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PARTIAL ALGEBRAS AND
EMBEDDING THEOREMS FOR

(WEAKLY) MAL’TSEV CATEGORIES
AND MATRIX CONDITIONS

Pierre-Alain JACQMIN

Résumé. Il est montré que la catégorie des ensembles munis d’une opération
partielle de Mal’tsev est faiblement de Mal’tsev. De plus, pour toute petite
catégorie faiblement de Mal’tsev et finiment complète, le foncteur de Yoneda
la plonge pleinement dans une puissance de cette catégorie des algèbres par-
tielles de Mal’tsev. Ces résultats sont en fait prouvés en utilisant le langage
des ‘conditions matricielles’ de Z. Janelidze afin d’obtenir des théorèmes de
plongement pour les catégories faiblement de Mal’tsev, de Mal’tsev, faible-
ment unitaires, unitaires, fortement unitaires et soustractives.
Abstract. We prove that the category of sets equipped with a partial Mal’tsev
operation is a weakly Mal’tsev category. Moreover, for each small finitely
complete weakly Mal’tsev category, the Yoneda embedding fully embeds it
into a power of this category of partial Mal’tsev algebras. We actually prove
these results using the language of ‘matrix conditions’ from Z. Janelidze, get-
ting in this way embedding theorems for weakly Mal’tsev, Mal’tsev, weakly
unital, unital, strongly unital and subtractive categories.
Keywords. embedding theorem, (weakly) Mal’tsev category, (weakly) unital
category, partial algebra, closed homomorphism.
Mathematics Subject Classification (2010). 18B15, 08A55, 08B05.
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1. Introduction

Mal’tsev categories have been defined in [4] as finitely complete categories
in which every binary relation is difunctional. This generalises the notion
of a regular Mal’tsev category from [3]. A variety of universal algebras is a
Mal’tsev category if and only if its corresponding theory contains a ternary
term p(x, y, z) satisfying the identities p(x, x, y) = y = p(y, x, x) [13].
There are many characterisations of Mal’tsev categories in the literature. For
instance, a finitely complete category is a Mal’tsev category if and only if,
for any pullback of split epimorphisms,

P // //

����

Y

����

rYoo

X // //

lX

OO

Zoo

OO

the induced morphisms lX and rY are jointly strongly epimorphic [2]. In
[15], N. Martins-Ferreira generalises this notion defining a weakly Mal’tsev
category as a category in which the pullbacks as above exist and the mor-
phisms lX and rY are jointly epimorphic.

For a small category C, the full Yoneda embedding C → SetC
op

preser-
ves limits. This allows one to reduce the proofs of some statements about
limits in any category to the particular case of Set, the category of sets. The
aim of this paper is to construct a weakly Mal’tsev category M for which, if
C is a small weakly Mal’tsev finitely complete category, the Yoneda embed-
ding factors through MCop .

MCop

��

C
Y
//

φ
<<

SetC
op

This functor φ is a full and faithful embedding which preserves and reflects
finite limits. Up to a change of universe, it is then enough to prove some sta-
tements about finite limits in M in order to prove them in all weakly Mal’tsev
finitely complete categories.

An object in this category M is a set A equipped with a partial operation
p : A3 → A which is defined (at least) for all triples of the form (x, x, y) and
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(y, x, x) and which satisfies the axioms p(x, x, y) = y = p(y, x, x). A homo-
morphism between such partial Mal’tsev algebras is a function f : A → B
such that, if p(x, y, z) ∈ A is defined, then p(f(x), f(y), f(z)) ∈ B is also
defined and equal to f(p(x, y, z)). In general, they fail to satisfy the con-
verse property: if p(f(x), f(y), f(z)) is defined in B, then p(x, y, z) is de-
fined in A. Homomorphisms satisfying this additional property are said to
be closed [7] (also called strong homomorphisms in [6]). We prove that the
monomorphisms in M are exactly the injective homomorphisms and strong
monomorphisms are exactly the injective closed homomorphisms. With this
notion of a closed monomorphism, we get a similar embedding theorem for
Mal’tsev categories: any small Mal’tsev category C admits a full and faithful
embedding φ : C→MCop which preserves and reflects finite limits and such
that for each monomorphism f and each object X ∈ Cop, φ(f)X is a closed
monomorphism.

In [8], an embedding theorem for the smaller collection of regular
Mal’tsev categories has been proved. More precisely, a regular Mal’tsev
category M′ has been constructed such that each small regular Mal’tsev ca-
tegory has a regular conservative embedding into a power of M′. That cate-
gory M′ is also constructed using a partial ternary operation p satisfying the
Mal’tsev identities. But one of the main differences between the embedding
theorem of [8] and the ones of this paper is the fact that, in M′, the domain
of definition of p is determined as the solution set of some totally defined
equation. Therefore, all monomorphisms in M′ are closed, which is not the
case in M.

In order to establish at the same time embedding theorems for weakly
Mal’tsev, Mal’tsev, weakly unital [14], unital [2], strongly unital [2] and
subtractive [9] categories, we use the ‘matrix conditions’ introduced in [10].
For each extended matrix M of terms in a commutative algebraic theory, we
construct the category of partial M -algebras PartM (being M when M is
the Mal’tsev matrix). This category PartM has M -closed strong relations,
its monomorphisms are exactly the injective homomorphisms and its strong
monomorphisms are closed. Moreover, for some particular M ’s, closed epi-
morphisms are surjective and closed monomorphisms actually coincide with
strong monomorphisms (see Propositions 3.8, 3.9 and Corollary 3.11). For a
general M , we then prove an embedding theorem for small categories with
M -closed relations and their ‘weakly version’, the categories withM -closed
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strong relations.
The paper is divided as follows. In Section 2, we recall the notions of

a category with M -closed relations and with M -closed strong relations. In
Section 3, we construct the category PartM and study its closed monomor-
phisms. Section 4 is devoted to the proof of our embedding theorems, while
in Section 5 we give some examples how to use these embedding theorems
to make proofs using elements in the above contexts.

2. Categories with M -closed (strong) relations

In order to recall the general treatment of unital, strongly unital, Mal’tsev and
subtractive categories introduced in [10], we first need to recall the notion of
a T -enrichment.

2.1 T -enrichments

Let T be an algebraic theory (by that we will always mean a finitary one-
sorted algebraic theory). An internal T -algebra in a category C is an object
A of C equipped with a structure of (ordinary) T -algebra on Y (A), where
Y : C → SetC

op

is the Yoneda embedding. An internal homomorphism of
internal T -algebras is a morphism f : A → B in C such that Y (f) is an
ordinary homomorphism of algebras. This forms the category AlgT C of
internal T -algebras.

A T -enrichment on C is a section of the forgetful functor AlgT C→ C.
In order words, it is the assignment of an internal T -algebra structure for
each object A of C in such a way that every morphism is an internal T -
algebra homomorphism. A T -enriched category is a category C with a fixed
T -enrichment. Thus, a T -enriched category is a category C equipped with
a factorisation HomC of the functor homC through AlgT , the category of
T -algebras.

AlgT

U
��

Cop × C
homC

//

HomC
99

Set

A T -enriched functor between the T -enriched categories C and D is a func-
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tor F : C→ D such that for all A,B ∈ C,

F : HomC(A,B)→ HomD(F (A), F (B))

is a homomorphism of T -algebras.
If K is another algebraic theory, T -enrichments of AlgK are in one-to-

one correspondence with central morphisms T → K of algebraic theories.
These are morphisms such that for every term t from T , its interpretation tι

as a term of K commutes with every term q of K in the sense that

tι(q(x11, . . . , x1m), . . . , q(xn1, . . . , xnm))

= q(tι(x11, . . . , xn1), . . . , t
ι(x1m, . . . , xnm))

is a theorem in K (where n and m are the arities of t and q respectively)
(see [5]). The theory T is said to be commutative [12] if the identity T → T
is a central morphism, i.e., if every two operations in T commute with each
other.

Notice that if C is a T -enriched category and P a small category, then
the equalities

t(α1, . . . , αn)P = t(α1,P , . . . , αn,P )

for all n-ary terms t of T , P ∈ P and natural transformations α1, . . . , αn :
F ⇒ G define a T -enrichment on the functor category CP. If T is com-
mutative and C small, the Yoneda embedding factors through AlgC

op

T as a
T -enriched functor YT : C→ AlgC

op

T .

AlgC
op

T

UCop

��

C
Y
//

YT

<<

SetC
op

2.2 Categories with M -closed relations

Let again T be an algebraic theory. An extended matrix of terms in T [10]
is a matrix

M =

 t11 · · · t1m u1
...

...
...

tn1 · · · tnm un

 (1)
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where the tij’s and the ui’s are terms of T in the variables x1, . . . , xk with
n > 1, m > 0 and k > 0.

Let r = (ri : R → A)i∈{1,...,n} be an n-ary relation in a T -enriched
category C. We say that r is M -closed when, for all object X in C and
morphisms x1, . . . , xk : X → A, if for each j ∈ {1, . . . ,m}, the span
(tij(x1, . . . , xk) : X → A)i∈{1,...,n} factors through r then so does the span
(ui(x1, . . . , xk) : X → A)i∈{1,...,n}.

Now, if r = (ri : R → Ai)i∈{1,...,n} is an n-ary relation in C, we say that
this relation r is strictly M -closed when, for all object X in C and families
of morphisms (xii′ : X → Ai)i∈{1,...,n},i′∈{1,...,k}, if for each j ∈ {1, . . . ,m},
the span (tij(xi1, . . . , xik) : X → Ai)i∈{1,...,n} factors through r then so does
the span (ui(xi1, . . . , xik) : X → Ai)i∈{1,...,n}.

Here is the link between M -closedness and strict M -closedness.

Theorem 2.1. (Theorem 5.5 in [10]) Let T be an algebraic theory, M an
extended matrix of terms in T as in (1) and C a finitely complete T -enriched
category. Then, the following conditions are equivalent:

1. Every relation r : R� An in C is M -closed.

2. Every relation r : R� A1 × · · · × An in C is strictly M -closed.

If the above conditions are satisfied, we say that C has M -closed rela-
tions. This matrix notation allows an easy characterisation in the varietal
context.

Theorem 2.2. (Theorem 3.2 in [10]) Let T → K be a central morphism of
algebraic theories. Let alsoM be an extended matrix of terms in T as in (1).
Then, the T -enriched category AlgK has M -closed relations if and only if
there exists an m-ary term p in K such that

p(tιi1(x1, . . . , xk), . . . , t
ι
im(x1, . . . , xk)) = uιi(x1, . . . , xk)

is a theorem of K for each i ∈ {1, . . . , n} (where tι is the interpretation in
K of the term t in T induced by the morphism T → K).

Example 2.3. Let T = Th[Set] be the theory of sets, C a finitely complete
category and MMal the extended matrix

MMal =

(
x y y x
x x y y

)
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of terms in Th[Set]. Then C has MMal-closed relations if and only if C is a
Mal’tsev category [4, 10].

If T = Th[Set∗] is the theory of pointed sets and C a finitely complete
pointed category, then the following equivalences hold:

• C has MUni-closed relations if and only if C is unital [2, 10], where
MUni is the extended matrix

MUni =

(
x 0 x
0 x x

)
.

• C has MStrUni-closed relations if and only if C is strongly uni-
tal [2, 10], where MStrUni is the extended matrix

MStrUni =

(
x 0 0 x
y y x x

)
.

• C has MSubt-closed relations if and only if C is subtractive [9, 10],
where MSubt is the extended matrix

MSubt =

(
x 0 x
x x 0

)
.

2.3 Categories with M -closed strong relations

We now weaken this notion of a category with M -closed relations, conside-
ring only strong relations. We recall that in a finitely complete category C, a
morphism m is said to be a strong monomorphism if it is orthogonal to any
epimorphism e. This means that for any commutative square

A
e // //

��

B

��

d

~ ~

C m
// D

with e an epimorphism, there exists a (unique) diagonal d making the two
triangles commutative. It is easy to see that since C has pullbacks, it implies
that m is a monomorphism and even an extremal monomorphism. Strong
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monomorphisms are closed under composition and stable under pullbacks.
Regular monomorphisms (i.e., equalisers) are strong monomorphisms. We
say that a span (ri : R → Ai)i∈{1,...,n} is a strong relation if the induced
morphism r = (r1, . . . , rn) : R→ A1×· · ·×An is a strong monomorphism.

Theorem 2.4. Let T be an algebraic theory, M an extended matrix of terms
in T as in (1) and C a finitely complete T -enriched category. Then, the
following conditions are equivalent:

1. Every strong relation r : R� An in C is M -closed.

2. Every strong relation r : R� A1×· · ·×An in C is strictlyM -closed.

Proof. 2⇒ 1 being trivial, let us prove 1⇒ 2. So, let us consider a strong
relation r : R � A1 × · · · × An in C. Since r is strong, its pullback along
π1 × · · · × πn is also strong, where πi : A1 × · · · × An → Ai is the i-th
projection.

S //

��

s
��

R
��

r
��

(A1 × · · · × An)n π1×···×πn
// A1 × · · · × An

We conclude the proof by Proposition 1.9 in [10] which says that r is strictly
M -closed if and only if s is M -closed.

If the above conditions are satisfied, we say that C has M -closed strong
relations. In view of the following examples, we could also have written that
C is ‘weakly with M -closed relations’.

Example 2.5. If T = Th[Set] and C is a finitely complete category, C has
MMal-closed strong relations if and only if C is a weakly Mal’tsev category.
Let us recall that C is weakly Mal’tsev [15] if for every pullback of split
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epimorphisms,

X ×Z Y
pY // //

pX

����

Y

g

����

rY

jj

X
f

// //

lX

SS

Z
s

kk

t

TT

the induced morphisms lX = (1X , tf) and rY = (sg, 1Y ) are jointly epimor-
phic. Such a characterisation holds because a binary relation is strictlyMMal-
closed precisely when it is difunctional [10] and by Corollary 5.1 in [11], C
is weakly Mal’tsev if and only if every binary strong relation in C is difuncti-
onal.

Example 2.6. If T = Th[Set∗] and C is a finitely complete pointed category,
C has MUni-closed strong relations if and only if C is weakly unital. We
recall that C is weakly unital [14] if for all objectsX and Y in C, the product
injections

X
(1X ,0)

// X × Y Y
(0,1Y )
oo

are jointly epimorphic. In that case, if r : R � A2 is a strong relation and
x : X → A a morphism such that (x, 0) : X → A2 and (0, x) : X → A2

factor through r, we consider the pullback s of r along x2.

S //

��

s
��

R
��

r
��

X2

x2
// A2

The relation s is strong, (1X , 0) and (0, 1X) : X → X2 factor through it
and we only have to prove that (1X , 1X) also factors through s. But since
(1X , 0) and (0, 1X) are jointly epimorphic, s is an epimorphism. Together
with the fact that it is also a strong monomorphism, s is an isomorphism and
so (1X , 1X) factors through it.

Conversely, suppose that C hasMUni-closed strong relations and let f, g :
X × Y → Z be morphisms such that f(1X , 0) = g(1X , 0) and f(0, 1Y ) =
g(0, 1Y ). Their equaliser e : E � X × Y is a strong relation through
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which (pX , 0) and (0, pY ) : X × Y → X × Y factor. Thus, by assump-
tion, 1X×Y = (pX , pY ) : X × Y → X × Y also factors through it, so that e
is an isomorphism and f = g.

3. The category of partial M -algebras

3.1 PartM and its limits

We suppose from now on that T is a commutative algebraic theory andM an
extended matrix of terms in T as in (1). A partial M -algebra is a T -algebra
A equipped with a partial operation p : Am → A such that

• for each i ∈ {1, . . . , n} and all a1, . . . , ak ∈ A,

p(ti1(a1, . . . , ak), . . . , tim(a1, . . . , ak))

is defined and

p(ti1(a1, . . . , ak), . . . , tim(a1, . . . , ak)) = ui(a1, . . . , ak);

• for each r-ary operation symbol σ of T and all families of elements
(aj

′

j ∈ A)j∈{1,...,m},j′∈{1,...,r} such that p(aj
′

1 , . . . , a
j′
m) is defined for

each j′ ∈ {1, . . . , r}, p(σ(a11, . . . , ar1), . . . , σ(a1m, . . . , arm)) is defined
and the equality

p(σ(a11, . . . , a
r
1), . . . , σ(a

1
m, . . . , a

r
m))

= σ(p(a11, . . . , a
1
m), . . . , p(a

r
1, . . . , a

r
m))

holds.

A homomorphism f : A→ B of partialM -algebras is a homomorphism
between the corresponding T -algebras such that, for all a1, . . . , am ∈ A for
which p(a1, . . . , am) is defined, p(f(a1), . . . , f(am)) is also defined and

p(f(a1), . . . , f(am)) = f(p(a1, . . . , am)).

We denote by PartM the corresponding category. We have a T -enrichment
on PartM : if σ is an r-ary operation symbol of T and f1, . . . , fr : A→ B are
homomorphisms of partial M -algebras, we define σ(f1, . . . , fr) : A→ B by

σ(f1, . . . , fr)(a) = σ(f1(a), . . . , fr(a))
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for all a ∈ A. Since T is commutative, AlgT has a T -enrichment compu-
ted as above and so σ(f1, . . . , fr) is a homomorphism of T -algebras. Mo-
reover, if a1, . . . , am ∈ A are such that p(a1, . . . , am) is defined, for each
j′ ∈ {1, . . . , r}, p(fj′(a1), . . . , fj′(am)) is also defined. This implies

p(σ(f1, . . . , fr)(a1), . . . , σ(f1, . . . , fr)(am))

= p(σ(f1(a1), . . . , fr(a1)), . . . , σ(f1(am), . . . , fr(am)))

is defined as well and equal to

σ(p(f1(a1), . . . , f1(am)), . . . , p(fr(a1), . . . , fr(am)))

= σ(f1(p(a1, . . . , am)), . . . , fr(p(a1, . . . , am)))

= σ(f1, . . . , fr)(p(a1, . . . , am))

in view of the second condition in the definition of partial M -algebras. This
proves σ(f1, . . . , fr) is indeed a homomorphism of partial M -algebras.

Let us now describe small limits in PartM . In order to do so, we consider
a small diagram D : J → PartM . Let (λj : L → UTD(j))j∈J be the limit of
UTD in AlgT , where UT : PartM → AlgT is the forgetful functor. So L is
given by

L = {(aj)j∈J ∈
∏
j∈J

D(j) |D(d)(aj) = aj′ ∀d : j → j′ ∈ J}

with
σ((a1j)j∈J, . . . , (a

r
j)j∈J) = (σ(a1j , . . . , a

r
j))j∈J

for each r-ary operation symbol σ of T . Now, if (a1j)j∈J, . . . , (a
m
j )j∈J ∈ L,

we define p((a1j)j∈J, . . . , (a
m
j )j∈J) if and only if p(a1j , . . . , a

m
j ) is defined for

all j ∈ J. In this case, we set

p((a1j)j∈J, . . . , (a
m
j )j∈J) = (p(a1j , . . . , a

m
j ))j∈J.

This makes L a partial M -algebra. Indeed, for each i ∈ {1, . . . , n} and each
(a1j)j∈J, . . . , (a

k
j )j∈J ∈ L,

p(ti1((a
1
j)j∈J, . . . , (a

k
j )j∈J), . . . , tim((a

1
j)j∈J, . . . , (a

k
j )j∈J))

= p((ti1(a
1
j , . . . , a

k
j ))j∈J, . . . , (tim(a

1
j , . . . , a

k
j ))j∈J)
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is defined since p(ti1(a1j , . . . , a
k
j ), . . . , tim(a

1
j , . . . , a

k
j )) is for each j ∈ J and

it is equal to

(p(ti1(a
1
j , . . . , a

k
j ), . . . , tim(a

1
j , . . . , a

k
j )))j∈J = (ui(a

1
j , . . . , a

k
j ))j∈J

= ui((a
1
j)j∈J, . . . , (a

k
j )j∈J).

We check the second condition analogously: Let σ be an r-ary operation
symbol of T and for each j′ ∈ {1, . . . , r}, (a1,j

′

j )j∈J, . . . , (a
m,j′

j )j∈J elements
of L such that p((a1,j

′

j )j∈J, . . . , (a
m,j′

j )j∈J) is defined (i.e., p(a1,j
′

j , . . . , am,j
′

j )
is defined for each j ∈ J). This implies

p(σ(a1,1j , . . . , a1,rj ), . . . , σ(am,1j , . . . , am,rj ))

is defined and equal to

σ(p(a1,1j , . . . , am,1j ), . . . , p(a1,rj , . . . , am,rj ))

for each j ∈ J. Thus

p(σ((a1,1j )j∈J, . . . , (a
1,r
j )j∈J), . . . , σ((a

m,1
j )j∈J, . . . , (a

m,r
j )j∈J))

= p((σ(a1,1j , . . . , a1,rj ))j∈J, . . . , (σ(a
m,1
j , . . . , am,rj ))j∈J)

is also defined in L and equal to

(σ(p(a1,1j , . . . , am,1j ), . . . , p(a1,rj , . . . , am,rj )))j∈J

= σ(p((a1,1j )j∈J, . . . , (a
m,1
j )j∈J), . . . , p((a

1,r
j )j∈J, . . . , (a

m,r
j )j∈J)),

which shows that L is a partial M -algebra. Moreover, given a cone
(µj : A → D(j))j∈J over D, let f be the unique homomorphism of T -
algebras

f : A −→L

a 7−→ (µj(a))j∈J

such that λjf = µj for each j ∈ J. If a1, . . . , am ∈ A are such that
p(a1, . . . , am) is defined in A, p(µj(a1), . . . , µj(am)) is defined in D(j) for
each j ∈ J. Thus, p(f(a1), . . . , f(am)) is also defined and equal to

p((µj(a1))j∈J, . . . , (µj(am))j∈J) = (p(µj(a1), . . . , µj(am)))j∈J

= (µj(p(a1, . . . , am)))j∈J

= f(p(a1, . . . , am)),
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which proves that f is a homomorphism of partial M -algebras and the cone
(λj : L → D(j))j∈J the limit of D. Therefore, PartM is complete and
UT : PartM → AlgT preserves small limits, but it does not reflect them
in general. Indeed, one could have defined p on a smaller subset of Lm in
order to make L a partial M -algebra, but this would not have made it a limit
in PartM . This means UT is not conservative in general. Here is a simple
counterexample.

Counterexample 3.1. Let T = Th[Set∗] andM =MUni from Example 2.3.
Let A be the pointed set {0, x} endowed with the structure of a partial MUni-
algebra given by p(0, 0) = 0, p(x, 0) = x = p(0, x) and p(x, x) undefined.
Let also B be the partial MUni-algebra on {0, x} given by p(0, 0) = 0 and
p(x, 0) = x = p(0, x) = p(x, x). Then, the identity map A → B is a
bijective homomorphism but not an isomorphism in PartMUni

.

3.2 Strong monomorphisms in PartM

In order to understand strong monomorphisms in PartM , we need to con-
struct a left adjoint to the forgetful functor U : PartM → Set. As an in-
termediate step, we consider the category m-Part where objects are sets X
equipped with a partial operation p : Xm → X and morphisms are functions
f : X → Y such that if p(x1, . . . , xm) is defined for some x1, . . . , xm ∈ X ,
then p(f(x1), . . . , f(xm)) is also defined and equal to f(p(x1, . . . , xm)). The
forgetful functorU : PartM → Set thus factors as PartM → m-Part→ Set.

Proposition 3.2. Let T be a commutative algebraic theory and M an exten-
ded matrix of terms in T as in (1). The forgetful functor

U ′ : PartM → m-Part

has a left adjoint.

