ∈ Y : qy = 0} (4.8)

and let Y
ψ

X be a disintegration of (φ, p, q). Then p also decomposes as

p =
∑
y∈Y

qyψy ≡
∑

y∈Y \Nq

qyψy, (4.9)

where the set of probability measures {ψy}y∈Y \Nq are mutually orthogonal
because ψy is a measure supported on f−1({y}). Furthermore, φ preserves
the mutual orthogonality of these measures

(φ ◦ ψy) ⊥ (φ ◦ ψy′) ∀ y 6= y′ ∈ Y \Nq, (4.10)

8The cartoon depicts probability measures as collections of water droplets with total
volume 1. The map φ combines water droplets and preserves the volume [17], while the
disintegration ψ splits the water droplets back into their original sizes.
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since φ◦ψy = δy for all y ∈ Y \Nq. Setting ωy to be the state corresponding
to ψy gives

Hf (ω)
(4.9)

=== Hf

 ∑
y∈Y \Nq

qyωy

 (4.10)
======

Defn 3.18

∑
y∈Y \Nq

qyHf (ωy)

Lem 4.2
=====

∑
y∈Y \Nq

qy

(
HA(ωy)−HB(ωy ◦ f︸ ︷︷ ︸

δy

)
)

=
∑

y∈Y \Nq

qyHA(ωy) ≥ 0.

(4.11)

The last line holds becauseHB vanishes on pure states and by the assumption
that HA is always non-negative. �

Proposition 4.7 shows that our axioms imply the (seemingly strong) ax-
iom of non-negativity for entropy difference used by BFL in their functorial
characterization of Shannon entropy (Theorem 3.28). Combining this fact
with Lemma 4.3 suggests that it is reasonable to replace the BFL axiom of
non-negativity for entropy difference by non-negativity of HA and equal-
ity to zero on pure states. In fact, a corollary of Proposition 4.7 and BFL’s
characterization is an alternative functorial characterization of Shannon en-
tropy that does not explicitly use the non-negativity for entropy difference
assumption. However, we still need one more important fact to show that
our notion for a functor being orthogonally affine is equivalent to BFL’s no-
tion of a functor being externally affine on finite probability spaces (Propo-
sition 4.13). We will then use this towards building the final fact used in our
characterization theorem.

Lemma 4.12 (Invariance under adjoining zero). Let H : NCFinProb →
BR be an orthogonally affine fibred functor for which HA(ω) ≥ 0 for all
states ω ∈ S(A), with equality on all pure states, for all C∗-algebras A.
Let A and B be C∗-algebras and let π : A ⊕ B � A be the projection.
Then Hπ(ω) = 0 for all ω ∈ S(A). In particular, if X and Y are finite
sets and ι : X ↪→ X q Y is the inclusion with associated ∗-homomorphism
π : CXqY � CX , then Hπ(ω) = 0 for all states ω ∈ S(CX).

Proof. The proof is similar to that of Lemma 4.4 since ωx ◦ π is pure when-
ever ωx is. �
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Proposition 4.13 (External versus orthogonal affinity). Let H :
FinProbop → BR be a fibred functor for which HA(ω) ≥ 0 for all
states ω ∈ S(A), with equality on all pure states, for all commutative
C∗-algebras A. Then H is orthogonally affine if and only if H is externally
affine.

Proof. (⇒) Suppose H is orthogonally affine. The external convex sum of
(CX′ , ω′)

f−→ (CX , ω) and (CY ′ , ξ′)
g−→ (CY , ξ) defines a morphism(

CX′qY ′ , λω̃′ + (1− λ)ξ̃′
)

k:=f⊕g−−−−→
(
CXqY , λω̃ + (1− λ)ξ̃

)
, (4.14)

where the tildes denote the states as viewed on the direct sum (cf. Ex-
ample 2.8). In particular, (CX ⊕ CY , ω̃)

πX−→ (CX , ω) is a morphism in
NCFinProb for example. Furthermore,

ω̃ ◦ k = ω̃′, ξ̃ ◦ k = ξ̃′, ω̃ ⊥ ξ̃, and ω̃′ ⊥ ξ̃′, (4.15)

which says that f ⊕ g preserves the orthogonality of ω̃ and ξ̃. Since H is
orthogonally affine,

