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TOPOLOGY FROM ENRICHMENT:
THE CURIOUS CASE OF PARTIAL METRICS

Dirk HOFMANN and Isar STUBBE

Résumé. Pour tout petit quantaloı̈de Q, il y a un nouveau quantaloı̈de D(Q) de
diagonaux dans Q. Si Q est divisible alors il en est de même pour D(Q) (et vice
versa), et il est alors particulièrement intéressant de comparer des catégories en-
richies dans Q avec des catégories enrichies dans D(Q). Prenant le quantale des
nombres réels positifs de Lawvere comme base, les Q-categories sont les espaces
métriques généralisés, alors que les D(Q)-catégories sont les espaces métriques
partiels généralisés, i.e. des espaces métriques dans lesquels la distance d’un point
à lui-même ne doit pas être zéro et avec une inégalité triangulaire adaptée. Nous
montrons comment toute catégorie enrichie dans un petit quantaloı̈de possède une
fermeture canonique sur l’ensemble de ses objets: ceci constitue un foncteur des
catégories enrichies dans un quantaloı̈de vers les espaces à fermeture. Sous de
(faibles) conditions nécessaires-et-suffisantes sur le quantaloı̈de de base, ce fonc-
teur prend ses valeurs dans la catégorie des espaces topologiques; et un quantaloı̈de
involutif est Cauchy-bilatère (une propriété découverte auparavant dans le contexte
des lois distributives) si et seulement si la fermeture sur toute catégorie enrichie
est identique à la fermeture sur sa symétrisation. Puisque tout cela s’applique
maintenant aussi bien aux espaces métriques qu’aux espaces métriques partiels,
nous démontrons comment ces constructions catégoriques générales produisent les
“bonnes” définitions de suite de Cauchy et de suite convergente dans les espaces
métriques partiels. Finalement nous décrivons la Cauchy-complétion, la construc-
tion de Hausdorff et l’exponentiabilité d’un espace métrique partiel, une fois de plus
en appliquant la théorie générale des catégories enrichies dans un quantaloı̈de.
Abstract. For any small quantaloid Q, there is a new quantaloid D(Q) of diago-
nals in Q. If Q is divisible then so is D(Q) (and vice versa), and then it is par-
ticularly interesting to compare categories enriched in Q with categories enriched
in D(Q). Taking Lawvere’s quantale of extended positive real numbers as base
quantale, Q-categories are generalised metric spaces, and D(Q)-categories are gen-
eralised partial metric spaces, i.e. metric spaces in which self-distance need not
be zero and with a suitably modified triangular inequality. We show how every
small quantaloid-enriched category has a canonical closure operator on its set of
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D. HOFMANN AND I. STUBBE TOPOLOGY FROM ENRICHMENT

objects: this makes for a functor from quantaloid-enriched categories to closure
spaces. Under mild necessary-and-sufficient conditions on the base quantaloid, this
functor lands in the category of topological spaces; and an involutive quantaloid is
Cauchy-bilateral (a property discovered earlier in the context of distributive laws)
if and only if the closure on any enriched category is identical to the closure on
its symmetrisation. As this now applies to metric spaces and partial metric spaces
alike, we demonstrate how these general categorical constructions produce the “cor-
rect” definitions of convergence and Cauchyness of sequences in generalised partial
metric spaces. Finally we describe the Cauchy-completion, the Hausdorff contruc-
tion and exponentiability of a partial metric space, again by application of general
quantaloid-enriched category theory.
Keywords. Quantaloid, divisibility, enriched category, topology, partial metric.
2010 Mathematics Subject Classification: 06A15, 06F07, 18D20, 54E35

1. Introduction

Following Fréchet [6], a metric space (X, d) is a set X together with a real-valued
function d on X ×X such that the following axioms hold:

[M0] d(x, y) ≥ 0,
[M1] d(x, y) + d(y, z) ≥ d(x, z),
[M2] d(x, x) = 0,
[M3] if d(x, y) = 0 = d(y, x) then x = y,
[M4] d(x, y) = d(y, x),
[M5] d(x, y) 6= +∞.

The categorical content of this definition, as first observed by Lawvere [17], is that
the extended real interval [0,∞] underlies a quantale ([0,∞],

∧
,+, 0), so that a

“generalised metric space” (i.e. a structure as above, minus the axioms M3-M4-M5)
is exactly a category enriched in that quantale.

More recently, see e.g. [18], the notion of a partial metric space (X, p) has been
proposed to mean a setX together with a real-valued function p onX×X satisfying
the following axioms:

[P0] p(x, y) ≥ 0,
[P1] p(x, y) + p(y, z)− p(y, y) ≥ p(x, z),
[P2] p(x, y) ≥ p(x, x),
[P3] if p(x, y) = p(x, x) = p(y, y) = p(y, x) then x = y,
[P4] p(x, y) = p(y, x),
[P5] p(x, y) 6= +∞.

The categorical content of this definition was discovered in two steps: first, Höhle
and Kubiak [14] showed that there is a particular quantaloid of positive real num-
bers, such that categories enriched in that quantaloid correspond to (“generalised”)
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partial metric spaces; and second, we realised in [22] that Höhle and Kubiak’s quan-
taloid of real numbers is actually a universal construction on Lawvere’s quantale of
real numbers: namely, the quantaloid D[0,∞] of diagonals in [0,∞].

It was shown in [13] that to any category enriched in a symmetric quantale one
can associate a closure operator on its collection of objects. For a metric space
(X, d), viewed as an [0,∞]-enriched category, that “categorical closure” on X co-
incides precisely with the metric (topological) closure defined by d. And Lawvere
[17] famously reformulated the Cauchy completeness of a metric space in terms of
adjoint distributors. It is however not that complicated to extend the construction
of the “categorical closure” to general quantaloid-enriched categories, thus making
it applicable to partial metric spaces viewed as D[0,∞]-enriched categories. And
then it is only natural to see if and how Lawvere’s arguments for metric spaces go
through in the case of partial metrics. This is what we set out to do in this paper—
whence its title.

Here is a brief overview of the contents of this paper. Section 2 contains a com-
pact presentation of well-known quantaloid-enriched category theory [20] that we
shall need further on. In Section 3 we first explain the construction of the quantaloid
D(Q) of diagonals in a given quantaloid, to then recall (and somewhat improve) the
closely related notion of divisible quantaloid as it first appeared in [22]. For the sake
of exposition, we shall say that a D(Q)-enriched category is a partial Q-enriched
category, and at the end of Section 3 we explain how (generalised) partial met-
ric spaces are, indeed, precisely the partial [0,∞]-enriched categories. We start
Section 4 by explaining how every quantaloid-enriched category determines a cate-
gorical closure on its set of objects (generalising results from [13]); we furthermore
characterise those quantaloids for which the closure on any enriched category C is
topological, and those involutive quantaloids for which the closure on any enriched
category C is always identical to the closure on the symmetrised enriched category
Cs. Viewing partial metric spaces as enriched categories, we identify in Section 5
the categorical topology induced by a (finitely typed) partial metric—and prove that
it is always metrisable by means of a symmetric metric. We spell out what it means
for a sequence to converge, resp. to be Cauchy, in such a partial metric space (X, p),
and then show that all such Cauchy sequences converge in (X, p) if and only if all
Cauchy distributors on (X, p) qua enriched category are representable. We end with
some examples concerning Hausdorff distance in, and exponentiability of, partial
metric spaces.

Of course, the study of partial metrics is not new. For example, in the survey
paper [5] partial metrics are studied by analogy with metrics, and the reader will
find there e.g. the definition of Cauchy sequence in a (symmetric) partial metric
space (where p(x, y) 6= ∞). Let us also mention that [19] already adopts an en-
riched category point of view, and shows how those Cauchy sequences correspond
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with Cauchy distributors. However, none of the previously published papers have
our purely categorical setup: we contruct a topology for any quantaloid-enrichment,
so that – when applied to the quantaloid of diagonals in [0,∞] – the generic topo-
logical notions of convergence and Cauchyness of sequences reproduce those that
were considered in a rather ad hoc manner before. So whereas our paper does not
present many new results in partial metric spaces per se, it does propose a whole
new categorical method to study partial metrics. That this method is benificial, can
be seen in our treatment of a hitherto undiscovered subtlety involving the points
with self-distance∞, and in our results on Hausdorff distance and exponentiability!

2. Preliminaries, exemplified by metric spaces and ordered sets

A large part of the general theory of quantales and quantaloids is an instance of V-
enriched category theory [16], taking the base category V to be the category Sup of
complete lattices and supremum-preserving functions. Indeed, a quantaloid Q is a
Sup-enriched category (and quantales are exactly quantaloids with a single object,
i.e. monoids in Sup), a homomorphism H : Q → R between quantaloids is a Sup-
enriched functor, and so forth.

On the other hand, quantaloids are also (very particular) bicategories [1], so
the general notions from bicategory theory apply as well. This point of view is
important when defining lax morphisms between quantaloids, or adjunctions in a
quantaloid, or quantaloid-enriched categories, because these concepts are not “nat-
urally” catered for by Sup-enriched category theory alone.

In his seminal paper [17], Lawvere shows how both metric spaces and ordered
sets are a guiding example of enriched categories—quantale-enriched, that is. In
this section we shall reproduce some of his insightful examples, but we do explain
the (slightly) more general case of quantaloid-enrichment, for in the next section it
will be crucial to have this ready for the case of partial metric spaces (as will become
clear there). For clarity’s sake, and to fix our notations, we shall spell out some of
these abstract categorical definitions in more elementary terms.

2.1 Quantaloids, quantales

A quantaloid Q is a category in which, for any two fixed objects A and B, the set
Q(A,B) of morphisms from A to B is ordered and admits all suprema, in such a
way that composition distributes on both sides over arbitrary suprema: whenever
f : A→ B, (gi : B → C)i∈I and h : C → D, then h ◦ (

∨
i gi) ◦ g =

∨
i(h ◦ gi ◦ f).

We write 1A : A→ A for the identity morphism on an object A.
A crucial property of quantaloids is their so-called closedness. Precisely, for
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any morphism f : A→ B in a quantaloid Q and any object X of Q, both

− ◦ f : Q(B,X)→ Q(A,X) and f ◦ − : Q(X,A)→ Q(X,B)

(pre- and post-composition with f ) are supremum-preserving functions between
complete lattices. Therefore these maps have right adjoints, called lifting and ex-
tension through f , and we shall write these as:

−↙f : Q(A,X)→ Q(B,X) and f↘− : Q(X,B)→ Q(X,A).

A quantaleQ is, by definition, a one-object quantaloid. Equivalently, a quantale
Q = (Q,

∨
, ◦, 1) is a sup-lattice (Q,

∨
) equipped with a monoidal structure (◦, 1)

in such a way that multiplication distributes on both sides over suprema. Liftings
and extensions in a quantale are often called (left/right) residuations, especially in
the context of multi-valued logics.

The above says in particular that a quantaloid is a locally complete and co-
complete closed bicategory (and a quantale is a complete and cocomplete closed
monoidal category). Importantly, we can therefore use all bicategorical notions in
any quantaloid: adjoint pairs, monads, 2-dimensional universal properties, etc.

Example 2.1.1 Any locale (= complete Heyting algebra, cHa)H is a quantaleH =
(H,∧,>). In fact, cHa’s are precisely those quantales which are integral (meaning
that 1 = >) and idempotent (meaning that f2 = f for every f ∈ Q); they are
of course also commutative. In particular shall we write 2 = (2,∧, 1) for the 2-
element Boolean algebra {0 < 1} viewed as quantale.

Example 2.1.2 Writing [0,∞]op for the set of positive real numbers extended with
+∞, with the opposite of the natural order, R = ([0,∞]op,+, 0) is a (commutative
and integral, but not idempotent) quantale; throughout this article we shall refer to
it as Lawvere’s quantale of positive real numbers, to honor its first appearence in
[17].

In the remainder of this section, these quantales will be our main examples. It is
however necessary to develop the general quantaloidal case for reasons that will
become clear in the next section. To give but one example of a non-commutative,
non-integral, non-idempotent quantale, consider the set Sup(L,L) of supremum-
preserving functions on a complete lattice L. In fact, the category Sup of complete
lattices and supremum-preserving morphisms itself is the example par excellence
of a (large) quantaloid. Many more examples can be found in the references.

2.2 Quantaloid-enriched categories, functors, distributors

In all that follows, we fix a small quantaloid Q; we shall write Q0 for its set of
objects and Q1 for its set of morphisms.

A Q-enriched category C (or Q-category C for short) consists of
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(obj) a set C0 of “objects”,
(typ) a unary “type” predicate t : C0 → Q0 : x 7→ tx,
(hom) a binary “hom” predicate C : C0 × C0 → Q1 : (x, y) 7→ C(x, y),

such that the following conditions hold:
[C0] C(x, y) : ty → tx,
[C1] C(x, y) ◦ C(y, z) ≤ C(x, z),
[C2] 1tx ≤ C(x, x).

Note how, when applied to a quantale Q (viewed as a one-object quantaloid Q), the
above definition symplifies: the “type” predicate becomes obsolete and condition
[C0] trivialises. This is the case in our main examples (for now):

Example 2.2.1 Let 2 = (2,∧,>) be the 2-element Boolean algebra. A 2-category
A is exactly an ordered set: for we may interpret that A(x, y) ∈ {0, 1} is 1 if and
only if x ≤ y. (So in this paper an order is a transitive and reflexive relation; if we
want it to be anti-symmetric, then we shall explicitly mention so.)

Example 2.2.2 Considering the Lawvere quantale R = ([0,∞]op,+, 0]), an R-
category X consists of a set X = X0 together with a function d = X(−,−) : X ×
X → [0,∞] such that d(x, y) + d(y, z) ≥ d(x, z) and 0 = d(x, x); all other data
and conditions are trivially satisfied. Such an (X, d) is a generalised metric space
[17]; adding symmetry (d(x, y) = d(y, x)), separatedness (if d(x, y) = 0 = d(y, x)
then x = y) and finiteness (d(x, y) < ∞) makes it a metric space in the sense of
Fréchet [6].

A Q-functor F : C→ D between two Q-categories is
(map) an “object map” F : C0 → D0 : x 7→ Fx

satisfying, for all x, x′ ∈ C0,
(F0) t(Fx) = tx,
(F1) C(x′, x) ≤ D(Fx′, Fx).

Such Q-functors F : A → B and G : B → C can be composed in the obvious way
to produce a new functor G ◦ F : A → C, and the identity object map provides for
the identity functor 1A : A → A. Thus Q-categories and Q-functors are the objects
and morphisms of a (large) category Cat(Q).

Example 2.2.3 There is no difficulty in proving that Cat(2) is exactly Ord, the
category of ordered sets and order-preserving functions.

Example 2.2.4 Upon identifying two R-categories X and Y with two generalised
metric spaces (X, dX) and (Y, dY ), it is straightforward to verify that an R-functor
F : X → Y can be identified with a so-called 1-Lipschitz function f : X → Y , i.e.
dX(x′, x) ≥ dY (fx′, fx). We shall write GMet for the category Cat(R).

To make Q-enriched category theory really interesting, we need to introduce a sec-
ond kind of morphism between Q-categories: a Q-distributor (also called ‘module’,
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‘bimodule’ or ‘profunctor’ in the literature) Φ: C c //D between two Q-categories
is

(matr) a “matrix” Φ: D0 × C0 → Q1 : (y, x) 7→ Φ(y, x)
satisfying, for all x, x′ ∈ C0 and y, y′ ∈ D0,

(D0) Φ(y, x) : tx→ ty,
(D1) D(y′, y) ◦ Φ(y, x) ≤ Φ(y′, x),
(D2) Φ(y, x) ◦ C(x, x′) ≤ Φ(y, x′).

For two consecutive distributors Φ: C c //D and Ψ: D c //E, the composite distrib-
utor is written as Ψ⊗ Φ: C c //E and computed as, for x ∈ C and z ∈ E,

(Ψ⊗ Φ)(z, x) =
∨
y∈D0

Ψ(z, y) ◦ Φ(y, x).

The identity distributor idC : C c //C has elements idC(x′, x) = C(x′, x) for all
x, x′ ∈ C0. Two parallel distributors Φ,Φ′ : C c //D are ordered ‘elementwise’:

Φ ≤ Φ′
def⇐⇒ Φ(y, x) ≤ Φ′(y, x) for all (x, y) ∈ C0 × D0,

and therefore the supremum of a family of parallel distributors, say Φi : C c //D,
has elements

(
∨
i

Φi)(y, x) =
∨
i

Φi(y, x).

In this manner, distributors are the morphisms of a (large) quantaloid Dist(Q).
The importance of Dist(Q) being a quantaloid – instead of a mere category –

cannot be overestimated: for it implies that Dist(Q) is closed, that we can speak of
adjoint pairs of distributors, that we can perform 2-categorical constructions involv-
ing Q-categories and distributors, and so on. For instance, it is not difficult to verify
that we can compute liftings and extensions in Dist(Q) by the following formulas:

C c
Φ ��

cΨ↘ Φ
// Dc

Ψ��

E

(Ψ↘ Φ)(y, x) =
∧
z∈E0

Ψ(z, y)↘ Φ(z, x) (1)

C cΨ↙ Φ
// D

E

c
Φ

__ c
Ψ

??

(Ψ↙ Φ)(y, x) =
∧
z∈E0

Ψ(y, z)↙ Φ(x, z) (2)

In contrast, there is a priori no extra structure in Cat(Q)—but luckily Cat(Q) em-
beds naturally in Dist(Q), and therefore inherits some of the latter’s structure.
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Indeed, every functor F : A→ B determines an adjoint pair of distributors

A ⊥
cF∗
&& Bc

F ∗
ff

defined by F∗(b, a) = B(b, Fa) and F ∗(a, b) = B(Fa, b). We shall say that the
left adjoint F∗ is the graph of the functor F , whereas the right adjoint F ∗ is its
cograph. Taking graphs and cographs extends to a pair of functors, one covariant
and the other contravariant:

Cat(Q)→ Dist(Q) :
(
F : A→ B

)
7→
(
F∗ : A c //B), (3)

Cat(Q)op → Dist(Q) :
(
F : A→ B

)
7→
(
F ∗ : B c //A). (4)

With this, we make Cat(Q) a locally ordered category by defining, for any parallel
pair of functors F,G : A→ B,

F ≤ G def⇐⇒ F∗ ≤ G∗ ⇐⇒ F ∗ ≥ G∗.

Whenever F ≤ G and G ≤ F , we write F ∼= G and say that these functors are
isomorphic.

With all this, we can now naturally speak of adjoint Q-functors, fully faithful
Q-functors, equivalent Q-categories, (co)monads on Q-categories, etc.

2.3 Presheaves and completions

IfX is an object of Q, then we write 1X for the Q-category defined by (1X)0 = {∗},
t∗ = X and 1X(∗, ∗) = 1X . Similarly, if f : X → Y is a morphism in Q, then we
write (f) : 1X

c //1Y for the distributor defined by (f)(∗, ∗) = f . In doing so we
get an injective homomorphism

i : Q→ Dist(Q) :
(
f : X → Y

)
7→
(

(f) : 1X
c //1Y

)
(5)

which allows us to (tacitly) identify Q with its image in Dist(Q).
A contravariant Q-presheaf φ of type X ∈ Q0 on a Q-category C is, by defini-

tion, a distributor φ : 1X
c //C. For two presheaves φ : 1X

c //C and ψ : 1Y
c //C,

the lifting (ψ ↘ φ) : 1X
c //1Y in the quantaloid Dist(Q) is a distributor with a

single element, which can therefore be identified with an arrow from X to Y in Q:

1Y cψ
��

1X
c
φ

//

cψ ↘ φ
AA

C
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We can thus define the Q-category PC of contravariant presheaves on C to have
as objects the contravariant presheaves on C (of all possible types); the type of a
presheaf φ : 1X

c //C is X; and the hom PC(ψ, φ) is the (single element of the)
lifting ψ ↘ φ.

For Φ: C c //D it is easy to see that PC → PD : ψ 7→ Φ ⊗ ψ is a Q-functor.
This action easily extends to form a 2-functor P : Dist(Q) → Cat(Q), and by com-
position with the inclusion 2-functor Cat(Q) → Dist(Q) of (3) we find a functor
P : Cat(Q)→ Cat(Q). The latter turns out to be a KZ-doctrine (i.e. a 2-monad such
that “algebras are adjoint to units”); its category of algebras is denoted Cocont(Q):
its objects are so-called cocomplete Q-categories, and its morphisms are the co-
continuous Q-functors. The unit of the KZ-doctrine consists of the so-called (fully
faithful) Yoneda embeddings

YC : C→ PC : x 7→ C(−, x).

The presheaves in the image of YC are said to be representable (by objects of C);
the Yoneda embedding YC exhibits PC to be the free cocompletion of C. And the
Yoneda Lemma says that, for any φ ∈ PC and any x ∈ C, we have PC(YCx, φ) =
φ(x).

Dually, a covariant Q-presheaf κ of type X ∈ Q0 on a Q-category C is a
distributor like κ : C c //1X ; they are the objects of a Q-category P†C, in which
P†C(λ, κ) = λ ↙ κ. The obvious 2-functor P† : Dist(Q) → Cat(Q)op composes
with the inclusion 2-functor in (4) to form a co-KZ-doctrine P† : Cat(Q)→ Cat(Q),
whose category of algebras Cont(Q) consists of complete Q-categories and contin-
uous Q-functors. The (fully faithful) Yoneda embeddings (also: free completions)

Y †C : C→ P†C : x 7→ C(x,−),

form the unit of the co-KZ-doctrine.

Example 2.3.1 For an ordered set (X,≤), viewed as a 2-category, the free cocom-
pletion P(X,≤) – in the sense of 2-category theory – is precisely the free sup-lattice
on (X,≤): the set of downclosed subsets ordered by inclusion; and the Yoneda em-
bedding Y(X,≤) : (X,≤) → P(X,≤) sends an element x ∈ X to the principal
downclosed set ↓ x. Hence, upon identifying Ord with Cat(2), the KZ-doctrine
P : Ord→ Ord is the free sup-lattice monad. In an entirely dual fashion, P†(X,≤)
is the free inf-lattice: its elements are the upclosed subsets of X , ordered by con-
tainment (the opposite of inclusion); and the co-KZ-doctrine P† : Ord→ Ord is the
free inf-lattice monad.

A Cauchy presheaf on a Q-category C is a (contravariant) presheaf φ : 1X
c //C

which – as morphism in Dist(Q) – has a right adjoint, which we shall then write
as φ∗ : C c //1X . The Q-category Ccc is, by definition, the full subcategory of PC
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whose objects are the Cauchy presheaves. Furthermore, the Yoneda embedding
YC : C → PC co-restricts to a functor IC : C → Ccc, which is now called the
Cauchy completion of C. Those Cauchy completions form the unit of a KZ-doctrine
(−)cc : Cat(Q) → Cat(Q); the category of algebras Cat(Q)cc contains the Cauchy
complete Q-categories and (all) Q-functors between them. In fact, a Q-category C is
Cauchy complete if and only if, for every left adjoint distributor Φ: X c //C, there
exists a (necessarily essentially unique) functor F : X → C such that F∗ = Φ,
if and only if for every Cauchy presheaf φ : 1X

c //C, there exists a (necessarily
essentially unique) object c ∈ C0 such that C(−, c) = φ.

Example 2.3.2 The designations “Cauchy completion” and “Cauchy complete” are
motivated by the interpretation of these concepts in generalised metric spaces [17],
as follows. Every Cauchy sequence (xn)n in a metric space (X, d) – suitably viewed
as an R-category X, cf. Example 2.2.2 – defines an adjoint pair φ a φ∗ of R-
distributors φ : 1 c //X and φ∗ : X c //1 by putting

φ(y) = lim
n→∞

d(y, xn) and φ∗(y) = lim
n→∞

d(xn, y)

for all y ∈ X . Moreover, (xn)n converges to x ∈ X precisely when φ = d(−, x).
Conversely, a left adjoint R-distributor φ : 1 c //X , with right adjoint φ∗ : X c //1,
satisfies ∧

x∈X
φ∗(x) + φ(x) = 0,

so that a Cauchy sequence (xn)n can be built by choosing xn with φ(xn)+φ∗(xn) ≤
1
n . After identifying equivalent Cauchy sequences, these two processes turn out
to be inverse to each other; and therefore a generalised metric space is Cauchy
complete in the traditional sense if and only if it is Cauchy complete in the sense of
enriched category theory.

