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GLOBULARLY GENERATED
DOUBLE CATEGORIES II: THE

CANONICAL DOUBLE PROJECTION

Juan Orendain

Résumé. Il s’agit du deuxième volet d’une série d’articles en deux par-
ties portant sur les catégories doubles librement globulairement engendrées.
Nous introduisons la construction canonique de la double projection. Celle-ci
transporte l’information des catégories doubles librement globulairement en-
gendrées aux catégories doubles définies par le même ensemble de données
globulaires et verticales. Nous utilisons cette double projection pour définir
des extensions fonctorielles linéaires formelles compatibles de la forme stan-
dard de Haagerup et de l’opération de fusion de Connes aux morphismes
entre facteurs d’index éventuellement infini. Nous l’utilisons encore pour
montrer que la construction de la double catégorie librement globulairement
engendrée est adjointe à gauche à l’ ”horizontalisation décorée”. Nous in-
terprétons ainsi les catégories doubles librement globulairement engendrées
comme des analogues formellement décorés des catégories doubles de quin-
tettes et comme des générateurs pour l’internalisation.

Abstract. This is the second installment of a two part series of pa-
pers studying free globularly generated double categories. We introduce the
canonical double projection construction. The canonical double projection
translates information from free globularly generated double categories to
double categories defined through the same set of globular and vertical data.
We use the canonical double projection to define compatible formal linear
functorial extensions of the Haagerup standard form and the Connes fusion
operation to possibly-infinite index morphisms between factors. We use the
canonical double projection to prove that the free globularly generated dou-
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ble category construction is left adjoint to decorated horizontalization. We
thus interpret free globularly generated double categories as formal decorated
analogs of double categories of quintets and as generators for internalizations.
Keywords. Bicategory, double category, 2-group, double groupoid, von Neu-
mann algebra
Mathematics Subject Classification (2010). 18D35, 46M05, 46M20, 46L10

1. Introduction

Globularly generated double categories were introduced by the author in
[15] in order to study ways of minimally lifting bicategories into double
categories along possible categories of vertical arrows. Free globularly gen-
erated double categories were later introduced in [16]. The free globularly
generated double category construction minimally associates to every bicat-
egory together with a possible category of vertical arrows, a double category
fixing this set of initial data. Free globularly generated double categories are
related to free products of groups and monoids, free double categories in the
sense of [9] and to the Ehresmann double category of quintets construction
[10], they define numerical invariants for both bicategories and double cat-
egories, and provide formal linear functorial extensions of operations in the
representation theory of von Neumann algebras.

In this paper we study the canonical projection double functor. The
canonical double projection transfers information from free globularly gen-
erated double categories to other double categories defined through the same
set of initial data. In the language of [15, 16] given a decorated bicategory
(B,B∗), i.e. given a bicategory B together with a category B∗ having the
same set of objects as B, and a globularly generated double category C in-
ternalizing (B,B∗), i.e. having B∗ as category of objects and B as horizontal
bicategory, the canonical double projection associated to C is a strict double
functor

πC : Q(B,B∗) → C

from the free globularly generated double category Q(B,B∗) associated to
(B,B∗), to C, such that πC is surjective on squares and acts as the iden-
tity on objects, vertical morphisms, horizontal morphisms and 2-cells of B.
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We summarize this by saying that the restriction of the decorated horizontal-
ization pseudofunctor H∗πC of πC , see [15, Section 2.6], to (B,B∗), is the
identity on (B,B∗), or equivalently by the equation:

H∗πC �B= idB

In Theorem 2.1 we prove canonical double projections always exist and that
are uniquely determined by the above properties. We interpret the properties
defining canonical double projections by considering free globularly gener-
ated double categories and canonical double projections as generators and
relations presentations of general globularly generated double categories. In
Section 3 we exploit this to provide bounds for numerical invariants of dou-
ble categories, to prove that every lift of a decorated 2-groupoid canonically
contains a double groupoid, and to provide compatible formal linear functo-
rial extensions of the Haagerup standard form and the Connes fusion opera-
tion extending the corresponding functors provided in [1]. In Section 4 we
extend the free globularly generated double category construction to a func-
tor Q : bCat∗ → dCat and in Theorem 5.2 we prove that Q fits into a left
adjoint pair (Q,H∗) with the collection of canonical double projections as
counit thus making free globularly generated double categories free objects
with respect to H∗, see Corollary 5.6. We regard this result as a fibered ver-
sion of the classic result of [18] and [4] exchanging horizontalizationH with
decorated horizontalization H∗ and the Ehresmann double category of quin-
tets functor Q with Q. We provide a more detailed account of the contents
and motivation for the main results of the paper.

Internalization

Given a bicategory B we will say that a category B∗ is a decoration for
B if the collection of 0-cells of B and the collection of objects of B∗ are
equal. In that case we say that the pair (B∗,B) is a decorated bicategory.
Given a double category C the pair (C0, HC) formed by the category of
objects and the horizontal bicategory of C is a decorated bicategory. We will
write H∗C for this decorated bicategory. We will call H∗C the decorated
horizontalization of C. We are interested in the question of how generic
the decorated horizontalization construction is, i.e. we are interested in how
and when a given decorated bicategory con be presented as the decorated
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horizontalization of a double category. We study solutions to the following
problem:

Problem 1.1. Let (B∗,B) be a decorated bicategory. Find double categories
C satisfying the equation H∗C = (B∗,B).

We call any solution C to the equation H∗C = (B∗,B) an internalization of
(B∗,B). Problem 1.1 admits the following pictorial interpretation: Suppose
we are given a collection of globular diagrams of the form:

• •

β

α

ϕ

forming a bicategory, together with a collection of vertical arrows of the
form:

•

•

f, g, etc.

forming a category, satisfying the condition that the collection of vertices of
both sets of diagrams coincide. With this data we can form hollow squares
of the form:

• •

• •

α

f g

β
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formed by the edges of the diagrams we are provided with. Problem 1.1
asks about ways to fill these hollow squares equivariantly with respect to the
globular diagrams in our set of initial conditions. That is, Problem 1.1 asks
for the existence of systems of solid squares of the form:

• •

• •

α

f g

β

ψ

forming a double category such that every square as above admits an inter-
pretation as a globular diagram together with extra structure provided only
by our category of vertical arrows, that is such that the only solid squares of
the form:

• •

• •

α

id id

β

ϕ

are the globular diagrams provided as set of initial conditions. We regard the
decorated horizontalization condition of Problem 1.1 a formalization of the
equivariance condition on the above squares.

Constructions of this sort appear in different parts of the theory of dou-
ble categories. Notably the double category of squares and the double cat-
egory of commuting squares construction, the Ehresmann double category
of quintets construction [10], the double category of adjoint pairs construc-
tion [17], and the double categories of spans and cospans constructions all
follow the pattern described above. Double categories of squares have cat-
egories as globular and vertical sets of initial data, the double category of
quintets has a given 2-category and the corresponding category of 1-cells
as set of initial data, the double category of adjoints has a given 2-category
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together with adjoint pairs of 1-cells as set of initial data, and the double
category of spans/cospans has the bicategory of spans/cospans of a category
with pushouts/pullbacks and the arrows of this category as globular and ver-
tical sets of initial data. In all cases solid squares are carefully chosen so as
to encode different aspects of the globular theory.

Our main interest in Problem 1.1 comes from the theory of representa-
tions of von Neumann algebras. In [1, 2] a double category of semisimple
von Neumann algebras, Hilbert bimodules and finite index bounded equiv-
ariant intertwiners was defined. See [3] for applications to conformal field
theory and the Stolz-Teichner program. The main goal of this construction is
to serve as an intermediate step in the construction of an internal bicategory
of coordinate free conformal nets. The main obstruction for the existence of
an internal bicategory of general, i.e. not-necessarily-semisimple coordinate
free conformal nets, is the existence of a compatible pair of tensor functors
extending the Haagerup standard form construction [11] and the Connes fu-
sion operation to not-necessarily-finite index morphisms of semisimple von
Neumann algebras. The existence of such tensor functors is equivalent to
the existence of a tensor double category of (not-necessarily-semisimple)
von Neumann algebras, Hilbert bimodules, and (not-necessarily-finite in-
dex) equivariant intertwiners extending the double category defined in [1].
We achieve this in this paper in the case of linear double categories of factors.

Globularly generated double categories

Globularly generated double categories were introduced in [15] as minimal
solutions to Problem 1.1. A double categoryC is globularly generated ifC is
generated by its collection of globular squares. Pictorially a double category
C is globularly generated if every square of C can be written as vertical and
horizontal compositions of squares of the form:

• • • •

• • • •

α

id id

β

ϕ

id

f f

id

if
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Given a double category C we write γC for the sub-double category of C
generated by squares of the above form. We call γ the globularly generated
piece of C. γC is globularly generated, satisfies the equation

H∗C = H∗γC

and is contained in every sub-double categoryD ofC satisfying the equation
H∗C = H∗D. Moreover, a double category C is globularly generated if
and only if C does not contain proper sub-double categories satisfying the
above equation. Globularly generated double categories are thus minimal
with respect to H∗.

The comments in the previous paragraph admit the following categori-
cal interpretation: Let dCat, gCat and bCat∗ denote the category of double
categories and double functors, the full sub-category of dCat generated by
globularly generated double categories and the category of decorated bicate-
gories and decorated pseudofunctors respectively. Decorated horizontaliza-
tion extends to a functor H∗ : dCat → bCat∗ and the globularly generated
piece construction extends to a functor γ : dCat → gCat. In [15, Proposi-
tion 3.6] it is proven that γ is a coreflector of gCat in dCat. It is easily seen
that this implies that γ is a Grothendieck fibration. Moreover, H∗ is constant
on γ-fibers. We present this through the following diagram:

dCat bCat∗

gCat

H∗

γ H∗ �gCat

i

`

where i denotes the inclusion of gCat in dCat. The above diagram breaks
Problem 1.1 into the problem of studying bases of γ and then understanding
the double categories in each fiber. We follow this strategy and thus study
globularly generated double categories, i.e. bases with respect to γ.

The vertical filtration
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Globularly generated double categories admit a helpful combinatorial de-
scription provided in the form of a filtration of their categories of squares.
Given a globularly generated double categoryC we write V 1

C for the category
formed by vertical compositions of squares of the form:

• • • •

• • • •

α

id id

β

ϕ

id

f f

id

if

and we denote by H1
C the (possibly weak) category formed by horizontal

compositions of squares of this form. Assuming we have defined V k
C andHk

C

through vertical and horizontal compositions respectively, we make V k+1
C to

be the category generated by squares in Hk
C and Hk+1

C the (possibly weak)
category generated by squares in V k+1

C . The category of squares C1 of C
satisfies the equation C1 = lim−→V k

C . We define the length `C ∈ N ∪ {∞}
of a double category C as the minimal k such that the equation γC1 = V k

γC

holds. Intuitively the vertical length of a double category C measures the
complexity of expressions of squares inC by globular and horizontal identity
squares.

We further explain the vertical filtration construction through the follow-
ing pictorial representation: We regard the globular and horizontal identity
squares of a double category C as the simplest possible squares of C, i.e. we
regard these squares as having ’complexity’ 0. We thus represent globular
and horizontal identity squares diagramatically as squares marked by 0, i.e.
as:

0

The collection of such squares is what in Section 2 we denote by G. Observe
that the collection of 0-marked squares is closed under horizontal composi-
tion. Squares in V 1

C are those squares in C admitting a subdivision as vertical
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composition of 0-marked squares. Diagrammatically every square in V 1
C ad-

mits a decomposition as:

0

0

0

···
where we draw internal 0-marked squares as rectangles for convenience. If a
square as above is not globular or a horizontal identity, i.e. is not 0-marked,
we mark it with 1. We represent 1-marked squares pictorially as:

1

Squares in H1
C are thus those squares in C that admit a subdivision as hor-

izontal composition of squares marked with i ≤ 1. Given two horizontally
composable squares ϕ, ψ in V 1

C we might be able to find compatible verti-
cal subdivisions of ϕ and ψ in 0-marked squares, i.e. we might be able to
represent the horizontal composition of ϕ and ψ as:

0

0

0

···

0

0

0

···

where the internal 0-marked squares of the left and right outer squares match
and can be composed horizontally. In that case we can use the exchange
identity to re-arrange the above horizontal composition into a vertical sub-
division of 0-marked squares. Example [16, Example 4.1] shows that this
is not always the case and that there might exist horizontally composable
squares ϕ, ψ such that any two vertical subdivisions into 0-squares look like:
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0

0

0

···

0

0

···

i.e. the internal 0-squares cannot be arranged to match horizontally. Such
horizontal compositions are not 1-marked. We represent squares in H1

C as
above, i.e. squares in H1

C \ V 1
C as squares marked with 1+1/2, i.e. as:

1 + 1/2

V 2
C is thus the category of squares admitting a vertical subdivision into squares

marked with ≤ 1 + 1/2. Inductively, given k ≥ 1, V k
C is the category of

squares admitting vertical subdivisions as:

i1

i2

is

···

where the ij’s are all ≤ k − 1/2. Squares marked with k are squares in V k
C

not marked with i < k. Hk+1
C is the (possibly weak) category of squares

admitting a horizontal subdivision as:

i1 i2 is

···

where the ij’s are all ≤ k. Squares marked with k+ 1/2 are those squares in
Hk
C such that no subdivision as above can be reduced as a vertical subdivision

as i-squares with i ≤ k − 1/2. In [16] it shown that there exist globularly
generated double categories such that squares marked with k+ 1/2 exist for
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every k ≥ 0. The formula C1 = lim−→V k
C thus means that in a globularly

generated double category C every square admits a N + 1/2N-marking as
above. The length of a square ϕ marked by x ∈ N + 1/2N is dxe and the
length `C is the maximum of legths of squares in C. The above pictorial
representation is only meant to serve as intuition for the vertical filtration
construction and we will not use it for the remainder of the paper.

Free globularly generated double categories

The free globularly generated double category construction associates to
every decorated bicategory (B∗,B) a globularly generated double category
Q(B∗,B). The double categoryQ(B∗,B) lifts the bicategory structure of B in the
sense that the category of objects Q(B∗,B)0 of Q(B∗,B) is equal to B∗, the hor-
izontal morphisms of Q(B∗,B) are the 1-cells of B and B is a sub-bicategory
of HQ(B∗,B)0 . The equation

H∗Q(B∗,B) = (B∗,B)

holds only in special cases, e.g. B∗ is reduced or B∗ is the category of factors
and unital ∗-morphisms, but the inclusion

(B∗,B) ⊆ H∗Q(B∗,B)

always holds. Free globularly generated double categories thus not always
provide solutions to Problem 1.1. An example where the above inclusion is
proper is provided in [16, Example 3.1], where it is proven that in the case
in which B∗ is the delooping groupoid ΩZ2 of Z2 and B is the double de-
looping 2-group 2ΩZ2 of Z2, i.e. when ΩZ2 is the groupoid with a single
object having Z2 as group of automorphisms and 2ΩZ2 is the 2-group having
a single object with endomorphism category ΩZ2, the horizontal bicategory
HQ(2ΩZ2,ΩZ2) associated to the decorated bicategory (2ΩZ2,ΩZ2) is equal
to Ω(Z2 ∗ Z2). The inclusion (B,B∗) ⊆ H∗Q(B,B∗) is in this case obviously
proper. We call decorated bicategories for which their free globularly gen-
erated double category provides solutions to Problem 1.1 saturated. Every
decorated bicategory (B∗,B) has a saturated decorated bicategory associated
to it with the same free globularly generated double category as (B∗,B). Free
globularly generated double categories are related to free products and free
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double categories in the sense of [9]. Moreover, free globularly generated
double categories provide examples of double categories of arbitrarily large
and infinite length and provide formal equivariant functorial extensions of
the Haagerup standard form and the Connes fusion operation in the theory
of representation of von Neumann algebras.

The canonical double projection

The canonical double projection construction relates free globularly gener-
ated double categories to general solutions to Problem 1.1. Precisely, given
a decorated bicategory (B∗,B) and a double category C satisfying the equa-
tion H∗C = (B∗,B) the double canonical projection associated to C is a
strict double functor πC : Q(B∗,B) → γC satisfying the equation:

πC �(B∗,B)= id(B∗,B)

and such that πC is surjective on squares. Moreover, πC is unique with
respect to this property. We interpret the existence of such double func-
tors as the fact that every globularly generated solution to Problem 1.1 for a
decorated bicategory (B∗,B) can be canonically expressed as a double quo-
tient of Q(B∗,B). We apply the canonical double projection to length, double
groupoids, double deloopings of groups decorated by groups, and to double
categories of von Neumann algebras. All applications of the canonical dou-
ble projections follow the slogan: Saying something about the free globularly
generated double category associated to a decorated bicategory translates
to saying something about all its globularly generated internalizations, the
intuition of which clearly follows from the properties defining the canonical
double projection.

The canonical double projection construction provides free globularly
generated double categories with the structure of universal bases with respect
to the fibration γ as follows: We extend the free globularly generated double
category construction to a functor Q : bCat∗ → gCat using methods analo-
gous to those used in the construction of the canonical double projection. We
prove that the set of canonical double projections π• =

{
πC : C ∈ gCat

}
provides a counit to a left adjunction pair (Q,H∗). We thus obtain a diagram
as:
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dCat bCat∗

gCat

H∗

γ H∗

i

a

Q

`

completing the similar diagram above. Further, we prove that the restriction
H∗ �gCat is faithful. This provides gCat with the structure of a concrete
category over bCat∗ and provides Q with the structure of a free contruction
with respect to H∗.

We consider the above statement as a generalization of a classic result in
nonabelian algebraic topology. In [5] the concept of edge symmetric double
category with connection is introduced. In [18] and later in [4] it is proven
that the category dCat! of edge symmetric double categories with connec-
tion is equivalent to the category 2Cat of 2-categories, with equivalences
provided by the horizontalization functor H and the functor associating to
every 2-category B its Ehresmann category of quintets QB. Pictorially H
and Q fit into a diagram of the form:

dCat! 2Cat

H

Q

∼=

The above diagram can be considered as a statement on fillings of hollow
squares. When considering problems of filling squares through data pro-
vided by general decorated bicategories and not just by data provided by
2-categories decorated by 1-cells, one wishes to obtain a similar statement.
We regard the diagram involving H∗ and Q above as a decorated bicategory
version of the diagram involving Q and H above, fibered by γ.

Notational conventions
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We will follow the notational conventions appearing in [15, 16]. We refer the
reader to Section 3 of [16] for the details of the notational conventions used
in the construction of the free globularly generated double category. We will
heavily use the notation and results presented there. In the introduction we
have written decorated bicategories in the form (B∗,B) with B∗ denoting the
decoration and B denoting the underlying bicategory of (B∗,B) respectively.
In what follows we will suppress B∗ from this notation and we will denote
B for a decorated bicategory (B∗,B).

Contents

In Section 2 we introduce the canonical double projection construction. We
prove that the canonical double projection always exists and that it is uniquely
determined by the conditions mentioned in the introduction. The construc-
tion of the canonical double projection follows a strategy similar to that
of the free globularly generated double category construction. In Section
3 we study applications of canonical double projections. We provide up-
per bounds for lengths of internalizations, we prove that every globularly
generated internalization of a decorated 2-groupoid is a double groupoid
and we provide compatible formal linear extensions of the Bartels-Douglas-
Hénriques Haagerup standard form and Connes fusion functors to the cate-
gory of factors and possibly-infinite index morphisms. In Section 4 we ex-
tend the free globularly generated double category construction to decorated
pseudofunctors thus extending the free globularly generated double category
construction to a functor. In Section 5 we prove that the pair formed by the
free globularly generated double category functor and the decorated hori-
zontalization functor forms a left adjoint pair. Moreover, we prove that the
restriction of the decorated horizontalization functor to globularly generated
double categories is faithful. We use this to interpret globularly generated
double categories as a concrete category over decorated bicategories and the
free globularly generated double category construction as a free object.
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2. The canonical double projection

In this section we present the canonical double projection construction. Given
a decorated bicategory B the canonical double projection construction asso-
ciates to every double category C satisfying the equationH∗C = B a unique
strict double functor πC : QB → γC such that πC acts as the identity on B
and such that πC is surjective on squares. The following is the main theorem
of this section.

Theorem 2.1. Let B be a decorated bicategory. LetC be a globularly gener-
ated double category such that H∗C = B. In that case there exists a unique
strict double functor πC : QB → C such that the equation

H∗πC �B= idB

holds, and such that πC is surjective on squares.

Given a double category C satisfying the conditions above for a decorated
bicategory B we will call the double functor πC provided in Theorem 2.1
the canonical double projection associated to C. We divide the construction
of πC in several steps. We begin by summarizing the free globularly gen-
erated double category construction. We do this in order to set notational
conventions used throughout the section and the rest of the paper. The exact
details of this construction and the corresponding notational conventions can
be found in [16, Section 2].

The free globularly generated double category: Quick summary

Given functions s, t : X → Y between sets X and Y , which we interpret
as source and target functions for elements of X , we write Xs,t for the set
of evaluations of finite compatible words of elements of X with respect to
different parentheses patterns. Geometrically Xs,t is the set of compatible
evaluations, with elements of X , of the vertices of all Stasheff associahe-
dra [19, 20]. The functions s, t extend to functions s̃, t̃ : Xs,t → Y and
concatenation provides a composition ∗s,t : Xs,t ×Y Xs,t → Xs,t. Given
another pair of functions s′, t′ : X ′ → Y ′ as above and a pair of functions
ψ : X → X ′, ϕ : Y → Y ′ intertwining s, s′ and t, t′, evaluation on ψ pro-
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vides a function µψ,ϕ : Xs,t → X ′s′.t′ intertwining s̃, s̃′, t̃, t̃′ and ∗s,t, ∗s′,t′ .
We apply these conventions to the situation we are interested in as follows.

Let B be a decorated bicategory. We formally associate to every 2-cell ϕ
in B a diagram of the form:

• •

• •

ϕ

and we associate to every morphism f in B∗ a square of the form:

• •

• •

f fif

where the blue and red arrows above always denote identity arrows in B∗
and B respectively. We write G for the collection of the above diagrams.
The free globularly generated double category QB is the double category
freely generated by G. We explain this in more detail. Going around the
edges of the above squares there are obvious vertical domain and codomain
functions d0, c0 : G→ HomB1 and obvious horizontal domain and codomain
functions s0, t0 : G→ HomB∗ . We write E1 for B1s0,t0

. The functions d0, c0

extend to functions on E1. We write F1 for the free category generated by
E1 with respect to these extensions. The functions s0, t0 extend to functors
on F1. We extend this construction inductively and obtain increasing se-
quences Ek and Fk equipped with corresponding functions dk, ck and func-
tors sk+1, tk+1 satisfying certain compatibility conditions, see [16, Lemma
2.5]. We consider limits in Set and Cat and obtain a category F∞ together
with functions d∞, c∞ and functors s∞, t∞ extending d0, c0 and s0, t0 respec-
tively. The category F∞ does not capture the information contained in B∗.
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We thus consider an equivalence relationR∞ on the set of morphisms E∞ of
F∞ implementing this information, see [16, Definition 2.10]. We write V∞
for the quotient F∞/R∞. The structure used to define F∞ descends to V∞
and provides the pair (B∗, V∞) with the structure of a double category. This
is the free globularly generated double category QB associated to B.

The category V∞ described above comes equipped with a filtration Vk,
which we call the free vertical filtration of QB and the set of squares H∞
of QB comes equipped with a horizontal filtration Hk. We call Hk the free
horizontal filtration of QB, see [16, Lemma 2.20]. In Section 4 we deal with
the free globularly generated double category associated to more than one
decorated bicategory. In that case we will write the corresponding decorated
bicategory as superscript in the pieces of structure described above. We now
proceed to the proof of Theorem 2.1. We first briefly explain our strategy for
the proof.

