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Résumé. Soit G un groupe discret. Nous démontrons que la catégorie
des G-ensembles ordonnés admet une structure de catégorie modèle qui
est Quillen-équivalente à la structure de catégorie modèle standard sur les
G-espaces. Comme dans le cas non-équivariant, les trois classes de mor-
phismes qui constituent la structure de modèle ne sont pas bien comprises
computationnellement. Nous illustrons ce fait avec quelques exemples
d’ensembles ordonnés cofibrants et fibrants et un exemple d’un ensemble
ordonné fini qui n’est pas cofibrant.

Abstract. Let G be a discrete group. We prove that the category of G-posets
admits a model structure that is Quillen equivalent to the standard model
structure on G-spaces. As is already true nonequivariantly, the three classes
of maps defining the model structure are not well understood calculationally.
To illustrate, we exhibit some examples of cofibrant and fibrant posets and an
example of a non-cofibrant finite poset.
Keywords. posets, equivariant homotopy theory, Quillen model categories
Mathematics Subject Classification (2010). 55P91, 18G55, 18B35, 05E18

1. Introduction

In [20], Thomason proved that categories model the homotopy theory of
topological spaces by proving that the category Cat of (small) categories has
a model structure that is Quillen equivalent to the standard model structure
on the category Top of topological spaces. In [16], Raptis proved that the
category of posets also models the homotopy theory of topological spaces by
showing that the category Pos of posets has a model structure that is Quillen
equivalent to the Thomason model structure on Cat. It is natural to expect
this to hold since Thomason proved in [20, Proposition 5.7] that cofibrant
categories in his model structure are posets. The first and third authors re-
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discovered this, observing that a geodesic proof, if not the statement, of that
result is already contained in Thomason’s paper. This implies that all of the
algebraic topology of spaces can in principle be worked out in the category
of posets. It can also be viewed as a bridge between the combinatorics of
partial orders and algebraic topology.

In this paper we prove an analogous result for the category of G-spaces
for a discrete group G. For a category C, let GC denote the category of
objects with a (left) action of G and maps that preserve the action. In [3],
Bohmann, Mazur, Osorno, Ozornova, Ponto, and Yarnall proved in precise
analogy to Thomason’s result that GCat models the homotopy theory of G-
spaces. Here we prove the pushout of the results of Raptis and Bohmann, et
al: the category GPos of G-posets admits a model structure that is Quillen
equivalent to the model structure on the category GCat of G-categories
and therefore also Quillen equivalent to the model structures on GsSet and
GTop. Just as the model structure on Pos is implicit in Thomason’s paper
[20], we shall see that the model structure on GPos is implicit in the six
author paper [3].

While the background makes this an expected result, it is perhaps sur-
prising, at least psychologically. There is relatively little general study of
equivariant posets in either the combinatorial or topological literature, es-
pecially not from a homotopy theoretic perspective. One thinks of group
actions as permutations, as exemplified by the symmetric groups, and it does
not come naturally to think of a general theory of groups acting by order-
preserving maps of posets. However, our theorem says that group actions
on posets abound: every G-space is weakly equivalent to the classifying G-
space of a G-poset, where a map f of G-spaces is a weak equivalence if its
fixed point maps fH are weak equivalences for all subgroups H of G. The
result can be viewed as a formal bridge between equivariant combinatorics
and equivariant algebraic topology.

The combinatorial literature seems to start with Stanley’s paper [17],
which restricts to finite posets and focuses on the connection with represen-
tation theory. A paper of Babson and Kozlov [1] about G-posets X focuses
on problems arising from the fact that the orbit category X/G is generally
not a poset. There is considerable group theory literature about posets of sub-
groups ofGwithG acting by conjugation, starting from Quillen’s paper [15].
That led Thévenaz and Webb to an equivariant generalization of Quillen’s
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Theorem A applicable to G-posets [19]. In turn, that led to Welker’s paper
[21], which considers the order G-complex associated to a G-poset, again
with group theoretic applications in mind.