H(k) ≡ Hf⊕g

(
λω̃ + (1− λ)ξ̃

)
Defn 3.18
===== λHf⊕g

(
ω̃
)

+ (1− λ)Hf⊕g
(
ξ̃
)

Lem 4.2
==== λ

(
HCXqY

(
ω̃
)
−HCX′qY ′

(
ω̃′
))

+ (1− λ)
(
HCXqY

(
ξ̃
)
−HCX′qY ′

(
ξ̃′
))

Lem 4.12
==== λ

(
HCX (ω)−HCX′ (ω

′)
)

+ (1−λ)
(
HCY (ξ)−HCY ′ (ξ

′)
)

Lem 4.2
==== λHf (ω) + (1− λ)Hg (ξ) ≡ λH(f) + (1− λ)H(g).

(4.16)

(⇐) Suppose H is externally affine. Let p, q be probability measures on X
and let p′, q′ be probability measures on X ′. Let X

φ−→ X ′ be a function that
preserves both pairs of probability measures, i.e. φ ◦ p = p′ and φ ◦ q = q′.
Suppose p ⊥ q as well as p′ ⊥ q′. In what follows, we will first show that
there exist morphisms (A, p�A)

ψ−→ (A′, p′�A′) and (B, q�B)
η−→ (B′, q′�B′) such

that λψ ⊕ (1 − λ)η = φ. Let Sr denote the support of r ∈ {p, q, p′, q′}
(viewed as a subset of X or X ′ depending on the subscript). By assumption,
Sp ∩ Sq = ∅ and Sp′ ∩ Sq′ = ∅. Furthermore, φ can be visualized as
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X

X ′

φ

? ?

•

•
•

•

•
•

︸ ︷︷ ︸
A

A′︷ ︸︸ ︷
︸ ︷︷ ︸

B

B′︷ ︸︸ ︷ψ η

Legend
∈ Sp
∈ Sq

• ∈ X \ (Sp ∪ Sq)

∈ Sp′
∈ Sq′

? ∈ X ′ \ (Sp′ ∪ Sq′)

where the indicated sets are defined by

A′ := Sp′ , B′ := Sq′ ∪
(
X \ (Sp′ ∪ Sq′)

)
,

A := φ−1(A′), B := φ−1(B′),
(4.17)

and the functions A
ψ−→ A′ and B

η−→ B′ are defined by restricting φ to A
andB, respectively. If we also define the probability measures p�A, q�B, p′�A′ ,

and q′�B′ on A,B,A′, and B′, respectively, then (A, p�A)
ψ−→ (A′, p′�A′) and

(B, q�B)
η−→ (B′, q′�B′) are morphisms in FinProb and most importantly,

λ


(
A, p�A

)
(
A′, p′�A′

)ψ

��

⊕(1−λ)


(
B, q�B

)
(
B′, q′�B′

)η

��

 =

(
X,λp+ (1− λ)q

)
(
X ′, λp′ + (1− λ)q′

)φ

��
. (4.18)

Thus,

Hφ

(
λp+ (1− λ)q

)
≡ H

(
λψ ⊕ (1− λ)η

)
Defn 3.26
===== λH(ψ) + (1− λ)H(η)

= λ
(

1H(ψ) + 0H(η)
)

+ (1− λ)
(

0H(ψ) + 1H(η)
)

Defn 3.26
===== λH(1ψ ⊕ 0η) + (1− λ)H(0ψ ⊕ 1η)

≡ λHφ(p) + (1− λ)Hφ(q),

(4.19)

which completes the proof. �
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Remark 4.20 (External affinity ignores the internal structure of quantum
states). The objects of FinProb are convex generated by the single object
1, which is the (essentially) unique probability space consisting of a single
element. Indeed, an arbitrary finite probability space (X, p) can be decom-
posed into an external convex sum as (X, p) ∼=

⊕
x∈X px1. However, in

NCFinProb, a non-commutative probability space such as (Mm, ω) can-
not be expressed as an external convex combination of lower-dimensional
probability spaces. Therefore, the statement “if H is externally affine (on all
C∗-algebras), then H is orthogonally affine” is false.9 Example 3.27 (c) is
a counter-example because it is not orthogonally affine. This, together with
Proposition 4.13 provides some motivation for our choice of defining convex
structures internally on the fibres over C∗-algebras.