Strategy

The construction in Theorem 2.1 will follow a strategy similar to that em-
ployed in the free globularly generated double category construction ex-
plained above. Let B be a decorated bicategory. Let C be a globularly
generated double category satisfying the equation H∗C = B. We will begin
the construction of πC by first defining πC on squares of the form

• • • •

• • • •

ϕ f fif

Recall that we denote the set of the above squares by G. We thus first define
πC on G. The equation

H∗πC �B= idB

together with the requirement that πC is a strict double functor, forces πC

to act as the identity in such squares. We extend πC formally to E1 and
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we extend this freely to F1. We proceed through an induction argument, to
extend πC to Ek, Fk for every positive integer k. We do this carefully so
as to make these extensions compatible with the finite terms of the structure
data dk, ck, sk, tk, ∗k defined on categories Fk. This is the content of Lemma
2.3. We take limits and define a functor on F∞. We prove that this functor is
well defined with respect to the equivalence relation R∞ defining QB. This
is the content of Lemma 2.6 and Lemma 2.7. This will prove that our limit
functor descends to a functor from V∞ to C1. This will be the morphism
functor of the canonical double projection πC . Finally we take advantage of
the vertical filtration on C to prove uniqueness and square surjectivity of πC .

We show how the construction of πC works in a specific example. Let
B be the decorated 2-group (2ΩZ2,ΩZ2) as in [16, Example 3.1]. Consider
squares of the form

∗ ∗

∗ ∗

a a(a, b)

where a, b ∈ Z2. The collection of squares as above forms a double groupoid,
which we denote by C. The vertical composition of two squares (a, b) and
(a′, b′) in C is the square (aa′, bb′) and the horizontal composition of two
horizontally composable squares (a, b) and (a, b′) is (a, bb′). It is easily seen
that C is globularly generated, has vertical length 1, and that the groupoid of
squares of C is the delooping groupoid ΩV of the Klein 4-group V . More-
over, if we identify the 2-cells in B with the squares (1, b) with b ∈ Z2, then
the equationH∗C = B holds. We briefly describe the procedure to construct
πC in this case.

The generating set G for the free globularly generated double category
QB is formed by the formal squares
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∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

−1 −1i−1 1 1i1 1 1−1

The first step in the construction of πC associates to the above squares, from
left to right, the following squares in C:

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

−1 −1(−1, 1) 1 1(1, 1) 1 1(1,−1)

The second step of the free globularly generated double category construc-
tion for B considers the free category F1 on G. In this case F1 is the deloop-
ing category on the free monoid generated by the three squares forming G
above. The second step of the construction of πC is thus the unique functor
from F1 to C1 extending the value of πC on G described above. We can
recover the square

∗ ∗

∗ ∗

−1 −1(−1,−1)

in C as the image, under πC , of the formal composition
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∗ ∗

∗ ∗

∗ ∗

−1 −1i−1

1 1−1

in F1. By [16, Proposition 5.1] the decorated 2-group B has free length 1 and
thus every square inQB can be written as a vertical composition of squares in
F1. It is not difficult to see that, V∞ which in this case is F 1/R∞, is equal to
the delooping groupoid Ω(Z2∗Z2) on the free product Z2∗Z2 that the canon-
ical double projection πC is the double functor from QB to C induced by the
projection from Z1 ∗ Z2 to V induced by the square-assignments described
above. In the case where a decorated bicategory B has free length > 1, e.g.
[16, Example 4.1] the construction of the canonical double projection πC

follows the above pattern inductively.

Construction

Notation 2.2. Let C be a double category. We denote by qC the function
from HomC1s,t

to HomC1 associating to every evaluation Φ of a compatible
sequence of squares Ψ1, ...,Ψk in C, the horizontal composition Ψk∗· · ·∗Ψ1

following the parenthesis pattern defining Φ.

Lemma 2.3. Let B be a decorated bicategory. Let C be a globularly gener-
ated double category satisfying the equation H∗C = B. There exists a pair,
formed by a sequence of functions Eπ

k : Ek → HomC1 and a sequence of
functors F π

k : Fk → C1, with k ≥ 1, such that the following conditions are
satisfied:

1. The restriction Eπ
1 �G is equal to idG.
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2. For every m, k ≥ 1 such that m ≤ k, the restriction of Eπ
k to the set

of morphisms of Fm is equal to the morphism function of F π
m, and the

restriction to Em of the morphism function of F π
k is equal to Eπ

m.

3. The following two triangles commute for every positive integer k:

Ek HomC1

B1

Eπk

dk, ck dom, codom

4. The following two triangles commute for every k ≥ 1:

Ek HomC1

HomB∗

Eπk

sk+1, tk+1 s, t

5. The following two triangles commute for every k ≥ 1:

Fk C1

B∗

Fπk

sk+1, tk+1
s, t

6. The following square commutes for every k ≥ 1:
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Ek ×HomB∗ Ek HomC1 ×HomB∗ HomC1

Ek HomC1

Eπk × E
π
k

∗k

Eπk

∗

Moreover, conditions 1-5 above determine the pair of sequences Eπ
k and F π

k .

Proof. Let B be a decorated bicategory. Let C be a globularly generated
double category such that H∗C = B. We wish to construct a sequence of
functions Eπ

k from EBk to HomC1 and a sequence of functors F π
k from FBk to

C1 with k running through the collection of positive integers, in such a way
that the pair of sequences Eπ

k and F π
k satisfies conditions 1-6 of the lemma.

We proceed inductively on k. We begin with the definition of function
Eπ

1 . Observe first that from the fact that H∗C = B it follows that the col-
lection of morphisms of B∗ is equal to the collection of vertical morphisms
of C. There is thus an obvious identification between the formal horizon-
tal identities of QB and the collection of horizontal identities of C. We use
this identification and consider the horizontal identities of both QB and C
as being the same. Observe that that the equation H∗C = B also implies
that the globular squares of C are precisely the 2-cells of B. Thus G is the
set of generators, as a globularly generated double category, of C. We make
Eπ

1 to be the composition qCµidG,idB∗ . Thus defined Eπ
1 is a function from

E1 to HomC1 . Moreover, from the way it was defined it easily follows that
Eπ

1 satisfies condition 1 and conditions 3-5 in the statement the lemma. We
now define the functor F π

1 as follows: Observe first that from the fact that
H∗C = B it follows that the collection of horizontal morphisms of C is
equal to B1. We make the object function of F π

1 to be idB1 . From the fact
that Eπ

1 satisfies condition 3 of the statement of the lemma and from the fact
that E1 freely generates F1 with respect to d1, c1 it follows that there exists a
unique extension of Eπ

1 to a functor from F1 to C1. We make F π
1 to be this

extension. Thus defined F π
1 trivially satisfies condition 2 of the statement of

the lemma with respect to Eπ
1 . The fact that the functor F π

1 satisfies the con-
dition 5 in the statement of the lemma follows from the fact that the function
Eπ

1 satisfies condition 4 and from the functoriality of s1 and t1.
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Let k > 1. Assume now that for every m < k the function Eπ
m from

Em to HomC1 and the functor F π
m from Fm to C1 have been defined, in such

a way that the pair of sequences Eπ
m and F π

m with m running through the
collection of positive integers strictly less than k satisfies the conditions 1-
6 in the statement of the lemma. We now construct a function Eπ

k from
Ek to HomC1 and a functor F π

k from Fk to C1 such that the pair Eπ
k , F

π
k

satisfies conditions 1-6 in the statement of the lemma with respect to the
pair of sequences Eπ

m, F
π
m with m running through the collection of positive

integers strictly less than k.
We first define the function Eπ

k . Observe first that from the assumption
that F π

k−1 satisfies condition 5 it follows that the function µFπk−1,idB∗
is well

defined. We make Eπ
k to be composition qCµFπk−1,idB∗

. Thus defined Eπ
k is

a function from Ek to HomC1 . From the way it was defined it is clear that
Eπ
k satisfies conditions 4 and 6 of the lemma. From the induction hypothesis

it follows that Eπ
k satisfies conditions 1 and 2. The function Eπ

k satisfies the
condition 3 of the lemma by the fact that it satisfies condition 2 and by the
functoriality of F π

k−1. We now define the functor F π
k . By the fact that the

function Eπ
k satisfies the condition 3 of the lemma it follows that there is

a unique extension of Eπ
k to a functor from Fk to C1. We make F π

k to be
this functor. Thus defined F π

k satisfies the condition 2 of the lemma. This
follows from the way F π

k was constructed and from the fact that condition
2 is already satisfied by the function Eπ

k . From the fact that Eπ
k satisfies

condition 4 it follows that the functor F π
k satisfies the condition 5 of the

lemma. We have thus constructed, recursively, a pair of sequences Eπ
k , F

π
k

satisfying the conditions in the statement of the lemma. This concludes the
proof.

Observation 2.4. Let B be a decorated bicategory. Condition 2 of Lemma
2.3 implies that for every pair m, k ≥ 1 such that m ≤ k the following two
equations hold:

Eπ
k �Em= Eπ

m and F π
k �Fm= F π

m

Notation 2.5. Let B be a decorated bicategory. Let C be a globularly gen-
erated double category satisfying the equation H∗C = B. In that case we
write Eπ

∞ for the limit lim−→Eπ
k in Set and we write F π

∞ for the limit lim−→F πC

k

Cat. Thus defined Eπ
∞ is a function from E∞ to the set of squares of C and
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F π
∞ is a functor from F∞ to the category of squares of C. The function Eπ

∞
is the morphism function of F π

∞.

The following lemma follows directly from Lemma 2.3 and Observation 2.4.

Lemma 2.6. Let B be a decorated bicategory. Let C be a globularly gener-
ated double category such that H∗C = B. In that case Eπ

∞ and F π
∞ satisfy

the following conditions:

1. The equations Eπ
∞ �Ek= Eπ

k and F π
k �Fk= F π

k hold for every k ≥ 1.

2. The following two triangles commute:

F∞ C1

B∗

Fπ∞

s∞, t∞
s, t

3. The following square commutes:

E∞ ×HomB∗ E∞ HomC1 ×HomB∗ HomC1

E∞ HomC1

Eπ∞ × Eπ∞

∗∞

Eπ∞

∗

Lemma 2.7. Let B be a decorated bicategory. Let C be a globularly gen-
erated double category such that H∗C = B. In that case the functor F π

∞ is
well defined with respect to the equivalence relation R∞.
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Proof. Let B be a decorated bicategory. Let C be a globularly generated
double category such that H∗C = B. We wish to prove that F π

∞ is well
defined with respect to the equivalence relationR∞. The fact that F π

∞ is well
defined with respect to relation 1 in the definition of R∞ follows from the
functoriality of F π

∞ together with the fact that F π
∞ satisfies conditions 5 and

6 of Lemma 2.3.
We now prove that F π

∞ is well defined with respect to relation 2 in the
definition of R∞. Let first Φ and Ψ be globular squares of B such that the
pair Φ,Ψ is compatible with respect to d∞ and c∞. In that case the image
F π
∞Ψ •∞ Φ of the vertical composition Ψ •∞ Φ of under F π

∞ is equal to the
image F π

1 Ψ•∞Ψ of Ψ•∞Φ under F π
1 , which is, by functoriality of F π

1 equal
to the composition F π

1 Ψ • F π
1 Φ in C of F π

1 Φ and F π
1 Ψ, which is equal, by

the definition of F π
1 to Ψ • Φ. Now, F π

∞Ψ • Φ is equal to Eπ
1 Ψ • Φ, which

is equal, by the way Eπ
1 was defined, to Ψ • Φ. The functor F π

∞ is thus well
defined with respect to relation 2 in the definition of R∞ when restricted to
the 2-cells of B. Let now α and β be morphisms of B such that the pair α, β
is composable. In that case F π

∞iβ •∞ iα is equal to F π
1 iβ •∞ iα, which is

equal to F π
1 iβ • F π

1 iβ . This is equal, again by the definition of F π
1 , to iβ • iα.

Now, F π
∞iβα is equal to Eπ

1 iβα which is, by the way Eπ
1 was defined, equal

to iβα, that is, F π
∞iβα is equal to iβ • iα. We conclude that F π

∞ is well defined
with respect to relation 2 in the definition of R∞ when restricted to formal
horizontal identities and thus F π

∞ is well defined with respect to relation 2 in
the definition of R∞.

We now prove that F π
∞ is well defined with respect to relation 3 in the

definition of R∞. Let Φ and Ψ be globular squares in B such that the pair
Φ,Ψ is compatible with respect to s∞ and t∞. In that case F π

∞Ψ ∗∞ Φ is
equal to Eπ

1 Ψ ∗1 Φ. This is equal, by the fact that Eπ
1 satisfies condition 6 of

Lemma 2.3, to Eπ
1 Ψ ∗Eπ

1 Φ, which, by the definition of Eπ
1 is equal to Ψ ∗Φ.

Now, F π
∞Ψ ∗ Ψ is equal to Eπ

1 Φ ∗ Ψ. This is equal, again by the way Eπ
1

was defined, to Ψ ∗ Φ. We conclude that F π
∞ is well defined with respect to

relation 3 in the definition of R∞.
Finally, the fact that F π

∞ is well defined with respect to relations 4 and 5
in the definition of relation R∞ follows from conditions 3 and 5 of Lemma
2.3 and from the fact that idB carries left and right identity transformations
to left and right identity transformations and associators to associators. This
concludes the proof of the lemma.
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Notation 2.8. Let B be a decorated bicategory. Let C be a globularly gen-
erated double category such that H∗C = B. In that case will write V π

∞ for
the functor from V∞ to C1 induced by F π

∞ and R∞. We write Hπ
∞ for the

morphism function of V π
∞.

The proof of the following lemma follows directly from Lemma 2.6 by tak-
ing limits.

Lemma 2.9. Let B be a decorated bicategory. Let C be a globularly gen-
erated double category such that H∗C = B. In that case V π

∞ satisfies the
following conditions:

1. The following two triangles commute:

V∞ C1

B∗

V π∞

s∞, t∞
s, t

2. The following square commutes for every k ≥ 1:

V∞ ×B∗ V∞ C1 ×B∗ C1

V∞ C1

V π∞ × V π∞

∗∞

V π∞

∗

Existence
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We now prove the existence part of Theorem 2.1.

Proof: Let B be a decorated bicategory. Let C be a globularly generated
double category such that H∗C = B. We wish to construct a double functor
πC : QB → C such that H∗π = dB.

We make πC to be equal to the pair (idB∗ , V
π
∞). The pair πC is a double

functor fromQB toC by Lemma 2.9 and by the fact that it clearly intertwines
the horizontal identity functor i∞ in QB and the horizontal identity functor i
in C. The fact that H∗π �G is equal to idB follows directly from the way V π

∞
was defined. This concludes the proof. �

Definition 2.10. Let B be a decorated bicategory. Let C be a globularly
generated double category such that H∗C = B. We call the double functor
πC defined in the above the canonical double projection associated to C.

When necessary we will write V πC

∞ for the morphism functor V π
∞ of the

canonical double projection associated to a globularly generated double cat-
egory C. We will use the same convention for F π

k , H
π
k , V

π
k and Hπ

k

Surjectivity

We now prove the surjectivity on squares part of Theorem 2.1. We begin
with the following lemma.

Lemma 2.11. Let B be a decorated bicategory. Let C be a globularly gen-
erated double category such that H∗C = B. Let k be a positive integer. The
image of HπC

∞ �Hk is equal to Hk
C and the image category of V π

∞ �Vk is equal
to V k

C .

Proof. Let B be a decorated bicategory. Let C be a globularly generated
double category such that H∗C = B. Let k be a positive integer. We wish to
prove that the image of Hπ

∞ �Hk is equal to Hk
C and that the image category

of V∞ �Vk is equal to V k
C of vertical filtration associated to C. We proceed

by induction on k.
We prove first that Hπ

∞H1 is equal to H1
C . From the obvious fact that H1

C

is contained in H1, and from the fact that π is a double functor, it follows
that H∞H1

C is contained in H1
C . Now, Hπ

∞ acts as the identity function when
restricted to 2-cells and horizontal identities of B. It follows, from this, from
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the fact that Hπ
∞ satisfies condition 2 of lemma 2.6, and from the way H1

C is
defined, that H∞H1

C . We conclude that πH1 is equal to H1
C . We now prove

that the image category of V1 under V π
∞ is equal to V 1

C . From the previous
argument, and from the fact that V π

∞ satisfies condition 2 of lemma 2.6 it
follows that V π

∞H1 is equal to H1
C . This, together with the fact that V π

∞ is a
functor, implies that the image category of V π

1 under V π
∞ is precisely V 1

C .
Let now k be a positive integer such that k > 1. Suppose that for every

m < k, Hπ
∞Hm is equal to Hm

C and that the image category of Vm, under
V π
∞, is equal to V m

C . We now prove that Hπ
∞Hk is Hk

C . From the fact that
Hk is obviously contained in Hk and from the fact that π is a double functor
it follows that Hπ

∞Hk is contained in Hk
C . Now, Hπ

∞ satisfies condition 1 of
Lemma 2.6, the induction hypothesis implies that Hπ

∞HomVk−1
is precisely

HomV k−1
C

. It follows, from this, from the fact that Hπ
∞ satisfies condition

3 of lemma 2.6 and from the fact that every square in Hk
C is the horizontal

composition of a composable sequence of squares in HomV k−1
C

that Hπ
∞Hk

contains Hk
C . We thus conclude that Hπ

∞Hk is equal to Hk
C . Finally, we

prove that the image category, under V π
∞, of Vk is precisely V k

C . From the
the previous argument, from Observation 2.4 and from the fact that V π

∞ sat-
isfies condition 1 of Lemma 2.6 it follows that the image of Hk under V π

∞ is
equal to Hk

C . This, together with functoriality of V π
k implies that the image

category of the restriction to Vk, of V π
∞, is equal to V k

C . This concludes the
proof.

We now prove the surjectivity part of Theorem 2.1.

Proof: Let B be a decorated bicategory. Let C be a globularly generated
double category such that H∗C = B. We wish to prove that V π

∞ is full.
Let k be a positive integer. The restriction, to Vk of V∞ defines, by

Lemma 2.11, a functor from Vk to V k
C . We denote this functor by Ṽ π

k . The
fact that V π

∞ satisfies condition 1 of Lemma 2.6 implies that for every pair of
integers m, k such that m ≤ k, the functor Ṽ π

m is equal to the restriction, to
Ṽm, of Ṽ π

k . The sequence Ṽ π
k is thus a directed system in Cat. The functor

V π
∞ is equal to its limit lim−→ Ṽ π

k in Cat. This, together with the fact, following
Lemma 2.11, that Ṽ π

k is full for every positive integer k completes the proof
of the proposition. �
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Uniqueness

We begin the proof of uniqueness part of Theorem 2.1 by extending the
notation used in the above proof.

Notation 2.12. Let B be a decorated bicategory. Let C be a globularly gen-
erated double category. Let T : QB → C be a double functor. Let k be a
positive integer. We write H̃T

k for HT
k �Hk . Thus defined H̃T

k is a function
from Hk to Hk

C . Moreover, we write Ṽ T
k for V T

k �Vk . Thus defined Ṽ T
k is a

functor from Vk to the k-th vertical category V k
C of C.

Lemma 2.13. Let B be a decorated bicategory. Let C be a globularly gen-
erated double category. Let T, L : QB → C be double functors. If H̃T

1 and
H̃L

1 are equal, then for every k ≥ 1, H̃T
k and H̃L

k are equal and Ṽ T
k and Ṽ L

k

are equal.

Proof. Let B be a decorated bicategory. Let C be a globularly generated
double category. Let T, L : QB → C be double functors. Let k > 1.
Suppose that H̃T

1 = H̃L
1 . We wish to prove the equations H̃T

k = H̃L
k and

Ṽ T
k = Ṽ L

k .
We proceed by induction on k. We first prove that Ṽ T

1 = Ṽ L
1 . Observe

first that the restriction of the morphism function of Ṽ T
1 to H1 is equal to

H̃T
1 and that the restriction of the morphism function of Ṽ L

1 to H1 is equal
to H̃L

1 . From this and from the assumption of the lemma it follows that
the restrictions of the morphism functions of Ṽ T

1 and Ṽ L
1 to H1 are equal.

We conclude, from this, from the fact that H1 generates V1, and from the
functoriality of Ṽ T

1 and Ṽ L
1 , that Ṽ T

1 and Ṽ L
1 are equal.

Let now k > 1. Suppose that for every m < k the equations H̃T
m = H̃L

m

and Ṽ T
m = Ṽ L

m hold. We now prove that the equation H̃T
k = H̃L

k holds.
Observe first that the restriction of H̃T

k to HomV Bk−1
is equal to the morphism

function of Ṽ T
k−1 and that the restriction of H̃L

k to HomV Bk−1
is equal to the

morphism function of Ṽ L
k−1. From this, from induction hypothesis, and from

the fact that both T and L are double functors that the equation H̃T
k = H̃L

k

holds. We now prove the equation Ṽ T
k = Ṽ L

k holds. Observe again that the
restriction of the morphism function of Ṽ T

k to Hk is equal to H̃T
k and that the

restriction of the morphism function of Ṽ L
k to Hk is equal to H̃L

k . From this,
from the previous argument, from the fact that HBk generates the category
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Vk, and from the functoriality of Ṽ T
k and Ṽ L

k it follows that the equation
Ṽ T
k = Ṽ L

k holds. This concludes the proof.

Given a double functor T : QB → C from the free globularly generated
double category associated to a decorated bicategory B to a globularly gen-
erated double category C, it is a straightforward observation that the mor-
phism functor T1 of T is equal to lim−→ Ṽ T

k in Cat. This, together with Lemma
2.13 implies the following proposition. We interpret this by saying that a
double functor with domain a free globularily generated double category is
completely determined by its value on globular squares.

Proposition 2.14. Let B be a decorated bicategory. Let C be a globularly
generated double category. Let T, L : QB → C be double functors. If H̃T

1

and H̃L
1 are equal then T1 and L1 are equal.

The uniqueness part of Theorem 2.1 follows directly from the above propo-
sition. We interpreted the surjectivity part of Theorem 2.1 by saying that
every globularly generated internalization of a decorated bicategory B could
be interpreted as a quotient of the free globularly generated double category
QB associated to B via the canonical projection double functor. We interpret
the uniqueness part of Theorem 2.1 by saying that in this case the choice of
canonical projections as projection is canonical.

Linear canonical double projection

Let k be a field. Let B be a k-linear decorated bicategory. In that case the
free globularly generated double category construction can be modified to
produce a k-linear free globularly generated double category Qk

B associated
to B, see the final comments of [16, Section 2]. Given k-linear decorated
bicategories B,B′ we will say that a decorated pseudofunctor G : B →
B′ is linear if G is linear on 2-cells and vertical arrows of B. It is easily
seen that the canonical double projection πC associated to a linear globularly
generated double category C satisfying the equation H∗C = B is a linear
pseudofunctor. We will make use of this fact in the next section.
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3. Applications

In this section we make use of the canonical double projection to obtain in-
formation about solutions to Problem 1.1. We study applications of Theorem
2.1 to length, double groupoids, single 1- and 2-cell decorated bicategories
and double categories of von Neumann algebras.

Length

Recall that the length of a globularly generated double category C, `C, is
the minimal k ∈ N ∪ {∞} for which V k

C = C1. In the non-globularly gen-
erated case we define the length of a double category C as `γC. The length
of a double category C is meant to serve as a measure of complexity on the
interplay between horizontal and vertical compositions of globular and hor-
izontal squares of C. Equivalently `C serves as a measure of complexity
on presentations of globularly generated squares of C. Double categories
of arbitrarily large and infinite lengths were constructed in [16]. Using the
free globularly generated double category construction we translate the def-
inition of length to decorated bicategories. Given a decorated bicategory B
we define the length `B of B as `QB. We prove the following proposition.

Proposition 3.1. Let B be a decorated bicategory. Let C be a double cate-
gory. If H∗C = B then the following inequality holds:

`C ≤ `B

Proof. Let B be a decorated bicategory. Let C be a double category such
that H∗C = B. We wish to prove that `C ≤ `B.