Such (Cauchy) (co)complete Q-categories can be studied and characterised in
many different ways, and have a wealth of applications; we refer to [2, 7, 24] for
examples.

2.4 Involution and symmetry

In this subsection we shall suppose that Q is a quantaloid equipped with an involu-
tion: a function Q1 → Q1 : f 7→ fo on the morphisms of Q such that f ≤ g implies
fo ≤ go, (g ◦ f)o = fo ◦ go, and foo = f . It is easy to check that this automat-
ically extends to a (necessarily invertible) homomorphism (−)o : Qop → Q which
is the identity on objects and satisfies foo = f for any morphism f in Q. The pair
(Q, (−)o) is said to form an involutive quantaloid, but we leave the notation for the
involution understood when no confusion can arise.
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A Q-category A is symmetric if we have, for all x, y ∈ A0,
[C4] A(x, y) = A(y, x)o.

We shall write SymCat(Q) for the full sub-2-category of Cat(Q) determined by the
symmetric Q-categories. The full embedding SymCat(Q) ↪→ Cat(Q) has a right
adjoint functor1,

SymCat(Q) ⊥
incl.

((

(−)s

hh Cat(Q),

which sends a Q-category C to the symmetric Q-category Cs whose objects (and
types) are those of C, but for any two objects x, y the hom-arrow is Cs(y, x) :=
C(y, x) ∧ C(x, y)o. A functor F : C → D is sent to Fs : Cs → Ds : x 7→ Fx. The
counit of this adjunction has components SC : Cs → C : x 7→ x.

Example 2.4.1 A commutative quantale is the same thing as a quantale for which
the identity map is an involution; in particular can we thus consider 2 = {0, 1} and
R = [0,∞]op to be involutive. For both ordered sets and generalised metric spaces
it is straightforward to interpret the symmetry axiom: an order (X,≤) is symmetric
qua 2-enriched category if and only if the order-relation≤ is symmetric (and so it is
an equivalence relation on X); and a generalised metric space (X, d) is symmetric
qua R-enriched category if and only if the distance function d is symmetric (and so
(X, d) is an écart in the sense of [3]).

Composing right and left adjoint, we find a comonad (−)s : Cat(Q) → Cat(Q)
whose coalgebras are exactly the symmetric Q-categories. In the previous subsec-
tion we had the important monad (−)cc : Cat(Q) → Cat(Q) whose algebras are
exactly the Cauchy complete Q-categories. Because both arise from (co)reflexive
subcategories, there can be at most one distributive law of the Cauchy monad over
the symmetrisation comonad; here is a sufficient condition for its existence:

Proposition 2.4.2 ([10]) If an involutive quantaloid is Cauchy-bilateral, that is to
say, for each family (fi : X → Xi, gi : Xi → X)i∈I of morphisms in Q,

∀j, k ∈ I : fk ◦ gj ◦ fj ≤ fk
∀j, k ∈ I : gj ◦ fj ◦ gk ≤ gk

1X ≤
∨
i∈I

gi ◦ fi

 =⇒ 1X ≤
∨
i∈I

(gi ∧ foi ) ◦ (goi ∧ fi),

then there is a distributive lawL of (−)cc : Cat(Q)→ Cat(Q) over (−)s : Cat(Q)→
Cat(Q) with components LC : (Cs)cc → (Ccc)s : φ 7→ (SC)∗ ⊗ φ. The category of

1But the right adjoint is not a 2-functor, so this is not a 2-adjunction!
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L-bialgebras contains precisely those Q-categories which are both symmetric and
Cauchy complete, and all Q-functors between these.

This means that, for such a Cauchy-bilateral Q, the Cauchy completion of a sym-
metric Q-category is again symmetric, and that the symmetrisation of a Cauchy
complete Q-category is again Cauchy complete; so the category of L-bialgebras
can be computed, either by Cauchy-completing all symmetric Q-categories, or by
symmetrising all Cauchy complete Q-categories. For more details we refer to [10].

Example 2.4.3 Every locale H is Cauchy-bilateral (for the identity involution); in
particular so is 2. But in the 2-enriched case, every 2-category is Cauchy complete!

Example 2.4.4 The Lawvere quantale R = ([0,∞]op,+, 0) is Cauchy-bilateral
(again, for the identity involution), so the Cauchy completion of a symmetric gen-
eralised metric space is again a symmetric generalised metric space. (Perhaps this
motivated Fréchet [6] to include the symmetry axiom in his definition of ‘metric
space’?)

The above example generalises, as follows:

Example 2.4.5 Any linearly ordered, integral, commutative quantale Q is Cauchy-
bilateral (for the identity involution). Indeed, the condition to be Cauchy-bilateral
reduces to

1 ≤
∨
i

gi ◦ fi =⇒ 1 ≤
∨
i

(gi ∧ fi)2

for any family (fi, gi)i∈I of pairs of elements ofQ. But integrality ofQ assures that
gi ◦ fi ≤ gi ∧ fi, so the hypothesis implies that

1 ≤
∨
i

gi ◦ fi ≤
∨
i

gi ∧ fi,

and therefore – taking squares on both ends of this inequality – also

1 ≤ (
∨
i

gi ∧ fi)2 =
∨
i,j

(gi ∧ fi)(gj ∧ fj).

Now it is linearity ofQwhich makes (gi∧fi)(gj∧fj) ≤ (gi∧fi)2∨(gj∧fj)2, so that
from the previous line we easily find the desired result. A left-continuous t-norm
[8] is exactly an integral commutative quantale structure on the (linearly ordered)
real unit interval; so here we find in particular all these to be Cauchy-bilateral.

2.5 Homomorphisms, lax functors, change of base

A homomorphism H : Q → R between quantaloids (and in particular quantales)
is a functor, mapping f : A → B in Q to Hf : HA → HB in R and preserv-
ing composition and identities in the usual manner, which furthermore preserves
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local suprema: whenever (fi : A → B)i∈I in Q, then H(
∨

i fi) =
∨

iHfi. Homo-
morphisms H : Q→ R and K : R→ S compose to produce a new homomorphism
K ◦H : Q→ S, and on each quantaloid Q there is an identity homomorphism 1Q; so
(small) quantaloids and homomorphisms themselves are the objects and morphisms
of a (large) category Quant.

A lax functor2 F : Q → R maps f : A → B in Q to Ff : FA → FB in R in
such a way that

- if f ≤ f ′ in Q(A,B) then Ff ≤ Ff ′ in R(FA,FB),
- if f : A→ B and g : B → C in Q, then Fg ◦ Ff ≤ F (g ◦ f) in R,
- for any A in Q, 1FA ≤ F1A in R.

Lax functors compose in the obvious manner, so there is a (large) category Quantlax
of (small) quantaloids and lax morphisms, containing Quant. If a lax functor pre-
serves all identities, then it is said to be normal; the composite of such is again a
normal lax functor, so these are the morphisms of a category containing Quant and
contained in Quantlax.

Now suppose that F : Q → R is a lax functor. If C is any Q-category, then it
is straightforward to define an R-category FC with the same object set as C but
with homs given by FC(y, x) = F (C(y, x)). This construction extends to distrib-
utors and functors, producing a 2-functor Cat(Q) → Cat(R) and a lax morphism
Dist(Q)→ Dist(R), both referred to as change of base functors.

For any quantaloid Q we can define the lax morphism Q→ 2 which (obviously)
sends every object of Q to the single object of 2, every arrow bigger or equal to an
identity in Q to the non-zero arrow in 2, and all other arrows to zero. The change
of base Cat(Q) → Cat(2) = Ord thus associates to any Q-category its underlying
ordered set (and sends Q-functors to monotone functions); precisely, it sends a Q-
category C to the order (C0,≤) where

x ≤ y exactly when tx = ty and 1tx ≤ C(x, y).

The Q-category C is said to be skeletal (or separated) when its underlying order is
anti-symmetric. Even when C is not skeletal, PC (and hence its full subcategory
Ccc) is.

Example 2.5.1 Tautologically, an order (X,≤) is skeletal qua 2-enriched category
if and only if the order-relation ≤ is anti-symmetric; in other words, (X,≤) is
a partially ordered set (but we will avoid that terminology, leaving the adjective
‘partial’ available for something quite different—see Subsection 3.3).

Example 2.5.2 Applied to the Lawvere quantale R = ([0,∞]op,+, 0), the change
of base into 2 becomes the functor GMet → Ord which sends a generalised metric

2What we really define here, is a lax Ord-functor, i.e. a lax functor between quantaloids qua Ord-
enriched categories.

- 319 -



D. HOFMANN AND I. STUBBE TOPOLOGY FROM ENRICHMENT

space (X, d) to the ordered set (X,≤) in which x ≤ y precisely when d(x, y) = 0.
It follows that a generalised metric space (X, d) is skeletal quaR-enriched category
if and only if the distance function is separating in the sense that d(x, y) = 0 =
d(y, x) implies x = y. A symmetric and skeletal (X, d) is thus the same thing as
a metric d : X ×X → [0,∞] (allowing∞). Clearly, if the metric is symmetric or
separated then its underlying order is so too.

Example 2.5.3 Up to now we have considered the ordered set [0,∞]op as a quan-
tale for the addition; and we saw that ([0,∞]op,+, 0)-enriched categories are gen-
eralised metric spaces. But we can also consider the locale ([0,∞]op,∨, 0)—so it
is the same underlying order, but now with binary supremum as binary operation.
It is straightforward to check that a ([0,∞]op,∨, 0)-enriched category is exactly a
generalised ultrametric space (X, d), i.e. a distance function d : X ×X → [0,∞]
satisfying d(x, x) = 0 and d(x, y) ∨ d(y, z) ≥ d(x, z). (As for generalised met-
rics, also generalised ultrametrics can be symmetric or skeletal.) Because for any
a, b ∈ [0,∞]op we obviously have a+ b ≥ a ∨ b, the identity function is a lax mor-
phism from ([0,∞]op,∨, 0) to ([0,∞]op,+, 0); the induced change of base functor
is simply the inclusion of generalised ultrametric spaces into generalised metric
spaces.

In Example 3.2.6 and further we shall come back to this example.

3. Partial metric spaces as enriched categories

3.1 Diagonals

It often happens in practice that quantaloids arise from quantales by one or another
universal construction. We shall describe one such case, which will turn out to be
crucial to describe the categorical content of partial metric spaces.

First we recall a definition from [22]:

Definition 3.1.1 Fixing two morphisms f : A→ B and g : C → D in a quantaloid
Q, we say that a third morphism d : A → D in Q is a diagonal from f to g if any
(and thus both) of the following equivalent conditions holds:

i. there exist x : A→ C and y : B → D in Q such that y ◦ f = d = g ◦ x,
ii. g ◦ (g↘d) = d = (d↙f) ◦ f .

Proof of the equivalence. Obviously (ii⇒ i) is trivial. Conversely, d = g◦x ≤ g◦
(g ↘ d) ≤ d holds because g◦x = d implies x ≤ g ↘ d; similarly d = (d↙ f)◦f
follows from y ◦ f = d. 2

The reason for the term “diagonal” is clear from a picture to accompany the first
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condition in the above definition: given the solid morphisms in the diagram

A

f
� �

d

  

x // C

g
��

B y
// D

in Q, one seeks to add the dotted morphisms, to form a commutative diagram. The
equivalent second condition then adds that, whenever such x and y exist, then there
is a canonical choice for them, namely x = g↘d and y = d↙f .

Proposition 3.1.2 ([22]) For any (small) quantaloid Q, a new (small) quantaloid
D(Q) of diagonals in Q is built as follows:

- the objects of D(Q) are the morphisms of Q,
- a morphism from f to g in D(Q) is a diagonal from f to g in Q,
- the composition of two diagonals d : f → g and e : g → h is defined to be

e ◦g d := (e↙g) ◦ g ◦ (g↘d),

- the identity on f is f : f → f itself,
- and the supremum of a set of diagonals (di : f → g)i∈I is computed “as in
Q”.

Remark 3.1.3 Regarding composition of diagonals, it is useful to point out that the
formula given above for e ◦g d is really just one of many equivalent expressions
for the composite arrow from the upper left corner to the lower right corner in the
following commutative diagram:

·

f
� �

d
��

x // ·

g

��

e
��

u // ·

h
��

· y
// · v

// ·

Particularly, in doing so, one can choose any x, y, u, v that make the diagram com-
mute, not just the canonical x = g↘d, y = d↙f , u = h↘e, v = e↙g.

There is an obvious full and faithful inclusion homomorphism3 of Q in D(Q):

I : Q→ D(Q) :
(
f : A→ B

)
7→
(
f : 1A → 1B

)
. (6)

3Better still, this embedding enjoys a powerful universal property: it is the splitting-of-everything
in Q; and consequently it is the unit of a 2-monad on the category Quant of small quantaloids. This
has been described by Grandis [9] for small categories.
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It is thus a natural problem to study how properties of a given quantaloid Q extend
(or not) to the larger quantaloid D(Q). For later use we record a simple example:

Example 3.1.4 Say that a quantaloid Q is symmetric whenever the identity function
Q1 → Q1 is an involution on Q; explicitly, this means that Q(A,B) = Q(B,A) and
f ◦ g = g ◦ f for all objects A,B and all morphisms f, g of Q. It is then a simple
fact that Q is symmetric if and only if D(Q) is. Note that a ‘symmetric quantaloid
with a single object’ is precisely a commutative quantale. So as a particular case we
find here that, for any commutative quantale Q, the quantaloid D(Q) is symmetric.

In the next subsection we shall study a particular class of quantales and quantaloids
– the so-called divisible ones – whose diagonals behave particularly well; thereafter
we shall be interested in categories enriched in D(Q) whenever Q is a divisible
quantale.

3.2 Divisible quantaloids

In [22] we first introduced our notion of divisible quantaloid, but that first definition
contained some redundancies—so here we spell it out again, in a more optimal form.

Definition 3.2.1 A quantaloid Q is divisible4 if it satisfies any (and thus all) of the
following equivalent conditions:

i. for all d, e : A → B in Q: d ≤ e if and only if there exist x : A → A and
y : B → B such that e ◦ x = d = y ◦ e,

ii. for all d, e : A→ B in Q: d ≤ e if and only if e◦ (e↘ d) = d = (d↙ e)◦e,
iii. for all d, e : A→ B in Q: e ◦ (e↘ d) = d ∧ e = (d↙ e) ◦ e.
iv. for all e : A→ B in Q: D(Q)(e, e) = ↓e (as sublattices of Q(A,B)),
v. for all d, e : A→ B in Q: D(Q)(d, e) = ↓(d∧e) (as sublattices of Q(A,B)).

Proof of the equivalences. The implications (i ⇐ ii ⇐ iii) hold trivially, as do
(ii ⇔ iv ⇐ v); and to see that (i ⇒ ii) one merely needs to adapt slightly the
argument given for the equivalence of the conditions in Definition 3.1.1.

Now assume (ii); putting e = 1A in the condition and using that Q(A,A) =
D(Q)(1A, 1A), shows that Q is necessarily integral (meaning that, for every object
A, the identity morphism 1A is the top element of Q(A,A)). From d ∧ e ≤ e we
get d ∧ e = e ◦ (e↘ (d ∧ e)); but e↘ (d ∧ e) = (e↘d) ∧ (e↘ e) (because right
adjoints preserve infima) and e↘ e = 1A (by integrality of Q) so (e↘ d) ∧ (e↘
e) = (e↘d); altogether, we find d∧ e = e ◦ (e↘d). A similar computation proves
that d ∧ e = (d↙e) ◦ e, so in all we proved (ii⇒ iii).

4Note how the notion of divisibility is self-dual: Q is divisible if and only if Qop is. Put differently,
formally it makes sense to define Q to be semi-divisible if, for all d, e : A→ B in Q, e◦(e↘d) = d∧e;
and then Q is divisible if and only if both Q and Qop are semi-divisible.
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To complete the proof we shall show that (ii ⇒ v). First, we use again that Q
is necessarily integral to find, for any f ∈ D(Q)(d, e), that f = (f ↙ d) ◦ d ≤
1B ◦ d = d; and similar for f ≤ e. Conversely, if f ≤ d ∧ e then e ◦ (e↘ f) = f
and (f ↙ d) ◦ d = f both follow directly from the assumption, and show that
f ∈ D(Q)(d, e). 2

To stress that the definition in [22] agrees with Definition 3.2.1 above, we record an
observation made in the proof above5:

Proposition 3.2.2 A divisible quantaloid Q is always integral.

We also observe:

Proposition 3.2.3 A divisible quantaloid Q is always locally localic6.
Proof. For (fi)i∈I , g be in Q(A,B) we certainly have

∨
i(fi ∧ g) ≤ (

∨
i fi) ∧ g.

Assuming Q to be divisible, we can furthermore compute that

(
∨
i

fi) ∧ g = (
∨
i

fi) ◦
(

(
∨
j

fj)↘g
)

=
∨
i

(
fi ◦

(∧
j

(fj↘g)
))

≤
∨
i

(
fi ◦ (fi↘g)

)
=
∨
i

(fi ∧ g)

which leads to the conclusion:
∨

i(fi ∧ g) = (
∨

i fi) ∧ g. 2

The very definition of divisibility already shows a link with the diagonal construc-
tion; the next proposition adds to that:

Proposition 3.2.4 A quantaloid Q is divisible if and only if D(Q) is divisible.
Proof. As we may regard Q as a full subquantaloid of D(Q), if the latter is divisible
then so must be the former.

Now suppose that Q is divisible. By Condition (iv) in Definition 3.2.1 we find
that D(Q) is integral, so one implication in Condition (i) is trivial for D(Q). For the
other implication, consider two diagonals

X0

f
��

d

  d′   

Y0

g
��

X1 Y1

5This Proposition 3.2.3, and also Proposition 3.2.4, help to show that there are very many non-
divisible quantaloids. For instance, if (M, ◦, 1) is any monoid, then the free quantale (P(M), ◦, {1})
is divisible if and only if M = {1}. The quantaloid Dist(Q) is not divisible in general, even for
divisible Q—because it is not integral. The quantale of sup-endomorphisms on a sup-lattice is not
divisible in general. And so forth.

6This means that each lattice Q(A,B) of morphisms in Q with the same domain and the same
codomain is a locale. This does not mean that composition in Q preserves finite infima in each variable
(e.g. the empty infimum is hardly ever preserved).
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such that d ≤ d′ in D(Q)(f, g). Because we necessarily have d ≤ d′ in Q(X0, Y1)
too, it follows from the assumptions on Q that there exist x : X0 → X0 and y : Y1 →
Y1 such that y◦d′ = d = d′◦x in Q. Furthermore, f ◦x ≤ f in Q(X0, X1) (because
Q is integral), so that there exists an x′ : X1 → X1 such that ξ := f ◦x = x′◦f ; and
for similar reasons there is an y′ : Y0 → Y0 such that η := y ◦g = g ◦y′. Displaying
all these morphisms in the diagram

X0

f
��

x //

ξ
!!

X0

f
��

d

  d′   

Y0

η
  

g
��

y′
// Y0

g
��

X1
x′
// X1 Y1 y

// Y1

shows that ξ and η are diagonals too, and from Remark 3.1.3 it is clear that d′ ◦f ξ =
d = η ◦g d′. So we showed that d′ divides d in D(Q), as required. 2

An important class of examples is provided by:

Example 3.2.5 Any locale H is (commutative and) divisible: for any a, b ∈ H
we have a ∧ (a ⇒ b) ≤ b by the universal property of the “implication”, and
a ∧ (a ⇒ b) ≤ a holds trivially, so we already find a ∧ (a ⇒ b) ≤ a ∧ b; and
conversely, b ≤ (a ⇒ b) holds by its equivalence to the trivial a ∧ b ≤ b, and
therefore also a ∧ b ≤ a ∧ (a ⇒ b) holds. Via the argument in Example 3.1.4 and
the above Proposition 3.2.4 it follows that also the quantaloid D(H) is symmetric
and divisible7. Both H and D(H) are Cauchy-bilateral (for the identity involution),
see [10, Example 4.5]. In particular is this all true for H = ([0,∞]op,∨, 0).

We hasten to point out our other main example:

Example 3.2.6 The Lawvere quantale R = ([0,∞]op,+, 0) is (commutative and)
divisible. The “implication” in this quantale is given by a  b = 0 ∨ (b − a)
(truncated substraction), and so it is easily seen that a + (a  b) = a ∨ b, as
required. It thus follows that its quantaloid of diagonals D(R) is symmetric and
divisible. In [10, Example 4.4] it is shown that R is Cauchy-bilateral; we shall now
prove the stronger fact that also D(R) is Cauchy-bilateral.

Because the Lawvere quantale is divisible, we know by Condition (iv) in Def-
inition 3.2.1 that its quantaloid of diagonals is integral. Therefore, as explained in
[10, Definition 4.2], the latter is Cauchy-bilateral if and only if the following holds8:

7Note that – because every element of H is idempotent – the quantaloid D(H) is exactly the
universal splitting-of-idempotents in H; that is to say, any homomorphism H → R into a quantaloid
in which all idempotents split, extends essentially uniquely to a homomorphism D(H)→ R.

8This expresses exactly that, whenever fi : a → bi and gi : bi → a are diagonals so that the
supremum of the composites gi◦bi fi is bigger than the identity diagonal on a, then so is the supremum
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for any index-set I and elements a, bi, fi, gi ∈ [0,∞],

if fi ∧ gi ≥ a ∨ bi and a ≥
∧
i

(gi + fi − bi) then a ≥
∧
i

(2(fi ∨ gi)− bi).

Because R is linearly ordered and the formulas are symmetric in fi’s and gi’s, we
may suppose that gi ≥ fi ≥ bi for all i ∈ I . Under this harmless extra assumption
we can compute that∧

i

gi ≥
∧
i

fi ≥ a ≥
∧
i

(gi + fi − bi) ≥
∧
i

gi

and furthermore∧
i

(2(fi ∨ gi)− bi) =
∧
i

(2gi − bi) ≥
∧
i

gi ≥
∧
i

fi.

It is thus sufficient to prove that: for any index-set I and elements bi, fi, gi ∈ [0,∞],

if gi ≥ fi ≥ bi and
∧
i

fi ≥
∧
i

(gi + fi − bi) then
∧
i

fi ≥
∧
i

(2gi − bi).

But from
∧

i(gi + fi − bi) ≤
∧

i fi we know that for any ε > 0 there exists k ∈ I
such that for any j ∈ I: gk + fk − bk < fj + ε; and upon putting j = k it follows
that gk − bk < ε. Secondly, since

∧
i gi ≤

∧
i fi we find for any ε > 0 some i ∈ I

such that for any j ∈ I , gi < fj + ε. Summing up, for any ε > 0 there is an
i ∈ I such that for any j ∈ I , 2gi − bi < fj + 2ε; and this means exactly that∧

i(2gi − bi) ≤
∧

i fi, as wanted.

The close relationship between the two previous examples, ([0,∞]op,∨, 0) and
([0,∞]op,+, 0), can be traced back to divisibility, as follows.

Let Q = (Q, ◦, 1) be any divisible quantale, and write QH = (Q,∧, 1) for the
underlying locale; because Q is integral it follows that the identity function is a lax
morphism from QH to Q. We must distinguish between the quantaloid D(Q) of
diagonals inQ and the quantaloid D(QH) of diagonals inQH . However, both these
divisible quantaloids have the same objects, and – as spelled out above – for fixed
f, g ∈ Q we also find that

D(Q)(f, g) = ↓(f ∧ g) = D(QH)(f, g).

