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INTERACTING OPEN DYNAMICS

Stéphane DUGOWSON

Résumé. Cet article présente les concepts de base d’une théorie systémique
de l’interaction entre des dynamiques ouvertes non déterministes à tempo-
ralités variées. Elle comporte trois niveaux : la définition de ces dynamiques
en tant que lax-foncteurs, la notion d’interaction — qui fait appel à des
notions de requêtes, de synchronisations et de modes sociaux — et enfin
l’engendrement de dynamiques globales ouvertes. L’aspect connectif des in-
teractions est abordé, mais les autres aspects connectifs sont renvoyés à des
travaux ultérieurs.
Abstract. This paper presents the basic concepts of a systemic theory of
interaction between non-deterministic open dynamics with varying tempo-
ralities, which includes three stages: the definition of these dynamics as lax-
functors, the notion of interaction — which uses some notions of requests,
synchronizations and social modes (privacy) — and finally the generation of
open global dynamics. Some connectivity structures of an interaction are de-
fined, but the other aspects of dynamical connectivity are left to further work.
Keywords. Open Dynamics. Systemic. Interactivity. Lax functors. Cate-
gories. Complex Systems. Connectivity.
Mathematics Subject Classification (2010). 18A25, 18B10, 37B99, 54A05,
54H20.

Introduction

This article presents in English the fundamental concepts of our theory of
interactivity between some open dynamics defined as kind of lax-functors
to some 2-categories of sets with families of non-deterministic transitions

VOLUME LXI-4 (2020)
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S. DUGOWSON OPEN DYNAMICS

as 1-cells. The origin of this work is linked to our research on connectiv-
ity structures [6], since connectivity has proven to be essentially dynamic in
nature. In 2009, we began to study from a connectivity point of view some
dynamics that were not necessarily deterministic, with durations taken in an
arbitrary monoid. During a lecture in 2010 on these issues, an oral remark
by Mme Andrée Ehresmann suggested that any small categories should be
taken as duration systems. On this occasion, she mentioned her 1965 paper
[1], where under the name of guidable systems she considers kinds of de-
terministic influenceable dynamical systems based on temporalities defined
by small topological categories. At the end of the first section of the present
paper, we precise some relations between this notion of “guidable systems”
due to Mme Ehresmann and the one we developed on our side after the ques-
tion of the interaction between our own non-deterministic dynamics based on
various temporalities arose. In the course of our research on interactivity, we
thus first considered open dynamics as defined by some functors said to be
disjunctive and we sought to construct the global dynamics generated by the
interaction of families of such open dynamics. The problem was to recog-
nize that functors were insufficient because of a kind of instability: global
dynamics were not always functors. We then had to extend our definitions
to what we first called sub-functors ([11, 10, 13]), before Mathieu Anel and
then Mme Ehresmann invited us to reformulate our definitions in terms of
lax-functors [14]. Thanks to the lax-functorial stability theorem, presented
at the beginning of the section 3, “Global Dynamics”, we obtain a systemic
theory where the dynamics generated by interactive families can in turn in-
teract.

After this introduction and details on our notations and the 2-categories
used in the paper, there are three sections:

• in the first section, we define what we call open dynamics thanks to
notions of multi-dynamics, mono-dynamics, clocks, and morphisms
between them. We also define some parametric quotients that are used
in the third section. We then give a number of examples and, finally,
we briefly describe some of the relations between our dynamics and
Mme Ehresmann’s guidable systems,

• in the second section we define precisely what we mean by an interac-
tion. This is the only part of the article where we discuss connectivity

.352 -



S. DUGOWSON OPEN DYNAMICS

structures, leaving the other connectivity aspects of dynamical inter-
activity to further work,

• finally, in the third section, the lax-functional stability theorem makes
it possible to associate a number of global dynamics with a given in-
teractive family, and we conclude the paper with two examples.

Notations and 2-categories at stake

Functions

The canonical inclusion ∅ ↪R, that is the only real function defined on the
empty set ∅, is denoted by ∅. The restriction of a function f on a subset
D ⊆ R is denoted f∣D. For any integer k ∈ N, we set Ck = ⋃D∈IR

Ck(D),
where IR is the set of open real intervals and, for each interval D, Ck(D) is
the set of real functions of class Ck defined on it1. The set C0 of all continuous
real functions defined on open real intervals is also denoted by C. Note that
Ck(∅) = {∅} ≠ ∅. For each interval D ⊆ R, the set of metric maps D → R,
that is the set of real Lipschitz maps with Lipschitz constant 1, is denoted
Lip1(D).

Categories

As usual in our papers, for any category D, we denote by 9D the class of
its objects, and

Ð→
D the class of its arrows. For every arrow h, we denote by

dom(h) its source object (or domain) and by cod(h) its target object (or
codomain). 1 = (●) is the terminal category, which has only one arrow Id●
that is also denoted by Ð→0 . The category of sets is denoted by Sets. The
discrete 2-category associated with any category D is again denoted as D.

Transitions

For any sets U and V , we define a transition from U to V as a map U →
P(V ) or, equivalently, as a binary relationU → V . We often writeϕ ∶ U ↝ V
to indicate that ϕ is such a transition with U = dom(ϕ) and V = cod(ϕ). The
domain of definition of ϕ is defined by Defϕ ∶= {u ∈ U,ϕ(u) ≠ ∅}. Denoted

1IfD is a singleton, we consider Ck(D) as the set of constant functions, i.e. Ck(D) ≃R.
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S. DUGOWSON OPEN DYNAMICS

by ψ⊙ϕ, the composition of transitions ϕ ∶ U ↝ V and ψ ∶ V ↝W is defined
for all u ∈ U by ψ⊙ϕ(u) = ⋃v∈ϕ(u)ψ(v) ⊆W . A transition f ∶ U ↝ V is said
to be hyper-deterministic2 if card(f(u)) ≤ 1 for all u ∈ U . In this case, it is
often considered as a partial function, and we denote it by writing f ∶ U ⇢ V .
In particular, if card(f(u)) = 1 for all u ∈ U , it is said to be deterministic
and it is considered and denoted as a total function f ∶ U → V .

The 2-categories Tran and ParF

We denote by Tran the 2-category that has sets as objects, transitions as
arrows with the composition defined above, and such that for each couple
of sets (U,V ) the category Tran(U,V ) is given by ordering the set of tran-
sitions U ↝ V by the constraint order defined for all ϕ,ψ ∈ Tran(U,V )
by

ϕ ≤ ψ⇔ ϕ ⊇ ψ
where ϕ ⊇ ψ means that for all u ∈ U , ϕ(u) ⊇ ψ(u). If ϕ ≤ ψ, we say that
ψ is more constraining than ϕ, or that ϕ is laxer than ψ. Thus, there exists a
2-cell ϕ⇒ ψ if and only if ψ is more constraining than ϕ.

We’ll denote by ParF the sub-2-category of Tran obtained by keeping
all sets as objects and, as 1-cells, only the hyper-deterministic transitions
between them, that is partial functions. Thus we have these inclusions of
2-categories:

Sets ⊆ ParF ⊆ Tran.

Given any small category D, we write α ∶D⇁ Tran to indicate that α is

a lax-functor from the discrete 2-category D to Tran. Instead of α(S) α(d)↝
α(T ), the image of a D-arrow S

d→ T by α is denoted by Sα
dα↝ Tα .

Remark 0.1. Of course, as a category, Tran coincides with Rel, the cate-
gory of sets with binary relations as arrows, but we prefer to emphasize the
transition point of view with this notation. In [7], [8], [10] and [13], it was
denoted P (for “possible”).

2In our previous texts, these transitions were called “quasi-deterministic”, but the ex-
pression “hyper-deterministic” is more coherent with the constraint order defined below.
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Remark 0.2. Given α and β two lax-functors from D to Tran, we have
to distinguish between the set — denoted natD(α,β) or nat(α,β) — of all

families of transitions (Sα δS↝ Sβ)S∈ 9D such that

∀(S d→ T ) ∈Ð→D, δT ⊙ dα ⊆ dβ ⊙ δS,
and the set Nat(α,β) of lax-natural transformations from α to β. Indeed,
such a lax-natural transformation — denoted by δ ∶ α↬ β — is defined not
only by the data of the associated family (δS)S∈ 9D ∈ nat(α,β), but also by
its domain α, and its codomain β. To underline this nuance, we sometimes
write

Nat(α,β) = {(α, δ, β), δ ∈ nat(α,β)}.
For example, note that, if α1, β1, α2 and β2 are some lax-functors D⇁ Tran
such that (α1, β1) ≠ (α2, β2) but that, for all S ∈ 9D, Sα1 = Sα2 and Sβ1 = Sβ2

then, because domains or codomains differ, Nat(α1, β1) ∩Nat(α2, β2) = ∅,
while we can have, and we will often have, nat(α1, β1) ∩ nat(α2, β2) ≠ ∅.

Some 2-categories of sets with L-families of transitions as arrows

For any non-empty set L we define a 2-category denoted by Tran
LÐ→ taking

sets as 0-cells and, for each couple of sets (U,V ), the category Tran
LÐ→(U,V )

being defined by

Tran
LÐ→(U,V ) = (Tran(U,V ))L.

In other words, for a given domain U and a given codomain V , a 1-cell ϕ in
Tran

LÐ→ is an L-family (ϕλ)λ∈L of transitions ϕλ ∶ U ↝ V . We sometimes

write ϕ ∶ U ↝↝L V or U
ϕ↝↝LV to indicate that ϕ is such a family.

The composition of 1-cells is naturally defined by

ϕ⊙ ψ = (ϕλ)λ∈L ⊙ (ψλ)λ∈L = (ϕλ ⊙ ψλ)λ∈L,
and there is a 2-cell ϕ⇒ ψ if and only if ϕ ≤ ψ, that is ϕλ ⊇ ψλ for all λ ∈ L.

Similarly, we denote by ParF
LÐ→ the sub-2-category of Tran

LÐ→ obtained
by keeping sets as objects and, as 1-cells, only the L-families of hyper-
deterministic transitions between them, that is L-families of partial func-
tions, and by Sets

LÐ→ the category of sets and, as arrows, L-families of total
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functions, so we have

Sets
LÐ→ ⊆ ParF

LÐ→ ⊆ Tran
LÐ→.

As in the case when L is a singleton, we write α ∶ D ⇁ Tran
LÐ→ to

indicate that α is a lax-functor from the discrete 2-category D to Tran
LÐ→

and the image of a D-arrow S
d→ T by such an α is denoted by Sα

dα↝↝LT
α

instead of α(S)
α(d)↝↝Lα(T ).

1. Open dynamics

1.1 Multi-dynamics

1.1.1 L-dynamics on a category D

Let L be a non-empty set, and D a small category. A lax-functor α ∶ D ⇁
Tran

LÐ→ is said to be disjunctive if for all objects S ≠ T in D, we have
Sα ∩ Tα = ∅.

Definition 1.1 (L-dynamics on D). A multi-dynamic α on D with L as set of
parameter values, or simply an L-dynamic on D, is a disjunctive lax-functor
α ∶D⇁ Tran

LÐ→.

For each S ∈ 9D, the elements of the set Sα are called the states of α
of type S, and we denote by st(α) the set ⊔S∈ 9D S

α of all states of α. The

category D is called the engine of α, its arrows (S d→ T ) ∈ Ð→D are called
durations.

By definition of lax-functors between bicategories, an L-multi-dynamic
α associates with each duration (S d→ T ) ∈ Ð→D an L-family of transitions
dα = (dαλ)λ∈L ∶ Sα↝↝LT

α such that, for each λ ∈ L and any composable

arrows R
dÐ→S eÐ→T , we have

• (disjunctivity) S ≠ T ⇒ Sα ∩ Tα = ∅,

• (lax identity) (IdS)αλ ⊆ IdSα ,

• (lax composition) (e ○ d)αλ ⊆ eαλ ⊙ dαλ .
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A state u ∈ Sα such that (IdS)αλ(u) = ∅ is said to be offside for the param-
eter value λ ∈ L, and it is simply said to be offside if it is offside for all
parameter values. A state that is not offside is said to be onside. If the lax-
functor α is in fact a functor D → Tran

LÐ→, we say that the multi-dynamic
α is functorial or strict. An L-dynamic on D is said to be deterministic
(resp. hyper-deterministic) if for each duration d ∈ Ð→D and each parameter
value λ ∈ L, the transition dαλ is deterministic (resp. hyper-deterministic).
In other words, a deterministic L-dynamic on D is a disjunctive functor3

D → Sets
LÐ→, and a hyper-deterministic L-dynamic on D is a disjunctive

lax-functor D⇁ ParF
LÐ→.

Remark 1.2. In [10], multi-dynamics were called multi-dynamiques sous-
catégoriques — and multi-dynamiques catégoriques in the functorial case —
whereas they were called multi-dynamiques sous-fonctorielles in [13].

1.1.2 The category MonoDynD of mono-dynamics on D

In the particular case where L is a singleton {∗}, an L-dynamic is called a
mono-dynamic (or simply a dynamic) on D. Taking lax-natural transforma-
tions between mono-dynamics on D as morphisms, we obtain the category4

MonoDynD of mono-dynamics on D. These morphisms are called dy-
namorphisms, and we write δ ∶ α ↬ β to indicate that δ is a dynamorphism
from α to β. Such a dynamorphism δ ∈MonoDynD(α,β) is said to be de-
terministic (resp. hyper-deterministic) iff all transitions δS are deterministic
(resp. hyper-deterministic).

Remark 1.3. Following the remark 0.2, we have to distinguish between
nat(α,β) and MonoDynD(α,β) = Nat(α,β). Nevertheless, as long as
there is no ambiguity, we shall denote as usual by a same letter a lax-
natural transformation δ and the corresponding family δ = (δS)S∈ 9D of tran-
sitions. Also note that disjunctivity of α implies that a family of transitions
(δS ∶ Sα ↝ Sβ)S∈ 9D can be seen as a single transition δ ∶ st(α) ↝ st(β)

3Obviously, an L-dynamic that is deterministic is necessarily functorial.
4In [10], mono-dynamics were called dynamiques sous-catégoriques — and dynamiques

catégoriques in the functorial case — and the category MonoDynD was denoted by
DySC(D). In [13], they were called mono-dynamiques sous-fonctorielles.
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with, for each S ∈ 9D and each u ∈ Sα, δ(u) = δS(u) ⊆ Sβ ⊆ st(β). Then, a
dynamorphism δ ∶ α↬ β is often seen as such a transition st(α)↝ st(β).

1.1.3 Clocks on D

Definition 1.4. A monodynamic h on D that is deterministic is called a clock
on D. Its states are called h−instants (or simply instants).

Thus, a clock on D is nothing but a disjunctive functor D → Sets. A
pre-order relation, called anteriority and denoted by ≤h, is defined on st(h)
by

(s ≤h t)⇔ (∃e ∈Ð→D, eh(s) = t)
for all instants s and t. We define the category ClocksD of clocks on D tak-
ing deterministic dynamorphisms as morphisms between them. It is equiva-
lent to the topos of presheaves on Dop.

1.1.4 The category L −DynD of L-dynamics on D

We denote by L − DynD the category whose objects are L-dynamics on
D, and with arrows δ ∶ α ↬ β — called (D, L)-dynamorphisms — given

by the families of transitions (Sα δS↝ Sβ)S∈ 9D that are lax-natural from the
mono-dynamic αλ to the mono-dynamic βλ for all λ ∈ L, that is such that

∀λ ∈ L,∀(S d→ T ) ∈Ð→D, δT ⊙ dαλ ⊆ dβλ ⊙ δS.

Following the remark 0.2, we can formulate this by writing

L −DynD(α,β) = {(α, δ, β), δ ∈ ⋂
λ∈L

nat(αλ, βλ)}

or even, with the usual omission of domain and codomain when there is no
ambiguity, by L −DynD(α,β) = ⋂λ∈L nat(αλ, βλ).

1.1.5 The category MultiDynD of multi-dynamics on D

Let L and M be some non-empty sets, and α ∶ D ⇁ Tran
LÐ→ and β ∶ D ⇁

Tran
MÐ→ be multi-dynamics on D.
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Definition 1.5. A D-dynamorphism α↬ β is a couple (θ, δ) with θ ∶ L→M
a map, and5 δ ∈ ⋂λ∈L natD(αλ, βθ(λ)).

Thus, to be a dynamorphism, (θ, δ) must satisfy the lax-naturality con-
dition

∀λ ∈ L,∀(S d→ T ) ∈Ð→D, δT ⊙ dαλ ⊆ dβθ(λ) ⊙ δS.
We then obtain the category MultiDynD taking as objects all multi-

dynamics on D, and as arrows all D-dynamorphisms between them. Natu-
rally, such a dynamorphism (θ, δ) is said to be (hyper-)deterministic if for
every object S ∈ 9D, δS is (hyper-)deterministic.

Remark 1.6. For any set L with card(L) ≥ 2, L − DynD is a non-full
subcategory of MultiDynD, whereas MonoDynD is a full one. We can
in particular consider dynamorphisms between mono-dynamics on D and
multi-dynamics on D. For example, if L is a non-empty set, α an L-dynamic
on D, and h a clock on the same engine, then a dynamorphism s ∶ h↬ α is
a couple s = (λ,σ) with λ ∈ L and σ = (Sh

σS↝ Sα)S∈ 9D such that

∀(S d→ T ) ∈Ð→D, σT ⊙ dh ⊆ dαλ ⊙ σS,

whereas a dynamorphism τ ∶ α ↬ h is a family of transitions τ = (Sα τS↝
Sh)S∈ 9D such that

∀(S d→ T ) ∈Ð→D,∀λ ∈ L, τT ⊙ dαλ ⊆ dh ⊙ τS.

1.1.6 The category MultiDyn of multi-dynamics

Let α ∶D⇁ Tran
LÐ→ and β ∶ E⇁ Tran

MÐ→ be multi-dynamics with possibly
different sets of parameter values and different engines.

Definition 1.7. A dynamorphism α ↬ β consists, in addition to the data of
α and β, of that of a triple (θ,∆, δ) with

• θ ∶ L→M a map,

• ∆ ∶D→ E a functor,

5Using the notation explained in the remark 0.2.
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• δ ∈ ⋂λ∈L natD(αλ, βθ(λ) ○∆).

The last condition means that the lax-naturality condition

∀λ ∈ L,∀(S d→ T ) ∈Ð→D, δT ⊙ dαλ ⊆ (∆d)β
θ(λ)

⊙ δS
has to be satisfied. The category MultiDyn of multi-dynamics is then
defined taking as objects all multi-dynamics, and as arrows all dynamor-
phisms between them. The full subcategory of MultiDyn obtained taking
mono-dynamics (resp. clocks) as objects is denoted by MonoDyn (resp.
Clocks). In general, MonoDynD (resp. ClocksD) is a non-full subcate-
gory of MonoDyn (resp. Clocks).

1.2 Open dynamics: definition, realizations, quotients

1.2.1 Definition of open dynamics

Definition 1.8. An open dynamic A with engine D is the data

A = ((α ∶D⇁ Tran
LÐ→)

ρ

↬ h)

of

• a non-empty set L of parameter values,

• an L-dynamic α ∈ L −DynD,

• a clock (h ∶D→ Sets) ∈ClocksD,

• a deterministic dynamorphism ρ ∈ MultiDynD(α,h) called data-
tion.

An open dynamic with engine D is also called an open dynamic on
D. An open dynamic is said to be intemporal if its engine is the terminal
category 1. The states of α are also called the states of A, thus we set:
st(A) = st(α). If the parametric set L is a singleton, A is said to be an open
mono-dynamic or, sometimes, an opaque dynamic.
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Remark 1.9. For each λ ∈ L, we naturally denote by Aλ the open mono-
dynamic obtained by restricting parametric values to λ, that is

Aλ = ((αλ ∶D⇁ Tran)
ρ

↬ (h ∶D→ Sets)) .

According to the definitions given in § 2.4.2 of [10] and § 1.2.2 of [13],
a dynamorphism from an open dynamic

A = ((α ∶D⇁ Tran
LÐ→)

ρ

↬ (h ∶D→ Sets))

to an open dynamic

B = ((β ∶ E⇁ Tran
MÐ→) τ↬ (k ∶ E→ Sets))

is a quadruplet (θ,∆, δ, ε) with

• (θ,∆, δ) ∈MultiDyn(α,β),

• (∆, ε) ∈MonoDyn(h,k),

• this lax synchronization condition satisfied:

∀S ∈ 9D, τ∆S
⊙ δS ⊆ εS ⊙ ρS.

We denote by ODyn the category of all open dynamics, with dynamor-
phisms as arrows.

1.2.2 Realizations of an open dynamic

Let A = ((α ∶D⇁ Tran
LÐ→)

ρ

↬ (h ∶D→ Sets)) be an open dynamic.

Definition 1.10. A realization (or a solution) of A is a hyper-deterministic
dynamorphism (s ∶ h↬ α) ∈MultiDynD(h, α) such that the lax condition

ρ⊙ s ⊆ Idh
be satisfied.
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In other words6, a realization of A is a couple s = (λ,σ) with λ ∈ L and
σ ∶ st(h) ⇢ st(α) a partial function defined on a subset Defσ ⊆ st(h) such
that:

1. ∀t ∈ Defσ, ρ(σ(t)) = t,
2. ∀S ∈ 9D,∀t ∈ Sh ∩Defσ, σ(t) ∈ Sα,

3. ∀(S d→ T ) ∈Ð→D, ∀t ∈ Sh,

dh(t) ∈ Defσ ⇒ [t ∈ Defσ and σ(dh(t)) ∈ dαλ(σ(t))] .

The set of realizations of A is denoted by SA. Given s = (λ,σ) ∈ SA,
we call λ the parametric part or the incoming part of this realization, σ its
outgoing part, and we set

In(s) ∶= λ and Out(s) ∶= σ.

Outgoing parts of realizations of A is often called outgoing realizations
of A — or even simply realizations, if there is no ambiguity — and their set
is denoted by ZA. Thus, we have7

ZA = ⋃
λ∈L

ZAλ .

A realization of A is said to be empty if its outgoing part is the empty
function st(h) ⊃ ∅ ↪ st(α). This empty function is denoted by ∅A, or
simply ∅, if there is no ambiguity. We always have ZA ∋ ∅A, and we denote
by Z∗

A the set of non-empty outgoing realizations of A:

Z∗
A = ZA ∖ {∅A}.

An open dynamic A is said to be efficient if the set Z∗
A is non empty.

6See [13], § 1.3.1.
7For any λ ∈ L, the set of realizations of the open (mono) dynamic Aλ is simply given

by SAλ = {λ} ×ZAλ , so this latter set ZAλ of outgoing parts of realizations of Aλ is often
simply called the set of its realizations.
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Realizations passing through a state.

Definition 1.11. Given an open dynamic A, we say that a realization s =
(λ,σ) of A passes through a state a ∈ st(A) — or equivalently that the
outgoing part σ of s passes through a — and we write

s ⊳ a (or, equivalently ∶ σ ⊳ a)
if σ(ρ(a)) = a.

More generally, if E is a set of states of A, we write

s ⊳ E (or, equivalently ∶σ ⊳ E)
to say that σ passes through every a ∈ E. If E is a finite set E = {a1, ..., an},
we can also write

σ ⊳ a1, ..., an.

1.2.3 Parametric quotients

Let α ∶ D ⇁ Tran
LÐ→ be a multi-dynamic with engine D and parametric set

L.

Proposition 1.12. If ∼ is an equivalence relation on L, and M = L/∼ is the
quotient set of L by ∼, then the relation

∀µ ∈M,βµ = ⋃
λ∈µ

αλ,

that is

• ∀S ∈ 9D, Sβ = Sα,

• ∀(e ∶ S → T ) ∈Ð→D,∀a ∈ Sβ, eβµ(a) = ⋃λ∈µ eαλ(a),

defines a multi-dynamic β on D with parametric set M .

Proof. For every µ ∈ L/∼, and each S ∈ 9D, we have8

(IdS)βµ = ⋃
λ∈µ

(IdS)αλ ⊆ ⋃
λ∈µ

IdSα = IdSβ ,

8Where the order relation ≤ is of course the constraint order ϕ ≤ ψ⇔ ϕ ⊇ ψ.
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that is (IdS)βµ ≥ IdSβ .

Furthermore, for each couple of composable arrows R
fÐ→S gÐ→T in D,

we have
(g ○ f)βµ = ⋃

λ∈µ

(g ○ f)αλ ≥ ⋃
λ∈µ

(gαλ ⊙ fαλ ),

but for each λ ∈ µ, we have fαλ ⊆ fβµ , and the same for g, and then

gαλ ⊙ fαλ ⊆ gβµ ⊙ fβµ ,

so
(g ○ f)βµ ⊆ gβµ ⊙ fβµ ,

that is
(g ○ f)βµ ≥ gβµ ⊙ fβµ .

