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POLYNOMIALS AS SPANS

Ross STREET ∗

Résumé. L’article définit les polynômes dans une bicatégorie M . Les poly-
nômes dans les bicatégories SpnC des spans dans une catégorie finiment
complète C coïncident avec les polynômes dans C comme définis par Nicola
Gambino et Joachim Kock, et par Mark Weber. Lorsque M est calibré, nous
obtenons une autre bicatégorie PolyM . Nous démontrons que les polynômes
dans M ont des représentations comme pseudofoncteurs M op Ñ Cat. En
utilisant des tabulations, nous produisons des calibrations pour la bicatégorie
des relations dans une catégorie régulière et pour la bicatégorie des distribu-
teurs entre catégories, en fournissant ainsi de nouveaux exemples de bicaté-
gories de “polynômes”.
Abstract. The paper defines polynomials in a bicategory M . Polynomi-
als in bicategories SpnC of spans in a finitely complete category C agree
with polynomials in C as defined by Nicola Gambino and Joachim Kock,
and by Mark Weber. When M is calibrated, we obtain another bicategory
PolyM . We see that polynomials in M have representations as pseudofunc-
tors M op Ñ Cat. Using tabulations, we produce calibrations for the bicat-
egory of relations in a regular category and for the bicategory of two-sided
modules (distributors) between categories thereby providing new examples
of bicategories of “polynomials”.
Keywords. span; partial map; powerful morphism; polynomial functor; ex-
ponentiable morphism; calibrated bicategory; right lifting.
Mathematics Subject Classification (2010). 18C15, 18D05, 18C20, 18F20.
∗The author gratefully acknowledges the support of Australian Research Council Dis-

covery Grants DP160101519 and DP190102432.
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R. STREET POLYNOMIALS AS SPANS

1. Introduction

Polynomials in an internally complete (= “locally cartesian closed”) cate-
gory E were shown by Gambino-Kock [9] to be the morphisms of a bicate-
gory. Weber [30] defined polynomials in any category C with pullbacks and
proved they formed a bicategory. While both these papers are quite beau-
tiful and accomplish further advances, I felt the need to better understand
the composition of polynomials. Perhaps what I have produced is merely a
treatment of polynomials for bicategory theorists.

The starting point was to view polynomials as spans of spans so that
composition could be viewed as the more familiar composition of spans us-
ing pullbacks; see Bénabou [3]. A polynomial from X to Y in a category C
is a diagram of the shapeX m2

ÐÝÝ E
m1
ÝÝÑ S

p
ÝÑ Y withm2 a powerful (= expo-

nentiable) morphisms in C . Such diagrams can be thought of as generalizing

spans: a span X
pm2,S,pq
ÝÝÝÝÝÑ Y amounts to the case where E “ S and m1 is

the identity. Our simple idea was to make the diagram more complicated by
including an identity thus:

X
m2
ÐÝÝ E

m1
ÝÝÑ S

1S
ÐÝ S

p
ÝÑ Y ,

resulting in a span

X
pm1,E,m2q
ÐÝÝÝÝÝÝ S

p1S ,S,pq
ÝÝÝÝÑ Y

of spans from X to Y .
Of course, the bicategory of spans does not have all bicategorical pull-

backs. Fortunately, polynomials are not general spans and sufficient pull-
backs can be constructed. Indeed, that is what Weber’s distributivity pull-
backs around a pair of composable morphisms in C construct. That con-
struction requires the use of powerful morphisms in C . Here we define a
morphism in a bicategory to be a right lifter when every morphism into its
codomain has a right lifting through it. For spans in C to be right lifters, one
leg must be powerful.

We introduce the term calibration for a class of morphisms, called neat,
in a bicategory; the technical use of this word comes from Bénabou [4] who
used it for categories. A bicategory with a distinguished calibration is called
calibrated. Polynomials in a calibrated bicategory M are spans with one

- 114 -



R. STREET POLYNOMIALS AS SPANS

leg a right lifter and the other leg neat. This suffices for the construction
of a tricategory [10] of polynomials in M in which all the 3-morphisms
are invertible. However, for two reasons, we decided to centre attention
here on the bicategory PolyM obtained by taking isomorphism classes of
2-morphisms. One reason is that it covers our present examples, the other
is the possibility of iterating the construction without moving to higher level
categories.

A polynomic bicategory M is one in which the neat morphisms are all
the groupoid fibrations (see Section 3) in M . We prove that SpnC is poly-
nomic for any finitely complete C . In this case the polynomials are the
polynomials in C in the sense of Weber [30].

The bicategory RelE of relations in a regular category E is calibrated
by morphisms which are isomorphic to graphs of monomorphisms in E . In
Example 10.3 for E a topos, we give a reinterpretation of the bicategory of
polynomials in RelE as a Kleisli construction.

By providing a calibration for the bicategory Mod of two-sided modules
between categories, we obtain another example. Again, in Example 10.6, we
give a reinterpretation of the bicategory of polynomials in Mod as a Kleisli
construction.

It must be pointed out that the meaning of polynomial in a bicategory
is different from the meaning in Section 4 of Weber [30] which is about
polynomials in 2-categories. Weber is dealing with the 2-category as a Cat-
enriched category, taking the polynomials to be diagrams of the same shape
as in the case of ordinary categories, and accommodating the presence of
2-cells. In particular, if a category is regarded as a 2-category with only
identity 2-cells, then his polynomials in the 2-category are just polynomials
in the category. To define a polynomial, in the sense of this paper, in such
a 2-category would require the specification of a calibration on the category
and then a polynomial would reduce to a single morphism (called “neat”) in
that calibration.

I am grateful to the Australian Category Seminar, especially Yuki Mae-
hara, Richard Garner, Michael Batanin and Charles Walker, for comments
during and following my talks on this topic. I am also particularly grateful
to the diligent and insightful referee for suggesting important improvements,
mainly that I should add the detail to the previously vaguely expressed Ex-
amples 10.3 and 10.6; there are some facts involved that may be unfamiliar.
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R. STREET POLYNOMIALS AS SPANS

2. Bipullbacks and cotensors

Recall that the pseudopullback (also called iso-comma category) of two
functors C

F
ÝÑ E

P
ÐÝ D is the category F {psP whose objects pC, α,Dq

consist of objects C P C and D P D with α : FC
–
ÝÑ PD, and whose mor-

phisms pu, vq : pC, α,Dq Ñ pC 1, α1, D1q consist of morphisms u : C Ñ C 1

in C and v : D Ñ D1 in D such that pPvqα “ α1pFuq. We have a universal
square of functors

F {psP

cod
� �

dom // D

F
��

ks ξ
–

C
P

// E

(2.1)

containing an invertible natural transformation ξ.
A square

P

c
��

d // A

n
��

ks θ
–

B p
// C

(2.2)

in a bicategory A is a bipullback of the cospan A n
ÝÑ C

p
ÝÑ B when, for all

objects K of A , the induced functor

A pK,P q ÝÑ A pK,nq{psA pK, pq , u ÞÑ pdu, θu, cuq ,

is an equivalence of categories.
In a bicategory A , we writeA2 for the (bicategorical) cotensor (or power)

of A with the ordinal 2; this means that the category A pK,A2q is equivalent
to the arrow category of A pK,Aq, pseudonaturally in K P A . The identity
morphism in A pA2, A2q corresponds to a morphism (arrow)

A2

c

77

d

''
óλ A

in A pA2, Aq.

Example 2.1. For A “ V -Cat in the sense of [14], the V -category A2 is
the usual arrow V -category.
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R. STREET POLYNOMIALS AS SPANS

Example 2.2. Recall (from [5] for instance) the definition of the bicate-
gory V -Mod of V -categories and their modules for a nice symmetric closed
monoidal base category V . The objects are V -categories. The homcate-
gories are defined to be the V -functor categories

V -ModpA,Bq “ rBop
b A,V s

whose objects m : Bop b A Ñ V are called modules from A to B. Com-
position is defined by the coends pn ˝ mqpc, aq “

şb
mpb, aq b npc, bq. Let

I˚2 denote the free V -category on the category 2. The cotensor of the V -
category A with the ordinal 2 in the bicategory V -Mod is the V -category
pI˚2q

op b A. This is because of the calculation

V -ModpK, pI˚2q
op
b Aq “ rI˚2b A

op
bK,V s

– rAop
bK,V 2

s

– rAop
bK,V s2

– V -ModpK,Aq2 .

Let B0 : 1 Ñ 2 be the functor 0 ÞÑ 1; it is right adjoint to ! : 2 Ñ 1. It
follows that c : A2 Ñ A in V -Mod is ppI˚!qop b Aq˚ : pI˚2q

op b A Ñ A.
In particular, when V “ Set, c is the module pr2 ˚ induced by the second
projection functor 2op ˆ AÑ A.

Remark 2.3. The phenomenon described in Example 2.2 has to do with the
fact that the pseudofunctor p´q˚ : V -Cat Ñ V -Mod, taking each V -functor
f : A Ñ B to the module f˚ : A Ñ B with f˚pb, aq “ Bpb, faq, preserves
bicolimits and V -Mod is self dual.

3. Groupoid fibrations

Let p : E Ñ B be a functor. A morphism χ : e1 Ñ e inE is called cartesian1

for p when the square (3.3) is a pullback for all k P E.

Epk, e1q
Epk,χq

//

p

��

Epk, eq

p

��

Bppk, pe1q
Bppk,pχq

// Bppk, peq

(3.3)

1Classically called “strong cartesian”
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Note that all invertible morphisms in E are cartesian. If p is fully faithful
then all morphisms of E are cartesian.

We call the functor p : E Ñ B a groupoid fibration when

(i) for all objects e P E and morphisms β : b Ñ pe in B, there exist a
morphism χ : e1 Ñ e in E and isomorphism b – pe1 whose composite
with pχ is β, and

(ii) every morphism of E is cartesian for p.

From the pullback (3.3), it follows that groupoid fibrations are conservative
(that is, reflect invertibility).

We call the functor p : E Ñ B an equivalence relation fibration or er-
fibration when it is a groupoid fibration and the only endomorphisms ξ :
x Ñ x in E which map to identities under p are identities. It follows (using
condition (ii)) that p is faithful. Note that if p is an equivalence then it is an
er-fibration.

Write GFibB for the 2-category whose objects are groupoid fibrations
p : E Ñ B, and whose hom categories are given by the following pseudop-
ullbacks.

GFibBpp, qq

��

// rE,F s

rE,qs

��

ks –

1
rps

// rE,Bs

(3.4)

So objects of GFibBpp, qq are pairs pf, φq where f : E Ñ F is a functor
and φ : qf ñ p is an invertible natural transformation. If φ is an identity
then pf, φq is called strict.

Let Gpd be the 2-category of groupoids, functors and natural transfor-
mations. Write HompBop,Gpdq for the 2-category of pseudofunctors (=
homomorphisms of bicategories [3]) T : Bop Ñ Gpd, pseudo-natural trans-
formations, and modifications [16].

Recall that the Grothendieck construction pr : oT Ñ B on a pseud-
ofunctor T : Bop Ñ Gpd is the projection functor from the category oT
whose objects are pairs pt, bq with b P B and t P Tb, and whose mor-
phisms pτ, βq : pt, bq Ñ pt1, b1q consist of morphisms β : b Ñ b1 in B
and τ : t Ñ pTβqt1 in Tb. This construction is the object assignment for a
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R. STREET POLYNOMIALS AS SPANS

2-functor

o : HompBop,Gpdq ÝÑ GFibB (3.5)

which actually lands in the sub-2-category of strict morphisms. Note that the
pullback

Tb //

��

oT
pr

��

1
rbs

// B

is also a bipullback (see [12]); this suggests that we can reconstruct a pseud-
ofunctor T from a groupoid fibration p : E Ñ B by defining Tb to be the
pseudopullback of rbs : 1Ñ B and p.

Proposition 3.1. The 2-functor (3.5) is a biequivalence.

A category which is both a groupoid and a preorder is the same as an
equivalence relation; that is, a set of objects equipped with an equivalence
relation thereon. Let ER be the 2-category of equivalence relations, functors
and natural transformations. Note that the 2-functor Set Ñ ER taking each
set to the identity relation is a biequivalence. Write ERFibB for the full
sub-2-category of GFibB with objects the er-fibrations.

Proposition 3.2. The biequivalence (3.5) restricts to a biequivalence

o : HompBop,ERq
„
ÝÑ ERFibB ,

and so further restricts to a biequivalence

rBop, Sets
„
ÝÑ ERFibB .

Let E and B be bicategories. Baklović [2] and Buckley [6] say that a
morphism x : Z Ñ X in E is cartesian for a pseudofunctor P : E Ñ B
when the following square is a bipullback in Cat for all objects K of E .

E pK,Zq

P
��

E pK,xq
// E pK,Xq

P
��

ks –

BpPK,PZq
BpPK,Pxq

//BpPK,PXq

(3.6)
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R. STREET POLYNOMIALS AS SPANS

A 2-cell σ : x1 ñ x : Z Ñ X in E is called cartesian for P when it
is cartesian (as a morphism of E pZ,Xq) for the functor P : E pZ,Xq Ñ
BpPZ, PXq. Note that all equivalences are cartesian morphisms and all
invertible 2-cells are cartesian.

Definition 3.3. A pseudofunctor P : E Ñ B is a groupoid fibration when

(i) for all X P E and f : B Ñ PX in B, there exist a morphism x :
Z Ñ X in E and an equivalence B » PZ whose composite with Px
is isomorphic to f ,

(ii) every morphism of E is cartesian for P , and

(iii) every 2-cell of E is cartesian for P .

A morphism p : E Ñ B in a tricategory T is called a groupoid fibration
when, for all objects K of T , the pseudofunctor T pK, pq : T pK,Eq Ñ
T pK,Bq is a groupoid fibration between bicategories.

Definition 3.4. A pseudofunctor F : A Ñ B is called conservative when

(a) if Ff is an equivalence in B for a morphism f in A then f is an
equivalence;

(b) if Fα is an isomorphism in B for a 2-cell α in A then α is an isomor-
phism.

A morphism f : A Ñ B in a tricategory T is conservative when, for all
objects K of T , the pseudofunctor T pK, fq : T pK,Aq Ñ T pK,Bq is
conservative.

Proposition 3.5. Groupoid fibrations are conservative.

Proof. If Px is an equivalence, we see from the bipullback (3.6) that each
functor E pK, xq is too. Since these equivalences can be chosen to be adjoint
equivalences, they become pseudonatural in K and so, by the bicategorical
Yoneda Lemma [23], are represented by an inverse equivalence for x. This
proves (a) in the Definition of conservative. Similarly, for (b), look at the
pullback (3.3) for the functor p “ pE pZ,Xq P

ÝÑ BpPZ, PXqq.
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R. STREET POLYNOMIALS AS SPANS

For a pseudofunctor P : E Ñ B between bicategories, write B{P for
the bicategory whose objects are pairs pB f

ÝÑ PE,Eq, where E is an object
of E and f : B Ñ PE is a morphism of B, and whose homcategories are
defined by pseudopullbacks

B{P ppf, Eq, pf 1, E 1qq

d

��

c // E pE,E 1q

P
��

BpPE, PE 1q–��

Bpf,1q
��

BpB,B1q
Bp1,f 1q

//BpB,PE 1q

(3.7)

Write E {E for B{P in the case P is the identity pseudofunctor of E . There
is a canonical pseudofunctor JP : E {E Ñ B{P taking the object pX u

ÝÑ

E,Eq to pPX Pu
ÝÝÑ PE,Eq.

Proposition 3.6. The pseudofunctor P : E Ñ B between bicategories sat-
isfies condition (i) in the Definition 3.3 of groupoid fibration if and only if
JP : E {E Ñ B{P is surjective on objects up to equivalence. Also, P : E Ñ
B satisfies condition (ii) if and only if the effect of JP : E {E Ñ B{P on
homcategories is an equivalence. Condition (iii) is automatic if all 2-cells in
E are invertible.

Example 3.7. Each biequivalence of bicategories is a groupoid fibration.

Example 3.8. Let H be an object of the bicategory B. Write B{H for the
bicategory B{P where P is the constant pseudofunctor 1 Ñ B at H . The
“take the domain” pseudofunctor

dom : B{H Ñ B (3.8)

is a groupoid fibration. For, it is straightforward to see that the canonical
pseudo-functor pB{Hq{pB{Hq Ñ B{dom is a biequivalence, so it remains
to prove each 2-cell

σ : pg, ψq ñ pf, φq : pA
a
ÝÑ Hq Ñ pB

b
ÝÑ Hq
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in B{H is cartesian for (3.9). The condition for a 2-cell is pbσqψ “ φ. Take
another 2-cell τ : ph, θq ñ pf, φq in B{H (so that pbτqθ “ φ) and a 2-cell
υ : h ñ g in B such that συ “ τ . Then we have pbσqpbυqθ “ pbσυqθ “
pbτqθ “ φ “ pbσqψ with bσ invertible. So pbυqθ “ ψ. We conclude that
υ : ph, θq ñ pg, ψq is a 2-cell in B{H , as required.

Note that (3.8) is not a local groupoid fibration in general; that is, the
functor doma,b : B{HpA

a
ÝÑ H,B

b
ÝÑ Hq Ñ BpA,Bq is generally not a

groupoid fibration.

Example 3.9. Apparently more generally, let f : H Ñ K be a morphism in
the bicategory B. Write

f˚ : B{H Ñ B{K (3.9)

for the pseudofunctor which composes with f . On applying Example 3.8
with B and H replaced by B{K and H

f
ÝÑ K, up to biequivalence we

obtain this example.

Proposition 3.10. Up to biequivalence, pseudofunctors of the form (3.8)
are precisely the groupoid fibrations P : E Ñ B for which the domain
bicategory has a terminal object. Moreover, if such a P has a left biadjoint,
it is a biequivalence.

Proof. Let T be a terminal object of E . Make a choice of morphism !E :
E Ñ T for each object E of E . Then the pseudofunctor

ĴP : E ÝÑ B{PT , E ÞÑ pPE
P !E
ÝÝÑ PT q

is a biequivalence over B; it is a tripullback of the biequivalence JP along
the canonical B{PT Ñ B{P . So P is biequivalent to (3.8) with H “ PT .

For the second sentence, if we suppose the dom of (3.8) has a left biad-
joint then it preserves terminal objects. The bicategory B{H has the termi-
nal object 1H : H Ñ H . So H “ dompH

1H
ÝÑ Hq is terminal in B. So dom

is a biequivalence.

4. Spans in a bicategory

Spans in a bicategory A with bipullbacks (= iso-comma objects) will be
recalled; compare [23] Section 3.
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A span from X to Y in the bicategory A is a diagram X
u
ÐÝ S

p
ÝÑ Y ; we

write pu, S, pq : X Ñ Y . The composite of X u
ÐÝ S

p
ÝÑ Y and Y v

ÐÝ T
q
ÝÑ Z

is obtained from the diagram

P
pr1

��

pr2

��

S –
ðù

u

��

p

��

T
v

��

q

��

X Y Z

(4.10)

(where P is the bipullback of p and v) as the span X
upr1
ÐÝÝ P

qpr2
ÝÝÑ Z. A

morphism pλ, h, ρq : pu, S, pq Ñ pu1, S1, p1q of spans is a morphism h : S Ñ
S 1 in M equipped with invertible 2-cells as shown in the two triangles below.

S

h
��

u

xx

p

& &

λ–
ð

ρ–
ð

X S1
u1

oo

p1
// Y

(4.11)

A 2-cell σ : h ñ k : pu, S, pq Ñ pu1, S1, p1q between such morphisms is a
2-cell σ : hñ k : S Ñ S 1 in M which is compatible with the 2-cells in the
triangles in the sense that λ “ λ1.u1σ and ρ1 “ p1σ.ρ. We write SpnA pX, Y q
for the bicategory of spans from X to Y .

Composition pseudofunctors

SpnA pY, Zq ˆ SpnA pX, Y q ÝÑ SpnA pX,Zq

are defined on objects by composition of spans (4.10) and on morphisms by
using the universal properties of bipullback.

In this way, we obtain a tricategory SpnA . The associator equivalences
are obtained using the horizontal and vertical stacking properties of pseudop-
ullbacks. The identity span on X has the form p1X , X, 1Xq and the unitor
equivalences are obtained using the fact that a pseudopullback of the cospan
X

f
ÝÑ Y

1Y
ÐÝ Y is given by the span X 1X

ÐÝ X
f
ÝÑ Y equipped with the

canonical isomorphism 1Y f – f – f1X in A .
For e : X Ñ Y in A , let e˚ “ p1X , X, fq : X Ñ Y . Notice that

e˚ “ pe,X, 1Xq : Y Ñ X is a right biadjoint for e˚ in the tricategory
SpnA .
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Proposition 4.1. Let A be a finitely complete bicategory. The following
conditions on a span pu, S, pq from X to Y in A are equivalent:

(i) the morphism pu, S, pq : X Ñ Y has a right biadjoint in the tricate-
gory SpnA ;

(ii) the morphism u : S Ñ X is an equivalence in A ;

(iii) the morphism pu, S, pq : X Ñ Y is equivalent in SpnA to f˚ for some
morphism f in A ;

(iv) the morphism pu, S, pq : X Ñ Y is a groupoid fibration in the tricate-
gory SpnA .

Proof. The equivalence of (i), (ii) and (iii) is essentially as in the case where
A is a category; see [7]. We will prove the equivalence of (ii) and (iv). Put
S “ SpnA to save space. Using Proposition 3.10 and the fact that the span
K

pr1
ÐÝÝ KˆX

pr2
ÝÝÑ X is a terminal object in the bicategory SpK,Xq, we see

that the pseudofunctor PK :“ SpK,Xq
SpK,p˚u˚q
ÝÝÝÝÝÝÑ SpK,Y q is a groupoid

fibration if and only if the canonical pseudofunctor JPK in the diagram (4.12)
is a biequivalence.

SpK,Xq
SpK,u˚q

xx

JPK

**

» +3

SpK,Sq
JSpK,p˚q

// SpK,Y q{ppr1, K ˆ S, ppr2q

(4.12)

However, we see easily that JPK does factor up to equivalence as shown in
(4.12) where JSpK,p˚q is a biequivalence. So p˚u˚ : X Ñ Y is a groupoid
fibration if and only if SpK, u˚q is a biequivalence for all K; that is, if and
only u is an equivalence in A .

Remark 4.2. (a) In fact (ii) implies (iv) in Proposition 4.1 requires no
assumption on the bicategory A . For, it is straightforward to check
(compare Example 3.9) that p˚ : SpnA pK,Sq Ñ SpnA pK,Y q is a
groupoid fibration for all K; this does not even require bipullback in
A since we only need the hom bicategories of SpnA .
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(b) Given that p˚ is a groupoid fibration, we can prove the converse (iv)
implies (ii) by noting that p˚u˚ is a groupoid fibration if and only if
u˚ is (compare (i) of Proposition 5.2). So, provided SpnA pK,Y q has
a terminal object (as guaranteed by the finite bicategorical limits in
A ), we deduce that u˚ is a biequivalence using Proposition 3.10 and
u˚ % u˚.

Remark 4.3. If C is a finitely complete category (regarded as a bicategory
with only identity 2-cells) then the tricategory SpnC has only identity 3-
cells; it is a bicategory. We are interested in spans in such a bicategory
A “ SpnC . The problem is that bipullbacks do not exist in this kind of A
in general. Hence we must hone our concepts to restricted kinds of spans in
A .