Corollary 4.21 (Characterizing the Shannon entropy on commutative
C∗-algebras). Suppose H : NCFinProb → BR is a continuous orthog-
onally affine fibred functor for which HA(ω) ≥ 0 for all states ω ∈ S(A),
with equality on all pure states, for all C∗-algebras A. Then there exists a
constant c ≥ 0 such that Hf = cSf for all ∗-homomorphisms f between
commutative C∗-algebras.

Proof. Continuity and functoriality are already assumed. Non-negativity of
Hf (ω) for all states ω and ∗-homomorphisms between commutative C∗-
algebras was proved in Proposition 4.7. Finally, the notion of affine orthog-
onality of H is equivalent to external affinity for commutative C∗-algebras
by Proposition 4.13. By BFL’s characterization theorem (Theorem 3.28), H
is the functor giving the difference of entropies on the subcategory of com-
mutative probability spaces up to an overall non-negative constant. �

The orthogonally affine assumption for all C∗-algebras will provide the
last fact needed to prove our characterization theorem.

Lemma 4.22 (Affine orthogonality determines entropy). Let H :
NCFinProb → BR be a continuous and orthogonally affine fibred
functor for which HA(ω) ≥ 0 for all states ω ∈ S(A), with equality on
all pure states, for all C∗-algebras A. If ω is any state on A, then there
exists a constant c ≥ 0 (independent of the algebras and states) such that
HA(ω) = cS(ω).

9Although the converse is still true, as can be seen by a minor modification of the proof
of the (⇒) direction in Proposition 4.13.
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Proof. By invariance of H under ∗-isomorphisms (Lemma 4.4), it suffices
to assume ω is a state as in Example 2.2. Let Np := {x ∈ X : px = 0} be
the nullspace of p. For each x ∈ X \ Np, decompose ωx into a convex sum
ωx =

∑
y∈Yx ψyxωyx of pure states ωyx ∈ S(Mmx), where {ψyx}y∈Yx defines

a nowhere-vanishing probability measure on a finite set Yx whose cardinality

equals the rank of the support of ωx. Thus, X \Np
ψ ∐

x∈X\Np Yx defines
a stochastic map. Let Pyx ∈ Mmx denote the one-dimensional projection
associated to the pure state ωyx. If Px denotes the support of ωx, then Px =∑

y∈Yx Pyx for all x ∈ X \ Np. Set B :=
(⊕

x∈X\Np C
Yx
)
⊕ C{•}, where

C{•} ∼= C, and •merely serves as a label to distinguish it from the rest of the
algebra. Define a ∗-homomorphism B f−→ A by

CYx 3 ey
f7−→

 ⊕
x′∈X\{x}

0

⊕ Pyx and

C{•} 3 e•
f7−→

 ⊕
x∈X\Np

(1mx − Px)

⊕⊕
x∈Np

1mx ,

(4.23)

where the first case expresses Pyx as an element of B (with 0’s on all factors
other thanMmx). Then f is a (unital) ∗-homomorphism that preserves the
orthogonality of all the ωyx states with y ∈ Yx and x ∈ X \Np (by viewing
all the ωyx as states on A via Lemma 4.12). Therefore,

HA(ω)−HB(ω ◦ f) = Hf (ω) =
∑

x∈X\N

∑
y∈Yx

pxψyxHf (ωyx)

=
∑

x∈X\N

∑
y∈Yx

pxψyx
(
HA(ωyx)−HB(ωyx ◦ f)

)
= 0

(4.24)

because ωyx and ωyx ◦ f are pure states.
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Consequently,

HA(ω)
(4.24)
=== HB(ω ◦ f)