Let OG denote the orbit category of G. Its objects are the G-sets G/H
and its morphisms are the G-maps. Just as for G-spaces, G-simplicial sets
(that is, simplicial G-sets), and G-categories, it is natural to start with the
levelwise (or projective) model structure on the category OG-Pos of con-
travariant functors OG −→ Pos. As a functor category, OG-Pos inherits
a model structure from Pos. Its fibrations and weak equivalences are de-
fined levelwise. It is standard that this gives a compactly generated model
structure (e.g. [10, 11.6.1]).1

Define the fixed point diagram functors

Φ: GPos −→ OG-Pos and Φ: GCat −→ OG-Cat

by
Φ(X)(G/H) = XH .

These functors Φ have left adjoints, denoted Λ; in both cases, Λ sends a
contravariant functor Y defined on OG to Y (G/e).

We prove that GPos inherits a model structure from OG-Pos. The ana-
logue forGCat is [3, Theorem A]. After recalling details of the model struc-
tures already cited, we shall prove the following theorem.

Theorem 1.1. The functor Φ creates a compactly generated proper model
structure on GPos, so that a map of G-posets is a weak equivalence or
fibration if it is so after applying Φ. The adjunction (Λ,Φ) is a Quillen
equivalence between GPos and OG-Pos.

Replacing Pos with Cat in Theorem 1.1 gives the statement of [3, The-
orem A]. The strategy of proof in [3] is to verify general conditions on a

1Compactly generated is a variant of cofibrantly generated that applies when only count-
able colimits are needed in the small object argument, that is, when transfinite colimits are
unnecessary and irrelevant, as they are in all of the model structures we shall consider. This
variant is discussed in detail in [13, §15.2]. It seems reasonable to eliminate transfinite
verbiage whenever possible, and that would shorten and simplify some of the work in the
sources we shall cite.
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model category C that ensure that GC inherits a model structure from OG-
C.2 The cited general conditions are taken from a paper of the second author
[18]. Our proof of Theorem 1.1 will proceed in the same way. The following
result is a formal consequence of Theorem 1.1 and its analogue for Cat.

Theorem 1.2. The adjunction (P,U) betweenGCat andGPos is a Quillen
equivalence. Therefore, GPos is Quillen equivalent to GsSet and GTop.

The following diagram displays the relevant equivariant Quillen equiva-
lences.

GTop
S∗

//

Φ

��

GsSet
|−|oo Π Sd2

//

Φ

��

GCat
Ex2N

oo
P //

Φ

��

GPos
U

oo

Φ

��
OG-Top

S∗
//

Λ

OO

OG-sSet
|−|oo Π Sd2

//

Λ

OO

OG-Cat
Ex2N

oo
P //

Λ

OO

OG-Pos
U

oo

Λ

OO

The definitions of Π, Sd, Ex, and N are recalled in the next section.
All of the vertical adjunctions and the adjunctions on the bottom row are

Quillen equivalences, hence so are all of the adjunctions on the top row. Ap-
plied to the righthand square, this gives the proof of Theorem 1.2. Applied
to the middle square, this gives [3, Theorem B], which is the equivariant
version of Thomason’s comparison between sSet and Cat.

Remark 1.3. Both equivariantly and nonequivariantly, replacing Cat by Pos
ties in the Thomason model structure to more classical algebraic topology.
The composite N ◦ U : Pos −→ sSet coincides with the composite of the
functor that sends a poset to its order complex and the canonical functor
from ordered simplicial complexes to simplicial sets, and the same is true
equivariantly. It also ties in the Thomason model structure to finite T0-spaces
and, more generally T0-Alexandroff spaces, orA-spaces, since the categories
of posets and A-spaces are isomorphic.

2There are two slightly different ways to equip GC with a model structure, either trans-
ferring the model structure from OG-C, as we shall do, or from copies of C via all of the
fixed point functors, as in [3, 18].
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An interesting and unfortunate feature of all of the model structures dis-
cussed in this paper is that the classes of weak equivalences, cofibrations,
and fibrations are defined formally, using non-constructive arguments. In
no case do we have a combinatorially accessible description of any of these
classes of maps. Even in the case when G is trivial very little is known about
the structure. In [6, Theorem 2.2.11], Cisinski gives a characterization of the
subcategory of weak equivalences in Cat through a global characterization,
but that does not allow us to determine whether or not a particular morphism
is a weak equivalence.