Furthermore, the identity on an object f ∈ Q, in both D(Q) and D(QH), is the
greatest element of D(Q) = D(QH), viz. f itself. So the only (but crucial) differ-
ence between both these quantaloids, is the composition law:

of the composites of (gi ∨ f o
i ) ◦bi (g

o
i ∨ fi); but the involution on D(Q) is the identity – stemming

from Q’s commutativity – and composition is computed as g ◦b f = g + f − b.
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- the composite of d : f → g and e : g → h in D(Q) is e◦gd = (e↙g)◦g◦(g↘d),
- the composite of d : f → g and e : g → h in D(QH) is e ∧ d.
However, these expressions compare: because e◦gd = e◦(g↘d) ≤ e, and similarly
e ◦g d ≤ d, so e ◦g d ≤ e ∧ d. In other words, the identity function on objects and
arrows defines a normal lax morphism from D(QH) to D(Q). Furthermore, the lax
morphisms QH → Q and D(QH) → D(Q) commute with the full embeddings
Q→ D(Q) and QH → D(QH) to make the following square commute:

QH
//

� �

Q

��

D(QH) // D(Q)

(7)

When applying the above constructions to R = ([0,∞]op,+, 0), we already
know that categories enriched in R are generalised metric spaces (Example 2.2.2);
we also know that categories enriched in RH are generalised ultrametric spaces
and that the change of base induced by the lax morphism from RH to R encodes
precisely the inclusion of ultrametrics into metrics (Example 2.5.3). In the next
section we study the two other bases of enrichement made available in Diagram (7).

3.3 Partial categories, partial metrics

When Q is a small quantaloid, then so is D(Q); hence the theory of enriched cate-
gories applies to D(Q) as much as it does to Q. The full embedding I : Q → D(Q)
induces a change of base Cat(Q) → Cat(D(Q)) which shows how Q-categories
fit into D(Q)-categories. For the sake of exposition, we introduce the following
terminology and notation:

Definition 3.3.1 A partial Q-enriched category (functor, distributor) is a D(Q)-
enriched category (functor, distributor). We write PCat(Q) := Cat(D(Q)) and
PDist(Q) := Dist(D(Q)).

Explicitly, a partial Q-category C consists of
(obj) a set C0,
(typ) a function t : C0 → Q1,
(hom) a function C : C0 × C0 → Q1,

such that, in the quantaloid Q, we have that
(PC0) (C(y, x)↙ tx) ◦ tx = C(y, x) = ty ◦ (ty↘C(y, x)),
(PC1) tx ≤ C(x, x),
(PC2)9 (C(z, y)↙ ty) ◦ ty ◦ (ty ↘ C(y, x)) ≤ C(z, x).

9Or any of the equivalent expressions obtained by replacing the left hand side, thanks to (PC0),
with either (C(z, y)↙ ty) ◦ C(y, x) or C(z, y) ◦ (ty ↘ C(y, x).
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Similarly one can express the notions of D(Q)-enriched functor and distributor
to avoid explicit references to the diagonal construction, and speak of ‘partial Q-
functor’ and ‘partial Q-distributor’ between partial Q-categories.

Upon identification of Q with its image in D(Q) along the full embedding
I : Q→ D(Q), it is clear that (“total”) Q-categories (and functors between them) are
exactly the same thing as partial Q-categories for which all object-types are iden-
tity morphisms (and partial functors between them). Indeed, the change of base
Cat(Q) → PCat(Q) induced by the full embedding I : Q → D(Q) is precisely the
full inclusion of Q-categories (and functors) into partial Q-categories (and partial
functors).

As a converse to the inclusion of Q into D(Q), we can observe that any diagonal
d : f → g can be “projected” onto its “domain” and onto its “codomain”:

Proposition 3.3.2 For any quantaloid Q, both

J0

(
d : f → g

)
=
(
g↘d : dom(f)→ dom(g)

)
J1

(
d : f → g

)
=
(
d↙f : cod(f)→ cod(g)

)
are lax morphisms. The induced change of base functors J0, J1 : PCat(Q) →
Cat(Q), send a partial Q-category C to:
- the Q-category J0C with object set C0, type function C0 → Q0 : x 7→ dom(tx),

and hom function C0 × C0 → Q1 : (y, x) 7→ ty↘C(y, x),
- the Q-category J1C with object set C0, type function C0 → Q0 : x 7→ cod(tx),

and hom function C0 × C0 → Q1 : (y, x) 7→ C(y, x)↙ tx.

Proof. For morphisms f, g in Q, the map D(Q)(f, g)→ Q(dom(f), dom(g)) : d 7→
g↘ d preserves order. Given diagonals d : f → g and e : g → h, we know that
h ◦ (h↘ e) ◦ (g↘ d) = e ◦g d, from which it follows by lifting through h that
(h↘ e) ◦ (g↘ d) ≤ h↘ (e ◦g d), or in other words, J0(e) ◦ J0(d) ≤ J0(e ◦g d).
Finally, for any morphism f in Q we have that 1dom(f) ≤ (f↘ f) = J0(1f ). The
proof for J1 is entirely dual. 2

In a somewhat different context [23], these change of base functors have been called
the forward and backward globalisation of a partial Q-category. It can be remarked
that, since J0 : D(Q) → Q is a left inverse to I : Q → D(Q) (that is, J0 ◦ I is the
identity on Q), the same is true for the induced functors J0 : PCat(Q) → Cat(Q)
and I : Cat(Q)→ PCat(Q) (and similar for J1).

Even though it could be an interesting topic to compare partial Q-categories
with “total” Q-categories for a general base quantaloid Q, we shall narrow our study
down to a more specific situation: in the rest of this section we shall be concerned
only with commutative and divisible quantales—in keeping with our main example,
the Lawvere quantale R = ([0,∞]op,+, 0).
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Let us first note that, whenever Q = (Q, ◦, 1) is a commutative quantale, the
function Q × Q → Q : (f, g) 7→ f ◦ g is a homomorphism of quantales, so that
composition with the lax morphism (J0, J1) : D(Q)→ Q×Q (whose components
J0 and J1 are those of Proposition 3.3.2) produces yet another lax morphism from
D(Q) to Q:

Proposition 3.3.3 If Q is a commutative quantale10, then

K : D(Q)→ Q : (d : f → g) 7→ ((g d) ◦ (f d))

is a lax morphism. The induced change of base K : PCat(Q) → Cat(Q) sends a
partial Q-category C to the symmetric Q-category KC with object set C0 and hom
function C0 × C0 → Q : (y, x) 7→ (ty C(y, x)) ◦ (tx C(y, x)).

Unlike J0 and J1, the lax morphism K is not a left (or right) inverse to I : Q →
D(Q).

Secondly, let us narrow down the definition of partial Q-category [22]:

Proposition 3.3.4 If Q = (Q,
∨
, ◦, 1) is a divisible quantale, then a partial Q-

category C is determined by a set C0 together with a function C : C0 × C0 →
Q : (y, x) 7→ C(y, x) satisfying

C(y, x) ≤ C(x, x) ∧ C(y, y) and (C(z, y)↙ C(y, y)) ◦ C(y, x) ≤ C(z, x).

A partial functor F : C → D between partial Q-categories is a function F : C0 →
D0 satisfying

C(x, x) = D(Fx, Fx) and C(y, x) ≤ D(Fy, Fx).

And a partial distributor Φ: C c //D is a function Φ: D0 × C0 → Q satisfying

Φ(y, x) ≤ C(x, x) ∧ D(y, y), (D(y′, y)↙ D(y, y)) ◦ Φ(y, x) ≤ Φ(y′, x)

and Φ(y, x) ◦ (C(x, x)↘ C(x, x′)) ≤ Φ(y, x′).

Sketch of proof. Take the explicit description, below Definition 3.3.1, of a partial Q-
category C, and weed out the redundancies due to the particularities of the divisible
quantale Q (and the therefore also divisible quantaloid D(Q)): because both the
set of objects and the set of arrows of D(Q) are equal to Q, we find that both
the type function and the hom function take values in Q; D(Q) is integral and
tx = 1tx by construction, so the reflexivity of the hom function becomes tx =

10The commutativity of the multiplication implies, by uniqueness of adjoints, that liftings and ex-
tensions are the same thing; so in this case we shall write x y instead of x↘y = y↙x. We reserve
the notation x ⇒ y for the case where the multiplication is given by binary infimum, i.e. when the
quantale considered is actually a locale.
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C(x, x), making the type function implicit in the hom function and [PC1] obsolete;
divisibility of Q makes [PC0] equivalent to C(x, y) ≤ C(x, x) ∧ C(y, y); and
formulating the composition in D(Q) back into terms proper toQ, [PC2] is exactly
(C(z, y)↙ C(y, y)) ◦C(y, x) ≤ C(z, x). Similar simplifications apply to functors
and distributors. 2

Finally, we can fully develop – as we set out to do – the notion of ‘partial metric
space’:

Example 3.3.5 For Lawvere’s quantale R = ([0,∞]op,+, 0), and adopting com-
mon notations, a partial R-category X is precisely a set X := X0 together with a
function p := X : X ×X → [0,∞] satisfying

p(y, x) ≥ p(x, x) ∨ p(y, y) and p(z, y)− p(y, y) + p(y, x) ≥ p(z, x).

In line with Example 2.2.2 we call such a structure (X, p) a generalised partial
metric space—indeed, upon imposing finiteness, symmetry and separatedness, we
recover exactly the partial metric spaces of [18], whose definition we recalled in the
Introduction. A partial functor f : (X, p) → (Y, q) between such spaces is a non-
expansive map f : X → Y : x 7→ fx satisfying furthermore p(x, x) = q(fx, fx);
these objects and morphisms thus form the (locally ordered) category PMet :=
PCat(R) = Cat(D(R)).

Furthermore, the underlying localeRH = ([0,∞]op,∨, 0) of the Lawvere quan-
tale is also a divisible quantale. A partial RH -enriched category X is a set X := X0

together with a function u := X : X ×X → [0,∞] satisfying

u(y, x) ≥ u(x, x) ∨ u(y, y) and u(z, y) ∨ u(y, x) ≥ u(z, x).

For all the obvious reasons we shall call such a (X,u) a generalised partial ultra-
metric space. These are the objects of a (locally ordered) category GPUMet :=
PCat(RH) = Cat(D(RH)).

The commutative Diagram (7) of lax morphisms induces a commutative dia-
gram

GUMet //

��

GMet

��

GPUMet // GPMet

in which all arrows are full embeddings. When restricting to symmetric, finite and
separating distance functions in all four categories in this square, one finds the ap-
propriate categories of “non-generalised” (partial) (ultra)metric spaces.

On the other hand, as a corollary of Propositions 3.3.2 and 3.3.3 (which ap-
ply to R as well as RH !), we have three ways to compute a “total” (generalised)
(ultra)metric from a partial one: given (X, p) we find
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- p0(y, x) := p(y, x)− p(y, y) via the lax morphism J0 : D(R)→ R,
- p1(y, x) := p(y, x)− p(x, x) via the lax morphism J1 : D(R)→ R,
- pK(y, x) := 2p(y, x)− p(x, x)− p(y, y) via the lax morphism K : D(R)→ R.
These constructions will be useful in the next Section.

To end this Section, we insist on the fact that partial functors between (gener-
alised) partial (ultra)metrics are non-expansive maps that preserve self-distance. At
first sight this may seem too strong a requirement—would it not be more natural to
allow (non-expansive) functions f : (X, p) → (Y, q) to decrease the self-distances
too? But for our later purposes (namely, to canonically associate a topology to every
quantaloid-enriched category, and therefore also to each partial metric space) the lat-
ter type of map is not suitable (it does not give rise to continuous maps). However,
there is also a simple algebraic argument in favour of maps that do not decrease self-
distances (apart from their origin as functors in the appropriate categorical setting,
viz. as D(R)-enriched functors). Consider the one-element partial metric space 1a

whose single element has self-distance a ∈ [0,∞]. General non-expansive maps
f : 1a → (X, p) are in 1-1 correspondence with elements of X whose self-distance
is at most a; if we impose f to preserve self-distance, then it picks out an element
of X whose self-distance is exactly a. The second situation is thus to be preferred,
if one wants to be able to identify each element of (X, p) with precisely one map
defined on a singleton partial metric.

4. Topology from enrichment

4.1 Density and closure

A functor F : C → D between Q-categories is fully faithful when C(y, x) =
D(Fy, Fx) for every x ∈ C0 and y ∈ D; equivalently, this says that the unit of
the adjunction of distributors F∗ a F ∗ is an equality (instead of a mere inequality).
The complementary notion to full faithfulness will be of importance to us in this
section:

Definition 4.1.1 A functor F : C → D between Q-categories is fully dense if the
counit of the adjunction of distributors F∗ a F ∗ is an equality (instead of a mere
inequality); explicitly, we have for all x, y ∈ D0 that

D(y, x) =
∨
c∈C0

D(y, Fc) ◦ D(Fc, x).

It is clear that an essentially surjective F : C → D (meaning that for every y ∈ D
there exists an x ∈ C such that Fx ∼= y) is always fully dense; but the converse
need not hold.
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Proposition 4.1.2 A functor F : C→ D between Q-categories is fully dense if and
only if it is essentially epimorphic, i.e. for every H,K : D→ E, if H ◦ F ∼= K ◦ F
then H ∼= K.

Proof. If F is fully dense and H ◦ F ∼= K ◦ F , then – looking at the repre-
sented distributors – we can precompose both sides of E(−, H−) ⊗ D(−, F−) =
E(−,K−) ⊗ D(−, F−) with D(F−,−) to find E(−, H−) = E(−,K−), which
means precisely that H ∼= K.

To see the converse, consider the Yoneda embedding YD : D → PD : d 7→
D(−, d) alongside the functor Z : D → PD : d 7→ D(−, F−) ⊗ D(F−, d). Be-
cause YD(Fc) = Z(Fc) holds for all c ∈ C, the assumed essential epimorphic
F provides that YDd ∼= Zd for all d ∈ D—but since PD is a skeletal Q-category
(isomorphic objects are necessarily equal), we actually have that YDd = Zd for all
d ∈ D. This says precisely that F is fully dense. 2

Whenever C is a Q-category, any S ⊆ C0 determines a full subcategory S ↪→ C.
In particular, two subsets S ⊆ T ⊆ C0 determine an inclusion of full subcategories
S ↪→ T ↪→ C. Slightly abusing terminology we shall say that S is fully dense in T
whenever the canonical inclusion S ↪→ T is fully dense. Fixing S, we now want to
compute the largest T in which S is fully dense.

Lemma 4.1.3 If subsets S, (Ti)i∈I of C0 are such that S is fully dense in each Ti,
then S is fully dense in

⋃
i Ti.

Proof. Let us write respectively S, Ti and T for the full subcategories of C deter-
mined by S ⊆ C0, Ti ⊆ C0 and

⋃
i Ti ⊆ C0. Suppose that functors F,G : T → D

agree (to within isomorphism) on S, then density of S in each Ti makes them agree
on each Ti, and therefore on

⋃
i Ti. That is, the inclusion of S in

⋃
i Ti is fully

dense, according to Proposition 4.1.2. 2

The above lemma allows for the following definition:

Definition 4.1.4 Let C be a Q-category. The categorical closure of a subset S ⊆
C0 is the largest subset S ⊆ C0 in which S is fully dense; that is to say,

S =
⋃
{T ⊆ C0 | S is fully dense in T}.

To explicitly compute the closure of a subset S of objects of C, we can use:

Proposition 4.1.5 Let C be a Q-category and for S ⊆ C0 write i : S ↪→ C for the
corresponding full embedding. For an object x ∈ C the following are equivalent:

i. x ∈ S,
ii. C(i−, x) a C(x, i−), or explicitly: 1tx ≤

∨
s∈S C(x, s) ◦ C(s, x),

iii. C(x, x) = C(x, i−) ⊗ C(i−, x), or explicitly: C(x, x) =
∨

s∈S C(x, s) ◦
C(s, x),

iv. for every F,G : C→ D, if F|S ∼= G|S then Fx ∼= Gx.
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Proof. (i⇒ iv) By density of S in S, whenever F and G agree (up to isomorphism)
on S then they necessarily do so on S too. In particular Fx ∼= Gx whenever x ∈ S.

(iv⇒ iii) For the functors

F : C→ PC : c 7→ C(−, i−)⊗ C(i−, c) and G = YC : C→ PC : c 7→ C(−, c)

we have (much as in the proof of Proposition 4.1.2) for any s ∈ S that Fs =
C(−, i−) ⊗ C(i−, s) = C(−, s) = Gs. So F|S ∼= G|S , and therefore F ∼= G by
assumption, from which C(x, x) = (Gx)(x) = (Fx)(x) =

∨
s∈S C(x, s) ◦C(s, x)

follows.
(iii⇒ ii) Is trivial.
(ii ⇒ i) For T = {x ∈ C0 | 1tx ≤

∨
s∈S C(x, s) ◦ C(s, x)} we surely have

S ⊆ T ; so let j : S ↪→ T be the corresponding full embedding. For any x, y ∈ T we
have T(y, x) = C(y, x), so we can use the composition inequality in T to compute
that

T(y, x) ≥
∨
s∈S

T(y, js) ◦ T(js, x) ≥
∨
s∈S

T(y, x) ◦ T(x, js) ◦ T(js, x)

≥ T(y, x) ◦
∨
s∈S

T(x, js) ◦ T(js, x) ≥ T(y, x) ◦ 1tx = T(y, x)

This shows S to be fully dense in T , and therefore T ⊆ S. 2

Next we prove that the term ‘closure’ is well-chosen:

Proposition 4.1.6 For every Q-category C, (C0, (·)) is a closure space, and for
every functor F : C → D, F : (C0, (·)) → (D0, (·)) is a continuous function. This
makes for a functor Cat(Q)→ Clos.
Proof. It is straightforward to check that S 7→ S is a monotone and increasing
operation on the subsets of C0. As S is fully dense in S, which itself is fully dense
in S, and the composition of two fully dense functors is again fully dense, it follows
easily that S is fully dense in S, so S ⊆ S. This makes (C0, (·)) a closure space.

Now fix S ⊆ C0, and suppose that x ∈ S. Functoriality of F : C → D implies
that

1tFx = 1tx ≤
∨
s∈S

C(x, s) ◦ C(s, x) ≤
∨
s∈S

D(Fx, Fs) ◦ D(Fs, Fx)

=
∨

t∈FS

D(Fx, t) ◦ D(t, Fx),

which goes to show that Fx ∈ FS. This makes F : (C0, (·)) → (D0, (·)) a contin-
uous function.

The functoriality of these constructions is a mere triviality. 2
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The following example nicely relates to Subsection 2.3.

Example 4.1.7 Via the Yoneda embedding YC : C → PC : x 7→ C(−, x) we may
consider any Q-category C as a full subcategory of the presheaf Q-category PC:
so YC(C) is precisely the full subcategory of representable presheaves. For any
presheaf φ : 1X

c //C we may compute – using the Yoneda Lemma – that

φ ∈ YC(C) ⇐⇒ 1X ≤
∨

x∈C0

PC(φ, YCx) ◦ PC(YCx, φ)

⇐⇒ 1X ≤
∨

x∈C0

PC(φ, YCx) ◦ φ(x).

On the other hand, in Dist(Q) we have (as in any quantaloid) that φ : 1X
c //C is a

left adjoint if and only if its lifting through the identity, namely φ↘C : C c //1X ,
is its right adjoint, if and only if

1X ≤
∨

x∈C0

(φ↘C)(x) ◦ φ(x)

holds. Because (φ↘ C)(x) = φ↘ C(−, x) = PC(φ, YC(x)) we thus find that
φ ∈ YC(C) exactly when φ is a left adjoint; or in words: the Cauchy completion
Ccc of C is the categorical closure of C in the free completion PC.

4.2 Strong Cauchy bilaterality—revisited

Suppose now that Q is an involutive quantaloid (and, as usual, write f 7→ fo for the
involution). When C is a Q-category and S ⊆ C0 determines the full subcategory
S ↪→ C, then that same set S also determines a full subcategory Ss ↪→ Cs of the
symmetrisation Cs of C. Thus we may compute two closures of S: for notational
convenience, let us write S for its closure in C, and Ŝ for its closure in Cs. We can
then spell out that, for any x ∈ C0,

x ∈ S ⇐⇒ 1tx ≤
∨
s∈S

C(x, s) ◦ C(s, x) (8)

whereas

x ∈ Ŝ ⇐⇒ 1tx ≤
∨
s∈S

Cs(x, s) ◦ Cs(s, x)

⇐⇒ 1tx ≤
∨
s∈S

(C(x, s) ∧ C(s, x)o) ◦ (C(s, x) ∧ C(x, s)o).
(9)

It is straightforward that the second condition implies the first (without any further
condition on Q), so that Ŝ ⊆ S. This inclusion can be strict—but we have that:
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Proposition 4.2.1 For any involutive quantaloid Q, the following conditions are
equivalent:

i. for every Q-category C and every subset S ⊆ C0, the closure of S in C
coincides with the closure of S in Cs,

ii. Q is strongly Cauchy bilateral: for every family (fi : X → Yi, gi : Yi →
X)i∈I of morphisms in Q, 1X ≤

∨
i gi◦fi implies 1X ≤

∨
i(gi∧foi )◦(goi ∧fi).

Proof. We continue with the notations introduced before the statement of this Prop-
osition. If we apply the second condition to the family

(C(s, x) : tx→ ts,C(x, s) : ts→ tx)s∈S

then we obtain immediately that x ∈ Ŝ whenever x ∈ S, so S = Ŝ.
Conversely, given the family of morphisms in the second condition, define the

Q-category C with object set C0 = I ] {x}, types given by tx = X and ti = Yi,
and homs given by

C(i, x) = fi, C(x, i) = gi, C(x, x) = 1X , and C(j, i) =

{
0Yj ,Yi when i 6= j,
1Yi when i = j.

By assumption we must have I = Î for the subset I ⊆ C0, so in particular x ∈ I
must imply x ∈ Î . Spelling this out with the aid of Equations (8) and (9) reveals the
required formulas. 2

In [10], the notion of a ‘strongly Cauchy bilateral’ quantaloid Q was introduced
as a purely formal stronger version of (“ordinary”) Cauchy bilaterality, because in
several examples the stronger version holds, and it is easier to verify. Here now,
in the context of closures on Q-categories, we have an explanation for the strong
Cauchy bilaterality of Q as encoding precisely that “closures can be symmetrised”.
(But we do repeat that, for an integral quantaloid, strong Cauchy bilaterality and
(‘ordinary’) Cauchy bilaterality are equivalent.) Whereas the Cauchy bilaterality
of an involutive quantaloid Q implies that there is a distributive law of the Cauchy
monad over the symmetrisation comonad on Cat(Q) [10, Corollary 3.9], we can
express strong Cauchy bilaterality of Q to mean that the functor Cat(Q) → Clos
is invariant under composition with the symmetrisation comonad (−)s : Cat(Q) →
Cat(Q).

4.3 Groundedness and additivity

The final issue we wish to address here in full generality, concerns the topologicity
of the closure associated with any Q-category—and this turns out to be a rather
subtle point. Recall that a closure is said to be topological when it is both grounded
(i.e. ∅ = ∅) and additive (i.e. S ∪ T = S ∪ T ). Especially when considering
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(convergence of) sequences in a closure space – as we shall wish to do in the next
section in the case of partial metric spaces – it is problematic if that closure is non-
grounded: for then any sequence converges to every point in ∅.

First, for any Q-category C it is easy to check that ∅ = {x ∈ C0 | 1tx = 0tx};
but for an object Z in Q we have that 0Z = 1Z if and only if Z is a zero object
(both terminal and initial); therefore ∅ = ∅ if and only C0 has no element whose
type is a zero object in Q. Conversely, if Q has a zero object Z, then quite obviously
the categorical closure of the Q-category 1Z does not satisfy ∅ = ∅. That is to say,
the functor Cat(Q)→ Clos of Proposition 4.1.6 factors through the full subcategory
Closgd of grounded closure spaces if and only if Q does not have a zero object.

Example 4.3.1 Any non-trivial quantale – viewed as a one-object quantaloid – does
not have a zero object, and therefore the categorical closure on such a quantale-
enriched category is always grounded. However, every quantaloid of diagonals (our
main concern in this paper) has zero objects: indeed, every zero morphism in a
quantaloid Q determines a zero object in D(Q). In particular, even when Q is a
non-trivial quantale, D(Q) will still have exactly one zero object. The categorical
closure on a D(Q)-enriched category may thus very well be ungrounded—and thus
we must be a little bit more careful when studying (convergence of) sequences in
such an enriched category. The case that springs to mind is Lawvere’s quantale of
positive reals,R = ([0,∞]op,+, 0), whereR-categories (generalised metric spaces,
cf. Example 2.2.2) have a grounded closure, but D(R)-categories (generalised par-
tial metric spaces, cf. Example 3.3.3) may have an ungrounded closure.