Proof. Let X be an object of m-Part. Let us add the constant operation
symbols cx for all x ∈ X in T to form the theory T ′. We denote by I the set

I = {1, . . . , n} t {(x1, . . . , xm) ∈ Xm | p(x1, . . . , xm) is defined}
= {1, . . . , n} t dom(p)
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and, for each i = (x1, . . . , xm) ∈ dom(p), tij(y1, . . . , yk) is the k-ary term
cxj of T ′ for each j ∈ {1, . . . ,m} and ui(y1, . . . , yk) the k-ary term cp(i)
of T ′. Let Q be the quasivariety of T ′-algebras satisfying, for all r-ary
(respectively r′-ary) terms τ and τ ′ of T and all indices i1, . . . , ir, i′1, . . . , i

′
r′

in I , the following implication: if

τ(ti1j(y11, . . . , y1k), . . . , tirj(yr1, . . . , yrk))

= τ ′(ti′1j(y
′
11, . . . , y

′
1k), . . . , ti′r′j(y

′
r′1, . . . , y

′
r′k))

for each j ∈ {1, . . . ,m}, then

τ(ui1(y11, . . . , y1k), . . . , uir(yr1, . . . , yrk))

= τ ′(ui′1(y
′
11, . . . , y

′
1k), . . . , ui′r′ (y

′
r′1, . . . , y

′
r′k)).

For an object A of the quasivarietyQ, we define p in A via the equalities

p(τ(ti11(a11, . . . , a1k), . . . , tir1(ar1, . . . , ark)), . . .

. . . , τ(ti1m(a11, . . . , a1k), . . . , tirm(ar1, . . . , ark)))

= τ(ui1(a11, . . . , a1k), . . . , uir(ar1, . . . , ark))

for all r-ary terms τ of T , all indices i1, . . . , ir ∈ I and all families of
elements (aj′i′ ∈ A)j′∈{1,...,r},i′∈{1,...,k}. We do not define p for any other
elements ofAm. In view of the implications definingQ, this partial operation
p is well-defined. We see that the first condition defining partial M -algebras
is satisfied by choosing τ to be the identity term τ(y) = y. The second
condition is also satisfied: Let σ be an r-ary term of T , τ j′ an rj′-ary term
of T for each j′ ∈ {1, . . . , r}, ij

′

j′′ ∈ I for all j′ ∈ {1, . . . , r} and j′′ ∈
{1, . . . , rj′}, and aj

′

j′′i′ ∈ A for all j′ ∈ {1, . . . , r}, j′′ ∈ {1, . . . , rj′} and
i′ ∈ {1, . . . , k}. Then,

p((σ((τ j
′
((t

ij
′

j′′j
(aj

′

j′′1, . . . , a
j′

j′′k))
rj

′

j′′=1))
r
j′=1))

m
j=1)

is defined in view of the (r1 + · · ·+ rr)-ary term

σ(τ 1(y11, . . . , y1r1), . . . , τ
r(yr1, . . . , yrrr))

- 378 -



P.-A. JACQMIN PARTIAL ALGEBRAS AND EMBEDDING THEOREMS

of T . Moreover, it is equal to

σ((τ j
′
((u

ij
′

j′′
(aj

′

j′′1, . . . , a
j′

j′′k))
rj

′

j′′=1))
r
j′=1)

= σ((p((τ j
′
((t

ij
′

j′′j
(aj

′

j′′1, . . . , a
j′

j′′k))
rj

′

j′′=1))
m
j=1))

r
j′=1)

as required. So A has been endowed with a structure of partial M -algebra.
We consider the function f : X → U ′(A) : x 7→ cx. It is a morphism in
m-Part. Indeed, if i = (x1, . . . , xm) ∈ dom(p), choosing τ to be the identity
term τ(y) = y and i1 = i, we have

p(f(x1), . . . , f(xm)) = p(cx1 , . . . , cxm)

= p(ti1(a1, . . . , ak), . . . , tim(a1, . . . , ak))

= ui(a1, . . . , ak)

= cp(i)

= f(p(x1, . . . , xm)).

If g : A→ A′ is a morphism in Q, it can be considered as a homomorphism
of partial M -algebras making the triangle

X
f
//

f ′
" "

U ′(A)

g

��

U ′(A′)

commutative. Indeed, the above triangle commutes since g is a T ′-homo-
morphism and when

p(τ(ti11(a11, . . . , a1k), . . . , tir1(ar1, . . . , ark)), . . .

. . . , τ(ti1m(a11, . . . , a1k), . . . , tirm(ar1, . . . , ark)))

is defined in A,

p(g(τ(ti11(a11, . . . , a1k), . . . , tir1(ar1, . . . , ark))), . . .

. . . , g(τ(ti1m(a11, . . . , a1k), . . . , tirm(ar1, . . . , ark))))

= p(τ(ti11(g(a11), . . . , g(a1k)), . . . , tir1(g(ar1), . . . , g(ark))), . . .

. . . , τ(ti1m(g(a11), . . . , g(a1k)), . . . , tirm(g(ar1), . . . , g(ark))))
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is defined in A′ and equal to

τ(ui1(g(a11), . . . , g(a1k)), . . . , uir(g(ar1), . . . , g(ark)))

= g(τ(ui1(a11, . . . , a1k), . . . , uir(ar1, . . . , ark))).

We have thus defined a functor F ′ : Q → (X ↓ U ′) where (X ↓ U ′) is the
comma category of morphisms X → U ′(A) in m-Part.

On the other hand, if f : X → U ′(A) is an object of (X ↓ U ′), A admits
a T ′-algebra structure considering cx = f(x) for each x ∈ X . Moreover, for
each i ∈ I and a1, . . . , ak ∈ A,

p(ti1(a1, . . . , ak), . . . , tim(a1, . . . , ak)) = ui(a1, . . . , ak).

So, if τ is an r-ary term of T , i1, . . . , ir ∈ I and (aj′i′ ∈ A)j′∈{1,...,r},i′∈{1,...,k},

p(τ(ti11(a11, . . . , a1k), . . . , tir1(ar1, . . . , ark)), . . .

. . . , τ(ti1m(a11, . . . , a1k), . . . , tirm(ar1, . . . , ark)))

= τ(ui1(a11, . . . , a1k), . . . , uir(ar1, . . . , ark))

since A is a partial M -algebra. Hence, A satisfies the implications defining
Q and this makes G′ : (X ↓ U ′)→ Q a functor.

Since the equality above holds in A for any object f : X → U ′(A) of
(X ↓ U ′), the identity map on A defines a morphism εf : F

′G′(f) → f in
(X ↓ U ′). This gives a natural transformation ε : F ′G′ ⇒ 1(X↓U ′). Moreo-
ver, G′F ′ = 1Q and we have constructed an adjunction F ′ a G′. But Q is a
quasivariety, so it has an initial object. Therefore (X ↓ U ′) has also an initial
object which is the reflection of X along U ′.

To construct the reflection of the set X along the forgetful functor
m-Part → Set is much easier. It suffices to consider the identity map
1X : X → X where the partial operation p onX is nowhere defined. This gi-
ves a left adjoint Set→ m-Part. Composed with the left adjoint m-Part →
PartM given by the above proposition, we have constructed the left adjoint
F : Set → PartM to the forgetful functor U : PartM → Set. We remark
that in the particular case X = ∅, the quasivariety Q described above is the
quasivariety QM of T -algebras satisfying, for all r-ary (respectively r′-ary)
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terms τ and τ ′ of T and all indices i1, . . . , ir, i′1, . . . , i
′
r′ in {1, . . . , n}, the

following implication: if

τ(ti1j(a11, . . . , a1k), . . . , tirj(ar1, . . . , ark))

= τ ′(ti′1j(a
′
11, . . . , a

′
1k), . . . , ti′r′j(a

′
r′1, . . . , a

′
r′k))

for each j ∈ {1, . . . ,m}, then

τ(ui1(a11, . . . , a1k), . . . , uir(ar1, . . . , ark))

= τ ′(ui′1(a
′
11, . . . , a

′
1k), . . . , ui′r′ (a

′
r′1, . . . , a

′
r′k)).

The functor F ′ : Q → (X ↓ U ′) is then nothing but the left adjoint QM →
PartM to the forgetful functor PartM → QM . The left adjoint F : Set →
PartM can thus be also obtained by composing F ′ : QM → PartM with the
usual free functor Set→ QM .

We now consider the case X = {1, . . . ,m + 1} with p defined only by
p(1, . . . ,m) = m + 1. We denote by X → U ′(FM) its reflection along
U ′ : PartM → m-Part and g its restriction g : {1, . . . ,m} ↪→ X → U(FM).
The function g is such that p(g(1), . . . , g(m)) is defined in FM and universal
with that property, i.e., if h : {1, . . . ,m} → U(A) is a function to a par-
tial M -algebra A where p(h(1), . . . , h(m)) is defined, there exists a unique
homomorphism of partial M -algebras h : FM → A such that U(h) ◦ g = h.

{1, . . . ,m} g
//

∀h
&&

U(FM)

∃!U(h)zz

U(A)

Since U : PartM → Set preserves kernel pairs, monomorphisms in
PartM are exactly the injective homomorphisms. We can now study strong
monomorphisms: Let f : A � B be such a monomorphism. Consider
also the homomorphism e : F ({1, . . . ,m}) → FM given by the univer-
sal property of F ({1, . . . ,m}) and the function g : {1, . . . ,m} → U(FM).
If h, k : FM → C are homomorphisms of partial M -algebras such that
he = ke, then hg = kg and h = k. Thus e is actually an epimorphism
in PartM . If a1, . . . , am ∈ A are such that p(f(a1), . . . , f(am)) is defi-
ned, we can construct a commutative square as below with k(j) = aj and
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h(g(j)) = f(aj) for each j ∈ {1, . . . ,m}.

F ({1, . . . ,m}) e // //

k
��

FM

h
��

xx
A //

f
// B

Since f is supposed to be a strong monomorphism, h factors through f .
Hence, p(a1, . . . , am) is defined as well. Therefore, strong monomorphisms
in PartM reflect the m-uples where p is defined, i.e., if p(f(a1), . . . , f(am))
is defined, then so is p(a1, . . . , am). Following the terminology of [7] in
universal partial algebra, homomorphisms in PartM which reflect the m-
uples where p is defined are said to be closed. This leads us to the following
proposition.

Proposition 3.3. Let T be a commutative algebraic theory and M an exten-
ded matrix of terms in T . Strong monomorphisms in PartM are closed.

The homomorphism from Counterexample 3.1 is an example of a bi-
jective homomorphism of partial M -algebras which is not closed. Note that
isomorphisms in PartM are exactly the bijective closed homomorphisms.
Indeed, in view of the next lemma, closedness of a bijective homomorphism
f : B → C is exactly what we need to prove the inverse map f−1 : C → B
is a homomorphism of partial M -algebras.

Lemma 3.4. Let T be a commutative algebraic theory and M an extended
matrix of terms in T . Let also g : A → B be a function between partial
M -algebras and f : B � C a closed monomorphism in PartM . If fg is a
homomorphism of partial M -algebras, then so is g.

Proof. Let σ be an r-ary operation symbol of T and a1, . . . , ar ∈ A. Since

f(g(σ(a1, . . . , ar))) = σ(fg(a1), . . . , fg(ar))

= f(σ(g(a1), . . . , g(ar)))

and f is injective, g is a homomorphism of T -algebras.
Besides, if a1, . . . , am ∈ A are such that p(a1, . . . , am) are defined in A,

p(fg(a1), . . . , fg(am)) is defined in C and p(g(a1), . . . , g(am)) is defined in
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B since f is closed. We can also compute

f(p(g(a1), . . . , g(am))) = p(fg(a1), . . . , fg(am))

= fg(p(a1, . . . , am)),

which implies

p(g(a1), . . . , g(am)) = g(p(a1, . . . , am))

since f is injective.

We now want to prove that, in some cases, closed monomorphisms in
PartM are exactly the strong monomorphisms. To achieve this, we need to
study the properties of closed monomorphisms.

Proposition 3.5. Let T be a commutative algebraic theory and M an ex-
tended matrix of terms in T . Closed monomorphisms in PartM are stable
under pullbacks.

Proof. We consider a closed monomorphism f : A � B in PartM and its
pullback along g : C → B.

P //
f ′
//

��

C

g

��

A //

f
// B

If (a1, c1), . . . , (am, cm) ∈ P , p((a1, c1), . . . , (am, cm)) is defined if and only
if p(a1, . . . , am) and p(c1, . . . , cm) are defined. But if p(c1, . . . , cm) is de-
fined, p(g(c1), . . . , g(cm)) = p(f(a1), . . . , f(am)) is also defined. Since f
is closed, this further implies p(a1, . . . , am) and so p((a1, c1), . . . , (am, cm))
are defined. Thus f ′ is a closed monomorphism.

Let us recall the following well-known proposition, which will be used
in the particular case C = PartM andR the class of closed monomorphisms.

Proposition 3.6. LetR be a class of monomorphisms in the finitely complete
category C which is stable under pullbacks and contains regular monomor-
phisms. A morphism e in C is orthogonal to all elements ofR if and only if,
when e factors as fg with f ∈ R, then f is an isomorphism. In this case, e
is an epimorphism.
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Proposition 3.7. Let T be a commutative algebraic theory and M an exten-
ded matrix of terms in T . If R denotes the class of closed monomorphisms
in PartM andR⊥ its orthogonal class, (R⊥,R) is a factorisation system.

Proof. Since R contains regular monomorphisms, is stable under pullbacks
and closed under composition, we only have to prove that each homomor-
phism f : A → B of partial M -algebras factors as an element of R⊥ follo-
wed by a closed monomorphism. Let B′ be the smallest sub-T -algebra of B
satisfying the conditions:

• f(a) ∈ B′ for each a ∈ A,

• if b1, . . . , bm ∈ B′ are such that p(b1, . . . , bm) is defined in B, then
p(b1, . . . , bm) ∈ B′.

We consider the unique structure of partial M -algebra on B′ making the in-
clusion i : B′ ↪→ B a closed monomorphism. Then, f factors as if ′ with
f ′ : A → B′ a homomorphism of partial M -algebras by Lemma 3.4. More-
over, if f ′ = f ′′g with f ′′ a closed monomorphism, the image of f ′′ contains
B′ by definition of B′. Thus f ′′ is surjective and so an isomorphism. By
Proposition 3.6, f ′ ∈ R⊥.

Epimorphisms in PartM thus factor as an epimorphism orthogonal to
closed monomorphisms followed by a closed monomorphism (which is also
an epimorphism). Therefore, to prove that closed monomorphisms are ortho-
gonal to epimorphisms (i.e., are strong monomorphisms), it suffices to prove
that closed epimorphisms are surjective. Indeed, in that case, this would im-
ply that the only epimorphisms which are closed monomorphisms are the
isomorphisms. This will be true for some particular M ’s.

Proposition 3.8. Let M be an extended matrix of terms in Th[Set∗]. Closed
epimorphisms in PartM are surjective.

Proof. Firstly, we notice that all partial M -algebras with one element are
isomorphic (since p(0, . . . , 0) has to be defined). If this partial M -algebra
is the unique one, the result is trivial. Hence, we suppose that there exists a
partial M -algebra C with a non-zero element c ∈ C. Now, we also suppose
we have a closed epimorphism f : A� B in PartM which is not surjective.
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Let Im(f) be the set-theoretical image of f and D = D′ = B \ Im(f) 6= ∅.
Notice that 0 ∈ Im(f). We define a partial m-ary operation p on

Im(f) tD tD′

in the following way:

1. p(ti1(x1, . . . , xk), . . . , tim(x1, . . . , xk)) is defined as ui(x1, . . . , xk) for
all i ∈ {1, . . . , n} and all x1, . . . , xk ∈ Im(f) tD tD′;

2. p restricted on (Im(f) tD)m is defined as in B via the isomorphism
of pointed sets Im(f) tD ∼= B;

3. p restricted on (Im(f) tD′)m is defined as in B via the isomorphism
of pointed sets Im(f) tD′ ∼= B;

4. p is defined nowhere else than required by one of the above conditions.

Let us prove this p is well-defined. There is no problem with condition 1
alone. Indeed, let us suppose by contradiction there exist i, i′ ∈ {1, . . . , n}
and x1, . . . , xk, x′1, . . . , x

′
k ∈ Im(f) t D t D′ satisfying tij(x1, . . . , xk) =

ti′j(x
′
1, . . . , x

′
k) for all j ∈ {1, . . . ,m}, but ui(x1, . . . , xk) 6= ui′(x

′
1, . . . , x

′
k).

Without loss of generality, we can suppose ui(x1, . . . , xk) 6= 0. We consider
any homomorphism of pointed sets g : Im(f) t D t D′ → C which sends
ui(x1, . . . , xk) to c and ui′(x′1, . . . , x

′
k) to 0. Then

tij(g(x1), . . . , g(xk)) = ti′j(g(x
′
1), . . . , g(x

′
k))

for each j ∈ {1, . . . ,m} and therefore

c = g(ui(x1, . . . , xk))

= ui(g(x1), . . . , g(xk))

= p(ti1(g(x1), . . . , g(xk)), . . . , tim(g(x1), . . . , g(xk)))

= p(ti′1(g(x
′
1), . . . , g(x

′
k)), . . . , ti′m(g(x

′
1), . . . , g(x

′
k)))

= ui′(g(x
′
1), . . . , g(x

′
k))

= g(ui′(x
′
1, . . . , x

′
k))

= 0,

- 385 -



P.-A. JACQMIN PARTIAL ALGEBRAS AND EMBEDDING THEOREMS

which is a contradiction.
Since B is a (well-defined) partial M -algebra, there is no problem with

condition 2 alone nor with condition 3 alone. The cohabitation of condi-
tions 2 and 3 does not cause any problem neither. Indeed, the only way
it could, is to have b1, . . . , bm ∈ Im(f) such that p(b1, . . . , bm) is defined
but does not belong to Im(f). If we write bi = f(ai) for some ai ∈ A,
this means p(f(a1), . . . , f(am)) is defined. But since f is closed, it implies
p(a1, . . . , am) is defined and

p(b1, . . . , bm) = p(f(a1), . . . , f(am)) = f(p(a1, . . . , am)) ∈ Im(f).

By symmetry, it remains to check there is no problem with the cohabita-
tion of conditions 1 and 2. If there is one, it means there exist x1, . . . , xk ∈
Im(f) tD tD′ and i ∈ {1, . . . , n} such that tij(x1, . . . , xk) ∈ Im(f) tD
for each j ∈ {1, . . . ,m} but p(ti1(x1, . . . , xk), . . . , tim(x1, . . . , xk)) defined
as in B (via Im(f) tD ∼= B) is not ui(x1, . . . , xk). We denote by

q : Im(f) tD tD′ → Im(f) tD

the homomorphism of pointed sets which coequalises the two copies of D.
This implies

tij(x1, . . . , xk) = q(tij(x1, . . . , xk)) = tij(q(x1), . . . , q(xk))

for each j ∈ {1, . . . ,m}. Since we have already shown there is no problem
with condition 1 alone, we can write using this condition

ui(x1, . . . , xk) = p(ti1(x1, . . . , xk), . . . , tim(x1, . . . , xk))

= p(ti1(q(x1), . . . , q(xk)), . . . , tim(q(x1), . . . , q(xk)))

= ui(q(x1), . . . , q(xk)).

But since B is a partial M -algebra, if we compute using condition 2, we also
get

p(ti1(x1, . . . , xk), . . . , tim(x1, . . . , xk))

= p(ti1(q(x1), . . . , q(xk)), . . . , tim(q(x1), . . . , q(xk)))

= ui(q(x1), . . . , q(xk)).
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This discussion proves p is well defined.
The first condition to be a partialM -algebra is satisfied by Im(f)tDtD′

in view of condition 1. In the case T = Th[Set∗], the second one resumes to
p(0, . . . , 0) = 0 which is true since it holds in B. Thus Im(f) t D t D′ is
a partial M -algebra. Now we consider the two obvious homomorphisms of
partialM -algebras g1, g2 : B → Im(f)tDtD′. They satisfy g1f = g2f but
g1 6= g2 since D = D′ 6= ∅. This is a contradiction since f was supposed to
be an epimorphism.

If T = Th[Set], there are two partial M -algebras with at most one ele-
ment, i.e., the empty partial M -algebra and the singleton one {?} (in which
p(?, . . . , ?) has to be defined since n > 1). Therefore, the first argument in
the previous proof does not hold if we replace Th[Set∗] by Th[Set]. For in-
stance, ifM =

(
x y

)
, the category PartM is equivalent to the arrow cate-

gory 0→ 1. With this M , the unique homomorphism of partial M -algebras
∅ → {?} is an injective closed epimorphism, but not an isomorphism. Ho-
wever, if M is such that there exists a partial M -algebra with at least two
elements, the same proof can be repeated to get the following proposition.

Proposition 3.9. Let M be an extended matrix of terms in Th[Set] such
that there exists a partial M -algebra with at least two elements. Closed
epimorphisms in PartM are surjective.

Counterexample 3.10. If T is the theory of commutative monoids and M
is the trivial matrix

(
x x

)
, PartM is isomorphic to the category of com-

mutative monoids. There, the inclusion N ↪→ Z is an injective closed epi-
morphism but not an isomorphism.

As explained above, Propositions 3.8 and 3.9 admit the following corol-
lary.

Corollary 3.11. In PartMMal
, PartMUni

, PartMStrUni
and PartMSubt

, closed
monomorphisms coincide with strong monomorphisms.

We now prove that PartM has M -closed strong relations.

Proposition 3.12. Let T be a commutative algebraic theory and M an ex-
tended matrix of terms in T as in (1). Every relation r : R� A1× · · ·×An
which is a closed monomorphism in PartM is strictly M -closed. In particu-
lar, PartM has M -closed strong relations.
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Proof. Consider a family of morphisms (xii′ : X → Ai)i∈{1,...,n},i′∈{1,...,k} in
PartM for which the morphism

(t1j(x11, . . . , x1k), . . . , tnj(xn1, . . . , xnk)) : X → A1 × · · · × An

factors as rwj for each j ∈ {1, . . . ,m}.

R
��

r
��

X

wj

22

(t1j(x11,...,x1k),...,tnj(xn1,...,xnk))
// A1 × · · · × An

We know that for all x ∈ X and each i ∈ {1, . . . , n},

p(ti1(xi1(x), . . . , xik(x)), . . . , tim(xi1(x), . . . , xik(x)))

is defined and equal to ui(xi1(x), . . . , xik(x)). Using the description of small
products in PartM , we can say that, for all x ∈ X , p(rw1(x), . . . , rwm(x))
is defined and equal to

(u1(x11(x), . . . , x1k(x)), . . . , un(xn1(x), . . . , xnk(x))).

Since r is closed, p(w1(x), . . . , wm(x)) is defined in R and we can consider
the function w : X → R : x 7→ p(w1(x), . . . , wm(x)) which satisfies

rw = (u1(x11, . . . , x1k), . . . , un(xn1, . . . , xnk)).

Finally, Lemma 3.4 tells us w is a homomorphism of partial M -algebras
since rw is and r is a closed monomorphism, which concludes the proof.

4. The embedding theorems

Now that the preliminary work on PartM has been done, we can prove our
embedding theorems for small categories with M -closed relations and for
small categories with M -closed strong relations. In order to prove both at
the same time, we are going to use a set of monomorphisms, closed under
composition, stable under pullbacks and which contains regular monomor-
phisms.
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Theorem 4.1. Let T be a commutative algebraic theory and M an extended
matrix of terms in T as in (1). Let alsoR be a set of monomorphisms in the
small finitely complete T -enriched category C such that R is closed under
composition, stable under pullbacks and contains regular monomorphisms.
Suppose also that all n-ary relations R � An in R are M -closed in C.
Then, there exists a full and faithful T -enriched embedding φ : C ↪→ PartC

op

M

which preserves and reflects finite limits. Moreover, for each monomorphism
f : A � B in R and each X ∈ Cop, φ(f)X is a closed monomorphism in
PartM .

Proof. We would like to factorise the T -enriched Yoneda embedding YT :
C→ AlgC

op

T through PartC
op

M .

