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AVERTISSEMENT 

A partir de Janvier 2018, les  

“Cahiers de Topologie et Géométrie Différentielle Catégoriques” 

évoluent en un Journal électronique périodique gratuit (sans abonnement payant, 

ni charge pour les auteurs), tout en conservant leurs caractéristiques scientifiques 

actuelles, leur titre et  numérotation (Volume LIX en 2018) et leur format en 4 

fascicules trimestriels. Ceux-ci paraîtront au début de chaque trimestre sous 

forme de fichiers pdf librement téléchargeables sur le site  

http://ehres.pagesperso-orange.fr/Cahiers/Ctgdc.htm 

et (en articles séparés) sur le site miroir à Louvain-la-Neuve :   

Cahierstgdc.com 

Par suite, le présent livre qui réunit les fascicules 3 et 4 du Volume LVIII (2017) 

des Cahiers sera leur dernier volume à paraître en format papier.  

 
 

ANNOUNCEMENT  
 

From January 2018 on, the 

“Cahiers de Topologie et Géométrie Différentielle Catégoriques”  

will become a free electronical Open Access Journal (with no paid subscription 

nor authors’ charges), while keeping their present scientific objectives, their title 

and numbering (Volume LIX in 2018) and their presentation in 4 quarterly 

issues. These issues will be published at the beginning of each quarter as pdf 

files freely downloadable by everyone on the site 

http://ehres.pagesperso-orange.fr/Cahiers/Ctgdc.htm 

and (in separated articles) on the Louvain-la-Neuve mirror site :  

Cahierstgdc.com 

Thus the present book, which unites issues 3 and 4 of Volume LVIII (2017) of 

the Cahiers will be their last paper-format volume.  



 



TWO- AND ONE-DIMENSIONAL COMBINATORIAL 

EXACTNESS STRUCTURES IN KUROSH–AMITSUR 

RADICAL THEORY, I  

 

by Marco GRANDIS, George JANELIDZE
1
  

and László MÁRKI
2 

 

Résumé. Les auteurs proposent une nouvelle version non-pointée de 

structure d’exactitude combinatoire pour la théorie abstraite des radicaux 

de type Kurosh–Amitsur introduite par les deuxième et troisième auteurs 

en 2003, appelée ci-dessous structure 2-dimensionnelle.  Elle est motivée 

par la notion de catégorie semi-exacte introduite par le premier auteur en 

1992 et, brièvement, elle permet de définir un triplet radical-semisimple tel 

que, si (R,r,S) est un tel triplet, alors (R,S) est un couple radical-semisimple 

par rapport à la structure d’exactitude 1-dimensionnelle sous-jacente défi-

nie dans ce qui suit.  

 

Abstract. We propose a new, non-pointed, version of combinatorial ex-

actness structure for the abstract theory of Kurosh–Amitsur radicals  

introduced by the second and third author in 2003. We call it now  

2-dimensional. It is motivated by the notion of semiexact category intro-

duced by the first author in 1992, and, briefly, it allows us to define a radi-

cal-semisimple triple in such a way that if (R,r,S) is a radical-semisimple 

triple, then (R,S) is a radical-semisimple pair with respect to its underlying 

1-dimensional exactness structure as defined below.  

 

Key words. Adjoint functors, Kurosh-Amitsur radical, Non-pointed com-

binatorial exactness, Short exact sequence, Null morphism. 
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0. Introduction 
  

 Each of the papers [GrJM2013], [JM2003], and [JM2009] proposes a 

special combinatorial exactness structure as a framework for an abstract 

Kurosh–Amitsur type radical theory. We will call these three structures 1-, 

2-, and 3-dimensional, respectively (although the 1-dimensional approach 

was, in a sense, known before: see Remark 1.3 in [GrJM2013]), and study 

the relationship between the resulting radical theories in a series of papers.  

 The structures introduced in [JM2003] and [JM2009] will be ex-

tended, in order to make them non-pointed. This is motivated by the follo-

wing observation made in [GrJM2013]:  

 Surprisingly, the non-pointed context allows us to present the theory 

of closure operators as a special case of the theory of radicals by using 

semiexact categories in the sense of the first author.  

 In particular, in the present paper: 

 In Section 1 we introduce our non-pointed counterpart of the  

2-dimensional exactness structure (Definition 1.1), and its under-

lying 1-dimensional exactness structure (Definition 1.3). Example 

1.6 explains how to associate such a structure to a semiexact ca-

tegory satisfying a mild additional condition. 

 Section 2 briefly explains an obvious duality principle, in order to 

avoid various calculations that become dual to others. 

 Section 3 introduces what we call radical-semisimple triples (Defi-

nition 3.1), that is, triples (R,r,S) consisting of a radical class R, its 

corresponding radical function r and semisimple class S; a list of 

counterparts of the first standard properties well known in Kurosh–

Amitsur radical theory is then given. 

 Section 4 is devoted to the First Comparison Theorem (Theorem 

4.3), which says that if (R,r,S) is a radical-semisimple triple with 

respect to a given 2-dimensional exactness structure (satisfying a 

natural additional condition), then (R,S) is a radical-semisimple pair 

in the sense of [GrJM2013] with respect to the underlying 1-di-

mensional exactness structure. 
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 Section 5 briefly recalls the classical case of rings, and says a few 

words about the intermediate levels of generality. More about the 

pointed case can be found in [JM2003]. 

 Section 6 presents topological closure as a radical function. Unlike 

in [GrJM2013], we do not go to abstract-categorical closure opera-

tors here, because that would involve too much of additional mate-

rial, e.g. from [DikT1995], and we are going to present this in a se-

parate paper. 

 Section 7 is devoted to a very simple example, not involving any 

kind of categorical exactness, showing that a ‘Naive Second Com-

parison Theorem’, converse to Theorem 4.3, would be obviously 

false. In fact, a Second Comparison Theorem should cover the clas-

sical result of Amitsur and Kurosh saying that the so-called Condi-

tions (R1) and (R2) on a class R of rings characterize radical classes 

(see Theorem 2.15 in [GaW2004]). This will require, if not a ring-

theoretic, at least a semi-abelian algebraic context. 

 

1. 1- and 2-dimensional combinatorial exactness structures 
 

 The purpose of this section is to 

 introduce (Definition 1.1) a non-pointed counterpart of pointed 

combinatorial exactness structure in the sense of [JM2003], which 

we shall call a 2-dimensional (combinatorial) exactness structure; 

 define (Definition 1.3), for each such structure, its underlying  

1-dimensional exactness structure in the sense of [GrJM2013]; 

 introduce (Definition 1.4) a new notion of a proper short exact se-

quence in a semiexact category in the sense of [Gr1992a], 

[Gr1992b], and [Gr2013], and use it to associate a 2-dimensional 

exactness structure to every semiexact category satisfying a certain 

completeness condition (Example 1.6). 

 

Definition 1.1. A 2-dimensional (combinatorial) exactness structure is a 

diagram 
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          X2            
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0            X0,                                   (1.1)          
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0
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in the category of sets, satisfying the simplicial identities 

          d
0
0s

0
0 = d

0
1s

0
0 = 1,                                                                              (1.2)  

          d
0
0d

1
1 = d

0
0d

1
0, d

0
0d

1
2 = d

0
1d

1
0, d

0
1d

1
2 = d

0
1d

1
1,                                            (1.3) 

          s
1
1s

0
0 = s

1
0s

0
0,                                                                                     (1.4)  

          d
1
0s

1
1 = s

0
0d

0
0,                                                                                    (1.5)  

          d
1
0s

1
0 = d

1
1s

1
0 = d

1
1s

1
1 = d

1
2s

1
1 = 1,                                                         (1.6) 

          d
1
2s

1
0 = s

0
0d

0
1,                                                                                    (1.7) 

and equipped with a complete lattice structure on each fibre (d
1
1)
1

(a), for a 

 X1, such that s
1
1(a) and s

1
0(a) are, respectively, the smallest and the largest 

element in (d
1
1)
1

(a).  

 

Example 1.2. A pointed combinatorial exactness structure in the sense of 

Definition 2.1 of [JM2003] is nothing but a 2-dimensional exactness struc-

ture of Definition 1.1 in the case when X0 is a one-element set. The nota-

tion we use here is, however, not the same; specifically: 

 while X1 and X2 in the two definitions play the same role, X0 being a 

one-element set is not mentioned in [JM2003], and so are the maps 

d
0
0, d

0
1, and s

0
0: instead, the element of X1 corresponding to the 

unique element of X0 under s
0
0 is denoted by 0 in [JM2003]; 

 the maps d
1
0, d

1
1, d

1
2, s

1
0, and s

1
1 of Definition 1.1 correspond, respec-

tively, to the maps d0, d1, d2, e1, and e0 of [JM2003].  
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Recall from [GJM2013] (slightly changing the notation) that a  

1-dimensional exactness structure is a system (A,Z,⨞,-⊳) in which A is a 

set, Z is a subset of A, and ⨞ and -⊳ are binary relations on A such that, for 

every a in A, there exist z and z' in Z with z ⨞ a and a -⊳ z'.  

 

Definition 1.3. Given a 2-dimensional exactness structure, we define its 

underlying 1-dimensional exactness structure as the system (X1,s
0
0(X0),⨞,-⊳) 

in which u ⨞ v when there exists x  X2 with d
1
0(x) = u and d

1
1(x) = v, and  

v -⊳ w when there exists x  X2 with d
1
1(x) = v and d

1
2(x) = w.  

 

Note that (X1, s
0
0(X0),⨞,-⊳) constructed as in Definition 1.3 is indeed a 

1-dimensional exactness structure, since, for every v  X1, we have  

          s
0
0d

0
0(v) ⨞ v,                                                                                     (1.8) 

          v -⊳ s
0
0d

0
1(v).                                                                                    (1.9) 

Here (1.8) follows from d
1
0s

1
1(v) = s

0
0d

0
0(v) and d

1
1s

1
1(v) = v, while (1.9) fol-

lows from d
1
1s

1
0(v) = v and d

1
2s

1
0(v) = s

0
0d

0
1(v). 

  

Now, let us recall from [GrJM2013]: 

A semiexact (=ex1-exact) category C in the sense of [Gr1992a] can be 

described as the data 

                          D 
 

                                                                                                

          C1            
E

             C0,   C – E – D,                                           (1.10)           

                         

   

                          C 

in which: 

 C1 is a category, C0 a full replete subcategory of C1, and E is the 

inclusion functor; 

 D and C are a right adjoint left inverse and a left adjoint left inverse 

of E, respectively; 

 all the counit components A : D(A)  A are monomorphisms that 

admit pullbacks along arbitrary morphisms into A, and all the unit 
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components A : A  C(A) are epimorphisms that admit pushouts 

along arbitrary morphisms from A. 

Next, we need some discussion that will lead us to introducing the no-

tion of proper short exact sequence which we are going to use: 

One usually says that a diagram  

          U  V  W                                                                                (1.11) 

in a category with a zero object is a short exact sequence if U  V is a 

kernel of  V  W and V  W is a cokernel of U  V, or, equivalently, if 

the diagram  

          U  V 

                                                                                                           (1.12) 

          0  W 

is a pullback and a pushout at the same time. We shall refer to these equiv-

alent conditions as the kernel-cokernel condition and the pullback-pushout 

condition. 

 In the semiexact context (with U  V  W being a diagram in C1, 

where C1 is as in (1.10)), although the kernel-cokernel condition can be 

copied word for word using kernels and cokernels in the sense of 

[Gr1992a], there is a problem with the pullback-pushout condition, since:  
 

 while U  V is a kernel of V  W if and only if U  V is a pull-

back of D(W)  W along V  W, 

 V  W is a cokernel of U  V if and only if V  W is a pushout of 

U  C(U) along U  V. 
 

That is, in order to copy the pullback-pushout condition we need D(W) and 

C(U), both of which will replace the zero object, to be canonically isomor-

phic. 

In order to explain what “canonical” means, consider the commutative 

diagrams 

                                        f 

          Ker(f)  U    W  Coker(f) 

                                                                                                          (1.13) 

                 Coker(ker(f))  Ker(coker(f)) 

                                      f 
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                                        f 

                          U    W  

                                                                                                          (1.14) 

                        C(U)      D(W)  

                                      f 

 

where f is the composite U  V  W andf  is induced by f. The existence 

and uniqueness of suchf  in (1.13) follows from: 
 

 the universal property of a kernel and the fact that f is a null 

morphism in the semiexact context of [Gr1992a], 

 or, equivalently, from the universal property of a cokernel and the 

fact that f is a null morphism in the semiexact context of [Gr1992a], 
   

while the existence and uniqueness of suchf  in (1.14) follows from: 
 

 the universal property of D(W)  W and the fact that f factors as 

U  C(U)  W, 

 the universal property of U  C(U) and the fact that f factors as 

U  D(W)  W. 
 

Moreover, the square part of diagram (1.13) is in fact the same as dia-

gram (1.14). Indeed, since f is a null morphism in the sense of [Gr1992a], 

we can take Ker(f) = U and Coker(f) = W, and assume that Ker(f)  U and 

W  Coker(f) are the identity morphisms of U and W, respectively; this 

makes U  C(U) the cokernel of  Ker(f)  U and makes D(W)  W the 

kernel of W  Coker(f). 

It follows that there is a clear notion of the canonical morphism  

C(U)  D(W) for each short exact sequence U  V  W, namely, it is the 

morphismf  above; and we introduce:  

Definition 1.4. (a) A short exact sequence U  V  W in a semiexact 

category (1.10) will be called proper if the canonical morphism  

C(U)  D(W) is an isomorphism.  
 

(b) For two proper short exact sequences U  V  W and U '  V '  W ', 

we shall write (U  V  W)  (U '  V '  W ') if V = V ' and there exist 

morphisms U  U ' and W  W ' making the diagram 
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          U   V   W 

                                                                                                        (1.15) 

          U '  V '  W ' 

 

commute. 
 

(c) If (U  V  W)  (U '  V '  W ') and (U '  V '  W ')  (U  V  

W), then we will say that U  V  W and U '  V '  W ' are equivalent, 

and the equivalence class of U  V  W will be denoted by [U  V  

W].  

 

Remark 1.5. (a) Since a short exact sequence U  V  W is determined, 

up to isomorphism, by each of the morphisms U  V and V  W, Defini-

tion 1.4 also suggests us to define proper normal monomorphisms and 

proper normal epimorphisms as those normal monomorphisms and normal 

epimorphisms that appear as such U  V and V  W, respectively, in 

proper short exact sequences. 
 

(b) There are many situations where every short exact sequence is proper. 

For example, this is obviously the case if the ground semiexact category is 

pointed or satisfies axiom (ex3) of [Gr1992a], [Gr1992b], and [Gr2013].  

 

Now we are ready to present our main example of a 2-dimensional ex-

actness structure: 

 

Example 1.6. Given a semiexact category (1.10) in which we assume C1 

and C0 to be small skeletons, we would like to construct the associated 2-

dimensional exactness structure (1.1) by saying that: 
 

(a) X0 and X1 are the sets of objects of C0 and C1, respectively; 
 

(b) X2 is the set of equivalence classes of proper short exact sequences in 

the sense of Definition 1.4;  
 

(b) the maps d
0
0, d

0
1, and s

0
0 are the object functions of the functors D, C, and 

E, respectively; 
 

(c) the other maps involved in (1.1) are defined as follows: 
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 d
1
0[U  V  W] = U, d

1
1[U  V  W] = V, d

1
2[U  V  W] = W,     

                                                                                                              (1.16) 

          s
1
0(U) = [U = U  C(U)], s

1
1(U) = [D(U)  U = U]; 

(d) the order on (d
1
1)
1

(V) is defined according to Definition 1.4. 
 

However, to do this we need an additional assumption on the data (1.10), 

namely that each (d
1
1)
1

(V) be a complete lattice. We could briefly refer to 

this assumption by saying that our semiexact category admits proper inter-

sections. Note also that the only reason of our restriction to proper short 

exact sequences in (b) is that the second equality of (1.3) should be satis-

fied.  

 

2. Duality 
 

Any 2-dimensional exactness structure (1.1) has its opposite, or dual, 

2-dimensional exactness structure, in which: 
 

 the sets Xi (i = 1, 2, 3) and the maps d
1
1 and s

0
0 are the same as in the 

original structure; 

 the maps d
0
0, d

1
0, and s

1
0 of the original structure play the roles of the 

maps d
0
1, d

1
2, and s

1
1 of the opposite structure, and vice versa; 

 for each a  X1, the order on (d
1
1)
1

(a) in the opposite structure is 

opposite to the order in the original structure. 
 

This gives the obvious duality principle, saying that every property that 

holds in all 2-dimensional exactness structures has an obvious dual, which 

also holds in all 2-dimensional exactness structures. For example, so are 

properties (1.8) and (1.9), and after proving (1.8) we could simply say: 

“dually, we obtain (1.9)”. 

Similarly, the opposite category of any semiexact category is semi-

exact, and the data opposite to (1.10) is 
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                                C
op 

 

                                                                                                

          (C1)
op

            
E

op

             (C0)
op

,   D
op

 – E
op

 – C
op

,                       (2.1)           

                         

                         

                                D
op

 

 

Moreover, the duality principals for the two types of data obviously 

agree with each other in the sense that the associated 2-dimensional exact-

ness structure of the opposite semiexact category is opposite to the associ-

ated 2-dimensional exactness structure of the original semiexact category.  

 

3. Radicals in terms of 2-dimensional exactness structures 
 

The general approach to radicals developed in this section is almost a 

straightforward extension of the approach of Section 2 of [JM2003] from 

the context of a pointed combinatorial exactness structure recalled in Ex-

ample 1.2 to the general context of Definition 1.1. 

For a fixed 2-dimensional exactness structure (1.1) of Definition 1.3, 

consider the diagram 

 

                         f                        g 

          K                        L                         K                                              (3.1)                                            

                       f                        g 

 

in which: 
 

 L = {l : X1  X2  d
1
1l = 1X1} = aX1 (d

1
1)
1

(a), considered as a com-

plete lattice;  

 K is the complete lattice of all subsets of X1 containing the image of 

s
0
0; 

 f and g are defined by f(l) = d
1
0l(X1) and g(l) = d

1
2l(X1); 

 f and g are defined by f(k) = {l  L  f(l)  k} and  

g(k) = {l  L  g(l)  k}. 

Note that, for each a  X1, since s
1
1(a) and s

1
0(a) are, respectively, the 

smallest and the largest element in (d
1
1)
1

(a), we have:  
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 (1.4) implies that, for each z  X0, the lattice (d
1
1)
1

(s
0
0(z)) has only 

one element, namely s
1
1s

0
0(z) = s

1
0s

0
0(z),  

 and, in particular, ls
0
0(z) = s

1
1s

0
0(z) = s

1
0s

0
0(z) for each l  L;  

 consequently, d
1
0ls

0
0(z) = s

0
0(z) = d

1
2ls

0
0(z), and so f(l) and g(l) indeed 

belong to K.  