Definition 1.13 (Parametric quotient of a dynamic). The multi-dynamic β ∶
D⇁ Tran

MÐ→ defined in proposition 1.12 by

∀µ ∈M,βµ = ⋃
λ∈µ

αλ,

is called the parametric quotient of α by ∼ and is denoted by β = α/∼.
For any open dynamic

A = ((α ∶D⇁ Tran
LÐ→)

ρ

↬ (h ∶D→ Sets))

and any equivalence relation ∼ on L, we define in the same way the quotient
open dynamic B = A/ ∼ setting

B = (((α/ ∼) ∶D⇁ Tran
(L/∼)ÐÐ→)

ρ̃

↬ (h ∶D→ Sets))

where, for every b ∈ Sα/∼ = Sα, ρ̃(b) = ρ(b).
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1.3 Examples of open dynamics

Example 1.14 (Bushaw’s dynamics). In her 1965 article [1], Andrée Bas-
tiani (-Ehresmann) cited Donald W. Bushaw’s 1963 article [3] in which this
one introduced some continuous dynamical polysystems that correspond —
leaving aside topological aspects — to our deterministic open dynamics
with the group (R,+) as engine and with clock the real existential clock9

ξ = ξ(R,+) (defined by st(ξ) =R and dξ(t) = t + d for all reals t and d):

(α ∶ (R,+)→ Sets
LÐ→)

ρ

↬ (ξ ∶ (R,+)→ Sets)

such that the following additional condition (“non-anticipation”) be satisfied:
for all λ1, λ2 ∈ L and t0 ∈R there exists a unique λ ∈ L such that, for all states
s ∈ st(α) with τ(s) = t0, we have

• ∀d ∈R−, dαλ(s) = dαλ1
(s),

• ∀d ∈R+, dαλ(s) = dαλ2
(s).

Thus, with each Bushaw’s dynamical polysystem is canonically asso-
ciated a deterministic open multi-dynamic on R. Reciprocally, by choosing
convenient topological structures on the set of states and on the set of param-
eter values, some Bushaw’s dynamical polysystem(s) can be associated with
each deterministic open multi-dynamic on R endowed with the existential
clock ξ and satisfying the “non-anticipation” property.

Realizations of Bushaw’s dynamics. (R,+) being a group, every non-
empty outgoing realization of the considered deterministic open dynamic
is defined on the whole real line and, with the topological assumptions of
Bushaw’s paper, it is necessarily continuous. For its part, Bushaw doesn’t
explicitly define the realizations (solutions) of his systems. Nevertheless,
for each ϕ ∈ L, Bushaw denotes again by ϕ the map E × R → E, where
E = st(α), defined with our notations by ϕ(e, d) = dαϕ(e). Then, for each
given state e ∈ E, the map σ ∶R ∋ t↦ ϕ(e, t−τ(e)) ∈ E constitutes the single
realization of the considered deterministic dynamic such that σ(τ(e)) = e.
It is defined on all R, and it is continuous. Thus, for each λ, there is an

9About the existential clock of a category, see [6].
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implicitly notion of realization that coincides with ours, even if some notion
of partial solution could perhaps be closer to the spirit of his work (because
of the local aspect of the parameters λ).

Example 1.15 (Φ, a deterministic intemporal mono-dynamic). An intempo-
ral dynamic is functorial if and only if it is deterministic, and in this case its
behavior cannot depend on any parameter, since the image by the dynamic
of the only duration Ð→0 is necessarily the identity of the set of states. For
example, we can consider the deterministic intemporal monodynamic Φ for
which the set of states is {0,1}, that is

Φ = ((φ ∶ 1→ Sets) !↬ (ξ1 ∶ 1→ Sets))

where

• st(φ) = ●φ = {0,1},

• Ð→0 φ = Id{0,1},

• ξ1 is the canonical clock10 of 1, which has only one instant 0,

and φ
!↬ ξ1 is the necessarily constant dynamorphism.

Realizations of Φ. We immediately see that

SΦ = ZΦ = {∅Φ,0,1}.

Example 1.16 (Υ, a one-step deterministic cell). We set

Υ = ((υ ∶DΥ → Tran
LΥÐ→) !↬ (ζDΥ

∶DΥ → Sets))

where
10That is both the existential clock and the essential clock of 1. About the existential

clock and the essential clock of a category, see [6].
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• DΥ = (T0
d→ T1) ≃ (●→ ●), the category with two objects and a single

non-trivial arrow between them, which we call the one-step category,

• ζDΥ
is the essential clock11 of DΥ, for which the set of instants asso-

ciated with each Tk is a singleton, say TkζDΥ = {tk},

• ∀k ∈ {0,1}, (Tk)υ = {tk} × {0,1},

• LΥ = {0,1}{0,1},

• ∀λ ∈ LΥ, ∀k ∈ {0,1}, (Id(Tk))υλ = Id((Tk)υ) (since Υ is functorial),

• ∀λ ∈ LΥ, ∀s ∈ {0,1}, dυλ(t0, s) = (t1, λ(s)) ,

• υ
!↬ ζDΥ

is the unique possible deterministic dynamorphism here
(since there is a unique instant for each temporal type Tk ∈ 9DΥ).

Realizations of Υ. An outgoing realization of Υ can be identified with
some partial function σ ∶ {t0, t1}⇢ {0,1} such that Defσ ∈ {∅,{t0},{t0, t1}}.
With this identification, we can write SΥ as the set of all couples (λ,σ) with
λ ∈ LΥ and σ = ∅Υ, or σ ∈ {0,1}{t0}, or σ ∈ {0,1}{t0,t1} with σ(t1) =
λ(σ(t0)). Then,

ZΥ = {∅Υ} ∪ {0,1}{t0} ∪ {0,1}{t0,t1}.

Example 1.17 (Υ∗, a one-step hyper-deterministic cell). This is a functorial
hyper-deterministic variant of the example 1.16, keeping the same engine
DΥ∗ = DΥ = (T0

d→ T1), the same states and the same clock ζ = ζDΥ
but

including new parameter values to permit a state to ask to “exit the game”.
More precisely,

Υ∗ = ((υ∗ ∶DΥ∗ → Tran
LΥ∗Ð→) !↬ ζ)

where
11See [6].
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• ∀k ∈ {0,1}, (Tk)υ∗ = (Tk)υ = {tk} × {0,1},

• LΥ∗ = {∗,0,1}{0,1},

• ∀λ ∈ LΥ∗ , ∀k ∈ {0,1}, (Id(Tk))υ∗λ = Id((Tk)υ∗) (because Υ∗ is functo-
rial),

• ∀λ ∈ LΥ∗ , ∀s ∈ {0,1},

if λ(s) = ∗ then dυ∗λ (t0, s) = ∅,

if λ(s) ∈ {0,1} then, like with Υ, dυ∗λ (t0, s) = {(t1, λ(s))}.

In other words, viewing dυ∗λ as a partial function, it is defined for s ∈
{0,1} by :

• if λ(s) = ∗ then (t0, s) ∉ Defdυ∗
λ

,

• if λ(s) ∈ {0,1} then dυ∗λ (t0, s) = (t1, λ(s)).

Realizations of Υ∗. As in the case of Υ, we can write SΥ∗ as the set of all
couples (λ,σ) with λ ∈ LΥ∗ and σ = ∅Υ∗

, or σ ∈ {0,1}{t0}, or σ ∈ {0,1}{t0,t1}

with σ(t1) = λ(σ(t0)) (which implies that λ(σ(t0)) ≠ ∗). And we have
ZΥ∗ = ZΥ.

Example 1.18 (Γ, a hyper-deterministic intemporal lax-dynamic). This is a
hyper-deterministic variant of the example 1.15, with the same set of states
and the same clock, but depending on parameter values. Precisely, we set

Γ = ((γ ∶ 1⇁ Tran
LΓÐ→) !↬ (ξ1 ∶ 1→ Sets))

where

• st(γ) = ●γ = {0,1},

• LΓ = {a, b}, a set with two elements,

• Ð→0 γ

a = Id{0,1},
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• Ð→0 γ

b is defined as a transition12 by Ð→0 γ

b (0) = ∅ and Ð→0 γ

b (1) = {1},

• ξ1 is the canonical clock13 of 1 and γ
!↬ ξ1 is the constant dynamor-

phism.

Realizations of Γ. The set Z∗
Γ = {0,1} of nonempty outgoing realizations

of Γ is the same as for Φ, but now we have

SΓ = {(a,∅Γ), (a,0), (a,1), (b,∅Γ), (b,1)}.

Example 1.19 (W = ו , an intemporal open dynamic with functions as states).
The open dynamic W — also denoted by the Hebrew letter ו (vav) — de-
scribed in this example 1.19 has been given in [13] and [18] together with a
dynamic denoted by H or by the Hebrew letter ה (hey) — see infra, example
1.20 — and a third one denoted by Y or י (yod) (example 1.21) to produce
the interactive family that we will describe in the example 2.14, section 2.6.
The choice of the Hebrew letter ו comes from the fact that this dynamic is
intended to (approximately and partially) model the philosophical concept
that P. M. Klein [19] named in the same letter. The dynamic W = ו is defined
by

W = ((αW ∶ 1⇁ Tran
LWÐ→) !↬ (ξ1 ∶ 1→ Sets)) ,

where14

• st(W) = ●αW = C,

• LW = C,

• for all λ ∈ LW, the transition Ð→0 αW
λ is defined for all f ∈ st(W) by

Ð→
0
αW
λ (f) = { {f} if f♢λ,

∅ in other cases,

12Equivalently, Ð→0
γ

b can be defined as a partial function by 0 ∉ DefÐ→
0
γ

b

and Ð→0
γ

b (1) = 1.
13See the example 1.15.
14For the meaning of C, see notations in the begining of the paper.
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• ξ1 is the canonical clock of 1, and αW
!↬ ξ1 is the constant dynamor-

phism,

where f♢λ stands for f∣Deff∩Defλ = λ∣Deff∩Defλ .

Realizations of W. For each λ ∈ LW = C, the empty realization ∅Wλ
= ∅W

is the partial function st(ξ1) = {0} ⇢ st(W) = C with an empty domain
(or, as a transition, the map 0 ↦ ∅ ⊂ C) whereas a nonempty realization of
Wλ can be identified with its value on the only instant 0 ∈ st(ξ1), this value
being itself a real function f ∈ C, possibly the empty real function ∅R. Then,
with this identification, we have

SW = ⋃
λ∈C

({(λ, f), f ∈ C, f♢λ} ∪ {(λ,∅Wλ
)}) .

The set of nonempty outgoing realizations of W is then

Z∗
W = ZW ∖ {∅W} = C.

Note that the empty real function ∅R belongs to Z∗
W.

Example 1.20 (H = ,ה a hyper-deterministic dynamic on R+). The dynamic
H — also referred to as ,ה “hey” in the Hebrew alphabet — has been intro-
duced in [13] and [18] under the name “history” to constitute an interactive
family together with Y = י (cf. infra, example 1.21) and W = ו (cf. supra,
example 1.19). It is a hyper-deterministic functorial open dynamic with en-
gine (R+,+) and with a clock h]T0,+∞[ having instants t ∈]T0,+∞[ where
T0, called the origin of times, is taken to be {−∞} ∪R. We distinguish the
origin of times T0 with the origin of histories which here will be taken to be
−∞. More precisely, such a T0 ∈ {−∞} ∪R having been chosen, we set

H = ה = (((R+,+) αH→ Tran
LHÐ→)

τH↬ h]T0,+∞[) ,

with

• st(αH) = ⋃t∈]T0,+∞[ ({t} × C1(] −∞, t[)),
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• st(h]T0,+∞[) =]T0,+∞[,
• LH = C∗

]T0,→[
∶= ⋃u∈]T0,+∞] C(]T0, u[),

• ∀(t, f) ∈ st(αH), τH(t, f) = t,
• ∀(t, f) ∈ st(αH), ∀d ∈R∗

+,∀u ∈]T0,+∞],∀λ ∈ C(]T0, u[),

– if t + d ≤ u and if there exists a (necessarily unique) g ∈ C1(] −
∞, t+d[) such that g∣]−∞,t[ = f and g∣]t,t+d[ = λ∣]t,t+d[, then we set
dαH
λ (t, f) = (t + d, g),

– in all other cases, we set dαH
λ ((t, f)) = ∅ that is, viewing dαH

λ as
a partial function: (t, f) ∉ DefdαH

λ
.

Realizations of H. It is easy to see that the outgoing part σ of a nonempty
realization (λ,σ) ∈ SH can be uniquely represented by a real function of
class C1 defined on an interval of the form ]−∞, a[ or ]−∞, a], with a > T0,
that coincides with λ on ]T0, a[. More precisely, with these representations,
we verify that we can write

SH = {(∅,∅)} ∪
⎡⎢⎢⎢⎢⎣

⋃
u∈]T0,+∞]

⎛
⎝ ⋃
λ∈C1(]T0,u[)

({λ} × ⋃
a∈]T0,u]

Eλ,a)
⎞
⎠
⎤⎥⎥⎥⎥⎦

with Eλ,+∞ = {σ ∈ C1(R), σ∣]T0,+∞[ = λ} whereas

Eλ,a = {σ ∈ C1(] −∞, a[) ∪ C1(] −∞, a]), σ∣]T0,a[ = λ∣]T0,a[}

when a < +∞. Thus, the set of outgoing realizations of H is

ZH = {∅} ∪ ⎛
⎝ ⋃
a∈]T0,+∞]

C1(] −∞, a[)⎞⎠ ∪
⎛
⎝ ⋃
a∈]T0,+∞[

C1(] −∞, a])⎞⎠ .

For any nonempty realization σ ∈ Z∗
H of H, we call the restriction σ∣]−∞,T0]

the mythical part of σ.
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Example 1.21 (Y = ,י a non-deterministic functorial mono-dynamic). Intro-
duced in [13] and [18] as a “future” dynamic together with W (cf. supra,
example 1.19) and H (example 1.20), the dynamic that we designate by Y or
י (yod) and call a “lipschitzian source”, is defined by

Y = ((αY ∶ (R+,+)→ Tran)
τY↬ ξR+) ,

where

• ξR+ is the existential clock associated with the monoı̈d (R+,+), that is
such that st(ξR+) = R+ and dξR+(t) = t + d for all instants t ∈ R+ and
all durations d ∈R+,

• the set of states is st(αY) =R+ ×R,

• for all states (t, a) ∈ st(αY),

τY(t, a) = t,
and for all d ∈R+, dαY(t, a) = {t + d} × [a − d, a + d].

Realizations of Y. It is immediate to see that a realization σ ∈ ZY = SY is
a partial function R+ ⇢ R+ ×R defined on an interval D of the form [0, a]
or [0, a[ that can be identified with a metric map15 σ ∶D →R:

ZY ≃ ⋃
a∈R+∪{+∞}

Lip1([0, a[) ∪ ⋃
a∈R+

Lip1([0, a])

where Lip1(D) = {σ ∶D →R, σ is a metric map}.

1.4 Some relations with Bastiani (-Ehresmann)’s control systems

In her article [1], published in 1967, Andrée Bastiani (-Ehresmann) consid-
ered some control systems — called systèmes guidables in French — which,
leaving aside topological aspects, seem to be quite close to some of our open
systems which we have developed, as indicated in the introduction to this
paper, with a view to proposing a theory of interactivity, from a first categor-
ical generalization of some “closed” dynamical systems — namely mono-
dynamics on monoids (see section 1.1.2) — a generalization itself prompted

15That is a Lipschitz function with Lipschitz constant 1.
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by an oral remark by Mme Ehresmann. To lay the foundations for a further
exploration of the possible connections between these two notions, we re-
formulated in our own language Bastiani (-Ehresmann)’s definitions, which
was originally given in the language and notations introduced by Charles
Ehresmann in his book Catégories et Structures [15] and which have been
more recently rapidly mentioned again by Mme Ehresmann in two lectures
[16, 17], with more current notations. Leaving aside, as announced, topolog-
ical aspects, it then turns out that the definition of a control system given by
Mme Ehresmann is equivalent to considering the data (F, q) of a disjunctive
functor G

F→ ParF and of a functor G
q→H, with G and H some categories

which we will assume to be small. Intuitively, the objects of H can be seen as
instants, and its arrows as durations whereas the objects of G can be seen as
“parameterized instants” and its arrows as “parameterized durations”. With
the functor F is then defined a set E ∶= ⊔g∈ 9GF (g) whose elements we shall
see as “parameterized states”, and a partial action of G on E given for all
γ ∈ Ð→G and all e ∈ DefF (γ) ⊆ F (dom(γ)) ⊆ E by γ.e ∶= F (γ)(e). A solu-
tion on a subcategory S ⊆ H of the control system (F, q) then consists in a

couple ( 9S
ϕ→ E,S

ψ→ G) where ψ ∶ S→G is a functor and ϕ is a map that
associates with each instant t ∈ 9S a parameterized state ϕ(t) ∈ E, such that
we have 9q ○ p ○ϕ = Id 9S, q ○ψ = IdÐ→

S
and, for all h ∈Ð→S , ψ(h).ϕ(t1) = ϕ(t2)

where t1 = dom(h) and t2 = cod(h).
An interpretation of these definitions in relation with ours is given by the

following association with each functorial hyper-deterministic open dynamic

A = ((α ∶D→ ParF
LÐ→)

ρ

↬ (h ∶D→ Sets))

of a Bastiani (-Ehresmann)’s control system

GS(A) = (G F→ ParF,G
q→H),

namely the one given by

• 9H ∶= st(h),

•
Ð→
H ∶= {(t1, d, t2) ∈ 9H×Ð→D× 9H, dh(t1) = t2}, with obvious source, target
and composition,
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• G ∶= L ×H (where L is seen as a discrete category),

• q ∶G→H is the projection on H, that is the forgetting of the parameter:

q ((λ, t1) (λ,t1,d,t2)Ð→ (λ, t2)) ∶= (t1 (t1,d,t2)Ð→ t2) ,

• for all (λ, t) ∈ 9G, F (λ, t) ∶= {λ} × ρ−1(t) ⊂ L × st(α),

• for all ((λ, t1) (λ,t1,d,t2)Ð→ (λ, t2)) ∈Ð→G and all s ∈ ρ−1(t1),

- if s ∈ Defdα
λ

then F (λ, t1, d, t2)(λ, s) ∶= (λ, dαλ(s)),

- else (λ, s) ∉ DefF (λ,t1,d,t2).

It is then straightforward to verify that every realization (λ,σ) ∈ SA

gives a solution (ϕ,ψ) of the control system GS(A) over the full subcate-
gory S ⊆H defined by 9S = Defσ, namely the couple (ϕ,ψ) given by ϕ(t) =
(λ,σ(t)) ∈ E = ⊔g∈ 9GF (g) for every t ∈ 9S andψ(t1, d, t2) = (λ, t1, d, t2) ∈Ð→G
for every (t1, d, t2) ∈Ð→S .

The association A ↦ GS(A) gives us a first idea of the possible rela-
tionships between our open systems and Mme Ehresmann’s control systems,
each with their own limitations. Let us make a few comments on this. First,
not that GS is not injective (up to isomorphism) since, for example

• the open dynamicA = ((ξ ∶ (R+,+)→ Sets) Id↬ (ξ ∶ (R+,+)→ Sets)),

where st(ξ) =R+ and, for every d ∈R+ and every t ∈R+, dξ(t) = t+d,

• and the open dynamicB = ((ζ ∶ (R+,≤)→ Sets) Id↬ (ζ ∶ (R+,≤)→ Sets)),

where for every t ∈ R+ we have tξ = {t} and, for every d = (t1 ≤ t2) ∈ÐÐÐÐ→(R+,≤), we have dζ(t1) = t2,

are not isomorphic, but GS(A) and GS(B) are essentially the same control
systems, the important difference between the categories (R+,+) and (R+,≤
) being lost in translation.

In addition, while our open dynamics are not necessarily determinis-
tic whereas Mme Ehresmann’s control systems could be said to be hyper-
deterministic, the formulation we obtained of a control system as a couple
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(G F→ ParF,G
q→H) suggests a non-deterministic generalization, given by

couples of the form (G F→ Trans,G
q→ H). As we said in our introduc-

tion, the necessity to use lax-functors instead of functors in our own theory
came from our treatment of interactivity (cf. theorem 3.1). If a theory of
interacting “control systems” would be developed, it could lead as well to
consider lax-functorial non-deterministic systems given by couples of the
form (G F⇁ Trans,G

q→H) which could be the subject of further research.
On the other side, GS isn’t surjective either. In particular, note that the

design of control systems gives to their “parametrical” aspects — which are
implied both in the category G of “parameterized instants” and in the set E
of “parameterized states” — a local nature, as opposed to the parameters of
our open dynamics, which are on the contrary global in nature, and this can
be viewed as an advantage of control systems.

Finally, according to our definition of the realizations of an open dy-
namic, note that even in the case when a control system G is of the form
GS(A) with A an open dynamic in the sense of our theory, a solution of G
that is defined over a subcategory S ⊆H that does not satisfy the property

∀(t1, d, t2) ∈Ð→H, t2 ∈ 9S⇒ (t1, d, t2) ∈Ð→S

cannot be obtained from a realization of A : thanks to a greater partial-
ity, Bastiani (-Ehresmann)’s control systems have more solutions16 than our
open dynamics, and this can be seen as another advantage of control systems.
Of course, it would be easy to broaden in turn our definition of realizations
of open dynamics to include more partiality, but the real difficulties will then
arise in interacting with other dynamics: how can a complex system work
when some of its components are removed or added ? This type of ques-
tion, linked to the philosophical problem known as the “Ship of Theseus”,
seems to us to be at the core of Andrée Ehresmann’s research work, but in
its current state our own theory does not yet allow us to address it correctly
since our collective global dynamics need all their components to be “si-
multaneously”17 active to obtain a realization defined at the corresponding
instant.

16At least as they are defined in [1] since this notion of partial solutions does not appear
at all in [16] and [17].

17For some synchronization.
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2. Interactive families

The main purpose of this section is to give the definition of interactive fam-
ilies, namely interacting families of open dynamics. For this, we firstly give
some reminders about binary relations, multiple relations and multiple bi-
nary relations (§ 2.1), then we give the definitions of an interaction request
and of an interaction relation between some open dynamics (§ 2.2) and the
definition of a synchronization between these dynamics (§ 2.3). An interac-
tion request (or an interaction relation) and a synchronization then define an
interaction in the family of open dynamics under consideration, and such an
interaction — together with a third element, called privacy or social mode
— leads in turn to the definition of an interactive family (§ 2.4). In § 2.5,
we associate four connectivity structures with any given interactive family,
in particular the realization connectivity structure of the interaction rela-
tion, which is the most important and which we simply call the connectivity
structure of the considered interactive family. Finally, in § 2.6, we give some
examples of interactive families.

2.1 Binary, multiple and multiple binary relations

2.1.1 Binary relations

Given E and E′ two sets, a binary relation B from E to E′ is defined by its
domain E = dom(B), its codomain E′ = cod(B) and its graph ∣B∣ ⊂ E×E′.
According to the introduction of the paper, we also consider such a binary
relation as a (not necessarily deterministic) transition E ↝ E′, that is a map
E → P(E′), setting for any e ∈ E

B(e) = {e′ ∈ E′, (e, e′) ∈ ∣B∣}.

Then the image of B is defined by

Im(B) = ⋃
e∈E

B(e) ⊂ E′,

the converse binary relation, denoted as B−1 or B⊺, is defined by its graph

∣B⊺∣ ∶= ∣B∣⊺ = {(e, e′)⊺, (e, e′) ∈ ∣B∣} where (e, e′)⊺ ∶= (e′, e)
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or, equivalently, by

∀e′ ∈ E′,B⊺(e′) = {e ∈ E,B(e) ∋ e′},
and the domain of definition of B is given by

DefB = {e ∈ E,B(e) ≠ ∅} = Im(B⊺).
The set of binary relations from E to E′ is denoted by BR(E,E′), and the

class of all binary relations is denoted by BR.

2.1.2 Multiple relations

In this section and the next, we recall the definitions we gave in [12] and [11]
about multiple relations and multiple binary relations18. Given E = (Ei)i∈I a
family of sets indexed by a set I , the product ∏i∈I Ei is also denoted as ΠIE
or ΠE .

Definition 2.1. A multiple relation R is the data R = (I,E , ∣R∣) of

• a set I = ar(R), called the index set or the arity of R,

• an I-family of sets E = (Ei)i∈I called the context of R,

• a subset ∣R∣ ⊆ ΠIE , called the graph of R.

The class of all multiple relations with a given index set I — which are
also called I-relations — is denoted by MRI . Given a context E = (Ei)i∈I
on I , the set of multiple relations with context E is denoted as MRE . For
example, if 2 denotes the set {0,1}, the class MR2 can be seen as the class
BR of all binary relations between sets and, given (E0,E1) a couple of sets,
we have MR(E0,E1) = BR(E0,E1).