PartC
op

M

UCop
T
��

C
YT
//

φ
<<

AlgC
op

T

In order to do so, let us provide C(X, Y ) with a structure of partial M -
algebra, for all objects X, Y ∈ C. Thus, let f1, . . . , fm : X → Y be
morphisms in C. We define p(f1, . . . , fm) if and only if there exist mor-
phisms x1, . . . , xk : X → W , a relation r : Z � W n in R, and morphisms
g1, . . . , gm : X → Z and f : Z → Y such that, for all j ∈ {1, . . . ,m},
fgj = fj and rgj = (t1j(x1, . . . , xk), . . . , tnj(x1, . . . , xk)).

X
(t1j(x1,...,xk),...,tnj(x1,...,xk))

��

gj

��

fj

��

W n Zoor
oo

f
// Y

In this case, since r is M -closed, there exists a unique h : X → Z such that
rh = (u1(x1, . . . , xk), . . . , un(x1, . . . , xk)) and we define p(f1, . . . , fm) =
fh.

Z
��

r
��

X

∃!h

44

(u1(x1,...,xk),...,un(x1,...,xk))
//W n
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Let us first prove the independence of the choices. So, suppose x′1, . . . , x
′
k :

X → W ′, r′ : Z ′ � W ′n, g′1, . . . , g
′
m : X → Z ′, f ′ : Z ′ → Y and h′ : X →

Z ′ also satisfy the above conditions and let us prove fh = f ′h′. We consider
the following pullback

Z1
q1

//

��

r1
��

Z
��

r
��

(W ×W ′)n
πn
1

//W n

where π1 : W ×W ′ → W is the first projection. We also consider the unique
morphisms l11, . . . , l

m
1 : X → Z1 such that q1l

j
1 = gj and

r1l
j
1 = (t1j((x1, x

′
1), . . . , (xk, x

′
k)), . . . , tnj((x1, x

′
1), . . . , (xk, x

′
k)))

for each j ∈ {1, . . . ,m}. Let also h1 : X → Z1 be the unique morphism
such that q1h1 = h and

r1h1 = (u1((x1, x
′
1), . . . , (xk, x

′
k)), . . . , un((x1, x

′
1), . . . , (xk, x

′
k))).

Similarly, we define Z2, r2, q2, l12, . . . , l
m
2 and h2 using the pullback of r′

along πn2 where π2 : W ×W ′ → W ′ is the second projection. Since R is
stable under pullbacks, r1, r2 ∈ R. We also construct their intersection,

P
� �

r4
��

//
r3 // Z2

��

r2
��

Z1
//
r1
// (W ×W ′)n

the unique morphism h3 : X → P such that r3h3 = h2 and r4h3 = h1 and,
for each j ∈ {1, . . . ,m}, the unique morphism lj3 : X → P such that r3l

j
3 =

lj2 and r4l
j
3 = lj1. Again, r3, r4 ∈ R. Finally, we consider the following

equaliser diagram.

E // e // P
fq1r4

//

f ′q2r3

// Y

For each j ∈ {1, . . . ,m}, lj3 factors as elj4 = lj3 since

fq1r4l
j
3 = fq1l

j
1 = fgj = fj = f ′g′j = f ′q2l

j
2 = f ′q2r3l

j
3.
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Hence, for all such j, the morphism

(t1j((x1, x
′
1), . . . , (xk, x

′
k)), . . . , tnj((x1, x

′
1), . . . , (xk, x

′
k)))

factors as r1r4el
j
4. But since the relation r1r4e : E � (W ×W ′)n is inR, it

is M -closed and so there exists a unique morphism l5 : X → E such that

r1r4el5 = (u1((x1, x
′
1), . . . , (xk, x

′
k)), . . . , un((x1, x

′
1), . . . , (xk, x

′
k))).

The equalities r1r4h3 = r1h1 = r1r4el5 imply that h3 = el5 and it remains
to compute

fh = fq1h1 = fq1r4h3 = fq1r4el5

= f ′q2r3el5 = f ′q2r3h3 = f ′q2h2

= f ′h′.

Now that we have shown p is well-defined, let us prove it makes C(X, Y )
a partial M -algebra. If i ∈ {1, . . . , n} and x1, . . . , xk ∈ C(X, Y ), we can
set W = Y , r = 1Y n ,

gj = (t1j(x1, . . . , xk), . . . , tnj(x1, . . . , xk)),

f = πi : Y
n → Y the i-th projection and

h = (u1(x1, . . . , xk), . . . , un(x1, . . . , xk)).

This shows that p(ti1(x1, . . . , xk), . . . , tim(x1, . . . , xk)) is defined and equal
to fh = ui(x1, . . . , xk).

Now, let σ be an r-ary operation symbol of T with r > 0 and

(f j
′

j ∈ C(X, Y ))j∈{1,...,m},j′∈{1,...,r}

be families of morphisms such that p(f j
′

1 , . . . , f
j′
m) is defined for each j′ ∈

{1, . . . , r} using the diagrams below.

X

��

(t1j(x
j′
1 ,...,x

j′
k ),...,tnj(x

j′
1 ,...,x

j′
k ))

gj
′

j
��

fj
′

j

��

(Wj′)
n Zj′oo

rj
′

oo

fj
′
// Y
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Zj′
��

rj
′

��

X

hj
′

44

(u1(x
j′
1 ,...,x

j′
k ),...,un(x

j′
1 ,...,x

j′
k ))

// (Wj′)
n

We consider the pullbacks

Sj′
qj

′
//

��

sj
′

��

Zj′
��

rj
′

��

(W1 × · · · ×Wr)
n

πn
j′

// (Wj′)
n

where πj′ : W1×· · ·×Wr → Wj′ is the j′-th projection as usual. We denote
by lj

′

j the unique morphism X → Sj′ such that qj′lj
′

j = gj
′

j and

sj
′
lj

′

j = (t1j(x1, . . . , xk), . . . , tnj(x1, . . . , xk))

where xi′ is the factorisation (x1i′ , . . . , x
r
i′) : X → W1 × · · · ×Wr. Let also

hj
′

1 : X → Sj′ be the unique morphism satisfying qj′hj
′

1 = hj
′ and

sj
′
hj

′

1 = (u1(x1, . . . , xk), . . . , un(x1, . . . , xk)).

We now consider the intersection of the sj′’s

Z
ww

t1

ww

' '

tr

''
S1

''

s1 ''

. . . Sr
ww

srww

(W 1 × · · · ×W r)n

and the unique morphisms lj, h : X → Z such that tj′lj = lj
′

j and tj′h = hj
′

1 .
Since this intersection can be built using pullbacks and compositions, s1t1 =
· · · = srtr ∈ R. Thus, we end up with the commutative diagrams

X

vv

(t1j(x1,...,xk),...,tnj(x1,...,xk))

lj

� �

σ(f1j ,...,f
r
j )

%%
(W 1 × · · · ×W r)n Zoo

s1t1
oo

σ(f1q1t1,...,frqrtr)
// Y
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and
Z
��

s1t1
��

X

h

33

(u1(x1,...,xk),...,un(x1,...,xk))
// (W 1 × · · · ×W r)n

proving that p(σ(f 1
1 , . . . , f

r
1 ), . . . , σ(f

1
m, . . . , f

r
m)) is defined and equal to

σ(f 1q1t1h, . . . , f rqrtrh) = σ(p(f 1
1 , . . . , f

1
m), . . . , p(f

r
1 , . . . , f

r
m)).

If r = 0, we also have p(σ, . . . , σ) = σ. To see it, we can use for instance
the commutative diagram below.

X
(t1j(1X ,...,1X),...,tnj(1X ,...,1X))

�� ��

σ

��

Xn Xnoo
1Xn

oo
σ
// Y

We have therefore provided C(X, Y ) with a structure of partial M -algebra.
In view of the definition of a T -enrichment, if x : X ′ → X and y : Y →

Y ′ are morphisms in C,

− ◦ x : C(X, Y )→ C(X ′, Y )

and
y ◦ − : C(X, Y )→ C(X, Y ′)

are homomorphisms of T -algebras. Let us prove they are actually homo-
morphisms of partial M -algebras. So let f1, . . . , fm : X → Y be morphisms
of C such that p(f1, . . . , fm) is defined via the following diagrams.

X
(t1j(x1,...,xk),...,tnj(x1,...,xk))

��

gj

��

fj

��

W n Zoor
oo

f
// Y

Z
��

r
��

X

h

44

(u1(x1,...,xk),...,un(x1,...,xk))
//W n

Thus, in view of the commutative diagrams

X ′
(t1j(x1x,...,xkx),...,tnj(x1x,...,xkx))

��

gjx
��

fjx

��

W n Zoor
oo

f
// Y
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and
Z
��

r
��

X ′

hx

33

(u1(x1x,...,xkx),...,un(x1x,...,xkx))
//W n

p(f1x, . . . , fmx) is defined and equal to fhx = p(f1, . . . , fm)x, which shows
that − ◦ x is a homomorphism of partial M -algebras. Besides, since the
diagram

X
(t1j(x1,...,xk),...,tnj(x1,...,xk))

��

gj

� �

yfj

��

W n Zoor
oo

yf
// Y ′

commutes, p(yf1, . . . , yfm) is defined and equal to yfh = yp(f1, . . . , fm),
which proves that y ◦− is a homomorphism of partial M -algebras. We have
thus constructed a functor φ : C→ PartC

op

M as announced.

PartC
op

M

UCop
T
��

C
YT
//

φ
<<

AlgC
op

T

This φ preserves T -enrichment since YT and UT do and UT is faithful.
It is full and faithful since YT is full and faithful and UT is faithful.

Since φ is full and faithful, it reflects isomorphisms. Thus, it will reflect
finite limits if it preserves them. So, let (λj : L → D(j))j∈J be the limit
of D : J → C with J a finite category. We would like to prove that for all
X ∈ C,

(φ(λj)X : C(X,L)→ C(X,D(j)))j∈J

is a limit in PartM . But since YT preserves limits, and in view of the des-
cription of small limits in PartM (Section 3.1), we only have to prove that, if
f1, . . . , fm : X → L are such that p(λjf1, . . . , λjfm) is defined for all j ∈ J,
then p(f1, . . . , fm) is also defined.

Thus, to prove that φ preserves the terminal object, we have to show that
p(!, . . . , !) is defined where ! is the unique morphismX → 1. This is obvious
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in view of the diagram below.

X
(t1j(!,...,!),...,tnj(!,...,!))

��

!
� �

!

��

1n = 1 1oo
11
oo

11
// 1

Moreover, φ preserves the binary product Y × Y ′.

Y × Y ′
π1

{{

π2

##

Y Y ′

Indeed, suppose f1, . . . , fm : X → Y and f ′1, . . . , f
′
m : X → Y ′ are such that

p(f1, . . . , fm) and p(f ′1, . . . , f
′
m) are defined using the following diagrams.

X
(t1j(x1,...,xk),...,tnj(x1,...,xk))

��

gj

� �

fj

��

W n Zoor
oo

f
// Y

X
(t1j(x

′
1,...,x

′
k),...,tnj(x

′
1,...,x

′
k))

��

g′j
��

f ′j

��

W ′n Z ′oo
r′
oo

f ′
// Y ′

We consider again the pullback

Z1
q1

//

��

r1
��

Z
��

r
��

(W ×W ′)n
πn
1

//W n

and the unique morphisms l11, . . . , l
m
1 : X → Z1 such that q1l

j
1 = gj and

r1l
j
1 = (t1j((x1, x

′
1), . . . , (xk, x

′
k)), . . . , tnj((x1, x

′
1), . . . , (xk, x

′
k)))
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for all j ∈ {1, . . . ,m}. We define similarly Z2, r2, q2 and l12, . . . , l
m
2 . We

also consider the intersection

P
��

r4
��

//
r3 // Z2

��

r2
��

Z1
//
r1
// (W ×W ′)n

and the unique morphisms l13, . . . , l
m
3 : X → P such that r4l

j
3 = lj1 and r3l

j
3 =

lj2 for all j ∈ {1, . . . ,m}. Then, since the diagram below is commutative,

X

yy

(t1j((x1,x
′
1),...,(xk,x

′
k)),...,tnj((x1,x

′
1),...,(xk,x

′
k)))

lj3
��

(fj ,f
′
j)

##

(W ×W ′)n Poor1r4
oo

(fq1r4,f ′q2r3)
// Y × Y ′

p((f1, f
′
1), . . . , (fm, f

′
m)) is also defined and φ preserves finite products.

Finally, to prove that φ preserves equalisers, it is enough to show that
φ(e)X = e ◦ − : C(X, Y ) → C(X, Y ′) is a closed homomorphism for each
X ∈ Cop and each regular monomorphism e : Y � Y ′. To conclude the
proof, we are going to prove the more general fact that φ(e)X is a closed
homomorphism for each e : Y � Y ′ in R and each X ∈ Cop. So let
f1, . . . , fm : X → Y be such that p(ef1, . . . , efm) is defined using the di-
agram below.

X
(t1j(x1,...,xk),...,tnj(x1,...,xk))

��

gj

��

efj

��

W n Zoor
oo

f
// Y ′

We consider the pullback of e along f

Z ′
f ′
//

��

r′
��

Y
��

e
��

Z
f
// Y ′
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and the unique morphisms g′1, . . . , g
′
m : X → Z ′ satisfying f ′g′j = fj and

r′g′j = gj for each j ∈ {1, . . . ,m}. Then, considering the diagram

X
(t1j(x1,...,xk),...,tnj(x1,...,xk))

��

g′j
��

fj

��

W n Z ′oo
rr′
oo

f ′
// Y

we see that p(f1, . . . , fm) is defined, which concludes the proof.

Taking R to be the whole set of monomorphisms in C, we immediately
get the following corollary.

Corollary 4.2. Let T be a commutative algebraic theory andM an extended
matrix of terms in T . Let also C be a small finitely complete T -enriched ca-
tegory with M -closed relations. There exists a full and faithful T -enriched
embedding φ : C ↪→ PartC

op

M which preserves and reflects finite limits. Mo-
reover, for each monomorphism f : A� B and each X ∈ Cop, φ(f)X is a
closed monomorphism in PartM .

And now withR the set of strong monomorphisms.

Corollary 4.3. Let T be a commutative algebraic theory andM an extended
matrix of terms in T . Let also C be a small finitely complete T -enriched
category with M -closed strong relations. There exists a full and faithful
T -enriched embedding φ : C ↪→ PartC

op

M which preserves and reflects finite
limits. Moreover, for each strong monomorphism f : A � B and each
X ∈ Cop, φ(f)X is a closed monomorphism in PartM .

Remark 4.4. Notice that Corollaries 4.2 and 4.3 characterise categories with
M -closed relations (resp. with M -closed strong relations) among small fini-
tely complete T -enriched categories. Indeed, if we have such an embedding,
to prove that a (strong) relation r : R � An in C is M -closed, it is enough
to prove that φ(r)X is M -closed in PartM for all X ∈ Cop, which is true by
Proposition 3.12.
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5. Applications

Our embedding theorems give a way to reduce the proofs of some statements
in finitely complete T -enriched categories with M -closed strong relations to
the particular case of PartM as follows: Consider a statement P of the form
ψ ⇒ ω, where ψ and ω can be expressed as conjunctions of the conditions
that some finite diagrams are commutative, some finite cones are limit cones
and some equalities as t(f1, . . . , fr) = g hold where t is an r-ary term of
T and f1, . . . , fr, g are parallel morphisms. Then, P is valid in all finitely
complete T -enriched V-categories with M -closed strong relations (for all
universes V) if and only if it is valid in PartM (for all universes). Indeed,
in view of Proposition 3.12, the ‘only if part’ is obvious. Conversely, if C
is a finitely complete T -enriched category with M -closed strong relations,
we can consider it is small up to a change of universe. Therefore, by Corol-
lary 4.3, it suffices to prove P in PartC

op

M . Since every part of the statement
P is ‘componentwise’, it is enough to prove it in PartM . Note that the con-
ditions that some morphisms are monomorphisms, isomorphisms, or factor
through some given monomorphisms can also be expressed using finite li-
mits.

Similarly, to prove this statement P in all finitely complete T -enriched
categories with M -closed relations, it is enough to prove it in PartM (for all
universes) supposing that each monomorphism considered in the statement
P is closed.

Let us now give two concrete examples, the first one taking place in the
‘weakly strongly unital context’, i.e., for pointed finitely complete categories
with MStrUni-closed strong relations (see Example 2.3). This lemma has
been proved in [1] as Lemma 1.8.18 in the strongly unital case, we now
slightly improve it.

Lemma 5.1. Consider the following diagram in a pointed finitely complete

- 398 -



P.-A. JACQMIN PARTIAL ALGEBRAS AND EMBEDDING THEOREMS

category with MStrUni-closed strong relations

X ×R
1X×r1

��

1X×r2
��

R

r1

��

r2

��

X
(1X ,0)

//

h

((

X × Y
ψ
��

Y
(0,1Y )

oo

f
ww

Z
g

hhhh

where ψ(1X , 0) = h, ψ(0, 1Y ) = f , gh = 1X , gf = 0 and (r1, r2) is the
kernel pair of f . Then (1X × r1, 1X × r2) is the kernel pair of ψ.

Proof. By Corollary 4.3, it is enough to prove it in PartMStrUni
. First of all,

let us compute, for all x ∈ X and y ∈ Y

ψ(x, y) = ψ(p(x, 0, 0), p(0, 0, y))

= ψ(p((x, 0), (0, 0), (0, y)))

= p(ψ(x, 0), ψ(0, 0), ψ(0, y))

= p(h(x), 0, f(y))

which is always defined. Next, let x, x′ ∈ X and y, y′ ∈ Y be such that
ψ(x, y) = ψ(x′, y′). We have

x = p(x, 0, 0) = p(gh(x), 0, gf(y)) = g(ψ(x, y))

= g(ψ(x′, y′)) = p(gh(x′), 0, gf(y′)) = p(x′, 0, 0)

= x′

and

f(y) = ψ(0, y) = ψ(p(x, x, 0), p(y, 0, 0))

= ψ(p((x, y), (x, 0), (0, 0))) = p(ψ(x, y), ψ(x, 0), ψ(0, 0))

= p(ψ(x′, y′), ψ(x′, 0), ψ(0, 0)) = ψ(p(x′, x′, 0), p(y′, 0, 0))

= ψ(0, y′) = f(y′).

Then,
X ×R = {(x, y1, y2) ∈ X × Y × Y | f(y1) = f(y2)}
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in which p is defined componentwise. If (x, y1, y2) ∈ X ×R, we have

ψ(x, y1) = p(h(x), 0, f(y1))

= p(h(x), 0, f(y2))

= ψ(x, y2).

The kernel pair of ψ is given by

{(x, y, x′, y′) ∈ X × Y ×X × Y |ψ(x, y) = ψ(x′, y′)}

in which p is also defined componentwise. It is thus isomorphic to X × R
via the mutually inverse homomorphisms (x, y1, y2) 7→ (x, y1, x, y2) and
(x, y, x′, y′) 7→ (x, y, y′).

To conclude, we prove a well-known fact in Mal’tsev categories.

Proposition 5.2. (Theorem 2.2 in [4]) In a Mal’tsev category, every internal
category is a groupoid.

Proof. If

A = ( A1 ×c,d A1
m // A1

d //

c
// A0

e

ee
)

is an internal category, we have to prove that Iso(A) � A1 is an isomor-
phism where Iso(A) is the object of isomorphisms of A, constructed via a
limit of a finite diagram involving e, d, c and m. Thus, by Corollary 4.2, it is
enough to prove this statement in PartMMal

.
We write π1 and π2 for the projections of the pullback of c along d.

A1 ×c,d A1
π2 //

π1
��

A1

d
��

A1 c
// A0

Let us first prove that

A1 ×c,d A1
(π2,m)

// A1 × A1
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is a monomorphism. So let

X
f
//

f ′
// Y

g
// Z

be morphisms in A such that m(f, g) = m(f ′, g). Then

f = m(f, 1Y )

= m(p(f, 1Y , 1Y ), p(g, g, 1Y ))

= p(m(f, g),m(1Y , g),m(1Y , 1Y ))

= p(m(f ′, g),m(1Y , g),m(1Y , 1Y ))

= f ′

and (π2,m) is a monomorphism. We can therefore suppose it is closed (using
the last part of Corollary 4.2). Let us now prove that every map f : X → Y
in A is invertible (i.e., that Iso(A)� A1 is surjective). We know that

p((1Y , 1Y ), (f, 1Y ), (1X , f)) ∈ A1 ×c,d A1

is defined since p(1Y , 1Y , f) and p(1Y , f, f) are and (π2,m) is a closed mo-
nomorphism. Thus, applying π1, we deduce that p(1Y , f, 1X) is defined. It
remains to compute

d(p(1Y , f, 1X)) = p(Y,X,X) = Y,

c(p(1Y , f, 1X)) = p(Y, Y,X) = X,

m(f, p(1Y , f, 1X)) = m(p(f, 1X , 1X), p(1Y , f, 1X))

= p(m(f, 1Y ),m(1X , f),m(1X , 1X))

= p(f, f, 1X)

= 1X

and similarly for m(p(1Y , f, 1X), f) = 1Y . Therefore, Iso(A) � A1 is
bijective and can also be supposed to be closed. This means it is an isomor-
phism.

- 401 -



P.-A. JACQMIN PARTIAL ALGEBRAS AND EMBEDDING THEOREMS

References

[1] F. BORCEUX AND D. BOURN, Mal’cev, protomodular, homological
and semi-abelian categories, Mathematics and Its Applications 566
(2004).

[2] D. BOURN, Mal’cev categories and fibration of pointed objects, Appl.
Categ. Struct. 4 (1996), 307–327.

[3] A. CARBONI, J. LAMBEK AND M.C. PEDICCHIO, Diagram chasing
in Mal’cev categories, J. Pure Appl. Algebra 69 (1990), 271–284.

[4] A. CARBONI, M.C. PEDICCHIO AND N. PIROVANO, Internal graphs
and internal groupoids in Mal’tsev categories, Canadian Math. Soc.
Conf. Proc. 13 (1992), 97–109.

[5] E. FARO AND G.M. KELLY, On the canonical algebraic structure of a
category, J. Pure Appl. Algebra 154 (2000), 159–176.
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INTERNAL GROUPOIDS AND
EXPONENTIABILITY

S.B. Niefield and D.A. Pronk

Résumé. Nous étudions les objets et les morphismes exponentiables dans la
2-catégorie Gpd(C) des groupoides internes à une catégorie C avec sommes
finies lorsque C est : (1) finiment complète, (2) cartésienne fermée et (3)
localement cartésienne fermée. Parmi les exemples auxquels on s’intéresse
on trouve, en particulier, (1) les espaces topologiques, (2) les espaces com-
pactement engendrés, (3) les ensembles, respectivement. Nous considérons
aussi les morphismes pseudo-exponentiables dans les catégories “pseudo-
slice” Gpd(C)//B. Comme ces dernières sont les catégories de Kleisli d’une
monade T sur la catégorie “slice” stricte sur B, nous pouvons appliquer
un théorème général de Niefield [17] qui dit que si TY est exponentiable
dans une 2-catégorie K, alors Y est pseudo-exponentiable dans la catégorie
de Kleisli KT . Par conséquent, nous verrons que Gpd(C)//B est pseudo-
cartésienne fermée, lorsque C est la catégorie des espaces compactement en-
gendrés et chaque Bi est faiblement de Hausdorff, et Gpd(C) est localement
pseudo-cartésienne fermée quand C est la catégorie des ensembles ou une
catégorie localement cartésienne fermée quelconque.
Abstract. We study exponentiable objects and morphisms in the 2-category
Gpd(C) of internal groupoids in a category C with finite coproducts when
C is: (1) finitely complete, (2) cartesian closed, and (3) locally cartesian
closed. The examples of interest include (1) topological spaces, (2) com-
pactly generated spaces, and (3) sets, respectively. We also consider pseudo-
exponentiable morphisms in the pseudo-slice categories Gpd(C)//B. Since
the latter is the Kleisli category of a monad T on the strict slice over B,
we can apply a general theorem from Niefield [17] which states that if TY

VOLUME LX-4 (2019)
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is exponentiable in a 2-category K, then Y is pseudo-exponentiable in the
Kleisli category KT . Consequently, we will see that Gpd(C)//B is pseudo-
cartesian closed, when C is the category of compactly generated spaces and
each Bi is weak Hausdorff, and Gpd(C) is locally pseudo-cartesian closed
when C is the category of sets or any locally cartesian closed category.
Keywords. exponentiability, internal groupoids, topological groupoids
Mathematics Subject Classification (2010). 22A22, 18D15.