Using this notation and extending Definition 2.5 of [JM2003], we in-

troduce: 

 

Definition 3.1. (a) A map r  L is said to be a radical function (with re-

spect to the given 2-dimensional exactness structure) if f f(r) = r = gg(r). 
 

(b) A subset R in X1 is said to be a radical class if it corresponds to a radi-

cal function via f, that is, there exists a radical function r with f(r) = R. 
 

(c) A subset S in X1 is said to be a semisimple class if it corresponds to a 

radical function via g, that is, there exists a radical function r with g(r) = S.  
 

(d) if (b) and (c) hold for the same radical function r, then we say that 

(R,r,S) is a radical-semisimple triple.  

 

According to this definition, there are canonical bijections: 

          Radical classes  Radical functions  Semisimple classes.          (3.2) 

There is a number of standard properties of a radical-semisimple triple to 

be listed, to which the rest of this section is devoted.  

 

Theorem 3.2. (R,r,S) is a radical-semisimple triple with respect to a given  

2-dimensional exactness structure if and only if (S,r,R) is a radical-

semisimple triple with respect to the opposite 2-dimensional exactness 

structure.  

 

In the rest of this section we are dealing with a given fixed 2-

dimensional exactness structure (1.1), without further notice. 

 

Theorem 3.3. Let R and S be subsets of X1, and r : X1  X2 be a map. 

Then the following conditions are equivalent: 
 

(a) (R,r,S) is a radical-semisimple triple; 
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(b) for each a in X1, r(a) is the largest element x in the lattice (d
1
1)
1

(a) with 

d
1
0(x) in R, and, at the same time, is the smallest element y in the lattice 

(d
1
1)
1

(a) with d
1
2(y) in S. 

 

Proof. (a)(b): Just note that, for each a in X1, we have 

   {x  (d
1
1)
1

(a)  d
1
0(x)  R} = r(a) = {x  (d

1
1)
1

(a)  d
1
2(x)  S},      (3.3) 

r(a) is in (d
1
1)
1

(a), d
1
0r(a) is in R (by 3.1(b) and 3.1(d)), and d

1
2r(a) is in S 

(by 3.1(c) and 3.1(d)). 
 

(b)(a): According to Definition 3.1, (a) means: 

          R = f(r), S = g(r), f f(r) = r = gg(r).                                           (3.4) 

The first two equalities of (3.4) are  

          R = d
1
0r(X1), S = d

1
2r(X1),                                                                (3.5) 

respectively, while the last two are the same as (3.3) required for each a in 

X1. We observe: 
 

 The inclusions d
1
0r(X1)  R and d

1
2r(X1)  S follow from (b) trivial-

ly. 

 For each a  X1, the largest element in the lattice (d
1
1)
1

(a) is s
1
0(a) 

(see Definition 1.1), and when a is in R we have d
1
0s

1
0(a) = a  R 

(see (1.6)). Therefore 
 

          a  R  r(a) = s
1
0(a)                                                          (3.6) 

 

by (b). This gives a = d
1
0r(a), showing that every element a of R be-

longs to d
1
0r(X1). That is, R  d

1
0r(X1). The inclusion S  d

1
2r(X1) is 

dual to this inclusion. 

 (3.3) immediately follows from (b).  

 

Corollary 3.4. Let (R,r,S) be a radical-semisimple triple and a an element 

in X1. Then r(a) is the unique element x in (d
1
1)
1

(a) with d
1
0(x) in R and 

d
1
2(x) in S. 

 

Proof. We know that d
1
0r(a) is in R and d

1
2r(a) is in S. On the other hand, if 

x is in (d
1
1)
1

(a) with d
1
0(x) in R and d

1
2(x) in S, then, by 3.3(b), we have:  
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 x  r(a) in (d
1
1)
1

(a), since d
1
0(x) in R; 

 r(a)  x in (d
1
1)
1

(a), since d
1
2(x) in S.  

 

Our next two propositions will partly use the following additional con-

dition, which is self-dual since its parts (a) and (b) are dual to each other:   

 

Condition 3.5. For x  X2, 
 

(a) d
1
0(x) = s

0
0d

0
0d

1
1(x)  x = s

1
1d

1
1(x); 

 

(b) d
1
2(x) = s

0
0d

0
1d

1
1(x)  x = s

1
0d

1
1(x).  

 

Remark 3.6. There are several convenient equivalent ways to reformulate 

Condition 3.5. One of them is to replace the implications in (a) and (b) 

with equivalences. Indeed, x = s
1
1d

1
1(x) implies d

1
0(x) = d

1
0s

1
1d

1
1(x) = s

0
0d

0
0d

1
1(x), 

where the second equality follows from (1.5); and dually, x = s
1
0d

1
1(x) im-

plies d
1
2(x) = s

0
0d

0
1d

1
1(x). Another equivalent way to express conditions 3.5(a) 

and 3.5(b), respectively, is to require: 
  

(a) d
1
0(x)  s

0
0(X0) if and only if x is the smallest element of the lattice 

(d
1
1)
1

(d
1
1(x)); 

 

(b) d
1
2(x)  s

0
0(X0) if and only if x is the largest element of the lattice 

(d
1
1)
1

(d
1
1(x)).  

 

Proposition 3.7. Let R be a radical class and r the corresponding radical 

function. Then, for a  X1, conditions (a), (b), (c) below are equivalent and 

imply (d), while (d) is equivalent to (e). Under Condition 3.5(b), condition 

(d) also implies the other conditions: 
 

(a) a  R; 
 

(b) r(a) = s
1
0(a); 

 

(c) d
1
0r(a) = a; 

 

(d) d
1
2r(a) = s

0
0d

0
1(a); 

 

(e) d
1
2r(a)  s

0
0(X0).  

 

GRANDIS, JANELIDZE & MARKI - COMBINATORIAL EXACTNESS STRUCTURES ;;;  

- 177 -



 

Proof. The arguments needed to prove (c)(a)(b)(c) are in fact con-

tained in the proof of Theorem 3.3. Nevertheless let us present them: 
 

Since s
1
0(a) is the largest in element in (d

1
1)
1

(a), (a)(b) follows from 

Theorem 3.3 (cf. (3.6)).  
 

(b)(c): Assuming (b), we have: d
1
0r(a) = d

1
0s

1
0(a) = a, where the last 

equality follows from (1.6). 
 

(c)(a): Assuming (c) and using (1.6) again, we have: a = d
1
0r(a)  

d
1
0r(X1) = f(r) = R. 

 

(b)(d): Assuming (b), we have: d
1
2r(a) = d

1
2s

1
0(a) = s

0
0d

0
1(a), where the 

last equality follows from (1.7). 
 

(d)(e) is trivial. 
 

(e)(d): If d
1
2r(a) = s

0
0(z) for some z  X0, then 

          d
1
2r(a) = s

0
0d

0
1d

1
2r(a)   (by (1.2))  

          = s
0
0d

0
1d

1
1r(a)   (by the third equality in (1.3)) 

          = s
0
0d

0
1(a)   (since d

1
1r(a) = a), 

as desired. 
 

(d)(b) under Condition 3.5(b): Since r(a) belongs to (d
1
1)
1

(a), (d) 

gives d
1
2r(a) = s

0
0d

0
1d

1
1r(a), and then Condition 3.5(b) gives r(a) = s

1
0d

1
1r(a). 

But d
1
1r(a) = a, and so we obtain (b).  

 

Dually, we have: 

Proposition 3.8. Let S be a semisimple class and r the corresponding radi-

cal function. Then, for a  X1, conditions (a), (b), (c) below are equivalent 

to each other and imply (d), while (d) is equivalent to (e). Under Condition 

3.5(a), condition (d) also implies the other conditions: 
 

(a) a  S; 
 

(b) r(a) = s
1
1(a); 

 

(c) d
1
2r(a) = a; 
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(d) d
1
0r(a) = s

0
0d

0
0(a).  

 

(e) d
1
0r(a)  s

0
0(X0).  

 

Proposition 3.9. Let (R,r,S) be a radical-semisimple triple. Then RS = 

s
0
0(X0). 

 

Proof. The inclusion s
0
0(X0)  RS follows from the definition of K in 

(3.1). If a is in RS, then a = d
1
0r(a) by 3.7(c) and d

1
0r(a)  s

0
0(X0) by 3.8(e), 

which implies that a is in s
0
0(X0).  

 

4. The First Comparison Theorem 
 

The purpose of this section is to formulate and prove Theorem 4.3, 

which describes a situation where every radical-semisimple triple deter-

mines a radical-semisimple pair in the sense of [GrJM2013]. 

Let us recall from [GrJM2013]: 

Given a 1-dimensional exactness structure (A,Z,⨞,-⊳,), and using the 

binary relations 

           = {(a,b)  AA  a ⨞ b  a  Z},                                             (4.1) 

           = {(a,b)  AA  a -⊳ b  b  Z}                                             (4.2)  

on A, we define maps * and 
*
 from the power set P(A) to itself by  

   *(U) = {b  A  a  U  ab}, 
*
(U) = {a  A  b  U  ab}.    (4.3) 

Then a pair (R,S) of subsets of A is said to be a radical-semisimple pair 

(Definition 5.2(b) of [GrJM2013]), with respect to the given 1-dimensional 

exactness structure, if R = 
*
(S) and S = *(R). Accordingly, a subset U of 

A is said to be a radical class (semisimple class) if it occurs as the first 

(second) component in some radical-semisimple pair; that is, U is a radical 

class (semisimple class) if and only if U = 
*
*(U) (U = *

*
(U)). 

As mentioned in [GrJM2013], the following two propositions are noth-

ing but explicit reformulations of the definition above: 

Proposition 4.1. (Proposition 5.3 of [GrJM2013]) Let (A,Z,⨞, -⊳) be a  

1-dimensional exactness structure. A subset R in A is a radical class if and 

only if satisfies the following conditions: 
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(a) if a is in R, then, for every b  A \ Z with a -⊳ b, there exists c  R \ Z 

with c ⨞ b; 
 

(b) given a in A, if, for every b  A \ Z with a -⊳ b, there exists c  R \ Z 

with c ⨞ b, then a is in R.  

 

Proposition 4.2. (Proposition 5.4 of [GrJM2013]) Let (A,Z,⨞, -⊳) be a 1-

dimensional exactness structure. A subset S in A is a semisimple class if 

and only if satisfies the following conditions: 
 

(a) if a is in S, then, for every b  A \ Z with b ⨞ a, there exists c  S \ Z 

with b -⊳ c; 
 

(b) given a in A, if, for every b  A \ Z with b ⨞ a, there exists c  S \ Z 

with b -⊳ c, then a is in S.  

 

Our First Comparison Theorem, which compares radical-semisimple 

triples in the sense of Definition 3.1 with radical-semisimple pairs in the 

sense of [GrJM2013], is: 

 

Theorem 4.3. Let (R,r,S) be a radical-semisimple triple with respect to a 

given 2-dimensional exactness structure in the sense of Definition 1.1, sat-

isfying Condition 3.5. Then (R,S) is a radical-semisimple pair in the sense 

of [GrJM2013] with respect to the underlying 1-dimensional exactness 

structure in the sense of Definition 1.3. 

 

Proof. First of all note that, for every x  X2, we have 

          d
1
0(x) ⨞ d

1
1(x) -⊳ d

1
2(x),                                                                    (4.4) 

which trivially follows from the definitions of ⨞ and -⊳. In particular, for 

every a  X1 and every radical-semisimple triple (R,r,S), we have 

          d
1
0r(a) ⨞ a -⊳ d

1
2r(a) with d

1
0r(a) in R and d

1
2r(a) in S,                    (4.5) 

obtained from (4.4) by taking x = r(a). 
 

What we have to prove are the equalities R = 
*
(S) and S = *(R).  

To prove the inclusion 
*
(S)  R, we take a  

*
(S) and observe: 

 

 Since a is in 
*
(S) and d

1
2r(a) in S, we have ad

1
2r(a) by the defini-

tion of 
*
(S).   
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 Since ad
1
2r(a) and a -⊳ d

1
2r(a), we know that d

1
2r(a) is in s

0
0(X0) by 

the definition of . 

 Since d
1
2r(a) is in s

0
0(X0) and Condition 3.5(b) holds, a is in R by the 

implication (e)(a) in Proposition 3.7.  
 

To prove the inclusion R  
*
(S), we take a  R and b  S with a -⊳ b, and 

we need to show that b is in s
0
0(X0). Indeed, a -⊳ b means that d

1
1(x) = a and 

d
1
2(x) = b for some x  X2, and we observe: 

 

 By Theorem 3.3(b), r(a) is the smallest element y in the lattice 

(d
1
1)
1

(a) with d
1
2(y) in S. By our assumptions on x, this gives r(a)  

x.  

 On the other hand, by the implication (a)(b) in Proposition 3.7, 

we have r(a) = s
1
0(a), which is the largest element in the lattice 

(d
1
1)
1

(a). Together with the previous observation, this gives x = r(a) 

= s
1
0(a).  

 Since x = r(a) = s
1
0(a), we have b = d

1
2s

1
0(a) = s

0
0d

0
1(a)  s

0
0(X0), using 

(1.7). 
 

This proves the equality R = 
*
(S), and the equality S = *(R) is dual to it. 

 

 

5. Classical contexts for KuroshAmitsur radicals 
 

Ignoring the problem of size and the difference between a category and 

its skeleton, we take the ground 2-dimensional exactness structure (1.1) to 

be constructed as in Example 1.6 out of the category Rings of rings. The 

rings here are required to be associative but not required to be unital; in 

particular, the category Rings is pointed. 

What are the radical-semisimple triples with respect to this structure 

and what are the radical-semisimple pairs with respect to its underlying  

1-dimensional exactness structure? 

The answers, as explained in [JM2003] and [GrJM2013], immediately 

come out of well-known results in the KuroshAmitsur radical theory, and 

they can be stated as: 
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Theorem 5.1. (a) (R,r,S) is a radical-semisimple triple if and only if R, r, 

and S are a radical class, a radical function, and a semisimple class corre-

sponding to each other in the classical sense. 
 

(b) (R,S) is a radical-semisimple pair if and only if R and S are a radical 

class and a semisimple class corresponding to each other in the classical 

sense.  

 

In particular:  
 

 The assertion “if (R,r,S) is a radical-semisimple triple, then (R,S) is 

a radical-semisimple pair” of our Theorem 4.3 should be consid-

ered as well known in the present case.  

 The converse assertion, namely “if (R,S) is a radical-semisimple 

pair, then (R,r,S) is a radical-semisimple triple for some r” should 

also be considered as well known in this case, although it is false in 

general, as a counter-example given in the next section will show. 
 

Of course, Theorem 5.1 can be stated more generally, depending on 

what we mean by “classical sense”. For instance, the category of rings can 

surely be replaced with any semi-abelian variety of universal algebras (in 

the sense of [JMT2002]; see also [BJ2003]), but even that would be far 

from the most general case. Various remarks on (more abstract) categorical 

contexts are made in [JM2003] and [GrJM2013], some referring to 

[MW1982]. However, full details can be found only in the case of rings: 

see [GaW2004] and [W1983], and references therein, especially [Div1973] 

and Section 2 in [FW1975]. 

Notice that a variant of Kurosh–Amitsur type radical theory, called 

connectednesses and disconnectednesses, has been developed for topologi-

cal spaces and graphs and then for abstract relational structures in 

[AW1975], [FW1975] and [FW1982], respectively, also in a non-pointed 

setting. What we do here, however, is very different from their setting: we 

still have kernels while they have inverse images of all points ('connect-

ed components'). 
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6. The topological closure operator 
 

In this section, ignoring the problem of size, we take the ground 2-di-  

mensional exactness structure (1.1) to be constructed as in Example 1.6 out 

of the semiexact category (1.10) in which: 
 

 C0 is the category of topological spaces and inclusion maps of sub-

spaces; 

 C1 is the category of morphisms of C0 whose objects will be written 

as pairs (A,A'), where A' is a subspace of A.  

 E is the inclusion functor and therefore C and D are defined by 

C(A,A') = A and D(A,A') = A', respectively. 
 

In this context every short exact sequence is proper and it is just a diagram 

of the form 

          (A',A")  (A,A")  (A,A'),                                                            (6.1) 

where A' is any subspace of A and A" is any subspace of A'. Using Defini-

tion 3.1 directly it is easy to prove: 

 

Theorem 6.1. Let r : X1  X2 be the map defined by 

          r(A,A') = ((Ā',A')  (A,A')  (A,Ā')),                                            (6.2)  

where Ā' denotes the closure of A' in A. Then r is a radical function in the 

radical-semisimple triple (R,r,S) where 

          R = {(A,A')  X1 | A' is dense in A},                                              (6.3) 

          S = {(A,A')  X1 | A' is closed in A}.                                           (6.4) 

This theorem obviously indicates the relationship between radicals and 

closure operators – a natural counterpart of what is done in [GJM2013] 

with radicals defined with respect to 1-dimensional exactness structures.    

 

7. A simplified framework 
 

Intuitively, the relations ⨞ and -⊳ are “almost order relations”: for ex-

ample, in the usual radical theory of rings, a ⨞ b means that a is (isomor-

phic to) an ideal in a, while a -⊳ b means that b is (isomorphic to) a quo-

tient ring of a. However, even in that example, both antisymmetry (of ⨞ 
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and -⊳) and transitivity (of ⨞) fail. This suggests us to consider a simplified 

version of a 1-dimensional exactness structure of the form (A,{0},,), in 

which (A,) is an ordered set with smallest element 0 (cf. Section 2 of 

[FW1975]). This will also give us a very simple counterexample (see Ex-

ample 7.4) to the assertion “if (R,S) is a radical-semisimple pair, then 

(R,r,S) is a radical-semisimple triple for some r”, as mentioned in Section 

5. 

 

The following two propositions should be considered obvious after 

reading Section 2 of [FW1975], but since our proofs are very short and 

easy anyway, we do not discuss this connection. 

 

Proposition 7.1. If (A,{0},,) is as above, then the following conditions 

on a subset U of A are equivalent: 
 

(a) U is a radical class with respect to (A,{0},,); 
 

(b) U is a semisimple class with respect to (A,{0},,); 
 

(c) an element a of A is in U if and only if, for every non-zero b  a, there 

exists a non-zero c  b which is in U; 
 

(d) U is a down-closed subset of A such that an element a of A is in U 

whenever for every non-zero b  a, there exists a non-zero c  b which is in 

U.  
 