5. More on bipullbacks and groupoid fibrations

In Section 4, we defined groupoid fibrations in a tricategory. This applies in a
bicategory A regarded as a tricategory by taking only identity 3-cells. Then
the 2-cells in each A pA,Bq are invertible (identities in fact) so condition
(iii) of Definition 3 is automatic.

Proposition 5.1. Suppose p : E Ñ B is a morphism in a bicategory A for
which E2 and B2 exist. Then p : E Ñ B is a groupoid fibration in A if and
only if the square

E2

p2

��

c // E

p

��

ks –

B2
c

// B

is a bipullback.

Proof. Since all concepts are defined representably, it suffices to check this
for the bicategory A “ Cat where the bipullback of c and p is the comma
category B{p. So the square in the Proposition is a bipullback if and only if
the canonical functor jp : E2 Ñ B{p is an equivalence. We have the result
by looking at Proposition 3.6 in the bicategory case.

Proposition 5.2. Suppose A is a bicategory.
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(i) Suppose r – pq with p a groupoid fibration in A . Then r is a groupoid
fibration if and only if q is.

(ii) In the bipullback (2.2) in A , if p is a groupoid fibration then so is d.

(iii) Suppose (2.2) is a bipullback in A and p is a groupoid fibration. For
any square

K

v
��

u // A

n
��

ks ψ

B p
// C

(5.13)

in A with ψ not necessarily invertible, there exists a diagram

K

h
��

v

xx

u

&&

λ
ð

ρ–
ð

B Pc
oo

d
// A ,

(5.14)

(with λ invertible if and only if ψ is) which pastes onto (2.2) to yield ψ.
This defines on objects an inverse equivalence of the functor from the
category of such pλ, h, ρq to the category of diagrams (5.13) obtained
by pasting onto (2.2).

Proof. These are essentially standard facts about groupoid fibrations, es-
pecially (i) and (ii). For (iii) we use the groupoid fibration property of p
to lift the 2-cell ψ : nu ñ pv to a 2-cell χ : w ñ v with an invert-
ible 2-cell ν : nu ñ pw such that ψ “ ppχqν. Now use the bipullback
property of (2.2) to factor the square ν : nu ñ pw as a span morphism
pσ, h, ρq : pw,K, uq Ñ pc, P, dq pasted onto (2.2). Then λ is the composite
of σ and χ.

The next result is related to Proposition 5 of [22].

Proposition 5.3. In the bipullback square (2.2) in the bicategory A , if p is a
groupoid fibration and n has a right adjoint n % u then c has a right adjoint
c % v such that the mate θ̂ : dv ñ up of θ : ndñ pc is invertible.
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Proof. Let ε : nu ñ 1C be the counit of n % u. By the groupoid fibration
property of p, there exists χ : w ñ 1B and an invertible τ : nupñ pw such
that ppχqτ “ εp. By the bipullback property of (2.2), there exists a span
morphism

B

v

��

up

xx

w

&&

λ–
ð

ρ–
ð

A P
d

oo
c

// B

whose pasting onto θ is τ . Then c % v with counit cv
ρ´1

ùùñ w
χ
ùñ 1B and we

see that θ̂ “ ρ is invertible.

Proposition 5.4. Suppose C is a category with pullbacks. Then the pseudo-
functor p´q˚ : C Ñ SpnC takes pullbacks to bipullbacks.

Proof. Let the span pp, P, qq : AÑ B be the pullback of the cospan pf, C, gq
in C . Consider a square

X

pr,T,sq
��

pu,S,vq
// A

f˚
��

ks ψ
–

B g˚
// C

in SpnC . The isomorphism ψ amounts to an isomorphism h : pu, S, fvq Ñ
pr, T, gsq of spans. In particular, fv “ gsh, so, by the pullback property,
there exists a unique t : S Ñ P such that pt “ v and qt “ sh. Then we have
a morphism of spans

X

pu,S,tq
��

pr,T,sq

xx

pu,S,vq

&&

λ–
ð

ρ–
ð

B Pq˚
oo

p˚
// A

in which λ is h : pu, S, qtq Ñ pr, T, sq and ρ is an identity.
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6. Lifters

Let M be a bicategory.
We use the notation

Y

n

��

K

rifpn,uq
88

u
&&

$��

Z

(6.15)

to depict a right lifting rifpn, uq (see [27]) of u through n. The defining
property is that pasting a 2-cell v ùñ rifpn, uq onto the triangle to give a
2-cell nv ùñ u defines a bijection.

A morphism n : Y Ñ Z is called a right lifter when rifpn, uq exists for
all u : K Ñ Z.

Example 6.1. Left adjoint morphisms in any M are right lifters (since the
lifting is obtained by composing with the right adjoint).

Example 6.2. Composites of right lifters are right lifters.

Example 6.3. Suppose M “ SpnC with C a finitely complete category. If
f : AÑ B is powerful (in the sense of [25], elsewhere called exponentiable,
and meaning that the functor C {B Ñ C {A, which pulls back along f , has
a right adjoint Πf ) in C then f˚ : B Ñ A is a right lifter. The formula is
rifpf˚, pv, T, qqq “ pw,U, rq where

pU
pw,rq
ÝÝÝÑ K ˆBq “ Π1Kˆf pT

pv,qq
ÝÝÑ K ˆ Aq .

Example 6.4. Suppose m “ pm1, E,m2q is a morphism in M “ SpnC
with C a finitely complete category. Then m is a right lifter if and only ifm1

is powerful. The previous Examples imply “if”. Conversely, we can apply
the Dubuc Adjoint Triangle Theorem (see Lemma 2.1 of [25] for example)
to see that M pK,m1

˚q has a right adjoint for all K because M pK,mq –
M pK,m2˚qM pK,m1

˚q and the unit of m2˚ % m2
˚ is an equalizer. Taking

K to be the terminal object, we conclude that m1 is powerful.
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Example 6.5. Let E be a regular category and let RelE be the locally or-
dered bicategory of relations in E as characterized in [7]. The objects are the
same as for E and the morphisms pr1, R, r2q : X Ñ Y are jointly monomor-
phic spans X r1

ÐÝ R
r2
ÝÑ Y in E . Let SubX “ RelE p1, Xq be the partially

ordered set of subobjects of X P E . If f : Y Ñ X is a morphism of E
then pulling back subobjects of X along f defines an order-preserving func-
tion f´1 : SubX Ñ SubY whose right adjoint, if it exists, is denoted by
@f : SubY Ñ SubX . A similar analysis as in the span case yields that
pr1, R, r2q : X Ñ Y is a right lifter in RelE if and only if @r1 exists.

Proposition 6.6. Suppose (2.2) is a bipullback in M with p a groupoid fi-
bration. If n is a lifter then so is c and, for all morphisms b : K Ñ B, the
canonical 2-cell

d ˝ rifpc, bq ùñ rifpn, p ˝ bq

is invertible.

Proof. For all K P M , we have a bipullback square

M pK,P q

M pK,cq

��

M pK,dq
//M pK,Aq

M pK,nq

��

ks –

M pK,Bq
M pK,pq

//M pK,Cq

in Cat with M pK, pq a groupoid fibration and M pK,nq % rifpn,´q. By
Proposition 5.3, M pK, cq has a right adjoint, so that c is a lifter, and M pK, dqrifpc,´q –
rifpn,´qM pK, pq. Evaluating this last isomorphism at b we obtain the iso-
morphism displayed in the present Proposition.

7. Distributivity pullbacks

We now recall Definitions 2.2.1 and 2.2.2 from Weber [30] of pullback and
distributivity pullback around a composable pair pf, gq of morphisms in a
category C .

X
p
//

q

��

Z
g
// A

f

��

Y r
// B

(7.16)
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A pullback pp, q, rq around Z g
ÝÑ A

f
ÝÑ B is a commutative diagram (7.16)

in which the span pq,X, gpq is a pullback of the cospan pr, B, fq in C .
A morphism t : pp1, q1, r1q Ñ pp, q, rq of pullbacks around pf, gq is a

morphism t : Y 1 Ñ Y in C such that rt “ r1. For such a morphism,
using the pullback properties, it follows that there is a unique morphism
s : X 1 Ñ X in C such that ps “ p1 and qs “ tq1.2 This gives a category
PBpf, gq. It is worth noting, also using the pullback properties, that the
commuting square qs “ tq1 exhibits the span ps,X 1, q1q as a pullback of the
cospan pq, Y, tq.

The diagram (7.16) is called a distributivity pullback around pf, gq when
it is a terminal object of the category PBpf, gq.

Y

p˚q˚

��

r˚
// B

f˚

��

ks
–

Z g˚
// A

(7.17)

Proposition 7.1. Let Z g
ÝÑ A

f
ÝÑ B be a composable pair of morphisms in a

category C with pullbacks. The diagram (7.16) is a pullback around pf, gq
in the category C if and only if there is a square of the form (7.17) in the
bicategory SpnC . The diagram (7.16) is a distributivity pullback around
pf, gq in C if and only the diagram (7.17) is a bipullback in SpnC .

Proof. Passage around the top and right sides of (7.17) produces the pullback
span of the cospan Y r

ÝÑ B
f
ÐÝ A. Passage around the left and bottom sides

produces the left and top sides of (7.16). That these passages be isomorphic
says (7.16) is a pullback.

Suppose (7.16) is a distributivity pullback. We will show that (7.17) is a
bipullback. Take a square of the form

K

u˚v˚

��

s˚t˚
// B

f˚

��

ks
–

Z g˚
// A

(7.18)

2Rather than the single t, Weber’s definition takes the pair ps, tq as the morphism of
pullbacks around pf, gq although he has a typographical error in the condition rt “ r1.
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in SpnC . This square amounts to a diagram

S

a
��

u //

v

~~

Z
g
// A

f
��

K T
t
oo

s
// B

in C in which the right-hand region is a pullback around pf, gq. By the
distributivity property, there exists a unique pair ph, kq such that the diagram

S

h
��

a //

u

~~

T
s

  

k
��

Z Xp
oo

q
// Y r

// B

commutes; moreover, the square is a pullback. Thus we have a span mor-
phism

K

pt,T,kq
��

u˚p˚

xx

s˚t˚

&&

λ–
ð

ρ–
ð

Z Y
p˚q˚

oo
r˚

// B

which pastes onto (7.17) to yield (7.18); in fact ρ is an identity. To prove the
bipullback 2-cell property, suppose we have span morphisms e : pv1, S1, u1q Ñ
pv, S, uq and j : pt1, T 1, s1q Ñ pt, T, sq such that composing the first with
g˚ is the composite of the second with f˚. Then, in obvious notation, j :
pu1, a1, s1q Ñ pu, a, sq is a morphism in PBpf, gq. By the terminal property
of pp, q, rq, we have k1 “ kj. This gives the span morphism j : pt1, T 1, k1q Ñ
pt, T, kq which is unique as required.

Conversely, suppose (7.17) is a bipullback. We must see that pp, q, rq is
terminal in PBpf, gq. Take another object pp1, q1, r1q of PBpf, gq. We have
the square

Y 1

p1˚q
1˚

��

r1˚
// B

f˚

� �

ks
–

Z g˚
// A
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which allows us to use the bipullback property to obtain a span morphism

pp1˚q
1˚, Y 1, r1˚q Ñ pp˚q

˚, Y, r˚q

in SpnC which is compatible with the squares. Since the span Y 1 Ñ Y
in this morphism composes with r˚ to be isomorphic to r1˚, we see that it
has the form k˚ for some k : Y 1 Ñ Y in C . Thus we have our unique
k : pp1, q1, r1q Ñ pp, q, rq in PBpf, gq.

8. Polynomials in calibrated bicategories

Recall from [3] Section 7 that the Poincaré category ΠK of a bicategory
K has the same objects as K , however, the homset ΠK pH,Kq is the set
π0pK pH,Kqq of undirected path components of the homcategory K pH,Kq.
Composition is induced by composition of morphisms in K . The classify-
ing category ClK of K is obtained by taking isomorphism classes of mor-
phisms in each category K pH,Kq. If K is locally groupoidal then ΠK is
equivalent to ClK .

We adapt Bénabou’s notion of “catégorie calibrée” [4] to our present
purpose.

Definition 8.1. A class P of morphisms, whose members are called neat
(“propres” in French), in a bicategory M is called a calibration of M when
it satisfies the following conditions

P0. all equivalences are neat and, if p is neat and there exists an invertible
2-cell p – q, then q is neat;

P1. for all neat p, the composite p ˝ q is neat if and only if q is neat;

P2. every neat morphism is a groupoid fibration;

P3. every cospan of the form

S
p
ÝÑ Y

n
ÐÝ T ,
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with n a right lifter and p neat, has a bipullback (8.19) in M with p̃
neat.

P

ñ
��

p̃
// T

n
� �

ks θ
–

S p
// Y

(8.19)

A bicategory equipped with a calibration is called calibrated.
Notice that the class GF of all groupoid fibrations in any bicategory M

satisfies all the conditions for a calibration except perhaps the bipullback
existence part of P3 (automatically p̃ will be a groupoid fibration by (ii) of
Proposition 5.2).

A bicategory M is called polynomic when GF is a calibration of M .

Definition 8.2. Let M “ pM ,Pq be a calibrated bicategory. A polynomial
pm,S, pq from X to Y in M is a span

X
m
ÐÝ S

p
ÝÑ Y

in M with m a right lifter and p neat. A polynomial morphism pλ, h, ρq :
pm,S, pq Ñ pm1, S1, p1q is a diagram

S

h
��

m

xx

p

& &

λ
ð

ρ–
ð

X S1
m1

oo

p1
// Y

(8.20)

in which ρ (but not necessarily λ) is invertible. By part (i) of Proposition 5.2
we know that h must be a groupoid fibration. (Indeed, by condition P1,
h is neat; this is not really needed and is the only use made herein of the
“only if” in P1.) We call pλ, h, ρq strong when λ is invertible. A 2-cell
σ : h ñ k : pm,S, pq Ñ pm1, S1, p1q is a 2-cell σ : h ñ k : S Ñ S 1 in
M compatible with λ and ρ. By Proposition 3.5, we know that σ must be
invertible. Write PolyM pX, Y q for the Poincaré category of the bicategory
of polynomials from X to Y so obtained.

We write h “ rλ, h, ρs : pm,S, pq Ñ pm1, S1, p1q for the isomorphism
class of the polynomial morphism pλ, h, ρq : pm,S, pq Ñ pm1, S1, p1q. We
also write λh and ρh when several morphisms are involved.
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Proposition 8.3. If C is a finitely complete category then the bicategory
SpnC is polynomic.

Proof. Take a cospan S p
ÝÑ Y

n
ÐÝ T in SpnC with p a groupoid fibration and

n “ pn1, F, n2q a lifter. By Proposition 4.1, we can suppose p is actually p˚
for some p : S Ñ Y in C . From Example 6.4, we know that n1 is powerful.
Form the pullback span S f

ÐÝ P
g
ÝÑ F of the cospan S p

ÝÑ Y
n2
ÐÝ F in C . By

Proposition 5.4, we have a bipullback

P

f˚
��

g˚
// F

pn2q˚
��

ks –

S p˚
// Y .

Since n1 is powerful, Proposition 2.2.3 of Weber [30] implies we have a
distributivity pullback

V
a //

q

��

P
g
// F

n1

��

W r
// T

around pn1, gq. By Proposition 7.1, we have the bipullback

W

a˚q˚

��

r˚
// T

pn1q
˚

��

ks
–

P g˚
// F

in SpnC . Paste this second bipullback on top of the first to obtain a bipull-

back of the cospan S p˚
ÝÑ Y

pn2q˚pn1q
˚

ÐÝÝÝÝÝÝ T as required.

The class of equivalences in any bicategory is a calibration. In Sec-
tion 10, we will provide an example of a calibration strictly between equiv-
alences and GP.

In a calibrated bicategory M , polynomials can be composed as in the
diagram (8.21); this is made possible by Example 6.2, Proposition 6.6, con-
dition P3 and the “if” part of condition P1. Identity spans are also identity
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polynomials.

P

–θ
ðù

ñ

��

p̃

��

S
m

��
p
��

T

n
��

q

��

X Y Z

(8.21)

Indeed, this composition of polynomials is the effect on objects of functors

˝ : PolyM pY, Zq ˆ PolyM pX, Y q ÝÑ PolyM pX,Zq . (8.22)

The effect on morphisms is defined using part (iii) of Proposition 5.2 as
follows. Take morphisms h : pm,S, pq Ñ pm1, S1, p1q and k : pn, T, qq Ñ
pn1, T 1, q1q. We have a square

P

hñ
� �

kp̃
// T 1

n1

��

ks ψ

S 1
p1

// Y

in which
ψ “ pn1kp̃

λkp̃
ùùñ np̃

θ–
ùñ pñ

ρhñ–
ùùùñ p1hñq .

Now we use Proposition 5.2 to obtain, in obvious primed notation, a diagram

P

`
��

hñ

xx

kp̃

& &

σ
ð

τ–
ð

S 1 P 1
ñ1

oo

p̃1
// T 1

which leads to the polynomial morphism

ppλhñqpm
1σqq, `, pq1τqpρkp̃q : pmñ, P, qp̃q ÝÑ pm1ñ1, P 1, q1p̃1q

whose isomorphism class is the desired

k ˝ h : pn, T, qq ˝ pm,S, pq Ñ pn1, T 1, q1q ˝ pm1, S1, p1q .
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Proposition 8.4. There is a bicategory PolyM of polynomials in a cali-
brated bicategory M . The objects are those of M , the homcategories are
the PolyM pX, Y q. Composition is given by the functors (8.22). The vertical
and horizontal stacking properties of bipullbacks provide the associativity
isomorphisms.

We write PolysM for the sub-bicategory of PolyM obtained by restrict-
ing to the strong polynomial morphisms.

Example 8.5. If C is a finitely complete category then the bicategory PolySpnC
is biequivalent to the bicategory denoted by PolyC in Gambino-Kock [9]
and by PolypC q in Walker [28]. Moreover, PolysSpnC is biequivalent to
Walker’s bicategory PolycpC q. Note that the isomorphism classes h of poly-
nomial morphisms have canonical representatives of the form f˚ (since each
span pu, S, vq : U Ñ V with u invertible is isomorphic to p1U , U, v u´1q).

Proposition 8.6. If the bicategory M is calibrated then, for each K P M ,
there is a pseudofunctor HK : PolyM ÝÑ Cat taking the polynomialX m

ÐÝ

S
p
ÝÑ Y to the composite functor

M pK,Xq
rifpm,´q
ÝÝÝÝÝÑ M pK,Sq

M pK,pq
ÝÝÝÝÑ M pK,Y q .

The 2-cell h : pm,S, pq Ñ pn, T, qq in PolyM is taken to the natural trans-
formation obtained by the pasting

M pK,Sq

M pK,hq

��

M pK,pq

))

M pK,Xq

rifpm,´q
55

rifpn,´q ))

λ̂�� M pK,Y qM pK,ρq��

M pK,T q
M pK,qq

55

where λ̂ is the mate under the adjunctions of the natural transformation
M pK,λq : M pK,nqM pK,hq ñ M pK,mq.

Proof. We will show that polynomial 2-cells

α : pλh, h, ρhq ñ pλ1, h1, ρ1q : pm,S, pq Ñ pn, T, gq
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are taken to identities. Since

M pK,λq “
´

M pK,nqM pK,hq
M pK,nqM pK,αq
ùùùùùùùùùñ M pK,nqM pK,h1q

M pK,λ1q
ùùùùùñ M pK,mq

¯

,

it follows that

λ̂ “
´

M pK,hqrifpm,´q
M pK,αqrifpm,´q
ùùùùùùùùùñ M pK,h1qrifpm,´q

λ̂1

ùñ rifpn,´q
¯

.

Using this and that ρ1 “ pgαqρ, we have the identity

pgλ̂qpρ rifpm,uq “ pgλ̂1qpρ1 rifpm,uq : f rifpm,uq ùñ g rifpm,uq

induced by α as claimed.
That HK is a pseudofunctor follows from Proposition 6.6.

We can put somewhat more structure on the image of the pseudofunctor
HK . Recall the definition (for example, in [21] Section 3) of the 2-category
V -Act of V -actegories for a monoidal category V .

Composition in M yields a monoidal structure on the category VK “

M pK,Kq and a right VK-actegory structure on each category HKX “

M pK,Xq:

´ ˝ ´ : M pK,Xq ˆM pK,Kq ÝÑ K pK,Xq .

We can replace the codomain Cat of HK in Proposition 8.6 by VK-Act.
To see this, we need a VK-actegory morphism structure on each functor

HKpm,S, pq “ p rifpm,´q : M pK,Xq Ñ M pK,Y q .

However, for each a P VK and u P M pK,Xq, we have the canonical
mrifpm,uqa

$a
ùñ uawhich induces a 2-cell rifpm,uqañ rifpm,uaq. Whisker-

ing this with p : S Ñ Y , we obtain the component at pu, aq of a natural
transformation:

M pK,Xq ˆ VK

p rifpm,´qˆ1VK
��

´˝´
//M pK,Xq

p rifpm,´q

��

+3

M pK,Y q ˆ VK ´˝´
//M pK,Y q .
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The axioms for an actegory morphism are satisfied and each HKpm,S, pq is
a 2-cell in VK-Act.

In fact, we have a pseudofunctor

H : PolyM ÝÑ HompM op,Actq

where Act is the 2-category of pairs pV ,C q consisting of a monoidal cate-
gory V and a category C on which it acts.

9. Bipullbacks from tabulations

Tabulations in a bicategory, in the sense intended here, appeared in [7] to
characterize bicategories of spans.

For any bicategory M , we write M˚ for the sub-bicategory obtained
by restricting to left adjoint morphisms. For each left adjoint morphism
f : X Ñ Y in M , we write f˚ : Y Ñ X for a right adjoint.

Definition 9.1. The bicategory M is said to have tabulations from the ter-
minal when the following conditions hold:

(i) the bicategory M˚ has a terminal object 1 with the property that,
for all objects U , the unique-up-to-isomorphism left-adjoint morphism
!U : U Ñ 1 is terminal in the category M pU, 1q;

(ii) for each morphism u : 1 Ñ X in M , there is a diagram (9.24), called
a tabulation of u, in which p : U Ñ X is a left adjoint morphism and
such that the diagram

M pK,Uq

M pK,pq

��

// 1

ru!K s

��

λ +3

M pK,Xq
1MpK,Xq

//M pK,Xq ,

(9.23)

where the natural transformation λ has component pw ρuw
ÝÝÑ u!Uw

u!
ÝÑ

u!K at w P M pK,Uq, exhibits M pK,Uq as a bicategorical comma
object in Cat.
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U
!U

��

p

  
ks ρu

1 u
// X

(9.24)

Remark 9.2. (a) The bicategorical comma property of the diagram (9.23)
implies p is an er-fibration in M .

(b) Notice that condition (ii) in this Definition does agree with combined
conditions T1 and T2 in the definition of tabulation in [7] for mor-
phisms with domain 1. This is because all left adjoints K Ñ 1 are
isomorphic to !K using condition (i) of our Definition.

(c) Using (b) and Proposition 1(d) of [7], we see that the mate p!˚U ñ u
of ρu : p ñ u!U is invertible. Let us denote the unit of the adjunction
!U % !˚U by ηU : 1U ùñ !˚U !U . So we can replace u up to isomorphism
by p!˚U and ρu by pηU .

(d) If M has tabulations from the terminal and we have a morphism p :
U Ñ X such that (9.23) has the bicategorical comma property with
u “ p!˚U : 1 Ñ X and ρu “ pηU then p is a left adjoint. This is because
a tabulation of u : 1 Ñ X does exist in which the right leg is a left
adjoint and the comma property implies the right leg is isomorphic to
pe for some equivalence e.