1. Introduction

Suppose C is a category with finite limits. An object Y of C is exponentiable
if the functor−×Y : C //C has a right adjoint, usually denoted by ( )Y , and
C is called cartesian closed if every object is exponentiable. A morphism
q : Y //B is exponentiable if q is exponentiable in the slice category C/B,
and C is called locally cartesian closed if every morphism is exponentiable.
Note that if q : Y //B is exponentiable and r : Z //B, we follow the abuse
of notation and write the exponential as rq : ZY //B.

It is well known that the class of exponentiable morphisms is closed un-
der composition and pullback along arbitrary morphisms. For proofs of these
and other properties of exponentiability, we refer the reader to Niefield [16].

An internal groupoid G in C is a diagram of the form

G2 G1
c // G1

i

��
G1 G0

s //
G0G1 uooG1 G0

t
//

where G2 = G1 ×G0 G1, making G an internal category in C in which every
morphism is invertible. Unless otherwise stated, the morphism in the pull-
back is t : G1

//G0 when G1 appears on the left in G1 ×G0 G1 and s when
it is on the right. When C is the category of topological spaces, we say G is
a topological groupoid.

Let Gpd(C) denote the 2-category whose objects are groupoids in C,
morphisms σ : G // H are “internal homomorphisms,” i.e., morphisms
σ0 : G0

// H0 and σ1 : G1
// H1 of C compatible with the groupoid struc-

ture, and 2-cells σ ⇒ σ′ : G //H are “internal natural transformations,” i.e,
morphisms α : G0

//H1 of C such that the following diagram is defined and
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commutes

H2 H1c
//

G1

H2

〈σ1,αt〉
��

G1 H2

〈αs,σ′1〉 // H2

H1

c
��

(1)

Note that for an object of a 2-category C to be 2-exponentiable, one re-
quires that the 2-functor − × Y : C // C has a right 2-adjoint, i.e., there is
an isomorphism of categories C(X × Y, Z) ∼= C(X,ZY ) natural in X and
Z. One can similarly define 2-exponentiable morphisms of C.

It is well known that the 2-category Cat(C) of internal categories in C
is cartesian closed whenever C is, and the construction of exponentials re-
stricts to Gpd(C) (see Bastiani/Ehresmann [1], Johnstone [10]). Since the
construction of the exponentials HG depends only on the exponentiability of
G0, G1, and G2 in C, we will see that G is exponentiable in Gpd(C) when-
ever G0, G1, and G2 are exponentiable in C, for any merely finitely complete
category C. However, Cat(C) and Gpd(C) are not locally cartesian closed
even when C is. In fact, q : Y // B is exponentiable in Cat if and only
if it satisfies a factorization lifting property (FLP) known as the Conduché-
Giraud condition (see Conduché [3], Giraud [7]). In the groupoid case, q
satisfies FLP if and only if it is a fibration in the sense of Grothendieck [8].

In [11], Johnstone characterized pseudo-exponentiable morphisms in the
pseudo-slice Cat//B, where the morphisms commute up to specified natu-
ral transformation, as those satisfying a certain pseudo-factorization lifting
property, and Niefield [17] later obtained this result as a consequence of a
general theorem about pseudo-exponentiable objects in the Kleisli bicate-
gory of a pseudo-monad on a bicategory. In a related note, Palmgren [18]
showed that every groupoid homomorphism is pseudo-exponentiable, so that
Gpd//B is locally pseudo-cartesian closed. Although Palmgren includes a
complete proof, we will see that his result follows from the characterization
in [17].

The goal of this paper is to generalize these results so that we can eventu-
ally apply them to categories of topological groupoids arising in the study of
orbifolds. We begin, in Section 2, by recalling a general construction from
Niefield [15] of cartesian closed coreflective subcategories of the category
Top of all topological spaces (see also Bunge/Niefield [2]), which includes
compactly generated spaces as a special case, and leads to cartesian closed
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coreflective subcategories of Top. In the next two sections, we consider ex-
ponentiable objects of Gpd(C) and its slices when C is not locally cartesian
closed, and apply this to Top and its subcategories. In this process we will
need the internal version of the notion of fibration. This has been devel-
oped in full detail for arbitrary 2-categories in [20]. However, for internal
groupoids, the descriptions given in the literature for q : G // B to be an
internal cloven fibration are equivalent to the existence of a right inverse for
the arrow 〈s, q1〉 : G1

//G0×B0 B1. The reason this naive internalization of
the Grothendieck condition works is the fact that in groupoids all arrows of
the domain of a fibration are cartesian. We conclude, in Section 5, with the
construction of a pseudo-monad on Gpd(C)/B, in the case where C also has
finite coproducts, and thus obtain pseudo-cartesian closed slices of Gpd(C)
when C/B is cartesian closed. This includes the case where C = Sets,
giving another proof of Palmgren’s result, as well as certain slices of Top
considered in Section 2.

2. Exponentiability in Categories of Spaces

In this section, we recall some general results about cartesian closed core-
flective subcategories of Top and their slices. It is well known that the
exponentiable topological spaces Y are those for which the collectionO(Y )
is a continuous lattice, in the sense of Scott [19]. This is equivalent to lo-
cal compactness for Hausdorff (or more generally sober [9]) spaces Y . The
sufficiency of this condition goes back to R.H. Fox [6] and the necessity ap-
peared in Day/Kelly [5]. A characterization of exponentiable morphisms of
Top was established by Niefield in [15] and published in [16], where it was
shown that the inclusion of a subspace Y of B is exponentiable if and only
if it is locally closed, i.e., of the form U ∩ F , with U open and F closed in
B.

There are several general expositions of cartesian closed coreflective sub-
categories of Top. One, we recall here, follows from a general construction
presented in [15] and later included in Bunge/Niefield [2].

LetM be a class of topological spaces. Given a space X , let X̂ denote
the set X with the topology generated by the collection

{f : M //X |M ∈M}
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of continuous maps. We say X isM-generated if X = X̂ , and let TopM
denote the full subcategory of Top consisting ofM-generated spaces. Then
one can show that TopM is a coreflective subcategory of Top with coreflec-
tion̂ : Top //TopM.

In particular, TopK and TopE are the categories of compactly generated
and exponentiably generated spaces, when K and E are the classes of com-
pact Hausdorff spaces and all exponentiable spaces, respectively. Moreover,
it is not difficult to show that ifM ⊆ N ⊆ TopM, then TopM = TopN .
Thus, since every locally compact Hausdorff space is known to be compactly
generated, adding all such spaces to K does not increase TopK.

The following theorem is a special case of the one in [15] and later in-
cluded in [2]. We include a proof here for completeness.

Theorem 2.1. If M is a class of exponentiable objects of Top such that
M ×N ∈ TopM, for all M,N ∈M, then TopM is cartesian closed.

Proof. The product in TopM is given by

X×̂Y = lim−→
L //X×Y

L = lim−→
M //X
N
//
Y

M×N = lim−→
N // Y

(( lim−→
M //X

M)×N) = lim−→
N // Y

X×N

where the second equality holds since each M × N ∈ TopM and the third
since −×N preserves colimits as N is exponentiable. Thus,

TopM(X×̂Y, Z) = Top( lim−→
N
//
Y

X ×N,Z) = lim←−
N
//
Y

Top(X ×N,Z)

= lim←−
N
//
Y

Top(X,ZN) = TopM(X, ̂lim←−
N
//
Y

ZN)

Although TopM is generally not locally cartesian closed, there are many
cases of cartesian closed slices. In fact, we know of no nontrivial case (i.e.,
TopM 6= Sets) for which TopM is locally cartesian closed. The following
general proposition leads to examples of such slices.

Proposition 2.2. If Y is exponentiable in C andB is any object for which the
diagonal ∆: B //B×B is exponentiable, then every morphism q : Y //B
is exponentiable.
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Proof. Since the horizontal morphisms in the pullbacks

B B ×B
∆
//

Y

B

q

��

Y Y ×B〈id,q〉 // Y ×B

B ×B

q×id
��

Y 1//

Y ×B

Y

π1

��

Y ×B B
π2 // B

1
��

are exponentiable, factoring q = π2〈id, q〉, yields the desired result.

Corollary 2.3. If the diagonal B // B×̂B is exponentiable in TopM, then
TopM/B is cartesian closed.

For examples of spaces satisfying the hypotheses of Corollary 2.3, we
use:

Proposition 2.4. If TopM is closed under locally closed subspaces of all
M in M, then inclusions of locally closed subspaces are exponentiable in
TopM.

Proof. Suppose B isM-generated and q : Y // B is the inclusion of a lo-
cally closed subspace. Then for all p : X // B in TopM, since p−1(Y ) is
locally closed, one can show that X×̂BY = p−1(Y ) = X ×B Y is the prod-
uct in TopM/B. Then TopM/B(X×̂BY , Z) = Top/B(X ×B Y, Z) =

Top/B(X,ZY ) = TopM/B(X, ẐY ), since locally closed inclusions are
exponentiable in Top.

Corollary 2.5. Locally closed inclusions are exponentiable in the categories
TopK of compactly generated spaces and TopE of exponentially generated
spaces.

Proof. Locally closed subspaces of compact Hausforff spaces are compactly
generated and locally closed subspaces of exponentiable space are exponen-
tiable.

AnM-generated space X is calledM-Hausdorff (respectively, locally
M-Hausdorff) if the diagonal B // B×̂B is closed (respectively, locally
closed). AK-Hausdorff space is also known as a weak Hausdorff compactly
generated space or a k-space in the literature Lewis [12]. Note that weak
Hausdorff compactly generated spaces also form a cartesian closed category
but the only exponentiable morphisms there are the open maps [12].
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Corollary 2.6. If TopM is closed under locally closed subspaces of all M
inM, and B isM-Hausdorff (more generally, locallyM-Hausdorff), then
TopM/B is cartesian closed.

Proof. Apply Corollary 2.3 and Proposition 2.4.

In particular, we get:

Corollary 2.7. If B is a weak Hausdorff space, then TopK/B is cartesian
closed.

3. Exponentiable Topological Groupoids

In this section, we consider exponentiable topological groupoids, but first
some general results in Gpd(C), where C is a finitely complete category
with finite coproducts. As noted in the introduction, G is exponentiable in
Gpd(C), whenever G0, G1, and G2 are exponentiable in C. It is not true
that q : G // B is exponentiable in Gpd(C)/B whenever the qi : Gi

// Bi

are exponentable for i=0,1,2, since even when C = Sets, for G // B to be
exponentiable it is necessary that it is a fibration. Moreover, one cannot use
Proposition 2.2 to obtain exponentiable morphisms of Gpd(C), since the
diagonal ∆: B // B × B is rarely exponentiable. In fact, when C = Sets,
this is the case if and only if B is discrete.

When C is cartesian closed, the exponential HG in Gpd(C) can be con-
structed as follows. The object of objects (HG)0 needs to encode triples of
arrows 〈σ0 : G0

//H0, σ1 : G1
//H1, σ2 : G2

//H2〉 that fit in the appropriate
commutative diagrams to form an internal functor G //H; i.e.,

G1
σ1 //

s

��

H1

s

��

G1
σ1 //

t
��

H1

t
��

G1
σ1 // H1

G0 σ0

// H0 G0 σ0

// H0 G0

u

OO

σ0

// H0

u

OO

G2
σ2 //

c

��

H2

c

��

G2

π1

��

σ2 // H2

π1

��

G2

π2

��

σ2 // H2

π2

��
G1 σ1

// H1 G1 σ1

// H1 G1 σ1

// H1
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Hence, it is obtained as the equalizer

(HG)0
// //HG0

0 ×HG1
1 ×HG2

2

f0 //
g0

//HG1
0 ×HG1

0 ×HG0
1 ×HG2

1 ×HG2
1 ×HG2

1

where
f0 = 〈Hs

0π1, H
t
0π1, u

G0π1, H
c
1π2, H

π1
1 π2, H

π2
1 π2〉

and
g0 = 〈sG1π2, t

G1π2, H
u
1 π2, c

G2π3, π
G2
1 π3, π

G2
2 π3〉

The object of arrows (HG)1 needs to encode internal natural tranformations
α : σ ⇒ σ′ between internal functors σ, σ′ : G ⇒ H . These are given by
quintuples 〈σ, σ′, α, β1, β2〉, where α : G0

//H1 and β1, β2 : G1 ⇒ H2, that
make the following diagrams commute,

G0

σ0 !!

α // H1

s

��

G0

σ′0 !!

α // H1

t
��

G1

β1

��

β2 // H2

c

��
H0 H0 H2 c

// H1

G1
β1 //

σ1 !!

H2

π1

��

G1
β1 //

t
��

H2

π2

��

G1

σ′1 !!

β2 // H2

π2

��

G1
β2 //

s

��

H2

π1

��
H1 G0 α

// H1 H1 G0 α
// H1

(Note that the last five encode commutativity of the naturality square (1).)
Hence, it is obtained as the equalizer (HG)1 of the parallel pair,

(HG)0×(HG)0×HG0
1 ×HG1

2 ×HG1
2

f1 //
g1

//HG0
0 ×HG0

0 ×HG1
1 ×HG1

1 ×HG1
1 ×HG1

1 ×HG1
1

where
f1 = 〈π1π1, π1π2, c

G1π4, π2π1, H
t
1π3, π2π2, H

s
1π3〉

and
g1 = 〈sG0π3, t

G0π3, c
G1π5, π

G1
1 π4, π

G1
2 π4, π

G1
2 π5, π

G1
1 π5〉

The source and target maps (HG)1
// (HG)0 are given by first and second

projection. The unit map (HG)0
// (HG)1 has the identity map in the first
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and second coordinate and uG0π1 in the third coordinate. We describe the
last two coordinates using the transpose. Note that (HG)0 is a subobject of
HG0

0 ×HG1
1 ×HG2

2 . So consider

HG0
0 ×HG1

1 ×HG2
2 ×G1

〈π1,π2,∆G1
π4〉 // HG0

0 ×HG1
1 ×G1 ×G1

id
H
G0
0

×id
H
G1
1

×s×idG1

// HG0
0 ×HG1

1 ×G0 ×G1

〈ev〈π1,π3〉,ev〈π2,π4〉〉 // H0 ×H1

u×idH1 // H1 ×H1

When we take the subobject (HG)0
// //HG0

0 ×HG1
1 ×HG2

2 , this restricts to
a map

τ : (HG)0 ×G1
//H1 ×H0 H1

∼= H2

Its transpose τ̂ : (HG)0
//HG1

2 is the projection of the fourth coordinate of
the unit. The fifth coordinate is obtained in a similar fashion, but starting
with the mapping

HG0
0 ×HG1

1 ×HG2
2 ×G1

〈π1,π2,∆G1
π4〉 // HG0

0 ×HG1
1 ×G1 ×G1

id
H
G0
0

×id
H
G1
1

×idG1
×t
// HG0

0 ×HG1
1 ×G1 ×G0

〈ev〈π2,π3〉,ev〈π1,π4〉〉 // H1 ×H0

idH1
×u

// H1 ×H1

Composition in (HG)1 can be expressed using projections in the first two
coordinates and the appropriate composites in H1 in the last three coor-
dinates of the map. This makes HG the “groupoid of homomorphisms”
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G //H and the adjunction can be established using only the exponentiabil-
ity of G0, G1, and G2. Thus:

Proposition 3.1. If G0, G1, and G2 are exponentiable in C, then G is expo-
nentiable in Gpd(C).

To obtain a partial converse to Proposition 3.1, we use the left and right
adjoints to ( )0 : Gpd(C) // C which we recall are given by

L0(X) :X Xid // X

id

��
X X

id //
XX ido oX X

id
// and

R0(X) :X ×X ×X X ×Xπ13 // X ×X

〈π2,π1〉

��
X ×X X

π1 //
XX ×X ∆ooX ×X X

π2

//

respectively.

Proposition 3.2. IfG is exponentiable in Gpd(C), thenG0 is exponentiable
in C. The converse holds if s (or equivalently, t) is exponentiable.

Proof. Suppose G is exponentiable in Gpd(C). Then G0 is exponentiable
in C, since

C(X ×G0, Y ) ∼= C((L0X ×G)0, Y ) ∼= Gpd(C)(L0X ×G,R0Y )

∼= Gpd(C)(L0X, (R0Y )G) ∼= C(X, (R0Y )G0 )

For the converse, suppose G0 and s : G1
//G0 are exponentiable in C. Then

G1 is exponentiable since composition preserves exponentiability. To see
that G2 is exponentiable, consider the pullback

G1 G0t
//

G2

G1

π1

��

G2 G1
π2 // G1

G0

s

��

where π1 is exponentiable since s is and pullback preserves exponentiability,
and soG2 is exponentiable sinceG1 is. Thus,G is exponentiable in Gpd(C)
by Proposition 3.1.
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Note that if G is an étale groupoid, in the sense of Moerdijk/Pronk [14],
then s and t are local homeomorphisms in Top, and we conjecture thatHG is
étale when H is also étale and G1/G0 is compact. Thus, G is exponentiable
in Gpd(Top) if and only if G0 is exponentiable in Top. Of course, all
étale groupoids are exponentiable in Gpd(TopK), since TopK is cartesian
closed.

An exponentiable internal groupoid of interest is the groupoid II with
two objects and one nontrivial isomorphism. It is well known that II makes
sense in Gpd(C), for any finitely complete C with finite coproducts, where
II0 = 1 + 1 and II1 = 1 + 1 + 1 + 1. In particular, the exponentials BII will
play a role when we consider the pseudo-slices Cat//B in Section 5. We
know that BII is exponentiable whenever BII

0 , BII
1 , and BII

2 are.
Using our construction of exponentials, one can see that BII can be de-

scribed as follows. Since BII
0 can be thought of as the “object of homomor-

phisms II //B,” i.e., morphisms bs // bt in B, we can take BII
0 = B1. Then

BII
1 becomes (BII)1 = B2 ×B1 B2 via the pullback

B2 B1c
//

B2 ×B1 B2

B2

π1

��

B2 ×B1 B2 B2
π2 // B2

B1

c

��

i.e., the “object of squares”

b̄s b̄tᾱ
//

bs

b̄s

βs
��

bs bt
α // bt

b̄t

βt
��

andBII
1

s //
t
//BII

0 is given byB2×B1B2

π1 //
π2

//B2

π1 //
π2

//B1, i.e., s(βs
α //
ᾱ
//βt) = βs

and t(βs
α //
ᾱ
// βt) = βt. Finally, BII

2 = (B2 ×B1 B2) ×B1 (B2 ×B1 B2) is the

“object of commutative diagrams” with composition

- 414 -



NIEFIELD/PRONK GROUPOIDS AND EXPONENTIABILITY

b̄s b̄tᾱ
//

bs

b̄s

βs

��

bs bt
α // bt

b̄t

βt

��
b̄t b̄t′

ᾱ′
//

bt

b̄t

bt bt′
α′ // bt′

b̄t′

βt′

��
7→

b̄s b̄t′
ᾱ′ᾱ

//

bs

b̄s

βs

��

bs bt′
α′α // bt′

b̄t′

βt′

��

Thus, we get the following corollary of Proposition 3.2.

Corollary 3.3. If BII is exponentiable in Gpd(C), then B1 is exponentiable

in C. The converse holds if the arrows B2

c //
π1

// B1 are exponentiable in C.

Proof. The first part holds by Proposition 3.2, since BII
0 = B1. So, assume

that B1 and B2

c //
π1

//B1 are exponentiable in C. Then BII
1 = B2×B1 B2

π1 //B2

is exponentiable being a pullback of c : B2
// B1, and so BII is exponen-

tiable in Gpd(C) by Proposition 3.2, since s : BII
1

//BII
0 is given by B2×B1

B2
π1 // B2

π1 // B1.

Recall [4] that a topological groupoid G is called an orbigroupoid if s
and t are étale and 〈s, t〉 : G1

//G0 ×G0 is a proper map.

Proposition 3.4. If B is an orbigroupoid, then so is BII.

Proof. Suppose B is an orbigroupoid. Since s is étale and

B1 B0s
//

B2

B1

c

��

B2 B1
π1 // B1

B0

s

��

is a pullback (as B is a groupoid), it follows that c : B2
//B1 and hence the

projections B2 ×B1 B2

π1 //
π2

// B2 are étale. Thus, BII
1

s //
t
// BII

0 are étale, as
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desired. To see that 〈s, t〉 : BII
1

//BII
0 ×BII

0 is proper, consider the diagram

BII
1 BII

0 ×BII
0

〈s,t〉 //

|| ||

B1 B0 ×B0〈s,t〉
//

B2 ×B1 B2

B1

cπ1

��

B2 ×B1 B2 B1 ×B1
// B1 ×B1

B0 ×B0

s×t
��

which is a pullback as B is a groupoid. Since the bottom row is proper it
follows that the top one is, and so BII is an orbigroupoid.

4. Exponentiable Morphisms of Groupoids

In this section, we consider exponentiable morphisms in Gpd(C). When
C = Sets, or any topos, we know that these are precisely the fibrations.
Though the categories C of spaces of interest are not even locally cartesian
closed, we will see that if q : G // B is a fibration (in the sense defined
below) and each qi : Gi

// Bi is exponentiable in C, then q is exponentiable
in Gpd(C).

Suppose q : G // B is exponentiable in Gpd(C)/B. Then, as in Propo-
sition 3.2, we know q0 : G0

//B0 is exponentiable in C, since

( )0 : Gpd(C)/B // C/B0

has left and right adjoints, given by (X
p // B0) 7→ (L0X

L0p // L0B0
ε // B),

where ε is the counit of the adjunction L0 a ( )0, and (X
p //B0) 7→ (B×R0B0

R0X
π1 // B), where B //R0B0 is the unit of the adjuncion ( )0 a R0.

Definition 4.1. A morphism q : G //B is a fibration in Gpd(C) if

〈s, q1〉 : G1
//G0 ×B0 B1

has a right inverse, or equivalently, 〈q1, t〉 : G1
// B1 ×B0 G0 has a right

inverse in C.
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Remark 4.2. When C is the category of all topological spaces (or any con-
crete category), this says q is a fibration, in the sense of Grothendieck [8];
i.e., given a and β : q0a // b̄, there exists α : a // ā such that q1α = β, but
our condition is stronger since (a, β) 7→ α must be a morphism of C.

Our notion is equivalent to the notion of a cloven strict internal fibration
as given in [20] for the 2-category Gpd(C). Note that the description for
Gpd(C) can be simplified this way because we do not need to worry about
cartesian arrows: for a fibration between groupoids all arrows in the domain
are cartesian.

Lemma 4.3. An arrow q : G // B in Gpd(C) is a fibration in our sense
precisely when it is representably a cloven strict internal fibration.

Proof. Let q : G //B be a fibration in Gpd(C) with θ : G0 ×B0 B1
//G1 a

right inverse to 〈s, q1〉. Let H be any groupoid in C. We need to show that
the induced functor

q∗ = Gpd(C)(H, q) : Gpd(C)(H,G) //Gpd(C)(H,B)

is a cloven strict fibration in Cat. So let ϕ : H // G be an internal func-
tor, viewed as object in Gpd(C)(H,G) and let α : qϕ ⇒ ψ be an inter-
nal natural transformation, viewed as an arrow in Gpd(C)(H,B), Then α
gives rise to a morphism α : H0

// B1 in C, with sα = q0ϕ0. Hence
this gives us 〈ϕ0, α〉 : H0

// G0 ×B0 B1. It follows that the composition
θ〈ϕ0, α〉 : H0

//G1 is the required lifting. This defines a cleavage, because
the internal categories here are groupoids. The fact that for any f : H //H ′,
the induced square is a morphism of fibrations follows immediately from the
fact that we are working with groupoids.