Proof. The implications (a)(b)(c)(d) immediately follow from the 

definitions, while (c)(d) easily follows from the transitivity of .  

 

Proposition 7.2. If (A,{0},,) is as above, then a pair (R,S) of subsets of 

A is a radical-semisimple pair if and only if 

          R = {b  A  (a  S & a  b)  a = 0},                                        (7.1) 

          S = {b  A  (a  R & a  b)  a = 0}.                                        (7.2) 

 

Proof. Just note that (* = 
*
 and) the equalities above are nothing but R = 


*
(S) and S = *(R), respectively, where  and  are as in (4.3) in the case 

of (A,{0},,).  
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Continuing to develop our simplified counterpart of usual radical theo-

ry, what would be a reasonable 2-dimensional exactness structure whose 

underlying 1-dimensional exactness structure is (A,{0},,)? We propose 

the following one, requiring an additional condition on A; then, its underly-

ing 1-dimensional exactness structure is indeed (A,{0},,) under a further 

additional condition mentioned in Example 7.4(b) below. 

 

Definition 7.3. Let A be an ordered set with smallest element 0 and such 

that, for every b  A, the set  

          {(a,c)  AA  ac = 0 & ac = b}                                               (7.3) 

forms a complete lattice under the order defined by (a,c)  (a',c')  (a  a' 

& c'  c). The 2-dimensional exactness structure associated to A is 

 

                          d
1
0 

 

                          s
1
0                           d

0
0
 

 

                                                                                                

          A'             
d

1
1            A            

s 
0
0            {0},                                   (7.4)           

                         

                         

                          s
1
1                           d

0
1
 

 

                          d
1
2 

 

where A' = {(a,b,c)  AAA  ac = 0 & ac = b}, s
0
0(0) = 0, s

1
0(a) = 

(a,a,0), s
1
1(a) = (0,a,a), d

1
0(a,b,c) = a, d

1
1(a,b,c) = b, d

1
2(a,b,c) = c, and the 

complete lattice structure on (d
1
1)
1

(b) is defined via (a,b,c)  (a',b,c')  

 (a  a' & c'  c). 

 

Although a further analysis of this 2-dimensional exactness structure, 

which always satisfies Condition 3.5, would be interesting, we will use it 

only in  
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Example 7.4. Consider the 2-dimensional exactness structure of Definition 

7.3 where A is the lattice 

 

                             1  
 

 

 

          a1              a2                    a3                                                         (7.5) 

 

 
 

                            0  

 

and observe: 
 

(a) this non-distributive lattice indeed satisfies the conditions required in 

Definition 4.3; 
 

(b) the underlying 1-dimensional exactness structure is (A,{0},,); more 

generally, this is true in the situation of Definition 7.3 whenever, for all  

a  b in A, there exists c in A with (a,c) in the set (7.3); 
 

(c) as follows from (b) and Proposition 7.2, ({0,a1,a2,},{0,a3}) is a radical-

semisimple pair. 
 

Nevertheless there is no radical function r making ({0,a1},r,{0,a2,a3}) a 

radical-semisimple triple. Indeed, having such an r, consider r(1): by Theo-

rem 3.3, it should be the largest element x in the lattice (d
1
1)
1

(1) with d
1
0(x) 

in {a1} – but such an element does not exist.  
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Résumé. Nous améliorons la description des catégories n-permutables in-
troduites par Carboni, Kelly et Pedicchio [2]. Cela donne une nouvelle car-
actérisation des catégories régulières de Maltsev parmi celles qui sont des
catégories de Goursat ou, plus généralement, des catégories n-permutables.
Abstract. We give a strengthening of the description of an n-permutable
category due to Carboni, Kelly and Pedicchio [2]. This provides a new char-
acterisation of the regular Mal’tsev categories from among those which are
Goursat categories, or more generally n-permutable.
Keywords. n-permutable category, Mal’tsev category, Goursat category
Mathematics Subject Classification (2010). 18B10, 08B05

Mal’tsev categories form an important and well-known class of categories in
the study of universal algebra [3, 10]. In fact, many of their interesting prop-
erties extend to the broader class of Goursat categories [4, 6]. While most
examples of Goursat categories are in fact Mal’tsev categories, no simple
conditions for when this is the case have yet been presented. In [2], Carboni,
Kelly and Pedicchio showed that both classes belong to the more general hi-
erarchy of n-permutable categories. In this note, we give a strengthening of
their original characterisation of n-permutable categories, leading to a con-
dition for when a Goursat or n-permutable category is a Mal’tsev category.
The condition, called positive regularity, is mild, satisfied even in logically
well-structured categories such as the category Set of sets and functions.
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1. A Condition for n-permutability

We work in a regular category C. The internal logic of such categories
allows one to reason using elements just as in Set [1, Metatheorem A.5.7],
and we will use this technique throughout. For objects A,B in C, recall
that a relation R : A → B is a subobject R � A × B. Any such relation
comes with a converse which we denote R◦ : B → A. Every pair of relations
R : A→ B and S : B → C have a composite SR : A→ C defined by

SR = {(a, c) ∈ A× C | ∃b R(a, b) ∧ S(b, c)}

Relations are partially ordered by the usual inclusion of subobjects. We call
a relation E : A → A reflexive when idA ≤ E, symmetric when E = E◦,
transitive when EE ≤ E, and an equivalence relation when all of these
hold. Following [2], for any pair of relations R : A → B, S : B → C, we
define a sequence of relations

(S,R)1 = S, (S,R)2 = SR, (S,R)3 = SRS, (S,R)4 = SRSR, . . .

A regular category C is then n-permutable whenever (E,E ′)n = (E ′, E)n
for every pair of equivalence relations E,E ′ on the same object. In partic-
ular, a regular category is a Mal’tsev category when it is 2-permutable, and
a Goursat category when it is 3-permutable. We begin by strengthening a
characterisation from [2].

Theorem 1. Let C be a regular category and n ≥ 2. The following condi-
tions are equivalent:

(i) C is n-permutable;

(ii) Every relation R : A→ B in C satisfies (R◦, R)n+1 = (R◦, R)n−1;

(iii) For every reflexive relation E : A → A in C, (E,E◦)n−1 is an equiv-
alence relation;

(iv) For every reflexive relation E : A → A in C, En−1 is an equivalence
relation;

(v) For every reflexive and symmetric relation E : A → A in C, En−1 is
an equivalence relation.
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Proof. See [2] for the equivalence of (i), (ii) and (iii). (i) =⇒ (iv) is also
well-known: in an n-permutable category any reflexive relation E has that
En−1 is transitive [7, Theorem 1], and every reflexive and transitive relation
is symmetric [9, Theorem 1]. Clearly (v) follows from (iii) or (iv).

We now show that (v) =⇒ (ii). First note that by our assumption any
reflexive and symmetric relation E satisfies En = En−1. Indeed, always
En−1 ≤ En, while we now have En ≤ E2(n−1) ≤ En−1 by transitivity. Now
for any relation R � A× B, we always have (R◦, R)n−1 ≤ (R◦, R)n+1, so
it suffices to show the converse holds. Define a new relation S � R×R by

S((a, b), (a′, b′)) ⇐⇒ R(a, b′) ∧R(a′, b)

noting by definition that S((a, b), (a′, b′)) also implies R(a, b) and R(a′, b′).
Then S is reflexive since it is defined on R, and symmetric by definition.
Hence Sn = Sn−1.

Suppose that (R◦, R)n+1(b, a), via a sequence of elements (xi)
n+1
i=0 with

x0 = a, xn+1 = b satisfying R(xi, xi−1) for even i ≥ 2, and R(xi, xi+1)
for even i ≤ n. Then we have S((xi, xi+1), (xi+2, xi+1)) for all even i ≤
n − 1 and S((xi+2, xi+1), (xi+2, xi+3)), for all even i ≤ n − 2. So defin-
ing (y, z) := (b, xn) if n is odd, or (y, z) := (xn, b) if n is even, we have
Sn((a, x1), (y, z)). Hence Sn−1((a, x1), (y, z)) also.

Letting (y0, z0) = (a, x1) and (yn−1, zn−1) = (y, z), this means there
is a sequence of pairs (yi, zi)

n−1
i=0 satisfying S((yi, zi), (yi+1, zi+1)) for all

i ≤ n − 2. In particular, we have R(yi, zi−1) for even i ≥ 2 and R(yi, zi+1)
for even i ≤ n − 2. Hence via the sequence a = y0, z1, y2, z3, . . . of length
n ending in b, we have (R◦, R)n−1(b, a), as desired.

2. Positively regular and Mal’tsev categories

We now turn to classifying the Mal’tsev categories as the n-permutable cat-
egories with a special property. Let us call a relation E : A → A positive
when it is of the form E = R◦R for some relation R : A → B. The follow-
ing notion first appeared in [5].

Proposition 2. For a regular category C, the following are equivalent:

(i) A relation E : A→ A in C is positive if and only if it satisfies:

E(a, b) =⇒ E(a, a) ∧ E(b, a) (∗)
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(ii) Any reflexive and symmetric relation in C is positive.

We call a regular category satisfying either of these equivalent conditions
positively regular1.

Proof. For (i) =⇒ (ii), and the ‘only if’ in (ii) =⇒ (i), note that any re-
flexive, symmetric relation in a regular category automatically satisfies (∗),
as does any positive relation. Conversely, if (ii) holds and E : A → A satis-
fies (∗), define

I = {a ∈ A | ∃b E(a, b)}� A

writing i : I → A for the inclusion. Then it’s easy to see that E = Eii◦ =
ii◦E. Further, i◦Ei is a reflexive, symmetric relation on I , and hence is posi-
tive, say equal to R◦R. Then we have E = ii◦Eii◦ = iR◦Ri◦ = (Ri◦)◦(Ri◦)
and so E is positive.

Example 3. Set is positively regular. More generally so is any regular co-
herent category, coming with unions of subobjects. To see this, for any rela-
tion E � A× A satisfying (∗), define

R = {(a, (a, b)) | E(a, b)} ∨ {(a, (b, a)) | E(b, a)}� A× E

Then E = R◦R, making E positive.

Theorem 4. For a regular category C, the following are equivalent:

(i) C is a Mal’tsev category;

(ii) Every reflexive relation in C is an equivalence relation;

(iii) Every reflexive and symmetric relation in C is an equivalence relation;

(iv) C is a Goursat category and every reflexive relation in C is positive;

(v) C is a Goursat category and positively regular;

(vi) C is n-permutable, for some n ≥ 2, and positively regular.
1Not to be confused with the notion of a positive coherent category [8].
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Proof. The equivalence of (i), (ii) and (iii) is in Theorem 1, and clearly we
have (iv) =⇒ (v) =⇒ (vi). For (iii) =⇒ (iv), any reflexive relation E in
C is an equivalence relation, and therefore positive since E = E◦E. Hence
by Proposition 2, C is positively regular. Further, since C is a Mal’tsev
category, it is a Goursat category.

It remains to show that (vi) =⇒ (i). Let C be positively regular. First
suppose C is (2m + 1)-permutable, for some m ≥ 1. Let E : A → A be a
reflexive and symmetric relation. By positive regularity, E = R◦R for some
relation R : A→ B, and so:

E2m = (R◦, R)4m = (R◦, R)(2m+2)+2(m−1) = (R◦, R)2m = Em

where we repeatedly applied (R◦, R)2m+2 = (R◦, R)2m from Theorem 1,
condition (ii). Hence Em is an equivalence relation. By condition (v) of
Theorem 1, C is then in fact (m+ 1)-permutable.

Now if C is n-permutable, there is some k with n ≤ 2k + 1 so that C
is (2k + 1)-permutable. Then the above argument shows that C is in fact
(2k−1 + 1)-permutable, and hence inductively that C is 2-permutable, i.e. a
Mal’tsev category.
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Résumé. On construit une catégorie multiple, utile dans l’étude des adjunc-
tions multiples. Les objets sont les catégories multiples ‘laxes’. Les flèches
transversales sont les foncteurs multiples stricts tandis que les flèches en di-
rection positive sont des foncteurs multiples de ‘laxité mixte’, qui varient des
foncteurs laxes (en direction 1) aux colaxes (en direction∞).
Abstract. We construct a multiple category which occurs in the study of
multiple adjunctions. The objects are all the ‘lax’ multiple categories. The
transversal arrows are their strict multiple functors while the arrows in a pos-
itive direction are multiple functors of a ‘mixed laxity’, varying from the lax
ones (in direction 1) to the colax ones (in direction∞).
Keywords. Multiple category, weak double category, cubical set.
Mathematics Subject Classification (2010). 18D05, 55U10.

0. Introduction

This note is about strict, weak and lax multiple categories, an extension of
double categories that we have studied in the articles [5] – [9]. The first two
of them are about the 3-dimensional case, where intercategories (a kind of
lax triple category) cover and combine diverse structures like duoidal cate-
gories [1, 3, 12], Gray categories [10], Verity double bicategories [13] and
monoidal double categories [11]. The other papers [7] – [9] are about weak
and lax infinite-dimensional multiple categories, an extension of the strict
case introduced by Bastiani – Ehresmann [2].

A weak multiple category has objects, i-directed arrows in each direction
i ∈ N, ij-cells of dimension two for all i < j, and so on. Composition is
strict in the transversal direction i = 0 and weak in each direction i > 0, i.e.
associative and unitary up to invertible transversal comparisons. The trans-
versal composition has a strict interchange with all the geometric ones, while

               CAHIERS DE TOPOLOGIE ET                                                  Lol. LVIII-3&4 (2017)

GEOMETRIE DIFFERENTIELLE CATEGORIQUES

A MULTIPLE CATEGORY OF MULTIPLE LAX CATEGORIES

by Marco GRANDIS and Robert PARE

- 195 -



the latter have invertible ij-interchangers; more generally, chiral multiple
categories and intercategories have directed ij-interchangers, for i < j. A
(weak or lax) n-tuple category has indices in the ordinal n = {0, 1, ..., n−1}.

Here we investigate the different sorts of morphisms that can link chiral
multiple categories. We know, from [9], that in a general multiple adjunction
F a G the left adjoint is a colax (multiple) functor, while the right adjoint
is lax; the adjunction lives in a double category Cmc of chiral multiple cate-
gories, where the horizontal arrows are lax functors and the vertical ones are
colax functors.

But we have already seen in [5] that – in dimension three – there exists an
intermediate sort, called a colax-lax morphism, which is colax in direction 1
and lax in direction 2 (and of course strict in the transversal direction 0). Also
this case is important in concrete situations, when a triple adjunction F a G
has a colax-pseudo left adjoint and a pseudo-lax right adjoint, so that the
compositesGF and FG are colax-lax morphisms, forming a monadGF and
a comonad FG. Higher dimensional examples present higher dimensional
cases of ‘mixed laxity functors’.

With these motivations, we construct here a multiple category Cmc of
chiral multiple categories, indexed by the ordinal ω + 1 = {0, 1, ...,∞}. Its
transversal arrows are the strict multiple functors while, in direction p (for
1 6 p 6 ∞), the p-morphisms are ‘multiple functors of mixed laxity’, that
vary from the lax ones (in direction 1) to the colax ones (in direction∞). The
double category Cmc is embedded in Cmc, with indices in {1,∞}. Similar
frameworks are concerned with intercategories, and the n-dimensional case.

Acknowledgements. The authors would like to thank the anonymous referee
for detailed comments. This work was partially supported by GNSAGA, a
research group of INDAM (Istituto Nazionale di Alta Matematica), Italy.

1. Notation

We mainly follow the notation of [7] – [9]. The symbol ⊂ denotes weak in-
clusion. Categories and 2-categories are generally denoted as A,B, ...; weak
double categories as A,B, ...; weak or lax multiple categories as A,B, ...

The definitions of weak and chiral multiple categories can be found in
[7], or – briefly reviewed – in [8], Section 1. Here we only give a sketch of
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them, while recalling the notation we are using.
The two-valued index α (or β) varies in the set 2 = {0, 1}, also written

as {−,+}.
A multi-index i is a finite subset of N, possibly empty. Writing i ⊂ N

it is understood that i is finite; writing i = {i1, ..., in} it is understood that i
has n distinct elements, written in the natural order i1 < i2 < ... < in; the
integer n > 0 is called the dimension of i. We write:

ij = ji = i ∪ {j} (for j ∈ N \ i),
i|j = i \{j} (for j ∈ i).

(1)

For a weak multiple category A, the set of i-cells Ai is written as A∗,
Ai, Aij when i is ∅, {i} or {i, j} respectively. Faces and degeneracies,
satisfying the multiple relations (cf. [7], Section 2.2), are denoted as

∂αj : Ai → Ai|j, ej : Ai|j → Ai (for α = ±, j ∈ i). (2)

The transversal direction i = 0 is set apart from the positive, or geomet-
ric, directions. For a positive multi-index i = {i1, ..., in} ⊂ N∗ = N \{0},
the augmented multi-index 0i = {0, i1, ..., in} has dimension n+ 1, but both
i and 0i are said to have degree n. An i-cell x ∈ Ai of A is also called an
i-cube, while a 0i-cell f ∈ A0i is viewed as an i-map f : x →0 y, where
x = ∂−0 f and y = ∂+0 f . Composition in direction 0 is categorical (and
generally realised by ordinary composition of mappings); it is written as
gf = f +0 g, with identities 1x = id(x) = e0(x).

The transversal category tvi(A) consists of the i-cubes and i-maps of A,
with transversal composition and identities. Their family forms a multiple
object in Cat, indexed by the positive multi-indices.

Composition of i-cubes and i-maps in a positive direction i ∈ i (often
realised by pullbacks, pushouts, tensor products, etc.) is written in additive
notation

x+i y (∂+i x = ∂−i y),

f +i g : x+i y → x′ +i y
′ (f : x→ x′, g : y → y′, ∂+i f = ∂−i g).

(3)

The transversal composition has a strict interchange with each of the pos-
itive operations. The latter satisfy the unitarity, associativity and interchange
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laws up to transversally invertible comparisons (for 0 < i < j)

λix : (ei∂
−
i x) +i x→0 x (left i-unitor),

ρix : x+i (ei∂
+
i x)→0 x (right i-unitor),

κi(x, y, z) : x+i (y +i z)→0 (x+i y) +i z (i-associator),

χij(x, y, z, u) : (x+i y) +j (z +i u)→0 (x+j z) +i (y +j u)

(ij-interchanger).

(4)

The comparisons are natural with respect to transversal maps; λi, ρi and
κi are special in direction i (i.e. their i-faces are transversal identities) while
χij is special in both directions i, j; all of them commute with ∂αk for k 6= i
(or k 6= i, j in the last case). Finally the comparisons must satisfy various
conditions of coherence, listed in [7], Sections 3.3 and 3.4.