If R and S are multiple relations in a context E , we’ll denote by R ∩ S
their intersection, that is the multiple relation in the same context such that
∣R∩S∣ = ∣R∣∩ ∣S∣, and we define an order (MRE ,⊆) by putting R ⊆ S when
R = R ∩ S. If J ⊆ I , we put E∣J = (Ej)j∈J , ΠJE = Π(E∣J) = ∏j∈J Ej and
we designate by 0J the minimum element of (MRE∣J ,⊆), that is the empty
J-relation 0J = (J,E∣J ,∅), and by 1J its maximum element, that is the plain

18Or, as well: binary multiple relations.
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J-relation 1J = (J,E∣J ,ΠJE). Note that in the case where J = ∅, we have
0∅ ≠ 1∅, since the graph of 1∅ is a singleton Π∅E = {●}, whereas ∣0J ∣ = ∅. If
R ∈MRE∣J , we also denote by R∣K the restriction of R on K ⊆ J , that is the
K-relation defined by R∣K ∶= (K,E∣K , ∣R∣∣K), where ∣R∣∣K = {y∣K , y ∈ ∣R∣}
or, equivalently, ∣R∣∣K = {x ∈ ΠKE ,∃y ∈ ∣R∣,∀k ∈ K,xk = yk}. Finally, we
denote by MR⊆E the set of multiple relations inside the context E , that is
the set of all multiple relations R = (J,E∣J , ∣R∣) with J ⊆ I and ∣R∣ ⊆ ΠJE .
In other words MR⊆E = ⋃J⊆IMRE∣J ⊂ ⋃J⊆IMRJ . The set MR⊆E can be
endowed with a “gluing operator” ⊗ defined19 for a J1-relation R1 and a J2-
relation R2 as the (J1 ∪ J2)-relation R1 ⊗R2 containing all “glued” families
x1 + x2 with some compatible xn ∈ ∣Rn∣, that is such that x1 and x2 have the
same restrictions on J1 ∩ J2. In other words, for every x ∈ ΠJ1∪J2E , we have
x ∈ ∣R1 ⊗ R2∣ if and only if x∣J1

∈ ∣R1∣ and x∣J2
∈ ∣R2∣. Note also that the

relation 1 = 1∅ is neutral for this operator, giving (MR⊆E ,⊗,1) a structure
of a commutative monoı̈d, whereas 0I is an annihilating element.

Remark 2.2. The intersection of two multiple relations in a given context
is nothing but a peculiar case of the gluing operator ⊗ applied to relations
inside a same context and having a same arity.

2.1.3 Multiple binary relations

Definition 2.3. A multiple binary relation Q is the data (I,W ,M, ∣Q∣) of

• a set I = ar(Q), called the index set or the arity of Q,

• an I-family of setsW = (Wi)i∈I called the incoming context of Q,

• an I-family of setsM = (Mi)i∈I called the outgoing context of Q,

• a subset ∣Q∣ ⊆ ΠIE called the graph of Q, where E = (Ei)i∈I is given
by Ei =Wi ×Mi for all i ∈ I and is called the product context of Q.

The class of all multiple binary relations with a given index set I —
which are also called I-multiple binary relations or I-binary relations —
is denoted by MBRI . The set of all multiple binary relations with given

19See [12], section § 1.5.1, where it was denoted by &.
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incoming context W = (Wi)i∈I and outgoing context M = (Mi)i∈I is de-
noted by MBR(W,M) and, as in the case of multiple relations, we’ll de-
note MBR⊆(W,M) the set of multiple binary relations inside the context
(W,M), that is the set of all multiple relations R = (J,W∣J ,M∣J , ∣R∣) with
J ⊆ I , and ∣R∣ ⊆ ΠJE = ∏j∈J (Wj ×Mj). A gluing operator ⊗ is defined
on MBR⊆(W,M) exactly in the same way that for MR⊆E : if, for n ∈ {1,2},
we have Rn = (Jn,W∣Jn ,M∣Jn , ∣Rn∣), then R1 ⊗R2 designates the multiple
binary relation R with arity J = J1 ∪ J2, with context (W∣J ,M∣J) and with
graph ∣R∣ = {y ∈ ΠJE ,∀n ∈ {1,2}, y∣Jn ∈ ∣Rn∣}. When R1 and R2 have the
same arity, R1 ⊗ R2 can be simply denoted by R1 ∩ R2, and we obtain an
order on MBR(W∣J ,M∣J) by putting R1 ⊆ R2 iff R1 ∩R2 = R1.

2.1.4 Type conversions between MBRI , MR2I , MRI and BR

With any Q = (I,W ,M, ∣Q∣) ∈MBRI , we associate the I-multiple relation
mr(Q) ∶= (I,E , ∣Q∣)∣ where E = (Wi ×Mi)i∈I . Note that the gluing operator
⊗ defined on MBR⊆(W,M) can then be defined from the operator ⊗ defined
on MR⊆E by the fact that, for R1 and R2 belonging to MBR⊆(W,M), we
have mr(R1 ⊗ R2) = mr(R1) ⊗ mr(R2). Of course, if R1 and R2 have
the same arity, we also have mr(R1 ∩R2) = mr(R1) ∩mr(R2). With each
Q ∈ MBRI , we also associate the binary relation20 br(Q) ∶ ΠIW ↝ ΠIM
that has graph ∣br(Q)∣ given by ∣Q∣ after an obvious re-indexing. Note that
the applications mr ∶ MBRI → MRI and br ∶ MBRI → BR so defined
are injective on non-empty relations21. In particular, we will often define the
graph ∣Q∣ of a multiple binary relation Q ∈ MBR(W,M) by giving, for all
w ∈ ΠIW , the set br(Q)(w) ⊂ ΠIM.

Note also that, applying notations for binary relations, we have:

Im(br(Q)) = ⋃
w∈ΠI(W)

br(Q)(w) ⊂ ΠIM,

∀µ ∈ ΠIM, br(Q)⊺(µ) = {w ∈ ΠI(W), br(Q)(w) ∋ µ},
and

Defbr(Q) = {w ∈ ΠI(W), br(Q)(w) ≠ ∅} = Im(br(Q)⊺).
20Recall that we often see binary relations as (not necessarily deterministic) transitions.
21Because if ∣Q∣ ≠ ∅, then ΠIW ×ΠIM ≠ ∅ and, in this case, this product characterizes

all sets Wi and Mi.
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Moreover, by putting 2I = I0 ∪ I1 where, for k ∈ {0,1}, Ik = I × {k}, we
define canonical reciprocal bijections

mr2 ∶MBRI ↔MR2I ∶mbr
in a trivial way: for any Q = (I,W,M, ∣Q∣) ∈ MBRI , whereW = (Wi)i∈I
and M = (Mi)i∈I , we set mr2(Q) = (2I,D, ∣̃Q∣) where D = (Dj)j∈I0∪I1
with, for each i ∈ I , D(i,0) =Wi and D(i,1) =Mi, and ∣̃Q∣ is the image of ∣Q∣
given by the canonical bijection ΠI(Wi ×Mi)→ Π2ID.

2.2 Interaction relations in a family of open dynamics

From now on, I denotes a non-empty set and A = (Ai)i∈I an I-family of

open dynamics Ai = ((αi ∶Di ⇁ Tran
LiÐ→)

ρi↬ (hi ∶Di → Sets)). For each

i ∈ I , the set ZAi of outgoing realizations of Ai is simply denoted by Zi
— thus Z∗

i denotes the set of nonempty realizations of Ai — and, for any
λ ∈ Li, the set of (outgoing) realizations of the open mono-dynamic (Ai)λ is
denoted by Zi,λ instead of Z(Ai)λ . We also put Z ∶= (Zi)i∈I , Z∗ ∶= (Z∗

i )i∈I ,
L ∶= (Li)i∈I and E ∶= (Ei)i∈I where, for each i ∈ I , Ei ∶= Zi × Li. The
elements q of ΠIE ⋍ ΠIZ ×ΠIL are often denoted as in the following form:

q = ( λi
σi

)
i∈I

(1)

with, for all i ∈ I , σi ∈ Zi and λi ∈ Li. The coefficients of q is sometimes
designated for all i ∈ I by qi ∶= σi and qi ∶= λi. With these notations, such a
q ∈ ΠIE is said to be coherent (for the family A) if, for all i ∈ I , qi ∈ Zi,qi .
More generally, a set C ⊂ ΠIE is said to be coherent if all its elements
are coherent, and a multiple binary relation Q ∈ MBR(Z,L) is said to be
coherent if its graph ∣Q∣ is also coherent. The multiple binary relation whose
graph is the maximal coherent one is denoted ΩA. Then a multiple binary
relation Q ∈MBR(Z,L) is coherent if Q ⊆ ΩA, that is if ∣Q∣ ⊆ ∣ΩA∣. Remark
that

∣ΩA∣ = (ΠISi)⊺ ∶= {q ∈ ΠIE ,q⊺ ∈ ΠISi},

where q⊺ ∶= ( σi
λi

)
i∈I

∈ ∏i∈I(Li × Zi). With every multiple binary relation

Q ∈ MBR(Z,L) we associate its coherent part qQ ∶= Q ∩ ΩA, that is the
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multiple binary relation such that ∣ qQ∣ = ∣Q∣ ∩ ∣ΩA∣.
In the following, multiple binary relationsQ ∈MBR(Z,L) are also called

interaction requests for the family A = (Ai)i∈I . Such a request Q is said to
be

• normal if Defbr(Q) ⊇ ΠIZ∗,

• admissible if qQ ≠ ∅,

• functional if br(Q) is a (partial) function ΠIZ ⇢ ΠIL, that is if for
every (σi)i∈I ∈ ΠIZ one has

card(br(Q)((σi)i∈I)) ≤ 1,

• strongly functional if for every i ∈ I and for every (σj)j∈I∖{i} ∈ Πj≠iZj ,
one has

card({λi ∈ Li,∃q ∈ ∣Q∣, (∀j ≠ i,qj = σj)andqi = λi}) ≤ 1.

We’ll denote by MBR#
(Z,L)

the set of admissible interaction requests.

Definition 2.4. [Interaction relations] An interaction relation for A is a co-
herent interaction request for A.

The set of interaction relations for the family A of open dynamics is
denoted by IRA. Note that

mr((IRA)⊺) =MR(Si)i∈I .

Given R ∈ IRA an interaction relation for A, we say that

• R is normal if there exists a normal interaction requestQ ∈MBR(Z,L)

such that qQ = R,

• R is efficient if Defbr(R) ⫋ ΠIZ ,

• R is functional (resp. strongly functional) if it is so as a request.
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Example 2.5. For the inclusion order, ΩA is the greatest interaction relations
for A. It is normal but not efficient. Indeed, we have ΩA = }QM , where
QM designates the greatest interaction request in the context given by A,
that is such that ∣QM ∣ = ΠIE , and QM is a normal interaction request since
Defbr(Q) = ΠIZ . ΩA is not efficient since Defbr(ΩA) = ΠIZ (because for
all σi ∈ Zi, there exists λi ∈ Li such that σi ∈ Zi,λi). Note also that, in
general, ΩA is not functional. We could say that the graph ∣ΩA∣ is too large to
define an efficient interaction relation: interacting is restricting possibilities
so, roughly speaking, the smaller is the graph of an interaction relation, the
stronger is this interaction.

Example 2.6. Let I = {1,2} and A1 = A2 = A with A the open functorial

non-deterministic mono-dynamic defined byA = ((α ∶ (N,+)→ Tran)
ρ

↬ h)
with st(α) = ●α ∶=N ×R, st(h) =N and for all (n, r) ∈ st(α),

• ρ(n, r) = n,

• ∀d ∈N∗, dα(n, r) = {n + d} ×R.

The set ZA of (outgoing) realizations of A can be seen as the set of finite
or infinite sequences σ = (sn)n∈Nσ of reals, with Nσ an initial segment of
N, and we have Z1 = Z2 = ZA. The set of parameter values of the mono-
dynamic A is a singleton, thus we can write L1 = L2 = {∗}. Let’s now
consider the interaction relation R given by the graph

∣R∣ = {( ∗ ∗
σ σ

) , σ ∈ Z} .

Then R is obviously a non-normal, functional efficient interaction relation.
The lack of normality means that relations between outgoing realizations
of the two dynamics Z1 and Z2 are not founded on parameter values, but
are directly established. Seeing parameter values as data that dynamics can
receive from others, we could say that such a non-normal interaction relation
is a “paranormal” relation.

2.3 Synchronizations

Recall that I denotes a non-empty set and A = (Ai)i∈I an I-family of open

dynamics Ai = ((αi ∶Di ⇁ Tran
LiÐ→)

ρi↬ (hi ∶Di → Sets)).
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Let’s begin with the notion of a synchronization of an open dynamic by
another, denoting 1 and 0 their index in the family A.

Definition 2.7. A synchronization of A1 by A0 is the data (∆, δ) of

• a map ∆ ∶ 9D0 → 9D1 defined on the objects of D0,

• a map δ ∶ st(h0)→ st(h1) compatible with ∆ in the meaning that

∀S ∈ 9D0,∀s ∈ Sh0 , δ(s) ∈ (∆S)h1 ,

and such that δ is monotonic, which means that δ is

• either increasing: ∀(s0, t0) ∈ st(h0)2, s0 ≤h0 t0 ⇒ δ(s0) ≤h1 δ(t0),

• or decreasing: ∀(s0, t0) ∈ st(h0)2, s0 ≤h0 t0 ⇒ δ(t0) ≤h1 δ(s0),

where ≤hi denotes the pre-order on hi-instants22.

We write (∆, δ) ∶ h0 ↱ h1 to indicate that (∆, δ) is a synchronization of
h1 by h0. Such a synchronization is said to be rigid if (∆, δ) is a (necessarily
deterministic) dynamorphism h0 ↬ h1. Otherwise, it is called flexible23.

Definition 2.8. A synchronization of the family A with conductor i0 ∈ I is a
family of synchronizations ((∆i, δi) ∶ hi0 ↱ hi)i∈I , with (∆i0 , δi0) = Idhi0 .

Remark 2.9. More complex synchronization systems could be usefully con-
sidered, which we will not do in this paper.

2.4 Interactive families

We can now define an interactive family 24 as a family of open dynamics
endowed with an interaction request (for example an interaction relation),
a family of synchronizations between some of these dynamics and a third
element, called privacy or social mode, which is an equivalence relation on
the families of parametric values. More precisely:

22See section 1.1.3.
23In [11] and [10], only rigid synchronizations had been considered, while the much more

general idea of flexible synchronizations appeared in [13].
24 In [10], we used the expression ”dynamical families”, but this one presents a risk

of confusion with the notion of ”families of dynamics”, and we finally prefer to use the
expression “interactive families”.

.383 -



S. DUGOWSON OPEN DYNAMICS

Definition 2.10. We call interactive family the data
(I,A,R, i0, (∆i, δi)i∈I ,∼) of

• a non-empty set I ,

• an I-family A = (Ai)i∈I of open dynamics, say

Ai = (ρi ∶ (αi ∶Di ⇁ Tran
LiÐ→)↬ hi),

• an interaction (R, i0, (∆i, δi)i∈I) for A, that is

an admissible interaction request R ∈MBR#
(Z,L)

for A,

an element i0 ∈ I ,

a synchronization ((∆i, δi) ∶ hi0 ↱ hi)i∈I of A with conductor i0,

• an equivalence relation ∼ on the set ΠIL =∏i∈I Li, called the intimacy
or the social mode of the interactive family.

Remark 2.11. We’ll see in section 3.7 the role of the intimacy of an interac-
tive family.

An interactive family with componentsA and its interaction (R, i0, (∆i, δi)i∈I)
are said to be normal, efficient or functional if it is the case for the interaction
relation qR, respectively.

Let F = (I,A,R, i0, (∆i, δi)i∈I ,∼) and G = (I,A,Q, i0, (∆i, δi)i∈I ,∽)
be two interactive families defined on a same family A = (Ai)i∈I of open
dynamics and sharing a same synchronization ((∆i, δi)i∈I . If qQ = qR, the two
interactions Q and R are said to be strongly equivalent. If, in addition, the
restriction of the equivalence relation ∼∣M on the set M = Im(br( qR)) ⊂ ΠIL
is equal to the restriction ∽∣M , then the two interactive families F and G are
said to be strongly equivalent.

2.5 Connectivity structures of an interactive family

Even if we do not discuss in this article the notion of connective dynamics25,
it should be noted that we have developed the theory of open dynamics and

25See [7] and [8].
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their interactions as an extension of our research on connectivity spaces26.
This perspective also explains that, regarding topological aspects, we empha-
size the connectivity point of view27. In the present paper we limit ourselves
regarding these types of matters to defining a main connectivity structure of
an interactive family and three other connectivity structures, based on its in-
teraction request. At this stage, we do not include in these definitions any
considerations about synchronizations.

We begin with some very brief reminders about connectivity spaces and
structures and about the connectivity structure of a multiple relation. A
connectivity space28 X is a pair (∣X ∣, κ(X)) where ∣X ∣ is a set called the
carrier of X and K = κ(X) ⊆ P(∣X ∣) is called the connectivity struc-
ture of X and is such that for every I ∈ P(K) we have the implication
⋂K∈IK ≠ ∅⇒ ⋃K∈IK ∈ K. Every element K ∈ K is said to be a connected
subset of ∣X ∣, or is simply said to be connected (to itself). When ∣X ∣ is non-
empty, the empty subset is always connected, because it is the union of the
empty family, whose intersection is then non-empty. A connectivity space is
said to be finite when its carrier is a finite set and it said to be integral if ev-
ery singleton subset is connected. The morphisms between two connectivity
spaces are the functions which transform connected subsets into connected
subsets.

Given some context E = (Ei)i∈I , the connectivity space of a multiple
relation R = (J,E∣J , ∣R∣) ∈ MR⊆E has been defined in [12] as the space
having J as carrier and having as connectivity structure the set KR ⊆ P(J)
of subsets K of J that are non-splittable for R, that is such that there does
not exist a partition K =K1 ⊔K2 with R∣K = R∣K1

⊗R∣K2
.

The notion of connectivity structure of a multiple relation naturally ex-
tends to the case of a multiple binary relation: given some context (W ,M)
for a given index set I , the connectivity space of a multiple binary relation
R = (J,W∣J ,M∣J , ∣R∣) ∈ MBR⊆(W,M) is the connectivity space having J
as carrier and having as connected subsets K ⊆ J the ones that are non-
splittable for R, that is such that there does not exist a partition K =K1⊔K2

with R∣K = R∣K1
⊗R∣K2

. In other words, the connectivity structure of a mul-
tiple binary relation R ∈ MBR⊆(W,M) is the one of the multiple relation

26See [9].
27For the relation between connectivity and topology, see in particular [4].
28See [2], [5] and [6].
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mr(R) ∈MR⊆E .
For example, given a family A = (Ai)i∈I of open dynamics, the con-

nectivity structure of the interaction Ω = ΩA is the discrete integral one29,
because the coherence property is local, that could be written Ω =⊗i∈I Ω∣{i}.

Given R ∈ MBR(Z,L) an interaction request for a family A = (Ai)i∈I
of open dynamics — that is30 : ∣R∣ ⊆ ΠIE = ΠI(Zi × Li) with Zi the set
of outgoing realizations of Ai and Li the set of its parameter values — we
denote by R the I-multiple relation with context Z obtained by projection
(i.e. restriction) of R on ΠIZ , that is

∣R∣ = {(σi)i∈I ∈ ΠZ,∃(λi)i∈I ∈ ΠL,( λi
σi

)
i∈I

∈ ∣R∣}.

In the same way, qR denotes the projection of qR on ΠIZ , where we remind
that qR = R ∩ ΩA denotes the coherent part of R. Then, we obtain four
connectivity structures on I naturally associated with the interaction R, that
is :

• KR, the connectivity structure of R ∈MBR(Z,L),

• K
qR, the connectivity structure of qR ∈MBR(Z,L),

• KR, the connectivity structure of R ∈MRZ ,

• K
qR the connectivity structure of qR ∈MRZ .

Proposition 2.12. For any interaction request R ∈ MBR(Z,L) for a given
family A = (Ai)i∈I of open dynamics, we have KR ⊆ KR and K

qR ⊆ K
qR ⊆ KR.

Moreover, if R is a normal request, KR is the discrete integral connectivity
structure31, so in this case, we have

KR ⊆ K
qR ⊆ K

qR ⊆ KR.
29 That is the structure for which the only connected parts of I are the singletons {i} and

the empty set, see [6].
30Using notations of section 2.2.
31See footnote 29.

.386 -



S. DUGOWSON OPEN DYNAMICS

Proof. Let K ∈ KR. Suppose K ∉ KR: then there is a partition K =K1 ⊔K2

such that R∣K = R∣K1
⊗R∣K2

. Then

∣R∣K ∣ = {(σk)k∈K ∈ ΠKZ,∃(λk)k∈K ∈ ΠKL,∀n ∈ {1,2},( λk
σk

)
k∈Kn

∈ ∣R∣Kn ∣} ,

so ∣R∣K ∣ = ∣R∣K1
⊗R∣K2

∣ that is absurd. Thus K ∈ KR, so KR ⊆ KR. The same
reasoning applied to qR proves that K

qR ⊆ K
qR.

Now, let’s prove that K
qR ⊆ KR: let K ∈ K

qR, and suppose K ∉ KR. Then,
as previously, there is a partition K =K1 ⊔K2 such that R∣K = R∣K1

⊗R∣K2
.

By putting Ω = ΩA, we thus have qR∣K = R∣K ∩ Ω∣K = (R∣K1
⊗ R∣K2

) ∩
(Ω∣K1

⊗ Ω∣K2
). But ∩ is nothing but ⊗ in the case of a same arity so, by

associativity and commutativity, we have qR∣K = (R∣K1
∩Ω∣K1

)⊗(R∣K2
∩Ω∣K2

)
= qR∣K1

⊗ qR∣K2
, which is absurd, because we assumed that K ∈ K

qR.
Finally, if R is a normal request, then ∣R∣ = Defbr(R) = ΠIZ , so its

connectivity structure is the discrete integral one, that is finer than the others.

Definition 2.13. Given an interactive family F = (I,A,R, i0, (∆i, δi)i∈I ,∼)
we call KF ∶= K

qR the manifest connectivity structure of F (or simply the
connectivity structure of F), and K

qR the plain connectivity structure of F .

2.6 Examples of interactive families

Example 2.14 (The WHY = יהו family). As a first example of an interactive
family, let us recall the WHY family, also denoted by ,יהו that we have intro-
duced in [13] and that we have also described in [18], on the occasion of our
work with philosopher Pierre Michel Klein concerning his philosophical the-
ory of time, Metachronology [19]. As its name suggests, this family involves
the open dynamics Y = ,י H = ה and W = ו (cf. supra examples 1.21, 1.20 and
1.19). More precisely, it is defined by WHY = (I,A,Q, i0, (∆i, δi)i∈I ,∼)
with

• I = {1,2,3},

• A = (Ai)i∈I where A1 = Y, A2 = H with the origin of times being
taken equal to T0 = 0 for simplicity, and A3 =W,
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• the graph of the interaction request Q for A contains all the families

( λ1 = ∗ λ2 ∈ LH λ3 ∈ LW = C
σ1 ∈ Z∗

Y σ2 ∈ Z∗
H σ3 ∈ Z∗

W = C )

such that λ3 = σ2 and λ2 is the restriction of σ1 to the interior of its
domain of definition Defσ1 ,

• the conductor is given by i0 = 2,

• ∆1 = IdR+ and δ1 ∶ st(hH) =]0,+∞[ ↪ [0,+∞[= st(hY), the inclu-
sion map,

• ∆3 = (R+

!→ 1) and δ3 ∶ st(hH) !→ {●} = st(hW), which is necessarily
constant,

• the social mode ∼ (that was not included in our previous definitions
of an interactive family) is taken equal to the maximal equivalence
relation on ΠL = {∗} ×LH ×LW, i.e µ ∼ ν for all µ and ν in ΠL.

Note that the interaction request Q is normal, and that the manifest con-
nectivity structure KWHY = K

qQ is the indiscrete one, that is KWHY = P(I).

Example 2.15 (A borromean family). Our second example of an interactive
family is F = (I,A,Q, i0, (∆i, δi)i∈I ,∼) with

• I = {1,2,3},

• A = (Ai)i∈I with, for each i ∈ I , Ai = Υ, the open dynamic given in
the example 1.16,

• the graph of the interaction request Q for A contains all the families

( λ1 λ2 λ3

σ1 σ2 σ3
) ∈ (ZΥ ×LΥ)3

that satisfy {i ∈ I, λi(0) = 1} ≠ ∅,

• the conductor is given by i0 = 1,

• δi = Id{t0,t1} (and ∆i = Id{T0,T1}) for every i ∈ I ,
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• the intimacy (social mode) ∼ is defined on L3
Υ by

(λ1, λ2, λ3) ∼ (µ1, µ2, µ3)⇔ λ1(0) = µ1(0).

Note that we can write

∣Q∣ = {( λ1 λ2 λ3

σ1 σ2 σ3
) ∈ (ZΥ ×LΥ)3,{λ1, λ2, λ3} ∩ {ϕ10, ϕ11} ≠ ∅} ,

where ϕkl denotes the map {0,1}→ {0,1} such that ϕkl(0) = k and ϕkl(1) =
l, so that we have LΥ = {ϕ00, ϕ01, ϕ10, ϕ11}.

The interaction request Q is obviously normal, and it is easy to see
that the manifest connectivity structure KF = K

qQ and the plain connec-
tivity structure K

qQ are both the integral borromean one32, that is KF =
P(I) ∖ {{1,2},{2,3},{1,3}}.

3. Global dynamics

In this section, we associate with any interactive family some global dynam-
ics, i.e. some open dynamics produced by the family in question in order
to incorporate in a certain way the different dynamics composing the fam-
ily. The difference between these global dynamics lies in the choice of the
social mode applied : if it is the social mode belonging to the family itself,
we obtain the one we’ll call the global dynamic demanded by the consid-
ered interactive family. But other choices of a social mode can be made,
starting with the trivial equivalence relation (equality) which leads to what
we call the transparent global dynamic, on which other global dynamics are
modelled. Among other possibilities, we also define the responsible global
dynamic and the J-global dynamic — which results from the choice of the
set J of indices for which the parameter values can be determined from the
outside — and we finally introduce the most “closed” global dynamic (i. e. a
mono-dynamic that cannot be influenced (normally) by some other dynam-
ics), which we call the opaque global dynamic generated by the family.