Conversely, suppose that q : G // B is representably a cloven internal
fibration in Gpd(C). This implies that

q∗ = Gpd(C)(H, q) : Gpd(C)(H,G) //Gpd(C)(H,B)

is a cloven strict fibration in Cat for each H in Gpd(C). Now take H to be
the strict comma square,

H
r //

p
��

α⇒

B

idB
��

G q
// B
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Then we may take H0 to be the pullback

H0
//

� �

B1

s

��
G0 q0

// B0

and p0 = π1 : H0
//G0 and α = π2 : H0

//B1.
Note that we have α : qp ⇒ r, an arrow in Gpd(C)(H,B), and p is

such that q∗(p) = qp. Hence the cleavage gives us a lifting α̃ : q ⇒ r̃ in
Gpd(H,G) represented by α̃ : H0

//G1 such that sα̃ = p0 and q1α̃ = α =
π2. So we get that 〈s, q1〉α̃ = idG0×B0

B1 as required.

Note thatBII becomes a groupoid overB viaBII
s //
t
//B defined by s0 = s,

t0 = t, s1 : B2 ×B1 B2
π2 // B2

π1 // B1, and t1 : B2 ×B1 B2
π1 // B2

π2 // B1,

i.e., s1(βs
α //
ᾱ
// βt) = α, and t1(βs

α //
ᾱ
// βt) = ᾱ.

Proposition 4.4. The morphisms BII ×B G
sπ1 // B and G×B BII tπ2 // B are

fibrations, for all q : G //B. In particular, s : BII //B and t : BII //B are
fibrations, for all B.

Proof. This result follows from the general theory on fibrations as spelled
out in Theorem 14 [20] for instance, where it is shown that any span which
is the comma object of some opspan is a split bifibration. However, in this
particular case, there is also a short straightforward argument: For sπ1, the
morphism 〈s, (sπ1)1〉 : (BII ×B G)1

// (BII ×B G)0 ×B0 B1 is given by

qas qatqγ
//

bs

qas

βs
��

bs bt
α // bt

qat

βt
��
7→

bs

qas

βs
��

bs bt
α //

and so

bs

qas

βs
��

bs bt
α //

7→
qas qasqid

//

bs

qas

βs
��

bs bt
α // bt

qas

βsα−1

��
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is a right inverse to 〈s, (sπ1)1〉. The proof for t is similar.

Now, for “discrete” groupoids L0B, we know

Gpd(C)/L0B ∼= Gpd(C/B)

and so q : G // L0B is exponentiable in Gpd(C) if each qi : Gi
// B is

exponentiable in C. Thus, if C is cartesian closed, then Gpd(C)/L0B is
cartesian closed whenever the diagonal on B is exponentiable in C. In par-
ticular, Gpd(TopM)/L0B is cartesian closed wheneverB isM-Hausdorff,
e.g., weak Hausdorff in the case whereM = K.

For the non-discrete case, given q : G //B and r : H //B, to see how to
define the exponentials rq : HG //B when q is exponentiable in Gpd(C)/B,
consider the case where C = Sets. Recall that the fiber of (HG)0 over b in
B is the set of homomorphisms σ : Gb

//Hb between the fibers of G and H
over b. A morphism Σ: σ //σ′ over β : b //b′ inB is a family of morphisms
Σα : σa //σ′a′ of H over β indexed by the morphisms α : a // a′ of G over
β such that the diagram

σ′a′ σ′ā′
σ′ᾱ′
//

σā

σ′a′

Σαᾱ

��

σā σaσᾱ // σa

σ′ā′

Σᾱ′α

��

σa

σ′a′

Σα

��
(2)

commutes, for all ā ᾱ // a
α // a′

ᾱ′ // ā′ such that q(ᾱ) = idb and q(ᾱ′) = idb′ .
Defining the morphisms s, t, u and i is straightforward, but for composition,
one must assume q is a fibration. Then, let r : G0×B0 B1

//G1 be a right in-

verse of 〈s, q1〉. Suppose σ Σ //σ′
Σ′ //σ′′ is a composable pair over b

β //b′
β′ //b′′,

and define σ Σ′Σ // σ′′ as follows. Given a α′′ // a′′ over b
β′β // b′′, consider

a

a′
α ��

a a′′α′′ // a′′

a′

AA

α′

where α = r(a, β) and α′ = α′′α−1, and define (Σ′Σ)α′′ = Σ′α′Σα. Then it
is not difficult to show that HG is a groupoid over B and that this provides a
right adjoint to the functor −×B G : Gpd/B //Gpd/B.
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Theorem 4.5. If q : G //B is a fibration and qi : Gi
//Bi is exponentiable

in C, for i = 0, 1, 2, then q is exponentiable in Gpd(C)/B.

Proof. Given H //B, define (HG)0
//B0 by the equalizer

(HG)0
// //HG0

0 ×B0 (B0 ×B1 H
G1
1 )×B0 (B0 ×B2 H

G2
2 )

f0 //
g0

//X0

in C/B0, capturing the fact that

(σ0 : G0
//H0, σ1 : G1

//H1, σ2 : G2
//H2)

is a “homomorphism of groupoids”, where HG0
0

// B0, HG1
1

// B1 and
HG2

2
//B2 are the exponentials,

B0 B1u
//

B0 ×B1 H
G1
1

B0

π1

��

B0 ×B1 H
G1
1 HG1

1

π2 // HG1
1

B1

� �

and

B0 B2
(u,u)

//

B0 ×B2 H
G2
2

B0

π1

��

B0 ×B2 H
G2
2 HG2

2

π2 // HG2
2

B2

��

are pullbacks in C, and the morphisms f0 and g0 ensure that σ0, σ1 and σ2

are compatible with s, t, u, c and the projections. In detail, for s, X0 has a
factor of the form H

B0×B1
G1

0 whose projections of f0 and g0 are given by

HG0
0 ×B0 (B0 ×B1 H

G1
1 )×B0 (B0 ×B2 H

G2
2 )

HG0
0

π1

77

HG0
0 ×B0 (B0 ×B1 H

G1
1 )×B0 (B0 ×B2 H

G2
2 )

B0 ×B1 H
G1
1

π2
��

∼= (B0 ×B1 H1)B0×B1
G1

H
B0×B1

G1

0

(sπ2)
B0×B1

G1

??

HG0
0

H
B0×B1

G1

0

Hs
0

''

- 420 -



NIEFIELD/PRONK GROUPOIDS AND EXPONENTIABILITY

The factor of X0 for t is defined similarly: just replace both occurrences
of s by t in this diagram.

The factor of X0 for u is of the form (B0 ×B1 H1)G0 and the projections
of f0 and g0 for this factor are given by

HG0
0 ×B0 (B0 ×B1 H

G1
1 )×B0 (B0 ×B2 H

G2
2 )

HG0
0

π1

77

HG0
0 ×B0 (B0 ×B1 H

G1
1 )×B0 (B0 ×B2 H

G2
2 )

B0 ×B1 H
G1
1

π2
��

∼= (B0 ×B1 H1)B0×B1
G1

(B0 ×B1 H1)G0

(B0×B1
H1)(q0,u)

??

HG0
0

(B0 ×B1 H1)G0

(q0,u)G0

''

The factor of X0 for c is of the form (B0 ×B1 H1)B0×B2
G2 and the pro-

jections of f0 and g0 for this factor are given by

HG0
0 ×B0 (B0 ×B1 H

G1
1 )×B0 (B0 ×B2 H

G2
2 )

B0 ×B2 H
G2
2

π3

??

HG0
0 ×B0 (B0 ×B1 H

G1
1 )×B0 (B0 ×B2 H

G2
2 )

B0 ×B1 H
G1
1

π2
��

∼=

∼=

(B0 ×B1 H1)B0×B1
G1

(B0 ×B1 H1)B0×B2
G2

(B0×B1
H1)

B0×B1
c

??

(B0 ×B2 H2)B0×B2
G2

(B0 ×B1 H1)B0×B2
G2

(B0×B2
c)
B0×B2

G2

� �

The factors of X0 for the commutativity with the two projections from the
objects of composable pairs to the objects of arrows are given by two addi-
tional copies of (B0 ×B1 H1)B0×B2

G2 and the projections of f0 and g0 are
obtained by replacing c in this diagram by π1 and π2 respectively.

We conclude that

X0 = H
B0×B1

G1

0 ×B0H
B0×B1

G1

0 ×B0(B0×B1H1)G0×B0(B0×B1H1)B0×B2
G2

×B0 (B0 ×B1 H1)B0×B2
G2 ×B0 (B0 ×B1 H1)B0×B2

G2

and the maps f0 and g0 are given by

f0 = (Hs
0π1, H

t
0π1, (q0, u)G0π1, (B0 ×B2 c)

B0×B2
G2π3,

(B0 ×B2 π1)B0×B2
G2π3, (B0 ×B2 π2)B0×B2

G2π3)
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and

g0 = ((sπ2)B0×B1
G1π2, (tπ2)B0×B1

G1π2, (B0 ×B1 H1)(q0,u)π2,

(B0 ×B1 H1)B0×B1
cπ2, (B0 ×B1 H1)B0×B1

π1π2, (B0 ×B1 H1)B0×B1
π2π2)

To define (HG)1
//B1 we use an equalizer over B1 of the form

(HG)1
// //X2

f1 //
g1

//X1

where X2 is given by

((HG)0 ×B0 H
G1
1 ×B0 (HG)0)×B1 H

(B0×B1
G1)×G0

G1

2 ×B1 H
(B0×B1

G1)×G0
G1

2

and HG1
1

// B1

s //
t
// B0 appear in the product over B0 via the usual con-

vention. The morphisms f1 and g1 are defined to encode the commutativity
of the diagram (2) defining Σ in Gpd(Sets). The H

(B0×B1
G1)×G0

G1

2 and
H

(B0×B1
G1)×G0

G1

2 components in X2 have been added to be able to express
commutativity of the top left triangle and bottom right triangle (respectively)
in (2). To make our diagrams a bit more managable we will write G′1 for
B0×B1 G1. Commutativity of the top left triangle is then expressed by com-
mutativity of the following three diagrams:

H
G′1×G0

G1

2

π
G′1×G0

G1
1

++
((HG)0 ×B0 H

G1
1 ×B0 (HG)0)×B1 H

G′1×G0
G1

2 ×B1 H
G′1×G0

G1

2

π2

OO

π2π1π1

��

H
G′1×G0

G1

1

H
G′1
1

H
π1
1

33

H
G′1×G0

G1

2

π
G′1×G0

G1
2

++
((HG)0 ×B0 H

G1
1 ×B0 (HG)0)×B1 H

G′1×G0
G1

2 ×B1 H
G′1×G0

G1

2

π2

OO

π2π1

��

H
G′1×G0

G1

1

HG1
1

H
π2
1

33
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H
G′1×G0

G1

2

c
G′1×G0

G1

++
((HG)0 ×B0 H

G1
1 ×B0 (HG)0)×B1 H

G′1×G0
G1

2 ×B1 H
G′1×G0

G1

2

π2

OO

π2π1

��

H
G′1×G0

G1

1

HG1
1

Hc
1

33

The diagrams for the commutativity of the bottom right triangle are con-
structed similarly.

So we need that

X1 = H
G′1×G0

G1

1 ×B1 H
G′1×G0

G1

1 ×B1 H
G′1×G0

G1

1 ×B1 H
G1×G0

G′1
1

×B1 H
G1×G0

G′1
1 ×B1 H

G1×G0
G′1

1 ,

and

f1 = (π
G′1×G0

G1

1 π2, π
G′1×G0

G1

2 π2, c
G′1×G0

G1π2, π
G1×G0

G′1
1 π3, π

G1×G0
G′1

2 π3, c
G1×G0

G′1π3)

g1 = (Hπ1
1 π2π1π1, H

π2
1 π2π1, H

c
1π2π1, H

π1
1 π2π1, H

π2
1 π2π3π1, H

c
1π2π1)

Note that s, t : (HG)1
//(HG)0 are given by the projections. The morphisms

i : (HG)1
//(HG)1 and u : (HG)0

//(HG)1 are induced by iG1 : HG1
1

//HG1
1

and
〈id, ϕ, id〉 : (HG)0

// (HG)0 ×B0 ×HG1
1 ×B0 (HG)0

respectively, where ϕ is the composition

(HG)0
// //HG0

0 ×B0 (B0 ×B1 H
G1
1 )×B0 (B0 ×B2 H

G2
2 )

π2π2// HG1
1

To define composition, let θ : G0 ×B0 B1
// G1 denote the right inverse of

〈s, q1〉, which exists since q is a fibration, and consider the diagram

HG1
1 ×B1 B2 ×B1 H

G1
1 HG1

1
//

(HG)1 ×(HG)0
(HG)1

HG1
1 ×B1 B2 ×B1 H

G1
1

��

(HG)1 ×(HG)0
(HG)1 (HG)1

// (HG)1

HG1
1

��

B2 B1c
//

HG1
1 ×B1 B2 ×B1 H

G1
1

B2

��

HG1
1 ×B1 B2 ×B1 H

G1
1 HG1

1
// HG1

1

B1

��
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where the vertical compositions are the “projections” and the unnamed hor-
izontal morphisms are to be determined. It suffices to define a morphism
HG1

1 ×B1 B2 ×B1 H
G1
1

//HG1
1 so that the bottom square commutes, since

all other components can be derived from this map. Now, θ induces a mor-
phism

θ′ : G1 ×B1 B2
〈π1,sπ1,π1π2〉 // G1 ×B1 (G0 ×B0 B1)

〈θπ2,c(iθπ2,π1)〉// G1 ×G0 G1

and hence, (HG1
1 ×B1B2×B1H

G1
1 )×B1G1

//(HG1
1 ×B1G1)×B0(HG1

1 ×B1G1)
// H1 ×H0 H1

c // H1, whose transpose gives the desired morphism. As in
the case of C = Sets, this defines the exponential HG //B.

Remark 4.6. Since each one of our fibrations in Gpd(C) is a fibration in
Cat(C) as used in [21], Theorem 4.5 describes a special case of Theorem
2.17 in that paper. We include the proof given here, because it gives an
explicit construction of the exponential groupoid in the slice category and
shows where each assumption is used.

By Theorem 4.5, a fibration q : G //B is exponentiable in Gpd(Top)/B,
if each qi : Gi

// Bi is exponentiable in Top, for i = 0, 1, 2. Now, if C/Bi

is cartesian closed, for i = 0, 1, 2, then every fibration is exponentiable in
Gpd(C)/B. This is the case when C is cartesian closed and each diagonal
∆: Bi

//Bi ×Bi is exponentiable in C, e.g., C = TopM and the Bi are lo-
callyM-Hausdorff. By the following lemma, we need not assume the i = 2
case.

Lemma 4.7. Suppose C is a finitely complete category.

(a) If X and Y have exponentiable diagonals, then so does X × Y .

(b) If B is a groupoid in C and B1 has an exponentiable diagonal, then so
does B2.

Proof. For (a), suppose X and Y have exponentiable diagonals. Then the
diagonal on X × Y is exponentiable, since it can be factored

X×Y idX×∆ //X×(Y×Y )
∆×idY×Y// (X×X)×(Y×Y )

ϕ //(X×Y )×(X×Y )
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where the first two morphisms are exponentiable being pullbacks of expo-
nentiables and ϕ is an isomorphism.

For (b), suppose B1 has an exponentiable diagonal. Then B1 ×B1 does,
by (a). Since there is a monomorphism ψ : B2

// B1 × B1, we see that the
diagram

B1 ×B1 (B1 ×B1)× (B1 ×B1)
∆
//

B2

B1 ×B1

ψ

��

B2 B2 ×B2
∆ // B2 ×B2

(B1 ×B1)× (B1 ×B1)

ψ×ψ
��

is a pullback, and it follows that B2 has an exponentiable diagonal.

Thus, we get the following corollaries to Theorem 4.5:

Corollary 4.8. If G0, G1, and G2 are exponentiable spaces, and B0 and B1

are locally Hausdorff, then every fibration q : G // B is exponentiable in
Gpd(Top).

Corollary 4.9. If B0 and B1 have exponentiable diagonals in a cartesian
closed category C, then every fibration q : G //B is exponentiable in Gpd(C).

Corollary 4.10. Every fibration is exponentiable in Gpd(TopM)/B, if B0

and B1 are locallyM-Hausdorff.

Corollary 4.11. The following are equivalent.

(a) s : BII //B is exponentiable in Gpd(C).

(b) s : B1
//B0 is exponentiable in C.

(c) t : BII //B is exponentiable in Gpd(C).

(d) t : B1
//B0 is exponentiable in C.

Proof. Since si = t and i is an isomorphism, we know (b) and (d) are equiv-
alent. We will establish the equivalence of (a) and (b). The proof for (c) and
(d) is similar.

First, (a) implies (b) follows from the remark at the beginning of this sec-
tion. For the converse, it suffices to show that s1 : BII

1
//B1and s2 : BII

2
//B2
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are exponentiable in C, since s : BII // B is a fibration by Proposition 4.4.
We know the first one is exponentiable, as it is given by

s1 : B2 ×B1 B2
π2 // B2

π1 // B1

which is a composition of exponentiables when s : B1
// B0 is exponen-

tiable, since the diagrams

B1 B0s
//

B2 ×B1 B2

B1

π1π1

��

B2 ×B1 B2 B2
π2 // B2

B0

sπ1

��
B1 B0s

//

B2

B1

π1

��

B2 B1
π2 // B1

B0

t

��

are pullbacks in C. To see that s2 : BII
2

// B2 is exponentiable, note that
s2 = π1π2 × π2π1 and the square

B2 B1c
//

BII
2

B2

s2
��

BII
2 B2 ×B0 B2

π1×π2 // B2 ×B0 B2

B1

c(c×c)
��

is a pullback. Thus, it suffices to show that

B2 ×B0 B2 = (B1 ×B0 B1)×B0 (B1 ×B0 B1)
c×c // B1 ×B0 B1

c //B1

is exponentiable. Since s is exponentiable and

B1 B0s
//

B1 ×B0 B1

B1

c

��

B1 ×B0 B1 B1
π1 // B1

B0

s

��

is a pullback, we know c is exponentiable. Since

B1 ×B0 B1 B0sπ2

//

(B1 ×B0 B1)×B0 (B1 ×B0 B1)

B1 ×B0 B1

c×c
��

(B1 ×B0 B1)×B0 (B1 ×B0 B1) B1 ×B0 B1
π2π1×π1π2 // B1 ×B0 B1

B0

sπ2

��

is a pullback and sπ2 is a composition of exponentiable morphisms, it fol-
lows that c× c is exponentiable.
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Corollary 4.12. If s : B1
//B0 (respectively, t : B1

//B0) and qi : Gi
//Bi

are exponentiable in C, for i = 0, 1, 2, then sπ1 : BII×BG //B (respectively,
tπ2 : G×B BII //B) is exponentiable in Gpd(C)/B.

Proof. Since pullback and composition preserve exponentiability, the result
follows from Proposition 4.4, Theorem 4.5, and Corollary 4.11.

Corollary 4.13. If B0 and B1 have exponentiable diagonals in a cartesian
closed category C, then sπ1 : BII ×B G // B and tπ2 : G ×B BII // B are
exponentiable in Gpd(C), for all q : G //B.

Proof. By Lemma 4.7(b), since B1 has an exponentiable diagonal, so does
B2. Thus, applying Proposition 2.2, we see that every morphism X // Bi

is exponentiable in C, for i = 0, 1, 2, and so the desired result follows from
Corollary 4.12.

Corollary 4.14. IfG0, G1, G2, andB1 are exponentiable spaces andB0 and
B1 are locally Hausdorff, then sπ1 : BII×BG //B and tπ2 : G×BBII //B
are exponentiable in Gpd(Top), for all q : G //B.

Corollary 4.15. If B0 and B1 are locallyM-Hausdorff, then sπ1 : BII ×B
G //B and tπ2 : G×B BII //B are exponentiable in Gpd(TopM), for all
q : G //B.

5. Pseudo-Exponentiability of Morphisms of Groupoids

In this section, we use a general theorem from Niefield [17] for monads
and their Kleisli categories to show that G // B is pseudo-exponentiable
in Gpd(C)//B if sπ1 : BII ×B G // B is exponentiable in Gpd(C)/B,
e.g., s : B1

// B0 and Gi
// Bi are exponentiable in C, for i = 0, 1, 2.

Consequently, Gpd(C)//B is pseudo-cartesian closed whenever B0 and B1

have exponentiable diagonals in a cartesian closed category C. In particu-
lar, Gpd(C) is locally pseudo-cartesian closed when C is locally cartesian
closed, e.g., C = Sets.

The general result in [17], i.e.,Theorem 3.4, was proved for pseudo-
monads on a bicategory since one of the examples there was not a 2-category.
Restricting to the strict case we get:
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Theorem 5.1. Suppose K is a 2-category with finite 2-products and T, µ, η
is a 2-monad on K such that ηT ∼= Tη and the induced morphism

ρ : T (X × TY ) // TX × TY

is an isomorphism, for all X, Y in K. If TY is 2-exponentiable in K, then Y
is pseudo-exponentiable in the Kleisli 2-category KT .

Before applying this theorem to K = Gpd(C)/B, we recall the defini-
tion of pseudo-exponentiability. First, a diagram

X Y

X × Y

X

π1

��

X × Y

Y

π2

��

is a pseudo-product in a 2-category K if the induced functor

K(Z,X × Y )
ϕZ //K(Z,X)×K(Z, Y )

is an equivalence of categories, for all Z. Since the definition of 2-product
requires that ϕZ is an isomorphism, for all Z, it follows that every 2-product
is necessarily a pseudo-product in K. An object Y is pseudo-exponentiable
if the pseudo-functor − × Y : K // K has a right pseudo-adjoint, i.e., for
every object Z, there is an object ZY together with an equivalence

K(X × Y, Z)
θX,Z // K(X,ZY )

which are pseudo-natural in X and Z.
As before, we are assuming that C is a finitely complete category with

finite coproducts. Then there is an internal groupoid

BII ×B BII BIIc // BII

i




BII B

s //
BBII uooBII B

t
//

in Gpd(C), where as usual, we writeBII on the left of×B, when t : BII //B
and on the right when s : BII //B. Note that s and t are as in Section 4 and
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c, i and u are defined analogously. Thus, as in [17] (see also Street [20]), we
get a monad on Gpd(C)/B defined by

T (G
q //B) = BII ×B G

sπ1 // B η : G
〈uq,id〉// BII ×B G

µ : BII ×B BII ×B G
c×id // BII ×B G

and it is not difficult to show that the 2-Kleisli category is (isomorphic to)
the pseudo-slice Gpd(C)//B whose objects are homomorphism q : G //B,
morphisms are triangles

G

B

q
��

G H
f // H

B

r
��

ϕ //
or equivalently

G

B

q ��

G BII ×B H
〈ϕ̂,f〉 // BII ×B H

B
sπ1��

and 2-cells θ : (f, ϕ) // (g, ψ) are 2-cells θ : f // g such that

rf rg
rθ
//

q

rf

ϕ
��
q

rg

ψ
��

To show that ρ : BII ×B (G×B BII ×B H) // (BII ×B G)×B (BII ×B H) is
an isomorphism, note that πiρ = πi, for i = 1, 2, 4, and

BII ×B BII BII
c

//

BII ×B (G×B BII ×B H)

BII ×B BII

〈π1,π3〉
��

BII ×B (G×B BII ×B H) (BII ×B G)×B (BII ×B H)
ρ // (BII ×B G)×B (BII ×B H)

BII

π3

��

Then one can show that ρ is invertible with πiρ−1 = πi, for i = 1, 2, 4, and

BII ×B BII BII
c

//

(BII ×B G)×B (BII ×B H)

BII ×B BII

〈iπ1,π3〉
��

(BII ×B G)×B (BII ×B H) BII ×B (G×B BII ×B H)
ρ−1
// BII ×B (G×B BII ×B H)

BII

π3

��

To show ηT ∼= Tη, it suffices to show (ηT )BII
∼= TηBII , where t : BII // B,

since ηG = ηBII ×B G. Now, (ηT )BII and TηBII are given by

BII 〈s,id〉 //B×BBII 〈u,id〉 //BII×BBII and BII 〈id,t〉 //BII×BB
〈id,u〉 //BII×BBII
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Then one can show that the desired isomorphism is induced by the following
morphism θ : (BII)0

// (BII)1 ×B1 (BII)1. First, recall that

(BII)0
∼= B1 and (BII)1 ×B1 (BII)1

∼= (B2 ×B1 B2)×B1 (B2 ×B1 B2)

Then π1θ and π2θ are given by

B1
〈us,id,us,id〉 // (B1 ×B0 B1)×B1 (B1 ×B0 B1) ∼= B2 ×B1 B2

and

B1
〈id,ut,id,ut〉 // (B1 ×B0 B1)×B1 (B1 ×B0 B1) ∼= B2 ×B1 B2

respectively.