More generally for a chiral multiple category A the ij-interchangers χij
are not assumed to be invertible (see [7], Section 3.7).

Even more generally, in an intercategory we also have ij-interchangers
µij, δij, τij involving the units; this extension is studied in [5, 6] for the 3-
dimensional case, the really important one. Infinite dimensional intercate-
gories have been introduced in [7], Section 5, and mentioned marginally in
[8] and [9], but a further study must await good examples.

While a chiral multiple category A is a multiple object of ordinary cat-
egories tvi(A) indexed by positive multi-indices i = {i, j, k...} ⊂ N∗, the
structure Cmc that we shall construct will be indexed by ‘extended’ positive
multi-indices p = {p, q, r...} ⊂ {1, 2, ...,∞}.

2. Lax and colax multiple functors

We want to analyse which sorts of ‘morphisms’ A→ B between chiral mul-
tiple categories are of interest.

Two main kinds stand out:

(a) a lax (multiple) functor F : A → B is equipped with comparison i-maps
F i, for the i-directed composition (for t ∈ Ai|i and i-consecutive cubes x, y
in Ai)

F i(t) : eiF (t)→0 F (eit), F i(x, y) : F (x) +i F (y)→0 F (x+i y), (5)
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(b) a colax (multiple) functor F : A → B has comparisons in the opposite
direction.

The definitions of such ‘functors’, with the transversal transformations
of both sorts, can be found in [7], Section 3.9 (or here, in a more general
form, in Sections 4 and 5.)

A pseudo functor is a lax multiple functor with (transversally) invert-
ible comparisons, and is made colax by the inverse comparisons. It is strict
when the comparisons are identities, so that the whole structure is strictly
preserved.

In a general multiple adjunction (defined and studied in [9]) these two
sorts appear together: the left adjoint F : A → B is colax while the right
adjoint G : B→ A is lax; many natural situations are of this type, with non-
invertible comparisons. We do not want to compose F and G, since this
would destroy their comparisons; yet we must give a unit and a counit.

This point was solved in [9], Section 2, where we constructed a (strict)
double category Cmc of chiral multiple categories. The lax and colax mul-
tiple functors form the horizontal and vertical arrows, respectively. They are
not to be composed, but linked by suitable double cells.

Finally, a colax-lax (multiple) adjunction F a G is a pair of adjoint
arrows in this double category. This means a colax functor F : A→ B, a lax
functor G : B→ A and two double cells of Cmc, called a unit and a counit

A

F
��

A B G // A

F
��

η ε

B
G

// A B B

(6)

They have components ηx : x→0 GF (x) and εy : FG(y)→0 y (for any
cube x in A and y in B), whose coherence conditions are based – separately –
on the comparisons of F andG. The triangular laws state that the composites
(ε | η) and (η

ε
) are identities.

If F is a pseudo functor, this is the same as an adjunction in the 2-
category LxCmc of chiral multiple categories, lax functors and their trans-
versal transformations (as proved in [9], Section 5). Symmetrically, if G is a
pseudo functor, this is the same as an adjunction in the 2-category CxCmc,
whose arrows are the colax multiple functors.
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These two particular cases, a pseudo-lax and a colax-pseudo adjunction,
do not cover the examples of [9]; furthermore, composing adjunctions of
these two kinds we come back to the general case.

Yet the particular cases are important, since the first gives a lax (multiple)
monad GF : A→ A and a lax comonad FG : B→ B, while the second case
gives a colax monad and a colax comonad.

3. Examples

Some examples, from [9], Section 1.7, will lead to new morphisms, interme-
diate between the two previous kinds, and also important in adjunctions. For
the sake of simplicity, we begin by working in dimension 3.

For a category C with (a choice of) pullbacks, we have a weak triple
category 3Span(C) of ‘spans of spans’. A 12-cube is a functor x : ∨×∨→
C (where ∨ is the formal-span category) and a 12-map f : x →0 y is a
natural transformation of such functors (a 3-dimensional item f : ∨×∨×2→
C).

Dually, if C has pushouts, there is a weak triple category 3Cosp(C)
whose highest cubes are ‘cospans of cospans’ x : ∧×∧→ C.

When C has both pullbacks and pushouts, we can form a chiral triple
category SC(C) = S1C1(C) where a 12-cube is a functor x : ∨×∧ → C;
the 1-directed composition is by pullbacks, the 2-directed one by pushouts.

An ordinary functor F : X → A between categories with pullbacks and
pushouts produces:

(a) a colax (triple) functor 3Span(F ) : 3Span(X) → 3Span(A) of weak
triple categories,

(b) a lax (triple) functor 3Cosp(F ) : 3Cosp(X)→ 3Cosp(A) of weak triple
categories,

(c) a colax-lax morphism SC(F ) : SC(X) → SC(A) of chiral triple cate-
gories.

We have thus a new morphism of an intermediate sort: SC(F ) is co-
lax for the 1-directed composition, realised by pullbacks, and lax for the
2-composition, realised by pushouts; the precise definition can be found in
[5], Section 5. Moreover, if F preserves pushouts, 3Cosp(F ) is a pseudo
functor and SC(F ) is a colax-pseudo morphism; and so on.
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Now, an ordinary adjunction between categories with pullbacks and push-
outs

F : X −→←− A :G, F a G, (7)

has three natural extensions to colax-lax triple adjunctions:

3Span(F ) a 3Span(G), 3Cosp(F ) a 3Cosp(G), SC(F ) a SC(G). (8)

The first is actually a colax-pseudo adjunction (becauseG preserves pull-
backs), and gives a colax triple monad on 3Span(X). The second is pseudo-
lax, and gives a lax triple monad on 3Cosp(X).

In the last, F ′ = SC(F ) is a colax-pseudo morphism while G′ = SC(G)
is a pseudo-lax morphism; their composites G′F ′ = SC(GF ) and F ′G′ =
SC(FG) make sense: they are colax-lax morphisms, and we still have a triple
monad on SC(X), where T = G′F ′ is a colax-lax morphism. (Multiple
monads will be studied elsewhere.)

All this can be extended to higher dimensions, for the weak multiple
categories Span(C), Cosp(C) and the chiral multiple categories SpCq(C),
SpC∞(C), S−∞C∞(C) (see [9], Section 1.3). We get thus morphisms of
‘mixed laxity’, colax up to a certain degree and lax above. (The reverse case
cannot occur, as we shall see below.)

Finally we recall from [9], Sections 1.5 – 1.6, a colax-lax adjunction of
weak triple categories, based on an ordinary category C with pullbacks and
pushouts:

F : Span(C) −→←− Cosp(C) :G, F a G, (9)

F works by pushouts and G by pullbacks. None of them is pseudo (in
general, of course), and we do not have an associated multiple monad (nor
comonad).

4. Mixed-laxity functors

We are now ready to begin the construction of a multiple category Cmc con-
taining different morphisms in different directions, that vary from the lax
case to the colax one.
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In degree 0, the objects of Cmc are the (small) chiral multiple categories,
and the transversal arrows (or 0-morphisms) are the strict multiple functors
F : A→0 B.

In degree 1 and direction p (for 1 6 p 6∞), a p-morphism R : A→p B
between chiral multiple categories will be a mixed-laxity functor which is
colax in all positive directions i < p and lax in all directions i > p. In
particular, this is a lax functor for p = 1 and a colax functor for p =∞.

Basically, R has components Ri = tvi(R) : tvi(A) → tvi(B), for all
positive multi-indices i, that are ordinary functors and commute with faces:
∂αi .Ri = Ri|i.∂

α
i (for i ∈ i).

Moreover R is equipped with comparison i-maps Ri (for t ∈ Ai|i and
x, y i-consecutive in Ai), either in the lax direction for i > p

Ri(t) : eiR(t)→0 R(eit), Ri(x, y) : R(x) +i R(y)→0 R(x+i y), (10)

or in the colax direction for 0 < i < p

Ri(t) : R(eit)→0 eiR(t), Ri(x, y) : R(x+i y)→0 R(x) +i R(y). (11)

All these comparisons are i-special, i.e. their two i-faces are transversal
identities, and must commute with the other faces ∂αj (for j 6= i in i)

∂αj Ri(t) = Ri(∂
α
j t), ∂αj Ri(x, y) = Ri(∂

α
j x, ∂

α
j y). (12)

Then they have to satisfy the axioms of naturality and coherence (see
[7], Section 3.9), either in the lax form (lmf.1 – 4) for i > p, or in the
transversally dual form for i < p.

Furthermore there is an axiom of coherence with the interchanger χij
(for 0 < i < j) which has three forms (where (a) corresponds to (lmf.5), (c)
corresponds to its dual and (b) is an intermediate case):

(a) for p 6 i < j (so that R is i- and j-lax), we have commutative diagrams
of transversal maps:

(Rx+i Ry) +j (Rz +i Ru)
χijR //

Ri+jRi ��

(Rx+j Rz) +i (Ry +j Ru)
Rj+iRj��

R(x+i y) +j R(z +i u)
Rj ��

R(x+j y) +i R(z +j u)

Ri��
R((x+i y) +j (z +i u))

Rχij

// R((x+j z) +i (y +j u))

(13)
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(b) for 0 < i < p 6 j (so that R is i-colax and j-lax), we have commutative
diagrams:

(Rx+i Ry) +j (Rz +i Ru)
χijR // (Rx+j Rz) +i (Ry +j Ru)

Rj+iRj

��
R(x+i y) +j R(z +i u)

Ri+jRi

CC

Rj ��

R(x+j y) +i R(z +j u)

R((x+i y) +j (z +i u))
Rχij

// R((x+j z) +i (y +j u))

Ri

CC

(14)

(c) for 0 < i < j < p (so that R is i- and j-colax), we have commutative
diagrams as in (13), with all vertical arrows reversed.

The composition of p-morphisms R′R = R+pR
′ is easily defined: their

comparisons are separately composed.
Finally, a transversal map (F,G) : R →0 S of p-arrows will be a com-

mutative square

•
F //

•
R
��

•

•
S
��

•
0 //

p
� �= SF = GR

•
G

// •

(15)

with strict functors F,G and p-morphisms R, S. Commutativity means that
SF = GR as p-morphisms, including comparisons.

(As already remarked in [5], the ‘lax-colax’ case makes no sense: modi-
fying diagram (13) by reversing all arrowsRj would lead to a diagram where
no pairs of arrows compose.)

We have thus defined the double category dbl0p(Cmc) of chiral multiple
categories, strict functors and p-morphisms.

5. Two-dimensional cubes

To define a pq-cube (for 1 6 p < q 6 ∞) we have to adapt the axioms of
transversal transformation (again in [7], Section 3.9).
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A pq-cube ϕ : (U R
S V ) will be a ‘generalised quintet’ consisting of two

p-morphismsR, S, two q-morphisms U, V , together with – roughly speaking
– a ‘transversal transformation’ ϕ : V R 99K SU

A •
R //

•
U

��

ϕqq

•

•
V

��

•
p //

q
��ϕ : V R 99K SU.

• •
S

// B

(16)

This is an abuse of notation since there are no composites V R and SU in
our structure: the coherence conditions of ϕ are based on the four morphisms
R, S, U, V and all their comparison maps. Precisely, the cell ϕ consists of a
face-consistent family of transversal maps in B

ϕ(x) = ϕi(x) : V R(x)→0 SU(x), (for every i-cube x of A),

∂αi .ϕi = ϕi|i.∂
α
i (for i ∈ i),

(17)

so that each component ϕi : ViRi → SiUi : tvi(A) → tvi(B) is a natural
transformation of ordinary functors:

(nat) for all f : x →0 y in A, we have a commutative diagram of transversal
maps in B

V R(x)
ϕx //

V Rf

��

SU(x)

SUf

��
=

V R(y) ϕy
// SU(y)

(18)

Moreover ϕ has to satisfy the following coherence conditions (coh.a),
(coh.b), (coh.c) with the comparisons of R, S, U, V , for a degenerate cube
ei(t) (with t ∈ Ai|i) and a composite z = x+i y in Ai.

(coh.a) If p < q 6 i (so that R, S, U, V are lax in direction i), we have
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commutative diagrams (with ϕ = ϕx+i ϕy):

eiV R(t)
ei(ϕt)//

V i(Rt)
��

eiSU(t)

Si(Ut)
��

V Rx+i V Ry
ϕ //

V i(Rx,Ry)
��

SUx+i SUy

Si(Ux,Uy)
��

V (eiRt)

V Ri(t)
��

S(eiUt)

SU i(t)
��

V (Rx+i Ry)

V Ri(x,y)
��

S(Ux+i Uy)

SU i(x,y)
��

V R(eit)
ϕ(eit)
// SU(eit) V R(z)

ϕ(z)
// SU(z)

(19)

(coh.b) If p 6 i < q (so that R, S are lax and U, V are colax in direction i),
we have commutative diagrams:

eiV R(t)
ei(ϕt)// eiSU(t)

Si(Ut)
��

V Rx+i V Ry
ϕ // SUx+i SUy

Si(Ux,Uy)
��

V (eiRt)

V Ri(t)
��

V i(Rt)

OO

S(eiUt) V (Rx+i Ry)

V Ri(x,y)
��

V i(Rx,Ry)

OO

S(Ux+i Uy)

V R(eit)
ϕ(eit)
// SU(eit)

SU i(t)

OO

V R(z)
ϕ(z)

// SU(z)

SU i(x,y)

OO
(20)

(coh.c) If i < p < q (so that R, S, U, V are colax in direction i), we have
commutative diagrams as in (19), with all vertical arrows reversed.

The p- and q-composition of these cubes are both defined using compo-
nentwise the transversal composition of a chiral multiple category. Namely,
for a consistent matrix of pq-cubes and x ∈ A

• •
R //

•U

��

• •
R′ //

• V

��

•

• W

��

ϕ ψ •
p //

q

��
• S //

•U ′

��

• S′ //

• V ′

��

•

• W ′

��

σ τ

• •
T

// • •
T ′

// •

(21)
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(ϕ+p ψ)(x) = ψ(Rx) +0 S
′(ϕx) : WR′Rx→ S ′V Rx→ S ′SUx,

(ϕ+q σ)(x) = V ′(ϕx) +0 σ(Ux) : V ′V Rx→ V ′SUx→ TU ′Ux.
(22)

The main technical points of the whole construction of Cmc are con-
cerned with these composition laws. We shall prove, in Theorem 10, that
they are well-defined, i.e. the cells above do satisfy the previous coherence
conditions. We also prove that these laws strictly satisfy unitarity, associa-
tivity and the middle-four interchange law.

6. Transversal maps of degree two

Given two pq-cubes

ϕ : (U R
S V ), ϕ′ : (U ′ R

′

S′ V
′) (23)

a transversal pq-map (F,G, F ′, G′) : ϕ →0 ϕ
′ (of degree two and dimen-

sion three) is a quadruple of strict functors forming four transversal maps of
degree 1

(F,G) : R→0 R
′, (F ′, G′) : S →0 S

′,

(F, F ′) : U →0 U
′, (G,G′) : V →0 V

′,
(24)

A R //

U

��

F
��

•
G

��

A R //

U

��

ϕtt

•

V

��

G

��
•

R′ //

U ′

��

=

ϕ′tt

•

V ′

��

•

V ′

��

•
p //
0
� �

q
��

•

F ′ ��

=

•
R′ //

F ′ ��
=

•

G′ � �

=

•
S′

// B •
S′

// B

and such that ‘the cube commutes’, in the sense that, for every i-cube x of
A, the following transversal maps of B coincide

G′(ϕx) : G′V R(x)→ G′SU(x), ϕ′(Fx) : V ′R′F (x)→ S ′U ′F (x). (25)

We have thus defined the triple category trp0pq(Cmc) of chiral multiple
categories, with strict functors and p- and q-morphisms (for 0 < p < q 6
∞). Its indices vary in the pointed ordered set {0, p, q}.
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7. Three-dimensional cubes

A pqr-cube (for 0 < p < q < r 6 ∞) will be a ‘commutative cube’ Π
determined by its six faces:

– two pq-cubes ϕ, ψ (the faces ∂αr Π),

– two pr-cubes π, ρ (the faces ∂αq Π),

– two qr-cubes ω, ζ (the faces ∂αp Π),

A R //

X

��

U
��

•
V

��

A R //

X

��

•

X′

��

V

� �
•

S //

Y

��

ϕ

•

Y ′

��

•

Y ′

��

•
p //
q

��r ��
•

U ′ ��

ω

•
R′ //

U ′ ��

π

ψ

•

V ′ ��

ζ

•
S′

//

ρ

B •
S′

// B

(26)

The commutativity condition means that, for every i-cube x of A, the
following composed transversal arrows in B coincide

S ′ωx.ρUx.Y ′ϕx : Y ′V R(x)→ Y ′SU(x)→ S ′Y U(x)→ S ′U ′X(x)

ψXx.V ′πx.ζRx : Y ′V R(x) = V ′X ′R(x) = V ′R′X(x) = S ′U ′X(x).

These cubes are composed in direction p, q, or r, by pasting cubes (with
the operations of 2-dimensional cubes). Again, these operations are associa-
tive, unitary and satisfy the middle-four interchange by pairs.

8. Higher items

A transversal pqr-map F : Π →0 Π′ between pqr-cubes is determined by
its boundary, a face-consistent family of six transversal maps of degree two
(and dimension three)

∂αj F : ∂αj Π→0 ∂
α
j Π′ (α = ±, j ∈ {p, q, r}), (27)

under no other conditions. Their operations are computed on such faces.
We have thus defined a quadruple category of chiral multiple categories,

with strict functors and p-, q-, r-morphisms (for extended positive integers
p < q < r). The indices vary in the pointed ordered set {0, p, q, r}.
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Finally, we have the multiple category Cmc (indexed by the ordinal ω +
1), where each cell of dimension > 4 (starting with the transversal maps of
degree 3 considered above and the cubes of dimension 4, not yet considered)
is coskeletally determined by a face-consistent family of all its iterated faces
of dimension 3.

In the truncated case we have the (n+ 1)-dimensional multiple category
Cmcn of (small) chiral n-multiple categories, where the objects are indexed
by the ordinal n = {0, ..., n − 1}, while Cmcn is indexed by n + 1 (the
previous∞ being replaced by n). But one should note that Cmcn is not an
ordinary truncation of Cmc, as its objects too are truncated.

Cmc is a substructure of the – similarly defined – multiple category Inc
of small infinite dimensional intercategories, and Cmcn is a substructure of
the (n+ 1)-dimensional multiple category Incn of small n-intercategories.

9. Comments

These multiple categories are related to various double or triple categories
previously constructed.

(a) A chiral 1-multiple category is just a category, and Cmc1 is the double
category of small categories, with commutative squares of functors as double
cells.