The state of the art for fibrant and cofibrant objects is similarly sparse.
The problem of determining the cofibrant posets has recently been studied
by Bruckner and Pegel [4], who show in particular that every poset with
at most five elements is cofibrant. In §6, we prove that all finite posets of
dimension one are cofibrant and give an example of a six element poset that
is not cofibrant.3

The problem of determining the fibrant categories has recently been stud-
ied by Meier and Ozornova [14]. In §7, we use work of Droz and the third
author [8] to obtain a more concrete understanding of the posets that the
main theorem of [14] shows to be fibrant.

Before turning to the equivariant generalizations, we review and reprove
the nonequivariant theorems, giving some new details that streamline and
clarify the key arguments.

2. Background

We recall as much as we need about the definitions of the nonequivari-
ant versions of the functors in the diagram above and describe the relevant
nonequivariant model structures. Of course, the nerve NC of a category C is
the simplicial set with

(NC)n =
{
x0 −→ · · · −→ xn ∈ C

}
.

Let (Sd ∆)(n) be the nerve of the poset of nonempty subsets of {0, · · · , n}.
Then Sd ∆ is a covariant functor ∆ −→ sSet. Let K : ∆op −→ Set be a

3Amusingly, when we found this example we did not know that it is the smallest possible
one.
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simplicial set. The subdivision SdK is the simplicial set defined conceptu-
ally as the tensor product of functors

SdK = K ⊗∆ Sd ∆.

The functor Ex is the right adjoint of Sd; we will not need a description of
it.

The fundamental category4 ΠK has object set K0 and morphism set
freely generated by K1, where x ∈ K1 is viewed as a morphism d1x −→
d0x, subject to the relations

d1y = (d0y) ◦ (d2y) for each y ∈ K2 and s0x = idx for each x ∈ K0.

The functor U is the full and faithful functor that sends a poset X to X
regarded as the category with objects the elements of X and a morphism
x −→ y whenever x ≤ y. The image of U consists of skeletal categories
with at most one morphism x −→ y for each pair of objects (x, y). The
functor P sends a category C to the poset PC with points the equivalence
classes [c] of objects of C, where c ∼ d if there are morphisms c −→ d and
d −→ c in C. The partial order ≤ is defined by [c] ≤ [d] if there is a mor-
phism c −→ d in C, a condition independent of the choice of representatives
in the equivalence classes. Note crucially that P ◦ U is the identity functor.
We often drop the notation U , regarding posets as categories.

We recall the specification of the model structures that we are starting
from.

Definition 2.1. A functor F : C −→ D between (small) categories is a fibra-
tion or weak equivalence if Ex2NF is a fibration or weak equivalence. An
order preserving function f : X −→ Y between posets is a fibration or weak
equivalence if Uf is a fibration or weak equivalence; that is, f is a fibration
or weak equivalence if it is so when considered as a functor.

As noted by Thomason [20, Proposition 2.4], F is a weak equivalence if
and only if NF is a weak equivalence.

Notation 2.2. Let I denote the set of generating cofibrations ∂∆[n] −→
∆[n] and let J denote the set of generating acyclic cofibrations Λk[n] −→
∆[n] for the standard model structure on sSet.

4Following [20], the functor Π is generally denoted c, or sometimes cat, in the literature.
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Theorem 2.3 (Thomason). With these fibrations and weak equivalences,
Cat is a compactly generated proper model category whose sets of generat-
ing cofibrations and generating acyclic cofibrations are Π Sd2 I and Π Sd2 J.
Via the adjunction (Π Sd2,Ex2N), this model structure is Quillen equivalent
to the standard model structure on sSet.

Remark 2.4. In contrast to more recent papers, which use but do not al-
ways need transfinite colimits, Thomason’s paper preceded the formal intro-
duction of cofibrantly generated model categories, and he neither used nor
needed such colimits; our statement is a reformulation of what he actually
proved.