Theorem 5.2. If s : B1
// B0 and qi : Gi

// Bi are exponentiable in C, for
i = 0, 1, 2, then q : G //B is pseudo-exponentiable in Gpd(C)//B.

Proof. Apply Corollary 4.12 and Theorem 5.1.

In particular, we get the following corollaries:

Corollary 5.3. If G0, G1, G2, and B1 are exponentiable (e.g., locally com-
pact) and B0 and B1 are locally Hausdorff spaces, then every morphism
q : G //B is pseudo-exponentiable in Gpd(Top).

Corollary 5.4. If B0 and B1 have exponentiable diagonals in a cartesian
closed category C, then Gpd(C)//B is pseudo-cartesian closed.

Corollary 5.5. IfB0 andB1 are locallyM-Hausdorff, then Gpd(TopM)//B
is pseudo-cartesian closed.

Corollary 5.6. IfB0 andB1 are compactly generated weak Hausdorff spaces,
then Gpd(TopK)//B is pseudo-cartesian closed.

Corollary 5.7. If C is locally cartesian closed, then Gpd(C) is locally pseudo-
cartesian closed.

Corollary 5.8. Gpd(Sets) is locally pseudo-cartesian closed.
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GOURSAT COMPLETIONS

Diana RODELO and Idriss TCHOFFO NGUEFEU

Résumé. Nous caractérisons les catégories avec limites finies faibles dont les
completions régulieres sont des catégories de Goursat.
Abstract. We characterize categories with weak finite limits whose regular
completions give rise to Goursat categories.
Keywords. regular category, projective cover, Goursat category, 3-permuta–
ble variety.
Mathematics Subject Classification (2010). 08C05, 18A35, 18B99,18E10.

1. Introduction

The construction of the free exact category over a category with finite limits
was introduced in [3]. It was later improved to the construction of the free
exact category over a category with finite weak limits (weakly lex) in [4].
This was possible because the uniqueness of the finite limits of the original
category was never used in the construction; only the existence. In [4], the
authors also considered the free regular category over a weakly lex one.

An important property of the free exact (or regular) construction is that
such categories always have enough (regular) projectives. In fact, an exact
category A may be seen as the exact completion of a weakly lex category if
and only if it has enough projectives. If so, then A is the exact completion of
any of its projective covers. Such a phenomenon is captured by varieties of
universal algebras: they are the exact completions of their full subcategory
of free algebras.

Having this link in mind, our main interest in studying this subject is to
characterize projective covers of certain algebraic categories through simple

VOLUME LX-4 (2019)
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properties involving projectives and to relate those properties to the known
varietal characterizations in terms of the existence of operations of their va-
rietal theories. Such kind of studies have been done for the projective covers
of categories which are: Mal’tsev [11], protomodular and semi-abelian [5],
(strongly) unital and subtractive [6].

The aim of this work is to obtain characterizations of the weakly lex
categories whose regular completion is a Goursat (=3-permutable) category
(Propositions 4.5 and 4.7). We then relate them to the existence of the
quaternary operations which characterize the varieties of universal algebras
which are 3-permutable (Remark 4.8).

2. Preliminaries

In this section, we briefly recall some elementary categorical notions needed
in the following.

A category with finite limits is regular if regular epimorphisms are sta-
ble under pullback, and if kernel pairs have coequalizers. Equivalently, any
arrow f : A −→ B has a unique factorization f = ir (up to isomorphism),
where r is a regular epimorphism and i is a monomorphism and this factor-
ization is pullback stable.

A relation R from X to Y is a subobject 〈r1, r2〉 : R � X × Y . The
opposite relation of R, denoted Ro, is the relation from Y to X given by the
subobject 〈r2, r1〉 : R � Y × X . A relation R from X to X is called a
relation on X . We shall identify a morphism f : X −→ Y with the relation
〈1X , f〉 : X � X × Y and write f o for its opposite relation. Given two
relations R � X × Y and S � Y × Z in a regular category, we write
SR� X × Z for their relational composite. With the above notations, any
relation 〈r1, r2〉 : R� X × Y can be seen as the relational composite r2r

o
1.

The properties collected in the following lemma are well known and easy to
prove (see for instance [1]):

Lemma 2.1. Let f : X −→ Y be an arrow in a regular category C, and let
f = ir be its (regular epimorphism, monomorphism) factorization. Then:

1. f of is the kernel pair of f , thus 1X 6 f of ; moreover, 1X = f of if
and only if f is a monomorphism;
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2. ff o is (i, i), thus ff o 6 1Y ; moreover, ff o = 1Y if and only if f is a
regular epimorphism;

3. ff of = f and f off o = f o.

A relation R on X is reflexive if 1X 6 R, symmetric if Ro 6 R, and
transitive if RR 6 R. As usual, a relation R on X is an equivalence rela-
tion when it is reflexive, symmetric and transitive. In particular, a kernel pair
〈f1, f2〉 : Eq(f) � X ×X of a morphism f : X −→ Y is an equivalence
relation.

By dropping the assumption of uniqueness of the factorization in the
definition of a limit, one obtains the definition of a weak limit. We call
weakly lex any category with weak finite limits.

An object P in a category is (regular) projective if, for any arrow f :
P −→ X and for any regular epimorphism g : Y � X there exists an arrow
h : P −→ Y such that gh = f . We say that a full subcategory C of A is a
projective cover of A if two conditions are satisfied:

• any object of C is regular projective in A;

• for any object X in A, there exists a (C-)cover of X , that is an object
C in C and a regular epimorphism C � X .

When A admits a projective cover, one says that A has enough projec-
tives.

Remark 2.2. If C is a projective cover of a weakly lex category A, then
C is also weakly lex [4]. For example, let X and Y be objects in C and
X Woo // Y a weak product ofX and Y in A. Then, for any cover W̄ �
W ofW , X W̄oo // Y is a weak product ofX and Y in C. Furthermore,
if A is a regular category and X Poo // Y a weak product of X and Y
in C, then the induced morphism P � X × Y is a regular epimorphism.
Similar remarks apply to all weak finite limits.

3. Goursat categories

In this section we review the notion of Goursat category and the characteriza-
tions of Goursat categories through regular images of equivalence relations
and through Goursat pushouts.
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Definition 3.1. [2, 1] A regular category C is called a Goursat category
when the equivalence relations in C are 3-permutable, i.e. RSR = SRS for
any pair of equivalence relations R and S on the same object.

When C is a regular category, (R, r1, r2) is a relation on X and f : X �
Y is a regular epimorphism, we define the regular image of R along f to
be the relation f(R) on Y induced by the (regular epimorphism, monomor-
phism) factorization 〈s1, s2〉ψ of the composite (f × f)〈r1, r2〉:

R
ψ
// //

��

〈r1,r2〉
��

f(R)
� �
〈s1,s2〉
��

X ×X
f×f
// // Y × Y.

Note that the regular image f(R) can be obtained as the relational composite
f(R) = fRf o = fr2r

o
1f

o. When R is an equivalence relation, f(R) is also
reflexive and symmetric. In a general regular category f(R) is not necessar-
ily an equivalence relation. This is the case in a Goursat category according
to the following theorem.

Theorem 3.2. [1] A regular category C is a Goursat category if and only if
for any regular epimorphism f : X � Y and any equivalence relation R on
X , the regular image f(R) = fRf o of R along f is an equivalence relation.

If 〈e1, e2〉 : E � X × X is a reflexive relation, then the regular image
of e2 along the kernel pair of e1 is given by e2(Eq(e1)) = e2e

o
1e1e

o
2 = EEo.

Goursat categories may also be characterized by such regular images:

Theorem 3.3. [1] A regular category C is a Goursat category if and only if
for any reflexive relation E, EEo is an equivalence relation.

Goursat categories are well known in Universal Algebra. In fact, by a
classical theorem in [10], a variety of universal algebras is a Goursat category
precisely when its theory has two quaternary operations p and q such that the
identities p(x, y, y, z) = x, q(x, y, y, z) = z and p(x, x, y, y) = q(x, x, y, y)
hold. Accordingly, the varieties of groups, Heyting algebras and implication
algebras are Goursat categories. The category of topological groups, Haus-
dorff groups, right complemented semi-groups are also Goursat categories.
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There are many known characterizations of Goursat categories (see [1,
7, 8, 9] for instance). In particular the following characterization, through
Goursat pushouts, will be useful:

Theorem 3.4. [7] Let C be a regular category. The following conditions are
equivalent:

(i) C is a Goursat category;

(ii) any commutative diagram of type (I) in C, where α and β are regular
epimorphisms and f and g are split epimorphisms

X

(I)

α // //

f
� �

U

g

��

gα=βf

αs=tβ

Y
β

// //

s

OO

W,

t

OO

(which is necessarily a pushout) is a Goursat pushout: the morphism
λ : Eq(f) −→ Eq(g), induced by the universal property of kernel pair
Eq(g) of g, is a regular epimorphism.

Remark 3.5. Diagram (I) is a Goursat pushout precisely when the regular
image of Eq(f) along α is (isomorphic to) Eq(g). From Theorem 3.4, it then
follows that a regular category C is a Goursat category if and only if for any
commutative diagram of type (I) one has α(Eq(f)) = Eq(g).

Note that Theorem 3.2 characterizes Goursat categories through the pro-
perty that regular images of equivalence relations are equivalence relations,
while Theorem 3.4 characterizes them through the property that regular im-
ages of certain kernel pairs are kernel pairs.

4. Projective covers of Goursat categories

In this section, we characterize the categories with weak finite limits whose
regular completion are Goursat categories.

Definition 4.1. Let C be a weakly lex category:
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1. a pseudo-relation on an object X of C is a pair of parallel arrows

R
r1 //

r2
// X; a pseudo-relation is a relation if r1 and r2 are jointly

monomorphic;

2. a pseudo-relation R
r1 //

r2
// X on X is said to be:

• reflexive when there is an arrow r : X −→ R such that r1r =
1X = r2r;

• symmetric when there is an arrow σ : R −→ R such that r2 =
r1σ and r1 = r2σ;

• transitive if by considering a weak pullback

W
p2
//

p1
� �

R

r1
��

R r2
// X,

there is an arrow t : W −→ R such that r1t = r1p1 and r2t =
r2p2.

• a pseudo-equivalence relation if it is reflexive, symmetric and
transitive.

Remark that the transitivity of a pseudo-relation R
r1 //

r2
// X does not

depend on the choice of the weak pullback of r1 and r2; in fact, if

W̄
p̄2
//

p̄1
��

R

r1
��

R r2
// X,

is another weak pullback, the factorization W̄ −→ W composed with the
transitivity arrow t : W −→ R ensures that the pseudo-relation is transitive
also with respect to the second weak pullback.

The following property from [12] (Proposition 1.1.9) will be useful in
the sequel:
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Proposition 4.2. [12] Let C be a projective cover of a regular category A.

Let R
r1 //

r2
// X be a pseudo-relation in C and consider its (regular epimor-

phism, monomorphism) factorization in A

R
(r1,r2)

//

p
�� ��

X ×X.

E
:: (e1,e2)

::

Then, R is a pseudo-equivalence relation in C if and only if E is an equiva-
lence relation in A.

In order to characterize the projective covers C of Goursat categories
A, we should consider good properties characterizing Goursat categories
which easily translate to the weakly lex context. A possible translation of
the property in Theorem 3.2 should replace equivalence relations in A with
pseudo-equivalence relations in C and regular epimorphisms in A with split
epimorphisms in C (a regular epimorphism in A with a projective codomain
is necessarily a split epimorphism). Thus, we introduce:

Definition 4.3. Let C be a weakly lex category. We call C a weak Gour-
sat category if, for any pseudo-equivalence relation R

r1 //

r2
// X and any

split epimorphism X
f
// Yoo , the composite R

fr1
//

fr2
// Y is also a pseudo-

equivalence relation.

Lemma 4.4. If C is a regular weak Goursat category, then C is a Goursat
category.

Proof. We shall prove that for any reflexive relation 〈e1, e2〉 : E � X ×X ,
EEo is an equivalence relation (Theorem 3.3).

Consider the (pseudo-)equivalence relation Eq(e1)
π1 / /

π2
// E and the split

epimorphism e2 (which is split by the reflexivity arrow). By assumption

Eq(e1)
e2π1 //

e2π2
// X is a pseudo-equivalence relation. Its (regular epimorphism,
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monomorphism) factorization defines the regular image e2(Eq(e1)) = EEo

Eq(e1) // //

π2

��

π1

��

e2(Eq(e1)) = EEo

����

E
e2

// X;oo

thus EEo is an equivalence relation.

We use Remark 2.2 repeatedly in the next results.

Proposition 4.5. Let C be a projective cover of a regular category A. Then
A is a Goursat category if and only if C is a weak Goursat category.

Proof. Since C is a projective cover of a regular category A, C is weakly
lex.

Suppose that A is a Goursat category. Let R
r1 //

r2
// X be a pseudo-

equivalence relation in C and let X
f
// Yoo be a split epimorphism in C.

For the (regular epimorphism, monomorphism) factorizations of 〈r1, r2〉 and
〈fr1, fr2〉 we get the following diagram

R
〈r1,r2〉

//

p
�� ��

X ×X

f×f

��� �

E
;; 〈e1,e2〉

;;

w
��

S
## 〈s1,s2〉

##

R

q
?? ??

〈fr1,fr2〉
// Y × Y,

(1)

where w : E −→ S is induced by the strong epimorphism p

R
p

// //

q
����

E

(f×f)〈e1,e2〉
��

w

zz
S //

〈s1,s2〉
// Y × Y.
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Then w is a regular epimorphism and by the commutativity of the right side
of (1), one has S = f(E). By Proposition 4.2, we know that E is an equiva-
lence relation in A. Since A is a Goursat category and f is a regular epimor-
phism (being a split one), then S = f(E) is also an equivalence relation in

A (Theorem 3.2) and by Proposition 4.2, we can conclude that R
fr1
//

fr2
// X

is a pseudo-equivalence relation in C.

Conversely, suppose that C is a weak Goursat category. Let R
r1 //

r2
// X

be an equivalence relation in A and f : X � Y a regular epimorphism. We
are going to show that f(R) = S

R
h // //

r2
� �

r1
��

f(R) = S

s2
��

s1
��

X
f

// // Y

is an equivalence relation; it is obviously reflexive and symmetric. In order
to conclude that A is a Goursat category, we must prove that S is transitive.

We begin by covering the regular epimorphism f in A with a split epi-
morphism f̄ in C. For that we take the cover y : Ȳ � Y , consider the
pullback of y and f in A and take its cover α : X̄ � X ×Y Ȳ

X̄
α

$$ $$

f̄=f ′α

��

x=y′α

++ ++

X ×Y Ȳ
f ′

// //

y′
����

Ȳ

y
����

ss

X
f

// // Y.

Since f̄ = f ′α is a regular epimorphism in A with a projective codomain,
it is a split epimorphism. Note that the above outer diagram is a regular
pushout, so that

f oy = xf̄ o and yof = f̄xo (2)

(Proposition 2.1 in [1]).
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Next, we take the inverse image x−1(R) in A, which is an equivalence
relation since R is, and cover it to obtain a pseudo-equivalence W ⇒ X̄ in

C. By assumption W //
// X̄

f̄
// // Ȳ is a pseudo-equivalence relation in

C so it factors through an equivalence relation, say V
v1 //

v2
// Ȳ , in A. We

have

W
w ����

W

��

v

%% %%
x−1(R)
� �

〈ρ1,ρ2〉

��

πR (( ((

γ
// V
��〈v1,v2〉

��

λ

&& &&
R
��

〈r1,r2〉

��

h // // S
��

〈s1,s2〉

��

X̄ × X̄
x×x '' ''

f̄×f̄
// // Ȳ × Ȳ

y×y
** **

X ×X
f×f

// // Y × Y,

where γ and λ are induced by the strong epimorphisms w and v, respectively

W w // //

v

����

x−1(R)
��

〈ρ1,ρ2〉
��

γ

~~

X̄ × X̄
f̄×f̄
����

V //

〈v1,v2〉
// Ȳ × Ȳ

and W v // //

hπRw

����

V
��

〈v1,v2〉
��

λ

~~

Ȳ × Ȳ
y×y
����

S //

〈s1,s2〉
// Y × Y.

Since γ is a regular epimorphism, we have V = f̄(x−1(R)). Since λ
is a regular epimorphism, we have S = y(V ). One also has V = y−1(S)
because

y−1(S) = yoSy
= yof(R)y
= yofRf oy
= f̄xoRxf̄ o (by (2))
= f̄(x−1(R))
= V.
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Finally, S is transitive since

SS = yyoSyyoSyyo (Lemma 2.1(2))
= yy−1(S)y−1(S)yo

= yV V yo

= yV yo (since V is an equivalence relation)
= y(V )
= S.

We may also consider weak Goursat categories through a property which
is more similar to the one mentioned in Theorem 3.2:

Lemma 4.6. Let C be a projective cover of a regular category A. Then C is
a weak Goursat category if and only if for any commutative diagram in C

R
ϕ
//

r2
��

r1
� �

Soo

s2
��

s1
��

X
f
// Yoo

(3)

such that f and ϕ are split epimorphism and R is a pseudo-equivalence
relation, S is a pseudo-equivalence relation.

Proof. (i) ⇒ (ii) Since R
r1 //

r2
// X is a pseudo-equivalence relation, by

assumption R
fr1
//

fr2
// X is also a pseudo-equivalence relation and then its

(regular epimorphism, monomorphism) factorization gives an equivalence

relation E
e1 //

e2
// Y in A (Proposition 4.2). We have the following commu-

tative diagram

R

r2

��

r1

��

R

fr2

��

fr1

��

ϕ
//

ρ

    

Soo

σ
��

s2kk

s1
kk

E

e2
��

e1

��

X
f
// Yoo
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where σ : S −→ E is induced by the strong (split) epimorphism ϕ

R
ϕ

//

ρ
����

Soo

〈s1,s2〉
��

σ

zz
E //

〈e1,e2〉
// Y × Y.

Then σ is a regular epimorphism and S
s1 //

s2
// Y is a pseudo-equivalence

relation (Proposition 4.2).

(ii) ⇒ (i) Let R
r1 //

r2
// X be a pseudo-equivalence relation in C and

X
f
// Yoo a split epimorphism. The following diagram is of the type (3)

R

r2
��

r1
��

R

fr2
��

fr1
��

X
f
// Y.oo

Since R
r1 //

r2
// X is a pseudo-equivalence relation, then by assumption

R
fr1
//

fr2
// Y is also a pseudo-equivalence relation.

Alternatively, weak Goursat categories may be characterized through a
property more similar to the one mentioned in Remark 3.5. A diagram of
type (I) in a weakly lex context should have the regular epimorphisms α and
β replaced by split epimorphisms; we call it of type (II). Note that such a
diagram does not necessarily commute with the splittings of α and β.

Proposition 4.7. Let C be a projective cover of a regular category A. The
following conditions are equivalent:

(i) A is a Goursat category;

(ii) C is a weak Goursat category;
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(iii) For any commutative diagram of type (II) in C

F

β2
� �

β1
��

λ // Goo

ρ2
��

ρ1
��

X

(II)

α //

f
��

Uoo

g
��

Y
β

//

s

OO

W

t

OO

oo

where F is a weak kernel pair of f and λ is a split epimorphism, G is
a weak kernel pair of g.

Proof. (i)⇔ (ii) By Proposition 4.5.
(i) ⇒ (iii) If we take the kernel pairs of f and g, then the induced

morphism ᾱ : Eq(f) −→ Eq(g) is a regular epimorphism by Theorem 3.4.
Moreover, the induced morphism ϕ : F −→ Eq(f) is also a regular epimor-
phism. We get

F
λ //

ϕ
����

Goo

ω
��

ρ2

vv

ρ1

vv

Eq(f)

f2
��

f1
� �

ᾱ // // Eq(g)

g2
��

g1
��

X
α //

f
��

Uoo

g

��

Y
β

//

s

OO

W,oo

t

OO

where w : G −→ Eq(g) is induced by the strong (split) epimorphism λ

F
λ //

ᾱ.ϕ
����

Goo

〈ρ1,ρ2〉
��

w

yy

Eq(g) //
〈g1,g2〉

// U × U.

This implies that ω is a regular epimorphism and then G
ρ1
//

ρ2
// U is a weak

kernel pair of g.
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(iii) ⇒ (ii) Consider diagram (3) in C where R
r1 //

r2
// X is a pseudo-

equivalence relation. We want to prove that S
s1 //

s2
// Y is also a pseudo-

equivalence. Take the (regular epimorphism, monomorphism) factorization
of R and S in A and the induced morphism µ making the following diagram
commutative

R
ϕ

//

r2

��

r1

��

ρ

    

Soo

σ

    
s2

��

s1

��

U µ
//

u2
~~

u1

~~

V

v2
~~

v1

~~

X
f

// Y.oo

Since µ is a regular epimorphism, V = f(U) and consequently, V is re-
flexive and symmetric, as the regular image of the equivalence relation U
(Theorem 3.2).

To conclude that S is a pseudo-equivalence relation, we just need to
prove that V is transitive. We apply our assumption to the diagram

F
λ=χ′β

//

δ=α′β

����

β )) ))

Goo

α

����

Eq(r1)×ϕ(Eq(r1)) G

χ′
55 55

α′

uuuu

Eq(r1) χ
// //

�� ��

ϕ(Eq(r1))

����

R

(II)

ϕ
//

r1
��

Soo

s1
� �

X
f

//

eR

OO

Yoo

eS

OO

where G is a cover of the regular image ϕ(Eq(r1)) and F is a cover of the
pullback Eq(r1) ×ϕ(Eq(r1)) G. Note that λ = χ′β is a regular epimorphism
in A with a projective codomain, so it is a split epimorphism. Since δ is
a regular epimorphism, then F //

// R is a weak kernel pair of r1. By
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assumption G //
// S is a weak kernel pair of s1, thusϕ(Eq(r1)) = Eq(s1).