(b) A chiral 2-multiple category is a weak double category. We have studied
in [4], Section 2, the double category Dbl of weak double categories, with lax
and colax functors – where double adjunctions live. Later Dbl was extended
to a triple category SDbl of weak double categories, with strict, lax and colax
functors (see [7], Section 1); in the latter all 2-dimensional cells are inhabited
by possibly non-trivial transformations, while in Cmc2 the 01- and 02-cells
are ‘commutative squares’, inhabited by identities. Thus Cmc2 extends Dbl
but is a triple subcategory of SDbl.

(c) As we have recalled, multiple adjunctions live in the double category
Cmc of chiral multiple categories, with lax and colax multiple functors ([9],
Section 2). This can be extended to a triple category SCmc of chiral multiple
categories, with strict, lax and colax functors, where again all 2-dimensional
cells are inhabited by possibly non-trivial transformations. Then SCmc con-

GRANDIS & PARE -  A MULTIPLE CATEGORY OF MULTIPLE LAX CATEGORIES

- 208 -



tains the triple category obtained from Cmc by restricting to the multi-indices
i ⊂ {0, 1,∞}.
(d) The quadruple category Inc3 of 3-dimensional intercategories is an ex-
tension of the triple category ICat of [9], Section 6, obtained by adding strict
functors in the transversal direction and ‘commutative transversal cells’.

10. Theorem

The structure Cmc constructed above is indeed a strict multiple category.

Proof. We prove the non-obvious points, listed at the end of Section 5.

(a) First we prove that the the composition law ϕ +p ψ of pq-cubes is well-
defined by the formulas (22)

(ϕ+p ψ)(x) = ψ(Rx) +0 S
′(ϕx) : WR′Rx→ S ′V Rx→ S ′SUx, (28)

in the sense that this family of transversal maps does satisfy the conditions
(coh.a) – (coh.c) of Section 5.

The argument is an extension of a similar one for the double category Dbl
in [4], Section 2, or for the double category Cmc in [9], Section 2, taking
into account the mixed laxity of the present ‘functors’. We prove the three
coherence axioms with respect to a composed cube z = x +i y in Ai; one
would work in a similar way for a degenerate cube ei(t), with t ∈ Ai|i.

First we prove (coh.a), letting p < q 6 i, so that all our functors
R,R′, S, S ′, U, V,W are lax in direction i. This amounts to the commuta-
tivity of the outer diagram below, formed of transversal maps (the index i
being omitted in +i and in all comparisons Ri, R

′
i, etc.)

WR′Rz
ψRz // S ′V Rz

S′ϕz // S ′SUz

WR′(Rx+Ry)
ψ(Rx+Ry) //

WR′R

OO

S ′V (Rx+Ry)

S′V R

OO

S ′S(Ux+ Uy)

S′SU

OO

W (R′Rx+R′Ry)

WR′R
OO

S ′(V Rx+ V Ry)
S′(ϕx+ϕy)//

S′V R
OO

S ′(SUx+ SUy)

S′SU
OO

WR′Rx+WR′Ry
ψRx+ψRy

//

WR′R
OO

S ′V Rx+ S ′V Ry
S′ϕx+S′ϕy

//

S′V R
OO

S ′SUx+ S ′SUy

S′SU
OO
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Indeed, the two hexagons commute by (coh.a), applied to ϕ and ψ, re-
spectively. The upper rectangle commutes by naturality of ψ on Ri(x, y).
The lower rectangle commutes by axiom (lmf.2) (in [7], Section 3.9), on the
lax functor S ′, with respect to the transversal i-maps ϕx : V R(x)→0 SU(x)
and ϕy : V R(y)→0 SU(y)

S ′(ϕx+iϕy).S ′i(V R(x), V R(y)) = S ′i(SU(x), SU(y)).(S ′(ϕx)+iS
′(ϕy)).

The proof of (coh.c) is transversally dual to the previous one. To prove
(coh.b) we let p 6 i < q, so thatR,R′, S, S ′ are lax, while U, V,W are colax
in direction i. We reverse the comparisons U i, V i,W i in the diagram above

WR′Rz
ψRz // S ′V Rz

S′ϕz // S ′SUz
S′SU
� �

WR′(Rx+Ry)
ψ(Rx+Ry) //

WR′R

OO

S ′V (Rx+Ry)

S′V R

OO

S′VR��

S ′S(Ux+ Uy)

W (R′Rx+R′Ry)

WR′R
OO

WR′R ��

S ′(V Rx+ V Ry)
S′(ϕx+ϕy)// S ′(SUx+ SUy)

S′SU
OO

WR′Rx+WR′Ry
ψRx+ψRy

// S ′V Rx+ S ′V Ry
S′ϕx+S′ϕy

//

S′V R
OO

S ′SUx+ S ′SUy

S′SU
OO

and note that the two hexagons commute, by (coh.b) on ϕ and ψ, while the
rectangles are unchanged.

(b) The composition law ϕ +p ψ has been defined via the composition of
transversal maps, and therefore is strictly unitary and associative.

(c) Finally, to verify the middle-four interchange law on the four double
cells of diagram (21), we compute the composites (ϕ +p ψ) +q (σ +p τ)
and (ϕ+q σ) +p (ψ +q τ) on an i-cube x, and we obtain the two transversal
maps W ′WR′Rx→0 T

′TU ′Ux of the upper or lower path in the following
diagram

W ′WR′Rx
W ′ψRx// W ′S ′V Rx

W ′S′ϕx//

τV Rx
��

=

W ′S ′SUx

τSUx
��

T ′V ′V Rx
T ′V ′ϕx

// T ′V ′SUx
T ′σUx

// T ′TU ′Ux
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The square commutes, by naturality of the double cell τ (with respect
to the transversal map ϕx : V R(x) →0 SU(x)), so that the two composites
coincide.
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Différ. Catég. 45 (2004), 193–240.
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Résumé. Cet article utilise la structure de Con (la 2-catégorie des esquisses
pour les univers arithmétiques (AU) de l’auteur) pour obtenir des résultats
constructifs, indépendants de la base pour les topos de Grothendieck (S-topos
bornés) comme espaces généralisés. Le principal résultat montre comment
une application extension U : T1 → T0 peut être vue comme un fibré, trans-
formant les points de base (modèles de T0 dans un topos S avec objet des
nombres naturels) en fibres (espaces généralisés au-dessus de S). Parmi les
caractéristiques de ce travail, on notera : une comparaison entre modèles
stricts ou non-stricts, utilisant les propriétés des objets de Con ; l’utilisation
des produits tensoriels de Gray pour relier la transformation syntactique de
modèles par des 1-cellules de Con et les transformations sémantiques par
des AU-foncteurs non stricts ; et l’utilisation de 2-fibrations pour indexer au-
dessus d’une 2-catégorie de topos de base S.
Abstract. The paper uses structures in Con, the author’s 2-category of
sketches for arithmetic universes (AUs), to provide constructive, base-
independent results for Grothendieck toposes (bounded S-toposes) as gen-
eralized spaces.
The main result is to show how an extension map U : T1 → T0 can be viewed
as a bundle, transforming base points (models of T0 in any elementary topos
S with nno) to fibres (generalized spaces over S).
Features of the work include comparison of strict and non-strict models, us-
ing properties of the objects of Con; the use of Gray tensor products to relate
syntactic transformation of models by 1-cells in Con and semantic transfor-
mations by non-strict AU-functors; and the use of 2-fibrations to index over
a 2-category of base toposes S .
Keywords. geometric theory, 2-fibration, sketch, Gray tensor
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1. Introduction

If T is a geometric theory, then the generalized topological space – in Gro-
thendieck’s sense – of models of T is realized mathematically as its category
of sheaves, the classifying topos S[T].
S here, the base, could be any elementary topos with nno that is able

to support the infinite disjunctions appearing in T, and if those disjunctions
are countable then any such S will do. So which topos S[T] is the true
incarnation of the generalized space?

[12] developed a 2-category Con whose objects are, in sketch form, such
theories; and whose 1-cells are the maps got if one replaces the classifying
topos S[T] by a classifying arithmetic universe AU〈T〉, which can thus be
understood as a base-independent incarnation of the space.

The present paper shows how to recover the base-dependent topos theory,
but in an indexed way, using 2-fibrations, that allows for change of base.

As a significant generalization of the indexed construction S 7→ S[T], we
also relativize by looking at certain maps U : T1 → T0 in Con considered
as bundles – that is to say, transformations from base point M (model of
T0) to space (fibre of U over M ). If M is in an elementary topos S, then
we construct an S-geometric theory T1/M of models of T1 that are reduced
to M by U , and then the fibre, as generalized space in the topos sense, is
S[T1/M ].

Our main result, Theorem 5.12, is that the whole construction (S,M) 7→
S[T1/M ] is indexed over pairs (S,M). This is formalized 2-fibrationally
using a new notion (Definition 4.4) of local representability.

Throughout this paper, every elementary topos will be assumed to have
a natural numbers object. We write eTop for the 2-category of elementary
toposes with nno, geometric morphisms (not necessarily bounded), and nat-
ural transformations.

1.1 Generalized spaces and their categories of sheaves

Let us elaborate on the underlying question. Grothendieck discovered a
huge generalization of the notions of topology and continuity, with a gen-
eralized space represented concretely by its category of sheaves (continuous
set-valued maps).
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This is point-free topology, analogous to representing a space X by its
frame ΩX of opens, albeit on a much grander scale.

[10] made an explicit attempt to make the analogous notational distinc-
tion, writingX for the generalized space and SX for its category of sheaves.
If [T] is written for the space of models of a geometric theory T, then S[T]
can be read either as “Sheaves over the space [T]” or as “the (geometric)
mathematics generated over the category S of sets by adjoining a generic
model of T”.

That paper was applied to domain theory, and in particular the ideal
completion of information systems (the compact bases) for SFP-domains.
These were studied using a generic SFP-domain, a geometric morphism
[IS][idl] → [IS], where [IS] classifies SFP information systems and the fi-
bre over one of them is its ideal completion. (We shall see a more general
account of such bundles in Section 5.2.)

But what is this category S of sets, within which one constructs the
sheaves, and over which one constructs S[T]? To Grothendieck it would
have been classical set theory Set. With the subsequent discovery of ele-
mentary toposes, it was found that any elementary topos S with nno could
be used as base for a notion of geometric theory and for constructing gener-
alized spaces (bounded geometric morphisms into S) as classifying toposes.
S-indexed categories are used to capture the idea that an object of S can be
used as an indexing set for a colimit diagram (see [7, B1.4]).

That relieves the classical dependency, but unfortunately creates a prob-
lem of its own: even if (as in [10]) the working is foundationally robust, one
still has to choose a base S in order to have a mathematical incarnation S[T]
of the generalized space [T].

In its conclusions, [10] proposed that S might be dispensed with if all
the working could be reduced to that of arithmetic universes (AUs), with fi-
nite colimits and list objects instead of “S-indexed” colimits. By [8], every
elementary topos with nno is an AU, and for any geometric morphism f be-
tween them, the inverse image part f ∗ is a (non-strict) AU-functor. Then the
infinities of geometric logic, supplied extrinsically by S, would be replaced
where possible by intrinsic infinities supplied by the list object construction.

The ultimate ambition would be to develop an entirely “arithmetic” ac-
count of generalized topology, using AUs AU〈T〉, to replace the present
geometric account using Grothendieck toposes. How far that can be carried
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through remains to be tested. The more modest aim of the present paper is
to show how arithmetic techniques can give base-independent results in the
existing topos theory.

1.2 Outline

Section 2 summarizes the background of AUs, their sketches, and the 2-
category Con [12]; and of geometric theories and classifying toposes largely
as presented in [7, B4.2].

Section 3 discusses the models of AU-sketches in AUs in general, and
elementary toposes in particular. A particular issue is whether the models
should be strict or not. We need both, and the contexts, the AU-sketches
appearing as objects of Con, have the special property that every non-strict
model has a canonical strict isomorph. We describe two interacting actions
on models: one by context maps between theories, and one by non-strict
AU-functors between the AUs where the models are found.

Section 4 collects miscellaneous remarks on the 2-fibrational background
that allows us to vary the base elementary topos S, and includes (Defini-
tion 4.4) a notion of local representability that captures, 2-fibrationally, the
idea of classifying toposes behaving in an indexed way under pseudopull-
back along change of base topos. In essence this is the idea of “geometricity”
as expressed in [11].

Section 5 examines classifying toposes for contexts. In fact, we deal with
a relativized version, with a context extension map U : T1 → T0 (given by
T0 ⊂ T1). If each context represents “the space of its models”, then we wish
to view U as a bundle: over each model M of T0, the fibre over it is the
“space of models of T1 that restrict to M”. We shall show how these fibres
can be represented as classifying toposes.

Now we fibre over pairs (S,M), where M is a strict model of T0 in
S. We find a geometric (though not arithmetic in general) theory T1/M of
models of T1 restricting to M , and it has a classifying topos S[T1/M ]→ S
(with its generic model).

Our main result, Theorem 5.12, is that this construction is locally repre-
sentable, in other words that it is geometric – preserved by pseudopullback
along arbitrary geometric morphisms. A corollary is the “geometricity of
presentations” result of [11, Section 5].
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2. Background

2.1 Sketches for arithmetic universes

We summarize the sketch approach to arithmetic universes as set out in [12].
The sketches are roughly as in [3], with a reflexive graph of nodes and edges
for objects and morphisms, a set of “commutativities” to specify commu-
tative triangles, and “universals” (the cones and cocones) for finite limits
and finite colimits – specifically: terminals, pullbacks, initials, pushouts. In
addition they have universals to specify list objects, thus gaining an nno as
List 1.

In our sketch extensions T ⊂ T′ such universals may be introduced only
for fresh objects, and hence in a definitional way. A context is then an exten-
sion of the empty sketch 11.

In equivalence extensions T b T′, everything fresh that is introduced
must have been implicitly present already. This includes composites of com-
posable pairs of edges; commutativities deducible from existing ones (e.g.
by unit laws or associativities); universals, fillins for universals and unique-
ness of fillins; and inverses for certain edges that must be isomorphisms
because of the categorical properties of AUs such as balance, stability and
exactness.

Homomorphisms TlT′ are structure-preserving homomorphisms for the
algebraic theory of sketches. They translate nodes to nodes, edges to edges,
commutativities to commutativities and universals to universals. The two
kinds of extensions are special cases of this.

Next, we have a notion of object equalities between nodes, certain edges
that include all identity edges but can also arise as fillins when the same
universal construction is applied to equal data. We extend this to object
equalities between edges, when their domains have an object equality and
so do the codomains, and there are appropriate commutativities to make a
commutative square; and then we extend to object equalities between homo-
morphism of models, using object equalities between corresponding nodes
and edges in the image.

Putting these together we get a category Con whose objects are contexts.
Its morphisms, context maps, are the dual of context homomorphisms, but
subject to (i) those for equivalence extensions are invertible, and (ii) object
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equalities become identity morphisms between actually equal objects. Every
map T0 → T1 is an equivalence class of opspans of homomorphisms T0 b
T′0 m T1.

Notice that, for each of the special symbols ⊂, b and l, the narrow end
is at the codomain for the corresponding reduction map.

For each context T there is also a context T→ for which a model is a
pair of models of T, together with a T-homomorphism between them. These
enable us to define 2-cells between maps, using maps T0 → T→1 , and Con
becomes a 2-category. It has finite PIE-limits (Product, Inserter, Equifier)
and pullbacks of extension maps (the duals of the homomorphisms corre-
sponding to extensions).

There is a full and faithful 2-functor from Con to the category AUs

of AUs and strict AU-functors, contravariant on 1-cells, that takes T 7→
AU〈T〉, the AU presented using T as generators and relations.

A central issue for models of sketches is that of strictness. The standard
sketch-theoretic notion is non-strict: for a universal, such as a pullback of
some given opspan, the pullback cone can be interpreted as any pullback of
the opspan. However, we could also seek strict models that use the canoni-
cal pullbacks (in categories where they exist). Strictness is essential for the
universal algebra that generates AU〈T〉, but in general it is inconvenient.
Significant parts of the present paper are concerned with relating the strict
and the non-strict.

Contexts are designed to give us good control over strictness, as summa-
rized by the following proposition.

Proposition 2.1. Let U : T1 → T0 be an extension map in Con, that is to say
one deriving from an extension T0 ⊂ T1. Suppose in some AU A we have
a model M1 of T1, a strict model M ′

0 of T0, and an isomorphism φ0 : M ′
0
∼=

M1U (the restriction of M1 to T0).

T1

U
��

M ′
1

φ1
∼=
//

_

��

M1_

��
T0 M ′

0

φ0
∼=
//M1U

Then there is a unique model M ′
1 of T1 and isomorphism φ1 : M ′

1
∼= M1

such that
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1. M ′
1 is strict,

2. M ′
1U = M ′

0,

3. φ1U = φ0, and

4. φ1 is equality on all the primitive nodes for the extension T0 ⊂ T1.

The proof can be deduced from the strictness results in [12]. In brief, it
is reduced by induction to the case of simple extension steps in T0 ⊂ T1.
Adjoining a primitive node, M ′

1 and φ1 are determined by (4). Adjoining a
primitive edge, M ′

1 and φ1 are determined by the need to make φ1 an iso-
morphism. Adjoining a universal, M ′

1 is determined by (1) and φ1 by (3), as
the unique fillin consistent with φ0.

In the case where T0 is the empty context 11, we see the important corol-
lary that for a context T every model is uniquely isomorphic to a unique strict
model with which it agrees on all primitive nodes. We call this its canonical
strict isomorph.

Thus in topos theory, where non-strict AU-functors are liable to trans-
form strict models into non-strict ones, we can regain strictness of models.

Example 2.2. The Proposition does not hold for arbitrary context maps
H : T1 → T0. Let O,O2 be the contexts that have, respectively, one and
two nodes, and nothing else. Consider the diagonal ∆: O → O2 given by
the context homomorphism that takes both nodes in O2 to the node in O.
If X is a model of O, then its ∆-reduct X∆ = (X,X). If we can find
X1
∼= X ∼= X2 with X1 6= X2, then (X1, X2) ∼= X∆ without itself being a

∆-reduct.

2.2 Elephant theories

Here we briefly summarize the account in [7, B4.2] of classifying toposes,
over a fixed base elementary topos S.

Central to its treatment is the 2-category BTop/S. A 0-cell is a bounded
geometric morphism p : E → S, a Grothendieck topos over S. In Defini-
tion 4.1 these will appear in the fibre of our GTop over S. A 1-cell f is a
pair (f, f⇓), where f is a bounded geometric morphism and f⇓ is a specified
isomorphism in the triangle over S.
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Any logical description of a theory does implicitly describe the mod-
els, but one can also try to use the category of models as a direct semantic
description of the theory. Unfortunately this does not work for geometric
theories, which may be incomplete – there are not enough models for se-
mantic entailment to agree with the syntactic entailment got from the rules
of geometric logic.