Theorem 2.5 (Raptis). With these fibrations and weak equivalences, Pos
is a compactly generated proper model category whose sets of generating
cofibrations and generating acyclic cofibrations are PΠ Sd2 I and PΠ Sd2 J.
Via the adjunction (P,U), this model structure is Quillen equivalent to the
Thomason model structure on Cat.

3. The proofs of Theorems 2.3 and 2.5

The proofs of the model axioms in [20, 16] can be streamlined by use of a
slight variant of Kan’s transport theorem [10, Theorem 11.3.2]. It is proven
in [13, 16.2.5].

Theorem 3.1 (Kan). Let C be a compactly generated model category with
generating cofibrations I and generating acyclic cofibrations J. Let D be a
bicomplete category, and let F : C � D : U be a pair of adjoint functors.
Assume that

(i) all objects in the sets F I and FJ are compact and

(ii) the functor U takes relative FJ-cell complexes to weak equivalences.

Then there is a compactly generated model structure on D such that F I is
the set of generating cofibrations, FJ is the set of generating acyclic cofibra-
tions, and the weak equivalences and fibrations are the morphisms f such
that Uf is a weak equivalence or fibration. Moreover, (F a U) is a Quillen
pair.
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Remark 3.2. It is clear that if C is right proper then so is D. Since the
standard model structure on sSet is right proper, so are the model structures
on Cat and Pos described below. It is less clear that they are left proper, as
we shall discuss.

Compactly generated makes sense when the generating sets are compact
in the sense of [13, 15.1.6], as we require in condition (i). In Theorem 2.5,
the domain posets of all maps in PΠ Sd2 I and PΠ Sd2 J are finite since they
are obtained from simplicial sets with only finitely many 0-simplices. There-
fore they are compact relative to all of Cat and in particular are compact
relative to PΠ Sd2 I and PΠ Sd2 J. This shows that (i) holds, and we need
only prove (ii) to complete the proof of the model axioms in Theorem 2.5.

Since we are working with compact generation, a relative PΠ Sd2 J-
complex i : A −→ X = colimXn is the colimit of a sequence of maps
of posets Xn −→ Xn+1, where X0 = A and Xn+1 is a pushout

Kn

j

��

f // Xn

��
Ln //// Xn+1

(1)

in Pos in which j is a coproduct of maps in PΠ Sd2 J. We must prove
that such a map i, or rather Ui, is a weak equivalence in Cat. The only
subtlety in the proof of Theorem 2.5 is that pushouts in Cat between maps
in Pos are generally not posets. Rather, pushouts in Pos are constructed
by taking pushouts in Cat and then applying the left adjoint P . However,
results already in [20] show that we do not encounter that problem when
constructing relative PΠ Sd2 J-complexes, as we now explain.

To deal with pushouts when proving Theorem 2.3, Thomason introduced
the notion of a Dwyer map.

Definition 3.3. Let S be a subcategory of a category C. Then S is called a
sieve in C if for every morphism f : c −→ s in C with s ∈ S, c and f are in
S. Dually, S is a cosieve if for every morphism f : s −→ c in C with s ∈ S, c
and f are in S. In either case, S must be a full subcategory of C. Observe that
if a sieve factors as a composite of inclusions S −→ T −→ C, then S −→ T

is again a sieve.
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Definition 3.4. A functor k : S −→ C in Cat or in Pos is a Dwyer map if k
is the inclusion of a sieve and k factors as a composite

S
i //T

j //C,

where j is the inclusion of a cosieve and i is an inclusion with a right adjoint
r : T −→ S such that the unit id −→ r ◦ i of the adjunction is the identity.

The following sequence of results shows that Theorem 2.5 is directly im-
plied by details in Thomason’s paper [20] that he used to prove Theorem 2.3.
Except that we add in the trivial statement about coproducts, the first is [20,
Lemma 5.6].

Lemma 3.5. The following statements about posets hold.

(i) For any simplicial set K, Π Sd2K is a poset.

(ii) Any subcategory of a poset is a poset.