We then have

V V = v2v
o
1v1v

o
2 (since V is symmetric)

= v2σσ
ovo1v1σσ

ovo2 (Lemma 2.1(2))
= s2s

o
1s1s

o
2 (viσ = si)

= s2ϕr
o
1r1ϕ

oso2 (ϕ(Eq(r1)) = Eq(s1))
= fr2r

o
1r1r

o
2f

o (siϕ = fri )
= fu2ρρ

ouo1u1ρρ
ouo2f

o (uiρ = ri)
= fu2u

o
1u1u

o
2f

o (Lemma 2.1(2))
= fUUf o (since U is an equivalence relation)
= fUf o (since U is an equivalence relation)
= V. ( f(U) = V )

Remark 4.8. When A is a 3-permutable variety and C its subcategory of
free algebras, then the property stated in Proposition 4.7 (iii) is precisely
what is needed to obtain the existence of the quaternary operations p and q
which characterize 3-permutable varieties. Let X denote the free algebra on
one element. Diagram (II) below belongs to C

F

µ
����

F

λµ
����

Eq(∇2 +∇2)

π2
� �

π1
� �

λ // Eq(∇3)

����

4X

(II)

1X+∇2+1X //

∇2+∇2
����

3Xoo

∇3
����

2X
∇2

//

ι2+ι1

OO

X.oo

ι2

OO

If F is a cover of Eq(∇2 +∇2)), then F //
// 4X is a weak kernel pair of

∇2 +∇2. By assumption F //
// 3X is a weak kernel pair of ∇3, so that

λµ is surjective. We then conclude that λ is surjective and the existence of
the quaternary operations p and q follows from Theorem 3 in [7].
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temática da Universidade de Coimbra—UID/MAT/00324/2013, funded by
the Portuguese Government through FCT/MCTES and co-funded by the Eu-
ropean Regional Development Fund through the Partnership Agreement
PT2020.
The second author acknowledges financial assistance by Fonds de la Re-
cherche Scientifique-FNRS Crédit Bref Séjour à l’étranger 2018/V 3/5/033 -
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Level ε

Francisco MARMOLEJO Matı́as MENNI

Résumé. Lawvere a observé que certains ‘gros’ topos en géométrie algébrique
suggèrent l’existence d’un ‘niveau infinitésimal’, étroitement lié aux algèbres
locales de dimension finie. Motivés par cette observation, nous proposons
une définition élémentaire de level ε associée à un morphisme géométrique lo-
cal, établissons quelques propriétés de base pertinentes suggérées par l’intuition
géométrique et donnons une description concrète du niveau ε déterminé par
plusieurs morphismes géométriques pré-cohésifs.
Abstract. Lawvere has observed that certain ‘gros’ toposes in algebraic ge-
ometry suggest the existence of an ‘infinitesimal level’, closely related to
finite-dimensional local algebras. Motivated by this observation we propose
an elementary definition of level ε associated to a local geometric morphism,
establish some relevant basic properties suggested by geometric intuition, and
give concrete descriptions of the level ε determined by several pre-cohesive
geometric morphisms.
Keywords. Axiomatic Cohesion, graphic toposes, algebraic geometry, SDG.
Mathematics Subject Classification (2010). 18B25, 18F20, 14A25, 51K10.

1. Introduction

The formulation of Axiomatic Cohesion [14] and its development in the last
ten years naturally invites to revisit the ideas and concrete problems out-
lined in [12]. We consider here a specific question in the dimension theory
proposed in Section II of the latter reference:

The infinitesimal spaces, which contain the base topos in
its non-Becoming aspect, are a crucial step toward determinate
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Becoming, but fall short of having among themselves enough
connected objects, i.e. they do not in themselves constitute fully
a ‘category of cohesive unifying Being.’ In examples the four
adjoint functors relating their topos to the base topos coalesce
into two (by the theorem that a finite-dimensional local alge-
bra has a unique section of its residue field) and the infinitesi-
mal spaces may well negate the largest essential subtopos of the
ambient one which has that property. This level may be called
‘dimension ε’; calling the levels (i.e. the subtoposes essential
over the base) ‘dimensions’ does not imply that they are linearly
ordered nor that the Aufhebung process touches each of them.
The infinitesimal spaces provide (in many ways) a good example
of a non trivial unity-and-identity-of-opposites inside the ambi-
ent topos of Being: explicitly recognizing the two inclusions, as
spaces which could be called infinitesimal and formal spaces re-
spectively, may help clarify the confusing but powerful interplay
between these two classes which are opposite but in themselves
identical. The calculation of the ε-skeleton and ε-coskeleton, of
a space which is neither, needs to be carried out, and also the
calculation of the Aufhebung of dimension ε.

Our purpose is to confirm the suggestion that, in many examples of cohe-
sion, there exists a “largest essential subtopos of the ambient one which has”
the property that “the four adjoint functors to the base coalesce into two”.
In fact, we turn the suggestion into a rigorous definition of the level ε deter-
mined, if it exists, by a local geometric morphism E → S. When it exists, it
is an essential subtopos Eε → E with special properties. We prove that level ε
exists in many examples and we give an explicit description. In particular, if
E is the Zariski topos determined by the field of complex numbers, the site
for Eε will be shown to be closely related to local algebras, as suggested by
the quotation above.

Although some of the theory is developed in more generality, the typ-
ical topos of Being that we have in mind is the domain of a pre-cohesive
geometric morphism as defined, for example, in [16]. We recall most of the
definitions but the reader is assumed to be familiar with the ideas therein.

In Section 2 we recall in more detail the basics of the dimension theory
mentioned above. One way to start is to fix a local geometric morphisms
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p : E → S (typically with extra properties), consider its centre S → E as
‘level 0’ and study the levels above it. In Section 3 we analyse the subtoposes
above the centre of a local presheaf topos. The level ε determined by a local
geometric morphism is defined in Section 4. In the remaining sections we
calculate the level ε of several examples. In Section 5 we analyse the level ε
of local presheaf toposes in general and in some simple cases. In Section 6
we show that the Weil topos (determined by the field C of complex numbers)
underlies a subquality of the Gaeta topos determined by the same field. This
is shown to be level ε in Section 7.

Remark 1.1. Since Gaeta toposes are perhaps not yet widely known, we
include here a brief description. If D is a small extensive category then
the finite families (Di → D | i ∈ I) of maps in D such that the induced∑

i∈I Di → D is an isomorphism form the basis of a Grothendieck topology.
The associated toposGD of sheaves is called the Gaeta topos (ofD) and it is
equivalent to the category of finite-product preserving functors Dop → Set.
The ‘Gaeta topology’ is subcanonical so that the Yoneda embedding of D
into the topos of presheaves factors through the Gaeta topos but, moreover,
the factorization D → GD preserves finite coproducts. See, for example,
the end of page 3 in [12] or Section 2 in [15]. If T is an algebraic theory
whose category A of finitely presented algebras is coextensive then we may
naturally refer to G(Aop) as the Gaeta topos determined by T . For instance,
we have the Gaeta toposes determined rigs, by distributive lattices or by k-
algebras, where k is a ring. We may even push the terminology further and
simply speak (as we have done above) of the Gaeta topos determined by C,
instead of the Gaeta topos determined by the theory of C-algebras.

In Section 8 we show that the Zariski topos determined by C (which is
not a presheaf topos) also has a level ε and that it coincides with that of the
Gaeta topos.

2. Levels and dimensions

In this section we recall some of the material in Section II of [12] which
proposes to consider essential subtoposes of a given topos of spaces (or a
category of Being) as a refined notion of ‘dimensions’ in that topos. The
quotations in this section are taken from that reference. First notice that
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reflective subcategories of a fixed category X may be partially ordered as
follows.

Lemma 2.1. If the adjunctions F a U : A → X and L a R : C → X are
such that U : A → X andR : C → X are full and faithful then the following
conditions are equivalent:

(i) There is an adjunction H a K : A → C with K full and faithful such
that RK ' U (or, equivalently, HL ' F ).

(ii) U : A → X factors (up to iso) through R : C → X .

(iii) F : X → A factors (up to iso) through L : X → C.

(iv) νU : U → RLU is invertible, where ν : 1X → RL is the unit of L a R.

(v) Fν : F → FRL is invertible.

Proof. Clearly (i) implies (iii), and (iii) trivially implies (v) since R is full
and faithful.

Assume (v) and let ξ : LR→ 1C be the counit of L a R. Define H =
FR and K = LU ; we show that H a K by showing that the 2-cells

C

X

A

X

C
R !! 1X //

1C //

F !! U

==

L

==
ξ−1

��

η
��

A

X

C

X

A.
U ==

F
* *

1A
//

L == R
! !

F
!!

(Fν)−1

��

ε ��

satisfy the triangular identities, where η and ε are the unit and counit of
F a U . One of these triangular identities is trivial. The other is

A

X

C

X

A

X

C

U ==

F
* *

1A
//

L == R
! !

1C //

F
!!

1X //

U

==

L

==

(Fν)−1

��

ε ��

ξ−1
��

η ��
= 1LU .
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This equation is equivalent to

A

X

C

X

A

X

C

U
FF

L
FF

R !!

1C //

F !!

1X //

U

==

L

==
ξ−1
��

η ��
=

A

X

C

X

A

X

C.

U !!

1A //

L !!

1X //

R

==

F

==
U
��

L
��

ε−1
��

ν ��

To see that this equation holds, replace on the right Uε−1 by ηU , and then
replace Lν by ξ−1L . Observe furthermore, that the counit of H a K is invert-
ible, thus K is fully faithful. We conclude that (v) implies (i).

The proof that (i)⇒ (ii)⇒ (iv)⇒ (i) is very similar.

If the equivalent conditions of Lemma 2.1 hold then we may say that the
reflective subcategory L a R is above F a U .

Remark 2.2. In the situation of Lemma 2.1, we may as well assume (as
we do in what follows) that the adjunction H a K : A → C is given by
FR a LU with unit and counit given by

1C
ξ−1
// LR

LηR // LUFR and FRLU
(FνU )−1

// FU ε // 1A

respectively. Observe as well that, if F preserves finite limits, then H also
preserves them; and if F has a left adjoint, then H also has a left adjoint.

From now on we restrict attention to the case where the ambient category
X is a fixed topos E . In this case Lemma 2.1 and Remark 2.2 imply the
following.

Corollary 2.3. Given subtoposes j : Ej → E and k : Ek → E the following
conditions are equivalent.

(i) Ek is above Ej .

(ii) j∗ : Ej → E factors through k∗ : Ek → E .

(iii) j∗ : E → Ej factors through k∗ : E → Ek.

(iv) The natural transformation νj∗ : j∗ → k∗k
∗j∗ is an isomorphism.
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(v) The natural transformation j∗ν : j∗ → j∗k∗k
∗ is an isomorphism.

When this is the case, we can take as witness of the fact that Ek is above Ej
the geometric morphism h : Ej → Ek such that h∗ = j∗k∗, h∗ = k∗j∗ with
unit and counit given by

1k
ξ′−1

// k∗k∗
k∗νk∗ // k∗j∗j

∗k∗ and j∗k∗k
∗j∗

(j∗ν′j∗ )
−1

// j∗j∗
ξ
// 1j

respectively, where ν, ξ are the unit and counit of j : Ej → E and ν ′, ξ′ are
the corresponding ones for k : Ek → E .

A geometric morphism f : F → E is called essential if the inverse im-
age f ∗ has a left adjoint f! : F → E . Following [12], essential subtoposes
of E will be called levels. Notice that for any given level l : El → E , the
leftmost adjoint l! is full and faithful (because the direct image l∗ is). Lev-
els may be partially ordered according to their underlying subtoposes as in
Corollary 2.3.

The basic idea is simply to identify dimensions with levels
and then try to determine what the general dimensions are in
particular examples. More precisely, a space may be said to have
(less than or equal to) the dimension grasped by a given level if
it belongs to the negative (left adjoint inclusion) incarnation of
that level.

So, for any level l : El → E and any X in E , the counit l!(l∗X)→ X
may be called the l-skeleton of X . The object X is said to be l-skeletal if
its l-skeleton is an iso, so that l! : El → E is the full subcategory of l-skeletal
objects. On the other hand, and in accordance with standard terminology,
the objects in the full subcategory l∗ : El → E will be called l-sheaves.

A subtopos Ej → E is way-above a level l : El → E if j is above l and,
moreover, l! : El → E factors through j∗ : Ej → E . The Aufhebung of level l
is (when it exists) the smallest level of E that is way-above l.

The Aufhebung of a level need not be easy to calculate. For an illustra-
tion of the complexity of the issue see [11], [7], [20], [13] and [8].

Recall that a geometric morphism p : E → S is local if p∗ : E → S has a
fully faithful right adjoint (usually denoted by p!). For such a p, the subtopos
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p∗ a p! : S → E is a level called the centre of p and it is sometimes conve-
nient to think of it as the smallest non-trivial level of E (or ‘dimension 0’),
especially, if p has further properties:

Within the class of all levels over the base (of course it is a
set in fact if the category of Being is a topos), the base itself is
often further distinguished by having a still further left adjoint
to its discrete inclusion, this extra functor therefore assigning to
every space in Being its set of components.

So let us fix a local and essential geometric morphism p : E → S. Re-
call that essential means that the fully faithful p∗ : S → E has a further left
adjoint p! : E → S. As quoted above, this left adjoint is thought of as assign-
ing, to each space (i.e. an object in E), its associated set (i.e. object in S) of
pieces or connected components. To aid the intuitive discussion, the centre
of p will be called level 0 (of p) and its Aufhebung will be called level 1 (of
p).

Because of the special feature of dimension zero of having
a components functor to it (usually there is no analogue of that
functor in higher dimensions), the definition of dimension one
is equivalent to the quite plausible condition: the smallest di-
mension such that the set of components of an arbitrary space
is the same as the set of of components of the skeleton at that
dimension of the space, or more pictorially: if two points of any
space can be connected by anything, then they can be connected
by a curve. Here of course by “curve” we mean any figure in
(i.e. map to) the given space whose domain is one-dimensional.

See Proposition 17 in [11] and Proposition in p. 19 of [20]. We give a
different proof:

Proposition 2.4. For any level l above level 0, l is way-above 0 if and only if,
for everyX in E , p!(l!(l∗X))→ p!X is an isomorphism (where l!(l∗X)→ X
is the l-skeleton of X).

Proof. Apply Lemma 2.1 to l∗ a l∗ : El → E and p! a p∗ : S → E .
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Notice that this result does not assume that level 1 exists. The levels
way-above level 0 may be considered as the levels above level 1 even if the
latter does no exist.

Corollary 2.5. Assume that level 1 exists. If a level l is above level 0 then,
l is above 1 if and only if p!(l!(l∗X))→ p!X is an isomorphism for every X
in E .

We also recall a general description of levels in presheaf toposes.

Definition 2.6. An ideal of a small category C is a class of maps I in C that
satisfies the following two conditions:

1. (Right ideal) For every g : D → C in I and h : E → D in C, gh ∈ I.

2. (Left ideal) For every f : C → B in C and g : D → C in I, fg ∈ I.

An ideal is called idempotent if for every f ∈ I there are g, h ∈ I such that
f = gh.

Theorem 4.4 in [7] shows that levels of the presheaf topos Ĉ are in bijec-
tive correspondence with idempotent ideals of C. If I is such an idempotent
ideal then the associated Grothendieck topology J is such that, for each C
in C, a sieve S on C is J-covering if and only if it contains all the maps in I
with codomain C.

3. Subtoposes above the centre of a local map

Let p : E → S be a local geometric morphism.

Proposition 3.1. Let j : Ej → E be a subtopos and assume that the following
diagram

Ej E

S

j
//

f ��

p
��

commutes so that p∗j∗ = f∗ : Ej → S and j∗p∗ = f ∗ : S → Ej . Then the
following are equivalent, where ν is the unit of j : Ej → E:

- 457 -



F. MARMOLEJO AND M. MENNI LEVEL ε

1. The subtopos j : Ej → E is above the centre of p.

2. p! : S → E factors through j∗ : Ej → E .

3. p∗ : E → S factors through j∗ : E → Ej .

4. The natural transformation νp! : p! → j∗j
∗p! is an isomorphism.

5. The natural transformation p∗ν : p∗ → p∗j∗j
∗ is an isomorphism.

6. The geometric morphism f is local and j∗f ! ' p!.

In this case, we may assume that f ! = j∗p! and that the unit η and counit ε
of f∗ a f ! are given by

1Ej
ξ−1

// j∗j∗
j∗ηj∗ // j∗p!p∗j∗ = f !f∗

f∗f
! = p∗j∗j

∗p!
(p∗νp! )

−1

// p∗p
! ε // 1S

respectively, where η and ε are the unit and counit of p∗ a p! respectively,
and ξ is the (iso) counit of j∗ a j∗.

Proof. Corollary 2.3 tells us that items 1 to 5 are equivalent; furthermore,
Remark 2.2 tells us that we can take unit and counit of f∗ = p∗j∗ a j∗p! as
given in the statement of the proposition. So that f is local. Observe that
j∗f

! = j∗j
∗p! ' p! via the iso νp! . So any one of the first five conditions

implies 6. Finally, almost immediately, 6 implies 2.

So subtoposes above the centre determine local maps towards the base.
Moreover, if p is essential then so is f . Indeed, f! = p!j∗ and the composites

1Ej
ξ−1

// j∗j∗
j∗σj∗ // j∗p∗p!j∗ = f ∗f!

f!f
∗ = p!j∗j

∗p∗
(p!νp∗ )

−1

// p!p
∗ τ // 1S

are the unit and counit of f! a f ∗, where σ and τ are the unit and counit of
p! a p∗.

For instance, consider a small category C with a terminal object so that
the canonical geometric morphism Ĉ → Set is local. See C3.6.3(b) in [5].
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Lemma 3.2. Let D → C be a full subcategory such that idempotents split in
D. Then, the induced essential subtopos D̂ → Ĉ is above the centre of p if
and only if the subcategory D → C contains the terminal object.

Proof. If the subcategoryD → C contains the terminal object then D̂ → Set
is local by C3.6.3(b) in [5] and it is straightforward to check that there is a
natural iso as in item 6 of Proposition 3.1, so D̂ → Ĉ is above the centre of
p.

Conversely, assume that D̂ → Ĉ is above the centre of p. Then D̂ → Set
is local by item 6 of Proposition 3.1 so, as idempotents split by hypothesis,
D must have a terminal object 1D by C3.6.3(b) in [5]. So it remains to show
that the inclusion D → C preserves the terminal object. To do this let 1C be
the terminal object of C and notice that, by item 3 of Proposition 3.1, it must
be the case that, for every X in Ĉ, X1C ∼= X1D. Taking X = C( , 1D) we
may conclude that 1D has a point and, as D → C is fully faithful, it must
be the case that the composite 1D → 1C → 1D is the identity on 1D. So the
point 1C → 1D is an iso.

On the other hand, it is not the case that subtoposes that induce local
maps are above the centre in general. For example, let C = {0 < 1

2
< 1}

be the total order with three elements and consider the full subcategory
D = {0 < 1

2
} → C then the following diagram

D̂

!!

// Ĉ

��

Set

commutes and both morphisms to Set are local, but the subtopos D̂ → Ĉ is
not above the center of p; as one may show, for example, by checking that
p∗ : Ĉ → Set does not invert the unit of the subtopos.

Assume from now on that every object of C has a point so that the canon-
ical p : Ĉ → Set is pre-cohesive. Let J be a Grothendieck topology on C
and let Sh(C, J)→ Ĉ be the associated subtopos.

Lemma 3.3. The following are equivalent:

1. The subtopos Sh(C, J)→ Ĉ is above the centre of p.
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2. For every C in C and S ∈ JC, S contains all points of C.

3. The maximal sieve is the only J-cover of 1.

Proof. By Corollary 4.5 in [16], the centre of p : Ĉ → Set coincides with
the subtopos of sheaves for the double negation topology. In other words,
p! : Set→ Ĉ coincides with the subtopos Sh(C, K)→ Ĉ where a sieve on
C is K-covering if and only if it contains all points of C. So Sh(C, J)→ Ĉ
is above the centre of p if and only if, for every C in C, JC ⊆ KC. In other
words, the first two items are equivalent. The second item trivially implies
the third. The third item easily implies the second.

4. Subqualities and level ε

Recall that if we denote the counit of p∗ a p! by ε, and the unit and counit of
p∗ a p∗ by α and β then the following diagram commutes

p∗

p∗ε−1

� �

ηp∗
// p!p∗p

∗

p!α−1

��

p∗p∗p
!

β
p!

// p!

and the composite is denoted by φ : p∗ → p!. Following item (c) in Defini-
tion 2 of [14] we could say that the Nullstellensatz holds (for p) if φ : p∗ → p!

is monic. Recall that the Nullstellensatz holds if and only if p is hypercon-
nected. See [6] for explicit proofs of the equivalences between different
formulations of the Nullstellensatz.

Lemma 4.1. If the subtopos j : Ej → E is above the centre of p : E → S
and f = pj : Ej → S denotes the composite local geometric morphism then,
φ : f ∗ → f ! and j∗φ : j∗p∗ → j∗p! are equal. Therefore, if p is hypercon-
nected then so is f .
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Proof. Observe that in the commutative diagram below

j∗p∗

j∗φ
((

j∗p∗ε−1
// j∗p∗p∗p

!

j∗β
p!

��

j∗p∗p∗νp!
// j∗p∗p∗j∗j

∗p!

j∗β
j∗j∗p!

� �

j∗p!

id
))

j∗ν
p!

// j∗j∗j
∗p!

ξ
j∗p!
� �

j∗p!

the top composite equals f ∗ε−1 by Proposition 3.1, while the composite
on the right, as in Section 6.1 of [18], is βf ! , so the top-right composite
is φ : f ∗ → f !.

It is convenient to slightly extend the terminology in [14] and say that
a local geometric morphism q : Q → S is a quality type if the canonical
transformation φ : q∗ → q! is an isomorphism. Such special adjunctions are
also called quintessential localizations in [4]. Notice that, trivially, quality
types satisfy the Nullstellensatz, so they are hyperconnected.

Fix a local geometric morphism p : E → S and call its centre level 0 as
in Section 2.

Definition 4.2. A subquality of p : E → S is a subtopos j : Ej → E above
level 0 and such that the composite pj : Ej → S is a quality type.

Compare with the notion of quality introduced in [14]. Roughly speak-
ing, while quality is a (special kind of) functor to a quality type, a subquality
is a (special kind of) functor from a quality type.

Lemma 4.3. Let Ej → E be a subtopos above level 0. Then, Ej → E is a
subquality of p if and only if j∗φ : j∗p∗ → j∗p! is an isomorphism. Hence, if
p satisfies the Nullstellensatz then, Ej → E is a subquality of p if and only if
φA : p∗A→ p!A is j-dense for every A in S.

Proof. Follows from Lemma 4.1.

A subquality of p is said to be essential if it is so as a subtopos of E . In
this case, the subquality is a level of E and it is above the centre of E .
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Definition 4.4. In case it exists, level ε (of p) is the largest essential subqual-
ity of p.

Intuitively, level ε is an ‘infinitesimal’ dimension so it should not be
above level 1. More generally, essential subqualities should not be way-
above level 0. In the context of Proposition 2.4 we can make this precise as
follows. Let Ω be the subobject classifier of E and recall (Proposition 3 in
[14]) that if p is a quality type and p!Ω = 1 then S is degenerate. Intuitively,
the condition p!Ω = 1 is a positive way of saying that p is not a quality type.

Proposition 4.5. Let the local p : E → S be essential and hyperconnected.
Let l : El → E be an essential subquality of p. If p!Ω = 1 and l is way-above
0 then S is degenerate.

Proof. Let ρ : l!(l
∗Ω)→ Ω be the l-skeleton of Ω. As l is way-above level 0

by hypothesis, Proposition 2.4 implies that p!ρ : p!(l!(l
∗Ω))→ p!Ω = 1 is an

isomorphism. As pl : El → S is a quality type, p!(l!(l∗Ω)) ∼= p∗(l∗(l
∗Ω)). So

p∗(l∗(l
∗Ω)) = 1.

Let Ωl be the subobject classifier in El. It is well-known that l∗Ωl is a
retract of Ω in E . So Ωl

∼= l∗(l∗Ωl) is a retract of l∗Ω, and then p∗(l∗Ωl)
is a retract of p∗(l∗(l∗Ω)) = 1. That is, p∗(l∗Ωl) = 1. As pl : El → S is
hyperconnected, p∗l∗ : El → S preserves the subobject classifier. Altogether,
the subobject classifier of S is terminal.

Corollary 4.6. Let p : E → S be essential and hyperconnected. Assume that
p!Ω = 1 and that level ε of p exists. If ε is way-above 0 then E is degenerate.