The semantic description used to get round this in [7, B4.2] is to describe
all the models in all Grothendieck toposes. For narrative purposes in the
present paper, to make a clear distinction from the logical theories, I shall
refer to such an “all model” description as an “elephant theory”. Of course
that acknowledges their use in [7], but I also want to convey something of
the sheer quantity of data encapsulated in one of these theories.

Definition 2.3. An elephant theory over S is an indexed category T over
BTop/S. Then an object of T(E) is a “model of T in E”.

In our applications derived from AU-sketches, the elephant theories will
be strict, 2-functors to CAT.

A particularly important example is the context O, the object classifier,
with O(E) = E .

Given an elephant theory T over S, a geometric construct on T is an
indexed functor from T to O.

Definition 2.4. Let T0 be an elephant theory over S . A geometric extension
of T0 is a theory built, starting from T0, by a finite sequence of the following
“simple” steps from T to T′.

• Simple functional extension: Let H0, H1 : T → O be two geometric
constructs. Define the theory T′ whose models in E are pairs (M,u)
where M is a model of T in E and u : MH0 → MH1 is a morphism.
A morphism from (M,u) to (M ′, u′) is morphism φ : M → M ′ such
that that following diagram commutes.

MH0
u //

φH0

��

MH1

φH1

��
M ′H0

u′
//M ′H1

.
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• Simple geometric quotient: Let φ : H0 → H1 be a morphism of geo-
metric constructs on T. T′ is the theory whose models in E are those
models of T for which φ is an isomorphism; its morphisms are all
T-morphisms.

• Simple extension by primitive object: We define T′(E) = T(E) × E .
In other words, we may write T′ = T×O.

Then a geometric theory over S is a geometric extension of 11, the trivial
theory for which every 11(E) is the category with one object ∗ and its identity
morphism.

Note that [7] does not define the general notion of geometric extension,
but simply that of geometric theory as an extension of On (for some finite
n) by simple functional extensions and simple geometric quotients. The two
are equivalent, because no harm is done if the primitive sorts are all adjoined
at the start, and doing this n times to 11 gives On.

If T1 is a geometric extension of T0, then there is a theory morphism
from T1 to T0 given by model reduction.

For future reference we prove the following result that does not appear
to be in [7].

Proposition 2.5. In the category of elephant theories over S and indexed
functors between them, geometric extensions can be pulled back along any
morphism.

Proof. The point is that we have a pullback, not a pseudopullback.
Let H : T′0 → T0 be an indexed functor between elephant theories over

S , and let T1 be a geometric extension of T0 with indexed functor U : T1 →
T0 defined by model reduction. We define the elephant theory T′1 by argu-
mentwise pullback of categories.

T′1(E) //

��

T1(E)

U(E)

��
T′0(E)

H(E)
// T0(E)

Thus a model of T′1 is a pair (M0,M1) of models of T′0 and T1 for which
M0H = M1U .
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For reindexing along f : F → E (over S), the naive attempt to define
f ∗(M0,M1) as (f ∗M0, f

∗M1) fails because we only have

(f ∗M0)H ∼= f ∗(M0H) = f ∗(M1U) = (f ∗M1)U .

(The last equality can be readily checked for different kinds of simple geo-
metric extension.) The trick then is to define f ∗(M0,M1) as (f ∗M0, N1) for
some N1

∼= f ∗M1 whose T0-reduct is (f ∗M0)H ∼= (f ∗M1)U .
It suffices to check the three kinds of simple geometric extension. For

extension by primitive sort, T1 = T0 × O, we find that T′1 as defined by
pullback is T′0 × O. For the reindexing question, we have M1 of the form
(M0H,X) and define N1 = ((f ∗M0)H, f ∗X).

The next case is when T1 is a simple functional extension of T0 for two
geometric constructs G0, G1 : T0 → O. We find that T′1, as defined by pull-
back, is a simple functional extension of T′0 for HG0 and HG1. For the
reindexing, we have M1 of the form (M0H, u : M0HG0 → M0HG1). Then
we take N1 to be ((f ∗M0)H, u′), where u′ is so as to make the following
diagram commute.

(f ∗M0)HG0

∼= //

u′

��

(f ∗(M0H))G0

∼= // f ∗(M0HG0)

f∗u
��

(f ∗M0)HG1

∼= // (f ∗(M0H))G1

∼= // f ∗(M0HG1)

For the final case, T1 is an extension of T0 by simple geometric quo-
tient for a morphism φ : G0 → G1 of two geometric constructs on T0.
Now T′1 is an extension of T′0 by simple geometric quotient for a morphism
Hφ : HG0 → HG1.

Definition 2.6. Let T be an elephant theory over S. A classifying topos for
T is a bounded S-topos p : S[T] → S, equipped with a “generic” T-model
NG, such that, for each bounded S-topos E , the functor

BTop/S[E ,S[T]]→ T(E), f 7→ f ∗NG,

is one half of an equivalence of categories.
In other words, the pseudofunctor T : BTop/S → CAT is representable.

Since all our elementary toposes have nno, [7, Theorem B4.2.9] tells us
that every geometric theory has a classifying topos.
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3. Indexed categories of models

In this section we deal with categories of models of AU-contexts from Con.
For each AU A and AU-context T we have a category A-Mod-T of models
of T in A, and a full subcategory A-Mods-T of strict models.

We shall show thatA-Mods-T is acted on strictly (on the right) by Con,
and strictly (on the left) by AU, the category of AUs and non-strict AU-
functors. This strict left action arises because T, a context, has the strict
model corollary of Proposition 2.1: applying a non-strict AU-functor gives
us a non-strict model, but we can then replace it by its canonical strict iso-
morph.1 The left and right actions commute up to isomorphism, which we
express in Theorem 3.6 as a category strictly indexed over the Gray tensor
product. However, right action by extension maps commutes up to equality
with the left actions (Lemma 3.7), and this will be important for us.

Note that the context maps, between contexts T, correspond to strict AU-
functors between the classifying AUs AU〈T〉. What we have done, there-
fore, is in effect to have strict and non-strict AU-functors acting on the right
and left respectively, with the Gray tensor action representing the interplay
between strict and non-strict.

One might wonder whether we could instead have focused on the non-
strict models A-Mod-T. There is an obvious action on the left by AU, and
an action on the right, by model reduction, by the context maps that corre-
spond to context homomorphisms. Those left and right actions commute up
to equality. However, the right action does not extend strictly to arbitrary
context maps: this is because the maps for context equivalence extensions,
which are invertible in Con, give only equivalences between model cate-
gories, not isomorphisms. We prefer to work with the strict action on strict
models.

In any case, the non-strict models of a context T are the strict models
of an extension T′. For each node X in T introduced by a universal, adjoin
another copy X ′ with edges and commutativities to make X ′ ∼= X .

Definition 3.1. Let A be an AU and T a context. Then A-Mods-T is the
category of strict models of T in A.

1 In fact, the definitions of extension and context in [12] were made in anticipation of
these results.
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Lemma 3.2. For each arithmetic universe A, we can define a 2-functor

A-Mods-• : Con→ CAT

for which A-Mods-•(T) = A-Mods-T.

Proof. Since those models are in bijection with strict AU-functors from
AU〈T〉 toA, and we have a (full and faithful) 2-functor from Con to AUop

s ,
this extends to a 2-functor A-Mods-• as desired.

IfM is a strict model inA-Mods-T0 andH : T0 → T1 is a context map,
then we write MH for A-Mods-H(M). If H is the dual of a context ho-
momorphism then MH is got by model reduction. If H is the inverse of the
dual for an equivalence extension T0 b T1, then MH is got by interpreting
all the adjoined ingredients of T1 in the unique strict way.

Now we fix T and let A vary.

Definition 3.3. Let f : A0 → A1 be an AU-functor, T a context and M a
model in A0-Mods-T. Then we define f ∗M = f -Mods-T(M) as follows.
We first define f ·M as the non-strict model got by applying f to M . Then
f ∗M is (using Proposition 2.1) the canonical strict isomorph of f ·M .

We extend this to 2-cells α : f0 → f1 by treating them as AU-functors
from A0 to the comma AU A1 ↓ A1. α∗M : f ∗0M → f ∗1M is then calculated
by pasting the following diagram.

A1 A0

f1

jj

f0
tt

�� α AU〈T〉
M
oo

f∗0M

∼=yy

f∗1M

∼=ee

Proposition 3.4. For each context T we have a 2-functor

•-Mods-T : AU→ CAT

for which •-Mods-T(A) = A-Mods-T and •-Mods-T(f)(M) = f ∗(M).
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Proof. The main point is that it is strictly functorial on 1-cells f . Suppose
we have AU-functors

A2
oo f1 A1

oo f0 A0 .

Then f ∗1 f
∗
0M and (f0f1)∗M are both the canonical strict isomorph of f1 ·f0 ·

M .
After this, the rest follows by pasting diagrams.

The equation f ∗1 f
∗
0M = (f0f1)∗M will seem notationally perverse for

morphisms in AU, composed diagrammatically, but it looks more natural
for geometric morphisms, where the AU-functor for f is f ∗.

Definition 3.5. Suppose we have 1-cells f : A0 → A1 in AU and H : T0 →
T1 in Con. Then we define a natural isomorphism Σf,H as follows.

A0-Mods-T0
A0-Mods-H //

f -Mods-T0

��

A0-Mods-T1

f -Mods-T1

��
A1-Mods-T0 A1-Mods-H

//

Σf,H⇓

A1-Mods-T1

(1)

For each M in A0-Mods-T0, we define the isomorphism

Σf,H(M) : f ∗(MH) ∼= (f ∗M)H

by pasting the following diagram.

A1 A0f
oo AU〈T0〉Moo

f∗M

∼=cc AU〈T1〉
AU〈H〉

oo

f∗(MH)

∼=vv

Naturality is clear.

Theorem 3.6. The two actions on •-Mods-• by AU and Con, together with
the pseudo-naturality isomorphisms Σf,H , make up a “cubical functor” from
AU× Con to CAT in the sense of [5], and hence a 2-functor from the Gray
tensor product AU⊗ Con to CAT.

VICKERS - ARITHMETIC UNIVERSES AND CLASSIFYING TOPOSESVICKERS - ARITHMETIC UNIVERSES AND CLASSIFYING TOPOSES

- 225 -



Proof. There are three conditions to be checked. The first two are that the
squares (1) paste together correctly, either horizontally or vertically, for com-
position of 1-cells in either Con or AU. The third is that it pastes correctly
with 2-cells in Con and AU. All are clear by pasting the appropriate isomor-
phisms from the definition of f ∗.

Lemma 3.7.

1. If U is an extension map (for T0 ⊂ T1) then (f ∗M)U = f ∗(MU) for
every f and M , and Σf,U(M) is the identity morphism.

2. If U is an equivalence extension map (T0 b T1), then (f ∗M)U−1 =
f ∗(MU−1), and Σf,U−1(M) is the identity morphism.

Proof. (1) f ∗(MU) is the canonical strict isomorph of f · (MU).
On the other hand (f ∗M)U ∼= (f · M)U = f · (MU) and they are

equal on all the primitive nodes of T0 because they are also primitive in the
extension T1.

(2) Apply part (1) to MU−1.

Example 3.8. Equality in Lemma 3.7 can fail for a mapH : T1 → T0 involv-
ing a context homomorphism that maps primitive nodes to non-primitives.
Consider the context T with a single node T , declared terminal, andH : T→
O given by the sketch homomorphism that takes the single node X in O to
T .

If M is the unique strict model of T in A, then MH simply picks out
the canonical terminal object, and (f ∗M)H does the same in A′. f ∗(MH)
picks out the image under f of the canonical terminal in A.

Finally, we can translate these results to elementary toposes. For each
AU-context T we have a 2-category •-Mods-T, strictly indexed over eTop,
and it restricts to BTop/S, with the geometric morphisms p : E → S playing
no role in the reindexing. Thus it gives a strict elephant theory over S for T.
Also, each context map H : T0 → T1 gives a corresponding indexed functor
from T0 to T1 as elephant theories.
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4. Remarks on 2-fibrations

In the 2-functor •-Mods-T : AU → CAT we have already seen a category
strictly indexed over the 2-category AUop. As we proceed, however, we
shall encounter non-strict indexations, with pseudofunctors, and for these
we shall prefer a fibrational approach. Thus we avoid confronting coherence
conditions for indexed 2-categories.

For the appropriate notion of 2-fibration we shall follow Buckley’s ac-
count [4], which in turn was based on earlier work of Hermida [6] and
Baković [1]. Definitions are given for fibrations both between 2-categories
and between bicategories. Note that, although we deal only with 2-categories,
and 2-functors between them, we shall still need to use the bicategorical no-
tion of fibration once we go beyond strictly indexed categories. The essential
difference, for a 2-functor P : E → B, is that the properties characteriz-
ing a cartesian 1-cell f : x → y in E are weaker. Given g : z → y and
h : Pz → Px with h(Pf) = Pg, we can lift h to ĥ : z → x but the corre-
sponding triangle in E commutes only up to isomorphism.

z
ĥ

��
∼=

g

��
x

f
// y

Pz
h

}}
=

Pg

!!
Px

Pf
// Py

To summarize Buckley’s definitions, –

• A 1-cell f in E is cartesian if it lifts 1-cells up to isomorphism, and lifts
2-cells coherently with the lifted isos. The uniqueness of lifted 2-cells
implies that lifted 1-cells are unique up to a coherent isomorphism.

• A 2-cell α : f ⇒ g : x→ y in E is cartesian if it is cartesian as a 1-cell
for the functor Pxy : E(x, y)→ B(Px, Py).

• P is a fibration if for every f : b → Pe in B, there is a cartesian
h : a → e with Ph = f ; each Pxy is a fibration of categories; and the
cartesian 2-cells are closed under whiskering on both sides.
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4.1 The fibred 2-category of Grothendieck toposes

By “Grothendieck topos”, we mean a bounded geometric morphism from
some elementary topos E to some, understood, base elementary topos S.2

The 2-category of Grothendieck toposes over S is studied in [7, B4] as
BTop/S.

A notable property of BTop/S is that any geometric theory T (geomet-
ric, that is, with respect to S) has a classifying topos S[T] that behaves in
many respect as “the space of models of T”; indeed, the whole of BTop/S
may then be viewed as the 2-category of generalized spaces relative to S:
0-cells are spaces, 1-cells are (continuous) maps, and 2-cells are generalized
specializations (morphisms, not order).

Our interest in using arithmetic universes is to deal with theories T that
depend on the base S only to the extent that nnos are required to exist. Our
aim here will be to prove results about Grothendieck toposes that are fibred
over choice of base.

From the point of view of indexed categories, the key result [7, B3.3.6]
is that bounded geometric morphisms can be pseudo-pulled-back along arbi-
trary geometric morphisms.3 Thus for any geometric morphism f : S0 → S1

we get a reindexing f ∗ : BTop/S1 → BTop/S0. This does not extend to
arbitrary natural transformations α : f → g unless the Grothendieck toposes
are restricted to fibrations or opfibrations over S, so instead we restrict the
αs at the base level to be isomorphisms.

We write eTop∼= for the 2-category of elementary toposes (with nno),
geometric morphisms and natural isomorphisms.

We now express S 7→ BTop/S as a fibred 2-category GTop of Grothen-
dieck toposes.

Definition 4.1. The data for the 2-category GTop is defined as follows.
A 0-cell is a bounded geometric morphism p : E → S.

2As always for us, our elementary toposes are assumed to have nnos.
3Beware that, in 2-categorical contexts, [7] consistently omits “pseudo-” – see B1.1.
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A 1-cell f = (f, f⇓, f) from E0
p0 // S0 to E1

p1 // S1 is a square

E0
f //

f⇓p0
��

E1

p1
��

S0 f
// S1

in which f⇓ : fp1 → p0f is an isomorphism.
Given two such 1-cells, f and f ′ from p0 to p1, a 2-cell α : f → f ′ is a

pair of natural transformations α : f → f
′
and α : f → f ′

E0

f
))

f
′

55�� α

f⇓

f ′⇓
p0

��

E1

p1

��
S0

f
))

f ′
55�� α S1

such that the obvious diagram of 2-cells commutes. Moreover, as mentioned
earlier, we require α to be an isomorphism.

It is clear that GTop is a 2-category

Proposition 4.2. There is a 2-functor GTopco → eTopco∼= that forgets all but
the downstairs part. Although it is strict, we consider it as a homomorphsm
of bicategories for the purposes of [4, 3.1].

1. A 1-cell is cartesian iff it is a pseudopullback square in eTop.

2. A 2-cell α is cartesian iff α is an isomorphism.

3. The 2-functor is a fibration of bicategories.

Proof. (1): This is essentially the same as the proof of the result for 1-
categories, that for the codomain fibration cod : C→ → C, a morphism for
C→ is cartesian iff it is a pullback square in C. The conditions for pseudop-
ullbacks and cartesian 1-cells both bring in the 2-cells in the same way. For
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the “⇒” direction, note that an arbitrary elementary topos E can be treated
as a 0-cell in GTop using the identity geometric morphism.

(2): If α is an isomorphism then so is the 2-cell α, and it is then clearly
cartesian. For the converse, suppose α : f → g is a cartesian 2-cell. (Note
that because we are going to dualize, α is really cocartesian in GTop.)
Downstairs, α is invertible and so by lifting α−1 we get α′ : g → f , with
αα′ = Idf . By considering Idg and α′α as lifts of Idg we see that they are
equal.

(3) Cartesian lifting of 1-cells arises because, in eTop, pseudopullbacks
of bounded geometric morphisms along arbitrary geometric morphisms al-
ways exist [7, B3.3.6].

Cartesian lifting of 2-cells is easy – in fact we can ensure that the upstairs
part of the lifted 2-cell is an identity.

Of course, eTopco∼= ∼= eTop∼=, so we could equally well consider GTopco

as fibred over eTop∼=.

4.2 Representability

In Definition 2.6, “classifying topos” is defined in terms of representability
of an indexed category, a pseudofunctor T : (BTop/S)op → CAT. We now
look at how this appears in terms of fibrations.