From the equations H∗γC = H∗C and `γC = `C we may assume that
C is globularly generated. Let k be a positive integer. Suppose `B = k.
We wish to prove that `C ≤ k. To prove this it is enough to prove that
Hk+1
C is closed under vertical compositions. Let ϕ, ψ be vertically compati-

ble squares in Hk+1
C . We wish to prove that ϕ • ψ ∈ Hk+1

C . By the fact that
πC is surjective on squares the function Hπ

k+1 : Hk+1
QB
→ Hk+1

C is epic. Let
ϕ′, ψ′ ∈ Hk+1

QB
such that

Hπ
k+1ϕ

′ = ϕ and Hπ
k+1ψ

′ = ψ
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By the fact that π intertwines vertical domain and codomains of QB and C it
follows that the squares ϕ′, ψ′ are vertically compatible. From the fact that
`B = `QB = k it follows that ϕ′ •∞ ψ′ ∈ Hk+1 and thus the square:

Hπ
k+1(ϕ′ •∞ ψ′) = ϕ • ψ

is a square in Hk+1
C . We conclude that `C ≤ k. The case in which `B = ∞

is trivial. This concludes the proof of the proposition.

An important case of Proposition 3.1 is when the length of the decorated bi-
category B is assumed to be 1. This is contained in the following immediate
corollary.

Corollary 3.2. Let B be a decorated bicategory. Suppose `B = 1. If C is a
double category such that H∗C = B then `C = 1.

Corollary 3.2 says that if we assume that `B = 1 then we have a good
control on expressions of all squares of any globularly generated double cat-
egory satisfying H∗C = B. More precisely, every square ϕ of a globularly
generated double category C satisfying the equation H∗C = B admits a
decomposition as a vertical composition of squares of the following four
forms:

• • • •

• • • •

• • • •

• • • •

ϕ f fif

ψ η
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and the horizontal composition of any such squares in C can be re-arranged
so as to be written in the above form. The following are examples of deco-
rated bicategories of length 1.

1. Groups decorated by groups: In [16, Proposition 5.1 ] the following
equation is proven:

`(ΩG, 2ΩA) = 1

for every pair of groupsG,AwithA abelian, where recall that ΩG and
2ΩG are the delooping groupoid and the double delooping 2-group of
G respectively, i.e. ΩG is the groupoid with a single object ∗ such that
AutΩG(∗) = G and 2ΩA is the 2-group with a single object, which we
also denote by ∗, such that End2ΩA(∗) is equal to ΩA. Every square ϕ
in any globularly generated double category C satisfying the equation
H∗C = (ΩG, 2ΩA) can thus be written as a vertical composition of
squares of the form:

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

ξ g gig

where ∗ denotes the only object in ΩG, ξ is an element of the monoid
of squares of the only horizontal morphism i∗ of C and where g is
any element of G. In Corollary 3.5 we obtain more information about
double categories of this form.

2. von Neumann algebras: In [16, Proposition 6.1] the following equa-
tion was proven:

`QC
W ∗fact

= 1
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where W ∗
fact denotes the bicategory of factors, Hilbert bimodules and

intertwiners, decorated by the category of possibly infinite index unital
∗-morphisms. Every square in any linear globularly generated double
category C satisfying the equation H∗C = W ∗

fact can thus be written
as a multiple of a vertical composition of squares of the form:

A A A A B B

A A B B B B

H

ϕ f fif

K

ψ

where A,B are factors, H is a left-right A-bimodule, ϕ is a bounded in-
tertwiner from H to L2(A), f : A → B is a possibly infinite index unital
∗-morphism, K is a left-right B-bimodule, and ψ is a bounded intertwiner
from L2(B) to K. In Proposition 3.6 we obtain more information of double
categories of this form.
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2-groupoids and double groupoids

Double groupoids and 2-groupoids categorify crossed modules and are thus
used to model homotopy 2-types [6, 12]. Relations between double groupoids
and 2-groupoids have been studied in [5] in the case of edge-symmetric
double groupoids with special connection. We apply the results obtained
in Section 2 to study relations between decorated 2-groupoids and general
double groupoids. We say that a decorated bicategory B is a decorated 2-
groupoid if B is a 2-groupoid and B∗ is a groupoid. Decorated bigroupoids
are defined analogously. Given a 3-filtered topological space (X,A,C), the
pair (Π1(A;C),W (X;A,C)), where W (X;A,C) is Moerdijk-Svensson’s
Whitehead homotopy 2-groupoid associated to (X,A,C) [14] and Π1(A;C)
is the fundamental groupoid of A relative to C, is a decorated 2-groupoid.
The Brown-Higgins fundamental double groupoid ρ(X;A,C) [7] satisfies
the equation

H∗ρ(X;A,C) = (Π1(A,C),W (X;A,C))

Decorated 2-groupoids of the form (Π1(A;C),W (X;A,C)) thus always ad-
mit solutions to Problem 1.1 and these solutions can always be chosen to
be double groupoids. A similar statement holds for homotopy 2-groupoids
G2(X) associated to Hausdorff topological spaces X by Hardie, Kamps and
Kieboom in [13] decorated by the full fundamental groupoid Π1(X), with
internalization provided by the Brown-Hardie-Kamps-Porter homotopy dou-
ble groupoid ρ�2 (X) defined in [8].

Invertibility is perhaps the most essential condition on structures involved
in the homotopy hypothesis. In our context it is thus an important question
whether every decorated 2-groupoid can always be internalized by a double
groupoid. The Brown-Spencer theorem [5] applies in the context of special
double groupoids with special connections [6], and thus every 2-groupoid
B, decorated by its groupoid of horizontal arrows is internalized by a dou-
ble groupoid, its Ehresmann double category of quintets. We treat the gen-
eral case of 2-groupoids decorated by groupoids which are not-necessarily
groupoids of horizontal arrows. We prove that given a general decorated 2-
groupoid (more generally a decorated bigroupoid) B, if there exists a double
category C (not-necessarily a double groupoid) such thatH∗C = B then γC
is a double groupoid. We begin with the following lemma.
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Proposition 3.3. Let B be a decorated bicategory. If B is a decorated 2-
groupoid then QB is a double groupoid.

Proof. Let B be a decorated 2-groupoid. We wish to prove that QB is a
double groupoid.

We prove by induction on k that every square ϕ in Vk is vertically and
horizontally invertible. By the condition that B is a decorated 2-groupoid all
squares of QB of the form:

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

f fif ϕ

are vertically and horizontally invertible, with the vertical and horizontal
inverse of a square on the left-hand side above given by

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

f−1 f−1if−1 f fif

respectively. Given any globular or horizontal identity square ϕ in QB we
will write vϕ−1 and hϕ−1 for its its vertical and its horizontal inverse in QB
respectively. Suppose ϕ is a general square in V1. Write ϕ as a vertical
composition of the form ϕ = ϕk • . . . ϕ1 where the ϕ′is are squares of C
as above. In that case the vertical inverse of ϕ is given by the composition
vϕ−1

1 • · · · • vϕ−1
k and the horizontal inverse of ϕ is given by the vertical

composition hϕ−1
k • · · · • hϕ

−1
1 .

Let n be a positive integer such that n > 1. Suppose that for everym < n
every square in Vm is both vertically and horizontally invertible. We prove
that every square in Vn is vertically and horizontally invertible. Let ϕ first be
a square in Hn. Write ϕ as a horizontal composition ϕ = ϕk ∗ · · · ∗ ϕ1 with
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ϕi in Vn−1. By the induction hypothesis the squares ϕi are all vertically and
horizontally invertible. We again write vϕ−1

i and hϕ−1
i for the horizontal and

the vertical inverse of ϕi respectively. The vertical inverse vϕ−1 of ϕ is given
by the horizontal composition vϕ−1

k ∗ · · · ∗ vϕ
−1
1 and the horizontal inverse

hϕ−1 of ϕ is given by the horizontal composition hϕ−1
1 ∗ · · · ∗ hϕ−1

k . Thus
every square in Hn admits both a horizontal and a vertical inverse. Using
this and the same argument used in the previous paragraph every square in
Vn is vertically and horizontally invertible. This concludes the proof.

Corollary 3.4. Let C be a double category. If H∗C is a decorated 2-
groupoid then γC is a double groupoid.

Proof. Let C be a double category. Suppose that H∗C is a decorated 2-
groupoid. We wish to prove that γC is a double groupoid.

It is enough to prove that every square in γC is both vertically and hori-
zontally invertible. This follows directly from Proposition 3.3 and Theorem
2.1. This concludes the proof of the corollary.

Observe that Proposition 3.3 and Corollary 3.4 still hold if we assume that
B is a decorated bigroupoid. The following corollary follows directly from
Proposition 3.1, Proposition 3.3, and [16, Corollary 5.2] by considering dec-
orated 2-groupoids of the form (ΩG, 2ΩA) whithG,A groups andA abelian.

Corollary 3.5. Let G,A be groups. Suppose A is abelian. Let C be a glob-
ularly generated double category. If H∗C = (ΩG, 2ΩA) then the category
of squares C1 is of the form ΩH for a group H such that H is a quotient of
G ∗ A.

von Neumann algebras

We study linear double categories of von Neumann algebras and their Hilbert
bimodules. In [1] a tensor double category of semisimple von Neumann
algebras, Hilbert bimodules, equivariant intertwiners and finite index mor-
phisms was constructed in order to express the fact that the Haagerup stan-
dard form and the Connes fusion operation admit compatible extensions to
tensor functors. In [16] it was proven that the bicategory of factors, Hilbert
bimodules, and intertwiners, decorated by possibly infinite index morphisms
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is saturated and thus its linear free globularly generated double category is
an internalization, providing formal linear functorial extensions of both the
Haagerup standard form and the Connes fusion operations. We investigate
the relation of these two constructions through the canonical double projec-
tion and we use this to construct a linear extension of the double category
of factors and finite morphisms accommodating possibly infinite index mor-
phisms.

We write Modfact for the linear bicategory whose 2-cells are of the form:

A B

H

K

ϕ

whereA,B are factors,H,K are left-right HilbertA-B-bimodules and where
ϕ is an intertwiner operator from H to K. Horizontal identity 2-cells in
Modfact are given by 2-cells of the form:

A A

L2(A)

L2(A)

idL2(A)

where A is a factor and L2(A) is the Haagerup standard form of A, see [11].
Given horizontally compatible 2-cells in Modfact of the form:

A B C

H

K

ϕ

H′

K′

ϕ′

their horizontal composition is provided by the 2-cell:
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A C

H �B H′

K �B K′

ϕ �B ϕ′

where H �B H ′ and K �B K ′ denote the Connes fusion of H,H ′ and
K,K ′ and where ϕ�B ϕ

′ denotes the Connes fusion of ϕ and ϕ′. We write
vNfact for the category of factors and unital ∗-morphisms f : A → B with
[f(A), B] possibly infinite. We write vNfin for the subcategory of vNfact

generated by ∗-morphisms f : A → B such that [f(A), B] < ∞. The
pairs (vNfact,Modfact) and (vNfin,Modfin) are linear decorated bicate-
gories. We write W ∗

fact and W ∗
fin for these decorated bicategories. In [1]

an internalization of W ∗
fin is constructed through functorial extensions, to

vNfin of the Haagerup standard form construction and the Connes fusion
operation construction. We write BDH for this double category. In [16] the
author proves thatW ∗

fact and thusW ∗
fin are saturated, i.e. H∗QW ∗fact

= W ∗
fact

and H∗QW ∗fin
= W ∗

fin. The exact relation between BDH and QW ∗fact
is pro-

vided by the canonical projection. We have the following consequence of
2.1.

Proposition 3.6. γBDH is a double quotient of QW ∗fact
through πBDH .

The category of squares BDH1 of BDH is the category whose objects and
morphisms are Hilbert bimodules over factors and finite index equivariant
intertwiners, i.e. the morphisms of BDH are the squares of the form:

A B

A′ B′

H

f

H′

g(f, ϕ, g)

whereA,A′, B,B′ are factors, H is a left-rightA,B-Hilbert bimodule, H ′ is
a left-right A′, B′-Hilbert bimodule, f : A → A′ and g : B → B′ are unital
∗-morphisms satisfying the inequalities
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[f(A), A′] <∞ and [g(B), B′] <∞

and ϕ is a bounded operator from H to K satisfying the equation

ϕ(aξb) = f(a)ϕ(ξ)g(b)

for every ξ ∈ H and a ∈ A, b ∈ B. In [15] the category of squares of
γBDH1 of γBDH was computed as the category of 2-subcyclic equivariant
intertwiners. The fact thatBDH is a tensor double category means that there
exists a tensor functor

L2 : vNfin → BDH1

associating to every factor A the Haagerup standar form L2(A) of A, and a
tensor functor

�• : BDH1 ×vNfin BDH1 → BDH1

associating to every compatible pair of squares AHB,BKA its Connes fusion
AH �B KC . The fact that these functors are compatible is expressed by the
fact thatBDH is a tensor double category. The fact that these are operations
on Hilbert bimodules and finite equivariant intertwiners is expressed by the
equation

H∗BDH = W ∗
fin

This equation is minimized by γBDH and the image category of the L2-
functor above is in γBDH1. We are thus interested in extending the functors

L2 : vNfin → γBDH1

and

�• : γBDH1 ×vNfin γBDH1 → γBDH1

to compatible functors on vNfact. The following proposition does this.
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Proposition 3.7. There exists a linear double category ˜BDH such that
H∗ ˜BDH = W ∗

fact and such that γBDH is a sub-double category of ˜BDH
satisfying the following condition: Given vertically or horizontally compati-
ble squares ϕ, ψ in ˜BDH if the vertical or horizontal composition of ϕ and
ψ is in BDH so are ϕ and ψ.

Proof. We wish to prove that there exists a linear double category ˜BDH
satisfying the equation H∗ ˜BDH = W ∗

fact and having γBDH as sub-double
category in such a way that given every pair of squares ϕ, ψ in ˜BDH such
that either the vertical or the horizontal composition of ϕ and ψ is a square
in BDH then both ϕ and ψ are in BDH .

WriteR for the equivalence relation on the collection of squares ofQW ∗fact

defined as: ϕRψ if πγBDHϕ = πγBDHψ. Thus defined R is compatible with
the vertical and horizontal structure data of QW ∗fact

and γBDH and thus
QW ∗fact

/R is a globularly generated double category. We make ˜BDH to
be this double category. From the equation H∗QW ∗fact

= W ∗
fact the equa-

tion H∗ ˜BDH = W ∗
fact follows. QW ∗fin

is a sub-double category of QW ∗fact
.

Moreover, it is easily seen that the equtation

QW ∗fin
= πγBDH−1(γBDH)

holds. We thus obtain an isomorphism of double categories

πγBDH �QW∗
fin

∼= γBDH

We make use of the above isomorphism to identify γBDH with a sub-
double category of ˜BDH . The fact that pairs of squares ϕ, ψ in γBDH sat-
isfy the required condition inside ˜BDH follows by an easy induction argu-
ment on min {`ϕ, `ψ} using the fact that given morphisms f : A → B and
g : B → C in vNfact such that [gf(A), C] <∞ then [f(A), B], [g(B), C] <
∞. This concludes the proof.

The horizontal identity functor and the horizontal composition functor of
˜BDH are functors:

L2 : vNfact → ˜BDH1

and
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�• : ˜BDH1 ×vNfact
˜BDH1 → ˜BDH1

compatible in the sense that ˜BDH is a double category and such that they
restrict to the corresponding functors on γBDH . By [16, Proposition 6.1]
and Theorem 2.1 the space of morphisms of ˜BDH1 is the complex vector
space spanned by formal vertical compositions of the form:

A A

A A

B B

B B

H

ϕ

f fif

K

ψ

where A,B are factors, f is a unital ∗-morphism of possibly infinite index,
H is a left-right A Hilbert bimodule, K is a left-right B Hilbert bimodule,
ϕ, ψ are bounded intertwiners from H to L2(A) and from L2(B) to K re-
spectively, and L2(f) is a formal object in ˜BDH1. Whenever f satisfies the
inequality:

[f(A), B] <∞

the formal symbol L2(f) is the image of f under the L2 functor of [1], the
three term composition above is the corresponding composition in BDH .
Moreover, this three term formal composition is a square in γBDH if and
only if [f(A), B] <∞.
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In the construction presented in Proposition 3.6 we have not addressed
the fact that we wish for ˜BDH to inherit, from γBDH the structure of a
symmetric tensor double category. We will address this issue elsewhere.

Representability

In Proposition 3.6 we have obtained a linear double category ˜BDH satisfy-
ing the equation

H∗ ˜BDH = W ∗
fact

and having γBDH as sub-double category. This provides compatible linear
functors of the Haagerup standard form and the Connes fusion operation on
linear categories of Hilbert bimodules and formal equivariant bounded inter-
twiners. We would like to obtain such functors, not on formal equivariant
intertwiners, but on the category of Hilbert bimodules and actual equivari-
ant intertwiners. We are not able to do this at the moment but Theorem 2.1
provides a possible solution to this. Assuming such functorial extensions
exist, compatibility would provide a linear double category C satisfying the
equation

H∗C = W ∗
fact

having BDH as a sub-double category and such that the category of squares
C1 is a linear sub-category of the category Modfact of Hilbert bimodules
and equivariant intertwiners. Such category would be in the γ-fiber of a
globularly generated double category, γC, satisfying the equation

H∗γC = W ∗
fact

having γBDH as a sub-double category and such that γC1 is a linear sub-
category of Modfact. In that case the morphism functor πγC1 of πγC will be a
linear functor from QC

W ∗fact1
to Modfact satisfying invariance conditions with

respect to the double category structures of QC
W ∗fact

and BDH . This suggests
we should study the structure of the 2-category

Fun(QC
W ∗fact1

,Modfact)
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under a possible set of initial conditions. We will analyze this point of view
elsewhere, but we would like to obtain a categorical version of the above
comments. In order to do this we need a way to understand functors between
free globularly generated double categories. In the next section we study free
double functors.

4. Free double functors

In this section we introduce free double functors between free globularly
generated double categories. We will use the free double functor construc-
tion to extend the free globularly generated double category construction to
a functor. We use this construction to prove the results of Section 5. The
methods employed in the construction of free double functors mimic the
construction of the canonical double projection of Section 2.

Strategy

Given a pseudofunctor G : B → B′ between decorated bicategories B,B′
the free double functor QG associated to G will be a double functor from QB
to QB′ satisfying the equation:

H∗QG �B= G

The strategy for the construction of QG will be analogous to that of the con-
struction of the canonical double projection of Section 2. We first define QG

on formal squares of the form:

• • • •

• • • •

The requirements in the definition of QG force QG to be uniquely defined by
G on the above squares. We freely extend this to a functor FG

1 : FB1 → FB
′

1 .
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We extend this to a functor from FG
k : FBk → FB

′

k inductively for all k and
we take the corresponding limit FG

∞ : FB∞ → FB
′
∞ . We prove that FG

∞ is
compatible with both the structure data and the equivalence relations R∞
defining QB and QB′ and that thus descends to the morphism functor of a
double functor QG from QB to QB′ . The coherence data for QG will be in-
herited from that of G. Most of the technical results used in the construction
of the free globularly generated double functor are analogous to arguments
used in Section 2. The precise statements are useful. We will thus record
statements for these results but we will usually omit proofs.

Construction

Let B,B′ be decorated bicategories. Let G : B → B′ be a decorated pseud-
ofunctor. We begin the construction of QG with the following lemma. Its
proof is analogous to that of Proposition 2.3 and we will omit it.

Lemma 4.1. There exists a pair, formed by a sequence of functions EG
k :

EBk → EB
′

k , and a sequence of functors FG
k : FBk → FB

′

k , with k running
over all positive integers, such that the following conditions are satisfied:

1. The equations EG
1 ϕ = Gϕ and EG

1 iα = iα hold for every 2-cell ϕ in
B and for every morphism α in B∗.

2. For every pair of positive integers m, k such that m ≤ k, the restric-
tion of EG

k to the collection of morphisms of FBm is equal to the mor-
phism function of FG

m , and the restriction of the morphism function of
FG
k to EBm is equal to EG

m.

3. The following two squares commute for every positive integer k:

EBk EB
′

k

B1 B′1

EGk

dBk , c
B
k

G

dB
′

k , cB
′

k
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4. The following two squares commute for every positive integer k:

EBk EB
′

k

HomB∗ HomB′∗

EGk

sBk , t
B
k

G∗

sB
′

k , tB
′

k

5. The following two squares commute for every positive integer k:

FBk FB
′

k

B∗ B′∗

FGk

sBk+1, t
B
k+1

G∗

sB
′

k+1, t
B′
k+1

6. The following square commutes for every positive integer k

EBk ×HomB∗ E
B
k EB

′

k ×HomB′∗ E
B′
k

EBk EB
′

k

EGk ×G E
G
k

∗Bk

EGk

∗B′k

Moreover, conditions 1-5 above determine the pair of sequencesEG
k and FG

k .

Observation 4.2. Let m, k be positive integers such that m ≤ k. Condition
2 of Proposition 4.1 implies that the equations hold:

EG
k �EBk = EG

m and FG
k �FBm= FG

m
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Notation 4.3. We will write EG
∞ for the limit lim−→EG

k in Set of the sequence
EG
k . Thus defined EG

∞ is a function from EB∞ to EB′∞ . Further, we will write
FG
∞ for the limit lim−→FG

k in Cat of the sequence of functors FG
k . Thus defined,

FG
∞ is a functor from FB∞ to FB′∞ .

The following observation follows directly from Lemma 4.1 and Observa-
tion 4.2.

Observation 4.4. The pair EG
∞, F

G
∞ satisfies the following conditions:

1. EG
∞ is equal to the morphism function of FG

∞.

2. Let k be a positive integer. The following equations hold:

EG
∞ �EBk = EG

k and FG
∞ �FBk = FG

k

3. The following squares commute:

FB∞ FB
′
∞

B∗ B′∗

FG∞

sB∞, t
B
∞

G∗

sB
′
∞ , t

B′
∞

4. The following square commutes:

EB∞ ×HomB∗ E
B
∞ EB

′
∞ ×HomB′∗ E

B′
∞

EB∞ EB
′
∞

EG∞ ×G EG∞

∗B∞

EG∞

∗B′∞
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It is easily seen, from the above observation, that the functor FG
∞ is compat-

ible with the equivalence relations RB∞ and RB′∞. We will write V G
∞ for the

functor from V B∞ to V B′∞ induced by FG
∞ and the equivalence relations RB∞

and RB′∞. We will write HG
∞ for the morphism function of V G

∞ . Thus defined
HG
∞ is function fromHB∞ toHB′∞ induced by the function EG

∞ and the equiva-
lence relationsRB∞ andRB′∞. The following proposition follows directly from
Observation 4.4.

Proposition 4.5. V G
∞ satisfies the following conditions:

1. The following squares commute:

V B∞ V B
′
∞

B∗ B′∗

V G∞

sB∞, t
B
∞

G∗

sB
′
∞ , t

B′
∞

2. The following square commutes

V B∞ ×B∗ V B∞ V B
′
∞ ×B′∗ V B

′
∞

V B∞ V B
′
∞

V G∞ ×G HG
∞

∗B∞

V G∞

∗B′∞

Notation 4.6. Let B,B′ be decorated bicategories. Let G : B → B′. We
write QG for the pair (G∗, V G

∞).

The following is the main theorem of this section.
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Theorem 4.7. Let B,B′ be decorated bicategories. Let G : B → B′ be a
decorated pseudofunctor. In that case QG is the unique double functor from
QB to QB′ satisfying the equation:

H∗QG �B= G

Proof. Let B and B′ be decorated bicategories. Let G : B → B′ be a dec-
orated pseudofunctor. We wish to prove that in that case the pair QG is a
double functor from QB to QB′ satisfying the equation

H∗QG � B = C

A direct computation proves that the pairQG intertwines the horizontal iden-
tity functors iB∞ and iB

′
∞ of B. This, together with a direct application of

Proposition 4.5 implies that the pair QG is a double functor, with the coher-
ence data of G as coherence data. The object function of V G

∞ is equal to the
restriction of G to B1 and the restriction of V G

∞ to 2-cells of B is equal to the
2-cell function of G. This together with the fact that the object functor QG is
G∗ implies that the restriction to B of H∗QG is equal to G. This concludes
the proof.