Cor 4.21
====− c

∑
x∈X\Np

∑
y∈Yx

pxψyx log(pxψyx) for some c ≥ 0

= −c
∑

x∈X\Np

∑
y∈Yx

ψyx︸ ︷︷ ︸
1

px log(px)− c
∑

x∈X\Np

px
∑
y∈Yx

ψyx log(ψyx)

= c

(
S(p) +

∑
x∈X

pxS(ωx)

)
,

(4.25)

where the last equality follows from the definition of the Shannon entropy
for the S(p) term and Lemma 2.21 for the S(ωx) term. �

Theorem 4.26 (A functorial characterization of quantum entropy). Let H :
NCFinProb→ BR be a continuous and orthogonally affine fibred functor
for which HA(ω) ≥ 0 for all states ω ∈ S(A), with equality on all pure
states, for all C∗-algebras A. Then there exists a constant c ≥ 0 such that

Hf (ω) = c
(
S(ω)− S(ω ◦ f)

)
for all morphisms B f−→ A of C∗-algebras and states ω ∈ S(A).

Proof. Since Hf (ω) = HA(ω) − HB(ω ◦ f) by Lemma 4.2, Lemmas 4.4
and 4.22 show this equals the entropy difference up to the same constant
c. �

It is interesting that the notion of a disintegration was used in the proof
of Proposition 4.7. Note that in the category of states on (finite-dimensional)
C∗-algebras and state-preserving ∗-homomorphisms, disintegrations do not
always exist [36]. Nevertheless, when they exist, they imply Hf (ω) ≥ 0, as
the following proposition shows. Since the definition of a non-commutative
disintegration is not needed anywhere else in this work, the reader is referred
to [36] for definitions and other facts assumed in the proof.

Proposition 4.27 (If a disintegration for (f, ω, ω◦f) exists, then Sf (ω) ≥ 0).
Let B f−→ A be a ∗-homomorphism andA ω C a state onA. If (f, ω, ω◦f)
has a disintegration, then Sf (ω) ≥ 0.
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Proof. By isomorphism invariance of S, it suffices to consider the case
whereA,B, ω, f , and ξ are as in Lemma 2.11 (without the unitaries Ux). Let
Np ⊂ X andNq ⊂ Y be the nullspaces of p and q, respectively. Assume that
a disintegration of (f, ω, ξ) exists. By the non-commutative disintegration
theorem [36], for each x ∈ X and y ∈ Y there exist non-negative matrices
τyx ∈Mcxy such that

tr

(∑
x∈X

τyx

)
= 1 ∀ y ∈ Y \Nq

and pxρx =�
y∈Y

τyx ⊗ qyσy ∀ x ∈ X.
(4.28)

One more fact that will be needed is the equality

(C ⊗D) log(C ⊗D) = C log(C)⊗D + C ⊗D log(D) (4.29)

for all non-negative square matrices C,D (possibly of different sizes). Com-
puting SA(ω) first gives

SA(ω)
Defn 2.20
===== −

∑
x∈X

tr
(
pxρx log(pxρx)

)
(4.28)

==== −
∑
x∈X

tr

 �
y∈Y \Nq

(τyx ⊗ qyσy) log

 �
y′∈Y \Nq

τy′x ⊗ qy′σy′


= −

∑
x∈X

∑
y∈Y \Nq

tr
(
(τyx ⊗ qyσy) log(τyx ⊗ qyσy)

)
(4.29)

==== −
∑
x∈X

∑
y∈Y \Nq

tr
(
τyx log(τyx)⊗ qyσy + τyx ⊗ qyσy log(qyσy)

)
(4.28)

====
∑

y∈Y \Nq

qyS

(
�
x∈X

τyx

)
+ SB(ξ),

(4.30)

where �x∈X τyx is viewed as a density matrix on Msx , where
sx :=

∑
y∈Y \Nq cyx. Thus,

Sf (ω) = SA(ω)− SB(ξ) =
∑

y∈Y \Nq

qyS

(
�
x∈X

τyx

)
≥ 0. (4.31)