32Cf. [6].
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3.1 The lax-functorial stability theorem

Theorem 3.1 (Lax-functorial Stability Theorem). LetF = (I,A,R, i0, (∆i, δi)i∈I)
be an interactive family, with A = (Ai)i∈I and, for each i ∈ I

Ai = (ρi ∶ (αi ∶Di ⇁ Tran
LiÐ→)↬ hi),

and let E = Di0 and M = Im(br( qR)). Then we obtain an M -dynamic β ∶
E⇁ Tran

MÐ→ by putting for every S ∈ 9E

Sβ = {(ai)i∈I ∈∏
i∈I

(∆iS)αi ,∀i ∈ I, ρi(ai) = δi(ρi0(ai0))},

and, for every (d ∶ S → T ) ∈ Ð→E , a = (ai)i∈I ∈ Sβ and µ ∈ M , by defining
dβµ(a) as the set of the b = (bi)i∈I ∈ T β such that

∃(σi)i∈I ∈ br( qR)−1(µ),∀i ∈ I, σi▷ ai, bi (2)

and
ρi0(bi0) = dhi0(ρi0(ai0)). (3)

Proof. First, we have M ≠ ∅, because R is an admissible request so P = qR
and M = Im(br(P )) are not empty. Then, following the section § 1.1.1,
we have to check that β is a disjunctive lax-functor, i.e. that these three
conditions are satisfied:

1. (Disjunctivity) ∀(S,T ) ∈ 9E2, S ≠ T ⇒ Sβ ∩ T β = ∅,

2. (Lax identity) ∀S ∈ 9E,∀µ ∈M, (IdS)βµ ⊆ IdSβ ,

3. (Lax composition) for every (S d→T e→U) in E and every µ ∈M ,

(e ○ d)βµ ⊆ eβµ ⊙ dβµ.

1. Disjunctivity. Suppose S ≠ T but Sβ ∩ T β ≠ ∅, then we would have
an element (ai)i∈I ∈ Sβ ∩ T β and — as ∆i0 = IdDi0

and αi0 is disjunctive —
we would have ai0 ∈ Sαi0 ∩ Tαi0 = ∅ , that is absurd.
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2. Lax identity. Let S ∈ 9E and µ ∈M . We want to check that (IdS)βµ ⊆
IdSβ . In other words, we want to check that if Sβ ≠ ∅ and a = (ai)i∈I ∈ Sβ
then (IdS)βµ(a) ⊆ {a}, that is (IdS)βµ(a) = ∅ or (IdS)βµ(a) = {a}. But if
(IdS)βµ(a) is not empty and a′ = (a′i)i∈I is an element of it, then for every
i ∈ I , there is an outgoing realization σi ∈ Zi such that σi ⊳ ai, a′i and then —
using σi ⊳ a′i, the definition of Sβ , the condition (3) and σi ⊳ ai — we have

a′i = σi(ρi(a′i)) = σi(δi(ρi0(a′i0))) = σi(δi(ρi0(ai0))) = σi(ρi(ai)) = ai.

Thus a′ = a, and we have proved that (IdS)βµ ⊆ IdSβ .

3. Lax composition. We have to check that given any (S d→T e→U) in E,
any µ ∈M and any state a = (ai)i∈I ∈ Sβ , we have (e○d)βµ(a) ⊆ (eβµ⊙dβµ)(a).
In other words, supposing (e ○ d)βµ(a) not empty and taking any c = (ci)i∈I ∈
(e ○ d)βµ(a) ⊆ Uβ , we have to prove the existence of a state b ∈ dβµ(a) ⊆ T β
such that c ∈ eβµ(b).

To express such a state b = (bi)i∈I , let us set t0 ∶= ρi0(ai0) ∈ Shi0 , t1 ∶=
dhi0(t0) ∈ Thi0 , and t2 ∶= ehi0(t1) ∈ Uhi0 . Note that by the definition of
(e ○ d)βµ(a) we also have t2 = ρi0(ci0) and that there exists a family (σi)i∈I ∈
br( qR)−1(µ) of outgoing realizations such that σi ⊳ ai, ci for every i ∈ I .
Given (σi)i∈I such a family, it suffices now to prove that each σi is defined
for the instant δi(t1), and that bi ∶= σi(δi(t1)) is a suitable choice. Note
first that since σi0 ⊳ ci0 , we have ρi0(ci0) ∈ Defσi0 , that is t2 ∈ Defσi0 . But
t1 ≤hi0 t2, so, according to the properties of realizations (see section § 1.2.2),
δi0(t1) = t1 ∈ Defσi0 .

Let us now consider the case of an i ≠ i0. By definition of a synchro-
nization, the map δi is either increasing or decreasing. If it is increasing,
then δi(t1) ≤hi δi(t2), but ci = σi(ρi(ci)) = σi(δi(t2)), so δi(t1) ∈ Defσi .
If δi is decreasing, then δi(t1) ≤hi δi(t0), but ai = σi(ρi(ai)) = σi(δi(t0)),
so δi(t0) ∈ Defσi and thus we have again δi(t1) ∈ Defσi . Now, let’s put
bi = σi(δi(t1)) for every i ∈ I . Then b ∈ dβµ(a), since

• for every i ∈ I , t1 ∈ Thi0 ⇒ δi(t1) ∈ (∆iT )hi , and then bi = σi(δi(t1)) ∈
(∆iT )αi ,

• by definition of a realization ρi0(bi0) = ρi0(σi0(t1)) = t1 and, for every
i ∈ I , ρi(bi) = ρi(σi(δi(t1))) = δi(t1) = δi(ρi0(bi0)),
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• by construction, we have σi ⊳ ai, bi for every i ∈ I .

But we also have c ∈ eβµ(b), since

• c ∈ Uβ ,

• ρi0(ci0) = t2 = (e ○ d)hi0(t0) = ehi0(t1) = ehi0(ρi0(bi0)),

• and for all i ∈ I , σi ⊳ bi, ci,
and this concludes the proof.

3.2 The transparent global dynamic

Thanks to the theorem 3.1, it is immediate to check that the definition below
is consistent.

Definition 3.2. Using the same notations than above, the transparent global
dynamic associated with an interactive family F is the open dynamics de-
noted [F]1 defined by

[F]1 = ((β ∶ E⇁ Tran
MÐ→) τ↬ (k ∶ E→ Sets))

where β and thus, in particular, M and E, are the one associated with F by
the theorem 3.1, the clock k is given by k = hi0 and the datation τ ∶ st(β)→
st(k) is defined by

∀S ∈ 9E,∀a = (ai)i∈I ∈ Sβ, τ(a) = ρi0(ai0).

3.3 The demanded global dynamic

The parametric set M of the transparent global dynamic [F]1 associated
with an interactive family F is generally “too big” in the sense that very of-
ten some parts of the parametric values are not intended to be externally con-
trolled and should instead be determined by the realizations of the dynamics
that compose the interactive family itself. The social mode (or intimacy) ∼
of F — which does not play a role in the definition of the transparent global
dynamic — is precisely used to “reduce” the parametric set, thanks to the
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notion of the parametric quotient of an open dynamic by an equivalence re-
lation on the set of parametric values (see definition 1.13). The response of
the new global dynamic thus obtained is the same for two distinct parametric
values, as long as they are equivalent: it is up to it to take into account, or
not, the requests made to it from outside, by constructing its response on all
the possibilities given to it by the different equivalent parametric values of a
same equivalence class.

Definition 3.3. Using the same notations than above, and denoting again
∼ the restriction of the intimacy ∼ of F to the subset M = Im(br( qR)) ⊆
ΠIL, the global dynamic demanded byF — also called the demanded global
dynamic of F — is defined as the open dynamic denoted [F]∼ given by
[F]∼ = [F]1/∼.

3.4 The responsible global dynamic

In this section, we associate with any interactive request an intimacy called
“responsible intimacy” that intuitively allows the interactive family to choose
the parametric values of each dynamic at stake when these values are sus-
ceptible to be determined by the realizations of the other dynamics of the
family. More precisely, using the same notations as previously, if Q desig-
nates a (not necessarily coherent) admissible interaction request for a family
A = (Ai)i∈I of open dynamics, we define the responsible intimacy ≍Q for
Q as the equivalence relation on ΠIL setting, for any ((µi)i∈I , (λi)i∈I) ∈
(ΠIL)2, (µi)i∈I ≍Q (λi)i∈I iff we have, for all i ∈ I: (µi = λi or µi ∈ Ni ∋ λi),
where Ni ⊆ Li is defined as the set

Ni ∶= {l ∈ Li,∀(p,q) ∈ ∣Q∣2, (pi = l and∀k ≠ i,pk = qk)⇒ qi = l} .

The responsible global dynamic [F]≍Q generated by an interactive fam-
ilyF = (I,A,Q, i0, (∆i, δi)i∈I ,∼) is then defined as the demanded global dy-
namic of the interactive family (I,A,Q, i0, (∆i, δi)i∈I ,≍Q). Note that [F]≍Q
does not depend on the social mode ∼ demanded byF itself, and that two dif-
ferent interaction requests Q and R can result in two different social modes
≍Q and ≍R even if qQ = qR.
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3.5 The J-global dynamic

Let F = (I,A,Q, i0, (∆i, δi)i∈I ,∼) be an interactive family as previously,
and let J ⊆ I a subset whose elements j ∈ J intuitively represent the indices
such that the corresponding dynamics Aj could be influenced from outside
the global dynamic we want to define. To achieve this, we can use a similar
construction to the one we described for the responsible global dynamic, but
taking for each i ∈ I the set Ni given by: Ni = ∅ if i ∈ J and Ni = Li if
i ∉ J . In this way, we get a global dynamics [F]∼J that we’ll call the J-
global dynamic associated with F . When J = I , we obtain the transparent
global dynamic [F]1 = [F]∼I associated with F .

3.6 The opaque global dynamic

The transparent global dynamic [F]1 is the “most open” of the global dy-
namics associated with an interactive family (so much so that it is gener-
ally “too open”). At the other end, the opaque global dynamic is the most
“closed” of them, since its parametric set is reduced to a singleton. It is
obtained by making the quotient of [F]1 by the maximum equivalence rela-
tionship on M , for which M is the only equivalence class. Denoting again
M this equivalence relation, we thus have:

Definition 3.4. The opaque global dynamic associated with F is the open
mono-dynamic denoted [F]0 defined by [F]0 = [F]1/M.

In other words, the opaque global dynamic generated byF is its∅-global
dynamic: [F]0 = [F]∼∅ . The following proposition immediately follows
from the definitions:

Proposition 3.5. If the interaction request of an interactive family is strongly
functional, then its responsible global dynamic is the opaque one.

Remark 3.6. With a strongly functional interaction request, the responsible
global dynamic (which in this case is the opaque one) generated by a family
can be non-deterministic even if all the dynamics at stake are determinis-
tic (for example if the request is that each dynamic has a similar behavior
than another, then each one can be entirely determined by the others without
the responsible global dynamic being deterministic). This shows a certain
instability of determinism.
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3.7 Examples of global dynamics

The examples in this section are the global dynamics associated with the
interactive families proposed as examples in the section § 2.6.

Example 3.7 (The global dynamic of the WHY family). Like in the example
1.19, given two (partial) functions a and b on R, we use the notation a♢b to
say that a∣Defa∩Defb = b∣Defa∩Defb . Then one checks that the interactive family
WHY of the example 2.14 generates as global dynamic the opaque global
dynamic S = [WHY]∼ given by

S = ((αS ∶DS ⇁ Tran) τ↬ hS)

where

• DS =DH = (R+,+),

• hS = hH, so st(hS) =]0,+∞[ and for all t ∈]0,+∞[ and all d ∈R+, we
have dhS(t) = t + d,

• st(S) = {(t, r, f,w) ∈R∗
+ ×R × C1 × C,Deff =] −∞, t[},

• ∀(t, r, f,w) ∈ st(S), τ(t, r, f,w) = t,
and such that a state (t, r, f,w) ∈ st(S) is onside iff r = f(t−) ∶= lims→t− f(s),
f∣[0,t[ ∈ Lip1([0, t[) and f♢w, and that in this case the set dαS(t, r, f,w) is
given for any duration d ∈R+ as the set of all states (t + d, q, g,w) such that

• g∣]−∞,t[ = f ,

• q = g((t + d)−),

• g∣[0,t+d[ ∈ Lip1([0, t + d[),

• g♢w.

Example 3.8 (The global dynamic of a borromean family). One checks that
the borromean interactive family considered in the example 2.15 results in a
functorial global dynamics isomorphic (in ODyn) to the one given by
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U = ((u ∶DΥ → Tran
MUÐ→) !↬ (ζDΥ

∶DΥ → Sets))

where we recall that DΥ is one-step category (T0
d→ T1) and ζDΥ

is its es-
sential clock with instants TkζDΥ = {tk} (cf. example 1.16), and with

• ∀k ∈ {0,1}, (Tk)u = {tk} × {0,1}3,

• MU = {0,1},

• ∀µ ∈MU, ∀k ∈ {0,1}, (Id(Tk))uµ = Id((Tk)u) (since u is functorial),

• for µ ∈ MU and (a, b, c) ∈ {0,1}3, duµ(t0;a, b, c) is the set of all states
of the form (t1;a′, b′, c′) ∈ (T1)u such that

if (µ = 0 and a = 0 and (b, c) ≠ (0,0)) then a′ = 0,

if (µ = 0 and (a, b, c) = (0,0,0)) then (a′ = 0 and (b′ = 1 or c′ = 1)),

if (µ = 0 and (a, b, c) = (1,0,0)) then (b′ = 1 or c′ = 1),

if (µ = 1 and a = 0) then a′ = 1,

• u
!↬ ζDΥ

is the unique possible deterministic dynamorphism, for
which the date of (tk;a, b, c) is tk.

Conclusion

This article presents the basics of our theory of interacting open dynamics,
but various important questions are not addressed at all. In particular, while
we have presented the connectivity structures of interactions, a subsequent
article will have to take up the theme of the connectivity structures of the
dynamics themselves (theme that we had addressed in [7] and [8] in the case
of mono-dynamics), in order to clarify the relationships between the con-
nectivity structures of the dynamics of an interactive family, the connectivity
structure of the interaction and the connectivity structure of the global dy-
namic generated by such a family.

In addition, the study of the relationships between our theory and Andrée
Ehresmann’s suggests addressing some ideas that are currently absent from
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our theory, in particular the question of how an interactive family can con-
tinue to produce a global dynamic when certain dynamics of this family
cease to function, or when new dynamics enter the dance. More gener-
ally, we hope to address the question of self-organization, which is currently
largely absent from our theory. On the other hand, as we have seen, the study
of the relationships between the two theories suggests a non-deterministic
extension of Andrée Ehresmann’s guidable systems, which should be stud-
ied. Furthermore, it would be interesting to clarify the relation with other
“compositional theories” such as David Spivak’s dynamical theory.
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[13] Stéphane Dugowson. Dynamiques en interaction : une introduction à
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1. Introduction

The notion of multi-pointed category has in recent years been intro-
duced and studied as a setting where certain pointed and non-pointed
contexts of interest in Categorical and Universal Algebra can be treated
simultaneously. A multi-pointed category is simply a category C equipped
with an ideal N of morphisms in the sense of Ehresmann [6], i.e. a
collection of morphisms in C such that fg ∈ N whenever f ∈ N or
g ∈ N . The pointed context is captured by taking N to be the class
of zero morphisms in a pointed category, while non-pointed settings,
which are referred to as the total context, are captured by choosing
N to be the class of all morphisms of a category. This has allowed
the unification and extension of various results and characterizations
known in pointed and non-pointed Categorical Algebra to the context
of multi-pointed categories. First, in the article [12] the authors in-
troduced the notion of a multi-pointed category with a good theory of
ideals and unified results from the realm of ideal determined categories,
on one hand, and Barr-exact Goursat categories, on the other. Next,
in [11], notions of permutability of equivalence relations in multi-pointed
categories were introduced and studied in connection with certain di-
agrammatic characterizations, known for regular subtractive categories
and Goursat categories. Furthermore, in [10] the authors considered
generalizations of homological lemmas, such as the 3 × 3 Lemma and
the Short Five Lemma. In non-pointed contexts the appropriate notion
of exact sequence is that of exact fork, which is a sequence consist-
ing of a kernel pair together with its coequalizer. Then, in a more
general multi-pointed context, the pertinent notion becomes that of a
star-exact sequence, which unifies the pointed and non-pointed versions,
and allows for the aforementioned multi-pointed homological lemmas.
Finally, in [14] the notion of 2-star-permutable category was studied as
a common extension of both regular subtractive and regular Mal’tsev
categories and characterizations of these categories via diagrams such
as regular pushouts were generalized to a multi-pointed context. In the
present note we want to add to this list a characterization of projective
covers of regular 2-star-permutable multi-pointed categories.

There has been a lot of interest and work carried out in the litera-
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ture on obtaining characterizations for the projective covers of various
types of regular categories. The first result of this kind appears already
in the work of Freyd in [7] in connection with his construction of the
free abelian category on a given (pre-)additive one. About 3 decades
later, Carboni and Vitale gave beautiful constructions for free regular
and exact categories. Since abelian categories are in particular exact,
these constructions can be used to recover in a nice conceptual manner
the aforementioned one by Freyd, as well as other results on abelian
categories (see [19]). One important feature of these regular and exact
completions is that they apply to any category which is merely weakly
lex, i.e. which is only required to have weak finite limits [5]. Then it
turns out that any such category C appears as a projective cover inside
both its regular completion and its exact completion and, furthermore,
that a free exact category is the exact completion of any one of its
projective covers. Such and other motivations have led various authors
to establish characterizations for the projective covers of regular and
exact categories that are extensive [15], Mal’tsev [19], protomodular,
semi-abelian [8], unital, subtractive [13], Goursat [18] and others.

In this note we look at regular Mal’tsev and regular subtractive cat-
egories as special cases of the notion of 2-star-permutable category, fol-
lowing the line of research in [11], [14]. The aim here is to obtain a char-
acterization of the projective covers of 2-star-permutable multi-pointed
categories, thus unifying and subsuming the known characterizations in
the Mal’tsev [19] and subtractive [13] settings. To accomplish this we
first prove that 2-star-permutability is equivalent to a certain symme-
try property of reflexive relations (3.2, 3.4), which specializes to known
characterizations in both the total and pointed contexts. In the total
context it becomes the well-known statement [4] that a regular category
is Mal’tsev if and only if every reflexive relations in it is symmetric, while
in the pointed context it says that a regular category is subtractive if
and only if every reflexive relation in it is 0-symmetric [1, 16]. We then
introduce the appropriate “weakening” of this symmetry property in the
context of multi-pointed categories with only weak finite limits and weak
kernels (3.8) and prove that this weakened property gives the desired
characterization of projective covers (3.12). This result yields, in par-
ticular, a characterization of when the regular completion and the exact
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completion of a category with weak finite limits are 2-star-permutable.
Finally, we apply the result to the case of varieties of universal alge-
bras which have a non-empty set of constants, allowing us to recover
the syntactic conditions defining E-subtractive varieties in the sense of
Ursini [20].

Acknowledgments: The author would like to acknowledge with
gratitude Professor Marino Gran for numerous helpful conversations
and suggestions on the topic and presentation of this paper. He also
thanks the referee for useful comments that improved the quality of the
paper.

2. Preliminaries

2.1 Regular categories and relations

A finitely complete category E is called regular when every kernel
pair in E has a coequalizer and moreover regular epimorphisms in E are
stable under pullbacks. Equivalently, E is regular if it admits (regu-
lar epi, mono) factorizations of morphisms and these are stable under
pullback.

A relation R from X to Y in any finitely complete category is a
subobject 〈r0, r1〉 : R � X × Y . When Y = X we will say that R is a

relation on X and also denote this by a parallel pair R
r0 //

r1
// X . The

opposite relation R◦ is the relation given by 〈r1, r0〉 : R � Y ×X. Any
morphism f : X → Y can be considered as a relation by identifying it
with its graph 〈1X , f〉 : X � X × Y . Then we will write f ◦ to denote
the opposite of the latter relation.

In the context of a regular category E [2] it is possible to define a
composition of relations which, moreover, is associative. If R is a re-
lation from X to Y and S is a relation from Y to Z, then we denote
their composition by SR, which is a relation from X to Z. The diag-
onal relations ∆X = 〈1X , 1X〉 : X � X × X act as identities for the
composition of relations on either side. Furthermore, if a relation R is
given by the subobject 〈r0, r1〉 : R � X × Y , then we can write it as
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R = r1r
◦
0 in the above notation.

If Eq(f) denotes the kernel pair of a morphism f : X → Y , then as
a relation on X we have Eq(f) = f ◦f .

Let f : X → Y be a morphism and S be a relation on Y . We
denote by f−1(S) the inverse image of the relation S along f , which is
the relation on X defined as the pullback of the subobject S � Y × Y
along the morphism f × f : X ×X → Y × Y . Then in the calculus of
relations we have that f−1(S) = f ◦Sf .

2.2 Projective covers

Let E be a category with a full subcategory C. We say that C is a
projective cover of E if the following two conditions hold:

• Every object of C is a regular projective in E .

• For every object E ∈ E there exists a regular epimorphism P � E
with P ∈ C.

A regular epimorphism P � E with P ∈ C is called a C-cover of E.
Even if E has limits of some type, C will in general only have weak

limits of that type. So if E has finite limits (e.g. if it is regular), then C
will be weakly lex, i.e. will have all weak finite limits. To construct the
weak limit of a diagram in C one first constructs the actual limit in the
ambient category E and then one takes a C-cover of the latter limit.

Finally, every weakly lex category C appears as a projective cover
inside both its regular completion Creg and its exact completion Cex in
the sense of [5].

2.3 Multi-pointed categories and stars

We first recall here some basic notions introduced in [12].
A multi-pointed category is a pair (C,N ) consisting of a category

C and a distinguished class N of morphisms in C which is an ideal.
The latter, as mentioned in the introduction, means that for any pair
of arrows f : X → Y and g : Y → Z in C, either f ∈ N or g ∈ N
implies that gf ∈ N . The elements of N are usually referred to as null
morphisms.
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We will often by abuse say that C is a multi-pointed category and
suppress the ideal N if there is no possibility of confusion. Before mov-
ing on, let us recall here the main examples of multi-pointed categories
that we shall consider.

• A simple first example of multi-pointed category is obtained by
taking any category C and defining N to be the collection of all
morphisms in C. This class of examples is known as the total
context.

• A second example of importance arises when C is pointed (i.e. has
a zero object) andN is defined as the collection of zero morphisms,
i.e. the morphisms that factor through the zero object. This
general class of examples is referred to as the pointed context.

• The previous example can in fact be seen as a special case of a
more general class of multi-pointed categories, the so called proto-
pointed context introduced in [12]. This refers to a category C in
which every object has a smallest subobject and where a morphism
f : X → Y is defined to be a null morphism precisely when it fac-
tors through the smallest subobject of Y . In the case of a variety
V of universal algebras these morphisms are exactly those whose
image is the subalgebra EY of Y generated by the constants. This
latter situation has been called the algebraic proto-pointed context
in [11] and is actually the motivation for the term “multi-pointed”.
Indeed, a proto-pointed category is the category-theoretic notion
that corresponds to varieties with potentially more than one con-
stant, such as unital rings and Heyting algebras, just as that of
pointed category corresponds to varieties possessing a unique con-
stant.

An N -kernel of a morphism f : X → Y is a morphism k : K →
X such that fk ∈ N and which is universal with this property, i.e.
whenever fg ∈ N there is a unique morphism u such that ku = g.
Note that k is then necessarily a monomorphism. Observe also that in
the total context the N -kernels are just identities, while in the pointed
context we obtain the usual notion of kernel.
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In the more general proto-pointed setting the kernel of f is generally
the inverse image of the smallest subobject of Y , which in the algebraic
case becomes precisely the subalgebra of X consisting of those elements
that map to the subalgebra generated by the constants in Y . So for
example, if f : X → Y is a morphism in the proto-pointed category
Heyt of Heyting algebras, then the N -kernel of f is the subalgebra
{x ∈ X|f(x) = 0∨ f(x) = 1}. Similarly, if f lives in the category Ring
of unitary rings, then its kernel in the above sense is {x ∈ X|(∃n ∈
Z)f(x) = n ·1}. Note how the latter is indeed a subring of X and hence
defines a subobject in the category Ring, whereas the ordinary kernel
does not.

Since we shall have occasion to deal with categories that only have
weak finite limits, we will also correspondingly require the notion of
weak N -kernel of a morphism f : X → Y . This is defined as N -
kernels above, but by only requiring existence of the factorization, not
necessarily uniqueness.

If N -kernels exist for all morphisms in C, then we shall say that C
is a multi-pointed category with kernels. Similarly for weak N -kernels.

We also record here for future use the following basic observation on
the behavior of N -kernels under pullback. For the sake of completeness,
we also give the easy proof.

Lemma 2.1. Consider the following pullback square in a multi-pointed
category (C,N ).

K ′
k′ //

g′

� �

X

g

��

K
k
// Y

If k is the N -kernel of some f : Y → Z, then k′ is the N -kernel of
fg : X → Z.