However, if Q does have a (unique11) zero object Z, we can always “discard” the
elements of type Z from any given Q-category C: more precisely, if we define its
full subcategories Cz and Cnz to have as elements

(Cz)0 = {x ∈ C0 | tx = Z} and (Cnz)0 = {x ∈ C0 | tx 6= Z}

then C is exactly their categorical sum (coproduct): C = Cnz + Cz.
Because any Q-functor F : C → D preserves types, it restricts to elements of

non-zero type as Fnz : Cnz → Dnz. It follows easily that the canonical injection
i : Cnz → C is the counit for a (strictly) idempotent comonad on Cat(Q), whose
category of coalgebras Cat(Q)nz is exactly the full coreflective subcategory of those
Q-categories that do not have elements of type Z:

Cat(Q)nz � s 88>

(−)nz
xx

Cat(Q)

11A similar reasoning holds when Q has several (necessarily uniquely isomorphic) zero objects, but
we shall not need encounter that situation further on; indeed, our main concern is Q = D(R).
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Furthermore, if we write Qnz for the (smaller) quantaloid obtained from Q by dis-
carding its zero object Z, then Cat(Q)nz = Cat(Qnz) (and the full embedding
Cat(Q)nz = Cat(Qnz) ↪→ Cat(Q) is actually the change of base determined by the
homomorphism Qnz ↪→ Q). This goes to show that we always have a factorisation

Cat(Q)nz Cat(Qnz)

��

� � // Cat(Q)

��

Closgd
� � // Clos

The study of (convergence of) sequences of elements in a Q-category C (for the
categorical closure) is most useful, not in the whole of C, but in its “non-zero core-
flection” Cnz.

In Section 5 we shall consider (convergence and Cauchyness of) sequences in
(the non-zero coreflection of) a generalised partial metric space, and we shall want
to relate it to the categorical Cauchy completion. To prepare the ground, we make
here a few general observations regarding the Cauchy completion of a Q-category
C in case the quantaloid Q has a (unique) zero object Z. For any Q-category C
there is a unique Cauchy distributor from 1Z to C, namely φ : 1Z

c //C with, for all
x ∈ C0, the φ(x) : Z → tx being the unique element of Q(tx, Z). In other words,
the Q-category Ccc contains exactly one element of type Z, which means that

Ccc
∼= (Ccc)nz + 1Z .

On the other hand, a Cauchy presheaf on Cnz as Qnz-category is exactly a Cauchy
presheaf on Cnz as Q-category whose type is not zero. That is to say, the following
square commutes:

Cat(Q)
(−)nz

//

(−)cc
��

Cat(Qnz)

(−)cc
� �

Cat(Q)nz

Cat(Q)
(−)nz

// Cat(Qnz) Cat(Q)nz

(where on the right hand side we do the Cauchy completion qua Qnz-enriched cate-
gory!). As a consequence, we find:

Proposition 4.3.2 For Q a quantaloid with a unique zero object Z and C any Q-
category, we have that

Ccc
∼= (Cnz)cc + 1Z in Cat(Q)
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where Ccc is the Q-enriched Cauchy completion of C and (Cnz)cc is the Qnz-enrich-
ed Cauchy completion of Cnz (whose elements are in fact the Q-enriched Cauchy
presheaves on Cnz whose type is not Z).

Finally, we end with a comment on the additivity of the categorical closure on
C. As for any closure, it is always true that S ∪ T ⊆ S ∪ T for any S, T ⊆ C0, but
this inclusion need not be an equality. Indeed, for an x ∈ C0 we have that

x ∈ S ∪ T ⇐⇒ 1tx ≤
∨

r∈S∪T
C(x, r) ◦ C(r, x)

⇐⇒ 1tx ≤ (
∨
s∈S

C(x, s) ◦ C(s, x)) ∨ (
∨
t∈T

C(x, t) ◦ C(t, x)),
(10)

whereas

x ∈ S ∪ T ⇐⇒ 1tx ≤
∨
s∈S

C(x, s) ◦C(s, x), 1tx ≤
∨
t∈T

C(x, t) ◦C(t, x). (11)

It is now straightforward to identify a sufficient condition for the closure of any Q-
category to be topological (i.e. grounded and additive), which turns out to be also
necessary when Q is integral). Admittedly this is not the most elegant condition—
but it serves our purposes in the upcoming subsections.

Proposition 4.3.3 For any quantaloid Q, if every identity arrow is finitely join-
irreducible12 then the closure associated to any Q-category C is topological. For
any integral quantaloid Q the converse holds too.
Proof. For any Q-category C it is easy to check that ∅ = {x ∈ C0 | 1tx = 0tx};
therefore ∅ = ∅ if and only if none of the identities in Q is a bottom element. It is
furthermore clear from the comparison of (10) and (11) that finite join-irreducibility
of identities in (any) Q suffices for closures to be topological. Conversely, and under
the extra assumption that Q is integral, for any f, g ∈ Q(X,X) there is a Q-category
C with three objects of type X , say x, y, z, and hom-arrows

C(x, y) = f, C(y, z) = g, C(x, z) = f ◦ g, and all others are 1X .

It is easy to compute with the formula in Proposition 4.1.5–ii that

y ∈ {x, z} ⇔ 1X ≤ f ∨ g, y ∈ {x} ⇔ 1X ≤ f, y ∈ {z} ⇔ 1X ≤ g.

Thus, if this closure is topological then 1X must be finitely join-irreducible. 2

If a quantaloid Q has a (unique) zero object, then it can never satisfy the condition in
the above proposition; but removing that zero object from Q may very well produce
a quantaloid Qnz that does satisfy the condition above.

12We mean here that, for any object X of Q, if 1X ≤ f1 ∨ ...∨ fn (n ∈ N) then 1X ≤ fi for some
i ∈ {1, ..., n}. In other words, 1X 6= 0X and for any 1X ≤ f ∨ g we have 1X ≤ f or 1X ≤ g.
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5. Topology from partial metrics

5.1 Finitely typed partial metric spaces

From now on we shall apply the previous material to the particular case where
the base quantaloid is the quantaloid of diagonals in the (divisible, commutative)
Lawvere quantale R = ([0,∞]op,+, 0). As before, we shall write an R-enriched
category as (X, d), and a D(R)-enriched category as (X, p), to insist on their un-
derstanding as generalised (partial) metric spaces—even though we shall of course
use the fully general theory of quantaloid-enriched categories where we see fit.

The quantale R has its identity finitely join-irreducible (because the order is
linear). The quantaloid D(R) has a unique zero object, namely∞ (an unfortunate
notational clash, due to the reversal of the natural order on [0,∞]), but once we
remove this zero object, the resulting quantaloid D(R)nz has all its identities finitely
join-irreducible (because the local order is linear). We saw in Examples 3.2.5 and
3.2.6 that R and D(R) are both strongly Cauchy bilateral; a fortiori the same is true
for the subquantaloid D(R)nz.

The categorical closure on a generalised partial metric space (X, p) is, as indi-
cated in the previous section, non-grounded as soon as there exists an x ∈ X such
that p(x, x) = ∞. Excluding the points of self-distance13 ∞ from (X, p) (that is,
those elements which are of type ∞ in (X, p) qua D(R)-enriched category), we
make sure that the categorical closure on that finitely typed part of (X, p) is topo-
logical.

Restricting our attention now to finitely typed generalised partial metric spaces –
by which we mean of course those partial metrics such that p(x, x) <∞, so that in
effect we consider categories enriched in D(R)nz – we may infer from Propositions
4.2.1 and 4.3.3 that:

Proposition 5.1.1 The categorical closure on a finitely typed generalised partial
metric space (X, p) is topological, and is identical to the closure on the associated
symmetric finitely typed generalised partial metric space (X, ps) (where ps(y, x) =
p(y, x) ∨ p(x, y)).

Now, for a finitely typed generalised partial metric space (X, p), we find from
Proposition 4.1.5 that, for any subset S ⊆ X and any x ∈ X ,

x ∈ S ⇐⇒ p(x, x) ≥
∧
s∈S

p(x, s)− p(s, s) + p(s, x)

⇐⇒ 0 ≥
∧
s∈S

p(x, s)− p(s, s) + p(s, x)− p(x, x)
(12)

13But we insist that for x 6= y in X it may still happen that p(x, y) =∞.
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The expression under the infimum is thus precisely equal to p0(x, s) + p0(x, s) for
the generalised metric p0 associated with the partial metric p through the change of
base J0 : D(R)→ R (see below Example 3.3.5). That is to say:

Proposition 5.1.2 The categorical topology on a finitely typed generalised partial
metric space (X, p) is identical to the topology on the generalised metric space
(X, p0) (where p0(y, x) := p(y, x)− p(x, x)).

Putting both previous Propositions together, we can conclude that the categorical
topology on a finitely typed generalised partial metric space is always metrisable
by means of a symmetric generalised metric. And for such a symmetric generalised
metric space (X, d), Proposition 4.1.5 says that

x ∈ S ⇐⇒ 0 ≥
∧
s∈S

d(x, s) + d(s, x) ⇐⇒ 0 ≥
∧
s∈S

2 · d(x, s)

⇐⇒ 0 ≥
∧
s∈S

d(x, s) ⇐⇒ ∀ε > 0 ∃s ∈ S : d(x, s) < ε

Thus the categorical topology on (X, d) is exactly the usual metric topology—with
a basis given by the collection of open balls

{B(x, ε) := {y ∈ X | d(x, y) < ε} | x ∈ X, ε > 0},

with its usual notion of convergent sequences, etc.
One could consider this a disappointment: there are not more “partially metris-

able topologies” then there are metrisable ones. Still, one must realise that it is not
always trivial to interpret topological and/or metric phenomena in a given finitely
typed partial metric (X, p) by passing to some metric (X, d) which just happens to
define the same topology. The next subsection is entirely devoted to the study of
convergent sequences in finitely typed partial metrics.

5.2 Convergence . . .

A fundamental use of topology is its inherent notion of convergence for sequences:
(xn)n → x in a topological space (X,T) when for every x ∈ U ∈ T there exists an
n0 such that xn ∈ U for every n ≥ n0. When the topology stems from a symmetric
generalised metric d on X , it is sufficient to consider open balls centered in x, and
so

(xn)n → x ⇐⇒ ∀ε > 0 ∃n0 ∀n ≥ n0 : d(xn, x) < ε.

A convergent sequence is necessarily a Cauchy sequence, meaning that

∀ε > 0 ∃n0 ∀m,n ≥ n0 : d(xn, xm) < ε,
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and a symmetric generalised metric space is said to be (sequentially) Cauchy com-
plete precisely when every Cauchy sequence converges. But note that the definition
of Cauchy sequence is symmetric in xn and xm even when the generalised metric
d is not symmetric—and so it makes perfect sense for any generalised metric space.
As recalled in Example 2.3.2, Lawvere [17] proved that a generalised metric space
(X, d) is sequentially Cauchy complete if and only if every left adjoint distributor
into (X, d) (now viewed as an R-enriched category) is representable.

Now consider a finitely typed generalised partial metric space (X, p); its cate-
gorical topology is equivalently described by the symmetric generalised metric

(p0)s(y, x) = p0(y, x)∨p0(x, y) = (p(y, x)−p(x, x))∨ (p(x, y)−p(y, y)), (13)

and therefore a sequence (xn)n in (X, p) converges to x ∈ X precisely when

∀ε > 0 ∃n0 ∀n ≥ n0 : (p(x, xn)− p(xn, xn)) ∨ (p(xn, x)− p(x, x)) < ε. (14)

In what follows we shall first try to improve on our understanding of this formula,
and thus of convergence in (X, p), before we look at Cauchy sequences and com-
pletion.

For any quantaloid Q, the terminal object T in Cat(Q) (exists and) has the
following description: its object set is T0 = Q0, the type function is the iden-
tity, and the hom function is T0 × T0 → Q1 : (Y,X) 7→ >X,Y (where >X,Y is
the top element in Q(X,Y )). The unique functor from a Q-category C to T is
C0 → T0 : x 7→ tx, that is, it is C’s type function. From Proposition 4.1.6 we
deduce that the type function of a Q-category is continuous—but, of course, the use
of this statement depends on the categorical topology of T. If we work over the
quantaloid D(R)nz (so that Cat(D(R)nz) = Cat(D(R))nz is exactly the category
of finitely typed partial metric spaces), then things are as follows:

Proposition 5.2.1 The terminal finitely typed generalised partial metric space (T, p)
is defined by T = [0,∞[ and p(a, b) = a ∨ b; its categorical topology is the usual
metric topology.
Proof. The general construction of the terminal D(R)nz-category T, which we now
write as a generalised partial metric space (T, p), says that{

T = objects of D(R)nz = [0,∞[
p(a, b) = top element of D(R)nz(a, b) = a ∨ b

From the above discussion, the categorical topology on the partial generalised met-
ric (T, p) is equivalently described by the (“total”) generalised metric (T, p0), which
in turn is equivalently described by its symmetrisation (X, (p0)s). A simple com-
putation leads to

(p0)s(a, b) = p0(a, b) ∨ p0(b, a) = ((a ∨ b)− a) ∨ (a ∨ b)− b) = |a− b|.
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That is to say, the categorical topology on (T, p) (qua partial metric space) is pre-
cisely the usual metric topology. 2

Corollary 5.2.2 For every finitely typed generalised partial metric space (X, p),
equipped with its categorical topology,

i. the function X → [0,∞[ : x 7→ p(x, x) is continuous (for the usual topology
on [0,∞[),

ii. if (xn)n → x in (X, p) then limn→∞ p(xn, xn) = p(x, x).

We can now prove a practical characterisation of convergence in a finitely typed
partial metric space, which subsumes the definition of convergence from [5] (in the
case p is symmetric, separated and never takes the value∞) and improves the one
given in [19] (in that it eliminates all double limits14):

Proposition 5.2.3 In a finitely typed generalised partial metric space (X, p), equip-
ped with its categorical topology, we have a convergent sequence (xn)n → x if and
only if all three limits

lim
n→∞

p(x, xn), lim
n→∞

p(xn, xn) and lim
n→∞

p(xn, x)

(exist and) are equal to p(x, x).

Proof. Suppose first that (xn)n → x in (X, p). Because p(x, xn) ∧ p(xn, x) ≥
p(x, x) ∨ p(xn, xn), the expression in (14) is equivalent to

∀ε > 0 ∃n0 ∀n ≥ n0 :

{
|p(x, xn)− p(xn, xn)| < ε
|p(xn, x)− p(x, x)| < ε

and so in particular limn→∞ p(xn, x) = p(x, x). Corollary 5.2.2 assures that
limn→∞ p(xn, xn) = p(x, x), that is,

∀ε > 0 ∃n1 ∀n ≥ n1 : |p(xn, xn)− p(x, x)| < ε,

and so for any n ≥ n0 ∨ n1 also

|p(x, xn)− p(x, x)| ≤ |p(x, xn)− p(xn, xn)|+ |p(xn, xn)− p(x, x)| < 2ε.

Therefore limn→∞ p(x, xn) = p(x, x) too. Hence we proved the necessity of the
three limits.

14Precisely, in [19] it is required that limm,n→∞ p(xm, xn) = p(x, x) instead of our condition
limn→∞ p(xn, xn) = p(x, x). Conceptually, our simple limit expresses that the type of xn should
converge to the type of x (but nothing more); therefore our notion of convergence is directly applicable
to the typed sequences of Definition 5.3.1 further on.
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Conversely, knowing that limn→∞ p(x, xn) = p(x, x) = limn→∞ p(xn, xn),
we find also

0 ≤ |p(x, xn)− p(xn, xn)| ≤ |p(x, xn)− p(x, x)|+ |p(x, x)− p(xn, xn)|,

whence limn→∞(p(x, xn) − p(xn, xn)) = 0. Together with limn→∞ p(xn, x) =
p(x, x) this shows the sufficiency of the three limits. 2
The middle limit in the above proposition is crucial, as the following example indi-
cates:

Example 5.2.4 For A a (non-empty) finite alphabet, let X be the union of all non-
empty words and all sequences in that alphabet: it is a finitely typed generalised
partial metric space if we put p(x, y) = (12)k where k is the position of the first
letter in which x and y do not agree. Now consider a sequence (xn)n with x0 ∈ A
and each xn+1 is equal to xn concatenated with one extra letter: we then have
that limn→∞ p(x0, xn) = p(x0, x0) = limn→∞ p(xn, x0), but it is against all in-
tuition to say that (xn)n converges to x0! Precisely because limn→∞ p(xn, xn) 6=
p(x0, x0) this pathological behaviour is excluded.

Note that Proposition 5.2.3 contains the usual convergence criterion in an ordinary
metric space, where we would have p(x, x) = 0 = p(xn, xn) and p(x, xn) =
p(xn, x).

5.3 . . . and completeness

We now turn to the study of Cauchy sequences in, and completion of, finitely typed
partial metric spaces (for the categorical topology).

Recall that a finitely typed generalised partial metric space (X, p) is a D(R)nz-
category X with object set X0 = X , type function tx = p(x, x) and hom-arrows
X(y, x) = p(y, x). The crucial rôle of the type function as “indicator of partialness”
was already apparent in the previous subsection. To facilitate our discussion of
sequences in (X, p) we find it useful to introduce some further terminology:

Definition 5.3.1 A sequence (xn)n in a finitely typed generalised partial metric
space (X, p) is typed whenever limn→∞ p(xn, xn) exists in [0,∞[; that limit is
then called the type of (xn)n.

Because we only consider sequences in a finitely typed (X, p) (for the reasons ex-
plained in Subsection 4.3), any typed sequence is in fact of finite type too.

Lemma 5.3.2 For any finitely typed generalised partial metric space (X, p), the
following defines an equivalence relation on the set of all typed sequences in (X, p):

(xn)n ∼ (yn)n
def.⇐⇒ lim

n→∞
p(xn, yn) = lim

n→∞
p(xn, xn)

= lim
n→∞

p(yn, yn) = lim
n→∞

p(yn, xn).
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Proof. Reflexivity and symmetry are obvious. If (xn)n ∼ (yn)n and (yn)n ∼ (zn)n
then all three must have the same type, say q, and since both extremes of the double
inequality

p(xn, xn) ∨ p(zn, zn) ≤ p(xn, zn) ≤ p(xn, yn)− p(yn, yn) + p(yn, zn)

converge to q when n goes to∞, so does the middle term. Similarly we can compute
that limn→∞ p(zn, xn) = q. 2

Let us stress that the equivalence relation only pertains to typed sequences, and that
equivalent sequences necessarily have the same type. As was also done in [18], we
furthermore define:

Definition 5.3.3 A sequence (xn)n in a finitely typed generalised partial metric
space (X, p) is Cauchy if (p(xn, xm))(n,m) is a Cauchy net in [0,∞].

Here we regard [0,∞] canonically as a generalised metric space: d(a, b) = max(a−
b, 0). By our general considerations, its categorical topology is metrisable by the
symmetric distance function

ds(a, b) = d(a, b) ∨ d(b, a) =


0 if a =∞ = b
|a− b| if a 6=∞ 6= b
∞ otherwise

If a net (a(m,n))(m,n) is Cauchy in [0,∞] then it is either eventually constant ∞
or eventually finite. Since (X, p) is finitely typed by assumption, the former can-
not happen for a(m,n) = p(xn, xm), so every such Cauchy net lies eventually15 in
[0,∞[. As this is a complete space, the Cauchy net (p(xn, xm))(n,m) converges to
the “double” limit limm,n→∞ p(xn, xm) in the usual sense (see [15] for details on
sequences and nets).

The following results use the equivalence relation on typed sequences to ex-
press the expected interplay between convergent sequences and Cauchy sequences
in partial metric spaces:

Proposition 5.3.4 In a finitely typed generalised partial metric space (X, p),
i. any constant sequence (x)n is typed, with type p(x, x),

ii. (xn)n → x if and only if (xn)n (is typed and) (xn)n ∼ (x)n,
iii. if (xn)n → x and (yn)n is typed, then (xn)n ∼ (yn)n if and only if (yn)n →

x,
iv. any Cauchy sequence (xn)n is typed, with type limm,n→∞ p(xn, xm),
v. if (xn)n ∼ (yn)n then either one is Cauchy if and only if the other one is too,

15Thus this notion of Cauchyness narrows down to the one in [5, 18] which is only concerned with
partial metrics satisfying p(x, y) <∞ for all x, y ∈ X .
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vi. every convergent sequence is Cauchy.

Proof. (1) Is trivial. (2) This is a reformulation of Proposition 5.2.3. (3) Follows
from the previous assertion and transitivity of ∼. (4) If the net (p(xn, xm))(n,m)

converges in [0,∞], then the subnet (p(xn, xn))n converges to the same value. (5)
Assume that (xn)n and (yn)n have type q and that (yn)n is a Cauchy sequence.
Then, for all natural numbers n and m,

p(xn, xn) ≤ p(xn, xm)

≤ p(xn, yn)− p(yn, yn) + p(yn, ym)− p(ym, ym) + p(ym, xm);

and since both extremes of this double inequality converge to q when (n,m) goes
to (∞,∞), so does p(xn, xm). (6) If (xn)n → x, then (xn)n ∼ (x)n; since (x)n is
Cauchy, (xn)n is so too. 2

To convince the categorically inclined that Definition 5.3.3 makes perfect sense,
we shall show that there is an essentially bijective correspondence between Cauchy
sequences in a finitely typed partial metric space (X, p) on the one hand, and
Cauchy distributors on the D(R)nz-category X (still defined by X0 = X , tx =
p(x, x) and X(y, x) = p(y, x), of course). Recall that a D(R)nz-distributor φ :
1q

c //X is (in terms of the partial metric) defined by a number q ∈ [0,∞[ together
with a function φ : X → [0,∞] such that

q ∨ p(y, y) ≤ φ(y) ≤ p(y, x)− p(x, x) + φ(x) (15)

for all x, y ∈ X . Similarly, a D(R)nz-distributor ψ : X c //1q is a number q ∈
[0,∞[ together with a function ψ : X → [0,∞] such that

q ∨ p(y, y) ≤ ψ(y) ≤ ψ(x)− p(x, x) + p(x, y) (16)

for all x, y ∈ X . Such distributors form an adjoint pair φ a ψ (and so φ is a Cauchy
presheaf, and then we rather write φ∗ = ψ) if and only if 1q ≤ ψ⊗φ and φ⊗ψ ≤ X
in Dist(D(R)nz), that is, for all x, y ∈ X ,∧

z∈X
ψ(z)− p(z, z) + φ(z) ≤ q and p(y, x) ≤ φ(y)− q + ψ(x). (17)

Fixing x ∈ X , the representables X(−, x) : 1tx
c //X and X(x,−) : X c //1tx al-

ways form an adjoint pair; they correspond to the functions p(−, x) : X → [0,∞]
and p(x,−) : X → [0,∞], with q = p(x, x).

Lemma 5.3.5 If (xn)n and (yn)n are Cauchy sequences in a finitely typed gener-
alised partial metric space (X, p) then (p(xn, ym))n,m is a Cauchy net in [0,∞].
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Proof. Let ε > 0. Since (xn)n and (yn)n are Cauchy sequences in (X, p), there is
a natural number N so that for all n,m, n′,m′ ≥ N ,

p(xn, xn′)− p(xn′ , xn′) ≤ ε, p(ym′ , ym)− p(ym′ , ym′) ≤ ε,

p(xn′ , xn)− p(xn, xn) ≤ ε, p(ym, ym′)− p(ym, ym) ≤ ε.

From these inequalities (and the triangular inequality for p) we obtain

p(xn, ym)− p(xn′ , ym′)

≤ (p(xn, xn′)− p(xn′ , xn′) + p(xn′ , ym))− p(xn′ , ym′)

≤ ε+ p(xn′ , ym)− p(xn′ , ym′)

≤ ε+ (p(xn′ , ym′)− p(ym′ , ym′) + p(ym′ , ym))− p(xn′ , ym′)

≤ ε+ p(xn′ , ym′) + ε− p(xn′ , ym′)

≤ 2ε;

similarly (and simultaneously) p(xn′ , ym′) − p(xn, ym) ≤ 2ε too. This tells us
that |p(xn, ym) − p(xn′ , ym′)| ≤ 2ε, for all n,m, n′,m′ ≥ N , which establishes
Cauchyness of the net. 2

In particular, if (xn)n is a Cauchy sequence in a finitely typed generalised partial
metric space (X, p) then, for every y ∈ X , both (p(y, xn))n and (p(xn, y))n are
Cauchy sequences in [0,∞], and therefore converge. This guarantees the existence
of the limits in the statement of the next theorem.