Definition 4.8. We call QG above the free double functor associated to G.

Observation 4.9. In the more general case in which G is a lax/oplax deco-
rated functor, the double functor QG is also lax/oplax respectively.

Functoriality

We now prove that the pair formed by the function associating QB to every
decorated bicategory B and QG to every decorated pseudofunctor G is a
functor from bCat∗ to gCat. We begin with the following lemma.

Lemma 4.10. Let B,B′,B′′ be decorated bicategories. Let G : B → B′ and
G′ : B′ → B′′ be decorated pseudofunctors. The equations:

HG′G
k = HG′

k H
G
k and V G′G

k = V G′

k V G
k

and
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H idB
k = idHBk and V idB

k = idV Bk

hold for every positive integer k.

Proof. Let B,B′,B′′ be decorated bicategories. Let G : B → B′ and G′ :
B′ → B′′ be decorated pseudofunctors. Let k be a positive integer. We wish
to prove that HG′G

k = HG′

k H
G
k , that V G′G

k = V G′

k V G
k , that H idB

k = idHBk and
that V idB

k = idHBk . We prove the first two of these equations. The proof of
the remaining equations will be analogous.

We proceed by induction on k. We first prove the equation HG′G
1 =

HG′
1 HG

1 . Let ϕ be a square in GB. Suppose first that ϕ is a 2-cell of B.
In that case HG′G

1 ϕ = G′Gϕ, which is equal to G′ϕGϕ = HG′
1 HG

1 . The
equation clearly holds for horizontal identity squares in QB. This proves the
equation HG′G

1 = HG′
1 HG

1 is true when restricted to GB. This and the fact
that HG

1 , H
G′
1 and HG′G

1 satisfy condition 2 of Proposition 4.1 proves that
the equality extends to HB1 . Now V G′G

1 and V G′
1 V G

1 are equal to HG′G
1 when

restricted toHB1 . This and the fact thatHB1 generates V B1 proves the equation
V G′G

1 = V G′
1 V G

1 .
Let now k be a positive integer such that k > 1. Suppose that for every

m < k the equations HG′G
m = HG′

m H
G
m and V G′G

m = V G′
m V G

m hold. We now
prove that the equations HG′G

k = HG′

k H
G
k and V G′G

k = V G′

k V G
k hold. We

first prove HG′G
k = HG′

k H
G
k . Both function HG′G

k and HG′

k H
G
k are equal to

the morphism function of V G′G
k−1 when restricted to the morphisms of V Bk−1.

This, together with the way HG′G
k is defined, and the fact that V G′G

k−1 satisfies
condition 2 of Proposition 4.1 implies that HG′G

k = HG′

k H
G
k holds. Now,

both V G′G
k and V G′

k V G
k are equal to HG′G

k on the set of generators HBk of V Bk .
This, together with the fact that HG′G

k satisfies condition 1 of Porposition
4.1 implies the equation V G′G

k = V G′

k V G
k of V G

k and V G′

k . The proof of the
remaining two equations is analogous. This concludes the proof.

Corollary 4.11. The pair formed by the function associating QB to every
decorated bicategory B and QG to every decorated pseudofunctor G is a
functor from bCat∗ to gCat.

Notation 4.12. We will writeQ for the functor defined in corollary 4.11. We
will call Q the free globularly generated double category functor.
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Let k be a positive integer. If we writeH•k for the pair formed by the function
associating HBk to every decorated bicategory B and HG

k to every decorated
pseudofunctor G then H•k is a functor from bCat∗ to Set by Lemma 4.10.
Similarly the pair V •k formed by the function associating V Bk to every B and
the functor V G

k to every decorated pseudofunctor G is a functor from bCat∗
to Cat. Further, if we write H•∞ for the pair formed by the function asso-
ciating HB∞ to every B and HG

∞ to every decorated bifunctor G then H•∞ is
a functor from bCat∗ to Set and if we write V •∞ for the pair formed by the
function associating V B∞ to every decorated bicategory B and the function
associating V G

∞ to every G then V •∞ is a functor from bCat∗ to Cat. Thus
defined H•k , H

•
∞ relate by the equation H•∞ = lim−→V •k and V •k , V

•
∞ are related

by the equation V •∞ = lim−→V •k .

5. Freeness

In this section we prove that the free globularly generated double category
functor Q defined in Section 4 is left adjoint to the restriction H∗ �gCat of
H∗ to gCat, i.e. we prove the relation:

Q a H∗ �gCat
Further, we prove thatH∗ �gCat is faithful thus making gCat into a concrete
category over bCat∗ and Q into a free functor on gCat. We interpret the
results of this section by saying that the free globularly generated double
category provides universal bases for γ-fibers with respect to H∗.

Adjoint relation

We define a counit-unit pair for the adjuntion Q a H∗ �gCat. We will write
π• for the collection of canonical double projections πC with C running over
the objects of gCat. We prove the following proposition.

Proposition 5.1. π• is a natural transformation.

Proof. We wish to prove that π• is a natural transformation from H∗Q to
identity idgCat. That is, we wish to prove that for every double functor
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T : C → C ′ from a globularly generated double category C to a globularly
generated double category C ′ the following square commutes:

QH∗C QH∗C′

C C ′

QH∗T

πC

T

πC
′

Let C,C ′ be globularly generated double categories. Let T : C → C ′ be a
double functor. We first prove that for each positive integer k the following
two squares commute:

HH∗C
k HH∗C′

k V H∗C
k V H∗C′

k

HomC1 HomC′1
C1 C ′1

HH∗T
k

HπC

k

T

HπC′

k

V H
∗T

k

V π
C

k V π
C′

k

T

We do this by induction on k. We fist prove that square on the left hand
side commutes in the case k = 1. Let ϕ be a square in GB. Suppose first
that ϕ is a 2-cell in B. In that case HH∗T

1 ϕ = H∗Tϕ, which is equal to
Tϕ. Now, HπC

1 ϕ = ϕ and thus the lower left corner of the left hand side
square above is also equal to Tϕ. The square thus commutes in the values
k = 1 and ϕ globular. An equally easy evaluation proves that the square
also commutes for the values k = 1 and ϕ = if for any morphism f in
B∗. We conclude that diagram on the left had side above commutes when
restricted to collection GB in the case in which k = 1. This together with
the fact that HH∗T

1 satisfies condition 6 of Proposition 4.1 and the fact that T
is a double functor, implies that square commutes HB1 . Now, the square on
the right hand side above restricts to the square on the left when restricted
to the set of generators EB1 of V B1 . This, together with the fact that all edges
involved are functors implies that the square on the right commutes in the
value k = 1.
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Let now k be a positive integer such that k > 1. Suppose that for every
positive m < k the squares above commute. We now prove that the squares
above commute for k. The square on the left hand side commutes when re-
stricted to the collection of morphisms of V H∗C

k−1 by the induction hypothesis.
This, together with the fact that the upper edge of the square satisfies con-
dition 4 of Proposition 4.1 and its left and right edges satisfy condition 5 of
Proposition 4.1 implies that the full square commutes. Now, the square on
the right above is equal to the square on the left when restricted to the set
EBk of generators of V Bk . This, together with the fact that all the edges of the
square are functors, implies that the full square commutes on k. The result
follows from this by taking limits.

Let B be a decorated bicategory. In that case B is a sub-decorated bicategory
of H∗QB. We denote by jB the inclusion of B in H∗QB. We write j for
the collection of decorated pseudofunctors jB with B running through the
objects of bCat∗. As defined above j is clearly a natural transformation
from idbCat∗ to H∗Q.

Theorem 5.2. Q and H∗ �gCat satisfy the relation:

Q a H∗ �gCat
with the pair (π•, j) as counit-unit pair.

Proof. We wish to prove that pair formed by Q and H∗ �gCat forms a left
adjoint pair with π• and j as counit and unit respectively.

It has already been established that π• is a natural transformation from
QH∗ to idgCat, and that j is a natural transformation from identity endofunc-
tor idbCat∗ of bCat∗ to H∗Q. We thus only need to prove that the pair (π•, j)
satisfies the triangle equations for a counit-unit pair. We begin by proving
that the following triangle commutes:
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H∗ H∗QH∗

H∗

jH∗

idH∗
H∗π•

Let C be a globularly generated double category. The decoration and the
collection of 1-cells of both H∗C and H∗QH∗C are equal to C0 and to the
collection of horizontal morphisms of C respectively. Moreover, the restric-
tion of jH∗C to both C0 and the collection of horizontal morphisms of C is
the identity. The restriction of jH∗C to the collection of 2-cells of H∗C is
the inclusion of the collection of globular squares of C to the collection of
globular squares ofQC . Now, again the restriction to both the decoration and
the collection of horizontal morphisms of H∗πC is equal to the identity in
both cases. The restriction of H∗πC to the collection of 2-cells of H∗QH∗C

is equal to the restriction, to the collection of globular squares of C, of πC ,
which in turn is equal to the identity. It follows that H∗πCjH∗C is equal to
idH∗C . We conclude that triangle above commutes.

We now prove that the following triangle is commutative:

Q QH∗Q

Q

Qj

idQ π•Q

Let B be a decorated bicategory. In this case the restriction to both C0 and
to the collection of horizontal morphisms of C, of jB in H∗QB is equal to
the identity. The restriction, to both C0 and to the collection of horizontal
morphisms of C, now of πQB , is again equal to the identity. We now prove
that the restriction, to B, of H∗πQBQjB of composition πQBQjB defines a
decorated endopseudofunctor of B. It has already been established that the
restriction, to both the decoration and the collection of horizontal morphisms
of B, of both QjB and πQB and thus of πQBQjB is equal to the identity. Now,
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let ϕ be a 2-cell in B. In that case QjBϕ is equal to jBϕ, which is equal to
B. Now, πQBϕ is again equal to ϕ. We conclude that the restriction to B
of H∗πQBQjB defines a decorated endopseudofunctor of B. Moreover, this
decorated endopseudofunctor of B is the identity endopseudofunctor of B.
It follows, from this, and from Proposition 5.1 that the composition πQBQjB

is equal to the identity endopseudofunctor of QB. We conclude that triangle
above commutes. This concludes the proof.

As explained in the introduction we interpret Theorem 5.2 as a generalization
of [4, Theorem 5.3] and as a way to complete the diagram

dCat bCat∗

gCat

H∗

γ H∗ �gCat

i
`

to a diagram of the form:

dCat bCat∗

gCat

H∗

γ H∗

i
`

Q
`

Moreover, if we write bCat∗sat for the full subcategory of bCat∗ generated
by saturated bicategories and we write gCatfree for the full subcategory of
gCat generated by the image of the object function of Q, then Theorem 5.2
and [16, Corollary 3.4] say that H∗ and Q establish an equivalence between
bCat∗sat y gCatfree. That is, we obtain the diagram:
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gCatfree bCat∗sat

H∗

Q

∼=

Faithfulness of decorated horizontalization

We now prove that the decorated horizontalization functor H∗ is faithful
when restricted to the category gCat of globularly generated double cate-
gories thus allowing an interpretation of gCat as a concrete category over
bCat∗ and of Q as a free construction. We begin with the following propo-
sition.

Lemma 5.3. LetC,C ′ be globularly generated double categories. LetG,G′ :
C → C ′ be double functors. Suppose that the equation H∗G = H∗G′ holds.
In that case the equations

Hk
G = Hk

G′ and V k
G = V k

G′

hold for every k ≥ 1.

Proof. Let C,C ′ be globularly generated double categories. Let G,G′ :
C → C ′ be double functors. Suppose that the equation H∗G = H∗G′ holds.
Let k be a positive integer. We wish to prove the equations HG

k = HG′

k and
V G
k = V G′

k hold.
We proceed by induction on k. We first prove the equation HG

1 = HG′
1 .

Let ϕ be a globular square in C. In that case HG
1 = Gϕ. This is equal,

given that ϕ is a globular square, to H∗Gϕ, which by the assumption of the
lemma, is equal to H∗G′ϕ, and this is equal to HG′

1 ϕ. This, together with
the fact that both G and G′ are double functors and thus preserve horizontal
identities implies that the functions HG

1 and HG′
1 are equal. We now prove

the equation V G
1 = V G′

1 . Observe first that the restriction of the morphism
function of V G

1 toHC
1 is equal toHG

1 and that the restriction of the morphism
function of V G′

1 to HC
1 is equal to HG′

1 . This, the previous argument, the fact
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that HC
1 generates V C

1 , and the functoriality of V G
1 and V G′

1 , implies that the
equation V G

1 = V G′
1 holds.

Let now k be a positive integer such that k > 1. Suppose that for every
n < k the equations HG

n = HG′
n and V G

n = V G′
n hold. We prove that under

these assumptions the equation HG
k = HG′

k holds. Observe first that the
restriction of HG

k to HomV Ck−1
is equal to the morphism function of V G

k−1 and
that the restriction of HG′

k to HomV Ck−1
is equal to the morphism function of

V G′

k−1. This, together with the induction hypothesis, and the fact that G and
G′ intertwine the source and target functors and the horizontal composition
funtor of C and C ′ implies that HG

k = HG′

k . We now prove that V G
k and

V G′

k are equal. Observe that the restriction of the morphism function of V G
k

to HC
k is equal to HG

k and that the restriction of the morphism function of
V G′

k to HC
k is equal to the function HG′

k . This, together with the previous
argument, the fact that HC

k generates V C
k , and the functoriality of both V G

k

and V G′

k proves that the functors V G
k and V G′

k are equal. This concludes the
proof.

Corollary 5.4. Let C,C ′ be double categories. Suppose C is globularly
generated. Let G,G′ : C → C ′ be double functors. If the equation H∗G =
H∗G′ holds then the equation G = G′ also holds.

Proof. Let C,C ′ be double categories. Let G,G′ : C → C ′ be double func-
tors. Suppose that C is globularly generated and that the equation H∗G =
H∗G′ holds. We wish to prove that the equation G = G′ holds.

The globular pieces γG and γG′ of G and G′ are both double functors
from C to γC ′. We have the equalities H∗γG = H∗G and H∗γG′ = H∗G′.
It follows, from the assumption of the corollary that γG and γG′ satisfy the
assumptions of Proposition 5.3 and thus the equation V γG

k = V γG′

k are equal
for everu k. Both γG and γG′ admit decompositions as limits lim−→V γG

k and
lim−→V γG′

k . It follows, from this, that γG = γG′. Finally by the assumption
that C is globularly generated γG and γG′ are equal to the codomain restric-
tions, from C ′ to γC ′, of G and G′ respectively and thus γG and γG′ are
equal if and only if G and G′ are equal. This concludes the proof.

Proposition 5.5. H∗ �gCat is faithful.

Proposition 5.5 allows us to interpret gCat as a concrete category over bCat∗
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through H∗ �gCat. From this and from Theorem 5.2 we have the following
corollary.

Corollary 5.6. Q is a free functor with respect to H∗ �gCat.

We interpret Corollary 5.6 by saying that the free globularly generated dou-
ble category construction provides universal bases of fibers of the globularly
generated piece fibration γ and thus provides generators for globularly gen-
erated solutions to Problem 1.1.
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THE AMPLE CLOSURE OF THE

CATEGORY OF LOCALLY

COMPACT ABELIAN GROUPS

Wolfgang RUMP

Dedicated to B. V. M.

Résumé. La catégorie des groupes abéliens localement compactes est une

catégorie de Morita, catégorie quasi-abélienne avec une représentation par-

ticulière de ses objets au moyen d’une paire intrinsèque de sous-catégories

abeliennes de Serre. Pour toute catégorie de Morita, une plongement dans

une plus grande catégorie de Morita, la clôture ample, est construite, de

sorte que les deux sous-catégories de Serre ne sont pas modifiées. Dans le

cas des groupes LCA, ces sous-catégories coı̈ncident respectivement avec

la classe des groupes discrets et des groupes compacts. La clôture ample

est équivalente à la catégorie de groupes abéliens de Hausdorff totalement

bornés, une catégorie tenseur complet et cocomplet, avec une dualité unique

prolongeant la dualité de Pontryagin. Cinq différentes caractérisations sont

données pour cette catégorie.

Abstract. The category of locally compact abelian groups is shown to be a

Morita category, a quasi-abelian category with a particular representation of

its objects by means of an intrinsic pair of abelian Serre subcategories. For

any Morita category, an embedding into a largest Morita category, the ample

closure, is constructed, so that the two Serre subcategories are not changed.

In the case of LCA groups, these subcategories coincide with the class of

discrete and compact groups, respectively. The ample closure is shown to

be equivalent to the category of totally bounded Hausdorff abelian groups,

a complete and cocomplete tensor category, with a unique duality extending

Pontryagin duality. Five characterizations are given for this category.
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1. Introduction

Extensions of classical Pontryagin duality have been proposed by many au-

thors (see Section 5). First attempts focussed upon closure properties of the

category LCA of locally compact abelian groups within the category HAb

of all Hausdorff abelian groups. Kaplan [48] proved that the groups in HAb

which are Pontryagin-reflexive (=P-reflexive for short) are closed with re-

spect to products, and that inverse limits of sequences of LCA groups are

P-reflexive [49]. Freundlich-Smith [35] proved that the additive group of a

real Banach space or a reflexive locally convex space is P-reflexive. Further

positive results are given in [25]. On the other hand, the category LCA is

neither complete nor cocomplete [53, 45], and cannot be made into a closed

(symmetric monoidal) category [54] (see [57], Theorem 4.3; [12]; [44], Re-

mark 3.15).

In view of this lack of completeness properties, it soon became clear that

the compact-open topology has to be modified. Binz [16, 17, 18] suggested

to consider groups with an underlying convergence space [34, 19, 30], us-

ing the fact that convergence spaces form a cartesian closed category ([19],

Satz 5) if the morphism sets are endowed with the continuous convergence

structure. The full subcategory of reflexive abelian convergence groups is

closed with respect to products and coproducts ([23], Theorem 2.4), but nei-

ther complete nor cocomplete [14].

In this paper, we give a self-contained approach to the concept of Morita

category [64], the rationale behind Morita duality, and apply it to the cat-

egory of LCA groups as a typical example of a Morita category (Proposi-

tion 3.2). Every Morita category is quasi-abelian (Proposition 3.4). One of

the widely ignored features of a quasi-abelian [66] category A is the ex-

istence of abelian Serre subcategories A˝ and A ˝ ([64], Proposition 4.3),

where A˝ consists of the objects into which every monomorphism is a ker-

nel. For a Morita category A , these subcategories give rise to a canonical

pre-factorization (Proposition 3.3) into classes E and M of epimorphisms

and monomorphisms, respectively. We call A ample if pE ,M q is a fac-
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torization system [36], that is, every morphism f P A has a factorization

f “ me with m P M and e P E . Our first main result states that every

Morita category A embeds into a maximal Morita category ĂA so that the

subcategories A˝ and A ˝ are not altered by the embedding (Theorem 4.2).

The category ĂA is unique, up to equivalence, and characterized by the prop-

erty to be an ample Morita category (Corollary 2). We call it the ample

closure of A .

For the Morita category A “ LCA of LCA groups, A˝ consists of the

discrete groups, while A ˝ consists of the compact groups. (Incidentally, this

shows that these subcategories are categorical invariants.) Removing the de-

ficiencies of LCA, the ample closure is a complete and cocomplete closed

category with a unique duality, extending Pontryagin duality (Theorem 5.1).

So there are internal hom-objects with an adjoint tensor product. The dual

of an object is obtained via the circle group R{Z, as in LCA. In partic-

ular, this gives a very simple proof of Pontryagin duality for LCA groups

and its uniqueness [56, 63]. Indeed, any duality takes A˝ to A ˝. Since

A˝ « ModpZq has no non-identical self-equivalence, uniqueness of the du-

ality follows by the structure of a Morita category.

In Section 2, we provide five different realizations of the ample closure

of LCA. The first one is inspired by the dual systems [33] in functional

analysis, which can be adapted to produce a large class of quasi-abelian

categories ([64], Section 2, Example 4). Barr used them for the construc-

tion of ˚-autonomous categories [11, 12, 13]. The ample closure of LCA

is equivalent to the category chu in [13], a reduced version of the so-called

Chu-construction [12]. It is also equivalent to the category TBA of totally

bounded Hausdorff abelian groups with homomorphism groups endowed

with the weak topology. Totally bounded abelian groups have been studied

intensively in connection with Prontryagin duality (e. g., [67, 29, 24, 41, 42,

26, 3, 38]). Theorem 5.1 now shows that the full embedding LCA ãÑ TBA

hinges entirely on the above mentioned invariant Serre subcategories A˝ and

A ˝, and that TBA can be identified as the ample closure of LCA. Further

incarnations of TBA are given in Propositions 2.1-2.2 and a subsequent re-

mark.

For any Morita category A , there is also a smallest full subcategory

which leaves the Serre subcategories A˝ and A ˝ unaltered. It is again a

Morita category. For A “ LCA this category consists of the LCA groups
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which admit an open compact subgroup (Proposition 3.6). Equivalently,

these LCA groups don’t have R as a direct summand.

Since compactly generated Hausdorff spaces (also called Hausdorff k-

spaces [50]) form a complete and cocomplete cartesian closed category [54],

it was natural to study topological groups with an underlying k-space [58].

Glicksberg’s theorem [40] implies that LCA groups are of that type. It states

that the topology of an LCA group is determined by its compact subgroups,

hence by the associated totally bounded group. A misconception of the rela-

tionship between k-spaces and duality led to an inadequate characterization

of P-reflexive groups [71], and the belief that Glicksberg’s theorem would

hold for all these groups [70]. The latter was corrected by Remus and Trigos-

Arrieta [62] who were thus led to study the category PKAb of P-reflexive

groups satisfying Glicksberg’s property.

The category of all P-reflexive Hausdorff abelian groups, correctly char-

acterized by Hernández [41], has no better closure properties than LCA,

which shows the inadequacy of the compact-open topology beyond LCA

groups. We prove that the category PKAb of Remus and Trigos-Arrieta [62]

admits a full embedding into the ample closure of LCA which cannot be

extended to a bigger category of P-reflexive groups (Theorem 5.2).

2. Totally bounded abelian groups

A Hausdorff topological abelian group A is said to be totally bounded [73,

28] if for any neighbourhood U of 0 there is a finite set F Ă A with A “Ť
aPF a ` U . Equivalently, A is totally bounded if and only if its completion

is compact. With continuous homomorphisms as morphisms, the category

TBA of totally bounded Hausdorff abelian groups is a full subcategory of the

category HAb of Hausdorff topological abelian groups. For any A P HAb

we write Ad for the underlying discrete abelian group.

There are several ways to describe the objects of TBA. Firstly, let R P
HAb denote the additive group of reals, and Z the subgroup of integers. So

T :“ R{Z is a compact abelian group. We define a dual system of abelian

groups to be a biadditive map

β : A ˆ B Ñ Td (1)
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of abelian groups A,B which is non-degenerate in the sense that the asso-

ciated homomorphisms βℓ : A Ñ HompB,Tdq and βr : B Ñ HompA,Tdq
are injective. For dual systems β : A ˆ B Ñ Td and β1

: A1 ˆ B1 Ñ Td, a

morphism β Ñ β1 is given by a pair of homomorphisms f : A Ñ A1 and

g : B1 Ñ B such that β1pfpaq, b1q “ βpa, gpb1qq holds for a P A and b1 P B1,

that is, the commutative diagram

A ˆ B1 1 ˆ g
ą A ˆ B

A1 ˆ B1
O
f ˆ 1

β1

ą Td

O
β (2)

commutes. Note that dual systems of topological vector spaces, introduced

by Dieudonné [33], play an important role in functional analysis (see [65],

Chapter IV). To see that dual systems form a category (denoted as DSpAbq),

we replace (1) by its adjoint map βℓ : A Ñ HompB,Tdq. Then (2) takes the

form of a commutative diagram

A
βℓ

ą HompB,Tdq

A1
O
f

β1
ℓ

ą HompB1,Tdq.
O

Hompg,Tdq (3)

By Pontryagin duality, the functor Homp´,Tq gives an equivalence between

the category Ab of abelian groups and the full subcategory CA of compact

abelian groups in HAb. Let DCA be the subcategory of Ab ˆ CA given

by the objects pA,Cq where A is a dense subgroup of C. Then the above

discussion yields

Proposition 2.1. The categories TBA (totally bounded ab. groups), DSpAbq
(dual systems), and DCA (dense subgroups of compact abelian groups) are

equivalent.