�
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Remark 4.32 (Having a disintegration is not necessary for Sf (ω) ≥ 0). If
Sf (ω) ≥ 0, it is not necessary that a disintegration of (f, ω, ω ◦ f) exists. A
counter-example is the inclusionM2 →M2⊗M2, which sendsB ∈M2 to
12⊗B, and the density matrix ρ = diag(p1, p2, p3, p4),where p1, p2, p3, p4 ≥
0 satisfy p1 + p2 + p3 + p4 = 1, p1 + p3 > 0, and p2 + p4 > 0. Then

Sf (ω) = −p1 log

(
p1

p1 + p3

)
− p2 log

(
p2

p2 + p4

)
− p3 log

(
p3

p1 + p3

)
− p4 log

(
p4

p2 + p4

)
≥ 0,

while a disintegration exists if and only if p1p4 = p2p3 [36, Section 4].

Remark 4.33 (A brief history and comparison of axiomatizations of quan-
tum entropy). Quantum entropy and its variants were often built upon the
classical versions, whose many axiomatizations are reviewed in Csiszar’s
survey [7]. In 1932, von Neumann obtained a phenomelogical characteri-
zation of entropy [49, Chapter V. Section 2]. In 1968, Ingarden and Kos-
sakowski characterized the von Neumann entropy using dimensional partial
Boolean rings of projections in Hilbert space [24]. In 1974, Ochs provided
a characterization using partial isometric invariance, additivity, subadditiv-
ity, and continuity (plus some additional technical axioms) [33]. In 1975,
Thirring [44] characterized the von Neumann entropy using axioms closely
related to those implemented by Fadeev in his characterization of the Shan-
non entropy [9, 10], the latter of which was simplified by Renyi [40].10

Thirring’s characterization is most closely related to ours and it is worth
taking the time to spell out his assumptions, which read as follows.

(i) S(ρ) is a continuous function of the eigenvalues of ρ;

(ii) S(1
2
12) = log 2;

(iii) If H =
⊕N

n=1Hn is a direct sum of Hilbert spaces and if
ρ =

⊕N
n=1 pnρn is a weighted direct sum of density matrices,

where {pn}n∈{1,...,N} is a probability distribution on {1, . . . , N}, then
S(ρ) = S(p) +

∑N
n=1 pnS(ρn), where p is viewed as a diagonal matrix

on CN with entries given by the pn.
10Thirring’s statement and proof can be found in [45, (2.2.4) pages 58–61]. However, it

seems that the first written account of his proof in English appears in Wehrl’s review [51,
pages 238–239].
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There are actually several implicitly hidden assumptions within these three.
For example, the dependence on eigenvalues means S(ρ) = S(UρU †) for all
unitaries U , i.e. S(ρ) is invariant under ∗-isomorphisms. The second item is
merely a normalization condition, which we have ignored (it specifies the
constant c). The third item is close to our orthogonally affine assumption.
However, an implicit assumption is made, which can be expressed as saying
that S(ρn) is equal to S(0 ⊕ · · · ⊕ ρn ⊕ · · · 0), i.e. S is invariant under the
non-unital inclusion of one matrix algebra into a direct sum. This is closely
related to Och’s partial isometry invariance assumption. In our characteriza-
tion, we obtain this property as well as invariance under ∗-isomorphisms as
a consequence of our axioms.

Two other characterizations of the von Neumann entropy have appeared
recently. The first is the topos-theoretic one of Constantin and Döring, which
is based on how different commutative subalgebras, called contexts, of a
fixed C∗-algebra determine its structure [6]. A context may be thought of as
probing a quantum system by measurements of an observable and sending
any state to the probability measure on the associated set of eigenvalues—in
other words, it is a ∗-homomorphism. The collection of all contexts forms a
category via inclusion and one can define measures associated to this cate-
gory via compatible families of probability measures on the contexts without
defining a state on the embedding algebra. They then classify the quantum
entropy by assuming the form of entropy on the subcategory of commuta-
tive algebras and minimizing over all contexts. One difference between our
assumptions for characterizing the von Neumann entropy is that we do not
assume the formula for the Shannon entropy, nor do we assume that commu-
tative algebras play any special role, which are singled out by the existence
of disintegrations for all state-preserving *-homomorphisms. On the other
hand, their characterization emphasizes the physically intuitive operational
importance of classical systems for determining the entropy.