Theorem 5.3.6 Let (X, p) be a finitely typed generalised partial metric space, and
X the corresponding D(R)nz-category (with X0 = X , tx = p(x, x) and X(y, x) =
p(x, x), as always). If (xn)n is a Cauchy sequence in (X, p), and we put q =
limn,m→∞ p(xn, xm), then

φ : 1q
c //X with elements φ(y) = lim

n→∞
p(y, xn)

is a Cauchy presheaf of finite type, whose right adjoint is

ψ : X c //1q with elements ψ(y) = lim
n→∞

p(xn, y).

This correspondence is bijective between equivalence classes of Cauchy sequences
on the one hand, and Cauchy distributors of finite type on the other. Moreover, a
Cauchy sequence converges (to x ∈ X) if and only if the corresponding Cauchy
distributor is representable (by x ∈ X).

- 345 -



D. HOFMANN AND I. STUBBE TOPOLOGY FROM ENRICHMENT

Proof. First we verify (15) to make sure that φ : 1q
c //X is a well-defined presheaf

on X. Because p is a partial metric we certainly have p(y, y) ∨ p(xn, xn) ≤
p(y, xn) ≤ p(y, x) − p(x, x) + p(x, xn) for all n. Letting n go to ∞, we there-
fore find that p(y, y)∨ q ≤ φ(y) ≤ p(y, x)− p(x, x) +φ(x), as required. A similar
reasoning holds to verify (16) for ψ.

To show that φ a ψ, we have to verify (17); applied to the case at hand, this
means that ∧

z∈X
lim
n→∞

p(xn, z)− p(z, z) + lim
n→∞

p(z, xn) ≤ q

and p(y, x) ≤ lim
n→∞

p(y, xn)− q + lim
n→∞

p(xn, x)

for all x, y ∈ X . To see the first inequality, let ε > 0. Since (xn)n is a Cauchy
sequence of type q in (X, p), there is a natural number N so that for any n ≥ N

p(xn, xN ) ≤ q + ε, p(xN , xn) ≤ q + ε and q − ε ≤ p(xN , xN ).

Therefore
p(xn, xN )− p(xN , xN ) + p(xN , xn) ≤ q + 3ε,

and the assertion follows by choosing ε arbitrarily small and letting n go to∞. To
show the second inequality, for ε > 0 let N be a natural number so that, for all
n,m ≥ N ,

p(xn, xm)− p(xn, xn) ≤ ε and q − ε ≤ p(xm, xm)

for all n,m ≥ N . It then follows that

p(y, x) ≤ p(y, xn)− p(xn, xn) + p(xn, xm)− p(xm, xm) + p(xm, y)

≤ p(y, xn) + ε− p(xm, xm) + p(xm, y)

≤ p(y, xn) + ε− (q − ε) + p(xm, y)

≤ p(y, xn)− q + p(xm, y) + 2ε.

Choosing ε arbitrary small and letting n and m go to∞, this proves the point.
If (yn)n is a Cauchy sequence with (yn)n ∼ (xn)n, then we have in particular

that limn→∞ p(yn, yn) = limn→∞ p(yn, xn). For any z ∈ X we know that

p(z, xn) ≤ p(z, yn)− p(yn, yn) + p(yn, xn),

and therefore limn→∞ p(z, xn) ≤ limn→∞ p(z, yn). A similar argument shows
the reverse inequality, which proves that both sequences define the same Cauchy
distributor. Conversely, if two Cauchy sequences (xn)n and (yn)n induce the same
Cauchy distributor φ : 1q

c //X, with right adjoint ψ : X c //1q, then they are of the
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same type q. Moreover, for every ε > 0, there exist some natural number N so that,
for all n ≥ N

q ≤ φ(xn) = lim
m→∞

p(xn, xm) ≤ q + ε and q ≤ ψ(yn) = lim
m→∞

p(ym, yn) ≤ q + ε.

Hence, p(xn, xn) ≤ p(xn, yn) ≤ φ(xn) − q + ψ(yn) ≤ q + 2ε, for all n ≥ N ,
which proves (xn)n ∼ (yn)n.

Let now φ a ψ with φ : 1q
c //X and ψ : X c //1q (for some q ∈ [0,∞[).

Thanks to the first inequality in (17) we can pick, for every natural number n, an
element xn ∈ X so that

φ(xn)− p(xn, xn) + ψ(xn) ≤ q +
1

n
.

But (15) and (16) say that p(xn, xn) ∨ q ≤ φ(xn) ∧ ψ(xn), so we find

p(xn, xn) ≤ q +
1

n
and q ≤ p(xn, xn) +

1

n
,

p(xn, xn) ≤ φ(xn) ≤ p(xn, xn) +
1

n
,

and p(xn, xn) ≤ ψ(xn) ≤ p(xn, xn) +
1

n
,

which implies that

q = lim
n→∞

p(xn, xn) = lim
n→∞

φ(xn) = lim
n→∞

ψ(xn). (18)

By the second inequality in (17) we know that

p(xn, xn) ≤ p(xn, xm) ≤ φ(xn)− q + ψ(xm)

for all n and m, so with (18) we obtain limn,m→∞ p(xn, xm) = q, and we proved
(xn)n to be a Cauchy sequence in (X, p). Finally, this Cauchy sequence in turn
determines the Cauchy presheaf it was constructed from: because from (15) and
(16) we get

φ(x) ≤ p(x, xn)− p(xn, xn) + φ(xn) and ψ(x) ≤ ψ(xn)− p(xn, xn) + p(xn, x)

for all x ∈ X and all natural numbers n, and with (18) we find that

φ ≤ lim
n→∞

p(−, xn) and ψ ≤ lim
n→∞

p(xn,−)

too; and these inequalities are equalities because φ a ψ and (as attested by the first
part of this proof) limn→∞ p(−, xn) a limn→∞ p(xn,−). 2
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Combining the above Theorem 5.3.6 with the remarks in Subsection 4.3, we arrive
at the following conclusions.

Corollary 5.3.7 A generalised partial metric space (X, p) is categorically Cauchy
complete (meaning that every Cauchy distributor on (X, p) qua D(R)-enriched cat-
egory is representable) if and only if the finitely typed part of (X, p) is sequentially
Cauchy complete (meaning that every Cauchy sequence in (X, p) converges) and
(X, p) has at least one point of type∞.

Especially Proposition 4.3.2 helps us with:

Example 5.3.8 The Cauchy completion of a generalised partial metric space (X, p)
viewed as a D(R)-category X, is the sum in Cat(D(R)) of the Cauchy completion
qua D(R)nz-enriched category of Xnz plus a singleton of type∞:

Xcc = (Xnz)cc + 1∞.

But Xnz is exactly the finitely typed part of (X, p), and we know by Theorem 5.3.6
that the finitely typed Cauchy presheaves on the finitely typed part of (X, p) are in
one-to-one correspondence with equivalence classes of Cauchy sequences. There-
fore, the Cauchy completion of (X, p) has as elements the equivalence classes of
Cauchy sequences in the finitely typed part of (X, p), plus an extra point which we
shall denote by∞, and comes with the partial metric defined by

p(∞, [(xn)n]) = p([(xn)n],∞) = p(∞,∞) =∞

and

p([(xn)n], [(yn)n)])=
∧
z∈X

lim
n→∞

p(xn, z)−p(z, z)+ lim
n→∞

p(z, yn) = lim
n→∞

p(xn, yn).

Indeed, the first equality in the line above is exactly the formula for the hom-arrow
in Xcc between the corresponding Cauchy distributors; the second equality can be
proven as follows. Thanks to Lemma 5.3.5 we know that (p(xn, ym)(n,m)) is a
Cauchy net in [0,∞], so it converges, and therefore so does the subnet (p(xn, yn)n);
so we may put q = limn→∞ p(xn, yn). Since we always have

p(xn, yn) ≤ p(xn, z)− p(z, z) + p(z, yn)

we can let n go to∞, and then take the infimum over z, to see that the “≥” in the sec-
ond equality always holds. For the “≤”, let ε > 0. Since both (p(xn, xm))(n,n) and
(p(xn, ym))(n,m) are Cauchy nets in [0,∞] (as, again, attested by Lemma 5.3.5),
there is some natural number N so that, for all n ≥ N ,

p(xn, nN )− p(xN , xN ) ≤ ε and p(xN , yn) ≤ q + ε.

Therefore limn→∞ p(xn, xN )−p(xN , xN ) + limn→∞ p(xN , yn) ≤ q+ 2ε, and the
assertion follows.
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The above results for partial metric spaces of course apply to metric spaces too—and
almost produce the “usual” results. Indeed, a Cauchy sequence in a (generalised)
metric space (X, d) in the sense of Definition 5.3.3 is exactly a Cauchy sequence
in the usual sense; and it converges in (X, d) qua partial metric if and only if it
does so in (X, d) qua metric. Put differently, a Cauchy distributor on (X, d) qua
R-category is neither more nor less than a Cauchy distributor on (X, d) qua D(R)-
category of type 0 (because the type of a Cauchy presheaf φ = limn→∞ d(−, xn)
on X = (X, d) is necessarily limn→∞ d(xn, xn) = 0); and it is representable qua
R-enriched distributor if and only if it is qua D(R)-enriched distributor. However,
the Cauchy completion of (X, d) qua metric space does not create that “extra point
at infinity”, which the Cauchy completion of (X, d) qua partial metric space always
does!

5.4 Hausdorff distance, exponentiability

In [21] we developed a general theory of ‘Hausdorff distance’ for quantaloid-enrich-
ed categories; applied to the quantaloid D(R) this produces the following results for
partial metrics.

Example 5.4.1 The Hausdorff space H(X, p) = (HX, pH) of a generalised par-
tial metric space (X, p) is the new generalised partial metric space with elements

HX = {S ⊆ X | ∀x, x′ ∈ S : p(x, x) = p(x′, x′)}

(i.e. the typed subsets of X) and partial distance

pH(T, S) =
∨
t∈T

∧
s∈S

p(t, s). (19)

The inclusion (X, p)→ H(X, p) : x 7→ {x} is the unit for the so-called Hausdorff
doctrine H : GPMet → GPMet, and as such enjoys a universal property: it is the
universal conical cocompletion (see [21, Section 5]).

The naive extension of the formula in (19) to arbitrary subsets of (X, p) fails
to produce a partial metric, for the following reason. Suppose a and b are elements
of a partial metric space (X, p), with p(a, a) < p(b, b). Then {a, b} is not a typed
subset of X , but if we nevertheless use the sup-inf formula we find in particular that

pH({a}, {a, b}) = p(a, a), pH({a, b}, {b}) = p(a, b),

pH({a}, {b}) = p(a, b), pH({a, b}, {a, b}) = p(b, b).

We have pH({a}, {a, b}) − pH({a, b}, {a, b}) + pH({a, b}, {b}) 6≥ pH({a}, {b}),
so that pH fails to be a partial metric.
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We gave a general characterisation of exponentiable quantaloid-enriched categories
and functors in [4]; this specialises to the case of partial metric spaces as follows.

Example 5.4.2 A generalised partial metric space (X, p) is exponentiable in the
(cartesian) category GPMet if and only if

for all x0, x2 ∈ X and u, v, w ∈ [0,∞] such that
p(x0, x0) ∨ v ≤ u and p(x2, x2) ∨ v ≤w :∧{
(u ∨ p(x0, x1))− v + (w ∨ p(x1, x2)) | x1 ∈ X, p(x1, x1) = v

}
= (u− v + w) ∨ p(x0, x2).

(20)

This literal application of the very general Theorem 1.1 of [4] (but see also Section
5 of that paper) to the specific quantaloid D(R) can be simplified somewhat. First,
using the triangular inequality for the partial metric, it is straightforward to verify
that the “≥” in (20) always holds. Second, the “≤” is trivially satisfied whenever
either of p(x0, x2), u or w is ∞ (because the right hand side is then ∞); because
p(x0, x0) ∨ p(x2, x2) ≤ p(x0, x2) we may also exclude the cases where either
p(x0, x0) or p(x2, x2) is ∞; and because v ≤ u ∧ w (in the hypotheses) we may
exclude the case v =∞. The above condition thus becomes:

for all x0, x2 ∈ X and u, v, w ∈ [0,∞[ such that
p(x0, x2) <∞, p(x0, x0) ∨ v ≤ u and p(x2, x2) ∨ v ≤ w :∧{
(u ∨ p(x0, x1))− v + (w ∨ p(x1, x2)) | x1 ∈ X, p(x1, x1) = v

}
≤ (u− v + w) ∨ p(x0, x2).

(21)

It actually suffices to check this condition only when p(x0, x2) ≤ u−v+w. Indeed,
whenever u−v+w < p(x0, x2) we may apply this (hypothetically valid) condition
on u′ − v + w = p(x0, x2) for the appropriate u′ ≥ u in the first inequality below,
to find that

(u− v + w) ∨ p(x0, x2) = (u′ − v + w) ∨ p(x0, x2)

≥
∧
{(u′ ∨ p(x0, x1))− v + (w ∨ p(x1, x2)) | x1 ∈ X, p(x1, x1) = v}

≥
∧
{(u ∨ p(x0, x1))− v + (w ∨ p(x1, x2)) | x1 ∈ X, p(x1, x1) = v}

anyway. But for p(x0, x2) ≤ u− v + w, the inequality in (21) is further equivalent
to ∧

{(u ∨ p(x0, x1)) + (w ∨ p(x1, x2)) | x1 ∈ X, p(x1, x1) = v} ≤ u+ w
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since v ≤ u + w < ∞ and {x1 ∈ X | p(x1, x1) = v} cannot be empty. Therefore
we finally find that a generalised partial metric space (X, p) is exponentiable in
GPMet if and only if

for all x0, x2 ∈ X , u, v, w ∈ [0,∞[ and ε > 0 such that
p(x0, x2) ≤ u− v + w, p(x0, x0) ∨ v ≤ u and p(x2, x2) ∨ v ≤ w
there exists x1 ∈ X such that
p(x1, x1) = v, p(x0, x1) ≤ u+ ε and p(x1, x2) ≤ w + ε.

(22)

This immediately implies that an exponentiable partial metric space is either empty,
or has all distances equal to∞, or has for every r ∈ [0,∞[ at least one element with
self-distance r. In particular a generalised metric space (X, d) is exponentiable in
GPMet if and only if it is empty (even though a non-empty (X, d) may still be
exponentiable in GMet!).

Furthermore, with the same proof as in [11, Theorem 5.3 and Corollary 5.4], we
obtain that every injective partial metric space (in particular, every partial metric ob-
tained from the presheaf construction in GPMet = Cat(D(R)), see Subsection 2.3)
is exponentiable; moreover, the full subcategory of GPMet defined by all injective
partial metric spaces is Cartesian closed.
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[6] Maurice Fréchet, Sur quelques points du calcul fonctionnel, Rendiconti del
Circolo Matematico di Palermo 22 (1906) 1–74.

[7] Richard Garner, Topological functors as total categories, Theory and Applica-
tions of Categories 29 (2014) 406–421.

- 351 -



D. HOFMANN AND I. STUBBE TOPOLOGY FROM ENRICHMENT

[8] Siegfied Gottwald (2001) A treatise on many-valued logics, Studies in Logic
and Computation 9, Research Studies Press Ltd., Baldock.

[9] Marco Grandis, On the monad of proper factorisation systems in categories,
Journal of Pure and Applied Algebra 171 (2002), 17–26.

[10] Hans Heymans and Isar Stubbe, Symmetry and Cauchy completion of quant-
aloid-enriched categories, Theory and Applications of Categories 25 (2011)
276–294.

[11] Dirk Hofmann and Carl David Reis, Probabilistic metric spaces as enriched
categories, Fuzzy Sets and Systems 210 (2013) 1–21.

[12] Dirk Hofmann, Gavin Seal and Walter Tholen (eds.), Monoidal topology,
Cambridge University Press, Cambridge (2014).

[13] Dirk Hofmann and Walter Tholen, Lawvere completion and separation via
closure, Applied Categorical Structures 18 (2010), 259–287.
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ON ENRICHED FIBRATIONS

Christina VASILAKOPOULOU

Résumé. Nous introduisons la notion de fibration enrichie, à savoir une fi-
bration dont la catégorie totale et la catégorie de base sont enrichies d’une
manière appropriée dans celles d’une fibration. De plus, nous proposons
un moyen d’obtenir une telle structure, à partir des actions de catégories
monoı̈dales avec des adjoints paramétrés. L’objectif est de capturer certaines
classes d’ exemples, comme la fibration des modules sur des algèbres en-
richie dans l’opfibration de comodules sur des coalgèbres.
Abstract. We introduce the notion of an enriched fibration, i.e. a fibration
whose total category and base category are enriched in those of a monoidal
fibration in an appropriate way. Furthermore, we provide a way to obtain such
a structure, starting from actions of monoidal categories with parameterized
adjoints. The motivating goal is to capture certain example cases, like the
fibration of modules over algebras enriched in the opfibration of comodules
over coalgebras.
Keywords. monoidal category, fibration, enriched category, parameterized
adjunction.
Mathematics Subject Classification (2010). 18D10,18D20,18D30.

1. Introduction

Enriched category theory [Kel05], as well as the theory of fibrations [Gro61],
have both been of central importance to developments in many contexts.
Both are classical theories for formal category theory; however, they do not
seem to ‘go together’ in some evident way.

VOLUME LIX-4 (2018)
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The goal of the present work is to introduce a notion of an enriched fi-
bration. This should combine elements of both concepts in an appropriate
and natural way; the enriched structure of a category cannot really be inter-
nalized in order to provide a definite answer. In any case, ‘being enriched
in’ and ‘being internal to’ are two major but separate generalizations of or-
dinary category theory, whereas ‘being fibred over’ is often considered as a
third one.

More explicitly, we would like to characterize a fibration as being en-
riched in some special kind of fibration, serving similar purposes as the
monoidal base of usual enriched categories; this has already been identified
as a monoidal fibration [Shu08]. For the desired enriched fibration defini-
tion, there are two main factors that determine its relevance. First of all, it
should be able to adequately capture certain cases that first arose in [Vas14]
and furthermore studied in [HLFV17a, HLFV17b, Vas17], and in fact mo-
tivated these explorations. Further details of these examples and how they
ultimately fit in the described framework can be found in Section 4. The
original driving example case is the enrichment of algebras in coalgebras via
Sweedler’s measuring coalgebra construction [Swe69], together with the en-
richment of a global category of modules in comodules; the latter categories
are respectively fibred and opfibred over algebras and coalgebras. This also
extends to their many-object generalizations, namely (enriched) categories
and cocategories and their (enriched) modules and comodules. These cases
can be roughly depicted as

Mod enriched //

fibred

��

Comod

opfibred

��
Alg(V)

enriched
// Coalg(V)

V-Mod enriched //

fibred

��

V-Comod

opfibred

��
V-Cat

enriched
// V-Cocat.

Secondly, the introduced enriched fibration concept should theoretically
constitute an as-close-as-possible fibred analogue of the usual enrichment of
categories. In order to initiate such an effort, we provide a theorem which
under certain assumptions ensures the existence of such a structure. This
theorem lifts a standard result, which combines the theory of actions of
monoidal categories and parameterized adjunctions to produce an enrich-
ment [GP97, JK02], to the fibred context.
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Notably, a strongly related notion called enriched indexed category has
been studied, from a slightly different point of view, originally in [Bun13]
and also independently in [Shu13]. However, the main definitions and con-
structions diverge from the ones presented here. We postpone a short discus-
sion on these differences until the very end of the paper, Section 4.3.

Finally, it should be indicated that this paper deliberately includes only
what is necessary to first of all sufficiently describe the examples at hand. It
elaborates on and extends a sketched narrative from [Vas14, §8.1], and pro-
vides the first steps in such a research direction. Future work may build on
the current development, towards a theory of enriched fibrations and related
structures.
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2. Background

In this section, we recall some basic definitions and known results which
serve as background material in what follows, and we also fix terminology.

2.1 Monoidal categories, actions and enrichment

We assume familiarity with the basics of monoidal categories, see [JS93,
ML98]. A monoidal category is denoted by (V ,⊗, I) with associator and
left and right unit constraints a, `, r. A lax monoidal structure on a functor
F : V → W between monoidal categories is denoted by (φ, φ0), with com-
ponents φAB : FX ⊗ FY → F (X ⊗ Y ) and φ0 : I → FI satisfying usual
axioms. If these are isomorphisms/identities, this is a strong/strict monoidal
structure.

A (left) monoidal closed category is one where the functor (−⊗X) has a
right adjoint [X,−], for all objects X . This induces the internal hom functor
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[−,−] : Vop × V → V , as a result of the classic parameterized adjunctions
theorem [ML98, §IV.7.3]:

Theorem 2.1. Suppose that, for a functor of two variables F : A× B → C,
there exists an adjunction

A
F (−,B) //
⊥ C

G(B,−)
oo

for each B ∈ B, with an isomorphism C(F (A,B), C) ∼= A(A,G(B,C))
natural in A and C. Then, there is a unique way to make G into a functor of
two variables Bop×C → A for which the isomorphism is natural also in B.

The functor G is called the (right) parameterized adjoint of F , and we
denote this as F ap G. In particular,⊗ ap [−,−] in any monoidal (left) closed
category. We could also decide to fix the other parameter, and have that
F (A,−) a H(A,−) for H : Aop × C → B. For a 2-categorical proof and
generalizations, see [CGR14].

We now recall some basics of the theory of actions of monoidal cate-
gories, [JK02].

Definition 2.2. A (left) action of a monoidal category V on a category D is
given by a functor ∗ : V×D → D along with two natural isomorphisms χ, ν
with components

χXYD : (X ⊗ Y ) ∗D ∼−→ X ∗ (Y ∗D), νD : I ∗D ∼−→ D (1)

satisfying the commutativity of

((X ⊗ Y )⊗ Z) ∗D χ //

a∗1
��

(X ⊗ Y ) ∗ (Z ∗D)
χ // X ∗ (Y ∗ (Z ∗D))

(X ⊗ (Y ⊗ Z)) ∗D χ
// X ∗ ((Y ⊗ Z) ∗D)

1∗χ

OO
(2)

(I ⊗X) ∗D χ //

l∗1 $$

I ∗ (X ∗D)

ν{{
X ∗D

(X ⊗ I) ∗D χ //

r∗1 $ $

X ∗ (I ∗D)

1∗ν{{
X ∗D

The category D is called a V-representation, or a V-actegory [McC00].
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For example, every monoidal category has a canonical action on itself
via its tensor product, ⊗ = ∗ : V ×V → V , and χ = a, ν = `; it is called the
regular V-representation. Moreover, for any monoidal closed category, its
internal hom constitutes an action of the monoidal Vop (with the same tensor
product ⊗op) on V , via the standard natural isomorphisms

χXY Z : [X ⊗ Y,D]
∼−→ [X, [Y, Z]], νD : [I,D]

∼−→ D

which satisfy (2) using the transpose diagrams under the tensor-hom adjunc-
tion.

Familiarity with enrichment theory is also assumed, see [Kel05]. We
denote the 2-category of V-enriched categories, along with enriched functors
and enriched natural transformations, V-Cat; we call V the monoidal base of
the enrichment. If A is a V-enriched category with hom-objects A(A,B) ∈
V , we will write jA : I → A(A,A) for its identites and MABC : A(B,C) ⊗
A(A,B) → A(B,C) for the composition. Its underlying category A0 has
the same objects, while morphisms f : A → B in A0 are just ‘elements’
f : I → A(A,B) in V , i.e. A0(A,B) = V(I,A(A,B)) as sets. In fact, we
can define a functor

A(−,−) : Aop
0 ×A0 → V (3)

called the enriched hom-functor, which maps (A,B) to A(A,B), and a pair
of arrows (A′

f−→ A,B
g−→ B′) in Aop

0 ×A0 to the top arrow

A(A,B)
A(f,g) //

r−1

��

A(A′, B′)

A(A,B)⊗ I
1⊗f
��

A(B,B′)⊗A(A′, B)

M

OO

A(A,B)⊗A(A′, A)
M
// A(A′, B)

l−1
// I ⊗A(A′, B)

g⊗1

OO

Speaking loosely, we say that an ordinary category C is enriched in a
monoidal category V when we have a V-enriched categoryA (often denoted
C) and an isomorphism A0

∼= C. Consequently, to be enriched in V is not a
property, but additional structure. Of course, a given ordinary category may
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be enriched in more than one monoidal category; this is evident in view of
Proposition 2.3. But also, a category C may be enriched in V in more than
one way.