Proof. Consider a dual system (1) and the corresponding adjoint map

βℓ. The non-degeneracy of β says that βℓ : A Ñ HompB,Tdq and βr : B Ñ
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HompA,Tdq are injective. For βr this means that the map which carries a

homomorphism g : Z Ñ B to the composed homomorphism

A
βℓ

ą HompB,Tdq
Hompg,Tdq

ą HompZ,Tdq

is injective. Since HompZ,Tq “ T is a cogenerator of CA, the condition

states that the embedding βℓ : A Ñ HompB,Tdq is dense, where C :“
HompB,Tdq is viewed as a compact abelian group with Pontryagin dual B.

So the morphisms (3) coincide with the corresponding morphisms in DCA,

which proves that DSpAbq « DCA.

Now let A ãÑ C be an object of DCA, that is, A is a dense subgroup

of the compact abelian group C. If we endow A with the induced topol-

ogy from C, then A becomes a totally bounded abelian group. Conversely,

each object A P TBA gives rise to a dense embedding A ãÑ C into its

compact completion C. Since every morphism A Ñ B of totally bounded

abelian groups extends uniquely to the completions, this gives the equiva-

lence TBA « DCA. l

There is a fourth description of the category TBA. Let ChA be the cate-

gory of abelian groups A together with a distinguished set X Ă HompA,Tdq
of characters which separate points in A, that is, the canonical map A Ñ T

X
d

is injective. Of course, X separates points if and only if the subgroup of

HompA,Tdq generated by X separates points. So we can assume without

loss of generality that X is a subgroup XA of HompA,Tdq. By [28], Theo-

rem 1.9 (cf. the argument in the above proof), point separation thus means

that XA is dense in HompA,Tdq. Morphisms in ChA are group homomor-

phisms f : A Ñ B such that every character χ P XA factors through f . In

what follows, we write HompA,Bq for the group of continuous homomor-

phisms between topological abelian groups.

Proposition 2.2. The categories of Proposition 2.1 are equivalent to ChA.

Proof. Let i : A ãÑ C be an object of DCA. Define XA to be the image

of

Hompi,Tq : HompC,Tq Ñ HompA,Tq.

Thus XA makes A into an object of ChA. Conversely, every object A P
ChA gives rise to an embedding A ãÑ HompXA,Tdq which maps a P A

to χ ÞÑ χpaq. Thus C :“ HompXA,Tdq is a compact abelian group with
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character group HompC,Tq – XA, and there is no non-zero character of C

which annihilates A. Hence A Ă C is dense. Thus DCA « ChA. l

Remark. Alfsen and Fenstad [1] established an equivalence between totally

bounded uniform structures and proximity spaces. Accordingly, there is a

fifth description of TBA as a category of abelian groups with a compatible

proximity structure. We leave it to the reader to carry this out.

Next we show that the full subcategory LCA of locally compact abelian

groups (LCA groups for short) in HAb admits a full embedding into TBA.

For any A P LCA there is a dense embedding A ãÑ bA into the Bohr

compactification bA :“ HompHompA,Tqd,Tq of A. By A` we denote the

group A with the induced topology of bA. The following result is due to

Trigos-Arrieta [67]. For convenience, we give a short proof.

Proposition 2.3. The functor A ÞÑ A` gives a full embedding LCA ãÑ
TBA.

Proof. For A P LCA, the group A` is totally bounded. So A ÞÑ A`

gives a faithful functor LCA ãÑ TBA. To show that it is full, let f : A` Ñ
B` be a morphism in TBA with A,B P LCA. Then f extends uniquely to

a morphism f 1
: bA Ñ bB in CA. Let V be a neighbourhood of 0 in B. For

any compact 0-neighbourhood K in A, the set fpKq “ f 1pKq is compact in

bB. By Glicksberg’s theorem [40], fpKq is compact in B. Hence V XfpKq
is a 0-neighbourhood in fpKq. Since f 1|K is continuous, f´1pV q X K “
f´1pV X fpKqq X K is a 0-neighbourhood in A. Thus A ÞÑ A` is full. l

3. The Morita category of LCA groups

Recall that an additive category is said to be preabelian [60] if it has kernels

and cokernels. For a preabelian category A , we call a sequence

A0

a
ÝÑ A1

b
ÝÑ A2 (4)

of morphisms short exact if a “ ker b and b “ cok a. As usual, we depict

kernels by tailed arrows A0  A1 and cokernels by two-head arrows A1 ։

A2. A full subcategory S of A is said to be a Serre subcategory if for every

short exact sequence (4), the middle term A1 belongs to S if and only if the

end terms A0, A2 belong to S . If cokernels are stable under pullback and
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kernels are stable under pushout, A is said to be quasi-abelian [66]. By [64],

Proposition 1 and Corollary 1, this implies that the short exact sequences

form an exact structure in the sense of Quillen [61]. In [64], Section 8, we

have shown that the category LCA is quasi-abelian.

For a preabelian category A , let A˝ denote the full subcategory of ob-

jects A P A such that every monomorphism A1 Ñ A is a kernel. Similarly,

we define A ˝ to be the full subcategory of objects A P A such that every

epimorphism A Ñ A1 is a cokernel. We call an object P P A projective if

for every short exact sequence (4), any morphism P Ñ A2 factors through

b. Similarly, I P A is injective if each morphism A0 Ñ I factors through a.

Let S˝A denote the full subcategory of objects P P A˝ which are projective

in A , and let S
˝
A be the full subcategory of objects I P A ˝ which are in-

jective in A . We say that f : A Ñ B is a ˝-epimorphism if every morphism

P Ñ B with P P S˝A factors through f . Similarly, f is ˝-monic if every

morphism A Ñ I with I P S
˝
A factors through f .

For example, LCA˝ « Ab and LCA˝ « CA. Indeed, any object A P
LCA determines a sequence of morphisms

Z
pHq p

ą A
i

ą T
H 1

(5)

with H :“ HompZ, Aq and H 1
:“ HompA,Tq. The coimage cokpker pq of

p is Ad, while the image kerpcok iq of i is the Bohr compactification bA “
ipAq. Hence A P LCA˝ if and only if A “ Ad and A P LCA˝ if and only

if A is a compact group. The objects in S˝LCA are the free abelian groups

Z
pκq

, while S
˝
LCA consists of the cofree compact groups T

κ
. Besides these

projectives and injectives in LCA there are only the vector groups R
n

which

are projective and injective. The following concept was introduced in [64].

Here we give a different formulation without using PI-varieties.

Definition 3.1. We define a Morita category to be a preabelian category with

the following properties:

(a) Each object A P A admits a ˝-epimorphism P Ñ A and a ˝-mono-

morphism A Ñ I with P P S˝A and I P S
˝
A .

(b) Any ˝-epic ˝-monomorphism is invertible.

Proposition 3.2. The category LCA is a Morita category.
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Proof. Condition (a) follows immediately by (5). Condition (b) follows

by a theorem of Kaplansky and Glicksberg ([40], Corollary 2.4). l

A morphism e : A Ñ A1 in an arbitrary category is said to be left ortho-

gonal to m : B Ñ B1 (and m is said to be right orthogonal to e) if for each

commutative diagram

A
f

ą B

A1
O
e

f 1

ą B1
O
m (6)

there exists a morphism h : A1 Ñ B with he “ f and mh “ f 1. The crucial

condition (b) of Definition 3.1 implies:

Proposition 3.3. For a Morita category A , the ˝-epimorphisms are left or-

thogonal to the ˝-monomorphisms.

Proof. Let (6) be a commutative diagram such that e is ˝-epic and m is

˝-monic. The pushout

A
f

ą B

A1
O
e

g
ą C

O
p

gives rise to a morphism h : C Ñ B1 with hg “ f 1 and hp “ m. Since

pg pq : A1 ‘ B Ñ C is a cokernel, any morphism c : P Ñ C with P P S˝A

factors through pg pq. So there are morphisms u : P Ñ A1 and v : P Ñ B

with c “ gu ` pv. Since u factors through e, this implies that c factors

through p. Thus p is ˝-epic. Since m factors through p, we infer that p is

also a ˝-monomorphism. Thus p is invertible, so that p´1g gives the desired

diagonal in (6). l

Another consequence of Definition 3.1(b) is the following

Proposition 3.4. Every Morita category A is quasi-abelian. In particular,

A˝ and A ˝ are abelian Serre subcategories of A .

Proof. Let (6) be a pullback with a cokernel f 1. With k :“ ker f , this

implies that ek “ ker f 1 and f 1 “ cok ek. Let c : A ։ C be the cokernel of

k. Then f “ rc for some r : C Ñ B. Since f 1 is ˝-epic, it follows that r is
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˝-epic. On the other hand, let i : C Ñ I be a morphism with I P S
˝
A . Since`

e

f

˘
is a kernel, ic factors through

`
e

f

˘
. So there are morphisms u : A1 Ñ I

and v : B Ñ I with ic “ ue`vf . Hence uek “ 0, which yields a morphism

u1
: B1 Ñ I with u “ u1f 1. Thus ic “ u1f 1e`vf “ u1mf `vf , which yields

i “ pu1m` vqr. So r is ˝-monic and ˝-epic, hence invertible. By symmetry,

this implies that A is quasi-abelian. The assertions on A˝ and A ˝ hold by

[64], Proposition 8. l

Corollary 1. Let A be a Morita category. Every ˝-epimorphism in A is

epic, and every ˝-monomorphism is monic.

Proof. By [64], Corollary 1 of Proposition 1, every morphism f : A Ñ
B in A has a factorization f “ ie into an epimorphism e and a kernel i.

Assume that f is ˝-epic. Then i is ˝-epic and ˝-monic, hence invertible. So

f is epic. By symmetry, this proves the corollary. l

If an abelian category A has enough projectives, the projective objects

form a full subcategory P with A « modpPq, see [64], Section 3 ([4],

III.1) for the definition of modpPq. If P is skeletally small, modpPq can

be identified with the category of finitely presented additive functors Pop Ñ
Ab. Similarly, if A has enough injectives, making up a full subcategory I ,

we have A « compI q :“ modpI opqop.

Corollary 2. Let A be a Morita category. Then A˝ « modpS˝A q and

A ˝ « compS˝
A q.

Proof. Since A˝ is an abelian Serre subcategory of A , every short exact

sequence (4) in A˝ is short exact in A . Hence S˝A consists of projective

objects in A˝. By Corollary 1, the objects P P S˝A provide enough projec-

tive objects in A˝. By symmetry, this proves the claim. l

Definition 3.5. Let C be a full subcategory of a Morita category A . We

say that C ãÑ A is a ˝-embedding and that C is a ˝-subcategory of A if

C is closed with respect to kernels and cokernels such that C˝ “ A˝ and

C ˝ “ A ˝.

Thus any ˝-subcategory C of a Morita category A is a Morita category.

If i : C  A is a kernel of a morphism f : A Ñ B in A with A P C , there

is a monomorphism j : B Ñ I with I P S
˝
A . Hence i “ ker jf , and thus

C P C . By [64], Proposition 1, it follows that any Morita category A admits
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a smallest ˝-subcategory A
Ă

, consisting of the subquotients of objects P ‘ I

with P P S˝A and I P S
˝
A (cf. [64], Proposition 21). By a subquotient of

C P A we mean an object S which admits a kernel S  A and a cokernel

C ։ A (equivalently, a cokernel B ։ S and a kernel B  C). So the

objects A of A
Ă

are related to pairs P P S˝A and I P S
˝
A as follows:

P ‘ I

B
ą

ą

C

ąą

A
ą

ą

ąą

In the category of LCA groups, this subcategory is of special importance. It

consists of the groups for which the projective-injective object R does not

occur as a direct summand:

Proposition 3.6. The smallest ˝-subcategory of LCA consists of the locally

compact abelian groups which admit an open compact subgroup.

Proof. By [43], Theorem 24.30, every LCA group is of the form R
n ‘

A such that A admits an open compact subgroup. As R is projective and

injective, it can be removed from LCA to get a ˝-subcategory A which

consists of the objects A with an open compact subgroup C. In other words,

A admits a short exact sequence

C ą
i

ą A
p

ąą D

with a discrete abelian group D. So there exists a kernel j : C  T
κ

for

some cardinal κ. The pushout of i along j gives a split short exact sequence

T
κ
 T

κ ‘ D ։ D and a kernel A  T
κ ‘ D. Thus A is a subquotient of

an object of the form T
κ ‘ Z

pλq
. l

4. The ample closure

In [64], Morita categories are introduced as a special class of PI-categories,

which implies that every Morita category A admits a largest Morita category
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with A as a ˝-subcategory. In this section, we give a direct and more sym-

metric construction of the ample closure of a Morita category, and determine

it for the category of LCA groups.

Definition 4.1. A Morita category A is said to be ample [64] if every mor-

phism f P A admits a factorization f “ me with a ˝-epimorphism e and a

˝-monomorphism m.

Theorem 4.2. Every Morita category A admits a ˝-embedding into an am-

ple Morita category ĂA which is unique up to equivalence.

Proof. Let A be a Morita category, and let C be the category of monic

epimorphisms r : D Ñ C in A with D P A˝ and C P A ˝. Morphisms in C

are commutative squares

D
f

ą D1

C
O
r

g
ą C 1.

O
r1

(7)

The kernel r0 : D0 Ñ C0 of such a morphism is obtained by taking the kernel

k : D0  D of f in A˝. Since A is quasi-abelian, the monomorphism rk

admits a factorization rk “ ℓr0 with a kernel ℓ and a monic epimorphism

r0 : D0 Ñ C0. By Proposition 3.4, the object C0 belongs to A ˝. It is easily

verified that the so constructed r0 Ñ r is a kernel of the morphism (7) in C .

Thus, by symmetry, C is preabelian.

To any A P A , there is a ˝-epimorphism p : P Ñ A with P P S˝A and a

˝-monomorphism i : A Ñ I with I P S
˝
A . Since A is quasi-abelian, there

are factorizations p “ rAq and i “ jrA with a cokernel q, a kernel j, and

monic epimorphisms rA : A˝ Ñ A and rA : A Ñ A˝. By Proposition 3.4,

A˝ P A˝ and A˝ P A ˝. For any morphism f : A Ñ B in A , there is

a morphism f 1
: P Ñ B˝ with fp “ rBf

1 because rB is ˝-epic. Since

rBf
1 annihilates the kernel of q, it follows that f 1 annihilates the kernel of

q. So f 1 factors through q, which shows that frA factors through rB . By

symmetry, this gives a faithful additive functor A Ñ C which maps A to

rArA. Up to isomorphism, rA : A˝ Ñ A is uniquely determined as a ˝-epic

monomorphism with A˝ P A˝. To show that the functor A Ñ C is full, let
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a morphism rArA Ñ rBrB be given by a commutative diagram

A˝

rA
ą A

rA
ą A˝

B˝

O
f

rB
ą B

rB
ą B˝

O
g

By Proposition 3.3, rA is left orthogonal to rB . Hence there is a unique

morphism h : A Ñ B with hrA “ rBf and rBh “ grA. So we have a full

embedding A ãÑ C .

In particular, each object r : D Ñ C in C gives rise to a commutative

diagram
D ““““““ D ą C˝

D˝
O
rD

ą C
O
r

““““““ C
O
rC (8)

where rD and rC can be viewed as objects of the full subcategories A˝ and

A ˝, respectively. Furthermore, the morphism rD Ñ r is monic and epic,

which shows that C˝ is equivalent to a full subcategory of A˝. Conversely,

let (7) be a monomorphism in C with r1 “ rD
1

. Then f is monic in A , hence

a kernel. Therefore, gr “ r1f is ˝-monic, which shows that r is isomorphic

to an object in A˝. On the other hand, there is a factorization gr “ js with

a kernel j and a monic epimorphism s. Thus s : D Ñ C2 is again ˝-monic,

and C2 P A ˝. Hence g is a kernel. Now let D1
։ D2 be the cokernel of

f . Then it follows immediately that r is the kernel of the induced morphism

r1 Ñ rD
2

. Thus C˝ « A˝. In particular, this shows that A Ă C is closed

with respect to kernels. By symmetry, C ˝ « A ˝, and A Ă C is closed with

respect to cokernels.

So the diagram (8) implies that C satisfies condition (a) of Definition 3.1.

(It is easily checked that S˝A consists of the projective objects in C .) To

verify (b), consider a morphism (7) in C which is ˝-monic and ˝-epic.

Choose a kernel i : C  I with I P S
˝
A . Then there exists a morphism

j : D Ñ I˝ with rIj “ ir. Hence i factors through g. By [64], Proposition 2,

this implies that g is a kernel. By duality, f is a cokernel. Since r annihi-

lates the kernel of f , there exists a morphism h : D1 Ñ C with hf “ r and
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gh “ r1. Therefore, f is a monic cokernel, hence invertible. Similarly, g is

invertible, which proves that C is a Morita category such that A is equiva-

lent to a ˝-subcategory.

To show that C is ample, let (7) be any morphism ϕ P C . Taking the

image of f and g, we obtain a factorization ϕ “ µε where ε is given by

a commutative diagram (7) with cokernels f, g, and µ is given by such a

commutative diagram with kernels f, g. Thus, by symmetry, it is enough

to verify that a morphism (7) is ˝-epic whenever f and g are cokernels.

Assuming this, let f 1
: P Ñ D1 and g1

: P ˝ Ñ C 1 be morphisms with P P
S˝A and r1f 1 “ g1rP . Then f 1 “ fh for some h : P Ñ D. Since C P A ˝,

we find a morphism h1
: P ˝ Ñ C with rh “ h1rP . Thus g1rP “ r1f 1 “

r1fh “ gh1rP , which yields g1 “ gh1. So the morphism (7) is ˝-epic.

We set ĂA :“ C . To prove the uniqueness statement, let A ãÑ B be a

˝-embedding into an ample Morita category B. Then the above constructed

ample category C is the same for both A and B. Since B is ample, any

object r : D Ñ C in C satisfies r “ me with a ˝-epimorphism e and a

˝-monomorphism m. Hence B « C . l

The ample category ĂA will be called the ample closure of A . By the

preceding proof, we have

Corollary 1. Let A be a Morita category. For any object A P A there

are monic epimorphisms rA : A˝ Ñ A and rA : A Ñ A˝ with A˝ P A˝ and

A˝ P A ˝ such that rA is ˝-epic and rA is ˝-monic. Up to isomorphism, the

morphisms rA and rA are unique.

Recall that a factorization system [36, 37] in a category is given by a

pair pE ,M q of morphism classes, containing the isomorphisms and closed

under composition, such that the morphisms e P E are left orthogonal to the

morphisms m P M and each f P A admits a factorization f “ me with

m P M and e P E .

Corollary 2. For a Morita category A , the following are equivalent:

(a) Every ˝-embedding into a Morita category is an equivalence.

(b) The ˝-epimorphisms and ˝-monomorphisms form a factorization sys-

tem.

(c) A is ample.

Proof. (a) ô (c) follows by Theorem 4.2. Proposition 3.3 yields the
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equivalence (b) ô (c). l

Corollary 3. The category TBA of totally bounded abelian groups is the

ample closure of the category LCA of locally compact abelian groups.

Proof. By Proposition 2.1, TBA is equivalent to the category DCA. By

the proof of Theorem 4.2, DCA « ĆLCA. l

As is well known, the category LCA is neither complete nor cocomplete

[53, 45].

Proposition 4.3. The ample category TBA of totally bounded abelian groups

is complete and cocomplete.

Proof. Using Proposition 2.1, we consider the equivalent category DCA.

Since DCA is preabelian, it is enough to show that DCA has products and

coproducts. Thus let priq be a family of objects in DCA. So the ri : Di Ñ Ci

are dense embeddings of discrete groups Di into compact groups Ci. Thus

r :“
ś

ri is a dense embedding r :
ś

Di Ñ
ś

Ci, and it is easily verified

that r is a product of the ri in DCA. Since DCA is equivalent to DSpAbq
by Proposition 2.1, the category DCA has a natural duality which maps an

object r : D Ñ C to Hompr,Tq : HompC,Tq Ñ HompD,Tq. Thus DCA is

cocomplete. l

5. Duality

By a duality of a category C we mean an involution C op Ñ C . The

Pontryagin-van Kampen theorem ([59, 68]; [43], Theorem 24.8) states that

A ÞÑ HompA,Tq is a duality of LCA if the continuous dual of an LCA group

is endowed with the compact-open topology.

Extensions of Pontryagin duality have been investigated by many au-

thors, e. g., [48, 49, 53, 58, 69, 70, 71, 18, 22, 31, 32, 72, 52, 8, 62, 55, 5,

41, 39, 3]. Kaplan [48] proved that products of LCA groups are Pontryagin-

reflexive (P-reflexive for short) in the sense that the natural map to the bidual

is a topological isomorphism. He raised the problem to determine the class

of all P-reflexive topological abelian groups. Freundlich-Smith [35] proved

that the additive group of a real Banach space or a reflexive locally con-

vex space is P-reflexive. In 1976, Venkataraman [71] proposed a solution
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to Kaplan’s problem which contains a wrong statement of [69], similar to

the incorrect characterization of P-reflexive locally convex spaces in [52]

(see [5], Section 8). Correct solutions are given in [41] and [39], respec-

tively. Deviating from the compact-open topology, Binz [15, 16, 17, 18] and

Butzmann [21, 22, 23] studied duality within a class of abelian convergence

groups [30, 51] and convergence vector spaces.

Note that abelian convergence groups form a closed category [54], that

is, a symmetric monoidal category A with internal hom-objects HompA,Bq.

An object D of A is said to be dualizing if the natural morphism A Ñ
HompHompA,Dq, Dq is invertible for each object A. A closed category with

a dualizing object D is said to be ˚-autonomous [10].

Morita [56] and Roeder [63] proved that Pontryagin duality is essentially

unique as a duality of the category LCA. More generally, we have the fol-

lowing

Theorem 5.1. The ample closure of LCA is a complete and cocomplete

˚-autonomous category with an essentially unique duality which extends the

Pontryagin duality of LCA.

Proof. Any duality X ÞÑ pX of A :“ ĆLCA maps A˝ “ Ab to A ˝ “
CA. Up to isomorphism, Ab contains a unique indecomposable projective

object Z. Hence pZ – T. So the duality restricts to the Pontryagin duality

on Ab. Identifying ĆLCA with DCA, the objects of this category are given

as monic epimorphisms r : D Ñ C with D P Ab and C P CA. Now the

Pontryagin-dual of rC : Cd Ñ C is the Bohr compactification r
pC
: pC Ñ b pC.

Since ˝-epimorphisms correspond to ˝-monomorphisms under the duality,

this shows that the dual of the morphism r : D
r

Ñ Cd
rCÑ C in DCA coincides

with the Pontryagin-dual of this map in LCA. So the dual of the object

r P DCA is given by the Pontryagin-dual pr : pC Ñ pD of the morphism

r P LCA. Thus r ÞÑ pr is the unique duality of DCA « ĆLCA.

Now let A P LCA be given. By dualizing the sequence Ad Ñ A Ñ bA,

we obtain a sequence HompbA,Tq Ñ HompA,Tq Ñ HompAd,Tq with

HompA,Tqd “ HompbA,Tq. Furthermore, Pontryagin duality implies that

HompA,Tq Ñ HompAd,Tq is the Bohr compactification of HompA,Tq.