Finally, there has also been an abstract characterization of the von Neu-
mann entropy by homological information structures introduced by Baudot
and Bennequin (cf. Theorem 3 page 3290 and Theorem 4 page 3313 of [5]),
which are further developed by Vigneaux [47, 48]. They seek to understand
information quantities more generally. It is not yet clear to us how our meth-
ods are related.
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[1] Stéphane Attal, Lecture 6: Quantum channels, 2014. Last accessed at http://

math.univ-lyon1.fr/˜attal/Quantum_Channels.pdf on January 27,
2020.

[2] John C. Baez, Category-theoretic characterizations of entropy III, 2011. Blog
post available at https://golem.ph.utexas.edu/category/2011/06/
categorytheoretic_characteriza_2.html (last accessed on June 18,
2020).

[3] John C. Baez and Tobias Fritz, A Bayesian characterization of relative entropy, Theory
Appl. Categ. 29 (2014), no. 16, 422–457, available at arXiv:1402.3067.

[4] John C. Baez, Tobias Fritz, and Tom Leinster, A characterization of entropy in terms of
information loss, Entropy 13 (2011), no. 11, 1945–1957, available at arXiv:1106.1791.

[5] Pierre Baudot and Daniel Bennequin, The homological nature of entropy, Entropy 17
(2015), no. 5, 3253–3318.

- 125 -

http://math.univ-lyon1.fr/~attal/Quantum_Channels.pdf
http://math.univ-lyon1.fr/~attal/Quantum_Channels.pdf
https://golem.ph.utexas.edu/category/2011/06/categorytheoretic_characteriza_2.html
https://golem.ph.utexas.edu/category/2011/06/categorytheoretic_characteriza_2.html
https://arxiv.org/abs/1402.3067
https://arxiv.org/abs/1106.1791


A. PARZYGNAT FUNCTORIAL VON NEUMANN ENTROPY

[6] Carmen-Maria Constantin and Andreas Doering, A topos theoretic notion of entropy,
2020. arXiv preprint: 2006.03139 [math.CT].

[7] Imre Csiszár, Axiomatic characterizations of information measures, Entropy 10
(2008), no. 3, 261–273.

[8] Lidia Del Rio, Johan Aberg, Renato Renner, Oscar Dahlsten, and Vlatko Vedral, The
thermodynamic meaning of negative entropy, Nature 474 (2011), no. 7349, 61–63.

[9] D. K. Faddeev, On the concept of entropy of a finite probabilistic scheme, Us-
pekhi Matematicheskikh Nauk 11 (1956), no. 1, 227–231. English translation
by Arina Zinovyeva available at https://arrowtheory.com/pub/notes/
025-faddeev-entropy.html.

[10] , Zum begriff der entropie einer endlichen wahrscheinlichkeitsschemas, Ar-
beiten zur Informationstheorie I. Deutscher Verlag der Wissenschaften (1957), 85–90.

[11] Mark Fannes, A continuity property of the entropy density for spin lattice systems,
Comm. Math. Phys. 31 (1973), no. 4, 291–294.

[12] Douglas R. Farenick, Algebras of linear transformations, Universitext, Springer-
Verlag, New York, 2001.

[13] Peter A. Fillmore, A user’s guide to operator algebras, Canadian Mathematical Soci-
ety Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York,
1996. A Wiley-Interscience Publication.

[14] Joe Flood, Semiconvex geometry, J. Austral. Math. Soc. Ser. A 30 (1980/81), no. 4,
496–510.

[15] Tobias Fritz, Convex spaces I: Definition and examples, 2009. arXiv preprint:
0903.5522 [math.MG].

[16] Robert Furber and Bart Jacobs, From Kleisli categories to commutative C∗-algebras:
probabilistic Gelfand duality, Log. Methods Comput. Sci. 11 (2015), no. 2, 1:5, 28,
available at arXiv:1303.1115.