(iii) Any coproduct of posets in Cat is a poset.

(iv) If j : K −→ L is a Dwyer map between posets and f : K −→ X is a
map of posets, then the pushout Y in Cat of j and f is a poset.

(v) The (directed) colimit in Cat of any sequence of maps of posets is a
poset.

The second is [20, Proposition 4.2].

Lemma 3.6. Let K ⊂ L be an inclusion of simplicial sets that arises
from an inclusion of ordered simplicial complexes. Then the induced map
Π Sd2K −→ Π Sd2 L is a Dwyer map in Cat and thus, by Lemma 3.5(i), in
Pos.

For completeness, we state an analogue to Lemma 3.5 about Dwyer maps
in Cat. It combines part of [20, Proposition 4.3] with the correct parts of
[20, Lemma 5.3]. We again add in a trivial statement about coproducts.

Lemma 3.7. The following statements about Dwyer maps in Cat hold.

(i) Any composite of Dwyer maps is a Dwyer map.
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(ii) Any coproduct of Dwyer maps is a Dwyer map.

(iii) If j : K −→ L is a Dwyer map and f : K −→ C is a functor, then the
pushout k : C −→ D of j along f is a Dwyer map.

(iv) For Dwyer maps Cn −→ Cn+1, n ≥ 0, the induced map C0 −→
colimCn is a Dwyer map.

Therefore the same statements hold for Dwyer maps in Pos.

Corollary 3.8. If A is a poset and i : A −→ X is a relative Π Sd2 J-complex
in Cat, then X is a poset and i is both a Dwyer map and a relative Π Sd2 J-
complex in Pos. The same statement holds for relative Π Sd2 I-complexes.

Remark 3.9. Once the model structures on Pos and Cat are in place, the
results above imply that a map f between posets is a cofibration in Pos if
and only if f is a cofibration in Cat.

The real force of the introduction of Dwyer maps comes from the fol-
lowing result. It combines Thomason’s [20, Proposition 4.3 and Corollary
4.4].

Proposition 3.10. If j : K −→ L is a Dwyer map in Cat, f : K −→ C is a
functor, and D is their pushout, then the canonical map

NL ∪NK NC −→ N(L ∪K C) = ND

is a weak equivalence. The same statement holds in Pos. Therefore, if f is
a weak equivalence, then so is the pushout g : L −→ D of f along j.

The last statement is inherited from the corresponding statement in sSet.

Remark 3.11. The incorrect part of [20, Lemma 5.3] states that a retract of a
Dwyer map is a Dwyer map. As noticed by Cisinski [5], that is not true. He
gave an example to show that a retract of a cofibration in Cat need not be a
Dwyer map, which invalidates the proof that Cat is left proper given in [20,
Corollary 5.5]. He introduced the slightly more general notion of a pseudo
Dwyer map to get around this. He proved that a retract of a pseudo Dwyer
map is a pseudo Dwyer map, so that any cofibration in Cat is a pseudo
Dwyer map. He then used that to give a correct proof that Cat is left proper,
and he observed that our Lemmas 3.6 and 3.7 remain true with Dwyer maps
replaced by pseudo Dwyer maps.
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The problem discussed in the remark does not arise when dealing with
Pos, where Dwyer maps and pseudo Dwyer maps coincide, as follows di-
rectly from the definition of the latter. Since we are omitting that definition,
we give a simple direct proof of the following result. Once the model struc-
ture is in place, it gives that cofibrations in Pos are Dwyer maps. This
highlights the technical convenience of posets, as compared with general
categories.

Lemma 3.12. A retract of a Dwyer map in Pos is a Dwyer map. Therefore
retracts in Pos of relative Π Sd2 I-complexes are Dwyer maps.

Proof. Consider the following diagram of posets, which commutes with σ
and τ omitted. All unlabeled arrows are inclusions.

A //

��

##

B

��

��

r // A

��

T ∩X

{{

//
σ

cc

T

��

τ

??