Thus HompA,Tq coincides with the dual of A in DCA.

To show that TBA « ĆLCA is a closed category, we endow the group

HompA,Bq of continuous homomorphisms for A,B P TBA with the weak
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topology, induced by the embedding HompA,Bq ãÑ BA, and write HomσpA,Bq
for this group. Thus HomσpA,Bq P TBA. For B :“ T, this gives the

weak dual Aσ
:“ HomσpA,Tq, in accordance with the duality in DCA.

Every biadditive map β : A ˆ B Ñ C with LCA groups A,B,C corre-

sponds to a group homomorphism βℓ : A Ñ HompB,Cq, which maps A

into HomσpB,Cq if and only if the partial map βpa,´q is continuous for all

a P A. The embedding HomσpB,Cq ãÑ CB shows that βℓ is continuous if

and only if the partial maps βp´, bq are continuous for all b P B. Together

with the embeddings

HomσpA,HomσpB,Cqq ãÑ HomσpB,CqA ãÑ pCBqA – CAˆB,

this gives a topological isomorphism

HomσpA,HomσpB,Cqq – HomσpB,HomσpA,Cqq.

In particular,

HomσpAσ, Bσq – HomσpB,Aσσq – HomσpB,Aq.

Hence

HomσpA,HomσpB,Cqq – HomσpA,HomσpCσ, Bσqq

– HomσpCσ,HomσpA,Bσqq

– HomσpHomσpA,Bσqσ, Cq,

and thus A b B :“ HomσpA,Bσqσ – HomσpB,Aσqσ yields the desired

isomorphism

HomσpA b B,Cq – HomσpA,HomσpB,Cqq.

Note that the associativity of b follows by this formula. With the dualiz-

ing object T, the category TBA is ˚-autonomous. By Proposition 4.3, it is

complete and cocomplete. l

Remarks. 1. Theorem 5.1 suggests an alternative proof of classical Pontrya-

gin duality. Since LCA groups are topological k-spaces, and ˝-epimorphisms

are transformed into ˝-monomorphisms under duality, one only has to verify

that subsets K of HompA,Tq which are compact in HompAd,Tq are compact
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in the compact-open topology of HompA,Tq. Using the Arzelà-Ascoli the-

orem for LCA groups ([7], Theorem 4), it suffices to show that K is evenly

continuous [50]. Using [58], Lemma 2.1, this is easily verified.

2. Note that the unique duality of TBA is not the Pontryagin duality

in TBA (see [3], Example 2.6). For example, let B be the image of Z ãÑ
bZ, with the induced topology. By Glicksberg’s theorem [40], the compact

subsets of B are finite. So the Pontryagin duals of B and Z are topologically

isomorphic. Since Z is not totally bounded, this shows that B is not P-

reflexive. By [24], Theorem 2, the image of a dense embedding Z ãÑ T with

the induced topology is not P-reflexive either.

3. It is natural to ask how far Theorem 5.1 can be extended to the category

of (not necessarily abelian) locally compact groups. A first step would be to

describe the category of compact groups, which is semi-abelian in the sense

of [47], within the category of all locally compact groups, in analogy to the

subcategory A ˝ of a quasi-abelian category. Such a study will probably

require concepts beyond those discussed in [20].

Let KAb be the category of topological abelian groups which respect

compactness [62], that is, weakly compact subsets are compact. This cate-

gory contains the nuclear groups [9] and more generally, the locally quasi-

convex Schwartz groups ([6], Theorem 4.4). Glicksberg’s theorem [40]

states that every LCA group belongs to KAb. For a while, it was believed

([70], Theorem 1.1) that KAb also contains the category PAb of P-reflexive

Hausdorff abelian groups. This was disproved by Remus and Trigos-Arrieta

[62] who provided a class of locally convex spaces as counterexamples, in-

cluding the additive group of the separable Hilbert space ℓ2pRq. More pre-

cisely, it is known [35] that the additive group of a reflexive locally con-

vex space X is P-reflexive. By [62], Theorem 1.4, such a group belongs to

KAb if and only if X is a Montel space [65]. This leads to the category

PKAb :“ PAb X KAb which was introduced by Trigos-Arrieta ([67], 1.8)

and studied in [62], Section 2. By [62], Corollary 2.2, the full subcategory

PKAb of PAb is closed with respect to products, which shows that PKAb

strictly contains LCA.

Theorem 5.2. The category PKAb of P-reflexive Hausdorff abelian groups

respecting compactness admits a duality preserving full embedding into the

ample closure of LCA.
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Proof. Let A be a Hausdorff abelian group in PAb. By [2], Theorem 1, A

has a Bohr compactification rA : A Ñ bA with bA – HompHompA,Tqd,Tq
[46, 27], so that every character A Ñ T factors uniquely through rA. Since

A has enough characters, rA is a dense embedding. Dually, there is a con-

tinuous bijection rA : Ad Ñ A. We associate the object rArA P DCA to A.

This gives a faithful additive functor F : PAb Ñ DCA.

We show first that F respects duality. Indeed, HompA,Tqd “ HompbA,Tq.

With X :“ HompA,Tq, this shows that rX : Xd Ñ X is given by

HomprA,Tq : HompbA,Tq Ñ HompA,Tq.

Hence rX : X Ñ bX is given by HomprA,Tq : HompA,Tq Ñ HompAd,Tq.

So the duality of DCA restricts to the duality of PAb.

To show that the restriction Fk : PKAb Ñ DCA of F is full, let FA Ñ
FB be a morphism in DCA with A,B P PKAb. This gives a commutative

diagram

Ad

rA
ą A

rA
ą bA

Bd

O
f

rB
ą B

rB
ą bB.

O
g (9)

We show that the unique map h : A Ñ B with hrA “ rBf is continuous.

Let K be a compact subset of A. Then rBhpKq “ grApKq is compact.

Hence hpKq is compact in B. Thus h maps compact sets to compact sets.

Dualizing the diagram (9) leads to a map pg : HompbB,Tq Ñ HompbA,Tq

which induces a map ph : HompB,Tq Ñ HompA,Tq with phpχq “ χh. For a

0-neighbourhood W in T, consider the 0-neighbourhood (K Ă A compact)

UpK,W q :“ tχ P HompA,Tq | χpKq Ă W u

in HompA,Tq. Then

χ P ph´1pUpK,W qq ô χhpKq Ă W ô χ P UphpKq,W q,

which yields ph´1pUpK,W qq “ UphpKq,W q. Thus ph is continuous. By du-

ality, this implies that h is continuous. So the functor Fk is a full embedding.

l
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Remark. The first part of the proof yields a duality preserving faithful func-

tor PAb Ñ DCA. Without the counterexamples to [70], Theorem 1.1, this

functor would be a full embedding. The failure of this, analysed in [62], led

to the category PKAb which is more well-behaved with respect to P-duality.

Conversely, the proof of Theorem 5.2 shows that PKAb is the largest full

subcategory of PAb which allows a full embedding into the ample closure

of LCA. Namely, if A P PAb does not respect compactness, the totally

bounded image A` of rA gives a commutative diagram

A`
d

rA`

ą A` rA
`

ą bA`

Ad

w

w

w

w

w

w

rA
ą A

O
h

rA
ą bA

w

w

w

w

w

w

w

with a non-continuous bijection h. So the compact-open topology becomes

inadequate beyond PKAb. In topological terms, Theorem 5.2 implies that

a weakly continuous homomorphism between topological groups in PKAb

is continuous. For LCA groups this was proved by Trigos-Arrieta ([67],

Theorem 1.2).
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Résumé. Les catégories intégrales forment une sous-classe des catégories
pré-abéliennes, ces dernières ayant été initialement étudiées par Rump en
2001. Dans la première partie de ce travail, on détermine si certaines catégo-
ries d’espaces vectoriels topologiques et bornologiques sont intégrales. En-
suite, on prouve que la classe des catégories intégrales n’est pas contenue
dans la classe des catégories quasi-abéliennes, et qu’il existe des catégories
semi-abéliennes ni intégrales, ni quasi-abéliennes. Enfin, on trouve une nou-
velle caractérisation des catégories quasi-abéliennes, en utilisant la propriété
des sommes admissibles, récemment considérée par Brüstle, Hassoun et Tat-
tar. On note qu’une classe de catégories additives non-abéliennes, jouant un
rôle très important en analyse fonctionnelle, satisfait à cette propriété.
Abstract. Integral categories form a sub-class of pre-abelian categories
whose systematic study was initiated by Rump in 2001. In the first part
of this article we determine whether several categories of topological and
bornological vector spaces are integral. Moreover, we establish that the class
of integral categories is not contained in the class of quasi-abelian categories,
and that there exist semi-abelian categories that are neither integral nor quasi-
abelian. In the last part of the article we show that a category is quasi-abelian
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if and only if it has admissible intersections, in the sense considered recently
by Brüstle, Hassoun and Tattar. This exhibits that a rich class of non-abelian
categories having this property arises naturally in functional analysis.
Keywords. Integral category, quasi-abelian category, projective object, quasi-
projective object, topological vector space, bornological vector space, exact
category, admissible intersections.
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1. Introduction

Since the 1960s there has been much research on additive, non-abelian cat-
egories. This has led to the development of a spectrum of classes of categor-
ies ranging from pre-abelian to abelian. Our goal in this note is to explain
the following diagram:

pre-abeliansemi-abelianquasi-abelian

integralabelian

•BAN

•NOR
•FRE
•HD-TVS •

HD-LCS •
NUC •
FN •
FS

•
FH

B̂c ÛBc Bc
•

SNOR

•

TVS

•

LCS

H

C/[XR]

•

BOR

•

BAN×BOR

•

LB

•

COM

Figure 1: A graphic summary of the categories studied in this article.

We focus on the concrete examples from functional analysis and repres-
entation theory that appear therein. We refer the reader to §§2–4 for precise
definitions.

A pre-abelian category is an additive category in which every morph-
ism has a kernel and a cokernel. Within the class of pre-abelian categories,
one defines the following notions. Semi-abelian categories are the ones in
which the canonical morphism between the coimage and image is always
both monic and epic, but not necessarily an isomorphism as one would ex-
pect in an abelian category. Quasi-abelian categories are the ones in which
kernels are stable under pushout and cokernels are stable under pullback. On
the other hand, integral categories are the ones in which monomorphisms are
stable under pushout and epimorphisms are stable under pullback. One can

- 331 -



S. HASSOUN, A. SHAH
AND S.-A. WEGNER

INTEGRAL CATEGORIES
AND THE A.I. PROPERTY

check that the implications

quasi-abelian

abelian semi-abelian pre-abelian

integral

(∗)

are relatively straightforward; see e.g. Rump [32]. A conjecture of Raı̆kov,
which has been solved in the negative, was that the converse of (∗) holds;
see Remark 3.7.

Despite recent progress on integral categories, which appears to be pre-
dominantly in algebra (see Remark 2.7), the question if there exist integral
categories that are not quasi-abelian seems to date to be open. We answer
this positively; see Corollary 3.6. With an idea communicated to the authors
by J. Wengenroth, we also prove that the class of semi-abelian categories is
not merely the union of the classes of integral and quasi-abelian categories;
see Theorem 3.8. Furthermore, we systematically investigate integrality for
many examples found in the functional analyst’s category theory toolbox;
see Theorems 3.1–3.5, 4.1 and 4.2. As a consequence of these results, we
derive that most of the categories in Figure 1 have neither enough projectives
nor enough injectives; see Theorem 5.3.

Non-abelian categories appear in abundance in functional analysis and
have applications for instance in the theory of partial differential equations;
see Wengenroth [43], and Frerick and Sieg [9], and the references therein.
Indeed, as can be seen from Figure 1, most of the categories we study here
are quasi-abelian but not abelian. However, this is still enough intrinsic
structure to conduct homological algebra as Schneiders [39] did. He also
observed that on each quasi-abelian category the class of all kernel-cokernel
pairs forms an exact structure in the sense of Quillen [30] (see also Yoneda’s
‘quasi-abelian S -categories’ [45]). In contrast to the internal structure of a
category, like pre-, semi- and quasi-abelian, an exact structure is extrinsic.

In studying lengths of objects in exact categories, Brüstle, Hassoun, Lang-
ford and Roy [3, Exam. 6.9] showed that an analogue of the classic Jordan-
Hölder property can fail for an arbitrary exact category; see also Enomoto
[8]. Motivated partly by this, Brüstle, Hassoun and Tattar [4] have recently
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considered additive categories with a mix of intrinsic and extrinsic struc-
tures. More specifically, they consider pre-abelian categories equipped with
an exact structure that has ‘admissible intersections’; see §6. Building on
their groundwork, we show in Theorem 6.1 that this property is satisfied if
and only if the category is quasi-abelian, thereby giving a new characterisa-
tion for quasi-abelian categories.

2. A reminder on pre-abelian categories

We recall some definitions of additive categories more general than abelian
ones. For more details we refer the reader to [32]. Recall that an additive
category is called pre-abelian if every morphism has a kernel and a cokernel.

For the remainder of this section, let A be a pre-abelian category.

Definition 2.1. [32, p. 167] If each morphism f : A → B in A can be ex-
pressed as f = i ◦ p for some monomorphism i and some cokernel p, then
A is said to be left semi-abelian. Dually, if each morphism f can be written
as f = i ◦ p for some kernel i and some epimorphism p, then A is said to be
right semi-abelian. If A is both left and right semi-abelian, then it is called
semi-abelian.

Definition 2.2. Let X be a class of morphisms inA. We say that X is stable
under pullback if, in any pullback square

A B

C D

a

b PB c

d

a is in X whenever d is in X . Being stable under pushout is defined dually.

Definition 2.3. [32, p. 168] If cokernels in A are stable under pullback,
then A is called left quasi-abelian. Dually, if kernels in A are stable under
pushout, then A is called right quasi-abelian. If A is both left and right
quasi-abelian, then it is called quasi-abelian.

We note here that different authors, in particular Palamodov [25, 26] and
Raı̆kov [31], have used the above notions in different senses. For example,

- 333 -



S. HASSOUN, A. SHAH
AND S.-A. WEGNER

INTEGRAL CATEGORIES
AND THE A.I. PROPERTY

we follow Palamodov in the use of ‘semi-abelian’; see also Kopylov and
Wegner [18] for different characterisations. In the non-additive setting, this
same name is used to describe a category that is pointed Barr-exact proto-
modular, admitting binary coproducts; see Janelidze, Márki and Tholen [16].
We refer to the introductions of [38], [18], and [44] for historic references.

Definition 2.4. [32, p. 168] If epimorphisms inA are stable under pullback,
then A is called left integral. Dually, if monomorphisms in A are stable
under pushout, then A is called right integral. If A is both left and right
integral, then it is called integral.

Certain relationships between the categories defined above can then be
established.

Proposition 2.5. [32, p. 169, Cor. 1]

(i) If A is a left (respectively, right) quasi-abelian category, then it is left
(respectively, right) semi-abelian.

(ii) If A is a left (respectively, right) integral category, then it is left (re-
spectively, right) semi-abelian.

It follows then that the classes of quasi-abelian and integral categories
are both contained in the class of semi-abelian categories.

Proposition 2.6. [32, Prop. 3 and p. 173, Cor.] Suppose A is semi-abelian.

(i) The category A is left quasi-abelian if and only if it is right quasi-
abelian.

(ii) The category A is left integral if and only if it is right integral.

We conclude this section with the following remark on integral categor-
ies.

Remark 2.7. Although Rump introduced the name ‘integral’ for a category,
such categories were known to Bănică and Popescu [1]. By extending results
of [1], Rump proved that a pre-abelian category is integral if and only if it
admits a faithful embedding into an abelian category which preserves kernel-
cokernel pairs; see [32, Prop. 7]. In particular, he observed that the class of
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simultaneously monic and epic morphisms in an integral category admits a
calculus of fractions in the sense of Gabriel and Zisman [10], and hence the
(canonical) localisation of the category at this class is an abelian category.
This is one reason why integral categories have gained popularity among
representation theorists:

(i) Rump [33, 34, 35, 36] himself showed, among other things, that the
torsion-free class of a hereditary torsion theory in an abelian category
is integral.

(ii) Buan and Marsh [5] showed that, for a certain triangulated category C
and a rigid object R ∈ C, the quotient category C/[XR], where XR =
Ker HomC(R,−), is integral. From this they proved that the canonical
localisation of C/[XR] is a module category over (EndC R)op.

(iii) By introducing hearts of twin cotorsion pairs on triangulated categor-
ies, Nakaoka [22] generalised this construction of C/[XR]. He showed
that the heart is always semi-abelian and gave a sufficient condition
for it to be integral. A condition for the heart to be quasi-abelian was
given by Shah [40]. Furthermore, analogous concepts have been stud-
ied by Liu [19] for exact categories, and by Liu and Nakaoka [20], and
Hassoun and Shah [13] for extriangulated categories (in the sense of
Nakaoka and Palu [23]).

3. Categories of topological vector spaces

In this section we look at categories of topological vector spaces. The ob-
jects of such a category are pairs (X, τ), where X is a vector space and τ
is a topology on X that makes the vector space operations continuous. The
morphisms are continuous linear maps. For unexplained notation from func-
tional analysis we refer the reader to Meise and Vogt [21].

Our first result extends Rump’s observation [32, §2.2] that the topological
abelian groups form an integral category.

Theorem 3.1. Let k ∈ {R,C} be fixed. The categories

(i) SNOR of semi-normed spaces;
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(ii) LCS of (Hausdorff and non-Hausdorff) locally convex spaces; and

(iii) TVS of (Hausdorff and non-Hausdorff) topological vector spaces

over k, each furnished with linear and continuous maps as morphisms, are
quasi-abelian and integral.

Proof. It is well-known that all three categories are quasi-abelian; see e.g.
[39, Prop. 3.2.4], Prosmans [28, Prop. 2.1.11] and [9, Exam. 4.14]. In
SNOR, LCS and TVS the kernel of a morphism f : X → Y is the inclusion
f−1(0)→ X , where f−1(0) is furnished with the induced topology. Denote
by ran f the range of f . Then the cokernel of f is the quotient Y → Y/ ran f
with the quotient topology; see e.g. [39, Lem. 3.2.3], [28, Prop. 2.1.8] and
[9, Exam. 2.14]. Thus, f is monic if and only if f is injective, and f is epic
if and only if f is surjective. Since pushouts and pullbacks compute algeb-
raically precisely as in Mod k, the two conditions in Definition 2.4 hold.

Our second result exhibits a collection of quasi-abelian categories that
are not integral. This is due to the Hausdorff property that we require below.
Although all categories in Theorem 3.2 are full subcategories of TVS, their
cokernels and thus pushouts compute algebraically differently than in Mod k.
Theorem 3.2 extends Rump’s results [32, §2.2] on Hausdorff topological
abelian groups.

Theorem 3.2. Let k ∈ {R,C} be fixed. The categories

(i) BAN of Banach spaces;

(ii) NOR of normed spaces;

(iii) FRE of Fréchet spaces;

(iv) HD-LCS of Hausdorff locally convex spaces;

(v) HD-TVS of Hausdorff topological vector spaces;

(vi) NUC nuclear spaces;

(vii) FN of nuclear Fréchet spaces;

(viii) FS of Fréchet-Schwartz spaces; and
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(ix) FH of Fréchet-Hilbert spaces

over k, each furnished with linear and continuous maps as morphisms, are
quasi-abelian but not (left or right) integral.

Proof. Again, it is well-known that these categories are quasi-abelian; see
e.g. Prosmans [27, Prop. 3.1.7], [39, Prop. 3.2.17], [28, Prop. 4.4.5] and
[28, Prop. 3.1.8] for direct proofs for the first four. The most efficient ap-
proach, however, is to establish explicitly that HD-TVS is quasi-abelian,
which can be achieved with a slight modification of the proofs just cited.
In doing so, one observes that given a morphism f : X → Y in HD-TVS,
its kernel is the inclusion f−1(0) → X , and its cokernel is the quotient
Y → Y/ran f . These spaces are endowed with the subspace and the quotient
topology, respectively. Since the defining properties for the other categor-
ies, like Banach, normed, Fréchet, etc., are inherited by closed subspaces
and quotients by closed subspaces1, these categories reflect the kernels and
cokernels of HD-TVS. From this it follows that all these categories are also
quasi-abelian by, for example, [9, Prop. 4.20].

By Propositions 2.5 and 2.6, left integrality is equivalent to right integ-
rality for all categories in our list; thus, below we show that they all are not
right integral. For this we bear in mind that in all nine categories, a morph-
ism is monic if and only if it is injective. This follows from our observations
above about kernels in these categories.

(i)–(v): Consider the Banach spaces

c0 =

ß
x = (xj)j∈N ∈ kN

∣∣∣∣ lim
j→∞

xj = 0

™
and

`1 =

®
x ∈ kN

∣∣∣∣∣ ‖x‖1 =
∞∑
j=1

|xj| <∞
´

of null sequences and of absolutely summable sequences, respectively. Here,
c0 is endowed with the supremum norm given by ‖x‖∞ = supj∈N |xj| and
`1 is endowed with the 1-norm ‖ ·‖1 indicated above. The field k is endowed
with the absolute value as a norm. We denote by i : `1 → c0 the inclusion

1For the not-so-explicitly-studied categories in (vi)–(ix), this can be found in [21, Prop.
28.6, Prop. 24.18 and Rmk. 29.15].
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and by Σ: `1 → k the map that sends a sequence to its sum. Now we
put P = (c0⊕ k)/ ran [ i

9Σ], where c0⊕ k carries the product topology, the
closure is taken in c0⊕ k, and P is furnished with the quotient topology. We
denote by p : c0⊕ k → P the quotient map, and by i1 : c0 → c0⊕ k and
i2 : k → c0⊕ k the inclusion maps. We claim that in all five categories the
diagram

`1 c0

k P

Σ

i

p◦i1

p◦i2

is a pushout square, and that i is a monomorphism but p ◦ i2 is not.
Since the pushout of i along Σ is the cokernel of

[ i
9Σ

]
: `1 → c0⊕ k, our

initial remarks establish the first claim and imply that for the second claim it
is enough to show that p ◦ i2 is not injective. In order to achieve this we will
establish that (p ◦ i2)(1) = 0 in P . Applying the definition of p ◦ i2, we see
that we need to show that[

0
1

]
∈
{[

i
9Σ

]
(x)
∣∣ x ∈ `1

}
holds. For this we define a sequence (xn)n∈N in `1 as follows. For positive
integers n and j we put xnj = −1/n whenever 1 6 j 6 n, and xnj = 0
otherwise. Since for each n only finitely many entries of

xn = (−1/n,−1/n, . . . ,−1/n, 0 . . . )

are non-zero, we get (xn)n∈N ⊆ `1. In view of ‖xn‖∞ = 1/n and i(xn) = xn

we see that (i(xn))n∈N converges to 0 in c0. On the other hand, we have∣∣1− (−Σ(xn))
∣∣ =

∣∣1 +
n∑

j=1

−1/n
∣∣ = 0

for every n. Whence, (−Σ(xn))n∈N converges to 1 in k and
[ 0

1

]
∈ ran [ i

9Σ], as
desired.

(vi)–(ix): Since nuclear Fréchet spaces are Fréchet-Hilbert and Fréchet-
Schwartz by [21, Lem. 28.1 and Cor. 28.5], we construct a pushout diagram
like in the first part of the proof but with all spaces being nuclear Fréchet.
As a locally convex space is simultaneously Banach and nuclear if and only
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if it is of finite dimension, we need nuclear replacements for c0 and `1. First,
consider the space kN of all sequences, which carries the topology of point-
wise convergence given by |x|m = sup16j6m |xj|. Secondly, let

s =

®
x ∈ kN

∣∣∣∣∣ ∀m ∈ N : ‖x‖m =
∞∑
j=1

jm|xj| <∞
´

be the space of rapidly decreasing sequences, which is endowed with the
topology generated by the semi-norms (‖·‖m)m∈N. Both spaces are nuclear2.
Since |x|m 6 ‖x‖m and |Σ(x)| 6 ‖x‖m hold for every m ∈ N and every
x ∈ s, the inclusion i′ : s → kN and the summation Σ′ : s → k are both
well-defined and continuous. The space P ′ = (kN ⊕ k)/ ran [ i′

9Σ′ ] and the
quotient map p′ : kN ⊕ k → P ′ are defined analogously to the first part.