5. Level ε in presheaf toposes

Consider a small category C with terminal object so that the canonical geo-
metric morphism p : Ĉ → Set is local. Without loss of generality we may
assume that idempotents split in C.

Corollary 5.1. IfD → C is a full subcategory closed under splitting of idem-
potents then, the essential subtopos D̂ → Ĉ is a subquality of p if and only
if D → C contains the terminal object and every object of D has a unique
point.
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Proof. It follows from Lemma 3.2 above and Proposition 4.5 in [19] which
implies that the restriction D̂ → Set is a quality type if and only if every
object in D has a unique point.

Let C! → C be the full subcategory of all objects in C that have exactly
one point. For later reference we emphasize the following consequence of
Corollary 5.1:

Lemma 5.2. The subcategory C! → C is the largest full subcategory D → C
of C such that D̂ → Ĉ is an essential subquality.

We discuss below some related sufficient conditions for this subquality
to be level ε. In order to do so recall (C2.2.18 in [5]) that an object B in a
site (B, J) is J-irreducible if every J-covering sieve on B is the maximal
sieve. The Grothendieck coverage J is said to be rigid if, for every object
B in B, the family of all morphisms from J-irreducible objects to B gen-
erates a J-covering sieve. If J is rigid and I → B is the full subcategory
of J-irreducible objects then the Comparison Lemma implies that restriction
along the inclusion I → B restricts to an equivalence Sh(B, J) ∼= Î.

Proposition 5.3. If every Grothendieck coverage on C is rigid then Ĉ! → Ĉ
is level ε of the local Ĉ → Set.

Proof. If every Grothendieck coverage on C is rigid then the levels of Ĉ are
all induced by full subcategories of C. So the result follows from Lemma 5.2.

At first glance, Proposition 5.3 may look difficult to apply so let us derive
a simpler sufficient condition.

Corollary 5.4. If C is finite then Ĉ! → Ĉ is level ε of the local Ĉ → Set.

Proof. If C is finite then every coverage of C is rigid (see C2.2.21 in [5]).

In particular, graphic toposes [11] have a level ε of this simple kind.
On the other hand, it is worth mentioning that Proposition 5.3 also applies
to non-finite examples such as the sites studied in [8]. For instance, ∆ or
the category of non-empty finite sets. It follows that simplicial sets and the
classifier of non-trivial Boolean algebras have a level ε. In this cases, though,
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level ε coincides with level 0 because, in the respective sites, the terminal
object is the only object with exactly one point.

In order to discuss a simple example where ε does not coincide with 0 we
borrow the 4-element graphic monoid discussed in p. 62 of [11]. Consider
first, as an auxiliary step, the pre-cohesive topos p : ∆̂1 → Set of reflexive
graphs. Let G be the graph with two nodes and a non-trivial loop displayed
below

⊥
''

>

and let M be the monoid of endomorphisms of G that are either constant or
don’t collapse the non-trivial loop. There are four such maps, two constants,
the identity, and the unique map α that sends > to ⊥ but does not collapse
the loop. If we split the constants, we obtain the (non-full) subcategory of
∆̂1 pictured below

1
⊥
//

> //
G α
gg

where 1 is terminal, αα = α and α⊥ = ⊥ = α>. (Notice that, we are not
drawing constant endos or the unique map to the terminal.) It is then clear
that we may describe an object of M̂ as a reflexive graph equipped with
an idempotent function on its edges that sends each edge x to a loop x · α
on the domain of x, preserving the identity loops. As suggested in [11] we
call x · α the preparation to do x. Alternatively, as a graph equipped with
a distinguished subset of loops containing the trivial ones, and a domain-
preserving retraction for the inclusion of distinguished loops into edges.

To calculate level ε of the pre-cohesive M̂ we split all idempotents. Let
s : D → G be the split monic that results from splitting α in ∆̂1 and let
r : G→ D be its retraction. We may picture the idempotent-splitting N of
M as the (non-full) subcategory of ∆̂1 suggested below

D

s

��

1

‡ //

⊥
//

> //
G α
gg

r

OO

with r⊥ = ‡ = r> : 1→ D and s‡ = ⊥ : 1→ G.
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It is then clear that the full subcategory N! → N is that determined by
D and 1 and, by Corollary 5.4, N̂! → N̂ ∼= M̂ is level ε of the pre-cohesive
M̂ → Set. It is then possible to check that the ε-skeletal objects in M̂ are
those that consist only of distinguished loops. On the other hand, the sheaves
for level ε are the objects such that for each distinguished loop d and each
node n there exists a unique edge to n with preparation d.

The topos M̂ does not have many levels so it is easy to see that the
Aufhebung of level ε coincides with the top level, that is, the whole of M̂ .
Similarly, level 1 must also be the top level in this case.

Consider again a small category C with a terminal object and such that
every object has a point, so that the canonical p : Ĉ → Set is pre-cohesive.

Definition 5.5. A morphism f : D → C in C is a pseudo-constant if for any
two points a, b : 1→ D in C, fa = fb : 1→ C.

In other words, the pseudo-constants are those morphisms that are con-
stant on points. We think of a pseudo-constant as a morphism that factors
through an object that has exactly one point. Notice that ifD has exactly one
point then every map D → C is a pseudo-constant.

Proposition 5.6. If J is a Grothendieck topology on C such that the subtopos
Sh(C, J)→ Ĉ is above the centre of p then the following are equivalent:

1. The subtopos Sh(C, J)→ Ĉ is a subquality of p.

2. For every C in C, the sieve of all the pseudo-constants with codomain
C is J-covering.

3. For every C in C, JC contains a sieve of pseudo-constants.

Proof. First consider the canonical φ : p∗ → p! in the present context. For
A in Set and C in C, the function φA,C : A = (p∗A)C → (p!A)C = AC(1,C)

sends a ∈ A to the constant function in AC(1,C) that collapses everything to
a.

If the first item holds then, for every A in Set, φA : p∗A→ p!A is J-
dense by Lemma 4.3. So φA must be locally surjective (w.r.t. J) by Corol-
lary III.7.6 in [17]. In particular, φC(1,C) must be so. Take the identity id
in codomain of φC(1,C),C : C(1, C)→ C(1, C)C(1,C). Local surjectivity im-
plies the existence of a J-cover (fi : Ci → C | i ∈ I) such that for every
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i ∈ I , id · fi = fi( ) ∈ C(1, C)C(1,Ci) is constant. In other words, each fi is a
pseudo-constant. So the third item holds. The third item trivially implies the
second. If the second item holds then we can use the sieve mentioned there
to prove that φA : p∗A→ p!A is locally surjective.

Notice that pseudo-constants in C form and ideal in the sense of Defini-
tion 2.6.

Proposition 5.7. If pseudo-constants in C form an idempotent ideal then
the pre-cohesive p : Ĉ → Set has a level ε and it coincides with the largest
subquality of p.

Proof. The Grothendieck topology J on C determined by the idempotent
ideal of pseudo-constants is such that a sieve on C is J-covering if and only
if it contains all the pseudo-constants with codomain C. It follows that the
terminal object is only covered by the identity so Sh(C, J)→ Ĉ is above the
centre of p by Lemma 3.3. Proposition 5.6 implies that the essential subtopos
Sh(C, J)→ Ĉ is a subquality of p and that every topology J ′ inducing a
subquality of p must satisfy J ⊆ J ′.

In the case of reflexive graphs, simplicial sets, or the Gaeta topos de-
termined by the theory of distributive lattices, the site satisfies that every
pseudo-constant factors through a point so, in these cases, level ε exists and
coincides with the centre.

Definition 5.8. We say that C has enough little figures if for every pseudo-
constant D → C there is a commutative diagram

D

  

// B

��

C

such that B has exactly one point.

The intuition behind the terminology is that a mapB → C whose domain
has exactly one point is to be thought of as a ‘little figure’ of C, or a figure
of C with ‘little’ domain.

Corollary 5.9. If C has enough little figures then Ĉ! → Ĉ is level ε of the
pre-cohesive p : Ĉ → Set and it coincides with the largest subquality of p.
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Proof. An object C in C has exactly one point if and only if the identity
on C is a pseudo-constant. So a little figure (which is of course a pseudo-
constant) factors trivially as a composite of pseudo-constants. Therefore, if
C has enough little figures then the ideal of pseudo-constants is idempotent.
Proposition 5.7 implies that level ε exists and that it coincides with the largest
subquality of p. It remains to show that level ε coincides with the indicated
presheaf subtopos, but notice that the Grothendieck topology determined by
the ideal of pseudo-constants is rigid because a sieve on C is covering if and
only if it contains all the little figures of C; that is all the morphisms whose
domain has exactly one point. The irreducible objects w.r.t. to this topology
are exactly those in C! so level ε coincides with Ĉ! → Ĉ.

6. The Weil subquality of the Gaeta topos of C

All algebras we consider are commutative and unital as in [1]. The follow-
ing is a straightforward generalization of Definition 2.14 in [3] allowing an
arbitrary base field instead of R. Let k be a field.

Definition 6.1. A Weil algebra (over k) is a k-algebra A such that:

1. A is local, say, with unique maximal ideal m.

2. The composite k → A→ A/m is an isomorphism.

3. A is a finite k-algebra (i.e. it is finitely generated as a k-module).

4. mn = 0 for some n.

It is known that there is some redundancy in this definition. Compare
with the definition of algèbre local in [21], or the definition in I.16 of [9].
What we need to relate Weil algebras with the material in the present paper
is the following, surely folk, result.

Lemma 6.2. For any local C-algebra A the following are equivalent:

1. A is a Weil algebra over C.

2. A is finitely generated.

3. A is Artinian.

- 467 -



F. MARMOLEJO AND M. MENNI LEVEL ε

Proof. The first item implies the second because, as A is a finite k-algebra
by hypothesis, then it is finitely generated. Indeed, any basis for the finite
dimensional vector space A generates A as a k-algebra.

If A is finitely generated then it is a Jacobson ring by Exercises 5.23
and 5.24 in [1], so every prime ideal is an intersection of maximal ideals.
As A is local, it has a unique prime ideal (which must coincide with the
maximal one). In this case, the algebra is Artinian by Exercise 8.2 op. cit.

Finally, if A is Artinian and m is the unique maximal ideal of A then the
composite C→ A→ A/m must be an iso by the ‘weak’ version of Hilbert’s
Nullstellensatz (Corollary 7.10 op. cit.). Also, A is a finite k-algebra by Ex-
ercise 8.3 op. cit. Moreover, m must be the nilradical of A, so m is nilpotent
by Proposition 8.4 op. cit.

Let Ring be the category of rings and C/Ring be the coslice category of
C-algebras. The full subcategory of finitely generated C-algebras will be de-
noted by (C/Ring)f.g. → C/Ring. The categoryD = ((C/Ring)f.g.)

op is
essentially small and extensive. The associated Gaeta topos will be denoted
by G = G(D) and call it the Gaeta topos of C.

The Gaeta topos of C is well-known to be a presheaf topos. To recall
that description define a ring to be (directly) indecomposable if it has ex-
actly two idempotents and let (C/Ring)f.g.i. → (C/Ring)f.g. be the full
subcategory of those finitely generated algebras that are indecomposable.
Let C = ((C/Ring)f.g.i.)

op so that the obvious inclusion C → D is the sub-
category of those objects inD that are ‘connected’ in the sense that they have
no non-trivial coproduct decompositions.

The Gaeta topos G may be identified with the topos Ĉ of presheaves on
C. By Hilbert’s Nullstellensatz, every object in C has a point so the canon-
ical geometric morphism p : G→ Set is pre-cohesive. Moreover, there are
certainly objects in C that have more than one point so p is Sufficiently Co-
hesive.

If we let W → (C/Ring)f.g.i. be the full subcategory of Weil algebras
then W = SetW is the Weil topos discussed in [3].

Proposition 6.3. The Weil topos W is an essential subquality of the Gaeta
topos G.

Proof. By Lemma 6.2, the full subcategory C!op → Cop = (C/Ring)f.g.i.
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coincides with W → (C/Ring)f.g.i.. So W = SetW = Ĉ! → Ĉ = G is an
essential subquality by Lemma 5.2.

7. The Weil subquality is level ε of the Gaeta topos

Let D be a category with terminal object and let L : D• → D be the full
subcategory determined by the objects whose points are jointly epic.

Lemma 7.1. If LA has a point and e : LA→ V in D is an epic pseudo-
constant then V = 1.

Proof. As e is epic and the points of LA are jointly epic, the family of all
composites

1 // LA e // V

is jointly epic but, as e is pseudo-constant, there is only one such map, so we
have an epic 1→ V which of course is also split monic, so V is terminal.

Natural further hypotheses allow us to deal with more pseudo-constants.

Lemma 7.2. Assume that L : D• → D has an epic-preserving right adjoint
with monic counit. If X has a point then, for every epic pseudo-constant
f : X → Y , Y has exactly one point.

Proof. Let R be the right adjoint to L and denote the counit by β. As
L(R1) = 1, L(RX) must have a point because X does by hypothesis. Also,
the mapRf is epic by hypotheses and then so isL(Rf) : L(RX)→ L(RY ).
Moreover, it is a pseudo-constant because, βY : L(RY )→ Y is monic and
βY (L(Rf)) = fβX . Lemma 7.1 implies that L(RY ) = 1. As every point of
Y factors through β : L(RY )→ Y , Y has exactly one point.

The next result supplies many little figures.

Proposition 7.3. If every map in D factors as an epi followed by a mono
and L : D• → D has an epi-preserving right adjoint with monic counit then
every pseudo-constant whose domain has a point factors via an object with
exactly one point.
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Proof. Let f be pseudo-constant whose domain has a point. By hypothesis,
f = me for some monic m and epic e. Then the codomain of e has exactly
one point by Lemma 7.2.

The proof of Proposition 7.3 is, in essence, that in [2]. This will become
evident below where we discuss the context of Cornulier’s Mathoverflow
answer.

Let Ring be the category of (commutative unital) rings and consider
the full subcategory Red→ Ring of reduced rings (i.e. those whose only
nilpotent element is 0).

Lemma 7.4. This inclusion Red→ Ring has a left adjoint that preserves
monomorphisms. Moreover, the unit of the adjunction is regular epic.

Proof. The left adjoint sends R in Ring to R/Nil(R) where Nil(R) is the
nilradical of R. See Proposition 1.7 in [1]. The unit R→ R/Nil(R) is a
regular epimorphism and the left adjoint Ring→ Red preserves monos be-
cause ifm : R→ S is a monomorphism thenm∗Nil(S) = Nil(R) as subsets
of R.

Let C be the field of complex numbers and consider the coslice category
C/Ring of C-algebras.

Lemma 7.5. A finitely generated C-algebra R is reduced (as a ring) if and
only if the family of all maps R→ C is jointly monic.

Proof. If the family of maps R→ C is jointly monic then R is, as a ring, a
subobject of a power of C so it is reduced. Conversely, assume that R is re-
duced. That is, the nilradical Nil(R) is trivial. For finitely generated algebras
over a field, the nilradical equals the Jacobson radical (see Exercise 5.24 in
[1]), so the intersection of the maximal ideals in R is 0. In other words, the
collection of all maps R→ C is jointly monic.

Let (C/Ring)f.g. be the category of finitely generated C-algebras.

Lemma 7.6. Every pseudo-constant in ((C/Ring)f.g.)
op whose domain has

a point factors via an object with exactly one point.
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Proof. It is enough to check that D = ((C/Ring)f.g.)
op satisfies the hy-

potheses of Proposition 7.3. It is well-known that D has epi/regular-mono
factorizations so it remains to show that the inclusion D• → D has an epi-
preserving right adjoint with monic counit. We show that the inclusion
D•op → (C/Ring)f.g. satisfies the dual conditions. Bear in mind that, by
Lemma 7.5, the full subcategory D•op → (C/Ring)f.g. may be identified
that of f.g. algebras that are reduced as rings.

The reflective subcategory Red→ Ring of Lemma 7.4 induces another
one such C/Red→ C/Ring. Also, the left adjoint C/Ring→ C/Red is
again obtained by quotienting by the nilradical so the unit is again regular
epic. Moreover, it preserves monos because the canonical C/Red→ Red
reflects monos.

By Noetherianity, the nilradical of a finitely generated algebra is finitely
generated so the left adjoint C/Ring→ C/Red restricts to finitely gener-
ated algebras. That is, we have the reflective D•op → (C/Ring)f.g. satisfy-
ing the necessary conditions.

Recall from Proposition 6.3 that the Weil topos W is a subtopos W→ G
of the Gaeta topos G and that the subtopos is actually and essential subqual-
ity of the pre-cohesive G→ Set.

Theorem 7.7 (The Weil subquality is level ε of the Gaeta topos). The es-
sential subquality W→ G is level ε of the pre-cohesive p : G→ Set and it
coincides with the largest subquality of p.

Proof. We identify the Gaeta topos G with Ĉ where C is the opposite of the
category of finitely generated complex algebras with exactly two idempo-
tents. By Corollary 5.9 it is enough to prove that C has enough little figures
so let f : X → Y be a pseudo-constant in C. Then f is a pseudo-constant in
D andX has a point because every object of C has a point. By Lemma 7.6, f
factors (in D) via a object with exactly one point. This object is necessarily
in C so the factorization of f is inside C.

We see Theorem 7.7 as a confirmation of Lawvere’s suggestion (quoted
in the beginning of the paper) that “the infinitesimal spaces may well negate
the largest essential subtopos of the ambient one which” has the property
that “the four adjoint functors relating their topos to the base topos coalesce
into two”.
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8. The Weil subquality is level ε of the Zariski topos of C

We show that the level ε of the Gaeta topos for C factors through the Zariski
topos and, as a level of the latter, it is level ε. Some of the ideas involving
restricted subqualities may be formulated at an elementary level. We deal
with these first. Let p : E → S be a local geometric morphism.

Proposition 8.1. Let j : Ej → E and k : Ek → E be subtoposes of E and
assume that k is above j. If Ej → E is above the centre of p (so that Ek → E
is also above the centre of p) then the following hold:

1. The subtopos Ej → Ek is above the centre of pk : Ek → S.

2. If Ej → E is a subquality of p, then the subtopos Ej → Ek is a sub-
quality of pk : Ek → S.

3. If Ej → E is essential, then so is Ej → Ek.

4. If a subtopos El → Ek is above the centre of pk : Ek → S, then the
subtopos El → Ek → E is above the centre of p.

Proof. 1. According to Corollary 2.3 (and with the same notation introduced
there) the unit of Ej → Ek is (k∗νk∗) · ξ′

−1. When we apply p∗k∗ : Ek → E
we observe that p∗k∗k∗νk∗ is an iso since p∗k∗k∗ ' p∗, given that k is above
the centre of p, and p∗ν is an iso, given that j is above the centre of p.

2. This follows at once since Ej → S is a quality type regardless of
whether we consider Ej as a subtopos of E or of Ek.

3. This follows at once form Remark 2.2.
4. We must show that p∗ inverts the unit of El → Ek → E assuming that

p∗k∗ inverts the unit of El → Ek; but this follows at once since p∗ inverts the
unit of k : Ek → E because Ek is above the centre of p.

Proposition 8.1 allows to show that, if level ε is not just that but is also
the largest subquality then we can restrict it to subtoposes that contain it.
More precisely:

Corollary 8.2. Assume that p : E → S has a largest subquality Ej → E and
that it is essential (so that Ej → E is level ε of p). If k : Ek → E is a subtopos
above j then the subtopos Ej → Ek is the largest subquality of pk : Ek → S
and it is essential (so that Ej → Ek is level ε of pk).
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Proof. By the second item of Proposition 8.1, the subtopos Ej → Ek is a sub-
quality of pk : Ek → S and it is essential by the third item. Now assume that
El → Ek is a subquality of pk : Ek → S. Then El → Ek → E is a subqual-
ity of p by the fourth item. So it is above Ej → E by hypothesis and then,
El → Ek is above Ej → Ek.

We can now start to discuss the example. It is convenient to give first an
alternative presentation of the Gaeta topos of C discussed in Section 6. As
in that Section, let D be the opposite of the category of finitely generated
C-algebras. Let JG be the Gaeta coverage onD. The basic covering families
are those of the form

(Di → D | i ∈ I)

such that I is finite and the induced
∑

i∈I Di → D is an isomorphism. The
intimate relation between products in Dop and idempotents implies that the
JG-cocovering families in Dop are those of the form

(A→ A[a−1i ] | i ∈ I)

where I is a finite set,
∑

i∈I ai = 1 and, for every i, j ∈ I , i 6= j implies
aiaj = 0.

Let C → D be the full subcategory determined by the (f.g.) algebras that
have exactly two idempotents. As every object of D is a finite coproduct
of objects in C, the inclusion C → D is JG-dense and so the Comparison
Lemma (C2.2.3 in [5]) implies that restricting along the inclusion C → D
underlies an equivalence Sh(D, JG)→ Ĉ = G between the topos of sheaves
Sh(D, JG) and the topos of presheaves Ĉ that we used to define the Gaeta
topos in Section 6.

Let JZ be the Zariski coverage onD. It is well-known that JZ-cocovering
basic families in Dop are those of the form

(A→ A[a−1i ] | i ∈ I)

where I is a finite set and the ideal generated by (ai | i ∈ I) contains 1.
The topos Sh(D, JZ) will be denoted by Z and is called the Zariski topos
(determined by the field C) and Z = Sh(D, JZ)→ Set is pre-cohesive (see
[14] and also Example 1.5 in [6]).
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The above description of JZ and JG implies that every JG-cover is a
JZ cover. That is, the Zariski topos is a subtopos of the Gaeta topos. This
presentation of the Zariski topos as a subtopos

Z = Sh(D, JZ) // Sh(D, JG) ∼=
// Ĉ = G

(of the Gaeta topos) whose direct image is restriction along C → D is moti-
vated by the discussion starting at the end of p. 109 in [10].

Lemma 8.3. The subtopos Z→ G is above the Weil subquality W→ G.

Proof. Recall from Section 6 that we identified the Weil subquality with
the geometric inclusion induced by the full subcategory C! → C. Consider
now the full inclusion C! → C → D. By Lemma C2.3.9 in [5] there exists a
smallest coverage K on C! such that the inclusion into D is cover reflecting.
In that result, K is defined as the Grothendieck coverage generated by the
sieves of the form R ∩ C! where R is JZ-covering. We show below that all
these sieves contain an iso, which will allow us to conclude that K is trivial.

Consider an object A in C!op. Since it has a unique maximal ideal, Exer-
cise 5.24 in [1] implies that the nilradical of A is a maximal ideal. Thus, by
Exercise 1.10 loc. cit., every element ofA is either nilpotent or invertible. As
A is non-trivial, a Zariski cover cannot be generated by nilpotents, so every
JZ-cocover of A contains an isomorphism. In other words, for every C in C!,
the only JZ-covering sieve of C as an object of D is the maximal one. This
implies that K is trivial.

The proof of Lemma C2.3.9 cited above shows that the outer square be-
low

Sh(C!, K)

� �

// Sh(D, JZ)

{{
��

Ĉ! // Ĉ // D̂

is a pullback. As the right vertical map factors through Ĉ → D̂, the inner
polygon is also a pullback and, since the left vertical map is an isomorphism,
Sh(D, JZ)→ Ĉ is above Ĉ! → Ĉ.

We may now identify level ε of the Zariski topos of C.
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Theorem 8.4 (The Weil subquality is level ε of the Zariski topos). The subto-
pos W→ Z is level ε of the pre-cohesive p : Z→ Set and it coincides with
the largest subquality of p.

Proof. By Theorem 7.7, the subtopos W→ G is level ε of the pre-cohesive
p : G→ Set and it coincides with the largest subquality of p. Lemma 8.3
shows Z→ G is above W→ G so Corollary 8.2 applies.

Corollary 8.2 suggests the question: what is the largest subtopos of the
Zariski topos that contains the Weil topos? In any case, the calculation of
the Aufhebung of ε still needs to be carried out.
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