Proof. Let h : A → X be such that fgh ∈ N . Then, since k is the
N -kernel of f , there exists a unique u : A → K such that ku = gh.
Now the universal property of the pullback gives a unique v : A → K ′

such that g′v = u and k′v = h. Finally, note that k′ is monomorphic
because k is monomorphic.
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A pair of morphisms r = (r0, r1) : R ⇒ X is called a star if r0 ∈
N . When it is moreover jointly monomorphic, we say that it is a star
relation. In the total context this just defines a relation in the ordinary
sense, whereas in the pointed case it is a relation whose first projection
is zero. However, a more motivating example can be identified in the
proto-pointed setting of the category Ring of unitary rings. Given any
ideal I ⊆ A inside the unitary ring A, we have an associated star relation
RI on A defined by RI := ⋃

n∈Z
{n} × (n + I). This star relation clearly

uniquely determines the ideal I, but furthermore has the advantage that
it is a subalgebra of A×A and hence lives in the category Ring, while
the ideal I itself generally does not.

Given a relationR on an objectX represented by the jointly monomor-
phic pair r = (r0, r1) : R ⇒ X and assuming N -kernels exist, we de-
fine the star of R to be the relation R∗ on X represented by the pair
(r0k0, r1k0) where k0 : K0 → R is the N -kernel of r0. Equivalently, one
could say that R∗ is the largest subrelation of R which is a star. In par-
ticular, when R = Eq(f) is the kernel pair of a morphism f : X → Y ,
then R∗ = Eq(f)∗ is called the star-kernel of f .

In the context of a regular multi-pointed category it is possible to
use the usual calculus of relations to develop a calculus of star relations,
as is done in [11]. We shall not really need much of this though. We
just record here the fact that, given relations R, S on an object X, we
have that (RS)∗ = RS∗.

Finally, we record an observation on how the star of a relation on an
object X can be computed as a certain pullback involving the N -kernel
κX : KX � X of the identity 1X : X → X. Observe that this is just
a generalization of the fact that the 0-class of a relation R � X × X
in a pointed category can be computed as the pullback of that relation
along 〈0, 1〉 : X → X ×X. Since the more general statement does not
appear in the literature, we also provide a proof.

Lemma 2.2. Consider a relation R
r0 //

r1
// X in the multi-pointed cate-

gory (E ,N ) with kernels. Then the N -kernel k0 of r0 is obtained as the
following pullback.
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K0 //
k0 //

��

〈r0,r1k0〉
��

R� �

〈r0,r1〉
��

KX ×X //κX×1X

// X ×X

where κX : KX � X is the N -kernel of the identity 1X : X → X.

Proof. We consider the N -kernel k0 : K0 � R of r0 and we will show
that there is a pullback square as indicated.

First, observe that r0k0 ∈ N implies that there is a r0 : K0 → KX

such that κXr0 = r0k0, giving the indicated morphism K0 → KX ×X
in the above commutative diagram.

Now assume that f = 〈f0, f1〉 : Z → KX × X and g : Z → R are
such that (κX × 1X)f = 〈r0, r1〉g. Then r0g = κXf0 and r1g = f1.
Since κX ∈ N , the first of these implies that r0g ∈ N and hence there
exists a unique h : Z → K0 such that k0h = g. Then also 〈r0, r1k0〉h =
〈r0h, r1k0h〉 = 〈r0h, r1g〉 = 〈f0, f1〉 = f , where r0h = f0 follows because
κXr0h = r0k0h = r0g = κXf0 and κX is monomorphic.

3. 2-star-permutable categories

Let us recall the definition of 2-star-permutability from [11].

Definition 3.1. Let C be a regular multi-pointed category with kernels.
We say that C is 2-star-permutable if for any two effective equivalence
relations R, S on an object X ∈ C we have RS∗ = SR∗.

In the total context, since the star of any relation is that relation
itself, the definition says that effective equivalence relations are per-
mutable, which yields precisely the regular Mal’tsev categories [4].

In the case of a pointed variety of universal algebras, the star of
a relation R on X is the subrelation R∗ = {(0, x) ∈ X × X|(0, x) ∈
R}. More generally, in any pointed context, the star of the relation
〈r0, r1〉 : R � X × X is the relation 〈0, c〉 : C � X × X where
c : C � X is the 0-class of R, i.e. where the mono c : C � X is given
by c = r1 ker(r0). Thus, the above definition says precisely that effective
equivalence relations are 0-permutable and this is known to characterize
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regular subtractive categories (see [16], [11] and [1] for the varietal case).

We first want to present an equivalent characterization of 2-star-
permutability in terms of a symmetry property of reflexive relations.
The symmetry property in question will be the following.

Definition 3.2. Let E be a multi-pointed category with kernels and

R
r0 //

r1
// X a relation in E. We say that R is left star-symmetric if

R∗ ≤ (R◦)∗. We say that it is star-symmetric if R∗ = (R◦)∗, i.e. if both
R and R◦ are left star-symmetric.

Observe that in the pointed context left star-symmetry becomes the
usual notion of left 0-symmetry, i.e. the statement that R satisfies
the implication (0, x) ∈A R =⇒ (x, 0) ∈A R for any generalized
element x : A→ X of X. In an algebraic proto-pointed setting it is the
implication (e, x) ∈A R =⇒ (x, e) ∈A R for every e ∈ EX , where EX
is the subalgebra generated by the constants. In the total context on
the other hand, R being left star-symmetric just means that R ≤ R◦,
which is to say that R is a symmetric relation in the ordinary sense. In
particular, in this case left star-symmetry and star-symmetry become
equivalent.

Indeed, note more generally that for any generalized elements x, y :
A → X in E we have that (x, y) ∈A R∗ precisely if (x, y) ∈A R and
x ∈ N . Thus, R being left-star symmetric is saying that whenever
(n, y) ∈A R with n ∈ N , then also (y, n) ∈A R.

We will need the following lemma, from [11], for the proof of our
next proposition.

Lemma 3.3. For any morphism f : X → Y and every relation S on Y
in a multi-pointed category we have (f−1(S))∗ = (f−1(S∗))∗.

We can now present new equivalent characterizations of 2-star-permutability
using the notion of star-symmetry. In fact, this allows us to also deduce
that 2-star-permutability is equivalent to having the equality RS∗ =
SR∗ for any two equivalence relations R, S on the same object, not just
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effective ones. This does not seem to have appeared in the literature
before.

Proposition 3.4. For a regular multi-pointed category C with kernels
the following are equivalent:

1. C is 2-star-permutable.

2. For any two equivalence relations R, S on an object X ∈ C we
have RS∗ = SR∗.

3. Every reflexive relation E in C is left star-symmetric, i.e. E∗ ≤
(E◦)∗.

4. Every reflexive relation E in C is star-symmetric, i.e. E∗ = (E◦)∗.

Proof. 1. =⇒ 4. Let E
e0 //

e1
// X be a reflexive relation with diagonal

δ : X → E. Set R := Eq(e0) = e◦0e0 and S := Eq(e1) = e◦1e1, so
that both R and S are effective equivalence relations on E. Observe
that δ−1(SR) = δ◦e◦1e1e

◦
0e0δ = e1e

◦
0 = E and δ−1(RS) = δ◦e◦0e0e

◦
1e1δ =

e0e
◦
1 = E◦. Now using the assumption (1) and 3.3 we have

RS∗ = SR∗ =⇒ (RS)∗ = (SR)∗

=⇒ δ−1((RS)∗) = δ−1((SR)∗)
=⇒ δ−1((RS)∗)∗ = δ−1((SR)∗)∗

=⇒ δ−1(RS)∗ = δ−1(SR)∗

=⇒ (E◦)∗ = E∗.

4. =⇒ 2. Consider the reflexive relation E := SR on X. Then we
have E∗ = (E◦)∗ =⇒ (SR)∗ = (RS)∗ =⇒ SR∗ = RS∗.

2. =⇒ 1. Clear.
3. ⇐⇒ 4. Clear by considering both reflexive relations E and

E◦.

It should be observed that conditions (3) and (4) above can be for-
mulated in any finitely complete multi-pointed category (C,N ) with
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kernels, thus enlarging the class of categories for which the notion of 2-
star-permutability can be considered to include non-regular ones. This
generalizes the fact that the notion of Mal’tsev category can be for-
mulated as a finitely complete category where every reflexive relation
is symmetric [4], as well as the fact that subtractive categories can be
defined as pointed finitely complete categories where every reflexive re-
lation is 0-symmetric [16]. The following definition therefore appears
pertinent.

Definition 3.5. A multi-pointed category (C,N ) is said to be star-
Mal’tsev if every reflexive relation in C is left star-symmetric. Equiva-
lently, if every reflexive relation in C is star-symmetric.

With this terminology, 3.4 says that a regular multi-pointed category
is 2-star-permutable if and only if it is star-Mal’tsev.

We now want to characterize the projective covers of 2-star-permutable
regular multi-pointed categories, or, in other words, of regular star-
Mal’tsev categories. In doing so, the following notion will play a key
role. It is the appropriate adaptation of the notion of star-symmetry to
the context of a multi-pointed category with only weak finite limits and
weak kernels.

Definition 3.6. Let (C,N ) be a weakly lex multi-pointed category with

weak N -kernels. A graph G
g0
//

g1
// X in C is said to be left star-symmetric

if , given weak N -kernels k0 : K0 → G and k1 : K1 → G of g0 and g1
respectively, there exists a σ : K0 → K1 such that the following diagram
serially commutes

K0
g0k0

&&g1k0
&&

σ // K1

g1k1
xx

g0k1

xx

X

i.e. such that g1k1σ = g0k0 and g0k1σ = g1k0 both hold. We say that it

is star-symmetric if both G and its opposite graph G
g1
//

g0
// X are left

star-symmetric.
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In other words, a graph G is left star-symmetric if a “weak star” of
G factors through a weak star of the opposite graph. Note also that
the definition does not depend on the chosen weak N -kernels because
any two weak N -kernels of the same morphism factor through each
other. Furthermore, it is clear that when G is a relation and N -kernels
exist the definition says precisely that G∗ ≤ (G◦)∗, i.e. that G is a left
star-symmetric relation.

Remark 3.7. It is easy to see that in the total context we get the usual
definition of a symmetric graph, since both N -kernels are identities in
this case. In the pointed context one of the two commutativities required
above becomes trivial because g0k0 = 0 = g1k1 and we obtain the notion
of a left 0-symmetric graph.

We now introduce the categories that will appear in our characteriza-
tion of the projective covers of 2-star-permutable categories. These are
the multi-pointed categories with weak finite limits and weak kernels
which satisfy the appropriate “weakening” of the star-Mal’tsev prop-
erty. Our terminology is inspired by that of Rosický-Vitale in [19] for
the total context.

Definition 3.8. We will say that a weakly lex multi-pointed category C
with weak kernels is star-G-Mal’tsev if every reflexive graph in C is left
star-symmetric. Equivalently, if every reflexive graph is star-symmetric.

In what follows, we will be considering regular categories E together
with a projective cover C of E . We are thus interested in how ideals of
morphisms in the projective cover are related to ideals of morphisms in
the ambient regular category. A thorough analysis of this situation is
contained in [9], from which we now borrow and record below the main
points that will be of use in the remainder of this paper.

First, if N is an ideal of morphisms in the regular category E , then
we denote by NC the restriction of N to C. It is then clear that NC is
an ideal in C.

Second, if we are given an ideal N in the projective cover C, then we
define N E to be the collection of morphisms f : X → Y in E for which
there exists a commutative square
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P n //

p
����

Q

q
��� �

X
f
// Y

where p and q are regular epimorphisms and n ∈ N . It is again not
hard to check that N E is an ideal in E .

Lemma 3.9. [9] Let E be a regular category having a projective cover
C.

1. For any ideal N in E, if E has N -kernels, then C has weak NC-
kernels, which can be computed by taking a projective cover of the
domain of the N -kernel in E.

2. For any ideal N in C, the category C has weak N -kernels if and
only if E has N E-kernels.

3. For any ideal N in C we have (N E)C = N .

4. For any ideal N in C, regular epimorphisms are N E-saturating in
E (see 3.11).

Before presenting our characterization, we find it useful to isolate
the following fundamental observation.

Lemma 3.10. Let C be a projective cover of the regular multi-pointed

category (E ,N ) with kernels. Consider a graph G
g0
//

g1
// X in C with its

image factorization 〈g0, g1〉 = G
q
// // R //

〈r0,r1〉
// X ×X in E. Then

G is a left star-symmetric graph if and only if R is a left star-symmetric
relation.

Proof. Consider N -kernels ki : Ki → R of ri, for i = 0, 1. Form the
pullbacks below for i = 0, 1 and then take C-covers εi : Pi � K ′i.
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K ′i
vi // //

� �

k′i
��

Ki��

ki

��

G q
// // R

By 2.1 we know that k′i : K ′i � G is the N -kernel of riq = gi. Thus, we
have that ui := k′iεi : Pi → G is a weak N -kernel of gi in C for i = 0, 1
by 3.9.

Assume first that R is left star-symmetric, so that there exists a
morphism σ : K0 → K1 such that r1k1σ = r0k0 and r0k1σ = r1k0. By
projectivity of P0 and the fact that v1ε1 is a regular epimorphism, there
exists a morphism σ̃ : P0 → P1 making the following diagram commute.

P0
v0ε0 // //

σ̃

��

K0
r0k0

))r1k0
))σ

��

X

P1 v1ε1
// // K1

r1k1

55

r0k1

55

Now we have

g1u1σ̃ = r1qk
′
1ε1σ̃

= r1k1v1ε1σ̃

= r1k1σv0ε0

= r0k0v0ε0

= r0qk
′
0ε0

= g0u0

and similarly
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g0u1σ̃ = r0qk
′
1ε1σ̃

= r0k1v1ε1σ̃

= r0k1σv0ε0

= r1k0v0ε0

= r1qk
′
0ε0

= g1u0

proving that G is left star-symmetric.

Conversely, assume that G is left star-symmetric. This means that
there exists a σ : P0 → P1 such that g1u1σ = g0u0 and g0u1σ = g1u0.
We can then again calculate as follows:

r1k1v1ε1σ = r1qk
′
1ε1σ

= g1k
′
1ε1σ

= g1u1σ

= g0u0

= r0qk
′
0ε0

= r0k0v0ε0

r0k1v1ε1σ = r0qk
′
1ε1σ

= g0k
′
1ε1σ

= g0u1σ

= g1u0

= r1qk
′
0ε0

= r1k0v0ε0

This means that the square below commutes and so we obtain the in-
dicated morphism σ̃ because v0ε0 is a regular epimorphism and 〈r1k1, r0k1〉
is monomorphic, being the star of the relation R◦.
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P0
v0ε0 // //

v1ε1σ

��

K0��

〈r0k0,r1k0〉

��

σ̃

xx

K1 // 〈r1k1,r0k1〉
// X ×X

The commutation of the bottom triangle is precisely left star-symmetry
of R.

In order to prove our main result, we will need to impose an ad-
ditional condition on the regular category E regarding the behavior of
regular epimorphisms with respect to N -kernels. This condition is fa-
miliar from the literature (see [9,11,14]) and is indeed mild enough that
it includes all examples of interest. We now proceed to introduce the
necessary notions.

Consider any objectX in the multi-pointed category (E ,N ). We will
denote by κX : KX � X the N -kernel of the identity morphism 1X .
Observe that by definition the generalized elements of KX correspond
precisely to the generalized elements of X that are in N . Hence, KX

should be thought of as consisting of the “trivial elements” of the object
X. Indeed, in the algebraic proto-pointed setting KX is exactly what
we have earlier in the text denoted by EX , namely the subalgebra of X
generated by the constants of the theory.

Now given any morphism f : X → Y in E , we have a uniquely
induced morphism f̃ : KX → KY making the following square commute.

KX

f̃
��

//
κX // X

f
��

KY
//
κY

// Y

Then we can introduce the following definition.

Definition 3.11. A morphism f : X → Y in a multi-pointed category
(E ,N ) is called saturating if the induced morphism f̃ : KX → KY is a
regular epimorphism.
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Note that in the pointed context all morphisms are saturating, since
KX = 0 for any object X. The same holds in any algebraic proto-
pointed setting, since every element e ∈ X which is generated by con-
stants is preserved under all homomorphisms f : X → Y . Furthermore,
it is not hard to see that regular epimorphisms are saturating in any
proto-pointed context, not just the varietal one. In the total context,
on the other hand, it is clear that the saturating morphisms are exactly
the regular epimorphisms. In fact, that all regular epimorphisms are
saturating is precisely what we shall require below.

Now we can present the main result of this note.

Theorem 3.12. Let C be a projective cover of the regular multi-pointed
category with kernels (E ,N ) and assume regular epimorphisms in E are
saturating. Then (E ,N ) is 2-star-permutable if and only if (C,NC) is
star-G-Mal’tsev.

Proof. Assume first that E is 2-star-permutable and consider any re-

flexive graph G
g0
//

g1
// X in C with splitting δ : X → G. Consider its

image factorization 〈g0, g1〉 = G
q
// // R //

〈r0,r1〉
// X ×X in the reg-

ular category E . Then the relation R on X is reflexive as well, since
riqδ = giδ = 1X for i = 0, 1. Since E is 2-star-permutable, we know by
3.4 that R must be star-symmetric. Now 3.10 implies that G is (left)
star-symmetric.

Conversely, assume that (C,NC) is star-G-Mal’tsev. Consider any

reflexive relation E
e0 //

e1
// X in E . We want to show that E is left star-

symmetric.
Take a C-cover p : X̃ � X of X and consider the inverse image

relation E ′ := p−1(E). i.e. form the following pullback
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E ′ //
〈e′0,e

′
1〉 //

q

����

X̃ × X̃

p×p
�� ��

E //
〈e0,e1〉

// X ×X
Now again take a C-cover ε : G� E ′ and set g0 := e′0ε and g1 := e′1ε, so

that we have a graph G
g0
//

g1
// X̃ in C. Observe that the relation E ′ is

reflexive, being the inverse image of a reflexive relation. It follows that
the graph G is also reflexive. Indeed, if δ′ : X̃ → E ′ is the diagonal
of E ′, then by projectivity of X̃ we can lift to a δ̃ : X̃ → G such that
εδ̃ = δ′ and then giδ̃ = e′iεδ̃ = e′iδ

′ = 1X̃ for i = 0, 1.
Now consider N -kernels ki : Ki → E of ei and k′i : K ′i → E of e′i

in E for i = 0, 1. We then have induced morphisms ui : K ′i → Ki such
that kiui = qk′i. We claim that the ui are regular epimorphisms.

K ′i //
k′i //

ui

����

E ′

q
����

Ki
//

ki

// E

To see this for u0 we consider the following two commutative di-
agrams. In the first one the right-hand square is a pullback by con-
struction, while the left-hand square is a pullback by 2.2. In the second
diagram we know only that the right-hand square is a pullback, again
by 2.2.

K ′0 //
k′0 //

〈e′0,e
′
1k
′
0〉
� �

E ′
q

// //
��

〈e′0,e
′
1〉
��

E��

〈e0,e1〉
��

KX̃ × X̃ κX̃×1
X̃

// X̃ × X̃
p×p

// // X ×X

K ′0
u0 // //

〈e′0,e
′
1k
′
0〉
� �

K0 //
k0 //

〈e0,e1k0〉
��

E��

〈e0,e1〉
��

KX̃ × X̃ p̃×p
// // KX ×X κX×1X

// X ×X
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Since (p × p)(κX̃ × 1X̃) = (κX × 1X)(p̃ × p), we deduce that the
outer rectangle in the second diagram is a pullback. Then by the usual
pullback-cancellation property we have that the left-hand square is a
pullback as well. But since both p and p̃ are regular epimorphisms, so
is p̃× p, since E is regular, and hence we deduce that the pullback u0 is
a regular epimorphism.

By the assumption that C is star-G-Mal’tsev, the reflexive graph G is
left star-symmetric and so by 3.10 its image relation E ′ is also left star-
symmetric. Thus, there exists a σ′ : K ′0 → K ′1 such that e′1k′1σ′ = e′0k

′
0

and e′0k′1σ′ = e′1k
′
0.

Finally, consider the commutative square below.

K ′0
u0 // //

u1σ′

��

K0

〈e0k0,e1k0〉

��

σ

xx

K1 // 〈e1k1,e0k1〉
// X ×X

Since u0 is a regular epimorphism and 〈e1k1, e0k1〉 is monomorphic (be-
ing the star of the relation E◦), we get the indicated factorization
σ : K0 → K1, which shows that E is left star-symmetric. Thus, by
3.4 it follows that E is 2-star-permutable.

The above result yields a characterization of when the regular and
exact completion (in the sense of [5]) of a weakly lex multi-pointed
category are 2-star-permutable.

Corollary 3.13. Let (C,N ) be a weakly lex multi-pointed category with
weak kernels. Then (Creg,N Creg) is 2-star-permutable if and only if
(C,N ) is star-G-Mal’tsev.

Proof. C appears as a projective cover inside Creg. Then 3.12 indeed
applies to give the result because by 3.9 we know that Creg has N Creg -
kernels, regular epimorphisms in Creg areN Creg -saturating and (N Creg)C =
N .

In the exact same way we get the corresponding result about the
exact completion Cex.
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Corollary 3.14. Let (C,N ) be a weakly lex multi-pointed category with
weak kernels. Then (Cex,N Cex) is 2-star-permutable if and only if (C,N )
is star-G-Mal’tsev.

Remark 3.15. We should comment here on how 3.12 extends the char-
acterizations of projective covers for regular Mal’tsev categories, due to
Rosicky-Vitale [19], and for regular subtractive categories, due to Gran-
Rodelo [13].

For the Mal’tsev case, it is immediately clear from the definitions
that we obtain exactly the same characterization as in [19], i.e. our
star-G-Mal’tsev categories are exactly the G-Mal’tsev ones introduced
therein. Note that in that paper G-Mal’tsev is initially defined by re-
quiring that every reflexive graph be both symmetric and transitive,
but this is equivalent to just requiring symmetry and that is in fact
implicitly proved in [19].

In the pointed context, it is not immediate from the definitions that
our star-G-Mal’tsev, which we should probably call 0-G-Mal’tsev in this
case, yields the w-subtractive categories of Gran-Rodelo [13]. Of course,
since both characterize projective covers of the same class of regular
categories, they turn out to be equivalent, since any weakly lex category
can always be considered a projective cover of its regular completion.
On the other hand, a direct proof of the equivalence of the two notions
is also not too hard to construct.

Now suppose we are in an algebraic proto-pointed context and that
the set of constants of the variety is nonempty. It was proved in [11] that
in this case 2-star-permutability is equivalent to a priori more general
properties such as 3-star-permutability and the symmetric saturation
property, but also to the syntactic condition defining E-subtractive vari-
eties in the sense of [20]. We would like to conclude this note by showing
how the equivalence with the latter notion can also directly be obtained
from our characterization in terms of star-symmetry.

Corollary 3.16. Let V be a variety of universal algebras and let EV 6= ∅
be its algebra of constants (i.e. the free V-algebra on the empty set).
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Then V is 2-star-permutable if and only if the following syntactic con-
dition holds:

For every e ∈ EV there exists a binary term se(x, y) such that
se(x, x) = e and se(x, e) = x.

Proof. Suppose 2-star-permutability holds and fix any e ∈ EV. We then

consider a graph F (x, y)
g0
//

g1
// F (x) between free algebras on 2 and 1

generator respectively, where g0, g1 are defined by setting g0(x) = x,
g0(y) = e and g1(x) = g1(y) = x. This graph is reflexive, since it
is clearly split by the map δ : F (x) → F (x, y) defined by δ(x) = x.
Since free algebras are projective, we can apply 3.12 (i.e. C here is the
full subcategory of free algebras) to deduce that this graph must be
star-symmetric.

Now we have (e, x) = (g0(y), g1(y)), so by the star-symmetry we
must also have (x, e) = (g0(se), g1(se)) for some se(x, y) ∈ F (x, y).
Thus, x = g0(se(x, y)) = se(x, e) and e = g1(se(x, y)) = se(x, x).

Conversely, suppose we have binary terms se(x, y) for all e ∈ EV
with the indicated properties. We will show that any reflexive relation
R � X ×X in the variety V is left star-symmetric.

Indeed, assume that (e, x) ∈ R for some e ∈ EX and x ∈ X. Since
R is reflexive, we also have (x, x) ∈ R. By compatibility with the
operations we then must have (se(x, e), se(x, x)) ∈ R, i.e. that (x, e) ∈
R. This concludes the proof.

As particular examples of E-subtractive varieties one has the cate-
gories Ring of unitary rings, as well as the categories Heyt, Bool of
Heyting and Boolean algebras respectively. These are all in fact already
Mal’tsev, but of course one also has examples of subtractive varieties
which are not, such as that of implication algebras [17].