Proposition 2.3 (Change of Base). Suppose F : V → W is a lax monoidal
functor between two monoidal categories. There is an induced 2-functor

F̃ : V-Cat −→W-Cat

between the 2-categories of V andW-enriched categories, which maps any
V-category A to aW-category with the same objects as A and hom-objects
FA(A,B).

Sketch of proof. On the level of objects, the composition and identities are
given by

FA(B,C)⊗ FA(A,B)

φA(B,C),A(A,B)

��

// FA(A,C)

F (A(B,C)⊗A(A,B))

FMABC

55
IW

φ0

��

// FA(A,A)

FIV

FjA

99

A crucial result for what follows is that given a categoryD with an action
from a monoidal category V with a parameterized adjoint, we obtain a V-
enriched category.

Theorem 2.4. Suppose that V is a monoidal category which acts on a cate-
gory D via a functor ∗ : V × D → D, such that − ∗ D has a right adjoint
F (D,−) for every D ∈ D. Then we can enrich D in V , with hom-objects
D(A,B) = F (A,B).

The proof and further details can be found in [JK02] or [Vas14, § 4.3].
Briefly, due to the adjunction − ∗ D a F (D,−), we have natural isomor-
phisms

D(X ∗D,E) ∼= V(X,F (D,E)) (4)

which give rise to a functor F : Dop ×D → V by Theorem 2.1. This serves
as the enriched hom-functor of the induced enrichment of D in V: we can
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define a composition law F (B,C)⊗ F (A,B)→ F (A,C) as the adjunct of
the composite

(F (B,C)⊗ F (A,B)) ∗ A F (B,C) ∗ (F (A,B) ∗ A)

F (B,C) ∗B

C

χ

1∗εB

εC

(5)

and identities I → F (A,A) as the adjuncts of

I ∗ A ν−→ A (6)

where χ and ν give the action structure (1) and ε is the counit of the ad-
junction. The associativity and identity axioms for the enrichment can be
established using the action axioms. Finally, D0

∼= D since they have the
same objects, and

D0(A,B) = V(I, F (A,B))
(4)∼= D(I ∗ A,B)

ν∼= D(A,B).

In fact, Theorem 2.4 gives part of one direction of an equivalence

V-Repcl ' V-Cat⊗

between closed V-representations (those with action equipped with a para-
meterized adjoint) and tensored V-categories (those with specific weighted
limits), for V a monoidal closed category. This equivalence, discussed in
[JK02, §6], is a special case of the much more general [GP97, Theorem 3.7]
for bicategory-enriched categories.

Remark 2.5. When V is monoidal closed, the regular action⊗ : V×V → V
has a parameterized adjoint [−,−] : Vop × V → V . We thus re-discover
the well-known enrichment of a monoidal closed category in itself via the
internal hom, as a direct application of Theorem 2.4.

- 360 -



C. VASILAKOPOULOU ON ENRICHED FIBRATIONS

2.2 Pseudomonoids and pseudomodules

Recall that a monoidal 2-category (K,⊗, I) is a 2-category equipped with a
pseudofunctor ⊗ : K × K → K and a unit I : 1 → K which are associative
and unital up to coherence equivalence, see [GPS95].

Definition 2.6. [DS97, §3] A pseudomonoid A in K is an object equipped
with multiplication m : A⊗A→ A and unit j : I → A along with invertible
2-cells satisfying coherence conditions.

A⊗ A⊗ A A⊗ A A⊗ I A⊗ A I ⊗ A

A⊗ A A A

1⊗m

m⊗1 a∼=
m

1⊗j

∼
m

`∼=
r∼=

j⊗1

∼

m

(7)

The notion of a pseudomodule for a pseudomonoid in a monoidal 2-
category (or bicategory) can be found in similar contexts [Mar97, Lac00];
conceptually, as it is the case for modules for monoids in a monoidal cate-
gory, it arises as a pseudoalgebra for the pseudomonad (A⊗−) induced by
a pseudomonoid A in K.

Definition 2.7. A (left) A-pseudomodule is an object M in (K,⊗, I) equip-
ped with µ : A⊗M →M (the pseudoaction) and invertible 2-cells

A⊗ A⊗M A⊗M I ⊗M A⊗M

A⊗M A A

1⊗µ

m⊗1 χ∼=
µ

j⊗1

∼
µ

ν∼=

µ

(8)

satisfying coherence conditions.

Example 2.8. As a fundamental example of a (cartesian) monoidal 2-catego-
ry, consider Cat equipped with the 2-functor × : Cat × Cat → Cat
and I the unit category. It is a standard fact that a pseudomonoid therein
is precisely a monoidal category (V ,⊗, I, a, `, r). Moreover, an action of
a monoidal category V on an ordinary category A as defined in Defini-
tion 2.2 is precisely a V-pseudoaction inside (Cat,×, I), exhibiting A as
a V-pseudomodule.
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2.3 Fibrations and adjunctions

We now briefly recall some basic concepts and constructions from the the-
ory of fibred categories. Relevant references for what follows are [Bor94,
Her94].

Consider a functor P : A → X. A morphism φ : A → B in A over a
morphism f = P (φ) : X → Y in X is called cartesian if and only if, for
all g : X ′ → X in X and θ : A′ → B in A with Pθ = f ◦ g, there exists a
unique arrow ψ : A′ → A such that Pψ = g and θ = φ ◦ ψ:

A′
θ

,,∃!ψ ))

��
A

φ
//

��

B

��

in A

X ′ f◦g=Pθ

,,g )) X
f=Pφ

// Y in X

For X ∈ obX, the fibre of P over X written AX , is the subcategory of A
which consists of objects A such that P (A) = X and morphisms φ with
P (φ) = 1X , called vertical morphisms. The functor P : A → X is called
a fibration if and only if, for all f : X → Y in X and B ∈ AY , there is
a cartesian morphism φ with codomain B above f ; it is called a cartesian
lifting of B along f . The category X is then called the base of the fibration,
and A its total category.

Dually, the functor U : C → X is an opfibration if Uop is a fibration, i.e.
for every C ∈ CX and g : X → Y in X, there is a cocartesian morphism
with domain C above g, the cocartesian lifting of C along g.

If P : A → X is a fibration, assuming the axiom of choice we may
select a cartesian arrow over each f : X → Y in X and B ∈ AY , denoted
by Cart(f,B) : f ∗(B) → B. Such a choice of cartesian liftings is called
a cleavage for P , which is then called a cloven fibration; any fibration is
henceforth assumed to be cloven. Dually, if U is an opfibration, for any
C ∈ CX and g : X → Y in X we can choose a cocartesian lifting of C
along g, Cocart(g, C) : C −→ g!(C). The choice of (co)cartesian liftings
in an (op)fibration induces a so-called reindexing functor between the fibre
categories

f ∗ : AY → AX and g! : CX → CY

- 362 -



C. VASILAKOPOULOU ON ENRICHED FIBRATIONS

respectively, for each morphism f : X → Y and g : X → Y in the base
category, mapping each object to the (co)domain of its lifting.

An oplax morphism of fibrations (or oplax fibred 1-cell) (S, F ) between
P : A → X and Q : B → Y is given by a commutative square of categories
and functors

A S //

P

��

B
Q

��
X

F
// Y

(9)

as in [Shu08, Def. 3.5]. If moreover S preserves cartesian arrows, meaning
that if φ is P -cartesian then Sφ is Q-cartesian, the pair (S, F ) is called a
fibred 1-cell or strong morphism of fibrations. Dually, we have the notion of
an lax morphism of opfibrations (K,F ), and opfibred 1-cell when K is co-
cartesian. Notice that any oplax fibred 1-cell (S, F ) determines a collection
of functors between the fibres SX : AX → BFX as the restriction of S to the
corresponding subcategories.

A fibred 2-cell between oplax fibred 1-cells (S, F ) and (T,G) is a pair
of natural transformations (α : S ⇒ T, β : F ⇒ G) with α above β, i.e.
Q(αA) = βPA for all A ∈ A, displayed

A
S

))

T

55�� α

P

��

B

Q

��
X

F
) )

G

55�� β Y.

(10)

Notice that if the 1-cells are strong, the definition of a 2-cell between them
remains the same. Dually, we have the notion of an opfibred 2-cell between
(lax) opfibred 1-cells.

We obtain 2-categories Fibopl and Fib of fibrations over arbitrary base
categories, (oplax) fibred 1-cells and fibred 2-cells. Evidently, these are
both subcategories of Cat2. Fibopl is a full sub-2-category of those objects
which are fibrations, and Fib is the non-full sub-2-category whose mor-
phism are commutative squares where the top functor is cartesian. Dually,
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OpFib ⊂ OpFiblax ⊂full Cat2. These 2-categories are monoidal, inherit-
ing the tensor product from Cat2: the cartesian product of two fibrations is
still a fibration. The unit is 1I : I → I, the identity on the terminal category.

Notice that the terminology for oplax morphisms of fibrations and lax
morphisms of opfibrations is justified by a relaxed version of the fundamen-
tal equivalence between fibrations and pseudofunctors (Grothendieck con-
struction). For more details, see [Shu08, Prop. 3.6].

We now turn to notions of adjunctions between fibrations, internally to
any of the above 2-categories of (op)fibrations.

Definition 2.9. Given fibrations P : A → X and Q : B → Y, a general
(oplax) fibred adjunction (L, F ) a (R,G) is given by a pair of (oplax) fibred
1-cells (L, F ) : P → Q and (R,G) : Q → P together with fibred 2-cells
(ζ, η) : (1A, 1X) ⇒ (RL,GF ) and (ξ, ε) : (LR,FG) ⇒ (1B, 1Y) such that
L a R via ζ, ξ and F a G via η, ε. This is displayed as

A
P

��

L //
⊥ B
R

oo

Q

��
X

F //
⊥ Y
G

oo

Notice that by definition, ζ is above η and ξ is above ε, hence (P,Q) is
an ordinary map between adjunctions. Dually, we have the notion of general
(lax) opfibred adjunction in OpFib(lax).

The following result establishes certain (co)cartesian properties of ad-
joints.

Lemma 2.10. [Win90, 4.5] Right adjoints in the 2-category Cat2 preserve
cartesian morphisms; dually left adjoints preserve cocartesian morphisms.

Finally, in [HLFV17b, §3.2], conditions under which a fibred 1-cell has
an adjoint are investigated in detail, and that proves very useful in determin-
ing enrichment relations in conjunction with Theorem 2.4. Here we recall a
main result providing a general lax opfibred adjunction, with regards to the
applications of Section 4.
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Theorem 2.11. Suppose (K,F ) : U → V is an opfibred 1-cell and F a G
is an adjunction with counit ε between the bases of the opfibrations, as in

C K //

U
��

D
V
��

X
F //
⊥ Y.
G

oo

If, for each Y ∈ Y, the composite functor CGY
KGY−−−→ DFGY

(εY )!−−−→ DY
between the fibres has a right adjoint for each Y ∈ Y, then K has a right
adjoint R between the total categories and (K,F ) a (R,G) is an general
oplax adjunction.

3. Enriched fibrations

This section’s goal is to introduce a notion of an enriched fibration. It will do
so in a way that an adjusted version of Theorem 2.4, instead of providing an
enrichment of an ordinary category in a monoidal category, will give an en-
richment of an ordinary fibration in a monoidal one. The key idea is to shift
all necessary structure (Example 2.8) from the context of categories to fibra-
tions, moving from (Cat,×, I) to the monoidal 2-category (Fib,×, 1I).

First of all, a pseudomonoid (Definition 2.6) in the 2-category of fibra-
tions, which will serve as the base of the enrichment, is a fibration T : V →
W equipped with a multiplication m : T × T → T and unit j : 1I → T ,
along with 2-isomorphisms a, `, r as in (7). More explicitly, the multipli-
cation and unit are fibred 1-cells m = (⊗V ,⊗W) and j = (IV , IW) (9),
displayed as

V × V ⊗V //

T×T
��

V
T
��

W×W ⊗W
//W

and I IV //

1
��

V
T
��

I
IW

//W

(11)

where ⊗V and IV are cartesian, and invertible fibred 2-cells a = (aV , aW),

- 365 -



C. VASILAKOPOULOU ON ENRICHED FIBRATIONS

r = (rV , rW), ` = (`V , `W) (10), displayed as

V × V × V
⊗(⊗×1)

++

⊗(1×⊗)

33�� aV

T×T×T

��

V

T

��
W×W×W

⊗(⊗×1)
+ +

⊗(1×⊗)

33�� aW W

V × 1
⊗(1×I)

**

∼
44�� rV

T×1

��

V

T

��
W× 1

⊗(1×I)
**

∼
44�� rW W

1× V
⊗(I×1)

**

∼
44�� `V

1×T
��

V

T

��
1×W

⊗(I×1)
**

∼
44�� `W W

where by definition aV , rV , lV lie above aW, rW, lW. The coherence axioms
they satisfy turn out to give the usual axioms which make (V ,⊗V , IV) and
(W,⊗W, IW) into monoidal categories with the respective associativity, left
and right unit constraints.

Remark 3.1. The latter can be deduced also by the fact that the domain and
codomain 2-functors dom, cod : Fib ⊂ Cat2 → Cat are in fact strict
monoidal, i.e. preserve the cartesian structure on the nose. In other words,
the equality of pasted diagrams of 2-cells in Fib breaks down into equalities
Cat for the two (ordinary) natural transformations they consist of.

Moreover, the strict commutativity of the diagrams (11) implies that T
strictly preserves the tensor product and the unit object between V and W,
i.e.

TA⊗W TB = T (A⊗V B), IW = T (IV).

Along with the conditions that T (aV) = aW, T (lV) = lW and T (rV) = rW,
these data define a strict monoidal structure on T ; we obtain the following
definition, which coincides with [Shu08, 12.1].

Definition 3.2. A monoidal fibration is a fibration T : V →W such that

(i) V and W are monoidal categories,
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(ii) T is a strict monoidal functor,

(iii) the tensor product ⊗V of V preserves cartesian arrows.

If V and W are symmetric monoidal categories and T is a symmetric
strict monoidal functor, we call T a symmetric monoidal fibration. In a dual
way, we can define a (symmetric) monoidal opfibration to be an opfibration
which is a (symmetric) strict monoidal functor, where the tensor product
of the total category preserves cocartesian arrows. Notice that a monoidal
opfibration is still a pseudomonoid (and not a pseudocomonoid), this time in
OpFib. Finally, a monoidal bifibration is one where the tensor product of
the total category preserves both cartesian and cocartesian liftings.

We now describe a pseudomodule for a pseudomonoid in (Fib,×, 1I);
in analogy to Theorem 2.4, this will be the object which will eventually
have the enriched structure. According to Definition 2.7, a pseudoaction of
a monoidal fibration T : V → W on an ordinary fibration P : A → X is a
fibred 1-cell µ = (µA, µX) : T × P → P

V ×A µA //

T×P
��

A
P
��

W× X
µX

// X

(12)

where µA is cartesian, along with 2-isomorphisms χ, ν as in (8) in Fib.
Explicitly, these are invertible fibred 2-cells χ = (χA, χX), ν = (νA, νX)
represented by

V ×A µ

%%
V × V ×A

M×1 //

1×µ
//
�� χA

T×T×P

��

A

P

��

V ×A µ

99

W× X µ

%%W×W× X

M×1 00

1×µ ..
�� χX X
W× X µ

99

V ×A µ

%%
1×A

I×1 00

∼

66�� νA

1×P

��

A

P

��W× X µ

%%
1× X

I×1 00

∼

66�� νX X

where χA, νA are above χX, νX with respect to the appropriate fibrations.
These data are subject to certain axioms, which in fact again split up in
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two sets of commutative diagrams for the the two natural isomorphisms that
χ and ν consist of; these coincide with the action of a monoidal category
axioms (Definition 2.2).

Definition 3.3. A T -representation for a monoidal fibration T : V →W is a
fibration P : A → X equipped with a T -pseudoaction µ = (µA, µX). This
amounts to two actions

µA = ∗ : V ×A −→ A
µX = � : W× X −→ X

of the monoidal categories V , W on the categories A and X respectively,
satisfying the commutativity of (12) where µA preserves cartesian arrows,
such that for all X, Y ∈ V and A ∈ A the following conditions hold:

PχAXY A = χX
(TX)(TY )(PA), PνAA = νXPA. (13)

The compatibility conditions of the above definition are natural, since by
(12)

P (X ∗ A) = TX � PA

for any X∈V , A∈A, hence the isomorphisms χAXY A : X ∗ (Y ∗A) ∼= (X⊗V
Y ) ∗ A in A lie above certain isomorphisms

PχAXY A : TX � (TY � PA)
∼−→ (TX ⊗W TY ) � PA (14)

in X, due to the strict monoidality of T . Similarly, νAA : I ∗A ∼= A is mapped
to

PνAA : IX � PA
∼−→ PA (15)

since P (IV ∗ A) = T (IV) � PA = IW � PA. Thus (13) demand that
(14) and (15) coincide with the components of χX and νX, from the W-
representation X.

The last step in modifying Theorem 2.4 to obtain a correspondence be-
tween representations of a monoidal fibration and the desired enriched fibra-
tions, is to introduce a notion of a parameterized adjunction in Fib. For that,
we first re-formulate the ‘adjunctions with a parameter’ Theorem 2.1 in the
context of Cat2.
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Theorem 3.4. Suppose we have a morphism (F,G) of two variables in
Cat2, given by a commutative square of categories and functors

A× B F //

H×J
��

C

K

��
X× Y

G
// Z.

(16)

Assume that, for everyB ∈ B and Y ∈ Y, there exist adjunctions F (−, B) a
R(B,−) and G(−, Y ) a S(Y,−), such that (F (−, B), G(−, JB)) has a
right adjoint (R(B,−), S(JB,−)) in Cat2. This is represented by

A

H

��

F (−,B) //
⊥ C

K

��

R(B,−)
oo

X
G(−,JB) //
⊥ Z

S(JB,−)
oo

(17)

where (H,K) is a map of adjunctions (both squares commute and εK =
Kε, Hη = ηH). Then, there is a unique way to define a morphism of two
variables

Bop × C R //

Jop×K
��

A

H

��
Yop × Z

S
// X

(18)

in Cat2, for which C(F (A,B), C) ∼= A(A,R(B,C)),Z(G(X, Y ), Z) ∼=
X(X,S(Y, Z)) are natural in all three variables.

Proof. The result clearly follows from ordinary parameterized adjunctions.
The fact that (R(B,−), S(JB,−)) is an arrow in Cat2 for all B’s ensures
that the diagram (18) commutes on the second variable, and also on the first
variable on objects, since HR(B,C) = S(JB,KC). On arrows, commuta-
tivity follows from the unique way of defining R(h, 1) and S(Jh, 1) for any
h : B → B′ under these assumptions.

We call (R, S) the parameterized adjoint of (F,G) in Cat2, written
(F,G) ap (R, S).
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Remark 3.5. Although the notion of an adjunction can be internalized in any
bicategory, its parameterized version seems to be much more involved. In
any monoidal bicategory with duals, we could ask for 1-cellsA ∼= A⊗I 1×b−−→
A ⊗ B

t−→ C to have adjoints gb : C → A, for every b : I → B. For the
cartesian 2-monoidal case at least, with ‘category-like’ objects like in Fib,
the 2-categorical approach of [CGR14, Thm. 2.4] clarifies things.

Restricting to fibrations, consider a morphism of two variables in Fib ⊂
Cat2 i.e. a fibred 1-cell (F,G) as in (16) with F cartesian, with the property
that (17) is a general fibred adjunction as in Definition 2.9, i.e. the partial
right adjointR(B,−) is also cartesian. Dually, in OpFib we request both F
and R(B,−) to be cocartesian. Notice that in both cases, the parameterized
adjoint of two variables (R, S) can neither be a fibred nor an opfibred 1-cell
‘wholly’, since at (18) the vertical Jop × K is a product of a fibration with
an opfibration, hence neither of the two.

If we lift the (co)cartesian requirements, we end up with the (op)lax ver-
sion of these adjunctions. Since those cases are the most relevant to our
examples, we abuse notation as to call (op)fibred parameterized adjunctions
the (op)lax ones. Based on the remark that follows, this abuse is in fact only
fractional.

Remark 3.6. There exists an interesting asymmetry regarding the (co)carte-
sianness requirement of the left/right partial adjoints, due to Lemma 2.10.
Since right adjoints always preserve cartesian arrows in Cat2 and dually
left adjoints always preserve cocartesian ones, we can deduce that any fibred
1-cell (F,G) has a (right) fibred parameterized adjoint as long as it has a
Cat2-parameterized adjoint. Dually, an opfibred 1-cell has a (left) opfibred
parameterized adjoint as long as it has it in Cat2.

Definition 3.7. Suppose H , K are fibrations. A fibred parameterized ad-
junction is a parameterized adjunction (F,G) ap (R, S) in Cat2, between
two 1-cells

A× B F //

H×J
��

C

K

� �
X× Y

G
// Z

Bop × C R //

Jop×K
��

A

H

��
Yop × Z

S
// X
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where R(B,−) is by default cartesian. Dually, an opfibred parameterized
adjunction is as above, where F (−, B) is by default cocartesian.

The proposed definition of an enriched fibration is justified by the sub-
sequent Theorem 3.11 which fulfills our initial goal, i.e. to generalize Theo-
rem 2.4 to the context of (op)fibrations. In Remark 3.9 we give an equivalent
formulation in terms of enriched functors. The enriched hom-functor is de-
fined as in (3), writing A for both the enriched and the underlying category.

Definition 3.8 (Enriched Fibration). Suppose T : V → W is a monoidal
fibration. A fibration P : A → X is enriched in T when the following
conditions are satisfied:

• the total category A is enriched in the total monoidal category V and
the base category X is enriched in the base monoidal category W, in
such a way that the following commutes:

Aop ×A A(−,−) //

P op×P

��

V

T

��
Xop × X

X(−,−)
//W

(19)

• the composition law and the identities of the enrichments are compat-
ible, in the sense that

TMA
A,B,C = MX

PA,PB,PC (20)

TjAA = jXPA

The compatibilities (20) only state that the composition and identities

MA
A,B,C : A(B,C)⊗V A(A,B)→ A(A,C), jAA : IV → A(A,A)

of the V-enrichedA are mapped, under T , exactly to those of the W-enriched
X:

MX
PA,PB,PC : X(PB, PC)⊗W X(PA, PB)→ X(PA, PC)

jXPA : IW → X(PA, PA)
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where the domains and codomains already coincide by strict monoidality of
T and the commutativity of (19).

For the above definition, it could be argued that some sort of cartesian
condition for the enriched hom-functor A(−,−) should be asked; notice
however that for P a fibration, the product P op × P has neither a fibra-
tion not an opfibration structure. If we required that the partial functor
A(A,−) : A → V is cartesian, all results below would still be valid with
minor adjustments. Since the examples (Section 4) so far do not seem to
satisfy this extra condition, for the moment we adhere to this more general
definition.

Remark 3.9 (Enriched fibrations as enriched functors). For a T -enriched fi-
bration P as above, the strict monoidal structure of T induces a 2-functor
T̃ : V-Cat → W-Cat by Proposition 2.3. Hence we can make the V-
category A into a W-category T̃A, with the same set of objects obA and
hom-objects TA(A,B) = X(PA, PB). Then P : A → X can be verified
to have the structure of a W-enriched functor between the W-categories T̃A
and X, with hom-objects mapping TA(A,B)

=−→ X(PA, PB). The com-
patibility with the composition and the identities is ensured by (20).

From this perspective, the definition of a (T : V →W)-enriched fibration
between a V-category A and a W-category X could be reformulated as a
strictly fully faithful W-enriched functor P : T̃A → X, whose underlying
ordinary functor P0 : A0 → X0 is a fibration (the commutativity of (19)
follows).

Dually, we have the notion of an enriched opfibration, as well as the
following combined version.