(e) Another way to express the comma object condition (9.23) is to say
(9.25) is a bipullback for λ̂w “ λw “ ppw

ρuw
ÝÝÑ u!Uw

u!
ÝÑ u!Kq.

M pK,Uq

λ̂
��

! // 1

ru!K s

� �

M pK,Xq2
cod

//M pK,Xq

(9.25)

Let Tab be the class of morphisms p : U Ñ X in M which occur in a
tabulation (9.24).

Theorem 9.3. The class Tab is a calibration for any bicategory M which
has tabulations from the terminal.
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Proof. We must prove properties P0–P3 for a calibration. Property P0 is
obvious. For P1, take V q

ÝÑ U
p
ÝÑ X with p P Tab. By (c) and (d) of

Remark 9.2, p can be assumed to come from the tabulation of u “ p!˚U . If q
is to come from a tabulation it must be of v “ q!˚V . If pq is to come from a
tabulation it must be of w “ pq!˚V “ pv. Contemplate the following diagram
in which the λ̂ comes from v.

M pK,V q

λ̂
��

! // 1

rq!˚V !K s

��

M pK,Uq2
cod

//

M pK,pq2

��

M pK,Uq

M pK,pq

��

M pK,Xq2
cod

//M pK,Xq

By Remark 9.2(a), p is a groupoid fibration; incidentally, this gives P2. So
the bottom square is a bipullback (see Proposition 5.1). Therefore, the top
square is a bipullback if and only if the pasted square is a bipullback. By
Remark 9.2(d) and (e), this says q P Tab if and only if pq P Tab. This
proves P1.

It remains to prove P3. We start with a cospan Z p
ÝÑ C

m
ÐÝ B with m a

right lifter and p P Tab. Put z “ p!˚Z : 1 Ñ C and tabulate y “ rifpm, zq :
1 Ñ B as y “ r !˚Y for r : Y Ñ B in Tab. Using the tabulation property of
Z, we induce n and invertible θ as in the diagram (9.26) in which the triangle
containing $ exhibits the right lifting rifpm, zq.

Y

–θ
ùñ

!Y

&&

n
��

r

��

ùñ

Z
!Z //

p
��

1

z
��

B m
// C

gηZ
ùñ

“

Y
rηY
ùñ

!Y //

r

��

1

z

��

y

��

B m
// C

$
ùñ

(9.26)

It is the region containing θ in (9.26) that we will show is a bipullback. For

- 140 -



R. STREET POLYNOMIALS AS SPANS

all K P M , we must show that the left-hand square in the diagram

M pK,Y q

M pK,rq

��

M pK,nq
//M pK,Zq //

M pK,pq

��

– +3

1

rz!K s

��

λ +3

M pK,Bq
M pK,mq

//M pK,Cq
1MpK,Cq

//M pK,Cq

is a bipullback. However, the right-hand square has the comma property. So
the bipullback property of the left-hand square is equivalent to the comma
property of the pasted diagram. However, using (9.26), we see that the pasted
composite is equal to the pasted composite

M pK,Y q

M pK,rq
��

// 1 //

ry!K s

��

λ +3

1

rz!K s

��

r$!K s +3

M pK,Bq
1MpK,Bq

//M pK,Bq
M pK,mq

//M pK,Cq

Here, the left-hand square has the comma property and y!K is the value of
the right adjoint rifpm,´q to M pK,mq at z!K . So the pasted composite
does have the comma property, as required.

10. Calibrations of SpnC , of RelE and of Mod

If C is a category with finite limits, its terminal object 1 clearly has the
property (i) in the definition of tabulations from the terminal. Then, from
Remark 9.2 and [7], we know that SpnC has tabulations from the terminal.

A span from 1 to X has the form p!, U, pq : 1Ñ X for some p : U Ñ X
in C . A tabulation of the span is provided by the diagram

U
!U˚

��

p˚

!!
ks ρu

1
p!,U,pq

// X .

It follows that Tab consists of spans of the form p˚ for some morphism p in
C . Using Proposition 4.1, we deduce:
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Proposition 10.1. For the bicategory SpnC of spans in a finitely complete
category C , Tab “ GF.

With this, Theorem 9.3 provides another proof of Proposition 8.3.

Here is the result in the case of bicategories of relations.

Proposition 10.2. The bicategory RelE of relations in a regular category E
has tabulations from the terminal. Moreover the calibration Tab of RelE
consists of those relations isomorphic to p˚ for some monomorphism p in E .

Proof. The existence of tabulations was shown in [7]. The right leg of a
tabulation of p!, R, pq : 1 Ñ X is of course p : R Ñ X which must be a
monomorphism for the span p!, R, pq to be a relation.

With this and Example 6.5, we obtain a different notion of “polynomi-
als” in a regular category; again they are the morphisms of a bicategory
PolyRelE .

Example 10.3. An elementary topos E admits two basic constructions, the
power object (or relation classifier) PX and the partial map classifier rX;
see [15, 11]. Both define object assignments for monads on E . There is
a distributive law dX : P rX Ñ ĄPX between the two monads. We claim
that, for a topos E , the classifying category of PolyRelE is equivalent to the
opposite of the Kleisli category E

ČPp´q for the composite monad X ÞÑ ĄPX .
To see this, we need some detail on the monads involved.

The (covariant) power endofunctor P on E is defined on morphisms u :
X Ñ Y by direct image Du : PX Ñ PY . The partial map classifier takes
u to ru : rX Ñ rY corresponding to the partial map u : rX Ñ Y which is u
with X as domain of definition. The unit σ : 1E ùñ P for the monad P
has components σX : X ùñ PX corresponding to the identity relation on
X . Similarly, the unit η : 1E ùñ

Ąp´q for the monad Ąp´q has components
ηX : X ùñ rX corresponding to the identity partial map on X .

Rather than examine the multiplications for these monads, we take the
“no iteration” or “mw-” point of view (see [19, 1, 20, 17]) from which the
Kleisli bicategory is easily obtained. For P , the extra data needed are func-
tions

E pX,PY q ÝÑ E pPX,PY q ;
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they take X f
ÝÑ PY to the supremum-preserving extension PX f 1

ÝÑ PY of f
along σX . The Kleisli category for P is the classifying category ClRelE of
the bicategory of relations in E . For Ąp´q, the extra data needed are functions

E pX, rY q ÝÑ E p rX, rY q ;

they take X f
ÝÑ rY to the bottom-preserving extension rX

f1
ÝÑ rY of f along

ηX . The Kleisli category for Ąp´q is the classifying category ClParE of the
bicategory ParE of partial maps in E : it is the subbicategory of SpnE whose
morphisms are restricted to those spans X i

ÐÝ U
f
ÝÑ Y for which the left leg

i is a monomorphism.
To give a distributive law dX : P rX Ñ ĄPX is equally to give an exten-

sion pP of the monad P to a monad on the Kleisli category ClParE of Ąp´q.
Indeed, we can extend P to a pseudomonad pP on ParE . We use the facts
that P preserves pullbacks of monomorphisms along arbitrary morphisms
and that the square

U
i //

σU
��

X

σX
��

PU
Di

// PX

is a pullback when i is a monomorphism. These imply that we can define pP
on objects to be P and on partial maps by

pPpX i
ÐÝ U

f
ÝÑ Y q “ pPX Di

ÐÝ PU Df
ÝÑ PY q

to obtain a pseudofunctor, and that X 1X
ÐÝ X

σX
ÝÝÑ PX provides a pseudo-

natural unit. Again, rather than a multiplication for pP , we supply the functor

ParE pX,PY q ÝÑ ParE pPX,PY q , pX i
ÐÝ U

f
ÝÑ PY q ÞÑ pPX Di

ÐÝ PU f 1
ÝÑ PY q .

The Kleisli category E
ČPp´q of the composite monad ĆPp´q on E is the clas-

sifying category for the Kleisli bicategory pParE q
pP of the pseudomonad pP

on ParE .
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The claim at the beginning of this example will follow after we see that
PolyRelE is biequivalent to the opposite of pParE q

pP . To see this, notice that
the objects of the two bicategories are the same: they are the objects of E .
Also, we have the pseudonatural equivalence

PolyRelE pX,Cq » ParE pC,PXq

of hom categories under which the polynomial X
pa1,A,a2q
ÐÝÝÝÝÝ Z

p1Z ,Z,pq
ÝÝÝÝÝÑ C

corresponds to the partial map C p
ÐÝ Z

a
ÝÑ PX where a classifies the relation

pa1, A, a2q.
What remains is to see that span composition of polynomials transports

to Kleisli composition. We shall write for the case E “ Set and appeal
to topos internal logic to justify the argument in general. First we look at
composition in PolyRelE . So that we can make use of the notation in the
construction of pseudopullback in (9.26), we look at the following span com-
posite.

Y
Ď

r
  

N

� �

Z

Ď

p

��

A

~~

B
Ď

q
  

M
~~

X C D

The object Y and relation N are obtained from the subobjects Z Ď C and
B Ď D, and relations A and M . Referring to (9.26), we see that

Y “ tb P B : bMc implies c P Zu

and N is the restriction of the relation M . Now we look at composition of
the corresponding morphisms in the Kleisli bicategory; this is given by the
diagram

Q
pr2

""

pr1

}}

B

m
!!

q

~~

PZ
a1

##
Dp||

D PC PX
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in which the diamond is a pullback while m and a classify the relations M
and A. We therefore have an isomorphism

Q “ tb P B : mpbq Ď Zu – Y

under which q ˝ pr1 and a1 ˝ pr2 transport to q ˝ r and the classifier of A ˝N .
Incidentally, using this biequivalence, we can view the pseudofunctor

HK of Proposition 8.6 as a pseudofunctor

pParE qop
pP
ÝÑ Ord

into ordered sets taking C p
ÐÝ Z

a
ÝÑ PX to the order-preserving function

RelE pK,Xq
rifpa,´q
ÝÝÝÝÑ RelE pK,Zq

p˝´
ÝÝÑ RelE pK,Cq

whose value at a relation ps1, S, s2q : K Ñ X is the relation pc, a{s, p ˝ dq :
K Ñ C as in the diagram

a{s
p˝d

xx

d
��

c // K

s

��

ď +3

C Z a
//

p
oo PX

in which the square has the comma property and s classifies the relation
ps1, S, s2q.

Next we look at the bicategory Mod “ V -Mod, where V “ Set; see
Example 2.2.

Proposition 10.4. The bicategory Mod has tabulations from the terminal.

Proof. We need to check the validity of conditions (i) and (ii) defining the
having of tabulations from the terminal. Since the terminal object 1 of Cat is
Cauchy complete (idempotents split) [18], every left-adjoint module K Ñ 1
is isomorphic to !K˚ : K Ñ 1 where !K : K Ñ 1 is the unique functor. The
module !K˚, as a functor 1op ˆK Ñ Set, is constant at a one-point set. So
condition (i) holds.
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For condition (ii), take a module u : 1 Ñ X regarded as a functor
u : Xop Ñ Set. Form the comma category U of u as in the square

U

p

��

// 1

rus

��

ρu +3

X yonX
// rXop, Sets .

(10.27)

The natural transformation in the square has components ρux : Xpx, p´q Ñ
ux which reinterprets as a 2-cell

U
!U˚

��

p˚

  
ks ρu

1 u
// X

in Mod. In fact, we see that U p
ÝÑ X is ou in the sense of Proposition 3.2. So

ou!K˚ is Kop ˆ U
1Kopˆp
ÝÝÝÝÑ Kop ˆX . Using Proposition 3.2, we see that the

comma construction ModpK,Xq{ru!K˚s is biequivalent to

ERFibpKop
ˆXq{pKop

ˆ U
1Kopˆp
ÝÝÝÝÑ Kop

ˆXq „ ERFibpKop
ˆ Uq

and, again by Proposition 3.2, this is biequivalent to ModpK,Uq, as required
for the comma property of diagram (10.27).

Corollary 10.5. The bicategory Mod is calibrated by Tab. All morphisms
are right lifters and, up to equivalence, the neat morphisms are those of the
form p˚ : E Ñ B where p is a discrete fibration.

A polynomial from X to Y in Mod is therefore a span X m
ÐÝ E

p
ÝÑ Y

where m is a module from E to X and p is a discrete fibration. The module
m is equivalent to a functor E ÝÑ PshX , so, as we see from page 312
of [24], the polynomial is equivalent to a parametric right adjoint functor
PshX ÝÑ PshY . As pointed out by Weber, in Remark 2.12 of [29], this is
equivalent to a polynomial X d

ÐÝ D
c
ÝÑ E

p
ÝÑ Y in the category Cat where

X
d
ÐÝ D

c
ÝÑ E is a two-sided discrete fibration and p is a discrete fibration.
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Example 10.6. The bicategory PolyMod is biequivalent to the opposite
of the Kleisli bicategory for the composite X ÞÑ Famop

rXop, Sets of the
colimit-completion pseudomonad and the product-completion pseudomonad
(modulo obvious size issues).

To see this, note that the coproduct completion FamX of a category X
can be efficiently described, in the terminology of Section 4 of [13], as the
lax comma object

FamX

forget
��

! // 1

X
��

λ //

Set
Ă

// Cat

so that functors f : Y Ñ FamX are in 2-natural bijection with pairs pf̃ , φq
where f̃ : Y Ñ Set is a functor and φ : f̃ ù Z!Y is a lax natural transfor-
mation. The Grothendieck fibration construction transforms such pf̃ , φq into
a commutative triangle

E

q
��

pf̂ ,qq
// X ˆ Y

pr2
{{

Y

for which the data are a discrete opfibration q : E Ñ Y and an arbitrary
functor f̂ : E Ñ X; as Lawvere pointed out early in the decade of the
1970s, we might think of this as a 2-dimensional partial map pq, f̂q : Y Ñ X
between categories. This gives a pseudonatural equivalence of categories

rY,FamXs » 2ParpY,Xq

The product completion of X is FamopX :“ FampXopqop. Objects
pI, xq of FamopX are functors x : I Ñ X from a small discrete category
(set) I to X , Morphisms pu, ξq : pI, xq Ñ pJ, yq are diagrams in Cat of the
form

I

x
� �

Juoo

y
� �

θ +3

X .
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Functors f : Y Ñ FamopX correspond, up to equivalence, to spans Y p
ÐÝ

E
g
ÝÑ X where p is a discrete fibration; we shall call such a span a 2-

dimensional partial opmap from Y to X . This gives a pseudonatural equiv-
alence of categories

rY,FamopXs » 2ParopoppY,Xq . (10.28)

While there is a size problem with Famop as a monad on Cat, we do have
what would be its Kleisli bicategory, namely, 2Parop whose objects are small
categories, whose homs are the categories 2ParoppY,Xq, and whose compo-
sition is that of spans. There is also a size problem with Psh as a monad

X
k
ÝÑ Y ÞÑ rXop, Sets

Dk“lanpkop,´q
ÝÝÝÝÝÝÝÝÑ rY op, Sets

on Cat but we do have its Kleisli bicategory Mod whose objects are small
categories, whose homs are given by ModpY,Xq “ rXop ˆ Y, Sets, and
composition is that of modules (see Example 2.2). Modulo the size problem,
the monad Psh extends to a monad yPsh on 2Parop: this is one way of seeing
that we have a distributive law B : PshFamop

ùñ FamopPsh. The value of
yPsh at a 2-partial opmap Y p

ÐÝ E
g
ÝÑ X is

rY op, Sets
Dp
ÐÝ rEop, Sets

Dg
ÝÑ rXop, Sets . (10.29)

There are several things to be said about this most of which are better un-
derstood by looking at the equivalent span where presheaves are replaced by
discrete fibrations:

DFibY
p˚
ÐÝ DFibE

g˚
ÝÑ DFibX .

Here g˚ : DFibE Ñ DFibX is defined on the discrete fibration r : F Ñ E
by factoring the composite g ˝ r : F Ñ X as g ˝ r “ s ˝ j where j : F Ñ F 1

is final and s : F 1 Ñ X is a discrete fibration; this uses the comprehensive
factorization of functors described in [26, 25]. In particular, p˚prq “ p ˝ r
since the composite is already a discrete fibration. It follows that, if p : E Ñ
X is a discrete fibration then so is p˚ : DFibE Ñ DFibX . Also, if further,
the left square

F
g

//

q

��

E

p

��

Y
f

// X

DFibF
g˚

//

q˚

��

DFibE

p˚

��

DFibY
f˚

// DFibX
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is a pullback, then so is the right square. Using this, we conclude that (10.29)
is again a 2-partial opmap and that yPsh is a pseudofunctor. To see that the
unit for the monad Psh, which is given by Yoneda embedding yX : X Ñ

PshX , lifts to 2Parop, we must see that yX seen as a 2-partial opmap, is
pseudonatural in X P 2Parop; this follows from the fact that, for all discrete
fibrations p : E Ñ X , the square

E
E{´

//

p

��

DFibE

p˚

��

X
X{´

// DFibX

is a pullback, which is another form of the Yoneda Lemma. Rather than
examine the multiplication for yPsh, as in Example 10.3, we take the “no
iteration” or “mw-” point of view. We need to supply functors

P : 2ParoppC,PshXq ÝÑ 2ParoppPshC,PshXq . (10.30)

An object of the domain is a span C p
ÐÝ Z

g
ÝÑ PshX where p is a discrete

fibration. Define

PpC
p
ÐÝ Z

g
ÝÑ PshXq “ pPshC

p˚
ÐÝ PshZ

ḡ
ÝÑ PshXq

where ḡ “ lanpyZ , gq is the colimit-preserving extension of g. Thus the
composite of D q

ÐÝ B
m
ÝÑ PshC and C

p
ÐÝ Z

g
ÝÑ PshX in the Kleisli

bicategory p2ParopqyPsh of the pseudomonad yPsh is the following composite
of spans in Cat.

Y
n

$$

r

||

B
m

""

q

~~

PshZ
ḡ

%%

Dp

zz

D PshC PshX

Suppose the left square in diagram (10.31) is in Mod and the right is in CAT.

K

h
��

t˚
// B

m
��

–

θ +3

Z p˚
// C

K

h
��

t // B

m
��

–

φ +3

PshZ
Dp

// PshC

(10.31)
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An easy evaluation shows that isomorphisms θ are in bijection with isomor-
phisms φ. It follows that Y , r and n agree with the construction in (9.26)
and we have the biequivalence

PolyModop
» p2ParopqyPsh

from which we obtain the claim of this example’s first paragraph.
Incidentally, using this biequivalence, we can view the pseudofunctor

HK of Proposition 8.6 as the pseudofunctor

p2Paropq
op
yPsh
ÝÑ Cat

taking the morphism Y
p
ÐÝ S

m
ÝÑ Psh to the functor

rK,PshXs ÝÑ rK,PshY s , ` ÞÑ ¯̀ (10.32)

where
p¯̀kqy “

ÿ

sPSy

PshXpms, `kq

for k P K, for y P Y and for Sy the fibre of p : S Ñ Y over y.

——————————————————–
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ON TRUNCATED
QUASI-CATEGORIES

Alexander CAMPBELL and Edoardo LANARI

Résumé. Pour chaque n ≥ −1, une quasi-catégorie est dite n-tronquée
si ses espaces de morphismes sont des (n− 1)-types d’homotopie. Dans
ce travail, nous étudions la structure de catégorie de modèles pour
les quasi-catégories n-tronquées. Nous montrons que cette structure
peut être construire comme une localisation de Bousfield de la struc-
ture de catégorie de modèles de Joyal pour les quasi-catégories par
rapport à l’inclusion du bord du (n + 2)-simplexe. En outre, nous
établissons l’équivalence de Quillen attendue entre les catégories et
les quasi-catégories 1-tronquées, ainsi qu’entre les quasi-catégories n-
tronquées et les (n, 1)-Θ-espaces de Rezk.
Abstract. For each n ≥ −1, a quasi-category is said to be n-truncated
if its hom-spaces are (n− 1)-types. In this paper we study the model
structure for n-truncated quasi-categories, which we prove can be con-
structed as the Bousfield localisation of Joyal’s model structure for
quasi-categories with respect to the boundary inclusion of the (n + 2)-
simplex. Furthermore, we prove the expected Quillen equivalences
between categories and 1-truncated quasi-categories and between n-
truncated quasi-categories and Rezk’s (n, 1)-Θ-spaces.
Keywords. Quasi-category, truncated quasi-category, homotopy n-
type, Bousfield localisation, Quillen model category, complete Segal
space.
Mathematics Subject Classification (2020). 18N40, 18N50, 18N55,
18N60.

VOLUME LXI-2 (2020)

- 154 -



A. Campbell and E. Lanari On truncated quasi-categories

Contents

1 Introduction 2

2 Simplicial preliminaries 4

3 Truncated quasi-categories 9

4 Categorical n-equivalences 26

5 Some Quillen equivalences 34

A Bousfield localisations 40

1. Introduction

Quasi-categories were introduced by Boardman and Vogt [5, §IV.2], and
were developed by Joyal [14, 15] and Lurie [20] among others as a model
for (∞, 1)-categories: (weak) infinite-dimensional categories in which
every morphism above dimension 1 is (weakly) invertible. Among the
(∞, 1)-categories are the (n, 1)-categories, which have no non-identity
morphisms above dimension n.1 In [20, §2.3.4], Lurie identified the quasi-
categories that model (n, 1)-categories (for n ≥ 1) as those in which every
inner horn above dimension n has a unique filler. Moreover, he proved
that a quasi-category is equivalent to such a quasi-category precisely
when its hom-spaces are homotopy (n − 1)-types (i.e. Kan complexes
whose homotopy groups are trivial above dimension n− 1); in [16, §26],
Joyal called quasi-categories with this latter property n-truncated, and
stated without proof a collection of assertions on n-truncated quasi-
categories.

In this paper, we prove (Theorem 3.28) that, for each n ≥ −1,
the n-truncated quasi-categories are the fibrant objects of the Bousfield
localisation of Joyal’s model structure for quasi-categories with respect to

1This description is accurate only for n ≥ 1; it is natural to identify (0, 1)-
categories with posets and (−1, 1)-categories with truth values (i.e. 0 and 1). See [3]
for a discussion of this point.
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the boundary inclusion ∂∆n+2 −→ ∆n+2. (Note that the existence of the
model structure for n-truncated quasi-categories was stated without proof
in Joyal’s notes [16, §26.5]. However, our construction and identification
of this model structure as the Bousfield localisation of Joyal’s model
structure for quasi-categories with respect to the boundary inclusion
∂∆n+2 −→ ∆n+2 is new to this paper; see Remark 3.29.) Moreover,
we prove (Theorem 4.14) Joyal’s assertion (stated without proof in
[16, §26.6]) that, if n ≥ 1, a morphism of quasi-categories is a weak
equivalence in this model structure if and only if it is essentially surjective
on objects and an (n− 1)-equivalence on hom-spaces.

Furthermore, we prove (Theorem 5.9) that the two Quillen equiva-
lences

[∆op,Set] `

t!
//
[(∆×∆)op,Set]

t!oo

[(∆×∆)op,Set] `
i∗ 1 //

[∆op,Set]
p∗1oo

established by Joyal and Tierney [17] between the model structures for
quasi-categories and complete Segal spaces remain Quillen equivalences
between the model structures for n-truncated quasi-categories and Rezk’s
(n, 1)-Θ-spaces [22], which are another model for (n, 1)-categories. We
also prove (Theorem 5.1) that the nerve functor N : Cat −→ sSet is the
right adjoint of a Quillen equivalence between the folk model structure
for categories and the model structure for 1-truncated quasi-categories,
and hence (Theorem 5.11) that the composite adjunction

Cat `

N
//
[∆op,Set]

τ1oo

`

t!
//
[(∆×∆)op,Set],

t!oo

whose right adjoint is Rezk’s “classifying diagram” functor [21], is a
Quillen equivalence between the model structures for categories and
Rezk’s (1, 1)-Θ-spaces.