Remark 3.17. Since our main result is stated for any regular category,
without requiring exactness, it can equally well be applied to quasi-
varieties of universal algebras, since these are still regular categories.
This encompasses further interesting examples, such as the category
RedRng of reduced rings, i.e. unitary rings R satisfying (∀x ∈ R)(∀n ≥
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1)(xn = 0 =⇒ x = 0). As a non-Mal’tsev example here one has the
quasi-variety of BCK algebras (see [3], for example).
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THE FULLNESS AXIOM AND
EXACT COMPLETION OF
HOMOTOPY CATEGORIES

Jacopo Emmenegger

Résumé. Nous adoptons une formulation catégorique du “Fullness
Axiom” de Aczel de la Théorie Constructive des Ensembles, dans le
but de dériver la propriété que la complétion exacte est localement
cartésienne fermée. Nous montrons, en tant qu’application, que cette
formulation est vérifiée dans la catégorie homotopique de toute catégorie
de modèles satisfaisant des faibles conditions additionnelles, en obtenant
ainsi en particulier que la complétion exacte de la catégories des espaces
topologiques et classes homotopiques des applications continues est
localement cartésienne fermée. Dans la perspective de la théorie des
types, ces résultats donnent une motivation générale pour la fermeture
cartésienne locale de la catégorie des setoïdes. Pourtant, les résultats et
les démonstrations sont formulés seulement dans le langage des caté-
gories, et les lecteurs n’ont besoin d’aucune connaissance préalable de
la théorie des types ou de la théorie constructive des ensembles.
Abstract. We use a category-theoretic formulation of Aczel’s Fullness
Axiom from Constructive Set Theory to derive the local cartesian clo-
sure of an exact completion. As an application, we prove that such a
formulation is valid in the homotopy category of any model category
satisfying mild requirements, thus obtaining in particular the local carte-
sian closure of the exact completion of topological spaces and homotopy
classes of maps. Under a type-theoretic reading, these results provide
a general motivation for the local cartesian closure of the category

VOLUME LXI-4 (2020)
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of setoids. However, results and proofs are formulated solely in the
language of categories, and no knowledge of type theory or constructive
set theory is required on the reader’s part.
Keywords. Exact completion, homotopy category, fullness axiom,
local cartesian closure, weak limits.
Mathematics Subject Classification (2020). 18D15; 18A35; 18E08;
55U35; 18B15; 18A15; 18F60.

Introduction

In the paper that generalises the exact completion construction to an
arbitrary category with weak finite limits, where a universal arrow is not
required to be unique, Carboni and Vitale advocated a deeper study of
that construction applied to homotopy categories [9]. These categories,
indeed, form a large class of natural examples of categories with weak
finite limits, in the sense that they do not arise as projective covers of
finitely complete categories. A first step in this direction was made by
Gran and Vitale in [13], where they provide a complete characterisation of
those exact completions of categories with weak finite limits (henceforth
ex/wlex completions) that produce a pretopos, and apply this result to
show that the exact completion of the category of topological spaces and
homotopy classes of maps is indeed a pretopos. However, the problem
of determining whether it is also locally cartesian closed is explicitly left
open.

The author has given a complete characterisation of locally cartesian
closed ex/wlex completions in [10]. That characterisation is however
not much suited to the study of the ex/wlex completion of a homotopy
category HoM, when instead a formulation in terms of the original
Quillen model category M would be preferable. The present paper
provides a condition ensuring the local cartesian closure of the ex/wlex
completion (HoM)ex for a large class of model categories. Somewhat
surprisingly, this condition turns out to be what Carboni and Rosolini
named weak local cartesian closure in [8], that is, simply existence of
weak dependent products.

As we shall prove in the last section, the homotopy quotient of a
weak dependent product in M is a dependent full diagram in HoM. The
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latter is a generalisation to arbitrary categories with weak finite limits
of a concept introduced in [11] to prove the local cartesian closure of
the exact completion of a well-pointed category with finite products and
weak equalisers. Anther precursor is the axiom F for a class of small
maps in [5], which is proved to be stable under ex/reg completions. We
shall comment on the (tight) relation between this axiom and dependent
full diagrams in Remark 3.2. Indeed, both the universal property of
dependent full diagrams and axiom F are inspired by Aczel’s Fullness
Axiom from the constructive set theory CZF [1, 2]. The Fullness Axiom
is a collection principle asserting the existence of what Aczel calls full
sets, that is, sets containing enough total relations (a.k.a. multi-valued
functions). This axiom is strictly weaker than the Power Set Axiom (and
it is regarded as a predicative principle) but strong enough, in particular,
to entail the Exponentiation Axiom, which asserts that functions between
two sets form a set.

We prove that also in the general case of an ex/wlex completion,
existence of dependent full diagrams in C is enough to derive the local
cartesian closure of Cex. That this should be possible follows from the
observation, due to Erik Palmgren, that arrows V → Y out of a weak
product Z ← V → X may be understood as families indexed on Z of
multi-valued functions from X to Y . A more robust formulation of this
observation is in Remark 2.1. In addition, dependent full diagrams endow
the internal logic with universal quantification and implication which,
in turn, can be used to extract from multi-valued functions only the
functional ones (cf. Lemma 2.6). At this point it is enough to construct
a suitable equivalence relation to obtain an exponential in Cex.

In order to prove that dependent full diagrams are homotopy quotients
of weak dependent products, we exploit the concepts of path category and
weak homotopy Π-type, recently introduced by van den Berg and Moerdijk
in [6]. A path category is a slight strengthening of Brown’s fibration
category. In particular, the subcategory Mf on the fibrant objects of a
model category M is a path category as soon as all the objects of M
are cofibrant. Weak homotopy Π-types in a path category C are what
van den Berg and Moerdijk use to derive the local cartesian closure of
(HoC)ex, the homotopy exact completion of C. We show that if M is
right proper, then weak homotopy Π-types arise as fibrant replacements
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of weak dependent products, so that a weak dependent product in M
gives rise to a weak homotopy Π-type in Mf. Furthermore, in the same
way as pullbacks along fibrations enjoy the additional universal property
of homotopy pullbacks, also weak homotopy Π-types enjoy an additional
universal property up to homotopy, which shows that the homotopy
quotient maps weak homotopy Π-types to dependent full diagrams.

Under a type-theoretic reading, the results in the present paper
provide a general motivation for the local cartesian closure of the category
of setoids in Martin-Löf type theory. Indeed, the category of contexts of
Martin-Löf type theory is a path category [4], see also [12], and ∏-types
endow it with weak homotopy Π-types. More generally, we obtain a
more elementary proof of the local cartesian closure of a homotopy exact
completion. It should be noted that, under the reading of arrows out
of a weak product as multi-valued functions, single-valued functions
in a homotopy category HoC appear as “homotopy-irrelevant” arrows.
Indeed, an arrow k out of a homotopy limit, say a homotopy pullback of
f : X → Y and g : Z → Y , induce an arrow in (HoC)ex out of the actual
pullback of f and g in if and only if values of k only depend on pairs (x, z)
and not on the homotopy witnessing f(x) ' g(z). The analogy with
the role of homotopy-irrelevant fibrations in the argument for the local
cartesian closure of (HoC)ex from van den Berg and Moerdijk [6] may
be worth further investigation. Indeed, in type-theoretic terminology,
these are the proof-irrelevant setoid families whose importance has been
stressed by Palmgren [16].

Furthermore, the observation that dependent full diagrams naturally
arise as homotopy quotients of weak dependent products shows that
existence of the former is not just a particular feature of the category
of types in Martin-Löf type theory, the only example in [11]. On the
contrary, it provides a large class of examples of categories with weak
finite limits and dependent full diagrams. In particular, we obtain the
local cartesian closure of the exact completion of the category of spaces
and homotopy classes of maps, thus answering a question left open
in [13].

The first half of the paper is devoted to the proof that existence of
dependent full diagrams imply the local cartesian closure of the exact
completion. In order to simplify the presentation, we split the argument
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in two steps. In Section 2, after a brief recap on ex/wlex completions,
we define a non-indexed version of a full diagram in C and, assuming
that Cex (or, equivalently, C) has the needed structure for implication
and universal quantification, we construct from it an exponential in
Cex. Section 3 contains the definition of the more general dependent
full diagrams and the proof that their existence gives rise both to right
adjoints to inverse images and to non-indexed full diagrams. Finally,
Section 4 covers the case of homotopy categories.

Full diagrams

We briefly recall some basic facts about weak limits and the exact com-
pletion which are essential to our treatment. For additional background
notions and notations we refer to [9, 8] and to section 1 of [10]. In this
section and the next one C denotes a category with weak finite limits
and Cex denotes its ex/wlex completion, that we shall refer to as the
exact completion of C. Regular epis are denoted with a triangle head,
like in A_B, while hook arrows A ↪→ B denote monos.

Recall that weak limits are defined as usual limits but without
requiring uniqueness of a universal arrow. An arrow f : V → Y in
C from a weak product Z ← V → X of Z and X is determined by
projections [10] if it coequalises every pair of arrows jointly coequalised
by the two weak product projections. A weak exponential [8, Definition
2.1] in C of two objects Y and X consists of an object W , a weak
product W ← V → X and an arrow V → Y which is determined by
projections, such that for any object W ′, weak product W ′ ← V ′ → X
and arrow V ′ → Y determined by projections, there are (not necessarily
unique) arrows h : W ′ → W and k : V ′ → V making the obvious diagram
commute.

An object X in a category E is called (regular) projective if, for every
regular epi g : A_B and arrow f : X → B, there is a lift of f against
g, i.e. an arrow f ′ : X → A such that gf ′ = f . A projective cover of an
exact category E is a full subcategory P such that (i) every object in P
is projective in E, and (ii) every object in E is covered by an object in P,
i.e. for every A in E there are X in P and a regular epi X_A. E has
enough projectives if it has a projective cover. Whenever we are given a
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projective cover P of an exact category E, we adopt the convention of
using letters from P to Z for objects in P. The reader should however
keep in mind that P is not in general closed under limits that exist in E.

Recall from [9] that, for a category C with weak finite limits, the
exact completion Cex can be described as the category whose objects
are pseudo equivalence relations R ⇒ X in C and whose arrows from
R ⇒ X to S ⇒ Y are equivalence classes of those arrows X → Y of C
that map related elements to related elements, where f, f ′ : X → Y are
equivalent if they are related in S ⇒ Y . The full subcategory of Cex
on the free pseudo equivalence relations, i.e. those with equal legs, is a
projective cover of Cex. It is equivalent to C via the embedding of C into
Cex, that maps an object X to the pair of identities idX , idX : X ⇒ X.
Conversely, a projective cover P of an exact category E has weak finite
limits and its exact competion Pex is equivalent to E [9, Thm. 16]. A
weak limit in P is obtained covering with a projective the corresponding
limit in E. More generally, a cone in P over a diagram D in P is a weak
limit if and only if the unique arrow from the cone into the limit in E of
D is a regular epi. see [10, Lemma 1.7].

Given a projective cover P of E exact and a weak product Z p1←−
V

p2−→ X in P, an arrow f : V → Y is determined by projections in P if
and only if it factors in E through the regular epi 〈p1, p2〉 : V _Z ×X.
It follows that P has weak exponentials if E is cartesian closed: given
Y,X ∈ P, one just need cover Y X with a projective W and to do the
same with W ×X. However, as argued in the last section of [10], the
universal property of weak exponentials does not seem to be suited to
prove the cartesian closure of Cex when C only has weak finite limits. A
complete characterisation in terms of what we called extensional simple
products is presented in [10], but here we look at yet another (weakly)
universal property.

Remark 2.1. Let E be exact with a projective cover P and let Z,X, Y
be three objects in P. There is an isomorphism between the poset of
subobjects SubE(Z ×X × Y ) and the poset reflection (P/(Z,X, Y ))po
of the category of spans

V

~~ ��   

Z X Y
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in P over Z,X and Y [9, Lemma 35]. This isomorphism restricts between
those subobjects R ↪→ Z ×X × Y such that R→ Z ×X is regular epic,
and those (equivalence classes of) spans such that Z ← V → X is a
weak product. This restricts further between those subobjects such that
R → Z ×X is iso, i.e. essentially graphs of arrows Z ×X → Y , and
those spans such that Z ← V → X is a weak product and V → Y is
determined by projections.

The previous remark allows us to understand arrows f : V → Y in a
category C with weak finite limits, where Z ← V → X is a weak product,
as families, indexed by Z, of total relations (i.e. multi-valued functions)
from X to Y . Such a total relation is functional (i.e. a single-valued
function) precisely when f is determined by projections. This reading
suggests that, in order to have a suitable universal property with respect
to arbitrary arrows V → Y out of a weak product, we should look for
some property of closure with respect to (families of) total relations from
X to Y . A promising notion, that indeed proves to be useful, is that of
a full set from the constructive set theory CZF.

A set f is full for two sets a and b if it consists of multi-valued
functions from a to b and, for every multi-valued function r from a to b,
there is s ∈ f such that s ⊆ r. The Fullness Axiom states that, for any
two sets a and b, there is a set which is full for a and b. This axiom was
introduced in the context of Constructive Zermelo-Fraenkel set theory
(CZF) by Peter Aczel in [1] in order to provide a simpler formulation of
the axiom schema of Subset Collection. This axiom implies in particular
the so-called Exponentiation Axiom, that the class of functions between
two sets is a set. The next definition is inspired by the notion of full set.

Definition 2.2. Let X and Y be two objects in a category C with weak
finite limits. A full diagram from X to Y consists of a weak product
U

p1←− V
p2−→ X and an arrow f : V → Y such that, for every object

U ′, weak product U ′ ← V ′ → X and arrow f : V ′ → Y , there are an
arrow h : U ′ → U , a weak pullback U ′ ← P → V of U ′ → U ← V and
an arrow k : P → V ′ such that the diagram below commutes.
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U ′

~~

h

Poo

��

//
k

V ′
w w

zz
f ′

��

U Voo
p1

� �
f

//
p2

X

Y

(1)

Remark 2.3.

1. The notion of full diagram is independent of the specific weak
product in the following sense. If the pair U ← V → X, V → Y
is a full diagram from X to Y , then any other weak product
U ← W → X together with the composite W → V → Y is a full
diagram from X to Y .

2. In the case of a projective cover P of an exact category E, dia-
gram (1) in Definition 2.2 can be written in E as

U ′ ×X

��

h×X

P�lr

��

//
k

V ′
+ry

��

f ′

U ×X V�lr
〈p1,p2〉

//
f

Y

where the left-hand square is covering, i.e. the induced arrow from
P to the pullback of 〈p1, p2〉 and h×X is a regular epi.

Lemma 2.4. Suppose that C has binary products. Then weak exponen-
tials are full diagrams and any full diagram from X to Y gives rise to a
weak exponential of Y and X.

Proof. Since C has binary products, every weak product retracts onto
the product of the same objects. Also, an arrow from a weak product is
determined by projections if and only if it factors through the retraction
onto the product. It follows that we may assume that the domain of a
weak evaluation is a product, rather than just a weak product.

Let then W be a weak exponential of Y and X with weak evaluation
e : W ×X → Y . Given f : V → Y from a weak product U ′ ← V → X
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we can take U ×X as P in (1): the arrow k : U ×X → V is a section
of the retraction V → U ×X and the arrow h : U → W is obtained by
the universal property of the weak exponential applied to the composite
fk : U ×X → Y .

For the converse, let U ← V → X, f : V → Y form a full diagram
and let s : U ×X ↪→ V be a section of the retraction V → U ×X. We
shall prove that fs : U ×X → Y exhibits U as a weak exponential of Y
and X. Given f ′ : U ′ ×X → Y , the universal property of full diagrams
yields an arrow h : U ′ → U and a commutative diagram

U ′ ×X

��
h×X

Poo

��

// U ′ ×X

��
f ′

U ×X Voo //
f

Y

where the left-hand square is a weak pullback. It follows that P → U ′×X
has a section s′ such that the diagram

U ′ ×X

��
h×X

� � //s′ P

� �

U ×X � � //s V

commutes. The equation fs(h×X) = f ′ then follows immediately.

In particular, a category with finite limits has full diagrams if and
only if it has weak exponentials. Lemma 2.6 shows that, whenever
the internal logic of Cex (equivalently, of C) supports implication and
universal quantification, the left-to-right implication also holds when C
only has weak finite limits.

First, recall that descent in exact categories allows us to prove the
following, where Xpo denotes the poset reflection of the category X. See
also [10, Remark 1.9].

Lemma 2.5. Cex has right adjoints to inverse images if and only if C
has right adjoints to weak pullback functors, i.e. the functors (C/X)po →
(C/Y )po induced by weak pullback along arrows f : Y → X.
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Proof. One direction follows by the existence of natural isomorphisms
SubCex(ΓexX) ∼= (C/X)po. For the other direction apply Theorem 2 in
Section 3.7 of [3].

We now need a lemma which, for convenience, we formulate using
an exact category E with a fixed projective cover P.

Lemma 2.6. Let E be an exact category with a projective cover P and
suppose that E has right adjoints to inverse images along any arrow. If P
has full diagrams, then for every X in P and B in E there are an object
W in P and an arrow W ×X → B in E which are weakly terminal with
respect to objects Z in P and arrows Z ×X → B in E.

Proof. Let b : Y _B be a cover of B with Y in P, and take a full
diagram U

p1←− V
p2−→ X, f : V → Y . The idea is to extract from U

(codes of) functional relations. Let γ = 〈γ1, γ2, γ3〉 : I ↪→ U ×X ×B be
the image factorisation of 〈p1, p2, bf〉 : V → U ×X ×B and denote with
φ : F ↪→ U the subobject defined by the formula in context

u : U | (∀x : X)(∀y, y′ : B) γ(u, x, y) ∧ γ(u, x, y′)⇒ y = y′.

In other words, given an arrow a : A→ U in E, consider the diagram

H

_��

� "*

// K

_��

� �(
A×U I

A×γ2
_��

//
π2

I

_��

〈γ1,γ2〉A×U I

 !*A×γ2

//
π2

I
〈γ1,γ2〉

� �(
A×X //

a×X
U ×X

where all the squares are pullback. Then

a ≤ φ ⇔ A×U I
π2−→ I

γ3−→ B coequalises H ⇒ A×U I. (2)

The existence of an arrow e : F × X → B follows from (2) taking
a = φ. We shall show that e satisfies the required universal property. It
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then follows easily that W × X → B satisfies it as well for any cover
W _F . In particular, P will have weak exponentials.

Given g : Z ×X → B with Z ∈ P, let g′ : V ′ → Y be a cover of g,
i.e. be such that the right-hand square in diagram (3) is covering. By
the universal property of a full diagram, we have, in particular, an arrow
h : Z → U and a commutative diagram

Z ×X

��

h×X

P�lr

��

� ,2 Z ×X

��

g

U ×X V�lr 〈p1,p2〉 //
bf

B

(3)

where the left-hand square is covering. It follows that the induced arrow
q : P → Z ×U I is a regular epi. Consider now the solid arrows in
diagram (4) below. The two right-hand squares are pullback and the
front left-hand square commutes by definition of e.

Z ×U I

Z×γ2

_��

tt

π′2
h′×I
vv

''

π′2

I

� �

γ3

F ×U I

F×γ2

_��

//
π2

oo
π2

I

_��

〈γ1,γ2〉Z ×X

tt

g
((

h×X
h′×X
vv

B F ×Xoo
e

//
φ×X

U ×X

(4)

In order to obtain an arrow h′ : Z → F such that e(h′ × X) = g, it
is enough to show that the square with side g commutes. Indeed, in
this case, there is h′ : Z → F such that φh′ = h by (2). It follows that
the upper triangle(s) and the square with dotted sides in diagram (4)
commute. Since Z × γ2 is (regular) epic, the lower left-hand triangle
commutes as well.

To see that the square with side g in diagram (4) commutes note that,
precomposing its two sides with q : P _Z ×U I yields the right-hand
square in diagram (3). The claim follows from the fact that q is (regular)
epic.
Theorem 2.7. Suppose that C has right adjoints to weak pullback func-
tors. If C has full diagrams, then Cex is cartesian closed.
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Proof. In the terminology of [10], Lemmas 2.5 and 2.6 prove that if a
category has weak finite limits, right adjoints to weak pullback func-
tors and full diagrams, then it has extensional exponentials too. The
statement follows from Lemma 2.13 in [10].

Below we collect together the results in this section.

Corollary 2.8. Suppose that C has right adjoints to weak pullback
functors, and consider the following.

1. C has full diagrams.

2. Cex is cartesian closed.

3. C has weak exponentials.

We have 1 ⇒ 2 ⇒ 3. If C has binary products, then 3 ⇒ 1.

Dependent full diagrams

Recall that C denotes a category with weak finite limits and Cex its
exact completion. In this section we define an indexed version of full
diagrams, whose existence will endow the internal logic of C (hence of
Cex) with implication and universal quantification.

Definition 3.1. Let y : Y → X and x : X → J be two arrows in a
category with weak finite limits. A dependent full diagram over x, y is a
commutative diagram

Y

%%
y

Voo
f

��
p2

//
p1

U

��
u

X //
x J

(5)

such that the square is a weak pullback and, for every such diagram
u′, f ′ over y, x as below, there are an arrow h : U ′ → U , a weak pullback
V ← P → U ′ of V p1−→ U

h←− U ′ and an arrow k : P → V ′ making the
diagram below commute.
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V ′

��

f ′

��

((
Pkoo

��

// U ′

h
��

}}

u′
Y

&&
y

Vfoo

��

p2

//
p1

U

��

u

X //
x J

The same observations as in Remark 2.3 apply, mutatis mutandis, to
dependent full diagrams. Moreover, it is not difficult to see that depen-
dent full diagrams generalise full families of pseudo-relations from [11],
in the sense that the two notions coincide in well-pointed categories with
finite products and weak equalisers.

Remark 3.2. Another category-theoretic version of Aczel’s Fullness
Axiom was introduced in [5] in the context of Algebraic Set Theory [15].
There one deals with classes of arrows, called small maps, in categories
which are at least regular. According to the properties satisfied by the
small maps, various set theories may be interpreted in this structure. In
particular, in order to interpret the Fullness Axiom in a suitable category
E equipped with a class of small maps S, van den Berg and Moerdijk
introduce a condition F(S), called (F) in [5, Section 3.7]. By taking the
class S to consist of all arrows of E, condition F = F(ArE) makes sense
for any regular category. If a regular category E has a projective cover
P, then a straightforward but lengthy computation shows that F holds
in E if and only if P has dependent full diagrams. Moreover, Proposition
6.2.5 in [5] entails that condition F is stable under ex/reg completion.
As a reg/wlex completion is in particular a regular category with enough
projectives [9], it follows immediately that Cex ≡ (Creg/wlex)ex/reg satisfies
F whenever C has dependent full diagrams.

Recall that a weak dependent product of two composable arrows
Y

y−→ X
x−→ J in a category with weak finite limits is a commutative

diagram as (5) such that the square is a weak pullback, f : V → Y
is determined by projections and, for every such diagram u′ : U ′ →
J, f ′ : V ′ → Y over y and x, there are arrow U ′ → U and V ′ → V
making the obvious diagram commute.
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As for the non-indexed case, as soon as C has pullbacks, we may
regard weak dependent products in C as those dependent full diagrams
whose weak pullback is a pullback.

Lemma 3.3. If C has pullbacks, weak dependent products are dependent
full diagrams and any dependent full diagram over y, x gives rise to a
weak dependent product of y, x.

Proof. The lemma is proven similarly to Lemma 2.4.

Lemma 3.4. If C has dependent full diagrams, then it has full diagrams.

Proof. A full diagram for two objects X and Y can be obtained as a
dependent full diagram over V → U → T , where T is weakly terminal,
U is a weak product of X and T , V is a weak product of U and Y and
the arrows are the obvious projections.

Lemma 3.5. Let C be a category with weak finite limits. C has dependent
full diagrams if and only if every slice of C has them.

Proof. It follows from the fact that the forgetful functor C/J → C
preserves and reflects weak pullbacks and dependent full diagrams.

Lemma 3.6. If C has dependent full diagrams, then Cex has right
adjoints to inverse images.

Proof. Using a choice of dependent full diagrams in C it is possible to
define, for every f : Y → X in C, functors ∀w

f : (C/Y )po → (C/X)po.
These functors are right adjoint to weak pullback functors by the uni-
versal property of dependent full diagrams. The statement follows from
Lemma 2.5.

Theorem 3.7. If C has dependent full diagrams, then Cex is locally
cartesian closed.

Proof. It only remains to put together the previous results. Lemma 3.6
ensures that Cex has right adjoints to inverse images, whereas Lemmas 3.4
and 3.5 imply that C/X has full diagrams for every X in C. Hence
Theorem 2.7 yields the cartesian closure of Cex/(ΓexX). The general
statement follows now “descending” along a cover ΓexX_A as in the
proof of Theorem 3.6 in [10].
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We again collect together the results of this section.

Corollary 3.8. Consider the following.

1. C has dependent full diagrams.

2. Cex is locally cartesian closed.

3. C has weak dependent products.

We have 1 ⇒ 2 ⇒ 3. If C has pullbacks, then 3 ⇒ 1.

Full diagrams in homotopy categories

In this section we show that, under mild assumptions on a model category
M, the homotopy category HoM has dependent full diagrams if M has
weak dependent products. Using well-known results, this implies that
the exact completion of the homotopy categories on spaces and CW-
complexes yields locally cartesian closed pretoposes.

∼−→ For basic notions on model categories and homotopical algebra
we refer to [14]. Fibrations, cofibrations and weak equivalences are
denoted as �, � and ∼→, respectively. A path object factorisation for
an object A is denoted as A ∼

� PA � A × A, and a fibrewise path
object factorisation for a fibration p : A � B as A ∼

� PpA � A×B A.
Since we shall not be concerned here with cylinder objects, we say that
two arrows f, g : C → A in M are homotopic, written f ' g, if they
are right homotopic (i.e. homotopic with respect to the path object
PA). Similarly, we shall write f 'p g to mean that they are fibrewise
right homotopic over the fibration p. Note that, since every fibration
p : A � B is fibrant in the model category structure on M/B induced
by that one on M, fibrewise (right) homotopy is an equivalence relation
on arrows f, f ′ : X → A such that pf = pf ′. If every object in M is
cofibrant, then it is also a congruence.