To work abstractly, suppose C is a 2-category, and F : Ccoop → CAT a
pseudofunctor. We shall describe the Grothendieck construction for it. In
our applications, for elephant theories deriving from AU-contexts, F will be
strict and the Grothendieck construction is described in [4, 2.2] as a fibration
of 2-categories. For the present section, however, we shall not assume strict-
ness: thus we retain the connection with general elephant theories. Because
of this we need to use [4, 3.3.3], which describes the Grothendieck construc-
tion as a fibration of bicategories. Nonetheless, our situation is somewhat
simpler than Buckley’s. We have not allowed C to be a bicategory, and we
have taken each F (X) to be a category, not a bicategory. Because of this,
our fibred bicategory E is actually a 2-category, though not fibred as such. It
has –

0-cells are pairs (x, x−) of objects of C and Fx.
1-cells are pairs (f, f−) : (x, x−)→ (y, y−) where

f : x→ y and f− : x− → Ff(y−).
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2-cells (f, f−)→ (g, g−) : (x, x−)→ (y, y−) are 2-cells α : f → g such
that the following diagram commutes.

x−
f− //

g− ##
=

Ff(y−)

Fg(y−)

Fαy−

99

Then the 1-cell (f, f−) is cartesian iff f− is an isomorphism. Every 2-cell
α is cartesian.

In the following proposition we characterize representability of the pseud-
ofunctor F in a purely fibrational way, independent of F as choice of cleav-
age.

Proposition 4.3. Let F : Ccoop → CAT be a pseudofunctor as above, and
let P : E → C be its Grothendieck construction. Then F is representable
iff there is an object (x, x−) in E (a representing object) with the following
properties.

1. For each (y, y−) in E , there is a cartesian 1-cell (f, f−) : (y, y−) →
(x, x−).

2. Each cartesian 1-cell (f, f−) : (y, y−) → (x, x−) is terminal in the
category E((y, y−), (x, x−)).

Proof. By definition, F is represented by (x, x−) iff for every y the functor
Ky : C(y, x)op → Fy, given by f 7→ Ff(x−), is an equivalence.

Condition (1) says that each Ky is essentially surjective. It remains to
show that, for each y, Ky is full and faithful iff condition (2) holds.

Suppose Ky is full and faithful and, for a given y−, we have

(f, f−), (g, g−) : (y, y−)→ (x, x−)

with (f, f−) cartesian, i.e. f− an isomorphism. Then there is a unique
α : g → f such that Fαx− = f−1

− ; g−, in other words a unique 2-cell from
(g, g−) to (f, f−).

Conversely, suppose condition (2) holds for a given y, and suppose we
have f, g : y → x and g− : Ff(x−)→ Fg(x−). We then have two 1-cells

(f, Id), (g, g−) : (y, Ff(x−))→ (x, x−).
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Since (f, Id) is cartesian we get a unique 2-cell α : (g, g−)→ (f, Id), in other
words, a unique α : g → f such that Ky(α) = g−.

By the usual means, one can show that if x is a representing object for
P , then for any object x′ in E we have that x′ is a representing object iff it is
equivalent to x.

We now extend the above discussion to a situation where C too is fibred:
we have fibrations

E P // C Q // B .

In our applications, P will again be got from a pseudofunctor (in fact a 2-
functor) Ccoop → CAT, but Q will be more general. The paradigm example
for Q is GTopco fibred over eTopco∼= .

We also assume (as in the paradigm) that all 2-cells in B are isomor-
phisms.

Note that f : x→ y in E is cartesian for P ;Q iff it is cartesian for P and
Pf is cartesian for Q. For the “⇐” direction, we just lift in two stages. For

“⇒”, consider cartesian lifts f̂ : x̂ → Py of Q(Pf), and then ˆ̂
f : ˆ̂x → y of

f̂ . We get an equivalence x ' ˆ̂x and deduce the result from that.
Now each object w of B has a fibre over it, a fibration Pw : Ew → Cw: it

comprises the 0-cells of C and E that map to w, and the 1- and 2-cells that
map to identities at w. We are now interested in the situation where each Pw
is representable, and in how the representing objects transform under 1-cells
in B.

Since we are assuming P arises from a pseudofunctor, it is easy to see
that a 1-cell or 2-cell in Ew is cartesian for Pw iff it is cartesian for P .

Definition 4.4. P is locally representable (over Q) iff

1. Each fibre Pw is representable.

2. (Geometricity) Suppose Pw is represented by xw, f : w′ → w in B,
and h : y → xw is P ;Q-cartesian over f . Then y is a representing
object for Pw′ .

We call condition (2) “geometricity” in line with [11], because it con-
cerns a property that is preserved by pseudopullback in eTop. Note that it
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suffices to verify it for some xw and some h. This is because representing
objects are equivalent, and so too are cartesian liftings.

As defined, local representability focuses on the fibres Pw. We can ex-
press the property in a way that says more about the interaction with change
of base.

Proposition 4.5. P is locally representable over Q iff, for each object w of
B, we have an object xw of E over it that satisfies the following conditions.

1. For every object y of E , and 1-cell f : Q(Py)→ w in B, there is some
f̂ : y → xw over f that is cartesian with respect to P .

2. Suppose h0, h1 : y → xw in E , with h1 being P -cartesian.

If α : Q(Ph0)→ Q(Ph1), then there is a unique α̂ : h0 → h1 over α.

Proof. ⇐: Clearly any xw satisfying the conditions must be a representing
object for Pw. It remains to show that the representing objects transform
correctly under base 1-cells f : w′ → w.

Suppose xw and xw′ satisfy the conditions. By the conditions for xw we
have P -cartesian g : xw′ → xw over f . Suppose also that h : y → xw is P ;Q-
cartesian over f . By the conditions on xw′ we get P -cartesian u : y → xw′
over Idw′ , and by cartesianness of h we get v : xw′ → y over Idw′ with an
isomorphism α : vh→ g over Idf .

xw′
g

""α⇑
v

��
y

u

CC

h
// xw

Since both g and h are P -cartesian, so is v. It follows by the conditions
on xw′ that there is a unique isomorphism vu ∼= Idxw′ in Pw′ . Also, by the
P ;Q-cartesian property of h, there is a unique isomorphism uv ∼= Idy in Pw′ .
Hence y is equivalent to xw′ , and so represents Pw′ as required.
⇒: Let xw be a representing object for Pw. We show it has the two

properties stated.
Suppose y is an object in E , and f : w′ = Q(Py) → w a 1-cell in B.

Let g : xw′ → xw be P ;Q-cartesian over f , so that xw′ is a representing
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object for Pw′ . Then there is a P -cartesian 1-cell u : y → xw′ in Pw′ , and
ug : y → xw is P -cartesian (because u and g are) over f .

Now suppose h0, h1 : y → xw are two 1-cells, with h1 cartesian for P ,
and with fi = Q(Phi) : w′ → w, and α : f0 → f1. Recall our assumption
that all 2-cells in B are isomorphisms. Let gi : zi → xw be a P ;Q-cartesian
lifting of fi, with ui : y → zi in Pw′ and βi : uigi ∼= hi over fi. By [4, 3.1.15],
there is an equivalence k : z0 ' z1 with isomorphism kg1

∼= g0 over α, and
the pair is unique up to unique isomorphism between ks in Pw′ . Thus 2-cells
h0 → h1 over α are in bijection with 2-cells u0kg1 → u1g1 over f1, and
hence (because g1 is P ;Q-cartesian) with 2-cells u0k → u1 in Pw′ . Since
z1 is a representing object for Pw′ , and u1 is P -cartesian (because h1 and g1

are), and hence cartesian in Pw′ , we get a unique 2-cell u0k → u1 in Pw′ .

5. Context extensions as bundles

In this Section we gather together the previous remarks to get results on
classifying toposes in a form that is fibred over a category of bases.

This is most easily understood in the simple case of a single context T.
For each Grothendieck topos p : E → S we have a category E-Mods-T
of strict models of T in E . This extends to a 2-functor from GTopop =
(GTopco)coop to CAT, and its Grothendieck construction can be written as
P : (GTop-T)co → GTopco.

In constructing that fibration we ignored the parts
p // S , but when

we bring in S we find that the classifying topos S[T] provides a representing
object for PS .

The main novelty here is that those representing objects transform ac-
cording to Definition 4.4: that (Theorem 5.11) the pseudopullback along
any f : S0 → S1 preserves classifiers. Our proof is non-trivial, and shows
that the steps constructing the classifier are preserved under pseudopullback.

As mentioned in Section 1.2, we shall prove local representability more
generally, dealing not just with a single context T, but in the relativized
situation for an extension T0 ⊂ T1.

Why extensions, and not arbitrary H : T1 → T0? The main reason is the
repeated use of Proposition 2.1, sometimes via Lemma 3.7.
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5.1 Models for a context extension

Definition 5.1. Let T0 ⊂ T1 be an extension of contexts, with corresponding
extension map U : T1 → T0, and let p : E → S be a bounded geometric
morphism. A strict model of U in p is a pair (M,N) where M is a strict
model of T0 in S, N a strict model of T1 in E , and NU = p∗M .

A morphism from one such strict model, (M,N), to another, (M ′, N ′), is
a pair φ = (φ−, φ

−) where φ− : M → M ′ and φ− : N → N ′ are homomor-
phisms and φ−U = p∗φ−.

For given U we thus get, for each p, a category p-Mods-U . It is strictly
indexed over GTop in the following way.

First suppose f : p0 → p1 is a 1-cell in GTop, as in Definition 4.1. If
(M,N) is a strict model in p1, then we define a strict model f ∗(M,N) =
(f ∗M, f ∗N)

f ∗N oo
∼=

_

��

f
∗
N
_

��

p∗0f
∗M oo

(f⇓)∗M
f
∗
p∗1M

where the upstairs isomorphism is the canonical one obtained from Proposi-
tion 2.1. The action extends to morphisms between strict models of U , and
we obtain a functor f -Mods-U : p1-Mods-U → p0-Mods-U .

If α : f → f ′ is a 2-cell in GTop, then it gives a natural transformation
from f -Mods-U to f ′-Mods-U . We obtain a strict 2-functor from GTopop

to CAT. Its Grothendieck construction is a fibration (Mods-U)co → GTopco.

Definition 5.2. The data for the 2-category Mods-U is defined as follows.
In each case, a 0-, 1- or 2-cell is the corresponding item for GTop, equipped
with extra structure in the form of models of U .

A 0-cell is a bounded geometric morphism p : E → S, equipped with a
strict model (M,N) of U .

A 1-cell from (p0,M0, N0) to (p1,M1, N1) is a 1-cell f : p0 → p1 from
GTop, equipped with a homomorphism (f−, f

−) : (M0, N0)→ f ∗(M1, N1).
(Note that the letter f is highly decorated: we have f , f⇓, f , f− and f−.)

Given 1-cells (f, f−, f
−) and (f ′, f ′−, f

′−), with the same domain and
codomain, a 2-cell from one to the other is a 2-cell α : f → f ′ in GTop such
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that
(f−, f

−)(α∗(M1, N1)) = (f ′−, f
′−).

It is clear that Mods-U is a 2-category, with a functor F ′ : Mods-U →
GTop that forgets the model, and by construction F ′co is a split fibration.
Note that –

1. A 1-cell (f, f−, f
−) is cartesian iff f− and f− are isomorphisms.

2. Every 2-cell α is (co-)cartesian.

Note the special case of a trivial extension T0 = T0. A model of this in
p is simply a model M of T0 in S, since the corresponding model in E has
to be p∗M . In this case we write Mods-(T0 ⊂ T0).

We have an obvious forgetful functor from Mods-U to Mods-(T0 ⊂ T0),
which (or its co-dual) is almost, but not quite, a fibration. The problem is
that T0-homomorphisms φ− : M → M ′ do not lift to functors for the cate-
gories of U -models over them. To rectify this, we restrict to isomorphisms
downstairs.

Definition 5.3. GTop-U is the sub-2-category of Mods-U with all the 0-
cells, but with only the 1-cells (f, f−, f

−) for which f− is an isomorphism.
It is full on 2-cells.

Proposition 5.4. We write P co : GTop-U → GTop-(T0 ⊂ T0) for the for-
getful functor. Then P : (GTop-U)co → (GTop-(T0 ⊂ T0))co is a split fi-
bration. A 1-cell (f, f−, f

−) is cartesian iff its f− is an isomorphism. Every
2-cell is cartesian.

Proof. It is the Grothendieck construction for the evident 2-functor from
(GTop-(T0 ⊂ T0))op to CAT.

We now fibre over pairs (S,M).

Definition 5.5. The 2-category eTop∼=-T has structure as follows. A 0-cell
is a pair (S,M) where S is an elementary topos and M a model of T in
S . A 1-cell from (S0,M0) to (S1,M1) is a pair (f, f−) where f : S0 → S1

is a geometric morphism and f− : M0 → f ∗M1 is an isomorphism. A 2-
cell from (f, f−) to (g, g−) is a natural isomorphism α : f → g such that
f−;α∗M1 = g−.
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The 2-category GTop-(T ⊂ T) is made from GTop by adding compo-
nents M and f−, and the condition on α, in the same way as eTop∼=-T is
made from eTop∼=.

Proposition 5.6. Let Qco : GTop-(T ⊂ T) → eTop∼=-T be the evident for-
getful functor. Then Q = (Qco)co is a fibration of bicategories.

Proof. Much as in Proposition 4.2.

We now get a diagram of 2-functors as follows, where the P s and Qs are
fibrations. The left hand tower is for the relativized situation T0 ⊂ T1, while
the right hand tower is the special case T0 = 11.

(GTop-U)co

P
�� ))

(GTop-(T0 ⊂ T0))co

Q

�� ))

(GTop-T1)co

P
��

(eTop∼=-T0)co

))

GTopco

Q

��
eTopco∼=

(2)

5.2 Context extensions fibred over models

Our aim now is to show that, in diagram (2), each P is locally representable
over its Q. (Note that the right hand one is a special case of the left hand,
for when T0 = 11.) The existence of the representing objects (as classifying
toposes) is straightforward; what seems more novel is their preservation by
pseudopullback.

Proposition 5.7. Let T0 ⊂ T1 be a context extension. Then, over any ele-
mentary topos S, it is also a geometric extension of elephant theories.

Proof. It suffices to check the different kinds of simple context extension.
Note that any node X in T0 gives a context homomorphism O l T0, so a
map T0 → O, and hence a geometric construct on T0. Likewise, any edge or
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composite of edges gives a map T0 → O→, and hence a morphism between
geometric constructs.

An extension by primitive node is a geometric extension by primitive
sort.

A simple functional extension of contexts (adjoining a primitive edge) is
also a simple functional extension of geometric theories.

An extension by a universal is essentially no geometric extension at all,
as the categories of (strict) models are isomorphic.

An extension by commutativities is a simple geometric quotient, as im-
posing an equality between morphisms is equivalent to requiring the equal-
izer to be an isomorphism.

Proposition 5.8. Let T0 be a context, and M a strict model of T0 in an
elementary topos S. Then there is an elephant morphism M : 11 → T0 that,
on bounded S-topos (E , p), takes ∗ to p∗M .

Proof. Note that, although the elephant theories for both 11 and T0 are strictly
indexed, M is not a strict morphism. Consider a morphism of S-toposes

F f //

q
��
f⇓

E

p
��
S

, 11(F)

M(F)

��
∼=

11(E)

M(E)

��
T0(F) oo

T0(f)
T0(E)

On the right is a pseudo-naturality square, subject to the isomorphism

(f⇓)∗M : f
∗
p∗M ∼= q∗M .

Of course, M : 11→ T0 is not a map of contexts in general.

Definition 5.9. Let T0 ⊂ T1 be a context extension and M a strict model
of T0 in an elementary topos S. By Proposition 2.5 we can pull back the
geometric extension for T0 ⊂ T1 along M : 11 → T0, getting a geometric
theory T1/M over S. Its models in (E , p) are the strict models of T1 whose
T0-reducts are equal to p∗M . It has a classifying topos S[T1/M ].
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Proposition 5.10. Let T0 ⊂ T1 ⊂ T2 be a sequence of context extensions,

with extension maps T2
U ′ // T1

U // T0 .
Let M be a strict model of T0 in an elementary topos S, and consider

the classifying toposes p : S ′ = S[T1/M ]→ S with generic model NG, and
p′ : S ′′ = S ′[T2/NG]→ S ′ with generic model N ′G.

Then (S ′′, p′p) serves as classifier for T2/M , with generic model N ′G.

Proof. Note that, using Lemma 3.7, N ′GU
′U = p′∗NGU = (p′p)∗M .

For the “essential surjectivity” part, suppose N is a model of T2/M in
(F , q). Then NU ′ is a model of T1/M , so we get g = (g, g⇓) : (F , q) →
(S ′, p) with NU ′ ∼= g∗NG as models of T1/M ; also g∗NG

∼= g∗NG as
models of T1. Now using Proposition 2.1 we can find a strict model N ′ ∼= N
of T2 with N ′U ′ = g∗NG, so N ′ is a model of T2/NG in (F , g). Hence there
is a morphism

f ′ = (f ′, f ′⇓) : (F , g)→ (S ′′, p′)

such that f ′∗N ′G ∼= N ′. Now define

f = (f ′, ((f ′⇓) · p; g⇓)) : (F , q)→ (S ′′, p′p) F f ′ //

f ′⇓
g

  
g⇓

q

# #

S ′′

p′

��
S ′

p

��
S

.

As models of T2, we have f ∗N ′G ∼= f ′
∗
N ′G
∼= f ′∗N ′G

∼= N ′ ∼= N ; and we see
from the following diagram that this composite isomorphism restricts under
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U ′U to the identity – it is an isomorphism for T2/M .

f ∗N ′G

∼=
zz

_

��

f ′∗N ′G
∼=

zz

G

��

f ′
∗
N ′G

∼=rr
∼=

oo
_

��

N_

��

N ′
∼=oo

_

��
NU ′_

��

g∗NG

∼=oo
_

��

g∗NG

∼=oo
_

��

f ′
∗
p′∗NG

∼=
(f⇓)∗NG

oo
_

��

NU ′U q∗M g∗p∗M
∼=

(g⇓)∗M
oo f ′

∗
p′∗p∗M

∼=
(f⇓)∗p∗M

oo

Now suppose we have two morphisms fi = (fi, fi⇓) : (F , q)→ (S ′′, p′p)
(i = 0, 1). Let us write gi = fip

′ and

gi = (gi, fi⇓) : (F , q)→ (S ′, p) F fi //

=
gi

  
fi⇓

q

##

S ′′

p′

��
S ′

p

��
S

.

This makes F two separate toposes (F , gi) over S ′.
Suppose also we have a T2/M -morphism θ : f ∗0N

′
G → f ∗1N

′
G. Our aim

is to show that there is a unique 2-cell α : f0 → f1 such that α∗N ′G = θ.
Consider the diagram

f ∗i N
′
GC

��

fi
∗
N ′G

∼=oo
_

��

T2

U ′

��
g∗iNG_

��

fi
∗
p′∗NG = gi

∗NG∼=
oo

_

��

T1

U

��
q∗M fi

∗
p′∗p∗M∼=

fi⇓oo T0.
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We find that (f ∗i N
′
G)U ′ = g∗iNG, as it has the correct properties according

to Proposition 2.1. Hence we have θU ′ : g∗0NG → g∗1NG, and there is a
unique β : g0 → g1 such that θU ′ = β∗NG. (This is modulo the appropriate
isomorphisms, for β is actually a natural transformation from g0 to g1.)