The need for the n = 1 case of these results arose during the first-
named author’s work on the paper [6], wherein they serve as part of the

- 156 -



A. Campbell and E. Lanari On truncated quasi-categories

proofs that certain adjunctions

Bicats `
N

//
[Θop

2 ,Set]
τboo

`

t!
//
[(Θ2 ×∆)op,Set]

t!oo

are Quillen equivalences between Lack’s model structure for bicategories
[19], the Bousfield localisation of Ara’s model structure for 2-quasi-
categories [1] with respect to the boundary inclusion ∂Θ2[1; 3] −→
Θ2[1; 3], and Rezk’s model structure for (2, 2)-Θ-spaces [22].

We begin this paper in §2 with a collection of some preliminary
notions and results pertaining to simplicial sets and n-types. Our study
of n-truncated quasi-categories begins in §3, where we construct the
model structure for n-truncated quasi-categories, and continues in §4,
where we characterise the weak equivalences of this model structure.
Finally, in §5 we prove the aforementioned Quillen equivalences between
the model categories of categories and 1-truncated quasi-categories and
between the model categories of n-truncated quasi-categories and Rezk’s
(n, 1)-Θ-spaces. In an appendix §A, we recall some of the basic theory
of Bousfield localisations of model categories, including two criteria for
detecting Quillen equivalences between Bousfield localisations.

Acknowledgements

The first-named author gratefully acknowledges the support of Australian
Research Council Discovery Project DP160101519 and Future Fellowship
FT160100393. The second-named author gratefully acknowledges the
support of a Macquarie University iMQRes PhD scholarship.

2. Simplicial preliminaries

In this section, we collect some preliminary notions and results pertaining
to simplicial sets and homotopy n-types (as modelled by Kan complexes)
that we will use in the following sections on truncated quasi-categories.
For further background on simplicial sets, see for example [10], [11], and
[7, Chapitre 2].

We begin with the definition of (homotopy) n-types, which we will
use in the definition of truncated quasi-categories in §3.
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Definition 2.1. Let n ≥ 0 be an integer. A Kan complex X is said to
be an n-type if, for each object (i.e. 0-simplex) x ∈ X0 and each integer
m > n, the homotopy group πm(X, x) is trivial (i.e. πm(X, x) ∼= 1).

Example 2.2. Every discrete (i.e. constant) simplicial set is a 0-type.
Furthermore, a Kan complex X is a 0-type if and only if the unit
morphism X −→ disc(π0X) of the adjunction

Set `
disc

//
sSet

π0oo

(2.3)

is a homotopy equivalence.

It is natural to extend the notion of n-type to lower values of n as
follows. Recall that a Kan complex X is said to be contractible if the
unique morphism X −→ ∆0 is a homotopy equivalence.

Definition 2.4. A Kan complex is said to be a (−1)-type if it is either
empty or contractible, and is said to be a (−2)-type if it is contractible.

In our study of truncated quasi-categories, we will use the following
well-known alternative characterisation of n-types in terms of a lifting
property (whose proof is a standard exercise).

Proposition 2.5. Let n ≥ −2 be an integer. A Kan complex is an
n-type if and only if it has the right lifting property with respect to the
boundary inclusion ∂∆m −→ ∆m for every m ≥ n+ 2.

We will see in Proposition 3.12 that n-truncated quasi-categories can
be characterised by the same lifting property. For this reason, we now
record this lifting property in the following definition and explore some
of its consequences.

Definition 2.6. Let n ≥ −1 be an integer. A simplicial set X is said
to be n-acyclic if it has the right lifting property with respect to the
boundary inclusion ∂∆m −→ ∆m for every m > n.

In these terms, Proposition 2.5 states that, for every n ≥ −2, a Kan
complex is an n-type if and only if it is (n + 1)-acyclic. Similarly, we
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will prove in Proposition 3.12 that, for every n ≥ −1, a quasi-category
is n-truncated if and only if it is (n+ 1)-acyclic. This lifting property
will be very useful, as it yields a large class of morphisms with respect
to which n-truncated quasi-categories have the right lifting property.

Definition 2.7. Let n ≥ −1 be an integer. A morphism of simplicial
sets f : X −→ Y is said to be n-bijective if the function fk : Xk −→ Yk
is bijective for each 0 ≤ k ≤ n.

Lemma 2.8. Let n ≥ −1 be an integer. A simplicial set is n-acyclic if
and only if it has the right lifting property with respect to every n-bijective
monomorphism of simplicial sets.

Proof. Since the boundary inclusion ∂∆m −→ ∆m is an n-bijective
monomorphism for every m > n, any simplicial set with the stated
lifting property is n-acyclic. Note that any class of morphisms defined
by a left lifting property is stable under pushout and closed under
coproducts and countable composition. The converse then follows from
the fact that any n-bijective monomorphism can be decomposed into a
countable composite of pushouts of coproducts of the boundary inclusions
∂∆m −→ ∆m for m > n, as in [10, §II.3.8].

Remark 2.9. If n = −1, the condition in Definition 2.7 is vacuous, and
so every morphism of simplicial sets is (−1)-bijective. Hence the n = −1
case of Lemma 2.8 states that a simplicial set is (−1)-acyclic if and
only if it is an injective object in the category of simplicial sets, i.e. a
contractible Kan complex, i.e. a (−2)-type. Furthermore, a simplicial
set is 0-acyclic if and only if it is a (−1)-type.

In §3, we will use the following consequence of Lemma 2.8 to prove
that the model structures for n-truncated quasi-categories are cartesian.

Lemma 2.10. Let n ≥ −1 be an integer. For every simplicial set A
and n-acyclic simplicial set X, the internal hom simplicial set XA is
n-acyclic.

Proof. It is required to prove that XA has the right lifting property with
respect to the boundary inclusion bm : ∂∆m −→ ∆m for every m > n.
By adjunction, this is so if and only if X has the right lifting property
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with respect to the morphism bm × A : ∂∆m × A −→ ∆m × A for every
m > n. But the n-acyclic simplicial set X has this lifting property by
Lemma 2.8, since the morphism bm×A is an n-bijective monomorphism
for every m > n.

The following lemma shows that the property of n-acyclicity can be
understood as a weakening of the property of n-coskeletality. (Recall
that a simplicial set X is said to be n-coskeletal if the unit morphism
X −→ cosknX to its n-coskeleton is an isomorphism; dually, X is said
to be n-skeletal if the counit morphism sknX −→ X from its n-skeleton
is an isomorphism.)

Lemma 2.11. Let n ≥ −1 be an integer. A simplicial set X is n-acyclic
if and only if the unit morphism X −→ cosknX is a trivial fibration.

Proof. Let X be a simplicial set. By definition, the unit morphism
X −→ cosknX is a trivial fibration if and only if it has the right lifting
property with respect to the boundary inclusion ∂∆m −→ ∆m for each
m ≥ 0. By adjointness, this is so if and only if X has the right lifting
property with respect to the inclusion skn∆m ∪ ∂∆m −→ ∆m for each
m ≥ 0. If m ≤ n, this inclusion is an identity, and so the lifting property
is satisfied trivially. If m > n, this inclusion is the boundary inclusion
∂∆m −→ ∆m. Thus the two properties in the statement are seen to be
equivalent.

Remark 2.12. By an argument similar to the proof of Lemma 2.8, one
can show that a simplicial set is n-coskeletal if and only if it has the
unique right lifting property with respect to the boundary inclusion
∂∆m −→ ∆m for each m > n. This gives another sense in which the
property of n-acyclicity is a weakening of the property of n-coskeletality.

Now, recall that (the simplicial analogue of) Whitehead’s theorem
states that a morphism of Kan complexes f : X −→ Y is a homotopy
equivalence if and only if (i) the induced function π0(f) : π0X −→ π0Y
is a bijection and (ii) for every integer n ≥ 1 and every object x of X,
the induced function πn(f) : πn(X, x) −→ πn(Y, fx) is a bijection (and
hence an isomorphism of groups). We will use the following weakenings
of these properties in our characterisation of the weak equivalences in
the model structures for n-truncated quasi-categories in §4.
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Definition 2.13. Let n ≥ 0 be an integer. A morphism of Kan com-
plexes f : X −→ Y is said to be a homotopy n-equivalence if

(i) the induced function π0(f) : π0X −→ π0Y is a bijection, and

(ii) the induced function πk(f) : πk(X, x) −→ πk(Y, fx) is a bijection
(and hence an isomorphism of groups) for every integer 1 ≤ k ≤ n
and every object x ∈ X.

Thus a morphism of Kan complexes is a homotopy 0-equivalence if
and only if it is inverted by the functor π0 : sSet −→ Set. We similarly
define a morphism of Kan complexes to be a homotopy (−1)-equivalence
if it is inverted by the functor π−1 : sSet −→ {0 < 1} that sends the
empty simplicial set to 0 and every nonempty simplicial set to 1. Thus
a morphism of Kan complexes is a homotopy (−1)-equivalence if either
(i) its domain and codomain are both empty, or (ii) its domain and
codomain are both nonempty. Furthermore, we define a morphism of
Kan complexes to be a homotopy (−2)-equivalence if it is inverted by
the unique functor π−2 : sSet −→ 1 to the terminal category; thus every
morphism of Kan complexes is a homotopy (−2)-equivalence.

For each n ≥ −2, a morphism of n-types is a homotopy equivalence
if and only if it is a homotopy n-equivalence: if n ≥ 0, this follows
from Whitehead’s theorem; if n = −2,−1, this follows from the fact
that any morphism between contractible Kan complexes is a homotopy
equivalence.
Remark 2.14. It is a standard result (cf. [12, §1.5] and [7, §9.2]) that, for
each integer n ≥ −2, the n-types are the fibrant objects of the Bousfield
localisation of the model structure for Kan complexes with respect to
the boundary inclusion ∂∆n+2 −→ ∆n+2, and that a morphism of Kan
complexes is a weak equivalence in this Bousfield localisation if and only
if it is a homotopy n-equivalence in the sense of the above definitions.
In §§3–4, we will generalise both of these statements to n-truncated
quasi-categories.

We will use the following two properties of the class of homotopy
n-equivalences in §4.
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Lemma 2.15. Let n ≥ −2 be an integer and let f : X −→ Y and
g : Y −→ Z be morphisms of Kan complexes. If two of the morphisms
f, g, gf are homotopy n-equivalences, then so is the third.

Proof. This is proved by any of the standard arguments proving that
the class of morphisms of Kan complexes described in the statement of
Whitehead’s theorem enjoys the same property.

Lemma 2.16. Let n ≥ −2 be an integer. An (n+ 1)-bijective morphism
of Kan complexes is a homotopy n-equivalence.

Proof. The cases n = −2,−1 are immediate. Suppose n ≥ 0. The
result follows from the facts that the set of connected components of a
simplicial set depends only on its 1-skeleton, and that, for each integer
k ≥ 1, the kth homotopy groups of a Kan complex depend only on
its (k + 1)-skeleton (since their elements are pointed homotopy classes
of morphisms to X from the (simplicial) k-sphere, whose homotopy
type can be modelled by a k-skeletal simplicial set, e.g. ∆k/∂∆k or
∂∆k+1).

3. Truncated quasi-categories

Throughout this section, let n ≥ −1 be an integer.

Remark 3.1. As mentioned in §1, some of the results of §§3–5 are stated
without proof in Joyal’s notes [16, §26]. These results will be indicated
below by references to the numbered paragraphs of those notes in which
they are stated. (Given that one of the purposes of this paper is to
provide proofs for these statements, we beg the reader’s patience if we
spell out the occasional “obvious” argument.)

As recalled in Remark 2.14, the (homotopy) n-types are the fibrant
objects of the Bousfield localisation of the model structure for Kan
complexes with respect to the boundary inclusion ∂∆n+2 −→ ∆n+2, and
a morphism of Kan complexes is a weak equivalence in this Bousfield
localisation if and only if it is a homotopy n-equivalence. The goal of this
section and the next is to prove the analogous results for quasi-categories.
In this section, we prove that the n-truncated quasi-categories are the
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fibrant objects of the Bousfield localisation of Joyal’s model structure for
quasi-categories with respect to the same boundary inclusion (Theorem
3.28). In §4, we will prove that a morphism of quasi-categories is a weak
equivalence in this Bousfield localisation if and only if it is a categorical
n-equivalence (Theorem 4.14). (Note that the first of these two results
is new to this paper, whereas the second was stated without proof in
[16, §26.6].)

We refer the reader to Appendix A for the necessary background on
Bousfield localisations, and to [14], [17, §1], and [20, Chapter 1] for a
more than sufficient background in the theory of quasi-categories. In
particular, recall that there is a (left proper and combinatorial) cartesian
model structure due to Joyal on the category of simplicial sets whose
cofibrations are the monomorphisms and whose fibrant objects are the
quasi-categories [15, Theorem 6.12]. We call this model structure the
model structure for quasi-categories; the weak equivalences and fibrations
between fibrant objects of this model structure will be called weak cate-
gorical equivalences and isofibrations respectively. (Note that, following
[9], we will sometimes denote the category of simplicial sets equipped
with the model structures for Kan complexes and quasi-categories by
sSetK and sSetJ respectively.)

To begin, let us recall the definition of the hom-spaces of a quasi-
category. For each pair of objects (i.e. 0-simplices) x, y of a quasi-
category X, their hom-space HomX(x, y) is the Kan complex defined by
the pullback

HomX(x, y) //

��

X∆1

(Xδ1 ,Xδ0 )
��

∆0
(x,y)

// X ×X
(3.2)

in the category of simplicial sets. By [9, Proposition 4.5], this hom-space
construction defines the right adjoint of a Quillen adjunction

∂∆1\sSetJ `

Hom
//
sSetK

Σoo

(3.3)

between the category of bipointed simplicial sets (note that ∂∆1 ∼=
∆0 + ∆0) equipped with the model structure induced by the model
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structure for quasi-categories and the category of simplicial sets equipped
with the model structure for Kan complexes, whose left adjoint sends a
simplicial set U to its (two-point) suspension ΣU , defined by the pushout

U × ∂∆1 pr2 //

��

∂∆1

(⊥,>)
� �

U ×∆1 // ΣU

(3.4)

in the category of simplicial sets; note that the simplicial set ΣU has
precisely two 0-simplices, which we denote by ⊥ and >, as in the diagram
above.

Next, recall that one can assign to each category A a quasi-category
NA via the nerve functor N : Cat −→ sSet, which defines the fully
faithful right adjoint of an adjunction

Cat `

N
//
sSet

τ1oo

(3.5)

whose left adjoint sends a simplicial set X to its fundamental category
τ1X (see [10, §II.4]). If X is a quasi-category, then its fundamental
category τ1X is isomorphic to its homotopy category hoX, which was first
constructed by Boardman and Vogt [5, §IV.2] (for a detailed proof, see [15,
Chapter 1]). The homotopy category hoX of a quasi-category X has the
same set of objects asX, and its hom-sets (hoX)(x, y) ∼= π0(HomX(x, y))
are isomorphic to the sets of connected components of the hom-spaces
of X; thus the unit morphism X −→ N(hoX) of the adjunction (3.5) is
a bijection on objects, and is given on hom-spaces by the unit morphism
HomX(x, y) −→ disc(π0(HomX(x, y))) of the adjunction π0 a disc (2.3).
A morphism (i.e. a 1-simplex) in a quasi-category X is said to be an
isomorphism if it is sent by the unit morphism X −→ N(hoX) to an
isomorphism in hoX.

A morphism of quasi-categories f : X −→ Y is said to be essen-
tially surjective on objects if the induced functor between homotopy
categories ho(f) : hoX −→ hoY is essentially surjective on objects. A
fundamental theorem of quasi-category theory states that a morphism
of quasi-categories f : X −→ Y is an equivalence of quasi-categories (i.e.
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a weak categorical equivalence between quasi-categories) if and only if
it is essentially surjective on objects and a homotopy equivalence on
hom-spaces, that is, for each pair of objects x, y ∈ X, the induced mor-
phism of hom-spaces f : HomX(x, y) −→ HomY (fx, fy) is a homotopy
equivalence of Kan complexes.

We now recall the definition of n-truncated quasi-categories from [16,
§26].
Definition 3.6. A quasi-category X is said to be n-truncated if, for each
pair of objects x, y ∈ X, the hom-space HomX(x, y) is an (n− 1)-type.
Remark 3.7. In [20, Proposition 2.3.4.18], Lurie proved that a quasi-
category is n-truncated if and only if it is equivalent to an n-category in
the sense of [20, Definition 2.3.4.1]. We will not use this result in the
present paper.

Before proceeding with the study of the homotopy theory of n-
truncated quasi-categories, let us examine the low dimensional cases of
this definition. By definition, a quasi-category is 1-truncated if and only
if its hom-spaces are 0-types. For example, the nerve NA of a category
A is a 1-truncated quasi-category, since its hom-spaces are the discrete
simplicial sets HomNA(a, b) ∼= disc(A(a, b)) given by the hom-sets of A,
and since every discrete simplicial set is a 0-type.
Proposition 3.8 ([16, §26.1]). A quasi-category X is 1-truncated if
and only if the unit morphism X −→ N(hoX) is an equivalence of
quasi-categories. In particular, the nerve of a category is a 1-truncated
quasi-category.

Proof. Let X be a quasi-category. By construction, the unit morphism
X −→ N(hoX) is bijective on objects, and therefore is an equivalence
if and only if it is a homotopy equivalence on hom-spaces, that is, if
and only if the unit morphism HomX(x, y) −→ disc(π0(HomX(x, y))) is
a homotopy equivalence for each pair of objects x, y ∈ X. But this is
so precisely when each hom-space HomX(x, y) is a 0-type (see Example
2.2), that is, precisely when X is 1-truncated.

Remark 3.9. For any quasi-category X, the unit morphism X −→
N(hoX) is an isofibration. Hence a quasi-category X is 1-truncated if
and only if the unit morphism X −→ N(hoX) is a trivial fibration.
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Recall that a category is a preorder if each of its hom-sets has at
most one element. A category is a preorder if and only if it is equivalent
to a poset (partially ordered set): the quotient of a preorder by the
congruence x ∼ y ⇐⇒ x ≤ y & y ≤ x defines an equivalent poset,
which we call its poset quotient; conversely, any category equivalent to a
preorder is evidently a preorder, and a poset is in particular a preorder.

Proposition 3.10 ([16, §26.2]). A quasi-category is 0-truncated if and
only if it is 1-truncated and its homotopy category is equivalent to a poset.
In particular, the nerve of a preorder is a 0-truncated quasi-category.

Proof. A Kan complex is a (−1)-type if and only if it is a 0-type and
its set of connected components has at most one element. Hence a
quasi-category X is 0-truncated if and only if it is 1-truncated and its
homotopy category is a preorder, that is, equivalent to a poset.

A quasi-category is (−1)-truncated if and only if it is empty or a
contractible Kan complex, that is, if and only if it is a (−1)-type: if
X is a nonempty (−1)-truncated quasi-category, then its hom-spaces
are contractible, and so the unique morphism X −→ ∆0 is surjective
on objects and a homotopy equivalence on hom-spaces, and is thus an
equivalence of quasi-categories, and hence a trivial fibration. Similarly,
one could define a quasi-category to be (−2)-truncated if it is a (−2)-type,
i.e. a contractible Kan complex.

We now proceed towards the main goal of this section, which is to
prove that the n-truncated quasi-categories are the fibrant objects of the
Bousfield localisation of the model structure for quasi-categories with
respect to the boundary inclusion ∂∆n+2 −→ ∆n+2. Our first step will
be to show that n-truncated quasi-categories can be characterised in
terms of a lifting property. To this end, it will be convenient to use an
alternative model for the hom-spaces of a quasi-category.

Recall that a morphism of simplicial sets f : X −→ Y is said to be a
right fibration if it has the right lifting property with respect to the horn
inclusion Λm

k −→ ∆m for every m ≥ 1 and 0 < k ≤ m (see [14, §2] or
[20, Chapter 2]). For each object x of a quasi-category X, one obtains by
the join and slice constructions of [14, §3] a right fibration X/x −→ X
whose domain is the slice quasi-category X/x (see [20, §1.2.9]). The slice
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quasi-category construction defines the right adjoint of an adjunction

∆0\sSet `

slice
//
sSet

−?∆0
oo

whose left adjoint sends a simplicial set U to the right cone of U , i.e.
the join U ?∆0 with base point ∆0 ∼= ∅ ?∆0 −→ U ?∆0. Thus, for each
k ≥ 0, a k-simplex of the slice quasi-category X/x is given by a (k + 1)-
simplex of X whose final vertex is x; the right fibration X/x −→ X
sends a k-simplex of X/x to the face opposite the last vertex of the
corresponding (k + 1)-simplex of X. (See [14, §3] and [20, §§1.2.8–9] for
further details.)

For each pair of objects x, y of a quasi-categoryX, the right hom-space
HomR

X(x, y) is defined by the pullback

HomR
X(x, y) //

��

X/y

��

∆0
x

// X

in the category of simplicial sets [20, §1.2.2]. Since the projection
X/y −→ X is a right fibration, it follows that the right hom-space
HomR

X(x, y) is a Kan complex (see [20, Proposition 1.2.2.3]). A k-simplex
of HomR

X(x, y) is given by a (k + 1)-simplex of X whose last vertex is y
and whose face opposite the last vertex is the degenerate k-simplex on
x.

Importantly, for each pair of objects x, y of a quasi-category X, there
is a homotopy equivalence HomR

X(x, y) ' HomX(x, y) between the right
hom-space and the hom-space (see [20, Corollary 4.2.1.8]). Hence a
quasi-category is n-truncated if and only if each of its right hom-spaces
is an (n− 1)-type.

The characterisation of n-truncated quasi-categories in terms of a
lifting property depends on the following lemma. Recall from Definition
2.6 that a simplicial set is said to be n-acyclic if it has the right lifting
property with respect to the boundary inclusion ∂∆m −→ ∆m for every
m > n.
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Lemma 3.11. Let f : X −→ Y be a right fibration of simplicial sets.
Then the following properties are equivalent.

(i) f has the right lifting property with respect to the boundary inclu-
sion ∂∆m −→ ∆m for every m > n.

(ii) For every 0-simplex y ∈ Y0, the fibre f−1(y) is an (n− 1)-type.

(iii) For every 0-simplex y ∈ Y0, the fibre f−1(y) is n-acyclic.

Proof. Since the fibres of a right fibration are Kan complexes, the
equivalence (ii) ⇐⇒ (iii) follows from Proposition 2.5. Furthermore,
since any pullback of a morphism satisfying the lifting property (i)
inherits this lifting property, we have the implication (i) =⇒ (iii).

It remains to prove the implication (iii) =⇒ (i). If n = −1, this
implication is precisely [20, Lemma 2.1.3.4], which states that a right
fibration whose fibres are contractible is a trivial fibration. In fact, the
proof of the cited result proves moreover that, for each k ≥ 0, if the
fibres of a right fibration each have the right lifting property with respect
to the boundary inclusion ∂∆k −→ ∆k, then the right fibration also has
the right lifting property with respect to that boundary inclusion. This
proves the implication (iii) =⇒ (i) for an arbitrary n ≥ −1.