When every object in a model category M is cofibrant, the homotopy
category HoM is equivalent to the category obtained quotienting the full
subcategory Mf of M on fibrant objects by the homotopy relation [14].
Moreover, Mf is a category of fibrant objects in the sense of Brown [7]
where, in addition, every acyclic fibration has a section and where weak
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equivalences and homotopy equivalences coincide. A category of fibrant
objects satisfying these additional properties is called a path category by
van den Berg and Moerdijk [6]. More explicitly, a path category may be
axiomatised as follows (cf. [6]). It has a terminal object and two classes of
distinguished arrows closed under isomorphism and composition, called
weak equivalences and fibrations, such that: (i) weak equivalences are
closed under 2-out-of-6, (ii) terminal arrows are fibrations, (iii) pullbacks
along fibrations exist and (acyclic) fibrations are stable under pullback,
and (iv) every acyclic fibration has a section.

Definition 4.1 ([6], Definition 5.2). Let g : B � A and f : A � I be
two fibrations in a path category C. A commuting diagram

B

%% %%
g

U ×I Aoo e

����

// // U

����
u

A // //
f

I

is a homotopy weak dependent product of f and g if for every such
commutative diagram u′ : U ′ � I, e′ : U ′ ×I A→ B, there is k : u′ → u
over I such that e(k × A) 'g e′.

Homotopy weak dependent products are called weak homotopy Π-
types in [6]. As observed in [6], the (weak) universal property also holds
when the arrow u′ is not a fibration.

When the path category is Mf, a weak homotopy dependent product
arises as fibrant replacement of a weak dependent product in M. To
prove this fact we need the following result, which is a reformulation for
a model category of Theorem 2.38 from [6].

Theorem 4.2. Let M be a model category and let A and B be cofibrant
objects. Then every commutative square

A

��

�Of

//k
C

��� �
g

B //
l

D

(6)
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has a homotopy diagonal filler, i.e. an arrow d : B → C such that gd = l
and df 'g k. Moreover, such a filler is unique up to fibrewise homotopy
over g.

Proof. We shall first show that every commuting square (6) has a lower
filler, i.e. an arrow d such that gd = l. This fact, in turn, allows us to
obtain a homotopy witnessing the fact that the previously constructed
lower filler is in fact a homotopy diagonal filler, and another homotopy
witnessing its uniqueness.

Consider a factorisation of 〈f, k〉 : A → B ×D C into an acyclic
cofibration c : A ∼

� E followed by a fibration p : E � B ×D C. In
particular, E is cofibrant. From 2-out-of-3 we obtain that π1p : E � B
is an acyclic fibration and, since B is cofibrant, it has a section s : B ∼→ E.
But then d := π2ps : B → C is the required lower filler, as gd = lπ1ps = l.

Therefore every commuting square (6) has a lower filler. In particular,
we obtain a homotopy sπ1p '(π1p) idX as a lower filler in

B

��

�Os

// Pπ1pE

����

E //
〈sπ1p,idX〉

E ×B E

where the top horizontal arrow is s followed by reflexivity of Pπ1pE.
Since E is cofibrant, it is df = π2p(sπ1p)c 'g π2pc = k.

Finally, given another homotopy diagonal filler d′, the homotopy
witnessing d 'g d′ is obtained as a lower filler in

A

��

�Of

// PgC

��� �

B //
〈d,d′〉

C ×D C

where the top horizontal arrow is the concatenation df 'g k 'g d′f .

Remark 4.3. The argument used in the previous proof can be adapted
to work in a path category, so to provide an alternative proof of Theorem
2.38 in [6]. To this aim it is enough to observe that, in a path category,
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the existence of lower fillers for commutative squares as in (6) is enough
to derive that the homotopy relation is a congruence, as in the proof of
Theorem 2.14 in [6].

Corollary 4.4. Let M be a right proper model category where every object
is cofibrant. If M has weak dependent products, then Mf has homotopy
weak dependent products for every pair of composable fibrations.

Proof. Let f : A � I and g : B � A be two fibrations in Mf and let
w : W → I, d : W ×I A → B be a weak dependent product of them.
Factor w as an acyclic cofibration c : W ∼

� U followed by a fibration
u : U � I. Since M is right proper, W ×I A → U ×I A is also a weak
equivalence, hence we obtain e : U ×I A → B as homotopy diagonal
filler.

The required universal property is depicted in the diagram below

U ′ ×I A
k×A
vv

��

e′

zzzz

// // U ′

k
zz

����

u′

W ×I A

xx ��
�O

// //W��

��
�Oc

B

&& &&
g

U ×I Aeoo

����

// // U

����
u

A // //
f

I

where e(ck × A) 'g e′ since e is just a homotopy diagonal filler.

Homotopy weak dependent products also enjoy another universal
property with respect to certain homotopy diagrams. This is proved
below in Lemma 4.9 and it is a consequence of the following result.

Proposition 4.5 ([6], Proposition 2.31). Let C be a path category and
let

A

����
f

C //
g

??
k

B

be a diagram that commutes up to homotopy. Then there is k′ : C → A
such that k′ ' k and fk′ = g.
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Remark 4.6. Proposition 4.5 has the important consequence that pull-
backs in Mf along fibrations are homotopy pullbacks and so are mapped
to weak pullbacks in HoM.

Definition 4.7. Let f : A→ I and g : B → A be two arrows in a path
category C. A diagram

B

%%

Voo

��

// U

��

A // I,

that commutes up to homotopy and where the square is a homotopy
pullback, is homotopy full over f, g if, for every such diagram over
B → A→ I commuting up to homotopy, there are an arrow U ′ → U , a
homotopy pullback V ← P → U ′ of V → U ← U ′ and an arrow P → V ′

making the diagram below commute up to homotopy.

V ′

yy

��

&&
Poo

yy

// U ′

yy

vv

B

%%

Voo

��

// U

��

A // J

Remark 4.8. Let C be a path category. Since HoC is the quotient of
C by the homotopy relation (cf. Theorem 2.16 in [6]), the image in HoC
of a homotopy full diagram over f, g is a full diagram over [f ], [g].

Lemma 4.9. Let C be a path category and let f : A� I and g : B � A
be two fibrations. A homotopy weak dependent product of f and g is a
homotopy full diagram over f, g.

Proof. Let u : U � I, e : U ×I A→ B be a homotopy weak dependent
product of f and g. Remark 4.6 implies that U ×I A is a homotopy
pullback.

Let now
B

%% %%
g

V ′oo e′

��
v2

//
v1

U ′

��
u′

A // //
f

I,

- 445 -



J. Emmenegger Fullness Axiom and homotopy categories

be commutative up to homotopy and such that the square is a homotopy
pullback. Hence there is an arrow ψ : U ′ ×I A→ V ′ such that v1ψ ' π′1
and v2ψ ' π′2. In particular, the diagram below commutes up to
homotopy