Definition 3.10. Suppose that T : V →W is a symmetric monoidal opfibra-
tion. We say that a fibration P : A → X is enriched in T if the opfibration
P op : Aop → Xop is an enriched T -opfibration.

Finally, we prove that to give a fibration with an action (∗, �) of a monoi-
dal fibration T (Definition 3.3) with a fibred parameterized adjoint (Defini-
tion 3.7), is to give a T -enriched fibration (Definition 3.8).
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Theorem 3.11. Suppose that T : V → W is a monoidal fibration, which
acts on an (ordinary) fibration P : A → X via the fibred 1-cell

V ×A ∗ //

T×P
��

A
P
��

W× X �
// X.

If this action has a parameterized adjoint (R, S) as in

Aop ×A R //

P op×P
��

V
T
��

Xop × X
S

//W

we can enrich the fibration P in the monoidal fibration T .

Proof. Recall by Definition 3.3 that the T -action in particular consists of two
actions ∗ and � of the monoidal categories V and W on the categoriesA and
X respectively. Since (∗, �) ap (R, S), by Theorem 3.4 we have two ordinary
adjunctions

V
−∗A //
⊥ A

R(A,−)
oo and W

−�X //
⊥ X

S(X,−)
oo

for all A ∈ A and X ∈ X. By Theorem 2.4, there exists a V-category A
with underlying category A and hom-objects A(A,B) = R(A,B) and also
a W-category X with underlying category X and hom-objects X(X, Y ) =
S(X, Y ). Also, the enriched hom-functors satisfy the required commutativ-
ity TS(−,−) = R(P−, P−) by (18).

Finally, we need to show that the composition and identity laws of the
enrichments are compatible as in (20), i.e. TMA

A,B,C = MX
PA,PB,PC and

TjAA = jXPA. For that, it is enough to confirm that their adjuncts under
(− � X) a S(X,−) coincide. The latter ones are explicitly given by (5)
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and (6), i.e.

(S(PB, PC)⊗ S(PA, PB)) � PA PC

S(PB, PC) � (S(PA, PB) � PA) S(PB, PC) � PB

χX

1�εPB

εPC

I � PA νX−→ PA

For the former ones, since (P, T ) is a map of adjunctions

V

T

��

−∗A //
⊥ A

P

��

R(A,−)
oo

W
−�PA //
⊥ X,

S(PA,−)
oo

taking the images of MA
A,B,C and jAA under T and translating under the ad-

junction (− �X) a S(X,−) is the same as first translating under (− ∗A) a
R(A,−) and then applying P . That produces

P (R(B,C)⊗R(A,B)) ∗ A) P (R(B,C) ∗R(A,B) ∗ A)

P (R(B,C) ∗B)

PC

PχA

P (1∗εB)

P (εC)

P (I ∗ A)
P (νA)−−−→ PA

Since PχA = χX and PνA = νX from (13), and also Pε = εP as a map of
adjunctions, the above composites coincide and the proof is complete.

An important first example that should fit this setting of an action-indu-
ced enrichment is that of a closed monoidal fibration. Just like a monoidal
closed category V is one where ⊗ : V × V → V has a (right) parameterized
adjoint via−⊗X a [X,−] for every objectX , we can consider the following
notion based on Definition 3.7.
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Definition 3.12. A monoidal fibration T : V →W is (right) closed when its
tensor product fibred 1-cell (11)

V × V ⊗V //

T×T
��

V
T
��

W×W ⊗W
//W

has a parameterized adjoint

Vop × V [−,−]V //

T op×T
��

V
T
��

Wop ×W
[−,−]W

//W

Equivalently, by Theorem 3.4, T is monoidal closed when

(i) V and W are monoidal closed categories,

(ii) T is a strict closed functor,

(iii) Tε = εT and ηT = Tη for the respective units and counits of the
adjunctions.

Notice that by Lemma 2.10, the right adjoint [V,−]V between the total
categories automatically preserves cartesian liftings. On the other hand, for
the dual notion of a monoidal closed opfibration, the right adjoint is not
cocartesian by default.

Remark 3.13. In [Shu08, §13], definitions of an internally closed monoidal
fibration over a cartesian monoidal base, as well as externally closed monoi-
dal fibration over an arbitrary monoidal base are given. These are equivalent
to each other under certain hypotheses; none, however, guarantee that the
total category is closed on its own right. The external definition gives some,
but not all, conditions in terms of the fibres and the reindexing functors for a
fibred adjoint to exist, in the spirit of results such as Theorem 2.11.

Applying Theorem 3.11 we can deduce the enrichment of a monoidal
closed fibration in itself, analogously to the ordinary case (Remark 2.5).

- 375 -



C. VASILAKOPOULOU ON ENRICHED FIBRATIONS

Proposition 3.14. A monoidal closed fibration T : V → W is T -enriched.
Dually, a monoidal closed opfibration is enriched in itself.

Proof. All clauses of Definition 3.3 are satisfied, since the functor − ⊗V −
is cartesian in both variables by Definition 3.2, and also TaVXY Z = aWTXTY TZ
and T`VX = `WTX for the respective associator and the left unitor since T is a
strict monoidal functor. Therefore (⊗V ,⊗W) is indeed a T -action, just like
the regular representation of a monoidal category earlier. Since this action
has a parameterized adjoint, by definition of a monoidal closed fibration, the
result follows.

Finally, there is a dual version to Theorem 3.11, characterizing the en-
richment of an opfibration in a monoidal opfibration.

Theorem 3.15. Suppose that T : V → W is a monoidal opfibration, which
acts on an (ordinary) opfibration U : B → Y via the opfibred 1-cell

V × B ∗ //

T×U
��

B
U
��

W× Y �
// Y.

If this action has a parameterized adjoint (R, S) as in

Bop × B R //

Uop×U
��

V
T
��

Yop × Y
S

//W

we can enrich the opfibration U in the monoidal opfibration T .

Remark 3.16. The asymmetry between cartesian and cocartesian functors
with regards to fibred and opfibred adjunctions is still apparent when com-
paring Theorems 3.11 and 3.15. For the former, Lemma 2.10 ensures that
the right parameterized adjoint will be, at least partially as R(A,−), carte-
sian; as a result, the whole parameterized adjunction lifts from Cat2 to Fib.
On the other hand, for the latter dual theorem, the assumptions cannot ensure
that the enriched homRwill be partially cocartesian. One reason for this dis-
crepancy is that even if we change our setting from Fib(opl) to OpFib(lax),
the enrichment is given in both cases by the existence of a right adjoint (and
not of a left one in the dual setting).
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4. Applications

In this final chapter, we exhibit a few examples of the enriched fibration
notion. In these cases, Theorems 3.11 and 3.15 seem to be the easiest way
to deduce the enrichment, due to the fact that the enrichments on the level of
bases and total categories are themselves obtained by the similarly-flavored
Theorem 2.4. In what follows, we do not present all the relevant theory as
it would take up many pages; instead we provide the appropriate references,
in the hope that the interested reader will look for the details therein.

4.1 (Co)modules over (co)monoids

In the context of a locally presentable symmetric monoidal closed category
V , previous work [HLFV17a] establishes an enrichment of the category
of monoids Mon(V) in the symmetric monoidal category of comonoids
Comon(V), via Theorem 2.4. The action of comonoids on monoids is in-
duced by the internal hom of V: for any coalgebra C and algebra B, [C,B]
has always the structure of an algebra via the convolution product. Its (right)
parametrized adjoint P : Mon(V)op×Mon(V)→ Comon(V) which is the
enriched hom-functor is called the Sweedler hom, since the original notion
of a measuring coalgebra P (A,B) goes back to [Swe69].

Furthermore, in [HLFV17b] a similarly action-induced enrichment is es-
tablished for the global category of modules in the symmetric monoidal
global category of comodules, i.e. the category of all (co)modules over
any (co)monoid in V . The action again comes from the internal hom of
the monoidal category, and its parametrized adjoint Q : Modop ×Mod →
Comod maps an A-module M and a B-comodule N to their measuring
comodule Q(M,N) [Bat00]. This parameterized adjunction is obtained it-
self using the theory of fibred adjunctions, since the functor U : Mod →
Mon(V) which gives the ‘underlying’ algebra of a module is a fibration and
dually V : Comod → Comon(V) is an opfibration. Therefore the very
enrichment on the level of the total categories is accomplished via Theo-
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rem 2.11, producing a general (lax) opfibred adjunction

Modop
Q(−,NB)

--
>

Uop

��

Comod
[−,NB ]op

mm

V

��
Mon(V)op

P (−,B)
..

> Comon(V)
[−,B]op

mm

(21)

To establish an enriched opfibration structure, we apply Theorem 3.15.
First of all, V : Comod → Comon(V) can be shown to be a monoidal
opfibration, by definition of the monoidal product in Comod. Moreover,
since both actions on the level of total and base categories are in fact the
internal hom of V restricted to the appropriate subcategories, compatibility
(13) also follows. Finally, the top action is cartesian [HLFV17b, (20)] hence
the opfibration Uop is enriched in V , as in Definition 3.10.

Proposition 4.1. Suppose V is a locally presentable symmetric monoidal
closed category. The fibration Mod→Mon(V) is enriched in the monoidal
opfibration Comod→ Comon(V).

An example of such a monoidal category V , which also motivated this
whole development, is the category of modules over a commutative ring,
ModR. Both enriching functors arise as adjoints to the linear maps space
functor ModR(−,−) restricted to the respective subcategories. In partic-
ular, for two arbitrary modules M and N over R-algebras A and B, the
measuring comodule Q(M,N) which provides the enrichment of modules
in comodules has its coaction over the Sweedler’s measuring R-coalgebra
P (A,B) which provides the enrichment of algebras in coalgebras. Similarly,
the comodule composition maps Q(N,S) ⊗R Q(M,N) → Q(M,S) are
above the coalgebra composition maps P (B,C) ⊗R P (A,B) → P (A,B).
This is a substantial step exhibiting the tight relations between these dual-
flavored, standard (op)fibrations.

Furthermore, the forgetful Comod→ Comon(V) is in fact an example
of a monoidal closed opfibration, Definition 3.12. First of all, it is the case
that the category of comonoids is monoidal closed, if V is locally presentable
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and symmetric monoidal closed, as was already proved in [Por08, 3.2]. In
[HLFV17b, 4.5], it is shown in detail how the opfibred 1-cell

Comod×Comod
(−⊗−) //

��

Comod

��
Comon(V)×Comon(V)

(−⊗−)
// Comon(V)

has a parameterized right adjoint, so the result follows by Proposition 3.14.

Proposition 4.2. Suppose V is a locally presentable symmetric monoidal
closed category. The monoidal opfibration Comod → Comon(V) is
closed, therefore enriched in itself.

Notice that this does not dualize for Mod→Mon(V), since in general
the category of monoids is not monoidal closed, e.g. rings or R-algebras.

4.2 Enriched (co)modules over enriched (co)categories

The above study on enrichment relations between monoids and comonoids,
as well as modules and comodules, can be appropriately extended to their
many-object generalizations, in the sense that a monoid can be thought of as
a one-object category.

For a detailed exposition of the notions and constructions that follow, see
[Vas14, §7] or from a double categorical perspective [Vas17]. Briefly, for a
symmetric monoidal category with colimits preserved by⊗, we can consider
the category of V-enriched categories V-Cat, whose objects are monads in
the bicategory of enriched matrices V-Mat [BCSW83]. In a dual way, con-
sidering comonads therein, we can construct the category V-Cocat of en-
riched cocategories, serving as a many object generalization of comonoids
in V . A V-cocategory CX with set of objects X comes equipped with co-
composition and coidentity arrows

∆x, z : C(x, z)→
∑
y∈X

C(x, y)⊗ C(y, z), εx : C(x, x)→ I

in V , satisfying coassociativity and counitality axioms. Both categories
V-Cat and V-Cocat are in fact fibred and opfibred, respectively, over the
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category of sets, via the usual forgetful functors that give the set of objects
of the (co)categories. They also both live inside V-Grph, the category of
enriched graphs, which is bifibred over Set. All these (op)fibrations are
monoidal in the sense of Definition 3.2: for two V-graphs (or categories, co-
categories) GX and HY , their tensor product is a graph G ⊗ H with set of
objects X × Y , and (G⊗H) ((x, y), (z, w)) = G(x, z)⊗H(y, w).

When V is moreover monoidal closed with products and coproducts,
V-Grph is monoidal closed: for two graphs GX and HY , their internal hom
is the graph Hom(G,H) with set of objects Y X , given by the collection of
V-objects

Hom(G,H)(k, s) =
∏
x′,x

[G(x′, x), H(kx′, sx)] for k, s ∈ Y X

By definition of these structures, the following diagram

V-Grph

��

−⊗GX //
⊥ V-Grph

��

Hom(GX ,−)
oo

Set
−×X //
⊥ Set

(−)X
oo

is a map of adjunctions, therefore all three clauses of Definition 3.12 are
satisfied.

Proposition 4.3. Suppose V is a symmetric monoidal closed category with
products and coproducts. The bifibration V-Grph → Set mapping a V-
graph to its set of objects is monoidal closed, therefore it is enriched in
itself.

Similarly to how the internal hom of V was lifted to an action of como-
noids on monoids in Section 4.1, the internal hom of V-Grph induces an
action

K : V-Cocatop × V-Cat // V-Cat

( CX , BY ) � // Hom(C,B)Y X

Its opposite has a parameterized adjoint, again by Theorem 2.11,

T : V-Catop × V-Cat→ V-Cocat
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called the generalized Sweedler hom. We get the following (lax) opfibred
parameterized adjunction

V-Catop
T (−,BY )

--

��

> V-Cocat
K(−,BY )op

mm

��
Setop

Y (−)

--> Set
Y (−)op

mm

thus Theorem 3.15 applies again, see [Vas17, 4.38].

Proposition 4.4. Suppose V is a locally presentable, monoidal closed cate-
gory. The fibration V-Cat → Set is enriched in the monoidal opfibration
V-Cocat→ Set, where both functors send the enriched structure to its set
of objects.

Finally, we can consider many object generalizations of modules and
comodules, namely V-modules for V-categories and V-comodules for V-
cocategories, see [Vas14, 7.6]. The former are quite standard: an AX-
module Ψ can also be thought as a V-profunctor Ψ: I A for I the unit
category. Objects are the same as A, and hom-objects are Ψ(x) ∈ V equip-
ped with (

∑
x,x′)A(x, x′) ⊗ Ψ(x′) → Ψ(x′) satisfying appropriate axioms.

The notion of comodules is dual, and these form global categories much like
before, V-Mod and V-Comod. The internal hom of enriched graphs fur-
ther restricts to these categories, giving an action of V-Comod on V-Mod
via a functor

K : V-Comodop × V-Mod // V-Mod

( ΦC , ΨB ) � // Hom(Φ,Ψ)Hom(C,B)

where Hom(Φ,Ψ)(t) =
∏

x[Φ(x),Ψ(tx)]. It has a parameterized adjoint

T : V-Modop × V-Mod→ V-Comod

by Theorem 2.11 which once more heavily relies on the fact that V-Mod is
fibred over V-Cat and V-Comod is opfibred V-Cocat, and there exists an
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adjunction between the base categories:

V-Modop
T (−,ΨB)

--

��

> V-Comod
K(−,ΨB)op

mm

��
V-Catop

T (−,BY )
--

> V-Cocat
K(−,BY )op

mm

(22)

Proposition 4.5. If V is a locally presentable symmetric monoidal closed
category, the fibration V-Mod → V-Cat is enriched in the opfibration
V-Comod→ V-Cocat.

Proof. Theorem 3.15 applies, to first establish the enrichment of the opfi-
bration V-Modop → V-Catop. First of all, V-Comod → V-Cocat is a
monoidal opfibration by definition of the respective products and cartesian-
ness of⊗V-Comod, [Vas14, 7.7.6]. The commutative square of categories and
functors

V-Comod× V-Modop K
op

//

��

V-Modop

��
V-Cocat× V-Catop

Kop
// V-Catop

constitutes an opfibred action, since both K and K are actions, K preserves
cartesian arrows by [Vas14, 7.7.3] and the action axioms are the one above
each other as per their definitions. Finally, this opfibred 1-cell has an oplax
opfibred parameterized adjoint by [Vas14, 7.7.5], and the proof is complete.

4.3 Comparison with existing notions

The above examples were the ones that motivated the proposed enriched
fibration notion – although more should be identified in future work. In this
final section, we would like to discuss why other existing approaches were
not applicable, due to the nature of these cases.

Recall that assuming the axiom of choice, one can construct an equiva-
lence between fibrations A → X and indexed categories, i.e. pseudofunc-
tors Xop → Cat via the classic Grothendieck construction [Gro61]. More
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recently [Shu08, MV18] this correspondence has been lifted between the re-
spective monoidal structures; we believe that a (global) enriched version of
the Grothendieck construction in the future, which in a fibrewise sense ap-
pears in [BW18], will shed more light to the tight connections between our
enriched fibration notion and the ones that follow. For the moment, we only
sketch some of the main relevant theory and differences.

M. Bunge in [Bun13] first introduced the notion of an S-indexed V -
category, for S an elementary topos and V an S-indexed monoidal category
V : Sop → MonCat. The goal of this work was to provide a general con-
text in order to compare as well as clarify certain misconceptions regarding
different completions on 2-categories, such as the Karoubi, Grothendieck,
Cauchy and Stack completion.

Independently, M. Shulman in [Shu13] also develops a theory of en-
riched indexed categories over base categories S with finite products. The
motivation in that paper was to capture and study ‘mixed’ fibred, indexed and
internal structures in various contexts, such as Parameterized and Equivari-
ant Homotopy Theory, abelian sheaves and many more.

Briefly, for S cartesian monoidal, take V to be an S-indexed monoidal
category, equivalently viewed as a monoidal fibration

∫
V : V → S. A V -

enriched indexed category A is simultaneously indexed (or fibred) over the
same S and also ‘fibrewise’ enriched in V: every category (or fiber) A(s)
for s ∈ S is V (s)-enriched, and the reindexing functors are fully faithful
enriched under the appropriate change of base. Although this formulation
employs the same notion of a monoidal fibration (Definition 3.2) as the base
of the enrichment, there are some crucial differences resulting in two sepa-
rate definitions, [Bun13, 2.4] - [Shu13, 4.1] and Definition 3.8.

First of all, Bunge’s and Shulman’s approach only concerns enrichment
in fibrations over monoidal categories whose tensor product is the cartesian
product. This is fundamental for the development and definitions, and not
a special case of something more general; of course this was relevant to
their examples at hand. On the contrary, for our examples this is evidently
not the case: in (21) and (22) the base monoidal categories of the monoidal
fibrations, Comon(V) and V-Cocat, are non-cartesian.

Moreover, the notion of an enriched indexed category roughly expressed
in the fibred world, essentially refers to a fibration ‘enriched’ in another fi-
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bration over the same base, approximately depicted as

A ‘fibrewise’ enriched //

fibred

& &

V

fibred

��
S.

In our examples, this fibrewise enrichment is certainly not the case: the fi-
bre categories of our monoidal fibrations, like ComodV(C), do not even
have a monoidal structure themselves in order to serve as enriching bases.
Furthermore, even if in [Shu13, §7] there is a short treatment of changing
the indexed monoidal enriching base, and the development in [Bun13] is a
special case of this via the identity functor on S, in our context the enriched
fibration concept involves simultaneous enrichments between both the total
and the base categories of the two fibrations as essential building blocks of
the structure:

A enriched //

fibred

��

V

fibred

��
X enriched //W

In conclusion, even if there are strong conceptual similarities between
the two definitions of an enriched fibration and indexed V-category, our def-
inition does not seem to even restrict in a straightforward way to the case
of fibrations over the same base, since the monoidal category W is not in
principle enriched over itself, nor via some sort of an identity or projection
functor. As mentioned earlier, future work would aim to clarify how these
two theories compare in more detail and depth. What is admittedly strik-
ing though is that several different goals and motivations have separately led
to the need for a theory that combines fibred structure over a base topos or
(cartesian) monoidal category, and enriched structure.
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COOPERATIVE PROPERTIES AND
CONNECTED SUM

Richard H. HAMMACK and Paul C. KAINEN

Résumé. Un cycle est un graphe connexe 2-régulier. Une propriété rela-
tive aux cycles est coopérative si elle est valable pour tout cycle qui est la
somme mod-2 de deux cycles se croisant dans un chemin nontrivial lorsque
les deux sommands ont la propriété. Une telle propriété vaut pour tous les
cycles si elle est valable pour les cycles dans une base à sommes connectées
(CS), et tous les graphes ont des bases CS. Nous montrons que la commu-
tativité “équivalence naturelle prés” est une propriété coopérative pour les
cycles d’un diagramme dans un groupoide et que le critére du cycle de Kol-
mogorov est coopératif pour les cycles dans les chaı̂nes de Markov.

Abstract. A cycle in a graph is a 2-regular connected subgraph. A prop-
erty of cycles is cooperative if it holds for any cycle which is the mod-2 sum
of two cycles intersecting in a nontrivial path when both summands have the
property. Cooperative properties hold for all cycles when they hold for the
cycles in a connected sum (CS) basis, and all graphs have CS bases. It is
shown that cooperative properties include commutativity up to natural equiv-
alence for cycles in a groupoid diagram and the Kolmogorov cycle criterion
for reversibility of an irreducible, stationary, aperiodic Markov chain.
Keywords. Groupoid diagram, commutative up to a natural equivalence,
Kolmogorov criterion, reversibility of a Markov chain, robust cycle basis.
Mathematics Subject Classification (2010). 05C38, 18A10, 60J10.
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1. Introduction

We apply some concepts from graph theory to commutativity up to natu-
ral equivalence for diagrams in a groupoid category and to reversibility of
Markov chains. See Harary [5] for undefined graph terminology below.

Properties for the cycles in a graph are exhibited which need only be
checked for the cycles in a basis vs. all cycles in the graph. This avoids a
combinatorial explosion. For instance, the 5-dimensional (binary) hypercube
Q5, with 32 vertices and 80 edges, contains more than 51 billion distinct
cycle-subgraphs but has a basis with 49 elements.

While our program works for some interesting properties, not every cy-
cle basis will do. One needs a connected sum basis (CS basis). This will
enable construction of cycles in a system which involves topology, order,
and hierarchy. Every graph has a CS basis; these bases are defined using the
concept of connected sum of cycles.

The connected sum of two cycles Z1 and Z2 in a graph G is defined
precisely when the intersection of the cycles is a nontrivial path, and, in that
case, it is the symmetric difference of the edge sets (that is, the mod-2 sum).

Z1 Z2 Z1+̂Z2

Figure 1: The connected sum of two cycles.

We write Z1+̂Z2 for connected sum. The connected sum of two cycles is
always a cycle, but their ordinary mod-2 sum is only guaranteed to have all
vertices of even degree. Connected sum is commutative but not associative.
The connected sum of a sequence of cycles, when it is defined, uses left-most
parenthesization. So the sequence of cycles (Z1, Z2, Z3) has a connected
sum iff Z1 ∩Z2 and (Z1+̂Z2)∩Z3 are nontrivial paths. Starting with a set S
of cycles, one can form all possible connected sums for sequences from the
set, and we call the resulting family of cycles the robust closure ρ(S) of S.

The edge sets of the even-degree subgraphs of G determine its cycle
space, an F2-vector space, usually denoted Z(G), where addition mod-2 is
symmetric difference. As every even degree graph has an edge-disjoint de-
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composition into cycles, there are bases for Z(G) consisting only of cycles.
These are called cycle bases. See, e.g., [1, 6, 13, 17]. We introduced the
following concepts in [7].

A cycle basis for a graph G is a connected sum basis if it can be used
to construct every cycle in G by iteratively taking robust closure. Note that
topology is involved in the definition of connected sum of two cycles, order
in the choice of a sequence of cycles whose connected sum is defined giving
the desired cycle, and hierarchy in the recursive construction of cycles.

Formally, we define a property of cycles to be a subset P of a graph’s
cycles. A cooperative property is one for which

Z1, Z2 ∈ P =⇒ Z1+̂Z2 ∈ P. (1)

Properties that hold for the cycles in a CS basis, and that are cooperative,
will hold for all cycles. In contrast, for less carefully controlled cycle sums,
where partial summands need not even be connected and where intersections
of cycles can be arbitrary, properties holding for the cycles in a basis may
not spread to the other cycles. Commutativity of cycles in a diagram turns
out to be cooperative.