Our observations at the beginning of this proof imply that the following
holds in all four categories. Firstly, the pushout of i′ along Σ′ is given by the
cokernel of

[ i′

9Σ′
]
, and thus precisely by P ′. Secondly, i′ is monic. Therefore

the diagram

s kN

k P ′

Σ′

i′

p′◦i′1

p′◦i′2

is a pushout. By employing the same sequence (xn)n∈N as in the first part,
we can see that p′ ◦ i′2 is not monic.

We now consider two examples of categories that are neither semi-abelian
nor integral. Both are full subcategories of HD-LCS; the first reflects the
kernels and the second the cokernels of HD-LCS. However, in the first one
cokernels compute differently than in HD-LCS, and in the second the kernels
do.

Theorem 3.3. Let k ∈ {R,C} be fixed. The category COM of complete
Hausdorff locally convex spaces over k, furnished with linear and continu-
ous maps as morphisms, is right quasi-abelian but neither left semi-abelian
nor right integral.

2This follows from [21, Prop. 28.16], because both s = λ1((jm)j,m) and kN =
λ∞((1{1,...,m}(j))j,m) are from the class of Köthe echelon spaces.
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Proof. The category COM reflects kernels of HD-LCS, and thus a morphism
f : X → Y in COM is monic if and only if it is injective. To compute the
cokernel

Y →◊�Y/ran f

of f in COM, one must take a completion. From this it was derived in [18,
Exam. 4.2] that COM is not left semi-abelian. If, on the other hand, we go
through the first example in the proof of Theorem 3.2, but in the category
COM, we see that P is already complete since we are dealing with Banach
spaces. The diagram constructed in the proof of Theorem 3.2 is thus also a
pushout in COM, and hence COM is not right integral.

It remains to see that COM is right quasi-abelian. We remark that by [28,
Prop. 4.1.10 and Cor. 2.1.9], a morphism in COM is a kernel if and only if
it is injective and open onto its range. Notice that this implies automatically
that ran f is closed; see [28, Rmk. 4.1.11(i)]. Let f : X → Y be a kernel and
g : X → Z be an arbitrary morphism. We put now Q = (Y ⊕Z)/ran [ g

9f ].
Notice that the pushout of f along g taken in COM factors through the
pushout taken in HD-LCS. Thus, there is a diagram

X Y

Z Q

Z Q̂

g

f

q◦i2

i

i◦q◦i2

in which the outer rectangle is the pushout in COM and the upper square is
the pushout in HD-LCS. Here, i2 : Z → Y ⊕ Z is the inclusion, q : Y ⊕
Z → Q is the quotient map and i : Q → Q̂ is the inclusion of Q into its
completion. Since HD-LCS is quasi-abelian, q ◦ i2 is a kernel in HD-LCS,
and thus injective and open onto its range; see [28, Cor. 3.1.5]. Since i is an
isomorphism onto its range, we see that i ◦ q ◦ i2 is injective and open onto
its range, too. Thus, it is a kernel in COM, and we are done.

Theorem 3.4. Let k ∈ {R,C} be fixed. The category LB of countable Haus-
dorff locally convex inductive limits of Banach spaces over k, furnished with
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linear and continuous maps as morphisms, is left quasi-abelian but neither
right semi-abelian nor left integral.

Proof. The category LB reflects cokernels of HD-LCS, and thus a morphism
f : X → Y is epic in LB if and only if it has dense range. Forming the kernel

f−1(0)[ → X

of f requires endowing f−1(0) with a possibly strictly finer topology; see
Wegner [42, Proof of Prop. 14]). The proof in [42] shows that LB is left
semi-abelian but not semi-abelian—and therefore necessarily not right semi-
abelian.

Furthermore, LB is left quasi-abelian, as noted without proof already
in [18, p. 540]. Indeed, first observe that since LB reflects cokernels of
HD-LCS, and since every cokernel is the cokernel of its own kernel, all coker-
nels of LB are surjective. Conversely, if f : X → Y is a surjective morphism
in LB, then it satisfies the universal property of a cokernel. Assume now that
f is a cokernel and let g : Z → Y be an arbitrary morphism in LB. Then the
pullback of f along g is

[g 9f ]−1(0)[ Z

X Y

i2

i1

PB g

f

which is algebraically the pullback taken in Mod k. Thus, we see that i1 is
surjective and hence a cokernel in LB by the argument just above.

Finally, we use that BAN is a subcategory of LB, in order to show that the
latter is not left integral. Since BAN is not left integral by Theorem 3.2, we
can find a pullback diagram in BAN such that the bottom morphism is epic
but the top one is not. Since for a Banach space X and a closed subspace
U ⊆ X , the topology of U [ coincides with the topology induced by X ,
this diagram is also a pullback in LB. From this we see that LB is not left
integral.

In view of Proposition 2.5, we note that it follows from Theorem 3.3 that
COM cannot be left quasi-abelian or left integral. Similarly, using Theorem
3.4, LB cannot be right quasi-abelian or right integral.
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So far we have witnessed that there exist examples of quasi-abelian cat-
egories that are not integral. Next we give an example of an integral category
that is not quasi-abelian. This establishes that the class of integral categories
is not contained in the class of quasi-abelian ones. To the knowledge of the
authors this seemed to be previously unknown. Notice that the cokernels ap-
pearing below have no closure in the denominator, since we deal here again
with a category whose objects are in general not Hausdorff.

Theorem 3.5. Let k ∈ {R,C} be fixed. The category BOR of bornological
(Hausdorff and non-Hausdorff) locally convex spaces over k, furnished with
linear and continuous maps as morphisms, is integral but neither left nor
right quasi-abelian.

Proof. The category BOR reflects cokernels in LCS. Analogously to LB, the
kernel of a morphism f : X → Y is the inclusion f−1(0)BOR → X , where the
‘associated bornological topology’ of f−1(0)BOR can be strictly finer than the
topology induced by X; see Sieg and Wegner [41, Exam. 4.1]. We thus get
that f is monic if and only if f is injective, and that f is epic if and only if
f is surjective. Consequently, pushouts and pullbacks compute algebraically
precisely as in Mod k. Similarly to Theorem 3.1 we conclude that BOR is
integral.

A counterexample constructed by Bonet and Dierolf in [2] (see [41,
Exam. 4.1]) shows that BOR is not left quasi-abelian. However, by Propos-
ition 2.6, BOR cannot be right quasi-abelian either as BOR is semi-abelian
by Proposition 2.5. Note that it was known already that BOR is semi-abelian
but not quasi-abelian, cf. Remark 3.7.

Corollary 3.6. The class of integral categories is not contained in the class
of quasi-abelian categories.

We recall the connection between Raı̆kov’s conjecture and the category
BOR.

Remark 3.7. Recall from §1 that Raı̆kov’s conjecture states that a category
is semi-abelian if and only if it is quasi-abelian. It was posed around 1970
and answered negatively some 30 years later. Disproving it brought together
aspects from algebra and analysis. The category BOR is one of the first two
counterexamples given in the literature that falsify it. The other of these is
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due to Rump [37, Exam. 1] and is a category of the form A-proj, where
A is a tilted algebra of Dynkin-type E6. We refer to [38] for historical de-
tails on Raı̆kov’s conjecture, and to [44] for an extended survey on why the
conjecture must naturally fail from the analytic point of view.

We conclude this section on a related note. All the examples of semi-
abelian categories we have studied so far (and even those we will see in §4)
are either integral or quasi-abelian. Therefore, it is natural to ask if there ex-
ists a semi-abelian category which is neither integral nor quasi-abelian. The
authors would like to kindly thank J. Wengenroth for proposing a method
to obtain a positive answer to this question. Indeed, he suggested that the
product categoryA×B of a non-integral categoryA and a non-quasi-abelian
category B would give such an example. This would ensureA×B is neither
integral nor quasi-abelian. On the other hand, choosingA and B so that they
are semi-abelian in their own right ensures A× B is also semi-abelian.

Theorem 3.8. There exist semi-abelian categories that are neither integral
nor quasi-abelian. In particular, the product category BAN×BOR is an
example of such a category.

Proof. Let A denote a semi-abelian category that is not integral (e.g. BAN)
and let B denote a semi-abelian category that is not quasi-abelian (e.g. BOR).
Consider the product categoryA×B. The objects ofA×B are pairs (A,B),
where A ∈ obj(A) and B ∈ obj(B), and morphisms in A × B are pairs
(f, g), where f is a morphism in A and g is a morphism in B.

It is straightforward to check that A × B is additive and pre-abelian. In
particular, (co)kernels in A × B are constructed component-wise; for ex-
ample, the kernel of (f, g) is

(ker f, ker g) : (Ker f,Ker g)→ (A,B)

for f ∈ HomA(A,A′) and g ∈ HomB(B,B′).
As observed in [32, pp. 167–168], a pre-abelian category is semi-abelian

if and only if the parallel morphism h∼ : Coimh→ Imh (that is, the canon-
ical morphism from the coimage to the image) of a morphism h is both monic
and epic. It is easy to show that (f, g) is monic (respectively, epic) if and only
if f, g are monic (respectively, epic) in their respective categories. Thus,
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since A,B are both semi-abelian, the parallel morphism (f, g)∼ = (f∼, g∼)
of (f, g) is both monic and epic, and hence A× B is semi-abelian.

Since A is not integral, but is semi-abelian, it cannot be left or right
integral by Proposition 2.6. Therefore, as A is not left integral, there is a
pullback square

P A2

A1 A

f ′
2

f ′
1

PB f2

f1

in A, where f1 is an epimorphism but f ′1 is not. Since kernels in A × B are
constructed component-wise, it follows that pullbacks are also determined
by their components. Hence, we have the pullback square

(P, 0B) (A2, 0B)

(A1, 0B) (A, 0B)

(f ′
2,0)

(f ′
1,0)

PB (f2,0)

(f1,0)

inA×B, where 0B is the zero object in B. Moreover, as f1 ∈ HomA(A1, A)
and 0 ∈ HomB(0B, 0B) are both epic, we see that (f1, 0) is epic; and (f ′1, 0)
cannot be epic since f ′1 is not. Consequently, A × B is not left integral and
hence not integral.

Similarly, one can show that A × B is not quasi-abelian, and this con-
cludes the proof.

4. Categories of bornological vector spaces

Below we consider categories of bornological vector spaces, in the sense
introduced by Buchwalter [6] and Hogbe-Nlend [14, 15]. We follow the
notation of Prosmans and Schneiders [29], and consider categories whose
objects are pairs (X,BX) where X is a k-vector space and BX is a convex
bornology. Their morphisms are the so-called bounded linear maps f : X →
Y , i.e. linear maps for which f(B) ∈ BY holds whenever B ∈ BX . See [29,
§1] for more details. Notice that the term ‘bornological’ in this section has a
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different meaning than in Theorem 3.5. Here the bornology is an additional
structure on a vector space, whereas in §3 being bornological is a property
that a locally convex space either enjoys or not.

We start again with identifying a category that is both quasi-abelian and
integral.

Theorem 4.1. Let k ∈ {R,C}. The category Bc of (separated and non-
separated) bornological vector spaces over k, furnished with bounded linear
maps as morphisms, is quasi-abelian and integral.

Proof. By [29, Prop. 1.8] the category is quasi-abelian. By [29, Prop. 1.5],
for a morphism f : X → Y the kernel is the inclusion map f−1(0)→ X and
the cokernel is the quotient map Y → Y/ ran f . Here, f−1(0) is endowed
with the induced bornology and Y/ ran f with the quotient bornology; see
[29, Def. 1.4]. One can now proceed as in the proof of Theorem 3.1.

The other two categories that are usually studied in the context of borno-
logies are both quasi-abelian, but neither of them is integral.

Theorem 4.2. Let k ∈ {R,C}. The categories

(i) ÛBc of separated bornological vector spaces; and

(ii) B̂c of complete bornological vector spaces,

over k, furnished with bounded linear maps as morphisms, are quasi-abelian
but neither left nor right integral.

Proof. By [29, Prop. 4.10 and Prop. 5.6] both categories are quasi-abelian.
If f : X → Y is a morphism in either one of the two categories, then its
cokernel is given by the quotient map Y → Y/ran f ; see [29, Prop. 4.6
and Prop. 5.6]. The closure ran f is given as the intersection of all closed
subspaces U of Y containing ran f . A subspace U is closed if limits of
sequences in U that converge in X belong to U ; see [29, Def. 4.3]. Finally,
convergence is defined as follows: (xn)n∈N ⊆ X converges to x ∈ X if there
exists an absolutely convex set B ∈ BX , such that (xn)n∈N converges to x in
the normed space

XB = (spanB, ‖ · ‖B) where ‖x‖B = inf {λ > 0 | x ∈ λB } ;
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see [29, Def. 4.1].
Assume now that X = (X, ‖ · ‖) is a Banach space that we furnish with

the bornology B of norm-bounded sets; see, for example, [15, p. 21]. Then
(X,B) is an object of both ÛBc and B̂c. Moreover, a sequence (xn)n∈N ⊆ X
converges in norm to x ∈ X if and only if (xn)n∈N converges to x with
respect to B. Indeed, if (xn)n∈N converges to x in norm, then we choose
B to be the unit ball of X and in view of (X, ‖ · ‖) = (XB, ‖ · ‖B) we get
convergence in bornology. Conversely, if (xn)n∈N converges to x in some
XB for B ∈ B absolutely convex, we conclude that (xn)n∈N converges to
x in norm from the fact that the inclusion (XB, ‖ · ‖B) → (X, ‖ · ‖) is
continuous; see [21, p. 282].

Now consider the maps i : `1 → c0 and Σ: `1 → k from the proof of
Theorem 3.2 in ÛBc. This is possible by the above and since continuous linear
maps between Banach spaces send bounded sets to bounded sets. In view of
the first part of this proof the pushout of i along Σ in ÛBc is given by

`1 c0

k P

Σ

i

q◦i1

q◦i2

where P = (c0⊕ k)/ran [ i
9Σ] coincides, as a vector space, with the space P

from the proof of Theorem 3.2. Thus, in the above diagram, i is injective
and q ◦ i2 = 0. By [29, Prop. 4.6], in ÛBc the kernel of a morphism is the
preimage of zero endowed with the induced bornology. Thus, i is monic but
its pushout is not.

To complete the proof it is enough to observe that the preceding para-
graph can be repeated verbatim for B̂c.

5. Projectives and injectives

Projective objects in an arbitrary category generalise the notion of projective
modules arising in algebra. As such, they have become important objects of
study in homological algebra. However, suitable notions of projectivity have
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also been studied in the categories we have seen so far. We focus on pro-
jectivity and leave the dual notions related to injectivity to the reader. Let A
be a locally small category. An object P ∈ A is called projective if, for every
epimorphism f : X → Y the induced map HomA(P, f) : HomA(P,X) →
HomA(P, Y ) is surjective. We say A has enough projectives if for each
A ∈ A there is an epimorphism P → A with P projective.

In addition to the above, the following concept has been introduced by
Osborne [24], in order to address the fact that in non-abelian categories the
classes of epimorphisms and cokernels do not coincide.

Definition 5.1. [24, Def. 7.52] Let A be a pre-abelian category. An object
P ∈ A is called quasi-projective if, for every cokernel f : X → Y , the map
HomA(P, f) is surjective. We sayA has enough quasi-projectives if for each
A ∈ A there is a cokernel P → A with P quasi-projective.

We now use a connection between the notions of §2 and the ones just in-
troduced, in order to derive some interesting consequences of our main res-
ults. For Proposition 5.2(i) notice that in [32] the phrase ‘has strictly enough
projectives’ is equivalent to the phrase ‘has enough quasi-projectives’ that
we use here.

Proposition 5.2. Suppose A is a pre-abelian category.

(i) [32, Prop. 11] If A has enough quasi-projectives (respectively, quasi-
injectives), then A is left (respectively, right) quasi-abelian.

(ii) [5, Prop. 3.9] If A has enough projectives (respectively, injectives),
then A is left (respectively, right) integral.

Suppose A is a pre-abelian category. Although being projective implies
being quasi-projective, having enough projectives does not necessarily imply
having enough quasi-projectives for A; see [24, pp. 242–243]. In particular,
this means that the conclusion of Proposition 5.2(i) cannot be included in the
conclusion of Proposition 5.2(ii).

Theorem 5.3. The following statements hold.

(i) The categories BAN, NOR, FRE, HD-LCS, HD-TVS, NUC, FN, FS,
FH, ÛBc and B̂c have neither enough projectives nor enough injectives.
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(ii) The category BOR has neither enough quasi-projectives nor enough
quasi-injectives.

(iii) The category COM has neither enough quasi-projectives, nor enough
projectives, nor enough injectives.

(iv) The category LB has neither enough quasi-injectives, nor enough pro-
jectives, nor enough injectives.

Proof. (i): Let

A ∈ {BAN,NOR,FRE,HD-LCS,HD-TVS,NUC,FN,FS,FH } .

Then A is quasi-abelian by Theorem 3.2, and so semi-abelian by Propos-
ition 2.5. Thus, left integrality is equivalent to right integrality for A by
Proposition 2.6. But A is not integral by Theorem 3.2, and so cannot have
either enough projectives or enough injectives by Proposition 5.2. For A ∈
{ ÛBc, B̂c} one can argue analogously by employing corresponding results
from §4.

(ii): Similar to (i), using Theorem 3.5.
(iii): The category COM is neither left quasi-abelian, nor left integral,

not right integral by Theorem 3.3. Thus, by Proposition 5.2, COM can have
neither enough quasi-projectives, nor enough projectives, nor enough inject-
ives.

(iv): Similar to (iii), using Theorem 3.4.

We mention that for some of the quasi-abelian categories we have seen so
far, it has been previously established whether or not they have enough quasi-
projectives or quasi-injectives. Indeed, BAN, FRE and LCS have enough
quasi-injectives; see [43, Thm. 2.2.1]. Moreover, Bc, ÛBc and B̂c have enough
quasi-projectives; see [29, Prop. 2.13, Prop. 4.11 and Prop. 5.8]. Finally, LCS
does not have enough quasi-projectives; see Geı̆ler [11].

We remark also that in the references just cited, the term ‘projective’ is
used to mean what we call quasi-projective. Furthermore, in a quasi-abelian
category, an object is quasi-projective if and only if it is ‘projective’ in the
sense of Bühler [7, Def. 11.1].

We refer the reader to Figure 1 for a graphic summary of all the examples
that we have studied in this article.
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6. The admissible intersection property

Let A be a pre-abelian category. We say that A has admissible intersec-
tions if there exists an exact structure E on A such that for any admissible
monomorphisms c : B� D and d : C � D, in the pullback diagram

A B

C D

a

b PB c

d

in A, the morphisms a and b are also admissible monomorphisms. This
property was introduced by Hassoun and Roy in [12] and has been recently
considered by Brüstle, Hassoun and Tattar in [4, §4], where they showed
that if A has admissible intersections, then A is quasi-abelian. We prove
here that the converse also holds, and hence together a new characterisation
of quasi-abelian categories is established. For the convenience of the reader,
and with the kind permission of the authors of [4], we also include their part
of the proof below.

Theorem 6.1. (Brüstle, Hassoun, Shah, Tattar, Wegner) A pre-abelian cat-
egory A is quasi-abelian if and only if it has admissible intersections.

Proof. (=⇒) Let A be a quasi-abelian category. Endowing it with the class
E of all kernel-cokernel pairs in A yields an exact category (A, E) as A is
quasi-abelian; see [39, Rmk. 1.1.11]. The class of admissible monomorph-
isms in (A, E) is thus precisely the class of kernels inA. Let c : B� D and
d : C � D be arbitrary admissible monomorphisms in (A, E), i.e. c, d are
kernels. Then in the pullback diagram

A B

C D

a

b PB c

d

the morphisms a and b are also kernels in A by the dual of Kelly [17, Prop.
5.2]. That is, a, b are admissible monomorphisms, and we see that A has
admissible intersections.
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(⇐=) Conversely, suppose A has admissible intersections and let E be
an exact structure on A witnessing this. We claim that E coincides with
the class of all kernel-cokernel pairs in A. Assume for contradiction that
A

f→ B
g→ C is a kernel-cokernel pair not belonging to E . Then the morph-

isms [ 1
g ] : B → B ⊕ C and [ 1

0 ] : B → B ⊕ C are both sections, and thus
admissible monomorphisms. The pullback of these two morphisms is given
by

A B

B B ⊕ C

f

f PB

[
1
g

]
[

1
0

]
Thus, we conclude that f is an admissible monomorphism since A has ad-
missible intersections. Contradiction. Hence, E must contain all kernel-
cokernel pairs, and so every (co)kernel is admissible. Finally, using the ax-
ioms for an exact category (see e.g. [7, Def. 2.1]), we see that in A kernels
are stable under pushout and cokernels are stable under pullback, i.e. A is
quasi-abelian.
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60(2):117–193, 2019.

[24] M. S. Osborne. Basic homological algebra, volume 196 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 2000.

[25] V. P. Palamodov. The projective limit functor in the category of topolo-
gical linear spaces. Mat. Sb. (N.S.), 75 (117):567–603, 1968.

[26] V. P. Palamodov. Homological methods in the theory of locally convex
spaces. Uspehi Mat. Nauk, 26(1(157)):3–65, 1971.
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REGULAR AND EFFECTIVE
REGULAR CATEGORIES OF

LOCALES

Panagis KARAZERIS and Konstantinos TSAMIS

Résumé. Nous examinons les analogues pour les catégories de locales de
deux résultats bien connus sur la régularité et l’effectivité de certaines catégories
d’espaces. Nous montrons que la catégorie des locales réguliers compacts
est régulière effective (= Barr-exacte). Nous montrons également que la
catégorie des locales de Hausdorff compactment engendrés est régulière, à
condition qu’elle soit coréflexive dans la catégorie des locales de Hausdorff.Nous
ne faisons pas appel à l’existence de points (ce qui rendrait les deux résultats
triviaux) mais nous traitons le sujet à l’aide de méthodes valables dans la
logique interne d’un topos. En chemin vers le résultat sur les locales com-
pactement engendrés, nous arrivons à une généralisation d’un résultat de B.
Day et R. Street, dérivant la régularité pour une catégorie cocomplète con-
tenant une sous-catégorie dense régulière, fermée par limites et colimites
finies, et satisfaisant une certaine condition de compatibilité des pullbacks
avec des colimites appropriées
Abstract. We examine the analogues for the respective categories of locales
of two well-known results about regularity and effectiveness of some cate-
gories of spaces. We show that the category of compact regular locales is
effective regular (=Barr-exact). We also show that the category of compactly
generated Hausdorff locales is regular, provided that it is coreflective within
Hausdorff locales. We do not appeal to the existence of points (which would
render the two results trivial) but rely on the treatment of the subject by meth-
ods that are valid in the internal logic of a topos. On the course to the result
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about compactly generated locales we arrive at a generalization of a result
of B. Day and R. Street, deriving regularity for a cocomplete category con-
taining a dense regular subcategory closed under finite limits and colimits
and satisfying a certain compatibility condition of pullbacks with appropriate
colimits.
Keywords. regular category, effective category, compactly generated locale,
compact Hausdorff locale.
Mathematics Subject Classification (2010). 18B25, 18B35, 06D22

1. Introduction

While regular and, even more so, effective regular categories occur more
frequently in the realm of algebra there are two well-known cases of cate-
gories of spaces that have these features. The category of compact Hausdorff
spaces is effective regular and the category of compactly generated (weakly)
Hausdorff spaces is regular [1]. It is a rather natural question to ask whether
the corresponding categories of locales maintain these features.