By applying Lemma 3.11 to the right fibrations of the form X/x −→
X, we can characterise the n-truncated quasi-categories by the following
lifting property.

Proposition 3.12 ([16, §§26.1–3]). A quasi-category is n-truncated if
and only if it has the right lifting property with respect to the boundary
inclusion ∂∆m −→ ∆m for every m ≥ n+ 2.

Proof. By the homotopy equivalences between the hom-spaces and the
right hom-spaces of a quasi-category [20, Corollary 4.2.1.8], a quasi-
category X is n-truncated if and only if the right hom-space HomR

X(x, y)
is an (n− 1)-type for each pair of objects x, y ∈ X. We thus have that
a quasi-category X is n-truncated if and only if every fibre of the right
fibrationX/y −→ X is an (n−1)-type for every object y ∈ X. By Lemma
3.11, this is so if and only if the right fibration X/y −→ X has the right
lifting property with respect to the boundary inclusion ∂∆m −→ ∆m for
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everym > n and every y ∈ X. By adjointness (see [14, Lemma 3.6]), this
lifting property is satisfied if and only if X has the right lifting property
with respect to the pushout-join (∂∆m ?∆0)∪ (∆m ? ∅) −→ ∆m ?∆0 for
every m > n. But this pushout-join is none other than the boundary
inclusion ∂∆m+1 −→ ∆m+1 [14, Lemma 3.3]. Hence we have shown that
a quasi-category X is n-truncated if and only if it has the right lifting
property with respect to the boundary inclusion ∂∆m+1 −→ ∆m+1 for
every m > n, as required.

In the terminology of Definition 2.6, Proposition 3.12 states that a
quasi-category is n-truncated if and only if it is (n+ 1)-acyclic. Thus
we may deduce that the class of n-truncated quasi-categories inherits
the following properties from the class of (n+ 1)-acyclic simplicial sets.

Corollary 3.13. A quasi-category is n-truncated if and only if it has the
right lifting property with respect to every (n+1)-bijective monomorphism
of simplicial sets.

Proof. This is a consequence of Proposition 3.12 and Lemma 2.8.

Corollary 3.14. For every simplicial set A and n-truncated quasi-
category X, the internal hom simplicial set XA is an n-truncated quasi-
category.

Proof. We have by [15, Corollary 2.19] that XA is a quasi-category.
Hence by Proposition 3.12, XA is an n-truncated quasi-category if and
only if it is (n + 1)-acyclic. The result then follows from Corollary
2.10.

Remark 3.15. The result of Corollary 3.14 was proved by Lurie as [20,
Corollary 2.3.4.20]. Our proof of this result is more direct and elementary
than Lurie’s proof, which uses the corresponding result for n-categories
(in his sense) [20, Proposition 2.3.4.8] and the fact that any quasi-category
is equivalent to a minimal quasi-category [20, Proposition 2.3.3.8].

Corollary 3.16. A quasi-category X is n-truncated if and only if the
unit morphism X −→ coskn+1X is a trivial fibration.

Proof. This is a consequence of Proposition 3.12 and Lemma 2.11.
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In Propositions 2.5 and 3.12, n-types and n-truncated quasi-categories
were both characterised by the same lifting property. Hence we may
deduce the following corollary.

Corollary 3.17 ([16, §§26.1–3]). A Kan complex is an n-truncated
quasi-category if and only if it is an n-type.

Proof. By definition, every Kan complex is a quasi-category. Hence by
Proposition 3.12, a Kan complex is an n-truncated quasi-category if and
only if it is (n + 1)-acyclic, which is so, by Proposition 2.5, precisely
when it is an n-type.

Next, we deduce from Proposition 3.12 a further characterisation of
n-truncated quasi-categories as the quasi-categories that are local (see
(A.8)) with respect to the boundary inclusion ∂∆n+2 −→ ∆n+2 in the
model structure sSetJ for quasi-categories. As explained in Appendix
A, this will require a model for the derived hom-spaces of the model
category sSetJ, which we will obtain by Lemma A.12 from the Quillen
adjunction (3.18) below.

Let qCat and Kan denote the full subcategories of sSet consisting
of the quasi-categories and the Kan complexes respectively. By [15,
Theorem 4.19], the full inclusion Kan −→ qCat has a right adjoint
J : qCat −→ Kan, which sends a quasi-category X to its maximal sub
Kan complex J(X). By [15, Lemma 4.18], a simplex of X belongs to
the simplicial subset J(X) if and only if each of its 1-simplices is an
isomorphism in X. Note that, by [15, Proposition 4.27], the functor J
sends isofibrations to Kan fibrations.

Let X be a quasi-category. By [15, Corollary 5.11], there is an
adjunction

sSetop
J `

J(X−)
//
sSetK

X(−)
oo

(3.18)

whose right adjoint sends a simplicial set A to the Kan complex J(XA),
and whose left adjoint sends a simplicial set U to the full sub-quasi-
category X(U) of XU consisting of the morphisms of simplicial sets
U −→ X which factor through J(X), i.e. which send each 1-simplex of
U to an isomorphism in X. Moreover, by [15, Theorems 5.7, 5.10], this
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adjunction is a Quillen adjunction between (the opposite of) the model
structure sSetJ for quasi-categories and the model structure sSetK for
Kan complexes as indicated.

Hence, for each simplicial set A and quasi-category X, Lemma A.12
applied to the Quillen adjunction (3.18) implies that the Kan complex
J(XA) is a model for the derived hom-space Ho sSetJ(A,X) from A to
X in the model structure for quasi-categories. We may therefore deduce
the following lemma.

Lemma 3.19. A quasi-category X is local with respect to a morphism
f : A −→ B in the model structure for quasi-categories if and only if the
morphism J(Xf ) : J(XB) −→ J(XA) is a homotopy equivalence of Kan
complexes.

Proof. By definition (see Appendix A), a quasi-category X is local with
respect to a morphism f : A −→ B in the model category sSetJ if and
only if this morphism is sent to an isomorphism by the functor

Ho sSetJ(−, X) : Ho sSetop
J −→H .

Since X(∆0) ∼= X, Lemma A.12 implies that this functor is naturally
isomorphic to the derived right adjoint of the Quillen adjunction (3.18).
Therefore, since every object of sSetJ is cofibrant, a morphism of sim-
plicial sets is sent to an isomorphism by the functor Ho sSetJ(−, X) if
and only if it is sent to a homotopy equivalence of Kan complexes by
the right Quillen functor J(X−) : sSetop

J −→ sSetK, as required.

Remark 3.20. A Kan complex is local with respect to a given morphism
in the model structure for Kan complexes if and only if it is local with
respect to that morphism in the model structure for quasi-categories.
This can be seen as a consequence either of the fact that the model
structure for Kan complexes is a Bousfield localisation of the model
structure for quasi-categories (cf. [1, Lemma A.4]), or of the standard
result that for any simplicial set A and Kan complex X, the Kan complex
XA is a model for the derived hom-space from A to X in the model
category sSetK (see [12, Example 17.1.4]), which coincides with our
model for the derived hom-space from A to X in the model category
sSetJ.
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Remark 3.21. An alternative model for the derived hom-spaces of the
model category sSetJ involves the following adjunction (which we will
meet again in §5). Let k : ∆ −→ sSet denote the functor that sends
the ordered set [m] to the nerve of its groupoid reflection, i.e. the nerve
of the contractible groupoid with the set of objects {0, . . . ,m}. This
functor induces an adjunction

sSetJ `
k!

//
sSetK

k!oo

(3.22)

whose left adjoint is the left Kan extension of k : ∆ −→ sSet along the
Yoneda embedding ∆ −→ sSet. By [15, Theorem 6.22], this adjunction
is a Quillen adjunction between the model structures for quasi-categories
and Kan complexes as indicated. Note that, since k([0]) = ∆0, the right
adjoint functor k! sends a quasi-category to a Kan complex with the
same set of objects.

One can show by another application of Lemma A.12 that for each
simplicial set A and quasi-category X, the Kan complex k!(XA) is a
model for the derived hom-space from A to X in the model category
sSetJ, which is homotopy equivalent to the Kan complex J(XA) by [15,
Proposition 6.26]. For our purposes, either of these models J(XA) or
k!(XA) for the derived hom-space would suffice; but one must be chosen,
and we have chosen the former.

Using Lemma 3.19, we are now able to prove the following proposition.

Proposition 3.23. A quasi-category is n-truncated if and only if it is
local with respect to the boundary inclusion ∂∆n+2 −→ ∆n+2 in the model
structure for quasi-categories.

Proof. By Lemma 3.19, it is required to prove that a quasi-category X
is n-truncated if and only if the Kan fibration

J(Xbn+2) : J(X∆n+2) −→ J(X∂∆n+2) (3.24)

induced by the boundary inclusion bn+2 : ∂∆n+2 −→ ∆n+2 is a homotopy
equivalence of Kan complexes, or equivalently a trivial fibration.
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Let X be an n-truncated quasi-category. We will prove that the
morphism (3.24) is a trivial fibration. Since n ≥ −1, the boundary
inclusion ∂∆n+2 −→ ∆n+2 is 0-bijective, and so by [15, Lemma 5.9] (see
also [15, Corollary 5.11]) the following square is a pullback square.

J(X∆n+2)

��

// X∆n+2

��

J(X∂∆n+2) // X∂∆n+2

Hence it suffices to prove that the morphism X∆n+2 −→ X∂∆n+2 is a
trivial fibration. By adjointness, this is so if and only if X has the right
lifting property with respect to the pushout-product of the boundary
inclusion ∂∆m −→ ∆m with the (n + 1)-bijective boundary inclusion
∂∆n+2 −→ ∆n+2 for every m ≥ 0. But every such pushout-product is
an (n + 1)-bijective monomorphism, and so X has the desired lifting
property by Corollary 3.13. Therefore the morphism (3.24) is a trivial
fibration.

Conversely, let X be a quasi-category and suppose that the morphism
(3.24) is a trivial fibration. By Proposition 3.12, it remains to prove
that X has the right lifting property with respect to the boundary
inclusion ∂∆m −→ ∆m for every m ≥ n + 2. Since trivial fibrations
are surjective on 0-simplices, it suffices to prove that the morphism
J(Xbm) : J(X∆m) −→ J(X∂∆m) is a trivial fibration for every m ≥ n+2.

We prove by induction that the morphism J(Xbm) is a trivial fibration
for every m ≥ n+2. The base case m = n+2 of the induction is precisely
the assumption that the morphism (3.24) is a trivial fibration. Now
suppose m > n+ 2, and let 0 < i < m be an integer (which exists since
n ≥ −1). We then have a diagram of monomorphisms as on the left
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below,

∂∆m−1

bm−1
� �

// Λmi

�� him

��

∆m−1

δi //

// ∂∆m

bm

##

∆m

J(X∆m)

J(Xbm )
&&

J(Xδi )

&&

J(Xhim )

$ $

J(X∂∆m) //

��

J(X∆m−1)

J(Xbm−1 )
��

J(XΛmi ) // J(X∂∆m−1)

and hence a diagram of Kan fibrations as on the right above. In this
latter diagram, the morphism J(Xbm−1) is a trivial fibration by the
induction hypothesis, and hence so is its pullback. Since the morphism
him is an inner horn inclusion, the morphism Xhim is a trivial fibration,
and hence so is the morphism J(Xhim). It then follows from the two-of-
three property that the morphism J(Xbm) is a trivial fibration. This
completes the proof by induction.

As a special case of this result, we recover the following well-known
characterisation of n-types (cf. [12, Proposition 1.5.1]).

Corollary 3.25. A Kan complex X is an n-type if and only if it is local
with respect to the boundary inclusion ∂∆n+2 −→ ∆n+2 in the model
structure for Kan complexes.

Proof. By Remark 3.20, a Kan complex is local with respect to the
boundary inclusion ∂∆n+2 −→ ∆n+2 in the model structure for Kan
complexes if and only if it is local with respect to it in the model structure
for quasi-categories. Hence the result follows from Proposition 3.23 and
Corollary 3.17.

Remark 3.26. A Kan complex X is local with respect to the boundary
inclusion ∂∆0 = ∅ −→ ∆0 if and only if the unique morphism X ∼=
X∆0 −→ X∅ = ∆0 is a homotopy equivalence, that is, if and only if X
is contractible. Hence Corollary 3.25 holds for all n ≥ −2.

We may now apply Smith’s existence theorem (Theorem A.11) to
deduce the existence of the Bousfield localisation of the model structure
for quasi-categories whose fibrant objects are precisely the n-truncated
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quasi-categories. We break the statement of the following result into
two parts: the first part was stated without proof in [16, §26.5], and the
second part is new to this paper.

Theorem 3.27 ([16, §26.5]). There exists a model structure on the
category of simplicial sets whose cofibrations are the monomorphisms
and whose fibrant objects are the n-truncated quasi-categories. This
model structure is cartesian and left proper.

Theorem 3.28. The model structure of Theorem 3.27 is the Bousfield
localisation of Joyal’s model structure for quasi-categories with respect
to the boundary inclusion ∂∆n+2 −→ ∆n+2, and is combinatorial.

Proof. Since the model category sSetJ is left proper and combinatorial,
there exists by Theorem A.11 a Bousfield localisation of sSetJ whose
fibrant objects are precisely the quasi-categories that are local with
respect to the single morphism ∂∆n+2 −→ ∆n+2. By Proposition 3.23,
these fibrant objects are precisely the n-truncated quasi-categories. The-
orem A.11 further implies that this model structure is left proper and
combinatorial. The model structure is cartesian by Proposition A.7 and
Corollary 3.14, since sSetJ is a cartesian model category in which every
object is cofibrant.

Remark 3.29. In [16, §26.5], the model structure of Theorem 3.27 is
defined as the Bousfield localisation of the model structure sSetJ for
quasi-categories with respect to the (large) class of “weak categorical
n-equivalences” (defined therein as the morphisms of simplicial sets
satisfying the property stated in Lemma 4.1 below). However, our
identification of this model structure with the Bousfield localisation
of sSetJ with respect to the boundary inclusion ∂∆n+2 −→ ∆n+2, or
indeed with respect to any small set of morphisms, is not contained in
[16].

We will call the model structure of Theorem 3.27 the model structure
for n-truncated quasi-categories. Similarly, one can prove by Corollary
3.25 and Theorem A.11 that the n-types are the fibrant objects of the
Bousfield localisation of the model structure for Kan complexes with
respect to the boundary inclusion ∂∆n+2 −→ ∆n+2, as recalled in Remark
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2.14. Since every n-type is an n-truncated quasi-category by Corollary
3.17, this model structure for n-types is also a Bousfield localisation
of the model structure for n-truncated quasi-categories; indeed, the
following proposition implies that it is the Bousfield localisation of this
model structure with respect to the unique morphism ∆1 −→ ∆0 (cf.
Examples A.5 and A.9).

Proposition 3.30. A quasi-category is a Kan complex if and only if it
is local with respect to the unique morphism ∆1 −→ ∆0 in the model
structure for quasi-categories.

Proof. Let X be a quasi-category. By Lemma 3.19, it suffices to prove
that X is a Kan complex if and only if the induced morphism of Kan
complexes J(X) −→ J(X∆1) is a homotopy equivalence. To prove this,
consider the following commutative diagram of Kan complexes.

J(X)

""||

J(X)∆1
// J(X∆1)

In this diagram, the left-diagonal morphism is a homotopy equivalence,
since ∆1 −→ ∆0 is a homotopy equivalence. Hence, by the two-of-three
property, it remains to show that X is a Kan complex if and only if
the bottom morphism in this diagram is a homotopy equivalence. But
this bottom morphism is both a monomorphism and a Kan fibration,
since, by [15, Proposition 5.3], it is the image under the functor J of the
inclusion X(∆1) −→ X∆1 of the replete full sub-quasi-category of X∆1

consisting of the isomorphisms in X, which is both a monomorphism and
an isofibration. Hence the bottom morphism is a homotopy equivalence
if and only if it is surjective on objects, which is so precisely when every
morphism in the quasi-category X is an isomorphism, that is, precisely
when X is a Kan complex.

We have constructed the model structure for n-truncated quasi-
categories as the Bousfield localisation of the model structure for quasi-
categories with respect to the boundary inclusion ∂∆n+2 −→ ∆n+2.
However, as in Remark A.10, this model structure can also be described

- 176 -



A. Campbell and E. Lanari On truncated quasi-categories

as the Bousfield localisation of the model structure for quasi-categories
with respect to any of a variety of alternative morphisms. To conclude
this section, we give one such alternative morphism. This will be derived
as an instance of a more general proposition, which we will prove by an
application of the following standard result.

Consider a commutative diagram of simplicial sets as displayed below,

X
f

//

p
��

Y

q
��

A

in which the morphisms p and q are Kan fibrations. A standard result
states that the morphism f is a weak homotopy equivalence if and only
if, for each 0-simplex a ∈ A0, the induced morphism between fibres
fa : p−1(a) −→ q−1(a) is a homotopy equivalence of Kan complexes.

Let Σ: sSet −→ sSet denote the (two-point) suspension functor,
that is, the composite of the left adjoint of the adjunction (3.3) with
the functor ∂∆1\sSet −→ sSet that forgets the base points. Since
the adjunction (3.3) is a Quillen adjunction, the suspension functor
preserves monomorphisms and sends weak homotopy equivalences to
weak categorical equivalences.

Proposition 3.31. Let f : A −→ B be a morphism of simplicial sets. A
quasi-category X is local with respect to the morphism Σ(f) : ΣA −→ ΣB
in the model structure for quasi-categories if and only if, for each pair of
objects x, y ∈ X, the hom-space HomX(x, y) is local with respect to the
morphism f : A −→ B in the model structure for Kan complexes.

Proof. Let f : A −→ B be a morphism of simplicial sets and let X be a
quasi-category. By Lemma 3.19, X is local with respect to the morphism
Σ(f) in sSetJ if and only if the morphism of Kan complexes

J(XΣ(f)) : J(XΣB) −→ J(XΣA) (3.32)

is a homotopy equivalence. By Lemma 3.19 and Remark 3.20, for each
pair of objects x, y of X, the hom-space HomX(x, y) is local with respect
to the morphism f in sSetK if and only if the morphism of Kan complexes

HomX(x, y)f : HomX(x, y)B −→ HomX(x, y)A (3.33)
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is a homotopy equivalence. Hence it is required to prove that the
morphism (3.32) is a homotopy equivalence if and only if the morphism
(3.33) is a homotopy equivalence for each pair of objects x, y of X.

From the commutative diagram of simplicial sets on the left below

∂∆1

(⊥,>)

��

(⊥,>)

��

ΣA
Σ(f)

// ΣB

J(XΣB) J(XΣ(f))
//

$$

J(XΣA)

zz

J(X ×X)

we obtain the commutative diagram on the right above, in which the
diagonal morphisms are Kan fibrations. By the standard result recalled
above, the morphism J(XΣ(f)) is a homotopy equivalence if and only
if, for each pair of objects x, y of X, the induced morphism between
the fibres over (x, y) is a homotopy equivalence. Therefore, the result
follows from the observation that, for each pair of objects x, y of X, this
induced morphism between the fibres is none other than the morphism
(3.33). This can be seen as follows.

For each simplicial set U , since the functor V 7→ XV sends pushouts
to pullbacks, the quasi-category XΣU is given by the pullback on the
right below.

HomX(x, y)U //

��

XΣU //

��

(X∆1)U

� �

∆0
(x,y)

// X ×X // (X ×X)U

Since the functor (−)U preserves limits, we see by the pasting lemma
for pullbacks that the fibre of the isofibration XΣU −→ X ×X over a
pair of objects (x, y) is the Kan complex HomX(x, y)U , and hence, upon
application of the limit preserving functor J , that this Kan complex is
also the fibre of the Kan fibration J(XΣU ) −→ J(X ×X) over (x, y). A
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further application of the pasting lemma to the diagram

HomX(x, y)B

��

HomX(x,y)f
// HomX(x, y)A //

��

∆0

(x,y)
� �

J(XΣB)
J(XΣ(f))

// J(XΣA) // J(X ×X)

shows that the morphism (3.33) is the pullback of the morphism (3.32),
seen as a morphism of simplicial sets over J(X×X), along the morphism
(x, y) : ∆0 −→ J(X ×X), as required.

By applying this proposition to the morphism ∂∆n+1 −→ ∆n+1, we
obtain an alternative characterisation of n-truncated quasi-categories as
local objects, and thus an alternative description of the model structure
for n-truncated quasi-categories as a Bousfield localisation of the model
structure for quasi-categories.

Corollary 3.34. A quasi-category is n-truncated if and only if it is
local with respect to the morphism Σ(∂∆n+1 −→ ∆n+1) in the model
structure for quasi-categories. Hence the model structure for n-truncated
quasi-categories is the Bousfield localisation of the model structure for
quasi-categories with respect to the morphism Σ(∂∆n+1 −→ ∆n+1).

Proof. By Corollary 3.25 (or Remark 3.26, if n = −1), a Kan complex
is an (n− 1)-type if and only if it is local with respect to the boundary
inclusion ∂∆n+1 −→ ∆n+1 in the model structure for Kan complexes.
Hence the result follows from Proposition 3.31.

4. Categorical n-equivalences

Throughout this section, let n ≥ 0 be an integer.
A morphism of simplicial sets is said to be a weak categorical n-

equivalence if it is a weak equivalence in the model structure for n-
truncated quasi-categories established in Theorems 3.27 and 3.28. Since
this model structure is a Bousfield localisation of the model structure
for quasi-categories, the class of weak categorical n-equivalences enjoys
the following characterisation.
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Lemma 4.1 ([16, §26.5]). A morphism of simplicial sets f : A −→ B is
a weak categorical n-equivalence if and only if the function

(Ho sSetJ)(f,X) : (Ho sSetJ)(B,X) −→ (Ho sSetJ)(A,X)

is a bijection for each n-truncated quasi-category X.

Proof. Since the weak categorical n-equivalences are the weak equiva-
lences in the model structure for n-truncated quasi-categories, which is
a Bousfield localisation of the model structure for quasi-categories, this
is an instance of Lemma A.2.

The main goal of this section is to prove that a morphism of quasi-
categories is a weak categorical n-equivalence if and only if it is a
categorical n-equivalence, in the sense of the following definitions. (We
reiterate that this result was stated without proof in [16, §26.6].)

Definition 4.2. If n ≥ 1, a morphism of quasi-categories f : X −→ Y
is said to be a categorical n-equivalence if it is essentially surjective on
objects, and if for each pair of objects x, y ∈ X, the induced morphism
of hom-spaces f = fx,y : HomX(x, y) −→ HomY (fx, fy) is a homotopy
(n− 1)-equivalence.

Let us first examine the lowest dimensional case of this definition.

Proposition 4.3. A morphism of quasi-categories is a categorical 1-
equivalence if and only if it is sent by the fundamental category functor
τ1 : sSet −→ Cat to an equivalence of categories.

Proof. Recall that the restriction of the fundamental category functor
to the full subcategory of quasi-categories is naturally isomorphic to the
homotopy category functor. Let f : X −→ Y be a morphism of quasi-
categories. By definition, f is essentially surjective on objects if and only
if the induced functor between homotopy categories ho(f) : hoX −→
hoY is essentially surjective on objects. By construction, the functor
ho(f) is fully faithful if and only if f is a homotopy 0-equivalence
on hom-spaces. Therefore the morphism of quasi-categories f is a
categorical 0-equivalence if and only if the functor ho(f) is an equivalence
of categories.
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Similarly, let us make the following definition (cf. Proposition 3.10).
Recall that the category Pos of posets is a reflective subcategory of
Cat; the poset reflection of a category A is the poset quotient of its
preorder reflection, where the latter is the preorder whose objects are
those of A and in which one has a ≤ b if and only if the hom-set A(a, b)
is nonempty. Thus one obtains a composite adjunction

Pos `
N

//
sSet

τp
oo

(4.4)

whose fully faithful right adjoint sends a poset to its nerve, and whose left
adjoint sends a simplicial set to the poset reflection of its fundamental
category.