U ′ ×I A

$$
π′2

//
ψ

V ′ //e′
B

~~~~
g

A

(7)

and Proposition 4.5 implies that there is h : U ′ ×I A → B that makes
the above triangle commute and which is homotopic to e′ψ.

The universal property of the homotopy weak dependent product then
yields an arrow k : U ′ → U such that everything in the diagram below
commutes strictly except for the two top-left triangles with common
edge h, which only commute up to homotopy.

V ′

yy

e′

U ′ ×I Aoo
ψ

h

ss
ww

vv

// // U ′

k

yy

ww

u′
B

%% %%
g

U ×I Aoo
e

����

// // U

����

u

A // //
f

I

Hence, as required, the square with two dotted sides above is a
homotopy pullback and the diagram below commutes up to homotopy.

V ′

ww

e′

##

v2

))

v1

U ′ ×I Aoo
ψ

vv

// // U ′

k

ww

vv

u′

B

'' ''
g

U ×I Aeoo

����

// // U

����

u

A // //
f

I

Theorem 4.10. Let M be a right proper model category where every
object is cofibrant. If M has weak dependent products, then HoM has
dependent full diagrams and, in turn, (HoM)ex is locally cartesian closed.
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Proof. Lemma 4.9 and Remark 4.8 yield a full diagram over [f ], [g]
whenever f and g are both fibrations. Since arrows in M factor as weak
equivalences and fibrations and the former are isomorphisms in HoM,
this is enough to conclude that HoM has dependent full diagrams. The
last statement is an application of Theorem 3.7.

As an application of Theorem 4.10, consider the two standard model
structures on the category of topological spaces by Quillen [17] and by
Strøm [18], which we denote by TopQ and TopS, respectively. The latter
is right proper and every space is cofibrant. Furthermore, Carboni and
Rosolini showed that Top has weak dependent products [8]. Therefore
(Ho TopS)ex not only is a pretopos, as proved in [13], but it is also locally
cartesian closed. This answers a question left open by Gran and Vitale
in [13]. In addition, although in TopQ the cofibrant objects are just the
CW-complexes, TopQ is Quillen equivalent to simplicial sets with the
Quillen model structure. This latter category does satisfy the hypothesis
of our theorem, therefore (Ho TopQ)ex is locally cartesian closed too.

Acknowledgements

I am in debt with the late Erik Palmgren for sharing with me his idea
of using the Fullness Axiom to obtain local cartesian closure. The
results in this paper were presented at the 5th Workshop on Categorical
Methods in Non-Abelian Algebra, Louvain-la-Neuve, June 1-3 2017, and
at the International Category Theory Conference in Vancouver, July
16-22 2017. I gratefully thank the organisers of both events for giving
me the opportunity to speak. This paper was partly written while I
was visiting the Hausdorff Research Institute for Mathematics in Bonn
during May 2018 in occasion of the trimester program Types, Sets and
Constructions. I thank the Institute for providing an excellent working
environment. Support from the Royal Swedish Academy of Sciences is
also acknowledged. Finally, I would like to express my gratitude to the
anonymous referee for useful comments on a previous draft of the paper.

- 447 -



J. Emmenegger Fullness Axiom and homotopy categories

References

[1] P. Aczel. The type theoretic interpretation of constructive set
theory. In A. MacIntyre, L. Pacholski, and J. Paris, editors, Logic
Colloquium ’77, volume 96 of Studies in Logic and the Foundations
of Mathematics, pages 55–66. North-Holland, Amsterdam, 1978.

[2] P. Aczel and M. Rathjen. Notes on Constructive Set Theory. Techni-
cal Report 40, Mittag-Leffler Institute, The Swedish Royal Academy
of Sciences, 2001.

[3] M. Barr and C. Wells. Toposes, Triples and Theories. Springer-
Verlag, New York, 1985.

[4] B. van den Berg. Path categories and propositional identity types.
ACM Trans. Comput. Logic, 19(2):15:1–15:32, 2018.

[5] B. van den Berg and I. Moerdijk. Aspects of predicative algebraic set
theory I: Exact completion. Ann. Pure Appl. Log., 156(1):123–159,
2008.

[6] B. van den Berg and I. Moerdijk. Exact completion of path categories
and algebraic set theory. Part I: Exact completion of path categories.
J. Pure Appl. Algebra, 222(10):3137–3181, 2018.

[7] K.S. Brown. Abstract homotopy theory and generalized sheaf
cohomology. Trans. Amer. Math. Soc., 186:419–458, 1973.

[8] A. Carboni and G. Rosolini. Locally cartesian closed exact comple-
tions. J. Pure Appl. Algebra, 154(1-3):103–116, 2000.

[9] A. Carboni and E.M. Vitale. Regular and exact completions. J.
Pure Appl. Algebra, 125(1-3):79–116, 1998.

[10] J. Emmenegger. On the local cartesian closure of exact comple-
tions. To appear in J. Pure Appl. Algebra. Preprint available at
arXiv:1804.08585.

- 448 -



J. Emmenegger Fullness Axiom and homotopy categories

[11] J. Emmenegger and E. Palmgren. Exact completion and constructive
theories of sets. To appear in J. Symb. Log. Preprint available at
arXiv:1710.10685.

[12] N. Gambino and R. Garner. The identity type weak factorisation
system. Theoret. Comput. Sci., 409(1):94–109, 2008.

[13] M. Gran and E. M. Vitale. On the exact completion of the homotopy
category. Cah. Topol. Géom. Différ. Catég., 39(4):287–297, 1998.

[14] M. Hovey. Model categories. Amer. Math. Soc., Providence, R.I.,
1999.

[15] A. Joyal and I. Moerdijk. Algebraic Set Theory. London Mathe-
matical Society Lecture Note Series. Cambridge University Press,
1995.

[16] E. Palmgren. Proof-relevance of families of setoids and identity in
type theory. Arch. Math. Logic, 51(1):35–47, 2012.

[17] D.G. Quillen. Homotopical algebra. Lecture Notes in Mathematics.
43. Springer-Verlag, Berlin-Heidelberg-New York. VI, 1967.

[18] Arne Strøm. The homotopy category is a homotopy category. Arch.
Math., 23:435–441, 1972.

Jacopo Emmenegger
School of Computer Science
University of Birmingham
Birmingham B15 2TT, UK
op.emmen@gmail.com

- 449 -



A simplified categorical approach to
several Galois theories

D. Blázquez-Sanz, C. A. Marı́n Arango & J. F. Ruiz Castrillon

Résumé. Nous étudions le concept de structure de Galois et epimorphisme
de Galois dans un contexte général. Notamment, une structure de Galois pour
un épimorphisme π : M → B dans une catégorie C est l’action d’un groupe
objet qui munit M d’une structure d’espace homogène dans la catégorie rel-
ative CB .
Abstract. We discuss the concept of Galois structure and Galois epimor-
phism in a general setting. Namely, a Galois structure for an epimorphism
π : M → B in some category C is the action of a group object that gives to
M the structure of principal homogeneous space in the relative category CB .
Keywords. Galois theory, Differential algebra, Foliation, Groupoid, Princi-
pal bundle.
Mathematics Subject Classification (2010). 18B40, 57M10, 12F10, 12H05,
53C12.

1. Introduction

From its very starting point in the theory of polynomial equations with one
variable [12], Galois theory proposes a systematic use of the principal ho-
mogeneous structure of the space of solutions of an equation. This idea was
systematically applied by E. Vessiot [29] in his general approach to differ-
ential Galois theory. Today there are several Galois theories, with different
domains of application.

It is clear that there is some common mathematical core within all these
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theories. This is usually explained through analogy. Most texts dedicated to
several Galois theories develop them separately, establish some bridges, and
point out these analogies between them, as in the book of R. and D. Douady
[9].

There is a categorical approach to Galois theory initiated by Grothendieck
([14], see [10] for a more accessible exposition) and continued in [1] (see
also [16] ). This theory is further developed by Dubuc [11] and culminated
by Joyal-Tierney [17]. A different approach to Galois theory is considered
by G. Janelidze and F. Bourceux ([15], see also [2], chapter 5). This categor-
ical Galois theory does not cover some natural incarnations of Galois theory,
as differential Galois theory [25]. The main difference between Grothedieck
approach and ours is the following: we do not see the Galois group as a set-
theoretical group acting on an object but as a group object of the category.
This line of thinking is inspired by some facts of differential Galois theory.
For instance, the Galois group of a strongly normal extension [20] is an al-
gebraic group defined over the constants, which can be seen as a particular
kind a group object in the category of differential algebraic varieties. Some
years ago A. Pillay generalized E. Kolchin’s theory of strongly normal ex-
tensions [26]. A generalized strongly normal extension is a differential field
extension whose group of automorphisms admits a natural structure of dif-
ferential algebraic group, that is, a group object in the category of differential
algebraic varieties.

Our framework also explains how some Galois theories are naturally ex-
tended. Most of them allow Galois structures (Definition 2.7) with Galois
groups in some specific class of group objects in a category. By modifying
the category, or by extending the class of possible Galois groups we obtain
different extensions of Galois theory. For instance, classical Galois theory
extends to Hopf-Galois theory by allowing a broader class of group objects.

We give some examples of how the proposed general definitions apply
to the cases of classical Galois theory (algebraic and topological), and dif-
ferential Galois theory. Then we explore the category of foliated smooth
manifolds. Epimorphims in such category are partial Ehresmann conec-
tions. When examining Galois structures there naturally appear G-invariant
connections. This is not surprising, G-invariant connections were in fact in-
troduced in the context of Galois theory by E. Vessiot in the beggining to
20th century: they are the so-called automorphic systems appearing in [29].
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We prove uniqueness of the Galois group for the irreducible case, Theorem
4.3. Finally we compare the real smooth and the complex algebraic cases.

2. General definitions

2.1 Split of groupoid actions

Let us consider C a category with binary products, kernels of pairs of mor-
phisms, and a final object {?}. Thus, there are also fibered products (pull-
backs) as well as finite limits. We may define group objects and groupoid
objects in C.

Let G be a group object in C. For each object X , the set G(X) =
Hom(X,G) of X-elements of G is a group. An action of G in an object
M is a morphism,

α : G×M →M,

satisfying α ◦ (µ × IdM) = µ ◦ (IdG × α) and α ◦ ((eG ◦ πM) × IdM) =
IdM .1 The action α induces a group morphism α : G({?}) → Aut(M),
g 7→ α ◦ 〈g ◦ πM , IdM〉.

From the action α we can form the action groupoid GnM ⇒ M , with
objects of objects M and object of arrows G nM . The source map is the
projection π2 onto the second factor M , and the target map is α. In terms of
sets and elements, we have:

s(g, x) = x, t(g, x) = α(g, x), (h, gx) ◦ (g, x) = (hg, x).

Definition 2.1. We say that a groupoid object G ⇒ M splits in C if there
is an action α : G ×M → M an action of a group object and a groupoid
isomorphism ϕ : G nM

∼−→ G. In such a case, we say that G is a splitting
group, α is a splitting action and ϕ is a splitting morphism for G in C.

Example 2.2. Let us remark that it is not in general possible to recover the
group G from the action groupoid G nM . For instance, in the category of
sets, let us consider two free and transitive actions of Z4 and K4 in a setX =
{p1, p2, p3, p4} of four elements. Since the actions are free and transitive we

1Where eG represent the identity eG : {?} → G and πM represents the unique morphism
πM : M → {?}.
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have that the action groupoid is, in both cases, the total equivalence realtion
X ×X . Therefore we have groupoid isomorphism:

K4 nX ∼ // X ×X Z4 nX∼oo

(σ, p) // (p, σ · p), (p, τ · p) (τ, p)oo

Thus, a split groupoid object may have different realizations as an action
groupoid.

2.2 Normal epimorphisms

Let us recall that an action of a group (set) G in an object X is a group mor-
phism φ : G→ Aut(X). We say that q : X → Y is a categorical quotient of
the action of G in X if:

1. For all g ∈ G, q ◦ φ(g) = q. In other words, q is G-invariant.

2. For all morphisms f : X → Z such that for all g ∈ G f ◦φ(g) = f (i.e.
f is G-invariant) there exists a unique f̄ : Y → Z such that f̄ ◦ q = f .

Categorical quotients are epimorphisms and are unique up to isomor-
phims. Let us consider π : M → B an epimorphism in C. The group group
AutB(M) acts on M .

Definition 2.3. We say that π is normal if it is the categorical quotient of M
by the action of the group (set) AutB(M).

Some categorical approaches to Galois theory rely in the notion of strict
epimorphism ([1, I.10.2] see also [18, Def. 5.1.6]).

Definition 2.4. Let π : M → B be an epimorphism.

(a) A morphism f : M → Z is π-compatible if for any pair of morphisms
x, y : X ⇒M such that π ◦ x = π ◦ y also f ◦ x = f ◦ z.

(b) π is a strict epimorphism if for any π-compatible f there is a unique
f̄ : B → Z such that f = f̄ ◦ π.

Proposition 2.5. Let π : M → B be an epimorphism in a category C.

4
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(a) If π is normal then it is strict.

(b) Assume that any arrow with codomain M is invertible. Then, if π is
strict π is normal.

Proof. Let us consider an object Z an the composition map

π∗ : Hom(B,Z)→ Hom(M,Z).

The image of π∗ consists of π-compatible morphisms. Moreover, let us as-
sume that f : M → Z is π-compatible. Then, for any σ ∈ AutB(M) we
have π ◦ σ = π ◦ IdM and therefore f ◦ σ = f . It means that π-compatible
morphisms are invariant under the action of AutB(M). In general we have
a chain,2

π∗(Hom(B,Z)) ⊆ {π-compatible morphisms} ⊆ Hom(M,Z)AutB(M).

Let us note the following:

(i) The epimorphism π is normal if and only if for any Z we have the
equality between the first and third members of the chain.

(ii) The epimorphism π is strict if and only if for any Z we have the equal-
ity between the first and second members of the chain.

(a) Assume π normal. Then the three members of the above chain coincide.
In particular, any π-compatible morphism factorizes.
(b) Assume that π is strict. We need to prove that any AutB(M) invariant
morphism f : M → Z is π-compatible. Let a, b : X ⇒ M be a pair of
morphisms such that π ◦ a = π ◦ b. Since f is AutB(M) invariant we have
f = f ◦ (b ◦ a−1) and from this f ◦ a = f ◦ b. Hence f is π-compatible.

Remark 2.6. Let us recall that the notions of regular and effective epimor-
phism.

(a) An epimorphism q : Y → X is said to be regular if it is the coequalizer
of a pair of morphisms Z ⇒ Y → Z.

2Here Hom(M,Z)AutB(M) stands for the set of AutB(M)-invariant morphisms in
Hom(M,Z)AutB(M).
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(b) An epimorphism q : Y → X is said to be effective if it has a kernel
pair and it is the coequalizer of a congruence of its kernel pair KPq ⇒
Y → X .

In a general category we have:

effective =⇒ regular =⇒ strict .

Moreover, in a category with pullbacks it is known that strict epimorphisms
are effective. Therefore a normal epimorphism in a category with pullbacks
is effective. If additionally, as stated in Proposition 2.5 (b), the epimorphism
π : M → B satisfies that any arrow with codomain M is invertible, then π is
normal if and only if it is effective. This equivalence between effectiveness
and normality seems to be a key aspect in classical Galois theory.

2.3 Galois structures

The kernel pair of π, KPπ = M ×B M ⇒M , is a congruence (equivalence
relation) inM , and therefore a grupoid object in C. We set the source (s) and
target (t) maps to be the first and second projection respectively. It represents
the endomorphisms of M over B in the following sense: let KPπ(M) be the
set of sections of the source map (s); the composition with the target map
yields a bijection.

KPπ

s
||

t
""

KPπ(M) ∼ // EndB(M)

M
t◦σ //

σ
22

M σ
∼ // t ◦ σ

Let us consider an splitting action α : G×M →M of KPπ. The splitting
isomorphism is necessarily

〈π2, α〉 : GnM
∼−→ KPπ (g, x) 7→ (x, α(g, x)),

which is completely determined by α. In other words, an splitting action of
KPπ is an action that gives π : M → B the structure of principal homoge-
neous space modeled over G×B → B in the relative category CB of arrows
over B.

6
- 455 -
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Let us note that the splitting action α induces a bijection between G(M)
and KPπ(M) and therefore a bijection,

G(M)
∼−→ EndB(M), g 7→ αg = α ◦ 〈g, IdM〉.

However, such bijection is not compatible with the composition. We have

αg ◦ αh = α ◦ 〈g, IdM〉 ◦ α ◦ 〈h, IdM〉 = α ◦ 〈g ◦ αh, αh〉

on the other hand,
αgh = α ◦ 〈g, αh〉.

It follows that, if g = g ◦αh then, αgh = αg ◦αh. We see that this is satisfied
if g ∈ G(B), given that αh ∈ EndB(M) induces the identity in B. For
normal epimorphisms this condition is optimal, as G(M)AutB(M) = G(B).
We have thus,

G(M) ∼ // EndB(M)

G({?}) � � // G(B) �
�

//

OO

AutB(M)

OO

where the maps in the lower row are injective group morphisms.

Definition 2.7. Let π : M → B be an epimorphism in C. A Galois structure
for π is an splitting action α : G ×M → M for KPπ such that the induced
group morphism

G({?}) ∼−→ AutB(M), g 7→ αg

is an isomorphism.

Definition 2.8. We say that an epimorphism π : M → B of C is Galois if
satisfies the following conditions:

(i) it is normal;

(ii) it admits a unique (up to isomorphism) Galois structure.

We call Galois group of π the group object Galπ appearing in the unique
Galois structure.

7
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Note that if α is a Galois structure for π then we have isomorphisms,

G({?}) ∼−→ G(B)
∼−→ AutB(M).

Given an splitting action α for KPπ as a groupoid object in C we may
define an splitting action

α̃ : (G×B)×B M →M, ((g, b), x) 7→ α(g, x),

for KPπ as a groupoid object in CB. In some cases, a splitting action may fail
to be a Galois structure in the category C but be so in the relative category
CB of arrows over B.

Example 2.9. Let Set be the category of sets and π : M → B be a surjective
map. In any case KPπ splits in SetB, and any splittig action is a Galois
structure. The group object acting is a family of groups indexed by B and
acting freely and transitively on the fibers of π. It is Galois if and only if the
fibers have 1, 2 or 3 points.

However, KPπ splits in Set if and only if all fibers of π have exactly
the same cardinal. Finally, π is Galois in Set if and only if it is a bijection,
otherwise we may have the uniqueness for the Galois structure, but G $
AutB(M).

Example 2.10. Let Mnf be the category of smooth manifolds with smooth
maps. By direct examination of the definition we have that a an splitting
action for a submersion π : M → B is an structure of a principal bundle for
some structure Lie group G. The splitting actions is far from being unique,
moreover, G represents a very small part of AutB(M).

2.4 Galois correspondence

Let us recall that a congruence (internal equivalence relation) in M is a sub-
object of M × M having the reflexive, symmetric and transitive property.
We say that a congruence R ⊆ M ×M is effective if it is the kernel pair
of an effective epimorphism. The class of an effective epimorphism up to
isomorphisms of the codomain is called an effective quotient. We have then
a diagram:

R ⇒M →M/R.

8
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The class Rel(M) of effective of congruences in M is partially ordered.
For two congruences represented by monomorphisms i : R ↪→ M ×M and
i′ : R′ ↪→ M × M we say that R ≤ R′ if there is j : R ↪→ R′ such that
i′ ◦ j = i. Analogously the class Quot(M) of effective quotients of M is
ordered. For two effective quotients represented by effective epimorphisms
q : M → Z and q′ : M → Z ′ we say q ≥ q′ if q′ is q-compatible, so that
there is p : Z → Z ′ such that p ◦ q = q′. There is a natural bijective Galois
connection between Rel(M) and Quot(M) of effective quotients ofM given
by the adjunctions:

KP: Quot(M)→ Rel(M), (q : M → Z) 7→ KPq = M ×Z M,

coeq: Rel(M)→ Quot(M), R 7→ (q : M →M/R).

The quotient by a group action α : G ×M → M is also understood in
the above terms. We have M/G = coeq(α, π2) if such coequalizer exists
in C. Under suitable assumptions on the existence and nature of quotients
by group actions, the general Galois connection gives rise to the classical
Galois correspondence.

Theorem 2.11. Let π : M → B be a Galois epimorphism. Let us assume
the following:

(a) any subgrupoid object of the action groupoid Galπ nM is of the form
H nM where H is a subgroup object of Galπ;

(b) for any subgroup object H ⊆ Galπ it does exists the effective quotient
M/H .

Then the following sentences hold:

(i) The assignation:

H ⊆ G ; qH : M →M/H,

establishes an order reversing bijective correspondence between the
partially ordered class Sub(G) of subgroup objects of G and the par-
tially ordered class Quot≥π(M) of intermediate effective quotients of
M .

9
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(ii) Let us consider any effective intermediate quotient q : M → Z with
corresponding subgroup H ⊆ Galπ. The restriction of the Galois
structure α to H ×M is a Galois structure for q.

Proof. (i) It is clear that the assignation reverses order, for H ⊆ H ′ we have
qH ≥ q′H . In order to see that it is bijective, let us construct its inverse
correspondence. Let q : M → Z be a representative of an effective quotient
with q ≥ π. The kernel pair KPq is an effective congruence in M and
KPq ≤ KPπ. The splitting isomorphim establishes an isomorphism of KPq

with a subgroupoid object of Galπ nM which, by condition (a), is of the
form Hq nM for a subgroup object Hq depending on q. We have that the
effective epimorphism q : M → Z is equivalent to qHq : M →M/Hq. Then
we have:

H ; qH ; H, q ; Hq ; q.

(ii) It is enough to note that the splitting isomorphism 〈π2, α〉 maps H nM
onto KPq.

3. Classical Galois theory

3.1 Covering spaces

Let Top be the category of topological spaces. A covering map π : M → B,
with M and B connected, is a Galois cover if π × IdM : M ×B M → M
is a trivial covering space. There is a Galois theory for covering spaces,
analogous to classical Galois theory (see, for instance [19]).

Theorem 3.1. Let π : M → B be a surjective local homeomorphism with
M and B connected. The following are equivalent:

(a) π is a Galois cover.

(b) π is a Galois in Top.

(c) KPπ splits in Top.

In any case, the Galois group object is Galπ = AutB(M) with the discrete
topology.

10
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BLÁZQUEZ-SANZ, MARÍN & RUIZ GALOIS THEORIES

Proof. (c) ⇒ (a). Let us assume that there is an splitting isomorphism
ϕ : G ×M ∼−→ M ×B M . Then we have that the projection on the second
factor G × M → M is a local homeomorphism. Thus, G is discrete and
M ×BM →M is a trivial cover. It follows that π is a Galois cover. We also
have (b)⇒ (c).

Let us see (a)⇒ (b). We assume that M ×B M → M is a trivial cover,
thus there is a trivialization,

G×M ∼
ϕ

//

π̄
$ $

M ×B M
π1

yy

M

with G a discrete topological space. Let us check that there is a group struc-
ture on G such that it is isomorphic to AutB(M) and ϕ is the action of
AutB(M) in M .

For each g ∈ G let us consider the map σ(g) : M → M defined by
the formula σ(g)(x) = π2(ϕ(g, x)). It is a continuous map that induces the
identity on B and thus, an automorphism of M over B. On the other hand,
let σ be an automorphism of M over B. Then, the map x 7→ ϕ−1(x, σ(x))
is a section of π̄. Since π̄ is trivial, then there is a unique g in G such that
ϕ−1(x, σ(x)) = (g, x). We define this g to be g(σ). It is easy to check
that those bijections inverse of each other. With the group operation in G
induced by σgh = σg ◦ σh then we have that ϕ is a splitting morphism and
thus π admits a Galois structure, where the action of G in M is isomorphic
to that of AutB(M) endowed with the discrete topology, and thus unique.

Let us discuss the normality of π. In this context, it means that the action
of AutB(M) is transitive on the fibers. Let m1, m2 be two points of M in
the same fiber. Let g be the element of G such that ϕ(g,m1) = (m1,m2).
Then, it is clear that σ(g)(m1) = m2.

Note that Galois covers are under the hypothesis of Theorem 2.11. The
subgroupoids of GnM are of the form HnM with H a subgroup of G and
the quotient M/H exists in Top. We obtain the well known correspondence
between intermediate coverings and subgroups of G.
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3.2 Algebraic Galois extensions

Let Cmm be the category of commutative rings with unit. The dual category
Cmmop is the category of affine schemes.

Let us consider an extension of rings i : K ↪→ L. The dual map
i∗ : Spec(L) → Spec(K) is an epimorphism in Cmmop. In this case the
kernel pair is Spec(L ⊗K L) ⇒ Spec(L) where the source and target maps
are the dual of the canonical embeddings a 7→ a⊗ 1 and a 7→ 1⊗ a respec-
tively.

Group objects is Cmmop are commutative Hopf algebras. Thus, split-
ting actions in Cmmop are the already known Hopf-Galois structures, in the
sense of Chase and Sweedler [7]. It is well known that Hopf-Galois struc-
tures are not unique in general.

Let us revisit classical Galois theory. Let us consider i to be a finite
extension of fields. Classically, it is called a Galois extension if it satisfies
one of the following equivalent conditions (see [27] pp. 140-141):

(a) L is separable and normal3 over K.

(b) |AutK(L)| = dimKL.

(c) L⊗K L (with L-algebra structure given by the embedding a 7→ a⊗ 1)
is a finite trivial4 L-algebra.

Let us consider i : K ↪→ L a Galois extension, and let G be AutK(L).
Then, it is well known that the trivialization of L ⊗K L can be realized as a
split. We have the trivial finite L-algebra Maps(G,L) and an isomorphism:

ϕ : L⊗K L
∼−→ Maps(G,L) =

∏
g∈G

L, a⊗ b 7→ fa⊗b,

where fa⊗b(g) = g(a)b. Now we have that Maps(G,L) = Maps(G,K)⊗K
L. Thus, in the dual category we have that the map,

ϕ∗ : Spec(Maps(G,K))×K Spec(L)
∼−→ KPi∗ ,

3It is clear that our categorical definition of normality coincides, in this context, with the
classical definition LAutK(L) = K.

4A finite trivial L-algebra is an L-algebra isomorphic to a direct product of a finite
number of copies of L,

∏
i∈I L.
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BLÁZQUEZ-SANZ, MARÍN & RUIZ GALOIS THEORIES

is a splitting isomorphism of the groupoid KPi∗ . Noting that Maps(G,K) =
Maps(G,Z) ⊗Z K we see that the splitting isomorphism can be defined in
the category Cmmop and not only in the relative category Cmmop

K . We may
state the following result.

Proposition 3.2. Let us consider i : K ↪→ L a finite separable field exten-
sion, and i∗ : Spec(L) → Spec(K) its dual morphism. The following are
equivalent:

(a) i : K ↪→ L is a Galois extension.

(b) i∗ is Galois in Cmmop.

(c) i∗ is Galois in Cmmop
K .

In such a case, ifG = AutK(L), there is a natural action ofG inL⊗KL such
that (L⊗KL)G is a HopfK-algebra canonically isomorphic to Maps(G,K).

Let us fix a Galois extension i : K ↪→ L with group G. Let H be a
subgroup of G. Then, we realize the field of invariants LH as the equalizer,
LH → L ⇒ L ⊗LH L. Therefore, in the dual category Spec(LH) appears
as the effective quotient of Spec(L) by the action of the group object H .
Moreover, since G n Spec(L) is the spectrum of a L-trivial algebra, we
have that any subgroupoid is of the form H n Spec(L). We are under the
hypothesis of Theorem 2.11, which in this particular case gives the classical
Galois correspondence between intermediate field extensions and subgroups.

4. Foliated manifolds

4.1 Smooth foliated manifolds

Let FMn be the category of smooth manifolds endowed with regular folia-
tions. Objects are pairs (M,D) where M is a smooth manifold and D is an
involutive linear subbundle of TM . Morphisms f : (M,D) → (M ′,D′) are
smooth maps f : M → M ′ such that for all p ∈ M the differential dpf in-
duces a linear epimorphism from Dp to D′p. This implies that f maps leaves
of D onto leaves of D′ by local submersions. A manifold B admits two triv-
ial structures of foliated manifold (B, TB), with only a leaf B and (B, 0B)
with point leaves.
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Let (G,DG) be a group object in FMn. It is clear that G is a Lie group.
The existence of the identity element implies that the map,

({?}, 0?)→ (G,DG), ? 7→ e,

is a morphism of foliated manifolds, so that rank(DG) ≤ rank(0?) = 0. It
follows DG = 0G. By abuse of notation we write G instead of (G, 0G). If is
also clear that an action of G in (M,D) to the category of foliated manifolds
is an action of G in M by symmetries of D. That is, for any p ∈ M and
g ∈ G dpLg(Dp) = Dgp.

A flat Ehresmann connection in a submersion π : M → B is an involu-
tive subbundle F ⊂ TM such that for each p ∈M the differential dpπ is an
isomorphism of Fp with Tπ(p)B. We say that a foliated manifold (M,F) is
irreducible if it contains a dense leaf. Let us first analyze the case in which
the basis M has a trivial structure of foliated manifold.

Proposition 4.1. Let π : (M,F)→ (B, TB) be an epimorphism of foliated
manifolds with rank(F) = dim(B). Then π is a submersion and F is a flat
Ehresmann connection.

Proof. For all p ∈ M we have that dpπ maps Fp onto TpB. Therefore dpπ
is surjective for all p ∈ M and π is a submersion. It is clear that F is a flat
Ehresmann connection.

Proposition 4.2. Let π : (M,F) → (B, TB) be a epimorphism of irre-
ducible foliated manifolds with rankF = dimB. The following are equiva-
lent.

(a) KPπ splits in FMn.

(b) π is Galois in FMn.

(c) There is a Lie groupG acting onM such that π is a principalG-bundle
and L is a G-invariant connection.

(d) The above, with a unique G.

In such a case G is Aut(B,TB)(M,F).
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Proof. Cases (a) and (c) are equivalent from the very definition of splitting
action. It is also clear that (b) and (d) are equivalent. It remains to prove that
(c) implies (d). Let us consider two principal structures β : M × H → M
and α : M ×G→M such that F is simultaneously G and H-invariant. Let
us see that these actions are conjugated by a Lie group isomorphism.

Let L be a dense leaf in M . We consider in L its intrinsic structure as
smooth manifold, so that the projection L → B is an étale map with arc-
connected Hausdorff domain. Let us note that M and B are necessarily con-
nected. Let x be any point of L; there is a unique h ∈ H such that α(x, g) =
β(x, h). Let L′ be the leaf of F passing through α(x, g) = β(x, h). Let us
denote Rα

g and Rβ
h the right translations by g and h respectively. Then, Rα

g |L
and Rβ

h|L are homeomorphisms of L into L′ that project onto the identity on
B. They coincide on the point x, and thus they are the same, Rα

g |L = Rβ
h|L.

Maps Rα
g and Rβ

h are smooth and they coincide along the dense subset L,
thus they are equal. Finally, the map G → H that assigns to each g the
only element h such that α(x, g) = β(x, h) is a group isomorphism. It is
defined by composing and inverting smooth maps, so that, it is a Lie group
isomorphism conjugating the actions α and β.

Moreover, the same argument proves that any automorphism
ϕ ∈ Aut(B,TB)(M,F) must be a translation by an element of G.

The same idea can be generalized to the case in which the foliated struc-
ture of the basis is not trivial, but irreducible. Let π : M → B be a manifold
submersion, and D a foliation in M . Let us recall that a flat D-connection
(or a flat partial connection in the direction of D) is a foliation F in M that
for all p ∈ M the differential dpπ maps Fp isomorphically onto Dp. Note
that a flat Ehresmann connection is the same that a flat TB-connection.

As in Proposition 4.1 if π : (M,F) → (B,D) is an submersion of foli-
ated manifolds with rankF = rankD then F is a flat D-connection.

Theorem 4.3. Let π : (M,F) → (B,D) be a epimorphism of irreducible
foliated manifolds with rankF = rankD. The following are equivalent.

(a) KPπ splits in FMn.

(b) π is Galois in FMn.
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(c) There is a Lie groupG acting onM such that π is a principalG-bundle
and D is a D-partial G-invariant connection.

(d) The above, with a unique G.

In such a case G is Aut(B,D)(M,F).

Proof. Let us consider L a dense leaf of F . Then π(L) is a dense leaf of D.
We may proceed as in the proof of Proposition 4.2 replacing the role of B
by π(F).

4.2 Galois correspondence

From now on let π : (M,F)→ (B,D) be a Galois submersion of irreducible
foliated manifolds with rankF = rankD with Galois groupG. Let us check
that we are under the hypothesis of Theorem 2.11.

Proposition 4.4. Any object subgroupoid of the action groupoidGn(M,F)
is of the form H n (M,F) with H a Lie subgroup of G.

Proof. Let (G,D′) ⇒ (M,D) be a subgroupoid object of the action groupoid.
Then G is a Lie subgroupoid of G nM and if (g, p) ∈ G implies that the
{g} × Lp ⊂ G where Lp is the leaf of F through p.

Let L be a dense leaf of F . Note that for any g ∈ G and p ∈M the poinf
(g, p) is an accumulation point of {g} × L. Therefore if (g, p) ∈ G implies
{g} × L ⊆ G and therefore {g} ×M ⊆ G. It follows that G = S ×M for
some submanifold S ⊆ G. From the groupoid composition and inversion it
follows that S = H a Lie subgroup of G.

By a G-manifold we mean a manifold X endowed with a left action of
G. To any G-manifold X it corresponds an associated bundle with fiber X ,

M ×G X → B

defined as the quotient of the direct product M × X by the equivalence
relation (pg, x) ∼ (p, gx) for all p ∈ M , g ∈ G, x ∈ X . The G-invariant
D-connection induces an associated D-connection F ×G 0X which is the
projection on M ×G X of the direct product F ×G 0X . We have that,

(M ×G X,F ×G 0X)→ (B,D)
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is an epimorphism of foliated manifolds and F × 0X is a flat Ehresmann
D-connection. In particular if H is a Lie subgroup of G and X = G/H is
an homogeneous G-space we have,

M ×G (G/H) = M/H

and the induced associated D-connection is just the projection of F onto
M/H . Therefore, in this case, Theorem 2.11 gives us a Galois correspon-
dence between Lie subgroups of G and associated D-connections in associ-
ated bundles whose fibers are homogeneous G-spaces.

4.3 Galois structures over (B,D)

Let us discuss Galois structures in the relative category FMn(B,D) whose
objects are smooth maps of foliated manifolds (Z,DZ)→ (B,D). A group
bundle G → B is a smooth bundle by Lie groups, where composition,
inversion and identity depends smoothly on the base point. A group D-
connection inG→ B is aD-connectionD inG such that leaves are compati-
ble with composition. Linear bundles and linear D-connections are the most
usual examples of group bundles and group connections. Group bundles
over B endowed with group D-connections are group objects in FMn(B,D).
They are the smooth geometric counterpart of differential algebraic groups
of finite dimension discussed by Buium in [5].

In the case of trivial foliated structure in the basis, group objects are
locally Lie groups after change of basis, as the following result explains.

Proposition 4.5. Let B be simply connected, and q : (G,L) → B a group
bundle with group connection (and therefore a group object in FMn(B,TB)).
Let x be a point inM andGx the fiber ofG over x, then (G,L) ' (Gx, {0})×
(B, TB).

Proof. The argument is local, so we have to see that for each x ∈ B there is
a neighborhood U of x such that (G|U ,L|U) ' (Gx, {0})× (U, TU). If this
is the case, for each homotopy class of a path γ connecting x and y in B we
have a group isomorphism γ∗ : Gx → Gy. If B is simply connected, those
homotopy classes are unique for each y and the isomorphisms γ∗ give us the
trivialization of the group connection.
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In fact, there are neighborhoods U of x in B, Vx of ex (the identity ele-
ment) in Gx, and V of ex in G, and a decomposition V ' U × Vx, such that
the horizontal leaves of L in V have the form {gx} × U for fixed g ∈ Vx.

Let us see that, for each hx ∈ Gx the leaf F of L that passes through hx
projects onto U . We may also assume that we take U small enough so that
each connected component of G|U contains exactly one connected compo-
nent ofGx. Let y be an accumulation point of q(F) inside U . Let us consider
hy an element in Gy in the same connected component of G|U than hx. Then
there is a leaf F ′ of L|U passing through hx. Let U ′ be q(F ′) which is an
open subset that intersects q(F). By successive composition of F ′ with the
leafs of L in V |U ′ we have that the connected component of G|′U containing
hy decomposes in leaves of L. In particular, F ∩ G|U ′ is part of a leaf of
such a decomposition. Finally, y ∈ q(F). We have seen that q(F) is an open
subset that contains all its accumulation points inside U , so that q(F) = U .
Thus, G|U decomposes in leaves of L.

For the non-simply connected case, the classification of group connec-
tions may follow a similar path to the classification of linear connections.
Classes of group connections may be given by classes of representations of
the fundamental group Π1(x,B) into the group Aut(Gx) of automorphisms
of the fiber. In the case of simply connectedB there is no distinction between
Galois structures in FMn or in FMn(B,TB).

Corollary 4.6. LetB be simply connected and let π : (M,L)→ (B, TB) be
a submersion of foliated manifolds with rankL = dim B. Then KPπ splits
in FMn if and only if it splits in FMn(B,TB).

In the non-simply connected case, non trivial irreducible linear connec-
tions give us examples of splitting actions in the relative category. For in-
stance, we may take, B = S1 × S1. We take G = R × B and D =
〈∂θ + u∂u, ∂φ + αu∂u〉 where u is the coordinate in R and α is an irra-
tional number. Then, we have (G,D) → (B, TB) is a group bundle with
an irreducible group connection, locally isomorphic to the trivial additive
bundle. The action of G on itself is an splitting action in FMn(B,TB).
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4.4 Foliated complex algebraic varieties

Let FVar be the category of complex regular foliated varieties. Objects are
(M,D) where M is a complex variety and D is an involutive Zariski closed
linear subbundle of TM . A foliated variety is called irreducible if it has a
Zariski dense leaf, or equivalently, it does not have rational first integrals
(except locally constant functions). Group objects in FVar are complex
algebraic groups.

In this category, we can state Galois theory exactly in a way totally anal-
ogous to what has been done in FMn.

Theorem 4.7. Let π : (M,F) → (B,D) be a submersion of irreducible
foliated varieties with rankF = rankD. The following are equivalent.

(a) KPπ splits FVar.

(b) π is Galois in FVar.

(c) There is an algebraic group G acting on M such that π is a principal
G-bundle and D is a D-partial G-invariant connection.

(d) The above, with a unique G.

In such a case G is Aut(B,D)(M,L).

Proof. Totally analogous to the proofs given in Proposition 4.2 and Theorem
4.3.

It is interesting to make the connection of this Galois theory with differ-
ential algebra. Let us fix π : (M,L) → (B,D) a Galois submersion of irre-
ducible foliated varieries with Galois group G and rankF = rankD = r.
Let us note that, by elimination, it is always possible to find a system of com-
muting rational vector fields ~D1, . . . , ~Dr that span D on the generic point of
B. Let us fix ∆B = ( ~D1, . . . , ~Dr). We have that the field of rational func-
tions (C(B),∆B) is a differential field whose field of constants is C.

The D-connection F induce lifts of the rational vector fields ~Dj to F-
horizontal rational vector fields ~Fi in M that span F on the generic point of
M . We set ∆M = (~F1, . . . , ~Fm) so that (C(M),∆M) is also a differential
field whose field of constants is C. Since the projection of ~Fj is ~Dj we have
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that π∗ : (C(B),∆B) ↪→ (C(M),∆M) is an differential field extension. We
have the following geometric characterization of strongly normal extensions
due to Bialynicki-Virula.

Proposition 4.8 ([3], in [4] p. 18). Let (K,∆) ↪→ (F,∆′) be a differential
field extension with K relatively algebraically closed in F and algebraically
closed field of constants C = K∆ = F∆′ . The following are equivalent:

1. It is strongly normal in the sense of Kolchin.

2. There are a connected algebraic group G over C and a K-variety W
such that:

(a) W is a principal homogeneous space modeled over GK = G×C
Spec(K).

(b) The field of rational functions in W is F .

(c) The group G acts faithfully on F by differential automorphisms
fixing K.

Moreover the pair (G,W ) is uniquely determined up to isomorphism and we
have G(C) = Aut∆(F/K).

This geometric characterization immediately yields the following.

Proposition 4.9. Let π : (M,L) → (B,D) a Galois submersion of irre-
ducible foliated varieries with Galois group G, and ∆B, ∆M as above. As-
sume any of the following equivalent hypothesis:

1. C(B) is relatively algebraically closed in C(M);

2. π : M → B has connected fibers;

3. G is connected.

The differential field extension:

π∗ : (C(B),∆B) ↪→ (C(M),∆M)

is a strongly normal extension in the sense of Kolchin with Galois group G.
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Proof. Let us consider: MB = M×B SpecC(B) andGB = M×C SpecC(B)
as C(B)-varieties. The splitting isomorhism:

M ×C G
∼−→M ×B M

changes of basis to an isomorphism of C(B)-varieties,

MB ×C(B) GB
∼−→MB ×C(B) MB

And therefore MB is a principal homogenous space over GB. The field of
rational functions in MB is also C(M). For any g ∈ G we have a field
automorphism,

R∗g : C(M)→ C(M)

that fixes C(B) and the derivations ~Fj in ∆M . This gives an inclusion,

G→ Aut∆(C(M)/C(B)), g 7→ R∗g

and we conclude by Bialynicki-Virula’s Proposition 4.8.

Remark 4.10. The applications to differential algebra seem to go further.
There have been several generalizations of differential Galois theory theory
[26, 6] and a geometric characterization of strongly normal extensions [21,
22] which is very much in the flavour of Definition 2.7. We expect upcoming
research clarifying how all those theories relate with the framework proposed
here.
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de Liouville. Éditions Jaques Gabay, 1989.

[13] C. GREITHER AND B. PAREIGIS. Hopf Galois theory for separable
field extensions. Journal of Algebra 106(1) (1987) 239–258.

[14] A. GROTHENDIEK ET AL. SGA1 Revêtements étales et groupe fonda-
mental, 1960–1961. Lecture Notes in Mathematics 224. Springer Ver-
lag, 1971.

[15] G. JANELIDZE. Pure Galois theory in Categories. Journal of Algebra
132 (1990) 270–286.

[16] P. T. JONHSTONE. Topos Theory. Academic Press, (1977).

[17] A. JOYAL AND M. TIERNEY. An extension of the Galois Theory of
Grothendieck. Memoirs of the American Mathematical Society 151
(1984).

[18] M. KASHIWARA, P. SCHAPIRA. Categories and sheaves. Grundlehren
der mathematischen Wissenschaften 332. Springer Verlag, 2005.

[19] A. KHOVANSKII. Topological Galois Theory. Springer Verlag, 2014.

[20] E. R. KOLCHIN. Differential Algebra and Algebraic Groups. Aca-
demic Press, 1973.

[21] J. J. KOVACIC. The differential Galois theory of strongly normal ex-
tensions. Trans. Am. Math. Soc. 355(11) (2003) 4475–4522.

[22] J. J. KOVACIC. Geometric Characterization of Strongly Normal Exten-
sions. Trans. Am. Math. Soc. 358(9) (2006)4135–4157.

[23] P. LANDESMAN. Generalized differential Galois theory. Trans. Amer.
Math. Soc. 360 (2008) 4441–4495.

[24] A. R. MAGID. Galois groupoids. Journal of Algebra 18 (1971) 89-102.

[25] M. VAN DER PUT AND M. F. SINGER. Galois Theory of Linear Dif-
ferential Equations. Springer Verlag, 2003.

23
- 472 -
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