For the case of compact Hausdorff locales we know from [11] that they
form a regular category. We show here that it is also effective. The extra
step, effectiveness of equivalence relations, almost exists implicitly in the
work of Vermeulen [13] on proper maps of locales, in particular his result
that proper closed equivalence relations on compact locales are effective.

The situation concerning compactly generated Hausdorff locales is much
more complicated. First of all we adopt the definition of compactly gener-
ated locales introduced in [5], which constitutes the main, if not the only,
study of such locales: a Hausdorff locale is compactly generated if it is iso-
morphic to the colimit of the (directed, extremal monomorphic) diagram of
its compact sublocales (via the canonical comparison as a co-cone for that
diagram). The major question that is left open in that work is whether such
locales form a coreflective subcategory of that of Hausdorff locales. This
would be the case if, for every Hausdorff locale, the colimit in question was
Hausdorff (as for example would be the case if the canonical comparison de-
scribed above was monomorphic), in which case the comparison map would
be the co-unit of the adjunction. The question of coreflectivity is important
for the way products (and hence also pullbacks) are calculated in that cat-
egory, namely whether they are calculated by applying coreflection to the
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localic product. This in turn affects our strategy for approaching the ques-
tion of regularity of compactly generated Hausdorff locales. For that we
adapt the argument due to [4] for deriving regularity of the inductive com-
pletion of a category from the regularity of the given category. The argument
is familiar in the theory of locally presentable categories but its essential in-
gredients do not require local presentability. We present a generalization of
the relevant result in [4] showing regularity for a a cocomplete category con-
taining a dense regular subcategory closed under finite limits and colimits
and satisfying a certain compatibility condition of pullbacks with appropri-
ate colimits. One key step is the “uniformity lemma”, namely that if objects
(like the compactly generated locales) are built up from building blocks (like
their compact sublocales), then every finite diagram of such objects can be
expressed as a colimit of diagrams of the same type with the vertices among
the building blocks (and all objects of the given diagram to be presented as
colimits of building blocks over the same indexing category). This uses only
the density of the building blocks and their closure under finite colimits in
the broader category. Another property used in their proof, in connection
with the existence of regular epi - mono factorizations and the stability of
regular epis under pullback, is the commutation of pullbacks with a particu-
lar type of colimits (directed extremal monomorphic ones, in our case). We
show that it is sufficient that the canonical comparison from the colimit of
pullbacks to the pullback of the colimits is epimorphic. This is where the
nature of the products plays a role. If we assume coreflectivity we arrive
at that epimorphicity result and subsequently at the regularity of compactly
generated Hausdorff locales.

Our terminology is, we believe, standard. A map of locales f :X → Y
is determined by a map f ∗:OY → OX between the respective frames that
preserves finite infima and all suprema. Hence it has a right adjoint f∗ `
f ∗. The map is a surjection if f ∗ reflects order. It is proper if f∗ preserves
directed suprema and, for all U ∈ OX, V ∈ OY, f∗(U ∨ f ∗V ) = f∗U ∨ V.
Under the equivalence of the category of locales over X with that of locales
internal in sheaves on X, proper maps in the former correspond to compact
locales in the latter [8]. A locale X is Hausdorff if its diagonal X → X ×X
is closed. The category of Hausdorff locales is a reflective subcategory of
the category of locales. The reflection associates with a given locale the one
that is determined by the largest Hausdorff subframe of the underlying frame
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of the given locale ([3], Theorem 1.2.2).

Acknowledgements The second named author benefited from the co-fin-
anced by Greece and the European Union (European Social Fund- ESF)
Operational Programme “Human Resources Development, Education and
Lifelong Learning” in the context of the project “Strengthening Human Re-
sources Research Potential via Doctorate Research” (MIS-5000432). Both
authors are indebted to Vassilis Aravantinos - Sotiropoulos and Christina
Vasilakopoulou for useful discussions. We are particularly thankful to the
referee for pointing out an important mistake in an early version of this work,
which resulted to a substantial revision of our initial approach, and for many
other suggestions that improved the presentation of this work.

2. Compactly generated Hausdorff locales

Let us recall from [5] that a Hausdorff locale X (i.e one whose diagonal is
closed) is called compactly generated if the canonical comparison map

εX : colimCi → X,

where the colimit is taken over all the compact sublocales ofX (hence is a di-
rected diagram of inclusions), is an isomorphism. For an arbitrary Hausdorff
locale X the above map is not known to be a monomorphism in the category
of locales. In case it is, or at least the resulting colimit is Hausdorff, Escardo
shows that it constitutes the counit of an adjunction, rendering the category
CGHLoc of compactly generated Hausdorff locales a coreflective subcate-
gory of Hausdorff locales. Let us refer to the assumption that CGHLoc is
coreflective in Hausdorff locales as the coreflectivity hypothesis. We have

Proposition 2.1. Under the coreflectivity hypothesis, if (tij:Xi → Xj) is
the directed diagram of inclusions of the compact sublocales of a compactly
generated Hausdorff one and Y is any other such locale, then the canonical
map

colimi(Xi × Y )→ (colimiXi)× Y

in CGHLoc is a split epimorphism.
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Proof. One has to be aware of the fact that even under the coreflectivity
hypothesis a directed colimit of inclusions of Hausdorff locales that is cal-
culated in the category of locales need not be Hausdorff, while a product of
compactly generated locales, calculated in the category of locales, need not
be compactly generated. The colimit colimiXi, calculated in the category of
locales, is by assumption compactly generated Hausdorff hence it is a colimit
in the sense of CGHLoc. Its product with the Hausdorff locale Y remains
Hausdorff. The products Xi× Y, again calculated in the category of locales,
have a factor which is compact Hausdorff. Compact Hausdorff locales are
locally compact, hence exponentiable. Taking product with such a locale
preserves colimits and we conclude that the products Xi × Y are compactly
generated Hausdorff themselves (so they are products in CGHLoc). On the
other hand the colimit that occurs as the domain of the canonical morphism,
does not coincide with the colimit taken in the category of locales since the
latter need not be a Hausdorff locale. It is though an epimorphic image of
the latter as explained at the end of the previous section.

The product in the right hand side has to be the one in CGHLoc which
means that we have (under the coreflectivity hypothesis) to apply the core-
flection functor to the ordinary localic product. So it is isomorphic to the col-
imit colimkCk of the system of all compact sublocales of the localic product
(colimiXi)×Y. The inclusion of eachCk into the localic product followed by
the projection to colimiXi factors through a compact sublocale of that col-
imit, in particular Ck → Xi(k) � colimiXi and similarly for the projection
to the other factor, Ck → Dk � Y.Hence the compact sublocalesXi(k)×Dk

are final among the Ck so their colimit is isomorphic to (colimiXi) × Y
in CGHLoc. On the other hand the maps Xi(k) × Dk → Xi(k) × Y →
colimi(Xi×Y ) induce a map colimk(Xi(k)×Dk)→ colimi(Xi×Y ) which
fits in a commutative diagram (where we denote emphatically the colimit
and product in CGHLoc where necessary).

colimk(Xi(k) ×Dk)

��

∼= // colimkCk
∼= // (colimiXi)×CGH Y

colimi(Xi × Y ) // // colimGCH
i (Xi × Y )

55

where the horizontal composite is an isomorphism hence the canonical

colimi(Xi × Y )→ (colimiXi)× Y
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is a split epimorphism.

Proposition 2.2. Under the coreflectivity hypothesis, if Z is an object in
CGHLoc, (tij: fi → fj) is a directed diagram of inclusions between maps
(fi:Xi → Z) with compact Hausdorff domain over it and g:Y → Z another
map in the same category, then the canonical map

colimi(Xi ×Z Y )→ (colimiXi)×Z Y

is a split epimorphism.

Proof. We want to apply the previous result relativized over a base Z, that is
to exploit the previous result as a statement about products in CGHLoc(ShvZ).
In order to do that, we need to make sure that the data of this Proposition,
in particular the map f : colimiXi → Z, give data of the previous Proposi-
tion when relativized over Z, more specifically that f : colimiXi → Z cor-
responds to a compactly generated locale in Shv(Z). Since this map is the
colimit in Loc/Z of the fi:Xi → Z, we want to show that each such is a
proper map. Indeed, for each for each i the composite Xi → colimiXi → Z
has a factorization Xi → Ki � Z, where Ki is a compact sublocale of Z,
which is proper: The map Xi → Ki is proper being a map between com-
pact Hausdorff locales ([11] 3.6.1), while Ki � Z is proper being a closed
inclusion (the image Ki is closed as a compact sublocale of a Hausdorff
one). Moreover, as a locale in ShvZ, X → Z is Hausdorff when X is be-
cause the diagonal in ShvZ, X → X ×Z X, is closed when X → X × X
is. Obviously then the colimit of these composites colimiXi → Z corre-
sponds to a compactly generated locale in Loc(ShvZ) and so does the map
Y → Z by the same argument, hence we can apply the previous Proposi-
tion. Referring to the locales in ShvZ by the names of their corresponding
maps to Z, we notice that since the fi are compact, the localic products
fi × g in ShvZ are also products in CGHLoc(ShvZ). As explained earlier,
their colimit in CGHLoc(ShvZ) will be an epimorphic image of the col-
imit in Loc(ShvZ). Seen as map in Loc/Z, the domain of the latter will be
just colimi(Xi ×Z Y ), where the colimit is calculated in the category of lo-
cales. Both the domain of colimi(fi × g) in CGHLoc(ShvZ), as well as
colimi(Xi×Z Y ) in CGHLoc arise as epimorphic images of that object. The
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former maps epimorphically to the latter. This is so because the frame cor-
responding to it is a subframe of the one corresponding to the latter, both
being subframes of O(colimi(Xi ×Z Y )). This in turn is due to the fact that
a subframe of a frame that happens to be under OZ with the property that it
has a closed diagonal in Loc will also be the (underlying frame of a) domain
of a map whose diagonal is closed in Loc(ShZ).

Now by the previous proposition there exists a split epimorphism

ε: colim
CGH(ShZ)
i (fi × g)� colimifi ×CGH(ShZ) g

in CGHLoc(ShvZ),where the latter product is meant in the sense of this cat-
egory. The domain of the map colimifi× g as a product in CGHLoc(ShvZ)
need not coincide with the product colimiXi ×Z Y in CGHaus (there may
exist sublocales S → Z of the locale colimiXi×Z Y → Z which are proper
as maps to Z but need not have a compact domain). But since colimiXi×ZY
is a cone for the discrete diagram formed by colimifi and g over Z, there is
a factorization through the (domain of the) product

β: colimiXi ×Z Y → ∂0(colimifi × g)

over Z. It is easily seen that this is a monomorphism. We have the following
commutative diagram

∂0(colim
CGH(ShZ)
i (fi × g))

α

��� �

ε // // ∂0(colimifi ×CGH(ShZ) g)

µ
mm

colimi(Xi ×Z Y )

44 44

** **

colimCGH
i (Xi ×Z Y )

γ
// colimi(Xi ×GCHZ Y )

OO

β

OO

Finally we get that, if µ is a splitting for ε then α · µ · β is a splitting for the
comparison γ: colimi(Xi ×Z Y )→ (colimiXi)×Z Y.

3. Regularity of the category of compactly generated Haus-
dorff locales

We begin by generalizing a lemma due to B. Day and R. Street that is well-
known for the case of locally presentable categories [4] . Its statement has
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only to do with density assumptions (of the presentable objects in the original
case) and the closure of the dense subcategory under certain colimits. We
include the proof for the sake of completeness of exposition.

Lemma 3.1. Let K be a cocomplete category containing a dense subcate-
gory C which is closed inK under finite colimits. Then for any small category
with finite hom-sets D and diagram D ∈ [D,K] we have that

D ∼= colim ([D, C] ↓ D → [D, C]→ [D,K])

Proof. We show that, for all d ∈ D, the evaluation at d of the canonical
morphism from the colimit to D is an isomorphism in K. Colimits in [D,K]
are given object-wise so, denoting i: C → K the inclusion and

∂0: [D, C] ↓ D → [D, C]

the domain functor

colim ([D, C] ↓ D → [D, C]→ [D,K])(d) ∼=
evd( colim ([D, i] · ∂0 : [D, C] ↓ D → [D, C]→ [D,K]) ) ∼=

colim( evd · [D, i] · ∂0 : [D, C] ↓ D → [D, C]→ [D,K]→ K) (1)

On the other hand the density of C in K means that for all d

Dd ∼= colim(C ↓ Dd→ C → K),

while inspection gives that the composite

evd · [D, i] · ∂0 : [D, C] ↓ D → [D, C]→ [D,K]→ K (2)

is naturally isomorphic to the composite

i · ∂0 · (evd ↓ D) : [D, C] ↓ D → C ↓ Dd→ C → K (3)

Moreover the functor evd ↓ D: [D, C] ↓ D → C ↓ Dd is final, essentially
because evd: [D, C] → C has a left adjoint given by C 7→

⊔
D(d,−)C (whose

existence is granted by the fact that D has finite hom-sets and C is closed
under finite colimits inK.) Hence combining the isomorphisms (1), (2), (3)
with the latter finality result we get the desired isomorphism.
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The following proposition generalizes the main result of [4]. It relies
on the possibility of conveniently writing a pullback diagram where the one
leg is regular epi as colimit of diagrams with vertices in the dense subcate-
gory. This is a key step for arriving at the characterization of regular locally
finitely presentable categories in [2] (cf. Lemma 12 and Theorem 14 there).
We elaborate on it, showing that the previous lemma, using only density
assumptions, suffices.

Proposition 3.2. LetK be a cocomplete and finitely complete category, such
that it contains a dense regular subcategory C which is closed in K under fi-
nite limits and finite colimits. Assume that the objects of K are expressed
(by density of C) as colimits of objects from C of such kind that the canoni-
cal comparison map to the pullback of such colimits from the colimit of the
pullbacks of its components in K is a regular epimorphism. Then K is also
regular.

Proof. First we show the existence of regular epi- mono factorizations in K.
We apply the above lemma for D the category • → • so that we express
every morphism X → Y in K as a colimit of morphisms Xi → Yi between
objects in the full subcategory C.Using the regularity of C we take the regular
epi - mono factorization Xi → Wi → Yi of every such morphism. Taking
colimit of the appropriate kind we get a factorization

X ∼= colimiXi → colimiWi → colimiYi ∼= Y,

where the first morphism is obviously regular epi. We claim that the second
one is mono because its kernel-pair consists of equal legs: Considering the
pullbacks Wi ×Yi Wi we have that the two legs to Wi are equal since Wi →
Yi is mono. Taking colimit over i we get that the two outer morphisms
colimi(Wi ×Yi Wi)→ colimiWi in

colimi(Wi ×Yi Wi)

**

&&

--
colimiWi ×colimiYi colimiWi

//

��

colimiWi

� �

colimiWi
// colimiYi
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are equal. Hence the two composites

colimi(Wi ×Yi Wi)→ colimiWi ×colimiYi colimiWi → colimiWi

are equal. Since colimi(Wi ×Yi Wi) → colimiWi ×colimiYi colimiWi is an
epimorphism we conclude that the two legs of the pullback are equal.

Next we show stability of regular epis under pullbacks. Given a regular
epi f :X → Z which occurs as the coequalizer of the pair of morphisms
h, k:W → X and any morphsim g:Y → Z in K we are applying the
lemma to the category D given as

y

4

� �
w

1 //

2
// x

3 // z

while D:D → K is defined by Dw = W, Dx = X, Dz = Z, D4 = g,
D1 = h, D2 = k, D3 = f. It follows from the lemma that we can write
X ∼= colimiXi, Y ∼= colimiYi, W ∼= colimiWi, h = colimihi, k = colimiki,
f = colimifi and g = colimigi over the same indexing category, with Xi,
Yi, Wi in C. Then the coequalizers qi:Xi → Qi of the pairs (hi, ki) will have
their codomains in C and they will factor as in the diagram

Wi

hi //

ki
// Xi

fi //

qi

  

Zi

Qi

>>

Their pullbacks Xi×Zi
Yi � Qi×Zi

Yi along the respective Qi×Zi
Yi → Qi

will be regular epimorphisms, hence the same will be colimi(Xi ×Zi
Yi) �

colimi(Qi×Zi
Yi). Using the commutation of colimits with coequalizers, the

colimit Q = colimiQi of these coequalizers will be

colimiQi
∼= coeq(h, k:W → X) ∼= Z

Hence we have a commutative diagram as below, with the lower rectangles
being pullbacks.
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colimi(Xi ×Zi
Yi)

����

// // colimi(Qi ×Zi
Yi)

����

X ×Z Y

��

// Q×Z Y

��

∼= // colimiYi

��

colimiXi
// colimiQi

∼= // colimiZi

The morphism X ×Z Y → Q ×Z Y is such that when composed with an
epimorphism gives a regular epimorphism. Hence it is itself a regular epi-
morphism and so is its composition with the isomorphism Q ×Z Y → Y.
This proves the stability of regular epimorphisms under pullback.

Our intention is to apply the above to the category of compactly gener-
ated Hausdorff locales. We have seen that in that category, under the core-
flectivity hypothesis, the colimit of the pullbacks of the compact sublocales
of a compactly generated one along any morphism, maps epimorphically to
the pullback of the locale along that morphism. We need epimorphicity of
the comparison between the colimit of pullbacks of compact sublocales to
the pullback of the colimits in order to use the above. To that end recall that
when I → Loc is a directed system of inclusions of locales one has that
the morphisms Xi → colimiXi are also inclusions. More precisely, stated
as a result about sup-lattices, following result appears in the proof of [9]
Proposition I.2 and gives the corresponding result for frames.

Lemma 3.3. Let (tij:Ai → Aj) be an inverse directed diagram in the cate-
gory of sup-lattices, such that all the transition maps tij are surjective. Then
the projections

pi: limiAi → Ai

are also surjective.

Lemma 3.4. Assume that a categoryK has the property that for a monomor-
phic directed diagram X: I → K over Z and a morphism Y → Z, the
canonical map

colimi(Xi ×Z Y )→ (colimiXi)×Z Y
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is a regular epimorphism. Then for a monomorphic directed system Xi →
Zi ← Yi indexed by I the canonical comparison

colimi(Xi ×Zi
Yi)→ colimiXi ×colimiZi

colimiYi

is a regular epimorphism.

Proof. Consider the pullback of the diagram

colimiYi

��

colimiXi
// colimiZi

Then

colimicolimi′(Xi ×colimiZi
Yi′) ∼= colimi(Xi ×colimiZi

Yi),

by directedness of I and we have regular epimorphisms

colimicolimi′(Xi ×colimiZi
Yi′)→ colimi (Xi ×colimiZi

colimiYi)

→ colimiXi ×colimiZi
colimiYi

by our assumption. Finally, since each Zi → colimiZi is monomorphism

Xi ×colimiZi
Yi ∼= Xi ×Zi

Yi

as the following diagram of pullbacks indicates

Xi ×colimiZi
Yi //

��

Yi //

��

Yi

��

Xi
//

��

Zi
id //

id
��

Zi

��

Xi
// Zi // colimiZi

In view of the above Proposition and the previous lemma we get
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Theorem 3.5. Under the coreflectivity hypothesis, namely that it is coreflec-
tive in the category of Hausdorff locales, the category of compactly gener-
ated Hausdorff locales is regular.

Proof. Apply Proposition 3.2 for K the category of compactly generated
Hausdorff locales, C the category of compact Hausdorff locales, which is
regular by [11] 3.6.3. Recall that it is also closed under finite colimits inside
the former. A finite coproduct of compact Hausdorff locales is obviously
compact Hausdorff, while in the coequalizer q:X → Q in CGHLoc of a
pair of maps to a compact locale X, Q is the directed colimit of its compact
sublocales. But q[X] is one of them and it equals Q.

4. Effectivity of the category of compact Hausdorff locales

Recall that a locale X is regular if every element of its frame of opens is the
supremum of all the elements of the frame that are well inside it. An element
of a frame U is well inside V , written U 0 V, if there exists a W such that
U ∧W = 0 and W ∨ V = X. Recall also that a locale is compact Hausdorff
iff it is compact regular (a result due to [12], see also [11], Theorem 3.4.2, for
a different proof). A surjective map of locales is one where the inverse image
of the corresponding map between the respective frames reflects order.

Proposition 4.1. The image of a compact locale by a surjection is compact.

Proof. Let q:X → Q be a surjection of locales, q∗:OQ → OX its inverse
image and assume that Q =

∨
Ui, where the union is directed. Then

X = q∗Q = q∗(
∨

Ui) =
∨

q∗Ui

hence there is an i such that X = q∗Ui. It follows that

Q = q∗q
∗Ui = Ui,

where the last equation follows by the fact that q∗ reflects order.

The following is Proposition 2 in [6]:

Proposition 4.2. The image of a regular locale by a proper surjection is
regular.
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Proof. For a proper surjection q:X → Q with X is regular we have that for
every V ∈ OQ

q∗V =
∨
{U ∈ OX | U 0 q∗V }

from which we get

V = q∗q
∗V = q∗(

∨
{U ∈ OX | U 0 q∗V }) =

∨
{q∗U ∈ OX | U 0 q∗V }

since the involved supremum is directed hence preserved by q∗ ([7], III 1.1).
Now U 0 q∗V implies q∗U 0 V because if W ∈ OX is a witness for the
first relation, i.e we have

U ∧W = 0 and q∗V ∨W = X

then
q∗U ∧ q∗W = q∗0 = 0

(the latter because Z ≤ q∗0 iff q∗Z ≤ 0 = q∗0 and q∗ reflects ≤) and also

Q = q∗X = q∗(q
∗V ∨W ) = V ∨ q∗W

by properness of q. We conclude that q∗W is a witness for q∗U 0 V, hence

V =
∨
{q∗U ∈ OQ | U 0 q∗V } ≤

∨
{q∗U ∈ OQ | q∗U 0 V }.

Theorem 4.3. The category of compact Hausdorff locales is effective regular
(= Barr-exact).

Proof. First of all the category CHausLoc of compact Hausdorff locales is
regular by [11] 3.6.3. Equivalence relations in this category are proper and
closed, as every map between compact Hausdorff locales is proper. We know
from [13] 5.17 that closed, proper equivalence relations on compact locales
are effective, so they are the kernel pairs of their coequalizers in the category
of locales. But the coequalizer of a proper equivalence relation is proper
by [13] 5.5. Hence the coequalizer in the category of locales of a (proper
as it will be) equivalence relation between compact regular locales is com-
pact regular, by the above two propositions. Since limits in the category in
question are constructed as in the category of locales, we conclude that ev-
ery equivalence relation in CHausLoc, being proper, is the kernel pair of its
coequalizer in the category of locales, which lives in CHausLoc.
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Theorem 4.4. The category of compact Hausdorff locales is a pretopos.

Proof. We know from [9], Proposition IV.4.1, that coproducts in the cat-
egory of locales are universal. They are also disjoint since the pullback
X ×X+Y Y of the injections of two locales into their coproduct is given
by the frame OX

⊗
OX×OY OY that occurs as the tensor product in pre-

frames of the corresponding frames over their product. Writing p1, p2 for
the projections of the product, an element a⊗ b in the latter is then

a⊗ b = (1 ∧ p1(a, b))⊗ b = 1⊗ (p2(a, b) ∧ b) = 1⊗ b

= 1⊗ (p2(1, b) ∧ 1) = (1 ∧ p1(1, b))⊗ 1 = 1⊗ 1

so the pullback is trivial.
Finite coproducts of compact Hausdorff locales are obviously compact

Hausdorff themselves and, moreover, the category CHausLoc is closed in
the category of locales under finite limits (in particular under pullbacks) [11],
Lemma 3.6.3. Hence CHausLoc inherits from the category of locales the
universality and disjointness of finite coproducts.

Remark: The category of compact Hausdorff spaces admits a characteri-
zation as the unique, up to equivalence, non-trivial, well-pointed, filtral pre-
topos with set-indexed copowers of its terminal object [10]. As the referee
suggested, it would be interesting to know if the category of compact Haus-
dorff locales admits a similar “pointless” characterization.
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