Let us first deal with the case where θ is an isomorphism, and β likewise.
We thus have two morphisms f ′i : (F , g1) → (S ′′, p′), given by f ′0 = (f0, β)
and f ′1 = (f1, Id). In the diagrams below, three levels are for T2, T1 and T0,
successively reduced by U ′ and U . The horizontal isomorphisms ‘∼=’ come
from Proposition 2.1, and the vertical ones are defined to make their outer
squares commute. We then find a unique α : f ′0 → f ′1 (which is the same as
saying α ·p′ = β) such that α∗N ′G is the isomorphism f ′∗0 N

′
G
∼= f ′∗1 N

′
G at top

right in the diagram. Then α : f0 → f1 and is unique such that θ = α∗N ′G.

T2

U ′

��

f ∗0N
′
G

θ

��

f0
∗
N ′G

∼=oo
∼= //

α∗N ′G
��

f ′∗0 N
′
G

∼=
��

f ∗1N
′
G f1

∗
N ′G

∼=oo f ′∗1 N
′
G

T1

U

��

g∗0NG

θU ′

��

g0
∗NG

∼=oo β∗NG //

β∗NG

��

g′∗1 NG

g∗1NG g1
∗NG

∼=oo g′∗1 NG

T0 q∗M g0
∗p∗M

(f0⇓)∗Moo

∼=
��

q∗M g1
∗p∗M

(f1⇓)∗M
oo

We now generalize to arbitrary morphisms θ. Let (G, q′) be the cocomma
object in BTop/S of the identity on (F , q) against itself, with cocomma
injections hi : (F , q) → (G, q′) and η : h0 → h1. By [7, B3.4.7], G as a
category is just the comma category F ↓ F . It follows from [9] that there is
a bijection between, on the one hand, morphisms θ : N0 → N1 between strict
T2/M -models in F , and, on the other, strict T2/M -models in G. Applying
the essential surjectivity property (already proved) for S ′′, in relation to G,
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we see that for every such θ there is a morphism f ′ : (G, q′) → (S ′′, p′p),
hence a pair of morphisms f ′i : (F , q) → (S ′′, p′p), and a 2-cell α′ between
them, with a commuting diagram

N0

∼= //

θ
��

f ′∗0 N
′
G

α′∗N ′G
��

N1

∼= // f ′∗1 N
′
G

We return to the case of interest, where Ni = f ∗i N
′
G. By the restricted

case, with θ an isomorphism, we find 2-cell isomorphisms βi : fi → f ′i that,
applied to N ′G, give the horizontal isomorphisms above. Then, taking α =
β0;α′; β−1

1 , we get θ = α∗N ′G. This proves fullness.
Finally we must prove faithfulness. Suppose we have f0 and f1 as before,

and 2-cells α, α′ : f0 → f1 with α∗N ′G = α′∗N ′G. We deduce that α · p′ =
α′ · p′ because S ′ is a classifier. Hence we have two geometric morphisms
g = (f0, α, f1) and g′ = (f0, α

′, f1) from G to S ′′, with gp′ = g′p′. We
have g∗N ′G = g′∗N ′G, so from the properties of S ′′ as classifying topos we
get a unique 2-cell β : g → g′ such that β∗N ′G is the identity. This gives two
2-cells βi : fi → fi, making a commutative square with α and α′, with β∗iN

′
G

the identity on fi
∗
N ′G. We deduce that each βi is an identity, and it follows

that α = α′.

Theorem 5.11. Let T0 ⊂ T1 be a context extension and M a strict model
of T0 in an elementary topos S1. Let the following diagram be a cartesian
1-cell f in GTop over eTop∼=, hence a pseudopullback in eTop.

E0
f //

p0

��
f⇓

E1 = S1[T1/M ]

p1

��
S0 f

// S1

Then p0 : E0 → S0 serves as a classifying topos S0[T1/f
∗M ].

If NG is a generic model for T1/M , then f ∗NG serves as generic model
for T1/f

∗M .
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Proof. First, pseudopullback squares are preserved under composition with
equivalences over S0 and S1, so it suffices to show that there is some pseudo-
pullback square whose vertical maps are classifiers as stated.

By Proposition 5.10 we can reduce to the case where the extension is
simple.

For extension by primitive node, we have the task of constructing an
object classifier, and this is a special case of classifying torsors (internal
flat presheaves) over an internal category C, here the category of finite sets:
objects are natural numbers, morphisms defined in the appropriate way.

For extension by commutativity, we have already remarked that this is
equivalent to inverting a morphism.

For a simple functional extension, adjoining a morphism from X to Y ,
we can decompose the classification problem into two steps of the above
kinds. First, we adjoin a subjobject of X×Y for the graph of the morphism,
and this is equivalent to adjoining a torsor (ideal) for the poset F(X × Y ),
the Kuratowski finite powerobject (free semilattice). Next we impose some
axioms for single-valuedness and totality, and this is equivalent to making
some morphism invertible.

It follows that we reduce to two cases over T0: adjoining a torsor for
an internal category C, and forcing the invertibility of some morphism. (Al-
though these are not simple extensions of contexts, we can still work with
them as single steps.) We show that our classifiers S1[T1/M ] can be found
in a way that is preserved under pseudopullback. The argument parallels that
of [7, B3.3.6].

In one case, T1 adjoins a torsor (flat presheaf) for an internal category C
in S1. Here we can take the classifier to be [C,S1] by Diaconescu’s Theorem,
and this can be pulled back along any f : S0 → S1 to [f ∗C,S0] over S0.
(See [7, B3.2.7, B3.2.14].)

For any geometric theory T, the models of T in [C,S1] are the internal C-
indexed families of models of T in S1, and in the particular case of C-torsors
the generic model is the Yoneda embedding Y , with the representable torsor
Y(j) for each object j of C. To express this more concretely as a (p∗1C)-
indexed family of C-torsors in [C,S1], use the morphism

C1
〈d,c〉 // C0 × C0

π2 // C0

It becomes the object part of an internal presheaf over p∗1C, and is the generic
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torsor. Its construction is geometric (arithmetic, even) and so is preserved by
f ∗.

In the other case, T1 imposes invertibility for a morphism u : X → Y
in S1. Here p1 : E1 → S1 is an inclusion, and by [7, A4.3.11] it can be
taken to be the topos of sheaves for the smallest local operator for which
im(u) � Y and X � kp(u), the kernel pair, are both dense. Inverting
both of these monomorphisms will make u invertible. By [7, A4.5.14(e)]
its pseudopullback along f is also an inclusion, in fact for the smallest local
operator that makes f ∗u an isomorphism. The generic model is p∗1M , so
f ∗p∗1M

∼= p∗0f
∗M is a generic model in E0.

Putting together these results, we now obtain our main Local Repre-
sentability Theorem –

Theorem 5.12. In diagram (2), the left hand fibration P is locally repre-
sentable (Definition 4.4) over its Q.

Proof. Given (S,M), then, as noted in Definition 5.9, the classifying topos
S[T1/M ] exists, and, by Proposition 4.3, this gives condition (1) of Defini-
tion 4.4. The geometricity condition (2) is Theorem 5.11.

As we have already mentioned, by taking T0 = 11 we get that the right
hand P in diagram (2) is also locally representable. This tells us that the
assignment S 7→ S[T1] is preserved under change of base S.

After the main theorem, Proposition 4.5 now provides us with ways to
use the classifying toposes S[T1/M ] in places beyond BTop/S. In particu-
lar, –

Corollary 5.13. Let T0 ⊂ T1 be a context extension and M a strict model of
T0 in an elementary topos S . Then E = S[T1/M ] has the classifying topos
property for arbitrary q : F → S, not necessarily bounded.

Proof. Apply Proposition 4.5 to models of U in Id : F → F for which the
T0 part is q∗M .

Example 5.14. Let T0 be the context whose models are “GRD-systems” as
in [11]. It has three nodesG,R,D, together with (amongst other ingredients)
a further node FG constrained to be the Kuratowski finite powerset of G.
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(For instance, it can be constructed as a quotient of the list object ListG.)
Finally, it has edges

D
ρ

}}
π
��

FG R
λ
oo

This can be used to present a frame, with generators g ∈ G subject to rela-
tions (for r ∈ R) ∧

λ(r) ≤
∨
{
∧

ρ(d) | π(d) = r}.

The points of the corresponding locale, the subsets F ⊆ G respecting
the relations, are models of a context T1 that extends T0. It has a node for
F , with an edge F → G constrained to be monic, nodes for X = {r ∈ R |
λ(r) ⊆ F} and Y = {r ∈ R | (∃d)(π(d) = r ∧ ρ(d) ⊆ F )} (which can be
constructed in the AU-sketches) and an edge X ⊆ Y .

Then the local representability Theorem 5.12 implies [11, Corollary 5.4],
the geometricity of presentations.

6. Conclusion

What our main result has done is to elaborate the idea that a map U : T1 →
T0, a T0-valued map on T1, may also be a bundle: that is to say, a space-
valued map on the codomain T0, transforming points to the corresponding
fibres.

This interpretation is often tacit in a morphism in a category, and is par-
ticularly important in type theory. We have made it concrete in the particular
case of a morphism U in Con that arises from a context extension.

Note that U certainly is a “T0-valued map on T1”, if we think of the
points of a context as its strict models. This is shown in Section 3 and does
not need toposes – the models can be taken in any AU.

To get U as a bundle, we interpret “space” as Grothendieck topos and
look for the classifying toposes for the fibres. However, the base toposes
are now allowed to vary, and in Theorem 5.11 we showed the geometricity
property that when you change the base, and the corresponding base point
of T0, the classifier (representing the fibre) transforms by pseudopullback.
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This result, which I have not been able to find in the literature, relies on a
difference between the “arithmetic” theories of Con and the geometric theo-
ries that are classified. An arithmetic theory depends only on the existence
of an nno, whereas a geometric theory depends on the choice of some base
topos S.

To avoid the intricacies of coherence for the choices made in indexed
2-categories, we have adopted a fibrational approach to classifiers. As part
of that, the definition of classifier as representing object for an indexed 2-
category has been reformulated in terms of fibrations. Then their indexed
behaviour was formulated (our “local representability”, Definition 4.4) in
terms of towers of two 2-fibrations. It may be that the formulation in Propo-
sition 4.5 has broader usefulness. I sense that the classifying objects xw may
be trying to fulfill some notion of “cartesian 0-cell”, though I have not been
able to make that idea any more precise.

The results here are a piece in the broad programme of using AU tech-
niques to prove base-independent, geometric results for toposes in those situ-
ations that do not need the full power of S-indexed colimits for some S. One
already mentioned is the “geometricity of presentations”, Example 5.14.

On the other hand, the results also provide clues to how one might seek
a self-standing arithmetic logic of spaces, developing [9]. They suggest that
the extension maps might be the correct analogues of bounded geometric
morphisms.

A final comment regards the word “topos” itself, which Grothendieck
chose to suggest “those things of which topology is the study”. The very
word “topos” should strongly carry the idea of generalized space, but with
the advent of the elementary topos this inherent meaning has become ob-
scure. It is not so much the elementary toposes themselves that are the gener-
alized spaces, as the bounded geometric morphisms between them, and those
are what are called “Grothendieck toposes” in the present paper. One might
dream that the true toposes, the generalized spaces, the subjects of topology,
are arithmetic universes, and [9, 12] were written with that in mind. All
the same, there are significant gaps between that and Grothendieck’s vision,
which was partly of “those categories with the structure needed to do sheaf
cohomology”. Much as one might hope that, suitably formulated, the basic
results of algebraic topology are foundationally robust enough to work with
AUs, we have no idea at present as to how to do that.
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RESUMES DES ARTICLES PUBLIES 

dans le Volume LVIII (2017)  

 

 

 

GRANDIS & PARE, Adjoints for multiple categories (on weak and lax 

multiple categories, III), 3-48. 

Cet article est la suite de 2 articles précédents de cette même série, parus 

dans les Cahiers . Ici les auteurs étudient les foncteurs adjoints entre caté-

gories multiples de dimension infinie. Le cadre général est constitué par les 

catégories multiples chirales – une forme faible partiellement laxe ayant 

des interchangeurs dirigés entre les compositions faibles. 
 

M. BARR, On certain topological *-autonomous categories, 49-66. 

Etant donné une catégorie additive équationnelle, munie d’une structure 

fermée monoïdale symétrique ainsi que d’un objet dualisateur potentiel, on 

trouve des conditions suffisantes pour que la catégorie des objets topolo-

giques sur cette catégorie admette une bonne notion de sous-catégories 

pleines qui contiennent des objets fortement et faiblement topologisés.  On 

montre que chacune de ces sous-catégories est équivalente à la catégorie 

chu de la catégorie originale par rapport à l’objet dualisateur. 

 

R. GUITART, Autocategories: III. Representations, and expansions 

of previous examples, 67-80. 

Cet article est le troisième d’une série d’articles sur la notion d’autographe. 

Un autographe est un ensemble A équipé  d’une action du monoïde libre à 

deux générateurs ; une algèbre autographique est une algèbre d’une mo-

nade sur le topos des autographes. Dans deux articles précédents l’auteur a 

montré que les diagrammes de nœuds et les 2-graphes sont des exemples, 

et que les algèbres graphiques basiques sont autographiques.  

Dans ce troisième article, il ajoute trois résultats nouveaux. Il montre 

comment représenter concrètement les autographes, et réciproquement 

comment collecter une représentation en un autographe ; il explique préci-

sément comment les noeuds, les entrelacs, les diagrammes de grilles, et 

aussi les catégories doubles, sont des exemples d’autographes, et il iden-

tifie les algèbres graphiques générales avec des algèbres autographiques. 

               CAHIERS DE TOPOLOGIE ET                                                 Vol. LVIII-3&4 (2017)
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MAY, ZAKHAREVICH AND STEPHAN, The homotopy theory of equiva-

riant posets, 82-114. 

Soit G un groupe discret. Les auteurs démontrent que la catégories des G-

ensembles ordonnés admet une structure de catégorie modèle qui est Quil-

len-équivalente à la structure de catégorie modèle standard sur les G-

espaces. Comme dans le cas non-équivariant, les trois classes de mor-

phismes qui constituent la structure de modèle ne sont pas bien comprises 

computationnellement. Ce fait est illustré par quelques exemples 

d’ensembles ordonnés cofibrants et fibrants et un exemple d’un ensemble 

ordonné fini qui n’est pas cofibrant. 

 
A. KOCK, Affine combinations in affine schemes, 115-130. 

L’auteur prouve que la notion géométrique de points voisins, dérivée du 

“premier voisinage de la diagonale” en géométrie algébrique, a la propriété 

que toute combinaison affine d’un n-tuple quelconque de points mutuelle-

ment voisins a un sens invariant, dans tout schéma affine. La preuve est 

obtenue par des considérations d’algèbre commutative élémentaire. 

 
AOKI & KURIBAYASHI, On the category of stratifolds, 131-160 

Les auteurs étudient les espaces stratifiés de Kreck (stratifolds) d’un point 

de vue catégorique. Ils montrent entre autres que la catégorie des espaces 

stratifiés de Kreck admet un plongement pleinement fidèle dans la catégo-

rie des R-algèbres tout comme la catégorie des variétés lisses. Ils établis-

sent une variante du théorème de Serre-Swan pour les espaces stratifiés de 

Kreck. En particulier, ils montrent que les fibrés vectoriels sur un espace 

stratifié de Kreck forment une catégorie equivalente à celle formée par les 

fibrés vectoriels sur un schéma affine qui est canoniquement associé à, 

mais en généeral plus grand que, l’espace stratifié lui-même.  

 

GRANDIS, G. JANELIDZE & MARKI,   Two- and one-dimensional combi-

natorial  exactness structures in Kurosh–Amitsur radical theory, I, 

165-188. 

Les auteurs proposent une nouvelle version non-pointée de structure 

d’exactitude combinatoire pour la théorie abstraite des radicaux de type 

Kurosh–Amitsur introduite par les deuxième et troisième auteurs en 2003, 
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appelée ci-dessous structure 2-dimensionnelle. Elle est motivée par la no-

tion de catégorie semi-exacte introduite par le premier auteur en 1992 et, 

brièvement, elle permet de définir un triplet radical-semisimple tel que, si 

(R,r,S) est un tel triplet, alors (R,S) est un couple radical-semisimple par 

rapport à la structure d’exactitude 1-dimensionnelle sous-jacente définie 

dans ce qui suit. 

 

Sean TULL, Condition for an n-permutable category to be Mal'tsev, 

189-194. 

L’auteur améliore la description des catégories n-permutables introduites 

par Carboni, Kelly et Pedicchio. Ceci donne une nouvelle caractérisation 

des catégories régulières de Mal’tsev parmi celles qui sont des catégories 

de Goursat ou, plus gnéralement, des catégories n-permutables. 

 

GRANDIS & PARE, A multiple category of multiple lax-categories, 195-

212. 

Les auteurs construisent une catégorie multiple, utile dans l’étude des ad-

jonctions multiples. Les objets sont les catégories multiples ‘laxes’. Les 

flèches transversales sont les foncteurs multiples stricts tandis que les 

flèches en direction positive sont des foncteurs multiples de ‘laxité mixte’, 

qui varient des foncteurs laxes (en direction 1) aux foncteurs colaxes (en 

direction 1). 

 

S. VICKERS, Arithmetic universes and classifying toposes, 213-248. 

Cet article utilise la structure de Con (la 2-catègorie des esquisses pour les 

univers arithmétiques (AU) de l’auteur) pour obtenir des rèsultats construc-

tifs, indépendants de la base pour les topos de Grothendieck (S-topos bor-

nés) comme espaces généralisés. Le principal résultat montre comment une 

application extension U : T1 → T0 peut être vue comme un fibré, transfor-

mant les points de base (modèles de T0 dans un topos S avec objet des 

nombres naturels) en fibres (espaces généralisés au-dessus de S). Parmi les 

caractéristiques de ce travail, on notera : une comparaison entre modèles 

stricts ou non-stricts, utilisant les propriétés des objets de Con ; l’utilisation 

des produits tensoriels de Gray pour relier la transformation syntactique de 

modèles par des 1-cellules de Con et les transformations sémantiques par 

des AU-foncteurs non stricts ; et l’utilisation de 2-fibrations pour indexer 
au-dessus d’une 2-catégorie de topos de base S. 
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