Definition 4.5. A morphism of quasi-categories is said to be a cate-
gorical 0-equivalence if it is sent by the functor τp : sSet −→ Pos to an
isomorphism of posets.

Remark 4.6. Unpacking this definition, one finds that a morphism of
quasi-categories f : X −→ Y is a categorical 0-equivalence if and only if
it satisfies the following two properties:

(i) for each object z ∈ Y , there exists an object x ∈ X and a pair of
morphisms Fx −→ z and z −→ Fx in Y , and

(ii) for each pair of objects x, y ∈ X, the induced morphism

f : HomX(x, y) −→ HomY (fx, fy)

is a homotopy (−1)-equivalence.

If Y is a 0-truncated quasi-category, then any endomorphism in Y
is necessarily an isomorphism, and so a morphism of quasi-categories
f : X −→ Y satisfies property (i) if and only if it is essentially surjective
on objects.
Remark 4.7. To prevent a proliferation of cases, we have made the global
assumption n ≥ 0 in this section. The n = −1 case of the problem
of this section is easily dispensed with: since the model structure for
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(−1)-truncated quasi-categories coincides with the model structure for
(−1)-types, a morphism of simplicial sets is a weak categorical (−1)-
equivalence if and only if it is inverted by the functor π−1 : sSet −→
{0 < 1} that sends the empty simplicial set to 0 and every nonempty
simplicial set to 1.

Next, we establish a few useful properties of the class of categorical
n-equivalences.

Lemma 4.8. Let f : X −→ Y be a morphism of n-truncated quasi-
categories. Then the following properties are equivalent.

(i) f is an equivalence of quasi-categories.

(ii) f is a weak categorical n-equivalence.

(iii) f is a categorical n-equivalence.

Proof. The equivalence (i) ⇐⇒ (ii) is a consequence of the fact that
the model structure for n-truncated quasi-categories is a Bousfield local-
isation of the model structure for quasi-categories.

To prove the equivalence (i) ⇐⇒ (iii), recall that a morphism of
quasi-categories is an equivalence if and only if it is essentially surjective
on objects and a homotopy equivalence on hom-spaces, and that a
morphism between (n− 1)-types is a homotopy equivalence if and only
if it is a homotopy (n − 1)-equivalence. Since the hom-spaces of n-
truncated quasi-categories are (n − 1)-types, we see that a morphism
of n-truncated quasi-categories is an equivalence if and only if it is a
categorical n-equivalence (by Remark 4.6 if n = 0).

Lemma 4.9. Let f : X −→ Y and g : Y −→ Z be morphisms of quasi-
categories. If two of the morphisms f, g, gf are categorical n-equivalences,
then so is the third.

Proof. The class of categorical 0-equivalences was defined as the class
of morphisms of quasi-categories inverted by a functor, and therefore
satisfies the stated property.

Note that by the functoriality of the hom-space construction, the com-
posite morphism gf : X −→ Z is given on hom-spaces by the composite

- 182 -



A. Campbell and E. Lanari On truncated quasi-categories

morphism

HomX(x, x′) f
// HomY (fx, fx′) g

// HomZ(gfx, gfx′). (4.10)

Suppose n ≥ 1. We must consider three cases. In the first, suppose
f and g are categorical n-equivalences. Since the class of essentially
surjective on objects morphisms of quasi-categories and the class of
homotopy (n− 1)-equivalences of Kan complexes are both closed under
composition (by Lemma 2.15), we have that the composite morphism
gf : X −→ Z is a categorical n-equivalence.

In the second case, suppose that g and gf are categorical n-equiv-
alences. To show that f is essentially surjective on objects, it suffices
to show that the functor ho(f) : hoX −→ hoY is essentially surjective
on objects. This follows from the assumptions (which hold since n ≥ 1)
that the functor ho(gf) is essentially surjective on objects and that the
functor ho(g) is fully faithful. Since gf is given on hom-spaces by the
composite (4.10), we have that f is a homotopy (n− 1)-equivalence on
hom-spaces by Lemma 2.15.

In the third case, suppose that f and gf are categorical n-equivalences.
Since gf is essentially surjective on objects, it follows that g is essentially
surjective on objects. To show that g is a homotopy (n− 1)-equivalence
on hom-spaces, let y, y′ be a pair of objects of Y . Since f is essentially
surjective on objects, there exist objects x, x′ ∈ X and isomorphisms
u : fx ∼= y and v : fx′ ∼= y′ in Y . Thus we have a commutative diagram
of quasi-categories as on the left below in which the vertical morphisms
are equivalences of quasi-categories (by the Quillen adjunction (3.18)),

Y
g

// Z

∂∆1

(y,y′)
;;

(u,v)
//

(fx,fx′)
##

Y (∆1)

Y (δ0)

OO

Y (δ1)

��

g(∆1)
// Z(∆1)

Z(δ0)

OO

Z(δ1)

� �

Y g
// Z

HomY (y, y′)
g

// HomZ(gy, gy′)

Hom
Y (∆1)(u, v)

Y (δ0)

OO

Y (δ1)

� �

g(∆1)
// Hom

Z(∆1)(gu, gv)

Z(δ0)

OO

Z(δ1)

��

HomY (fx, fx′) g
// HomZ(gfx, gfx′)

and which therefore induces a commutative diagram of Kan complexes as
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on the right above in which the vertical morphisms are homotopy equiva-
lences, and hence also homotopy (n− 1)-equivalences. Hence, by Lemma
2.15, the morphism g : HomY (y, y′) −→ HomZ(gy, gy′) is a homotopy
(n− 1)-equivalence if and only if the morphism g : HomY (fx, fx′) −→
HomZ(gfx, gfx′) is a homotopy (n − 1)-equivalence. But the latter
morphism is a homotopy (n− 1)-equivalence by Lemma 2.15, since the
composite morphism (4.10) and its first factor are homotopy (n − 1)-
equivalences by assumption.

By construction (3.4), the suspension ΣU of an n-skeletal simplicial
set U is (n+ 1)-skeletal (since it is a colimit of (n+ 1)-skeletal simplicial
sets). Hence the n-skeleta of the hom-spaces HomX(x, y) of a quasi-
category X depend only on the (n+ 1)-skeleton of X. This implies that
an (n+ 1)-bijective morphism of quasi-categories f : X −→ Y induces
n-bijective morphisms on hom-spaces f : HomX(x, y) −→ HomY (fx, fy).
We may therefore deduce the following lemma from Lemma 2.16.

Lemma 4.11. An (n + 1)-bijective morphism of quasi-categories is a
categorical n-equivalence.

Proof. Let f : X −→ Y be an (n + 1)-bijective morphism of quasi-
categories. Then f is a 0-bijection, and hence in particular (essentially)
surjective on objects (if n = 0, note that this implies property (i) of
Remark 4.6). Furthermore, for each pair of objects x, y of X, the induced
morphism on hom-spaces HomX(x, y) −→ HomY (fx, fy) is n-bijective
as above, and hence is a homotopy (n− 1)-equivalence by Lemma 2.16.
Therefore f is a categorical n-equivalence.

Following [16, §26.7], define a categorical n-truncation of a simplicial
set A to be a fibrant replacement of A in the model structure for n-
truncated quasi-categories, that is, an n-truncated quasi-category X
together with a weak categorical n-equivalence A −→ X. In the next two
propositions, we will prove that the (n+1)-coskeleton of a quasi-category
is a model for its categorical n-truncation (cf. [2, §1] or [7, §9.1], where
the (n+ 1)-coskeleton of a Kan complex is given as a model for its nth
Postnikov truncation). We will then use these results to prove the main
theorem of this section.
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Proposition 4.12. Let X be a quasi-category. Then its (n + 1)-
coskeleton coskn+1X is an n-truncated quasi-category, and the unit mor-
phism X −→ coskn+1X is a categorical n-equivalence.

Proof. First, to prove that coskn+1X is a quasi-category, it is required
to prove that it has the right lifting property with respect to the inner
horn inclusion hkm : Λm

k −→ ∆m for every m ≥ 2 and 0 < k < m. By
adjointness, this is so if and only if X has the right lifting property with
respect to the morphism skn+1(hkm) : skn+1Λm

k −→ skn+1∆m. Consider
the following three cases. If m ≤ n+ 1, then the morphism skn+1(hkm) is
the inner horn inclusion hkm, with respect to which X has the right lifting
property since it is a quasi-category. If m = n+ 2, then the morphism
skn+1(hkm) is isomorphic to the inclusion Λm

k −→ ∂∆m, with respect
to which X has the right lifting property, since it has this property
with respect to the composite Λm

k −→ ∂∆m −→ ∆m, since it is a quasi-
category. If m > n+ 2, then the morphism skn+1(hmk ) is an isomorphism,
with respect to which therefore X has the unique right lifting property.

Next, to show that the quasi-category coskn+1X is n-truncated, it suf-
fices to observe that the unit morphism coskn+1X −→ coskn+1coskn+1X
is an isomorphism (since coskn+1 is an idempotent monad), for then
coskn+1 is n-truncated by Corollary 3.16.

Finally, since the unit morphism X −→ coskn+1X is an (n + 1)-
bijective morphism of quasi-categories, it is a categorical n-equivalence
by Lemma 4.11.

Let J = k([1]) denote the nerve of the “free-living isomorphism”,
i.e. the nerve of the groupoid reflection of the ordered set {0 < 1}. By
[15, Proposition 6.18], for any simplicial set A and quasi-category X,
the hom-set (Ho sSetJ)(A,X) is in bijection with the set of J-homotopy
classes of morphisms A −→ X, where two such morphisms f, g belong
to the same J-homotopy class if and only if there exists a morphism
h : J × A −→ X such that h ◦ ({0} × id) = f and h ◦ ({1} × id) = g.

Proposition 4.13. Let A be a simplicial set. Then the unit morphism
A −→ coskn+1A is a weak categorical n-equivalence.

Proof. Let ηA : A −→ coskn+1A denote the unit morphism in question.
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By Lemma 4.1, it is required to prove that the function

(Ho sSetJ)(ηA, X) : (Ho sSetJ)(coskn+1A,X) −→ (Ho sSetJ)(A,X)

is a bijection for each n-truncated quasi-category X, which, without loss
of generality, we may assume to be (n+ 1)-coskeletal by Lemma 3.16.

Let X be an (n + 1)-coskeletal quasi-category. To show that the
function displayed above is injective, let f, g : coskn+1A −→ X be a pair
of morphisms of simplicial sets, and let h : J×A −→ X be a J-homotopy
from fηA to gηA. Then the morphism

J × coskn+1A ∼= coskn+1(J × A) coskn+1(h)
// coskn+1X ∼= X

defines a J-homotopy from f to g (where we have used that the func-
tor coskn+1 preserves products and that J is 0-coskeletal). Hence the
function is injective. To show that it is surjective, let f : X −→ Y be a
morphism of simplicial sets. Then the morphism

coskn+1X
coskn+1(f)

// coskn+1Y ∼= Y

defines an extension of f along the unit morphism ηA. Hence the function
is surjective, and is therefore a bijection.

We are now ready to prove the main theorem of this section.

Theorem 4.14 ([16, §26.6]). A morphism of quasi-categories is a weak
categorical n-equivalence if and only if it is a categorical n-equivalence.

Proof. This statement is true of morphisms of n-truncated quasi-categories
by Lemma 4.8. Let f : X −→ Y be a morphism of quasi-categories. In
the commutative diagram displayed below,

X
f

//

��

Y

��

coskn+1X coskn+1(f)
// coskn+1Y

the vertical morphisms are weak categorical n-equivalences by Proposi-
tion 4.13 and categorical n-equivalences by Proposition 4.12, and the
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bottom morphism is a morphism of n-truncated quasi-categories by
Proposition 4.12. Since the class of weak categorical n-equivalences
and the class of categorical n-equivalences both satisfy the two-of-three
property (the one since it is the class of weak equivalences of a model
category by definition, the other by Lemma 4.9), it follows that f inherits
from coskn+1(f) the property that it is a weak categorical n-equivalence
if and only if it is a categorical n-equivalence.

Remark 4.15. In [16, §26.6], it is incorrectly stated that a morphism of
quasi-categories is a (weak) categorical 0-equivalence if and only if it is
essentially surjective on objects and a homotopy (−1)-equivalence on
hom-spaces. This statement can be corrected by replacing the property
“essentially surjective on objects” by the weaker property (i) in Remark
4.6. For a counterexample, let C be the category freely generated by the
graph displayed below,

• // •oo

and let 1 −→ C be the functor corresponding to either of the two objects
of C. This functor is not essentially surjective on objects, but its poset
reflection is an isomorphism. Hence the nerve of this functor is an
example of a categorical 0-equivalence that is not essentially surjective
on objects.

5. Some Quillen equivalences

In this final section, we use the criteria proved at the end of Appendix A
to prove Quillen equivalences between the model categories of categories
and 1-truncated quasi-categories and between the model categories of
n-truncated quasi-categories and Rezk’s (n, 1)-Θ-spaces.

To begin, recall that the adjunction τ1 a N : Cat −→ sSet (3.5),
whose right adjoint sends a category A to its nerve NA and whose left
adjoint sends a simplicial set X to its fundamental category τ1X, is a
Quillen adjunction, and moreover a homotopy reflection (i.e. its derived
right adjoint is fully faithful), between the folk model structure for
categories (whose weak equivalences are the equivalences of categories)
and Joyal’s model structure for quasi-categories [15, Proposition 6.14].
Using Theorem A.14 and the results of §3, we can show that this
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adjunction is moreover a Quillen equivalence between the folk model
structure for categories and the model structure for 1-truncated quasi-
categories.

Theorem 5.1. The adjunction

Cat `

N
//
sSet

τ1oo

is a Quillen equivalence between the folk model structure for categories
and the model structure for 1-truncated quasi-categories.

Proof. By Theorem A.14, we must prove that the nerve of a category
is a 1-truncated quasi-category, and that, for any 1-truncated quasi-
category X, the unit morphism X −→ N(τ1X) is an equivalence of
quasi-categories. These both follow from Proposition 3.8.

Corollary 5.2 ([16, §26.6]). A morphism of simplicial sets is a weak
categorical 1-equivalence if and only if it sent by the functor τ1 : sSet −→
Cat to an equivalence of categories.

Proof. Since the functor τ1 is the left adjoint of a Quillen equivalence
by Theorem 5.1, and since every simplicial set is cofibrant in the model
structure for 1-truncated quasi-categories, this is an instance of the fact
that the left adjoint of a Quillen equivalence preserves and reflects weak
equivalences between cofibrant objects.

Recall the adjunction τp a N : Pos −→ sSet (4.4), whose fully
faithful right adjoint sends a poset to its nerve, and whose left adjoint
sends a simplicial set to the poset reflection of its fundamental category.
We now show that this adjunction is a Quillen equivalence between
the trivial model structure (i.e. the unique model structure whose weak
equivalences are the isomorphisms) on the category of posets and the
model structure for 0-truncated quasi-categories.

Theorem 5.3. The adjunction

Pos `

N
//
sSet

τp
oo
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is a Quillen equivalence between the trivial model structure for posets
and the model structure for 0-truncated quasi-categories.

Proof. To see that this adjunction is a Quillen adjunction between the
trivial model structure for posets and the model structure for quasi-
categories, it suffices to observe that each weak categorical equivalence
is sent by the functor τp to an isomorphism of posets. But this functor
is the composite of the functor τ1 : sSet −→ Cat, which sends each
weak categorical equivalence to an equivalence of categories, and the
poset reflection functor τp : Cat −→ Pos, which is easily shown to invert
equivalences of categories.

It remains to verify conditions (i) and (ii) of Theorem A.14. Firstly,
by Proposition 3.10, the nerve NA of a poset A is a 0-truncated quasi-
category, which verifies condition (i). Secondly, a 0-truncated quasi-
category X is in particular 1-truncated, and so by Proposition 3.8 the
unit morphism X −→ N(hoX) is an equivalence of quasi-categories.
But by Proposition 3.10, hoX is a preorder and hence N(hoX) is a
0-truncated quasi-category. This verifies condition (ii).

Corollary 5.4 ([16, §26.6]). A morphism of simplicial sets is a weak cat-
egorical 0-equivalence if and only if it is sent by the functor τp : sSet −→
Pos to an isomorphism of posets.

Proof. Since the functor τp is the left adjoint of a Quillen equivalence
by Theorem 5.3, and since every simplicial set is cofibrant in the model
structure for 0-truncated quasi-categories, this is another instance of the
fact that the left adjoint of a Quillen equivalence preserves and reflects
weak equivalences between cofibrant objects.

Recall that a categorical n-truncation of a simplicial set A is an n-
truncated quasi-categoryX together with a weak categorical n-equivalence
A −→ X.

Corollary 5.5 ([16, §26.7]). For each simplicial set A, the unit mor-
phism A −→ N(τ1A) is a categorical 1-truncation of A, and the unit
morphism A −→ N(τpA) is a categorical 0-truncation of A.

Proof. By Corollaries 5.2 and 5.4, it suffices to show that these unit
morphisms are sent to isomorphisms by the functors τ1 and τp respectively.
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In each case, this is an instance of the fact that each component of the
unit of an adjunction whose right adjoint is fully faithful is sent by the
left adjoint to an isomorphism.

Next, we prove, for each n ≥ −1, two Quillen equivalences between
the model categories of n-truncated quasi-categories and Rezk’s (n, 1)-Θ-
spaces. In [17], Joyal and Tierney established two Quillen equivalences

[∆op,Set] `
t!

//
[(∆×∆)op,Set]

t!oo

(5.6)

[(∆×∆)op,Set] `
i∗ 1 //

[∆op,Set]
p∗1oo

between Joyal’s model structure for quasi-categories and Rezk’s model
structure for complete Segal spaces on the category of bisimplicial sets
(defined in [21]). Suffice it to recall that the functor t! sends a simpli-
cial set A to the bisimplicial set t!(A) whose nth column t!(A)n is the
simplicial set k!(A∆n) (where k! denotes the right adjoint of the Quillen
adjunction (3.22)), that the functor i∗1 sends a bisimplicial set X to its
zeroth row X∗0, and that there are natural isomorphisms t!p∗1 ∼= id and
i∗1t

! ∼= id. For each complete Segal space X, we refer to the elements of
the set X00 as the objects of X; there is an evident bijection between the
objects of a quasi-category A and the objects of its associated complete
Segal space t!(A).

For each n ≥ −1, Rezk constructed in [22] a Bousfield localisation of
the model structure for complete Segal spaces, whose fibrant objects are
the complete Segal spaces X each of whose hom-spaces HomX(x, y) is
an (n− 1)-type [22, Proposition 11.20]. Rezk calls complete Segal spaces
with this property (n, 1)-Θ-spaces, but for convenience we will call them
n-truncated complete Segal spaces, and we will call this model structure
the model structure for n-truncated complete Segal spaces. Recall from
[21, §5.1] that for each pair of objects x, y of a complete Segal space X,
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the hom-space HomX(x, y) is defined to be the pullback

HomX(x, y) //

��

X1

(d1,d0)
��

∆0
(x,y)

// X0 ×X0

in the category of simplicial sets (where Xn denotes the nth column
of the bisimplicial set X). By comparison with the definition of the
hom-spaces of a quasi-category (3.2), one sees that there is a canonical
isomorphism

Homt!(A)(x, y) ∼= k!(HomA(x, y)) (5.7)
for each pair of objects x, y in a quasi-category A, since the right adjoint
functor k! preserves limits.

We now apply Theorem A.15 to prove that the two Quillen equiva-
lences (5.6) remain Quillen equivalences between the Bousfield localisa-
tions for n-truncated quasi-categories and n-truncated complete Segal
spaces. The following proposition shows that these Quillen equivalences
satisfy the hypotheses of that theorem.

Proposition 5.8. Let n ≥ −1 be an integer.

1. A quasi-category A is n-truncated if and only if the complete Segal
space t!(A) is n-truncated.

2. A complete Segal space X is n-truncated if and only if its underlying
quasi-category i∗1(X) is n-truncated.

Proof. (1) Let A be a quasi-category. For each pair of objects x, y ∈ A,
there is a homotopy equivalence Homt!(A)(x, y) ' HomA(x, y) by the
isomorphism (5.7) and [15, Proposition 6.26]. Hence the hom-spaces of A
are (n− 1)-types if and only if the hom-spaces of t!(A) are (n− 1)-types,
that is, A is an n-truncated quasi-category if and only if t!(A) is an
n-truncated complete Segal space.

(2) Let X be a complete Segal space. There is a span of weak
equivalences in the model structure for complete Segal spaces

X p∗1(i∗1X)oo // t!(i∗1X),
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where the left-pointing arrow is the counit of the Quillen equivalence
p∗1 a i∗1 and the right-pointing arrow is the transpose of the canonical
isomorphism t!(p∗1(i∗1X)) ∼= i∗1X under the Quillen equivalence t! a t!,
both of which are weak equivalences since X is fibrant. Hence X is
weakly equivalent to the complete Segal space t!(i∗1X), and so X is
n-truncated if and only if t!(i∗1X) is n-truncated, which by (1) is so if
and only if the quasi-category i∗1X is n-truncated.

Hence the adjunctions (5.6) satisfy the hypotheses of Theorem A.15,
and we may deduce the following theorem.

Theorem 5.9. For each integer n ≥ −1, the adjunctions

[∆op,Set] `

t!
//
[(∆×∆)op,Set]

t!oo

[(∆×∆)op,Set] `
i∗ 1 //

[∆op,Set]
p∗1oo

are Quillen equivalences between the model structure for n-truncated
quasi-categories on the category of simplicial sets and the model structure
for n-truncated complete Segal spaces on the category of bisimplicial sets.

Proof. By [17], these adjunctions are Quillen equivalences between the
model structures for quasi-categories and complete Segal spaces. For
each n ≥ −1, the model structures for n-truncated quasi-categories
and n-truncated complete Segal spaces are Bousfield localisations of the
former model structures, and so it remains to show that these adjunctions
satisfy the conditions of Theorem A.15. But this is precisely what was
shown in Proposition 5.8.

Remark 5.10. In [22, §11], Rezk defines the model structure for n-
truncated complete Segal spaces as the Bousfield localisation of the
model structure for complete Segal spaces with respect to the morphism
denoted therein by V [1](∂∆n+1 −→ ∆n+1). One can show that the left
adjoint functor t! sends this morphism to the morphism of simplicial
sets Σ(k!(∂∆n+1 −→ ∆n+1)). Since there is a natural weak homotopy
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equivalence id −→ k! [15, Theorem 6.22], and since the suspension functor
Σ sends weak homotopy equivalences to weak categorical equivalences,
it follows from Corollary 3.34 that the model structure for n-truncated
quasi-categories is the Bousfield localisation of the model structure for
quasi-categories with respect to the morphism Σ(k!(∂∆n+1 −→ ∆n+1)).
Hence one could alternatively prove Proposition 5.8(1) and that half of
Theorem 5.9 concerning the adjunction t! a t! by [12, Proposition 3.1.12]
and [12, Theorem 3.3.20] respectively.