X // Y s
// X

We assume that r restricts to the identity on A and s restricts to the identity
on X . We also assume that B −→ Y is a sieve, T −→ Y is a cosieve, and
τ is right adjoint to the inclusion B −→ T with unit the identity, so that τ
restricts to the identity on B. We define σ to be the restriction of r ◦ τ to
T ∩X . The following observations prove that A −→ X is a Dwyer map.
(i) The restriction T ∩X −→ X of the cosieve T −→ Y is again a cosieve.
Proof. If w ∈ T ∩X and w ≤ x in X , then x ∈ T , hence x ∈ T ∩X .
(ii) The restriction A −→ X of the sieve B −→ Y is again a sieve.
Proof. If a ∈ A, x ∈ X , and x ≤ a, then x ∈ B since B −→ Y is a sieve,
and then x = s(x) = r(x) ≤ r(a) = a in A.
(iii) σ is right adjoint to the inclusion A −→ T ∩ X , with unit the identity
map.
Proof. σ restricts to the identity on A since if a ∈ A, then

σ(a) = (r ◦ τ)(a) = r(a) = a.

For the adjunction, we must show that if a ∈ A and x ∈ T ∩X , then a ≤ x
if and only if a ≤ σ(x). If a ≤ x, then a = σ(a) ≤ σ(x). Suppose a ≤ σ(x)
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and note that σ(x) = (r ◦ τ)(x) = (s ◦ τ)(x). Since τ is right adjoint to
B −→ T , the counit of the adjunction gives that τ(y) ≤ y for any y ∈ T .
Thus (s ◦ τ)(x) ≤ s(x) = x.

Proof of Theorems 2.3 and 2.5. The key idea of Thomason’s proof of Theo-
rem 2.3 is the verification of condition (ii) of Theorem 3.1. Since coproducts
and colimits of weak equivalences are weak equivalences, this reduces to
showing that the pushouts in the construction of relative J-complexes are
weak equivalences. But that is immediate from Proposition 3.10. Since a
relative PΠ Sd2 J-complex in Pos is a special case of a relative Π Sd2 J-
complex in Cat, condition (ii) of Theorem 3.1 holds in Pos since it is a
special case of the condition in Cat. This proves that Cat and Pos are com-
pactly generated model categories. In view of Lemma 3.12, Proposition 3.10
also implies that Pos is left proper and therefore proper. As pointed out in
Remark 3.11, Cisinski [5] proves that Cat is left proper and therefore proper.

It remains to show that the adjunctions (Π Sd2,Ex2N) and (P,U) are
Quillen equivalences. To show that (Π Sd2,Ex2N) is a Quillen equivalence,
it suffices to show that the composite Ex2N induces an equivalence between
the homotopy categories of Cat and sSet. Quillen [11, Ch. VI, Corollaire
3.3.1] proved that the nerve N induces an equivalence. Kan [9, Ch. III,
Theorem 4.6] proved that Ex and therefore Ex2 induces an equivalence by
showing that there is a natural weak equivalence K −→ ExK for simplicial
sets K.

To show that (P,U) is a Quillen equivalence, it suffices to show that for
all cofibrant categories C ∈ Cat and all fibrant posets X ∈ Pos, a functor
f : C −→ UX is a weak equivalence if and only if its adjunct f̃ : PC −→ X
is a weak equivalence. Since C is cofibrant, it is a poset, hence C = UY for
a poset Y . But then Uf̃ = f and the conclusion holds by the definition of
weak equivalences in Pos.

Remark 3.13. The fact that Π Sd2K is a poset for any simplicial set K is
closely related to the less well-known fact that Sd2 C is a poset for any cat-
egory C. However, the subdivision functor on Cat plays no role in Thoma-
son’s work or ours. The relation between these subdivision functors is stud-
ied in [7] and [12].
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4. Equivariant Dwyer maps and cofibrations

To mimic the arguments just given equivariantly, we introduce equivariant
Dwyer maps and relate them to cofibrations in Pos.

Definition 4.1. A functor k : S −→ C in GCat or in GPos is a Dwyer
G-map if k is the inclusion of a sieve and k factors in GCat as a composite

S
i //T

j //C,

where j is the inclusion of a cosieve and i is an inclusion with a right adjoint
r : T −→ S in GCat such that the unit id −→ r ◦ i of the adjunction is the
identity.5

The following two lemmas are immediate from the definition.