[17] Mikhail Gromov, Probability, symmetry, linearity, Institut des Hautes Études Sci-
entifiques, 2014. Lecture recording available at https://www.youtube.com/
watch?v=aJAQVletzdY.

[18] Stanley P. Gudder, Convex structures and operational quantum mechanics, Comm.
Math. Phys. 29 (1973), no. 3, 249–264.

[19] , A general theory of convexity, Rendiconti del Seminario Matematico e Fisico
di Milano 49 (1979), no. 1, 89–96.

[20] Yonatan Harpaz, (co)Cartesian fibrations, 2016. Notes available at: https://www.
math.univ-paris13.fr/˜harpaz/#notes (last accessed on July 17, 2020).

[21] Michal Horodecki, Jonathan Oppenheim, and Andreas Winter, Partial quantum infor-
mation, Nature 436 (2005), no. 7051, 673.

- 126 -

https://arxiv.org/abs/2006.03139
https://arrowtheory.com/pub/notes/025-faddeev-entropy.html
https://arrowtheory.com/pub/notes/025-faddeev-entropy.html
https://arxiv.org/abs/0903.5522
https://arxiv.org/abs/1303.1115
https://www.youtube.com/watch?v=aJAQVletzdY
https://www.youtube.com/watch?v=aJAQVletzdY
https://www.math.univ-paris13.fr/~harpaz/#notes
https://www.math.univ-paris13.fr/~harpaz/#notes


A. PARZYGNAT FUNCTORIAL VON NEUMANN ENTROPY

[22] , Quantum state merging and negative information, Comm. Math. Phys. 269
(2007), no. 1, 107–136.

[23] Ryszard Horodecki and Pawel Horodecki, Quantum redundancies and local realism
194 (1994), no. 3, 147–152.

[24] Roman S. Ingarden and Andrzej Kossakowski, An axiomatic definition of informa-
tion in quantum mechanics, Bulletin L’Académie Polonaise des Sciences XVI (1968),
no. 1, 61–65.

[25] Rolf Landauer, Irreversibility and heat generation in the computing process, IBM jour-
nal of research and development 5 (1961), no. 3, 183–191.

[26] Elliott H. Lieb and Mary Beth Ruskai, Proof of the strong subadditivity of quantum-
mechanical entropy, J. Math. Phys. 14 (1973), 1938–1941.

[27] Göran Lindblad, An entropy inequality for quantum measurements, Comm. Math.
Phys. 28 (1972), no. 3, 245–249.

[28] , Entropy, information and quantum measurements, Comm. Math. Phys. 33
(1973), no. 4, 305–322.

[29] Fosco Loregian and Emily Riehl, Categorical notions of fibration, Expo. Math. (2019),
available at arXiv:1806.06129.

[30] Joe Moeller and Christina Vasilakopoulou, Monoidal Grothendieck construction, The-
ory Appl. Categ. 35 (2020), no. 31, 1159–1207, available at arXiv:1809.00727.

[31] Walter D. Neumann, On the quasivariety of convex subsets of affine spaces, Arch.
Math. 21 (1970), no. 1, 11–16.

[32] Michael A. Nielsen and Isaac L. Chuang, Quantum computation and quantum infor-
mation, 10th Anniversary Edition, Cambridge University Press, New York, NY, USA,
2011.

[33] Wilhelm Ochs, A new axiomatic characterization of the von Neumann entropy, Rep.
Math. Phys. 8 (1975), no. 1, 109–120.

[34] Arthur J. Parzygnat, Some 2-categorical aspects in physics, Ph.D. Thesis, 2016. Ph.D.
Thesis CUNY Academic Works.

[35] , Discrete probabilistic and algebraic dynamics: a stochastic Gelfand–
Naimark theorem, 2017. arXiv preprint: 1708.00091 [math.FA].

[36] Arthur J. Parzygnat and Benjamin P. Russo, Non-commutative disintegrations: exis-
tence and uniqueness in finite dimensions, 2019. arXiv preprint: 1907.09689 [quant-
ph].

[37] , A non-commutative Bayes’ theorem, 2020. arXiv preprint: 2005.03886
[quant-ph].
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