To conclude, we combine two previous theorems to deduce a Quillen
equivalence between the folk model structure for categories and the
model structure for 1-truncated complete Segal spaces. The right adjoint
of this Quillen equivalence is the composite functor

t!N : Cat −→ [(∆×∆)op,Set],

which sends a category A to its classifying diagram [21, §3.5], which
is the bisimplicial set whose nth column is the nerve of the maximal
subgroupoid of the category A[n], and which was shown directly by Rezk
to be a complete Segal space [21, Proposition 6.1].

Theorem 5.11. The composite adjunction

Cat `

N
//
[∆op,Set]

τ1oo

`

t!
//
[(∆×∆)op,Set],

t!oo

whose right adjoint is Rezk’s classifying diagram functor, is a Quillen
equivalence between the folk model structure for categories and the model
structure for 1-truncated complete Segal spaces.

Proof. This adjunction is the composite of the Quillen equivalence of
Theorem 5.1 and the n = 1 case of one of the Quillen equivalences of
Theorem 5.9, and is therefore a Quillen equivalence.

A. Bousfield localisations

In this appendix, we recall some of the basic theory of Bousfield locali-
sations of model categories (mostly those results that we use which are

- 193 -



A. Campbell and E. Lanari On truncated quasi-categories

difficult to find explicitly stated in the literature in the form we use
them), including two criteria for detecting Quillen equivalences between
Bousfield localisations. We assume familiarity with the basic theory of
model categories, such as is contained in [13, Chapter 1]; our approach
is particularly influenced by the insightful appendices [17, §7] and [15,
Appendix E].

We begin with the notion of a Bousfield localisation of a model
category (after [17, Definition 7.20], in contrast to [12, Definition 3.3.1],
where a Bousfield localisation is defined with respect to a given class of
morphisms). Recall that a model category is a locally small complete
and cocomplete category equipped with a model structure, which is
determined by its classes (C,W ,F) of cofibrations, weak equivalences,
and fibrations.

Definition A.1. A Bousfield localisation of a model structure (C,W ,F)
on a category M is a model structure (Cloc,Wloc,Floc) on the same
categoryM such that Cloc = C and W ⊆Wloc.

We will often denote the model category determined by a Bousfield
localisation of (the model structure of) a model categoryM byMloc,
and call the morphisms belonging to the classes Wloc and Floc local weak
equivalences and local fibrations respectively; the fibrant objects of the
model categoryMloc we will call local fibrant objects. It is immediate
from the definition that the adjunction

Mloc `

1M
//
M,

1Moo

whose left and right adjoints both are the identity functor on (the
underlying category of)M, is a Quillen adjunction. Hence every local
fibration and local fibrant object is in particular a fibration and a fibrant
object (in the model categoryM) respectively. Moreover, the derived
right adjoint of this Quillen adjunction is fully faithful, which is to
say that the Quillen adjunction is a homotopy reflection in the sense
of [15, Definition E.2.15] (the term homotopy localisation is used in
[17]); it follows that a morphism between local fibrant objects is a weak
equivalence if and only if it is a local weak equivalence [17, Proposition
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7.18]. Furthermore, it follows by a factorisation and retract argument
that a morphism between local fibrant objects is a fibration if and only
if it is a local fibration [17, Proposition 7.21].

The model category axioms imply that a morphism is a local fibration
if and only if it has the right lifting property with respect to the class
of morphisms C ∩Wloc, whose members we call local trivial cofibrations.
Hence a Bousfield localisation of a model category is determined by
its class Wloc of local weak equivalences. Alternatively, a Bousfield
localisation of a model category is determined by its class of local fibrant
objects, since this class determines the local weak equivalences by the
following argument (cf. [15, Proposition E.1.10] and [12, §3.5]). We
denote the homotopy category of a model categoryM by HoM; we will
typically not distinguish an object or morphism ofM from its image
under the localisation functorM−→ HoM.

Lemma A.2. LetMloc be a Bousfield localisation of a model category
M. A morphism f : A −→ B in M is a local weak equivalence if and
only if the function

(HoM)(f,X) : (HoM)(B,X) −→ (HoM)(A,X) (A.3)

is a bijection for each local fibrant object X.

Proof. A morphism f : A −→ B inM is a local weak equivalence if and
only if it is (sent to) an isomorphism in the homotopy category HoMloc,
which is so, by the Yoneda lemma, if and only if the function

(HoMloc)(f,X) : (HoMloc)(B,X) −→ (HoMloc)(A,X) (A.4)

is a bijection for each local fibrant object X (since every object of
HoMloc is isomorphic to a local fibrant object). By taking cofibrant
replacements in M, we may suppose f : A −→ B to be a morphism
between cofibrant objects. For each cofibrant object C and local fibrant
object X, the sets (HoMloc)(C,X) and (HoM)(C,X) are in bijection
with the sets of homotopy classes of morphisms C −→ X in the model
categories Mloc and M respectively. But these latter sets coincide,
since any cylinder object for C in the model category M is also a
cylinder object for C in the model category Mloc; hence there is a
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bijection (HoMloc)(C,X) ∼= (HoM)(C,X). The functions (A.3) and
(A.4) correspond under these bijections, and so one is a bijection if and
only if the other is.

Hence a Bousfield localisation of a model categoryM can equivalently
be defined as a model structure with the same underlying category and
the same class of cofibrations asM, but with fewer fibrant objects. This
alternative definition makes it easy to recognise Bousfield localisations,
as in the following example.

Example A.5. On the category sSet of simplicial sets, the model struc-
ture for Kan complexes is a Bousfield localisation of the model structure
for quasi-categories, since the cofibrations are the monomorphisms in
both model structures, and since every Kan complex is a quasi-category
(see [17, §1] for details). Hence a morphism of Kan complexes is a homo-
topy equivalence if and only if it is an equivalence of quasi-categories.

We may thus regard a Bousfield localisation of a given model category
as determined by its local fibrant objects. Given this perspective, the
following lemma will be found useful (cf. [15, Proposition E.2.23] and [12,
Proposition 3.3.15]). We say that two objects in a model categoryM
are weakly equivalent if they are isomorphic in the homotopy category
HoM, that is, if they are connected by a zig-zag of weak equivalences
inM.

Lemma A.6. LetMloc be a Bousfield localisation of a model category
M. A fibrant object of M is local fibrant if and only if it is weakly
equivalent inM to a local fibrant object.

Proof. The condition being obviously necessary, we prove its sufficiency.
Suppose X is a fibrant object ofM that is weakly equivalent to a local
fibrant object Y . Since both objects are fibrant inM, they are connected
by a span of weak equivalences X ←− Z −→ Y in which the object
Z is fibrant. Hence it suffices to consider the two cases in which (i)
there exists a weak equivalence X −→ Y , or (ii) there exists a weak
equivalence Y −→ X.

In case (i), take a factorisation of the weak equivalence X −→ Y into
a trivial cofibration X −→ W followed by a trivial fibration W −→ Y .

- 196 -



A. Campbell and E. Lanari On truncated quasi-categories

Since a trivial fibration is in particular a local fibration, W is a local
fibrant object. Since X is fibrant, the trivial cofibration X −→ W has a
retraction, whence X is a retract of the local fibrant object W , and is
therefore local fibrant.

In case (ii), let X −→ X ′ be a local fibrant replacement of X. The
composite Y −→ X −→ X ′ is then a local weak equivalence between
local fibrant objects, and hence is a weak equivalence. It then follows
from the two-of-three property that X −→ X ′ is a weak equivalence,
and so X is local fibrant by case (i).

One can use the following criterion involving local fibrant objects to
determine when a Bousfield localisation of a cartesian model category is
cartesian, at least when every object is cofibrant. Recall that a model
categoryM is said to be cartesian (or cartesian closed [17, Definition
7.29]) if its underlying category is cartesian closed, its terminal object
is cofibrant, and the product functor −×− : M×M −→M is a left
Quillen bifunctor [13, Definition 4.2.1].

Proposition A.7. LetM be a cartesian model category in which every
object is cofibrant. A Bousfield localisation ofM is cartesian if and only
if the internal hom object XA is local fibrant for every object A and every
local fibrant object X ofM.

Proof. The condition is necessary since every object is cofibrant and the
internal hom functor of a cartesian model category is a right Quillen
bifunctor.

To prove sufficiency, note that any Bousfield localisation ofM inherits
the properties that the terminal object is cofibrant and that the pushout-
product of any two cofibrations is a cofibration; hence it remains to show
that the pushout-product of a local trivial cofibration with a cofibration
is a local trivial cofibration, or equivalently a local weak equivalence.

First, observe that for any local weak equivalence f : A −→ B and
any object C, the morphism f × C : A× C −→ B × C is a local weak
equivalence. This follows from Lemma A.2, since for any local fibrant
object X, the function (HoM)(B × C,X) −→ (HoM)(A × C,X) is
isomorphic to the function (HoM)(B,XC) −→ (HoM)(A,XC) by [13,
Theorem 4.3.2], and the latter function is a bijection by Lemma A.2
since XC is local fibrant by assumption.
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Now, let f : A −→ B be a local trivial cofibration and let g : C −→ D
be a cofibration. Then in the diagram

A× C A×g
//

f×C
��

A×D
j

�� f×D

��

B × C //

B×g ..

·
f×̂g

%%

B ×D

we have that the morphisms f × C, its pushout j, and f × D are
local trivial cofibrations, and hence by the two-of-three property for
local weak equivalences that the pushout-product f×̂g is a local trivial
cofibration.

Let us now recall an existence theorem for Bousfield localisations due
to Smith, which will enable us to recognise when a class of fibrant objects
in a model category is the class of local fibrant objects for a Bousfield
localisation of that model category. To state this theorem, it will be
helpful to first recall some results from [13, Chapter 5] concerning the
canonical enrichments of homotopy categories and derived adjunctions
over the classical homotopy category, that is, the homotopy category
Ho sSetK of the category of simplicial sets equipped with the model
structure for Kan complexes, which we denote by H . By [10, §IV.3] (see
also [13, Theorem 4.3.2]), H is a cartesian closed category, with terminal
object ∆0, and as such may be considered as a base for enriched category
theory (for which, see [18, Chapter 1]). We use underlines to indicate
H -enriched categories; in particular, we denote the self-enrichment of
H by H .

By [13, Theorem 5.5.3], for any model category M, its homotopy
category HoM admits a canonical enrichment over the cartesian closed
category H ; we denote this H -enriched category by HoM and refer
to its hom-objects as the derived hom-spaces of the model category
M. (Note that the H -enrichment of the homotopy category HoMop

defines an H -enriched category isomorphic to the opposite of HoM.)
Furthermore, by [13, Theorem 5.6.2], for any Quillen adjunction as on
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the left below,

M `
G

//
N

Foo

HoM `
R
G //

HoN
LFoo

its derived adjunction underlies an H -enriched adjunction between H -
enriched homotopy categories as on the right above. We refer to the
right adjoint of this H -enriched adjunction as the H -enriched right
derived functor of G.

Now, let S be a set of morphisms in a model categoryM. We say
that an object X ofM is S-local, or local with respect to S, if the induced
morphism between derived hom-spaces

HoM(f,X) : HoM(B,X) −→ HoM(A,X) (A.8)

is an isomorphism in H for each morphism f : A −→ B belonging to S
(cf. [12, Definition 3.1.4]). The following theorem gives sufficient condi-
tions for the existence of the (necessarily unique) Bousfield localisation
ofM whose local fibrant objects are the S-local fibrant objects ofM; if
it exists, we call this Bousfield localisation the Bousfield localisation of
M with respect to S, and denote it by LSM (cf. [12, Definition 3.3.1]).

Example A.9. It follows from Proposition 3.30 that the model structure
for Kan complexes on the category of simplicial sets is the Bousfield
localisation of the model structure for quasi-categories with respect to
the single morphism ∆1 −→ ∆0.

Remark A.10. The set of morphisms S may be thought of as a “pre-
sentation” of the Bousfield localisation LSM of M (if it exists). In
general, a Bousfield localisationMloc of a left proper (see below) model
category M admits many such presentations: in particular, one can
always take S to be the (large) set of local weak equivalences; if the
model categoryMloc is cofibrantly generated, one can take S to be a
small set of generating trivial cofibrations forMloc.

To state the existence theorem, we require the following technical
conditions. A model category is said to be left proper if any pushout
of a weak equivalence along a cofibration is a weak equivalence (see
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[12, §13.1]; any model category in which every object is cofibrant is left
proper), and is said to be combinatorial if it is cofibrantly generated and
its underlying category is locally presentable (see [8, §2]). Every model
category considered in this paper is both left proper and combinatorial.

Theorem A.11 (Smith). LetM be a left proper combinatorial model
category and let S be a small set of morphisms inM. Then there exists a
Bousfield localisation LSM ofM whose local fibrant objects are precisely
the S-local fibrant objects ofM. The model category LSM is left proper
and combinatorial.

Proof. See [4, Theorem 4.7]. Note that any Bousfield localisation of a
left proper model category is left proper: any local weak equivalence
admits a factorisation into a local trivial cofibration followed by a weak
equivalence, and hence, ifM is left proper, so too does any pushout of
a local weak equivalence along a cofibration.

To determine whether an object X of a model categoryM is local
with respect to some set of morphisms, one needs a model for the functor
HoM(−, X) : HoMop −→ H , which appeared in (A.8). In practice,
such models can be easily recognised with the help of (the dual of)
the following lemma, which implies that the derived right adjoint of a
Quillen adjunction F a G : Mop −→ sSetK is naturally isomorphic to
the functor HoM(−, X) : HoMop −→H if F (∆0) is weakly equivalent
to X inM.

Lemma A.12. Let

M `

G
//
sSetK

Foo

be a Quillen adjunction between a model categoryM and the category
of simplicial sets equipped with the model structure for Kan complexes.
For each object A ofM, the following are equivalent.

(i) The H -enriched right derived functor of G is H -naturally iso-
morphic to the H -enriched representable functor HoM(A,−) :
HoM−→H .
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(ii) The objects F (∆0) and A are weakly equivalent in the model
categoryM.

Proof. By the H -enriched derived adjunction LF a RG : HoM−→H
of the Quillen adjunction F a G, and since ∆0 is the terminal object of
the cartesian closed category H , there exist isomorphisms in H

(RG)X ∼= H (∆0, (RG)X) ∼= HoM((LF )∆0, X)

H -natural in X ∈ HoM. Since ∆0 is a cofibrant object of sSetK,
there exists an isomorphism (LF )∆0 ∼= F (∆0) in HoM. Hence the
H -enriched functor RG : HoM −→ H is represented by the object
F (∆0). The result then follows from the H -enriched Yoneda lemma.

We conclude this section with two criteria for detecting Quillen
equivalences between Bousfield localisations, which are stated in terms
of local fibrant objects. These criteria distill presumably standard
arguments; we apply them in §5 to prove the Quillen equivalences
mentioned in §1. First, we give a necessary and sufficient condition for
an adjunction to remain a Quillen adjunction after Bousfield localisation.
Proposition A.13. Let F a G : M −→ N be a Quillen adjunction
between model categories, and let Nloc be a Bousfield localisation of N .
The adjunction F a G : M−→ Nloc is a Quillen adjunction if and only
if the functor G sends each fibrant object of M to a fibrant object of
Nloc.

Proof. The condition is necessary since right Quillen functors preserve
fibrant objects. To prove the converse, it suffices by [17, Proposition 7.15]
to prove that F : Nloc −→M preserves cofibrations and that G : M−→
Nloc preserves fibrations between fibrant objects. The first holds since
N and Nloc share the same class of cofibrations and since F : N −→M
preserves cofibrations. The second holds since the hypothesis implies
that G sends each fibration between fibrant objects inM to a fibration
between local fibrant objects in N , which by [17, Proposition 7.21] is a
fibration in Nloc.

Recall that a Quillen adjunction F a G : M −→ N is said to be a
homotopy reflection if its derived right adjoint RG : HoM−→ HoN is
fully faithful [15, Definition E.2.15].
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Theorem A.14. Let F a G : M−→ N be a homotopy reflection, and
let Nloc be a Bousfield localisation of N . The adjunction F a G : M−→
Nloc is a Quillen equivalence if and only if the following conditions are
satisfied:

(i) G sends each fibrant object ofM to a fibrant object of Nloc, and

(ii) for every cofibrant fibrant object X of Nloc, there exists a fibrant
object A ofM and a weak equivalence X −→ GA in N .

Proof. Suppose that the adjunction F a G : M −→ Nloc is a Quillen
equivalence. Condition (i) holds by Proposition A.13. To prove condition
(ii), let X be a cofibrant fibrant object of Nloc. Then the composite
morphism

X
ηX // GFX

Gr // G(FX)f ,

where η is the unit of the adjunction F a G and r : FX −→ (FX)f is a
fibrant replacement of FX inM, is the component of the derived unit
of this Quillen equivalence at the cofibrant object X, and is therefore a
local weak equivalence between local fibrant objects, and hence also a
weak equivalence in N .

Conversely, suppose that the conditions (i) and (ii) hold. Condi-
tion (i) implies that the adjunction F a G : M −→ Nloc is a Quillen
adjunction by Proposition A.13. To show that this Quillen adjunction
is a Quillen equivalence, it suffices to show that its derived right ad-
joint RG : HoM−→ HoNloc is an equivalence of categories. Since the
original homotopy reflection is equal to the composite Quillen adjunction

M `

G
//
Nloc

Foo

`

1N
//
N ,

1Noo

we have that the composite of the functor RG : HoM−→ HoNloc with
the fully faithful functor R1N : HoNloc −→ HoN is fully faithful, and
hence that the functor RG : HoM−→ HoNloc is fully faithful. Since
every object of HoNloc is isomorphic to a cofibrant fibrant object of
Nloc, condition (ii) implies that the functor RG : HoM −→ HoNloc
is essentially surjective on objects, and therefore an equivalence of
categories.

- 202 -



A. Campbell and E. Lanari On truncated quasi-categories

Finally, we give a necessary and sufficient condition for a Quillen
equivalence to remain a Quillen equivalence after Bousfield localisation.

Theorem A.15. Let F a G : M−→ N be a Quillen equivalence between
model categories, and letMloc and Nloc be Bousfield localisations ofM
and N respectively. The adjunction F a G : Mloc −→ Nloc is a Quillen
equivalence if and only if a fibrant object A of M is fibrant in Mloc
precisely when GA is fibrant in Nloc.

Proof. The composite Quillen adjunction

Mloc `

1M
//
M

1Moo

`
G

//
N

Foo

(A.16)

is a homotopy reflection, since it is a composite of homotopy reflections.
Hence the adjunction F a G : Mloc −→ Nloc is a Quillen equivalence
if and only if the homotopy reflection (A.16) satisfies the conditions of
Theorem A.14. It will therefore suffice to show that these conditions are
equivalent to that of the present theorem.

Suppose that the homotopy reflection (A.16) satisfies the conditions
(i) and (ii) of Theorem A.14, and let A be a fibrant object ofM. If A
is fibrant inMloc, then by condition (i), GA is a fibrant object of Nloc.
Conversely, suppose GA is a fibrant object of Nloc. Let (GA)c −→ GA be
a cofibrant replacement ofGA inN , chosen to be a trivial fibration. Then
(GA)c is a cofibrant fibrant object of Nloc, and so by condition (ii), there
exists a fibrant object B ofMloc and a weak equivalence (GA)c −→ GB
in N . Hence the objects GA and GB are weakly equivalent in N , and
since the derived right adjoint of the Quillen equivalence F a G : M−→
N is fully faithful, it follows that A and B are weakly equivalent inM.
Hence A is a fibrant object inMloc by Lemma A.6.

To prove the converse, suppose that a fibrant object A ofM is fibrant
inMloc precisely when GA is fibrant in Nloc. One half of this assumption
is precisely condition (i) of Theorem A.14. To verify condition (ii) of
that theorem, let X be a cofibrant fibrant object of Nloc. For any fibrant
replacement r : FX −→ (FX)f of FX inM, the composite morphism

X
ηX // GFX

Gr // G(FX)f
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gives the component at X of the derived unit of the original Quillen
equivalence, and is thus a weak equivalence in N . Hence G(FX)f is
weakly equivalent in N to the fibrant object X of Nloc, and is therefore
itself fibrant inNloc by Lemma A.6. The other half of our assumption now
implies that (FX)f is a fibrant object ofMloc, thus verifying condition
(ii).
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FLOWS REVISITED: THE MODEL
CATEGORY STRUCTURE AND ITS

LEFT DETERMINEDNESS

Philippe GAUCHER

Résumé. Les flots sont un modèle topologique de la concurrence qui permet
d’encoder la notion de raffinement de l’observation et de comprendre les
propriétés homologiques des branchements et des confluences des chemins
d’exécution. Intuitivement, ce sont des d-espaces au sens de Grandis sans
espace topologique sous-jacent. Ils ont seulement un type d’homotopie sous-
jacent. Cette note a deux objectifs. Premièrement de donner une nouvelle
construction de la catégorie de modèles des flots plus conceptuelle grâce au
travail d’Isaev. Cela permet d’éviter des arguments topologiques difficiles.
Deuxièmement nous prouvons que cette catégorie de modèles est déterminée
gauche en adaptant un argument de Olschok. L’introduction contient quelques
spéculations sur ce qu’on s’attend à trouver en localisant cette catégorie de
modèles minimale.
Abstract. Flows are a topological model of concurrency which enables to
encode the notion of refinement of observation and to understand the homo-
logical properties of branchings and mergings of execution paths. Roughly
speaking, they are Grandis’ d-spaces without an underlying topological space.
They just have an underlying homotopy type. This note is twofold. First, we
give a new construction of the model category structure of flows which is more
conceptual thanks to Isaev’s results. It avoids the use of difficult topological
arguments. Secondly, we prove that this model category is left determined
by adapting an argument due to Olschok. The introduction contains some
speculations about what we expect to find out by localizing this minimal model
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1. Introduction

1.1 Topological models of concurrency

There is a multitude of topological models of concurrency: flows which
are the subject of this paper and which are introduced in [6], but also d-
spaces [18], streams [28], inequilogical spaces [19], spaces with distinguished
cubes [21] [20], multipointed d-spaces [14] etc... All these mathematical
devices contain the same basic examples coming from concurrency (e.g. the
geometric realizations of precubical sets), a local ordering modeling the
direction of time and its irreversibility, execution paths, a set or a topological
space of states and a notion of homotopy between execution paths to model
concurrency. Grandis’ d-spaces give rise to a vast literature studying the
directed fundamental category and the directed components of directed spaces
whatever the definition we give to this notion of directed space.

This paper belongs to the sequence of papers [6] [9] [15] [12] [10] [11]
[7] [8]. The main feature of the model category of flows is to enable the
formalization and the study of the notion of refinement of observation (the
cofibrant replacement functor plays a crucial role in the formalization indeed).
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The model category of flows also enables the study of the homological
properties of the branching areas and merging areas of execution paths in
concurrent systems, in particular a long exact sequence, and their interaction
with the refinement of observation, actually their invariance with respect to
them. Since flows have also a labeled version (see [13, Section 6]), they can be
used for modeling the path spaces of process algebras for any synchronization
algebra [13] [16].

1.2 Speculative digression

In our line of research, the objects are multipointed, i.e. they are equipped
with a distinguished set of states. The set of states provided by the description
of a concurrent process is not forgotten. It is exactly the same phenomenon
as in the formalism of simplicial set. A simplicial set is equipped with a set
of vertices which comes from the description of the space. This family of
topological models of concurrency differs from other topological models of
concurrency like Grandis’ d-spaces or streams which are not multipointed.