Cooperative properties involve additional structure superimposed on the
graph. For diagram commutativity, this structure consists of a suitable dia-
gram in a groupoid. Later we consider the structure of a Markov chain.

It may seem unnecessary to have a property for all cycles guaranteed by
the members of a special cycle basis when it is almost a default assumption
that properties of a graph related to cycles need only be checked for members
of an arbitrary cycle basis. This belief could be due to two well-known
examples:

Kirchoff’s voltage law (the sum of the voltages around any cycle is
zero.) By a linear-algebra argument, one need only check for the cycles
in any basis.

A graph is bipartite if and only if each cycle has even length. Count-
ing shows this holds for all cycles if it holds for the cycles in any basis.

A third example might come to mind. Many of the diagrams arising in
elementary category theory and also in homological algebra are planar.

Plane diagrams commute iff the region boundaries commute. The
region boundaries (of all the bounded regions) do constitute a cycle basis.
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However, this last example, considered more carefully, shows that not
all cycle bases will suffice. We provided a nonplanar diagram and a non-cs
cycle basis where the cycles of the basis commute but some other cycles do
not commute; see [4] and Figure 3 below. Further, the region-boundaries
basis is a connected sum basis [10]. We showed in [4] that commutativity is
a cooperative property so diagrams commute if (and only if) all cycles in a
connected sum basis commute.

In this paper, the applicability of cooperative properties is demonstrated
with two more examples: commutativity up to a natural equivalence is a
cooperative property of cycles in a groupoid diagram, and the Kolmogorov
cycle criterion (KCC) is a cooperative property of cycles in a Markov chain.

In §2 below, we review CS bases and §3 extends the machinery to directed
graphs (digraphs). The results are applied in §4 to groupoid diagrams and in
§5 to Markov chains; we conclude with a brief discussion.

2. Background on connected sum

For any graph H , we write E(H) for the edge-set. The connected sum
Z1+̂Z2 of two cycle subgraphs of a graph G is just the usual mod-2 sum
(i.e., symmetric difference of edge sets) but it is only defined when Z1 ∩ Z2

is a path containing at least one edge.
Let Cyc(G) denote the set of all cycle-subgraphs of a graph G and let

∅ 6= S ⊆ Cyc(G). A sequence of not necessarily distinct cycles from S

(Z1, Z2, . . . , Zk) (2)

is called S-admissable and its connected sum is defined by

+̂(Z1, Z2, . . . , Zk) := (· · · ((Z1+̂Z2)+̂Z3) · · ·)+̂Zk. (3)

provided that its members have pairwise intersections as specified so that
all of the partial sums on the RHS of (3) are connected sums. Hence, the
connected sum of a sequence is defined iff the sequence is S-admissible.

The robust closure of S is the set of all cycles in G which are connected
sums of S-admissable sequences

ρ(S) :=
{
Z : ∃ ` ≥ 1, Zi ∈ S, 1 ≤ i ≤ `, Z = +̂(Z1, Z2, . . . , Z`)

}
. (4)
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By definition, S ⊆ ρ(S) ⊆ Cyc(G) and ρ preserves inclusion. If S = B
is a cycle basis for which ρk(B) := ρ(ρk−1(B)) = Cyc(G) for a positive
integer k, then B is a connected sum (CS) basis; the depth of B is the least
such k, the number of iterated robust closures needed to generate all cycles.

Examples of CS bases of depths 1 and 2 are given in [10] and [7]. The
depth 1 case (called robust bases) includes plane graphs and complete graphs.

It was shown in [3] that for n ≥ 8, the complete bipartite graphKn,n does
not have any robust basis, but the basis consisting of all 4-cycles through a
fixed edge from [7] is a CS basis. In [4], we gave a general method for con-
structing cs bases, involving ear decompositions [14], based on a theorem of
Whitney [19], .

Recall that a property of cycles is a subset P ⊆ Cyc(G). A property P
is cooperative provided Z1, Z2 ∈ P =⇒ Z1+̂Z2 ∈ P . The following is
shown in [10], see also [7], [4].

Theorem 2.1. If P is any cooperative property and P holds for all cycles in
a connected sum basis for a graph G, then P holds for every cycle in G.

3. Connected sum of directed cycles

It will be convenient to describe a directed versions of connected sum and
cooperativity. We collect a few related definitions.

A digraph D is an ordered pair (V,A), where V 6= ∅ is a finite set of
vertices and a set of arcs A ⊆ V × V . The underlying graph U(D) of D has
the same vertex set with vw ∈ E(U(D)) iff (v, w) ∈ A or (w, v) ∈ A. We
also write a ∈ A with s(a) = v (v is the source) t(a) = w (w is the target).
Let deg+(v) denote the in-degree of a vertex v which is the number of arcs
a with t(a) = v and let deg−(v) denote out-degree of v, the number of arcs
a with s(a) = v.

A quiver is an ordered pair (V,A), where V 6= ∅ is a set of vertices andA
is a multiset, allowing for each (v, w) ∈ V × V a family aj, j ∈ J(v, w), of
arcs, all with s(aj) = v, t(aj) = w. Quivers have an underlying multigraph
and can be infinite. We write D = (V,A) for both digraphs and quivers.

IfD is a digraph (or quiver), then U(D) will denote the underlying graph
(or multigraph) obtained by discarding the direction of the arcs, replacing
them by the corresponding edges.
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A directed walk (diwalk) in D of length ` ≥ 0 is a sequence of vertices
(v0, v1, . . . , v`) and a sequence of arcs (a1, a2, . . . , a`) such that

t(ai) = vi = s(ai+1), 1 ≤ i ≤ `− 1, s(a1) = v0, t(a`) = v`.

If all vertices are distinct, the diwalk is called a dipath. If v0 = v`, the
diwalk is called a closed diwalk. A dicycle is a closed diwalk where vi = vj
for i < j implies i = 0, j = `, and ` ≥ 1. Loops are dicycles of length 1.

Given any graphG, one can form an orientation digraph by choosing for
each edge of G exactly one of the two possible arcs.

Note that a digraph is a dicycle iff it is an orientation of a cycle such that

deg+(v) = 1 = deg−(v)

for all vertices v. Given a graphG, one forms the symmetric digraph induced
by G, denoted D(G), by replacing every edge of G by both possible arcs, so
D(G) is the union of the set of possible orientations. A digraph is strongly
connected if every ordered pair of vertices is joined by a dipath from the first
to the second. Hence, a dicycle is a minimal strongly connected digraph.

Two orientation digraphs that have underlying graphs sharing at least
one edge will be in exactly one of the following relations with respect to
their common edges: consistently oriented (in agreement on all); oppositely
oriented (disagreeing on all); or variably oriented. We use this mostly for
dicycles.

Define the connected sum D1+̂D2 of two dicycles D1, D2 when both of
the following hold: the underlying cycles U(D1) and U(D2) meet in a non-
trivial path and the dicycles are oppositely oriented. In this case, D1+̂D2 is
the unique dicycle orientation of the cycle U(D1)+̂U(D2) such that D1+̂D2

is consistently oriented with D1 and D2. See Figure 2. We extend connected
sum to sequences of dicycles, using leftmost parenthesization analogously
with the undirected case.

Note that in any connected sum +̂(D1, D2, D3) of dicycles for which
U(D3) ∈ {U(D1), U(D2)}, the repeated cycle appears with both dicycle
orientations.

A property of dicycles is cooperative if it holds for the connected sum of
two dicycles whenever it holds for the summands.

For each cycle Z of G, we define

Z± := {Z+, Z−},
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where Z+, Z− are the oppositely-oriented dicycle orientations of Z.
If S is a set of cycles, we write the corresponding set of dicycles as

S± :=
⋃
Z∈S

Z±

The orientation of a dicycle is determined on any nontrivial path sub-
graph. Because of the constrained intersections of connected sum sequences,
one can choose the orientations so that each successive pairwise connected
sum is the sum of two oppositely oriented dicycles. When this is done, the
connected sum of the two underlying cycles is oriented consistently with the
summands. The following theorem is sufficient to confirm this.

Theorem 3.1. Let C be any cycle in a graph G with C = +̂(Z1, Z2, . . . , Zk)
and let Cε be any orientation of C. Then there exists a unique sequence
(ε1, . . . , εk) ∈ {+,−}k such that

Cε = +̂(Zε1
1 , Z

ε2
2 , . . . , Z

εk
k ). (5)

Proof. By induction on k. The claim is trivial for k = 1 where C = Z1 and
ε1 is determined by the orientation of C. Assume the result for k − 1 and
suppose that C has a connected sum (3). Let Zεk

k be the unique orientation
of Zk consistent with Cε. Put Cε

k := Cε+̂Z−εkk . Then

Ck = +̂(Z1, . . . , Zk−1).

By the inductive hypothesis, we have unique ε1, . . . , εk−1 and (5) holds.

The results here show that, as 1-chains over the integers, dicycles can be
built so that all coefficients are 0, 1, or −1, using a connected sum basis.
Further, a cooperative property holds for all dicycles in a digraph when it
holds for all the dicycles in B± where B is a CS basis for U(D).

D1 D2 D1+̂D2 U(D1)+̂U(D2)

Figure 2: Two compatible dicycles (left), their connected sum (center) and
the connected sum of their underlying graphs (right).
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4. Diagrams in groupoids

In this section, we review our previous result on cooperativity of commu-
tativity in groupoid diagrams and show how to extend this to groupoid dia-
grams which are only commutative up to a natural transformation.

Let D be a digraph and let C be a category. A diagram δ of shape D in
C is a homomorphism from D to the underlying quiver of C. For example,
the digraph with vertices a, b, c, d and arcs (a, b), (b, c), (a, d), (d, c) could
be mapped by sending all vertices to a fixed object X in C, with the arcs
associated with various morphisms X → X . See Mac Lane [15, p. 8].

Two dipaths in a digraph with a common source and a common target
vertex are called parallel; in the extreme case, they are internally disjoint but
this is not required. A diagram δ of shape D in C is parallel-commutative
if for any two parallel dipaths in D, the corresponding dipaths in C give the
same composite morphism. But any diagram parallel-commutes if its shape
has no two distinct parallel paths (e.g., a cycle in which arcs alternate in
direction).

Instead, we shall consider a stronger type of commutativity which, how-
ever, is only defined when the morphisms of the diagram are all invertible;
that is, when the category C is a groupoid G [15, p. 20], [18, pp. 45, 134].

For a diagram
δ : D → G

in a groupoid G, we say that δ groupoid-commutes (g-commutes) if the com-
position around any cycle of the underlying graph of D induces an identity
morphism in G [7], [4]. We assume that arc x = (v, w) of D, traversed in
proper order while going around the cycle, produces the morphism δ(x) but
traversed in reverse, produces the morphism δ(x)−1 from δ(w) to δ(v).

It is easy to check that the groupoid commutativity of a cycle is inde-
pendent of which traversal is chosen (i.e., of starting point and of clockwise
vs counterclockwise orientation). But the particular identity morphism may
depend on starting point.

Indeed, consider the following case, which is sufficient. Let the diagram
have two objects X and Y with morphisms a : X → Y and b : Y → X .
Suppose that (i) ba = 1X , where we write composition from right to left as
usual. Hence, (ii) ab = 1Y . Also, (i) implies (iii) a−1b−1 = 1X .

The following was shown in [10].
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Theorem 4.1. Groupoid commutativity is a cooperative property.

The significance of the result follows from the fact that in [4], we ex-
hibited a diagram δ : D → C∗, where D is the orientation of the complete
bipartite graph K3,3 shown below, C∗ is the group of nonzero complex num-
bers, and each morphism is rotation by 2π

3
, together with a particular basis

B of U(D), indicated on the right, such that δ commutes on the members
of B (and indeed on any 6-cycle but does not commute on the 4-cycles. See
Figure 3.

XX

X

X X

X XX

X

X X

X

XX

X

X X

X

XX

X

X X

X

XX

X

X X

X

Figure 3: A noncommutative diagram (left) that commutes on a cycle basis (right).
This basis is not a CS basis because no two of its members are compatible.

Assume where necessary that categories are small with only a set of ob-
jects. A natural transformation ν : F ⇒ G between two functors F,G :
C → D is a family of D-morphisms indexed by the objects of C

{νx : Fx→ Gx}x∈Obj(C)

such that for every C-morphism α : x→ y, we have

νy ◦ F (α) = G(α) ◦ νx;

that is, all the associated squares commute. A natural equivalence is a natu-
ral transformation all of whose arrows are equivalences. A natural transfor-
mation is an equivalence iff it is invertible as a natural transformation.

Let CAT be a small subcategory of the category of all small categories
with functors as morphisms. We shall consider a fixed groupoid subcategory
G of CAT. Let D be an orientation digraph and let δ : D → G be any
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diagram. Then one can extend δ in a unique way to a diagram δ̂ on the
symmetric digraph which D induces

δ̂ : D̂ := D(U(D))→ G (6)

Commutativity up to natural equivalence for diagrams in G means that
the composition functor around any dicycle in D̂ is naturally equivalent to
the appropriate identity functor.

Theorem 4.2. Commutativity up to natural equivalence is cooperative.

Proof. Without loss of generality, we take two dicycles D1 and D2 which
are oppositely oriented with P := U(D1)∩U(D2) a nontrivial path. Let P+

be the orientation of P consistent with D1 and let Y and X , resp., denote the
first and last vertex of P+. We write a for the composition of the morphisms
along the path D1 − P+ from X to Y , and b for the composition along P+

from Y to X . For the other dicycle, we do the same thing: let c denote the
composition of the morphisms along D2 − P− from Y to X . By definition,
the composition of the morphisms in P− from X to Y is b−1.

X

Y

D1 D2a b−1 b c

Suppose now that both dicycles commute up to natural equivalences; let

ν : b ◦ a⇒ 1X and µ : c ◦ b−1 ⇒ 1X . (7)

where ν and µ are natural equivalences. We define a composition τ := µ2ν
which is both a natural transformation and an equivalence; for every x ∈ X ,

τx := µx ◦
(
(c ◦ b−1)(νx)

)
, (8)

which is an X-morphism from
(
(c ◦ b−1) ◦ (b ◦ a)

)
(x) = (c ◦ a)(x) to x.

Hence, D1+̂D2 commutes up to natural equivalence. This is illustrated in
the following four commutative squares.
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The first square expresses the fact that ν is a natural transformation; the
second applies the functor cb−1; the third expresses the naturality of µ; and
the fourth is the (vertical) composition of the second and third squares.

α

νx νx′

ba(α)
ba(x) ba(x′)

x x′

cb−1(α)

ca(α)
ca(x) ca(x′)

cb−1(x) cb−1(x′)

α

µx µx′

cb−1(α)
cb−1(x) cb−1(x′)

x x′

α

τx τx′

ca(α)
ca(x) ca(x′)

x x′

This completes the proof.

5. Application to Markov chains

In this section, we consider the Kolmogorov cycle criterion (KCC) for the
reversibility of discrete Markov chains. See, e.g., Kelly [11, chap. 1].

- 398 -



R. HAMMACK, P. KAINEN COOPERATIVE PROPERTIES

Let (X(t), t ∈ T ) be a Markov chain with a finite or countable state-
space S ⊆ N+. A Markov chain is stationary if for all n ∈ N+ and all
τ, t1, . . . , tn ∈ T ,(
X(t1), X(t2), . . . , X(tn)

)
∼
(
X(τ + t1), X(τ + t2), . . . , X(τ + tn)

)
,

where A ∼ B denotes the relation of equality of distributions.
A Markov chain is reversible if for all n ∈ N+ and all τ, t1, . . . , tn ∈ T ,(
X(t1), X(t2), . . . , X(tn)

)
∼
(
X(τ − t1), X(τ − t2), . . . , X(τ − tn)

)
.

Reversibilty implies stationarity [11, p. 5]. Also, a stationary Markov chain
X(t) is time-homogeneous; i.e., for all τ, t1, t2 ∈ T and all j, k ∈ S,

P (X(t1 + τ) = k|X(t1) = j) = P (X(t2 + τ) = k|X(t2) = j).

Write p(j, k) for P
(
X(t + 1) = k

∣∣∣X(t) = j
)

as it is independent of t and
for every state j the state transitions describe all events, so

∑
k∈S p(j, k) = 1.

We define the communications digraph D(X) of a Markov chain X to
be the digraph with vertex set S, where (j, k) is an arc iff p(j, k) > 0. A
Markov chain is irreducible if and only if its communications digraph is
strongly connected (there is a positive probability of a dipath joining each
pair of states).

A Markov chain is periodic if there exists d > 1, d ∈ N+, such that

P
(
X(t+ τ) = j

∣∣∣ X(t) = j
)
> 0 ⇒ d|τ

(d|τ means d divides τ ). If the chain is not periodic, it is called aperiodic.
The following result is well-known (e.g., [11, p. 6]).

Theorem 5.1. A stationary, irreducible, and aperiodic Markov chain X(t)
is reversible if and only if there exists a function µ on S with µ(j) > 0 for
all j and

∑
j∈S µ(j) = 1 such that, for all j, k ∈ S, detailed balance holds:

µ(j)p(j, k) = µ(k)p(k, j). (9)
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As Kelly [11, p. 21] puts it, “... it is natural to ask whether we can es-
tablish the reversibility of a process directly from the transition rates alone.”

The Kolmogorov Cycle Criterion (KCC) makes this possible. (There are
also extensions to continuous-time Markov processes which we omit here.)
The KCC for a closed diwalk

ω := (j1, j2, . . . , jn, j1)

asserts that
P (ω) = P (ωop), (10)

where ωop denotes the diwalk oppositely orientated to ω,

ωop = (j1, jn, . . . , j2, j1)

and the probability of a diwalk is the product of the probabilities of its arcs,

P (ω) := p(j1, j2) . . . p(jn−1, jn) p(jn, j1).

We sketch Kelly’s argument [11, p. 22] for the original result of [12].

Theorem 5.2. A stationary, irreducible, and aperiodic Markov chainX(t) is
reversible if and only if the KCC (10) holds for all closed walks ω in D(X).

Proof. If X is reversible, then by the previous theorem, there exists a pos-
itive measure on S which satisfies detailed balance (9) for each oppositely
oriented pair of arcs inD(X). Take the product of the set of detailed-balance
equations corresponding to the arcs in ω and divide by the product of the
(positive!) measures of the states which occur (in reverse order) for the two
opposing diwalk orientations. The result is equation (10).

Conversely, suppose that (10) holds for every closed walk. One defines a
positive measure µ as follows. Select an arbitrary base-point j0 in S and let
j ∈ S. As X is irreducible, there exists a diwalk (in fact, a dipath) ω from
j to j0 in the communications digraph D(X). Define µ(j) by the following
equation,

µ(j) = B
P (ωop)

P (ω)
, (11)

where B is an arbitrary positive constant that can later be adjusted to give a
probability measure.
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To see that µ(j) does not depend on the path from j to j0, let ζ denote
another j-j0-dipath inD(X). Using “∗” to concatenate diwalks, the equation

P (ωop)

P (ω)
=
P (ζop)

P (ζ)
(12)

holds by (10) as P (ω)P (ζop) = P (ω ∗ ζop) = P (ζ ∗ ωop) = P (ωop)P (ζ) .
Also, µ(j) > 0; indeed, as there is a diwalk η in D(X) from j0 to j,

the concatenation ω ∗ η is a closed diwalk of positive probability, so by (10),
P (ηop) > 0; hence, with ηop instead of ω in (11), µ(j) > 0.

It is routine to show that each arc satisfies (9).

The following result applies our theory to obtain a more efficient charac-
terization of reversibility.

Theorem 5.3. A stationary, irreducible, and aperiodic Markov chain X(t)
is reversible if and only if the KCC (10) holds for all dicycles in B±, where
B is any CS basis of U(D(X))

Proof. One direction is trivial in view of Kolmogorov’s theorem. In the
opposite direction, suppose that his criteria hold for all the dicycles of a CS

basis. Once we’ve established the next theorem, it follows that the KCC
holds for all dicycles and hence X is reversible.

Theorem 5.4. The KCC is a cooperative property for dicycles in the commu-
nications digraph of a stationary, irreducible, and aperiodic Markov chain.

Proof. We follow the same outline as in the proof of Theorem 4.2. Take
oppositely oriented dicycles D1 and D2 with P := U(D1) ∩ U(D2) a non-
trivial path. Let P+ be the orientation of P consistent with D1 and let Y and
X , resp., denote the first and last vertex of P+. We write α for the dipath
D1 − P+ from X to Y , and β for the dipath P+ from Y to X . Let γ denote
the dipath D2 − P− from Y to X . As D1 and D2 satisfy the KCC, we have
the equations

P (α)P (β) = P (αop)P (βop)

P (γ)P (βop) = P (γop)P (β)

Multiplying the two equations and cancelling the positive term P (β)P (βop)
gives the KCC for D1+̂D2, P (α)P (γ) = P (αop)P (γop).
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We now apply connected sum theory to an exercise [11, Ex. 1.5.2, p. 24].

Proposition 5.5 (Kelly). LetX(t) be a stationary, irreducible, and aperiodic
Markov chain. If j0 ∈ S is such that for every j ∈ S, we have p(j, j0) > 0,
then X is reversible iff the KCC holds for all 3-cycles through j0; that is, for
all j1 6= j2 ∈ S \ {j0},

p(j0, j1) p(j1, j2) p(j2, j0) = p(j0, j2) p(j2, j1) p(j1, j0).

Proof. The bouquet of triangles centered at j0 is a CS basis for Kn for every
n ≥ 3 by [7, Proposition 1], and any dicycle in D(X) is contained in some
D(Kn).

6. Discussion

The implications of cooperativity for commutativity are interesting from the
perspective of the information theory of mathematics. For example, one can
define the structure of a group by a set of commutative diagrams and it is
well-known that only a subset need to be checked. As with application of the
Cube Lemma [16, p. 43], savings are modest. However, in a more complex
situation, savings might be substantial, cf. [7], [9].

Perhaps the theory of diagrams which commute or commute up to natural
equivalence could decrease the complexity of verifying commutativity for
the groupoid diagrams involved in higher category theory and adjointness.

Indeed, the only result in the literature, of which we are aware, with a
similar direction to ours is in Gray [2], who proved that a hypercube diagram
in a 2-category is 2-commutative if and only if all its Q3-subgraphs are 2-
commutative.

Are there applications of connected sum theory to natural processes in
biology and physics? The notion that cycles can be generated in a hierarchi-
cal fashion so that one must first prepare the ingredients in a previous stage
before combining them in a connected sum could be a desirable feature.

Also, are there implications for the random spread of cooperative prop-
erties? Given a fixed probability that any one cycle will have the property, if
the number of cs bases grows sufficiently rapidly as a function of the order
of a graph family, then we might expect that there is a threshold number of
vertices above which the property almost surely holds.

What other properties of cycles are cooperative?

 - 402 -



R. HAMMACK, P. KAINEN COOPERATIVE PROPERTIES

References

[1] E.T. Dixon, S.E. Goodman An algorithm for the longest cycle problem,
Networks 6 (1976) 139–146

[2] J. W. Gray, Coherence for the tensor product of 2-categories, and
braid groups, pp. 63–76 in Algebra, Topology, and Category Theory,
A. Heller & M. Tierney, Eds., Academic Press, New York, 1976.

[3] R. H. Hammack & P. C. Kainen, Kn,n has no robust basis for n ≥ 8,
Discr. Appl. Math., 235 (2018) 206–211.

[4] R. H. Hammack & P. C. Kainen, Graph bases and diagram commuta-
tivity, Graphs and Combin. 34(4) (2018) 523–534.

[5] F. Harary, Graph Theory Addison-Wesley, Reading, MA (1969).

[6] D. Hartvigsen, E. Zemel, Is every cycle basis fundamental? J. Graph
Theory, 13 (1989) 117–137.

[7] P.C. Kainen, On robust cycle bases, in Proc. of the Ninth Quadrennial
Int. Conf. on Graph Theory (Combinatorics, Algorithms and Applica-
tions), Ed. by Y. Alavi, D. Jones, D.R. Lick, J. Liu, June 2000, Kala-
mazoo, MI, Elec. Notes in Discr. Math., 11, Elsevier (2002).

[8] P. C. Kainen, Isolated squares in hypercubes and robustness of
commutativity, Cahiers de Topologie et Géométrie Différentielle
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