The interest of our approach is that it is already possible to build model
category structures such that the weak equivalences preserve the causal stru-
cture of a process. Indeed, all flows are fibrant. By Ken Brown’s lemma, two
flows are therefore weakly equivalent if and only if they can be related by a
zig-zag of trivial fibrations. Every trivial fibration satisfies the right lifting
property with respect to any cofibration, and therefore with respect to any
reasonable notion of extension of paths. Thus two weakly equivalent flows
are bisimilar in Joyal-Nielsen-Winskel’s sense [27] for any reasonable notion
of extension of paths.

The main drawback of a lot of, and to the best of our knowledge, actually
all other model categories introduced in directed homotopy is that their weak
equivalences destroy the causal structure for example by identifying the
directed segment up to weak equivalence with a point. Indeed, the directed
segment should not be contractible (in a directed sense) in directed homotopy.
To understand the reason, consider the well-known example of the Swiss Flag
example (cf. Figure 1). It consists of two processes concurrently executing the
instructions PA.PB.V A.V B and PB.PA.V B.V A where Px means taking
the control of a shared ressource x and V x means releasing it. We suppose
that at most one process can take the control of a given shared ressource.
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PB

PA

PA PB VB VA

VA

VB

(PB,PA)

(PB,PA)

Figure 1: Swiss Flag example

There are in our example two shared ressources A and B which can be for
example buffers to temporarily store data. The execution paths start from
the bottom left corner, ends to the top right corner, and are supposed to be
nondecreasing with respect to each axis of coordinates. Then the point of
coordinates (PB, PA) is a deadlock because it is impossible from it to reach
the desired final state. As soon as the directed segment becomes weakly
equivalent to a point, the deadlock (PB, PA) could disappear up to weak
equivalence (the picture on the right is an object having the same causal
structure). It means that a weak equivalence could break the causal structure
as soon as the directed segment is contractible in a directed sense and, in this
case, if left properness is assumed.

The weak equivalences of the model category of flows do preserve the
causal structure. However, they are too restrictive. It is not even possible up
to weak equivalence to replace in a flow a directed segment by a more refined
one (cf. Figure 2), by adding additional points in the middle of the segment in
the distinguished set of states. This annoying behaviour can be overcome by
adding weak equivalences by homotopical localization. One of the challenges
of our line of research is precisely to understand the homotopical localization
of the model category of (labeled) flows with respect to this kind of maps:
they are called T-homotopy equivalences in [10].

The paper [7] proves not only that the class of weak equivalences of this
homotopical localization contains more equivalences than the dihomotopy
equivalences of flows as defined in [9], but also that there is no hope to obtain

- 211 -



P. GAUCHER FLOWS REVISITED

T−HOMOTOPY

Figure 2: Replacement of a directed segment by a more refined one

a model category structure on flows such that the weak equivalences are
exactly these dihomotopy equivalences, even if a notion of fibrant object (the
homotopy continuous flows [9, Definition 4.3]) with the associated Whitehead
theorem exists for dihomotopy equivalences [9, Theorem 4.6].

By now, we only know by studying examples that the weak equivalences
of this homotopical localization seem to be, in the labeled case, dihomotopy
equivalences in the sense of [9] up to a kind of bisimulation. In particular,
it means that the weak equivalences of this homotopical localization likely
preserve causality, but not the branching and merging homologies, and not
the underlying homotopy type of a flow as defined in [11] which is, roughly
speaking, the homotopy type of the space obtained after removing the directed
structure of a flow.

It is actually possible to homotopically localize the model category of
labeled flows by the whole class of bisimulations in Joyal-Nielsen-Winskel’s
sense since this class of maps is accessible. Then another strange phenomenon
occurs. We would then have to deal in the localization with weak equivalences
breaking the causal structure. The latter phenomenon is explained in [17,
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Theorem 12.4] within the combinatorial framework of Cattani-Sassone higher
dimensional transition systems but it can be easily adapted and generalized to
many other frameworks of directed homotopy, including the one of flows.

1.3 Purpose of this note

The construction of the model category of flows as carried out in [6] is quite
long and tricky. It makes use of rather complicated topological lemmas, in
particular because colimits of flows are difficult to understand. Indeed, flows
are roughly speaking small categories without identities (precategories ?
pseudocategories ?) enriched over topological spaces 1 Therefore new paths
are created as soon as states are identified in a colimit, which may generate
complicated modifications of the topology of the path space (e.g. see the
proof of [6, Theorem 15.2] which is not only complicated but also contains a
flaw which will be fixed in a subsequent paper). The first purpose of this note
is to drastically simplify this construction using [25]. We then explain in a
second part why the model category of flows is left determined in the sense of
[30] by adapting an argument due to Marc Olschok for the model category of
topological spaces. The latter fact is a new result (it was mentioned without
proof in [17, Section 12]). In the (complicated) quest of finding out better
model categories with as much weak equivalences as possible preserving the
causal structure, this result means that it is not possible in the framework of
flows to remove weak equivalences without changing the set of generating
cofibrations.

1.4 Organization

Section 2 recalls what we need to use from Isaev’s paper. Section 3 explains
the new construction of the model category structure of flows (Theorem 3.11).
Section 4 recalls the notion of left determined model category and proves
that the category of flows is left determined (Theorem 4.3). Section 5 makes
some final comments.

1There is no known relation between the model category of flows and the model category
of topologically enriched small categories of [3]: the obvious adjunction is not even a Quillen
adjunction; moreover the terminology of “flow” must not mislead the reader, it has nothing
to do with a similar terminology in Morse theory.
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1.5 Notations

All categories are locally small. The category of sets is denoted by Set. The
set of maps in a category K from X to Y is denoted by K(X, Y ). The initial
(final resp.) object, if it exists, is always denoted by ∅ (1 resp.). The identity
of an objectX is denoted by IdX . The composite of two maps f : A→ B and
g : B → C is denoted by g.f . A subcategory is always isomorphism-closed
(replete). Let f and g be two maps of a category K. Denote by f � g when
f satisfies the left lifting property (LLP) with respect to g, or equivalently g
satisfies the right lifting property (RLP) with respect to f . Let C be a class
of maps. Let us introduce the notations inj(C) = {g ∈ K,∀f ∈ C, f � g}
and cof(C) = {f | ∀g ∈ inj(C), f � g}. The class of morphisms of K
that are transfinite compositions of pushouts of elements of C is denoted
by cell(C). We refer to [1] for locally presentable categories, to [29] for
combinatorial model categories. We refer to [24] and to [23] for more general
model categories.

2. Isaev approach for constructing model categories

Let K be a locally presentable category. A combinatorial model category
structure is characterized by its set of generating cofibrations and by its class
of fibrant objects by [26, Proposition E.1.10]. Therefore, for a given set of
maps I , there exists at most one combinatorial model category structure on
K such that the set of generating cofibrations is I and such that all objects
are fibrant. In [25], several methods are expounded to obtain model category
structures such that all objects are fibrant. We summarize in the next theorem
what we are going to need in this note.

Theorem 2.1. [25, Theorem 4.3, Proposition 4.4, Proposition 4.5 and Corol-
lary 4.6] Let K be a locally presentable category. Let I be a set of maps of K
such that the domains of the maps of I are I-cofibrant (i.e. belong to cof(I)).
Suppose that for every map i : U → V ∈ I , the relative codiagonal map
V tU V → V factors as a composite V tU V

γ0tγ1→ CU(V )→ V such that
the left-hand map belongs to cof(I). Let JI = {γ0 : V → CU(V ) | U →
V ∈ I}. Suppose that there exists a path functor Path : K → K, i.e. an end-
ofunctor of K equipped with two natural transformations τ : Id⇒ Path and
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π : Path⇒ Id× Id such that the composite π.τ is the diagonal. Moreover
we suppose that the path functor satisfies the following hypotheses:

1. With π = (π0, π1), π0 : Path(X)→ X and π1 : Path(X)→ X have
the RLP with respect to I .

2. The map π : Path(X)→ X ×X has the RLP with respect to the maps
of JI .

Then there exists a unique model category structure on K such that the set
of generating cofibrations is I and such that the set of generating trivial
cofibrations is JI . Moreover, all objects are fibrant.

Unlike in [25], we can drop the hypothesis about the smallness of the
domains and the codomains of the maps of I with respect to I by [2, Proposi-
tion 1.3] because the ambient category is supposed to be locally presentable
. Note that every map of JI is a split monomorphism since the composite
V tU V → CU(V )→ V is the relative codiagonal. Therefore every object is
fibrant indeed.

3. The model category of flows

Notation 3.1. The category Top denotes a bicomplete locally presentable
cartesian closed full subcategory of the category of general topological spaces
containing all CW-complexes.

The category of ∆-generated spaces, i.e. the colimits of simplices, or
equivalently the colimits of the segment [0, 1] by [4, Proposition 3.17], satis-
fies these hypotheses [5]. It is also possible to add weak separability hypothe-
ses like this one: for every continuous map g : ∆n → X where ∆n is the
topological n-simplex with n > 0, g(∆n) is closed in X . For a tutorial about
these topological spaces, see for example [14, Section 2]. We take Top to be
equipped with the standard Quillen model category structure.

Notation 3.2. The internal hom functor is denoted by TOP(−,−).

Definition 3.3. [6] A flow X consists of a topological space PX of execution
paths, a discrete space X0 of states, two continuous maps s and t from PX
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to X0 called the source and target map respectively, and a continuous and
associative map

∗ : {(x, y) ∈ PX × PX; t(x) = s(y)} −→ PX

such that s(x ∗ y) = s(x) and t(x ∗ y) = t(y). A morphism of flows f :
X −→ Y consists of a set map f 0 : X0 −→ Y 0 together with a continuous
map Pf : PX −→ PY such that f(s(x)) = s(f(x)), f(t(x)) = t(f(x)) and
f(x ∗ y) = f(x) ∗ f(y). The corresponding category is denoted by Flow.

Notation 3.4. For a topological space X , let Glob(X) be the flow defined
by Glob(X)0 = {0, 1} and PGlob(X) = X with s and t being the constant
functions s = 0 and t = 1. The Glob mapping induces a functor from the
category Top of topological spaces to the category Flow of flows.

We need to recall the two following easy propositions:

Proposition 3.5. [6, Proposition 13.2] A morphism of flows f : X −→ Y
satisfies the RLP with respect to Glob(U) −→ Glob(V ) if and only if for
any α, β ∈ X0, Pα,βX −→ Pf(α),f(β)Y satisfies the RLP with respect to
U −→ V .

Proposition 3.6. [6, Proposition 16.2] Let f be a morphism of flows. Then
the following conditions are equivalent:

1. f is bijective on states

2. f satisfies the RLP with respect to R : {0, 1} −→ {0} and C : ∅ ⊂
{0}.

We will also need this new proposition which does not seem to be proved
in one of our previous papers about flows:

Proposition 3.7. The globe functor Glob : Top → Flow preserves con-
nected colimits (i.e. colimits such that the underlying small category is
connected).

Note that the connectedness hypothesis is necessary. Indeed, V and W
being two topological spaces, the flow Glob(V tW ) has two states whereas
the flow Glob(V ) tGlob(W ) has four states.
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Proof. Let V be a topological space. Giving a map from the flow Glob(V )
to a flow X is equivalent to choosing two states α and β of X (the image of
the states 0 and 1 of Glob(V )) and a continuous map from V to Pα,βX . Thus
the following natural bijection of sets holds

Flow(Glob(V ), X) ∼=
⊔

(α,β)∈X0×X0

Top(V,Pα,βX). (1)

We obtain the sequence of natural bijections (lim−→Vi being a connected colimit
of topological spaces)

Flow(Glob(lim−→Vi), X) ∼=
⊔

(α,β)∈X0×X0

Top(lim−→Vi,Pα,βX)

∼=
⊔

(α,β)∈X0×X0

lim←−Top(Vi,Pα,βX)

∼= lim←−
⊔

(α,β)∈X0×X0

Top(Vi,Pα,βX)

∼= lim←−Flow(Glob(Vi), X)

∼= Flow(lim−→Glob(Vi), X),

the first and the fourth isomorphisms by (1), the second and the fifth isomor-
phisms by definition of a (co)limit and the third isomorphism by the connect-
edness of the limit. The proof is complete using the Yoneda lemma.

Notation 3.8. [6, Notation 7.6] Let U be a topological space. Let X be a
flow. The flow {U,X}S is defined as follows:

1. The set of states of {U,X}S is X0.

2. For α, β ∈ X0, let Pα,β{U,X}S = TOP(U,Pα,βX).

3. For α, β, γ ∈ X0, the composition law

∗ : Pα,β{U,X}S × Pβ,γ{U,X}S −→ Pα,γ{U,X}S
is the composite

Pα,β{U,X}S × Pβ,γ{U,X}S ∼= TOP (U,Pα,βX × Pβ,γX)

−→ TOP (U,Pα,γX)

induced by the composition law of X .
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The flow {U,X}S is functorial with respect to U and X (contravariant
with respect to U and covariant with respect to X). The flow {∅, Y }S is
the flow having the same set of states as Y and exactly one non-constant
execution path between two points of Y 0. The flow {{0}, X}S is canonically
isomorphic to X for all flows X . Maybe the latter assertion deserves a little
explanation because it is precisely why cartesian closedness matters (the fact
that {0} is exponentiable is actually sufficient). For all topological spaces U ,
we have the natural bijections

Top(U,Pα,βX) ∼= Top(U × {0},Pα,βX) ∼= Top(U,TOP({0},Pα,βX)).

Thus by Yoneda, we obtain the homeomorphism

Pα,βX ∼= TOP({0},Pα,βX)).

Notation 3.9. Let n > 1. Denote by Dn = {b ∈ Rn, |b| 6 1} the n-
dimensional disk, and by Sn−1 the (n−1)-dimensional sphere. By convention,
let D0 = {0} and S−1 = ∅. Let Igl+ = {Glob(Sn−1) ⊂ Glob(Dn) | n >
0} ∪ {C : ∅→ {0}, R : {0, 1} → {0}}.

We recall an elementary lemma about the model category Top which is a
straightforward consequence of the fact that the Quillen model structure is
Cartesian monoidal:

Lemma 3.10. Let i : U → V be a cofibration of Top. Then for all topo-
logical spaces X , the map i∗ : TOP(V,X) → TOP(U,X) is a fibration.
If moreover i is a weak equivalence, then the map i∗ : TOP(V,X) →
TOP(U,X) is a trivial fibration.

We can now easily carry out the construction of the model category
structure.

Theorem 3.11. There exists a unique model category structure such that Igl+
is the set of generating cofibrations and such that all objects are fibrant.

Proof. We have to check the hypotheses of Theorem 2.1. The category Flow
is locally presentable since Top is locally presentable (see for example the
proof of [7, Proposition 6.11]). That all Glob(Sn−1) for all n > 0 are Igl+ -
cofibrant comes from the fact that the (n− 1)-sphere is cofibrant in Top. We
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can factor the relative codiagonal map Dn tSn−1 Dn → Dn as a composite
DntSn−1Dn ⊂ Dn+1 → Dn for all n > 0. Thus for U → V being one of the
maps Glob(Sn−1) ⊂ Glob(Dn) for n > 0, we set CU(V ) = Glob(Dn+1).
We have a pushout diagram of topological spaces

Sn //

��

Dn tSn−1 Dn

��
Dn+1 //Dn+1

which gives rise to the pushout diagram of flows

Glob(Sn)

��

// Glob(Dn) tGlob(Sn−1) Glob(Dn)

��
Glob(Dn+1) // Glob(Dn+1)

for all n > 0 by Proposition 3.7. This implies that for U → V being one of
the maps Glob(Sn−1) ⊂ Glob(Dn) for n > 0, the map V tU V → CU(V )
belongs to cell(Igl+ ). The map C : ∅ → {0} gives rise to the relative
codiagonal map {0} t {0} → {0}. Thus we set C∅({0}) = {0}. In this case,
the map V tU V → CU(V ) is R : {0, 1} → {0} which belongs to cell(Igl+ ).
The map R : {0, 1} → {0} gives rise to the relative codiagonal map Id{0}.
Thus we set C{0,1}({0}) = {0}. In this case, the map V tU V → CU(V ) is
Id{0} which belongs to cell(Igl+ ). The set of generating trivial cofibrations
will be therefore the set of maps Glob(Dn) ⊂ Glob(Dn+1) for n > 0. Let
Path(X) = {[0, 1], X}S for all flows X . The composite map {0, 1} ⊂
[0, 1] → {0} yields a natural composite map of flows X ∼= {{0}, X}S →
Path(X)→ {{0, 1}, X}S which is constant on states and which gives rise to
the composite continuous map Pα,βX → TOP([0, 1],Pα,βX)→ Pα,βX ×
Pα,βX on the spaces of paths for all (α, β) ∈ X0 × X0. We obtain a
natural composite map of flows X τ−→ Path(X)

π−→ X × X since the
set of states of X × X is X0 × X0 and the space of paths from (α, α′)
to (β, β′) is Pα,βX × Pα′,β′X by [6, Theorem 4.17]. We have obtained a
path object in the sense of Theorem 2.1. Since the maps π0 and π1 are
bijective on states, they satisfy the RLP with respect to {C : ∅ → {0}, R :
{0, 1} → {0}} by Proposition 3.6. By Proposition 3.5, the maps π0 and
π1 satisfy the RLP with respect to Glob(Sn−1) ⊂ Glob(Dn) for n > 0 if
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and only if the evaluation maps TOP([0, 1],Pα,βX) ⇒ Pα,βX on 0 and
1 satisfy the RLP with respect to the inclusion Sn−1 ⊂ Dn for n > 0
and for all (α, β) ∈ X0 × X0, i.e. if and only if the evaluation maps
TOP([0, 1],Pα,βX)⇒ Pα,βX are trivial fibrations for all (α, β) ∈ X0×X0.
The latter fact is a consequence of Lemma 3.10 and from the fact that the
inclusions {0} ⊂ [0, 1] and {1} ⊂ [0, 1] are trivial cofibrations of Top.
Finally we have to check that the map π : Path(X) → X × X satisfies
the RLP with respect to the maps Glob(Dn) ⊂ Glob(Dn+1) for n > 0. By
Proposition 3.5 again, it suffices to prove that the map TOP([0, 1],Pα,βX)→
TOP({0, 1},Pα,βX) = Pα,βX × Pα,βX is a fibration of topological spaces
for all (α, β) ∈ X0 ×X0. By Lemma 3.10 again, this comes from the fact
that the inclusion {0, 1} ⊂ [0, 1] is a cofibration of Top.

This model category structure coincides with the one of [6].

4. Left determinedness of the model category of flows

Let us now recall the definition of a left determined model category:

Definition 4.1. Let I be a set of maps of a locally presentable category K.
A class of mapsW is a localizer (with respect to I) or an I-localizer ifW
satisfies:

• Every map satisfying the RLP with respect to the maps of I belongs to
W .

• W is closed under retract and satisfies the 2-out-of-3 property.

• The class of maps cof(I) ∩W is closed under pushout and transfinite
composition.

The class of all maps is an I-localizer. The class of I-localizers is closed under
arbitrarily large intersection. Therefore there exists a smallest I-localizer
denoted byWI .

Definition 4.2. [30] A combinatorial model category K with the set of gen-
erating cofibrations I is left determined if the class of weak equivalences is
WI .
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Consider a combinatorial model categoryK such that all objects are fibrant
with a class of weak equivalences W and a set of generating cofibrations
I . The localizer WI could be strictly smaller than W . If WI is the class
of weak equivalences of a model category structure on K, then all objects
of this model category structure are fibrant, and therefore W = WI . To
the best of our knowledge, we can only say, using [30, Theorem 2.2], that
every combinatorial model category such that all objects are fibrant is left
determined if we assume Vopěnka’s principle. Since in any model category,
two fibrant objects are weakly equivalent if and only if they are related
by a span of trivial fibrations, and since all trivial fibrations belong to the
smallest localizer, it is also true that there is an equivalence of categories
K[W−1I ] ' K[W−1] between the categorical localizations of K with respect
toWI andW if all objects of the combinatorial model category K are fibrant.
Note that in [25], a localizer is just the class of weak equivalences of a model
category structure. In the latter sense, a model category of fibrant objects has
a minimal localizer indeed.

In our case, it is possible to conclude that the model category is left
determined without assuming Vopěnka’s principle by adapting a technique
we learned from Marc Olschok for the model category of topological spaces.

Theorem 4.3. The model category of flows is left determined.

Proof. Let f : X → Y be a weak equivalence of flows. Then f fac-
tors as a composite f = f2.f1 where f1 is a trivial cofibration, i.e. f1 ∈
cof({Glob(Dn) ⊂ Glob(Dn+1) | n > 0}) and where f2 is a trivial fibra-
tion. In particular f2 satisfies the RLP with respect to C : ∅ → {0} and
R : {0, 1} → {0}. Thus f2 is bijective on states by Proposition 3.6. The
functor X 7→ X0 from Flow to Set is colimit-preserving since it has a right
adjoint (the functor taking a set S to the flow with the set of states S and
exactly one path between each pair of states). Therefore f1 is bijective on
states since the maps Glob(Dn) ⊂ Glob(Dn+1) for all n > 0 are bijective
on states. We deduce that f is bijective on states. Consider the commutative
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diagram of flows

X
∃!f //

f

��

Nf
p′ //

f ′

��

X

f

��
Y τ // {[0, 1], Y }S

π0 //

π1

� �

Y

Y

where the existence of f comes from the universal property of the pullback.
All arrows are bijective on states. Using the fact that the functor P : Flow→
Top is limit-preserving by [6, Theorem 4.17], one obtains the commutative
diagram of topological spaces

PX Pf //

Pf

��

PNf
Pp′ //

Pf ′

��

PX

Pf

��
PY Pτ // TOP([0, 1],PY )

P(π0) //

P(π1)

��

PY

PY

By [22, Proposition 4.64], the map P(π1).P(f ′) is a Hurewicz fibration, and
therefore a fibration of the model category of Top. By Proposition 3.5,
π1.f

′ satisfies the RLP with respect to all trivial cofibrations of flows, i.e.
π1.f

′ is a fibration of flows. The maps P(π0) and P(π1) are trivial fibrations
of the model category of Top by Lemma 3.10. By Proposition 3.5 and
Proposition 3.6, π0 and π1 satisfy the RLP with respect to all cofibrations
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of Flow, i.e. π0 and π1 are trivial fibrations of flows. Thus p′ is a trivial
fibration of Flow since it is a pullback of a trivial fibration. Since f is a weak
equivalence of flows by hypothesis, we deduce by the 2-out-of-3 property
that f ′ is a weak equivalence of Flow. Thus π1.f ′ is a trivial fibration of
flows as well. We have p′.f = IdX . Since p′ is a trivial fibration, it belongs to
the smallest localizer. Therefore by the 2-out-of-3 property, f belongs to the
smallest localizer. Since π1.f ′ is a trivial fibration, it belongs to the smallest
localizer as well. Since π1.f ′.f = π1.τ.f = f , we deduce that f belongs to
the smallest localizer.

5. Concluding remarks

The hypothesis that Top is locally presentable can be removed. Theorem 3.11
and Theorem 4.3 hold by working in any bicomplete cartesian closed full
subcategory of the general category of topological spaces containing all CW-
complexes. But then, we have to check that all domains and all codomains of
the maps of I+gl are small relative to cell(I+gl). This is done in [6, Section 11]
and there is no known way to avoid the use of some difficult topological
arguments. However, the model category of flows is left proper but not
cellular because of the presence of R : {0, 1} → {0} in the generating
cofibrations. So outside the framework of locally presentable categories, we
have no tools to prove the existence of any homotopical localization and to
study the homotopical localization of Flow with respect to the refinement of
observation.
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