Lemma 4.2. If k is a Dwyer G-map, then kH is a Dwyer map for any sub-
group H of G.

Regard the G-set G/H as a discrete G-category (identity morphisms
only).

Lemma 4.3. If j : K ⊂ L is a Dwyer map and H is a subgroup of G, then
id×j : G/H ×K −→ G/H × L is a Dwyer G-map.

We have the equivariant analogues of Lemma 3.7 and Corollary 3.8, with
the same proofs.

Lemma 4.4. The following statements about Dwyer G-maps in GCat hold.

(i) Any composite of Dwyer G-maps is a Dwyer G-map.

(ii) Any coproduct of Dwyer G-maps is a Dwyer G-map.

(iii) If j : K −→ L is a Dwyer G-map and f : K −→ C is a G-map, then
the pushout k : C −→ D of j along f is a Dwyer G-map.

(iv) For Dwyer G-maps Cn −→ Cn+1, n ≥ 0, the induced map C0 −→
colimCn is a Dwyer G-map.

5Since the unit is the identity, the pair (i, r) is automatically an adjunction in the 2-
category of G-objects in Cat, equivariant functors, and equivariant natural transformations.
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Therefore the same statements hold for Dwyer G-maps in GPos.

Let GΠ Sd2 I and GΠ Sd2 J denote the sets of all G-maps that are of the
form id×j : G/H × K −→ G/H × L, where j is in Π Sd2 I or Π Sd2 J.
These are the generating cofibrations and generating acyclic cofibrations in
GCat.

Corollary 4.5. If A is a G-poset and i : A −→ X is a relative GΠ Sd2 J-
complex in GCat, then X is a G-poset and i is both a Dwyer G-map and a
relative GΠ Sd2 J-complex in GPos. The same statement holds for relative
GΠ Sd2 I-complexes.

We also have the equivariant analogue of Lemma 3.12.

Lemma 4.6. A retract of a Dwyer G-map in GPos is a Dwyer G-map.
Therefore all cofibrations in GPos are Dwyer G-maps.

We require a description of pushouts inside GPos. The following is a
simplification of [3, Lemma 2.5].

Lemma 4.7. Let j : K −→ L be a sieve of G-posets and f : K −→ X be a
map of G-posets. Consider the set Y = (L \K)qX with the order relation
given by restriction on L \K and on X , with the additional relation that for
x ∈ X and y ∈ L \K, x ≤ y if there exists w ∈ K such that x ≤ f(w) and
j(w) ≤ y. Then Y is a G-poset and the following diagram is a pushout in
GPos, where k is the inclusion of the summand X and g is the sum of f on
K and the identity on L \K.

K

j
��

f // X

k
��

L g
// Y

(2)

Moreover, if j is a Dwyer map with factorization K
ι //S

ν //L and re-
traction r : S −→ K, then for x ∈ X and y ∈ L \K, x ≤ y if and only if
y = ν(z) for some z ∈ S such that x ≤ (f ◦ r)(z).

Proof. First, note that Y is well-defined, since L \ K is a G-subposet of
L. Indeed, if y ∈ L \ K and gy ∈ K then y = g−1gy ∈ K, a contra-
diction. The relation ≤ on Y is reflexive and anti-symmetric since L and
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X are posets. Transitivity requires a straightforward verification in the two
non-trivial cases when x ≤ y and y ≤ z with either x, y ∈ X and z ∈ L \K
or x ∈ X and y, z ∈ L. Thus Y is a poset.

Clearly the map k is order-preserving. Using that j is a sieve, we see
that g is order-preserving by the definition of the order on Y . The square
(2) is clearly a pushout of sets. Thus to show that it is a pushout of posets it
suffices to show that for any commutative square

K

j
��

f // X

`
��

L
h
// Z

of posets, the induced map Y −→ Z is order-preserving. The only case that
is non-trivial to check is when x ≤ y with x ∈ X and y ∈ L \K. We must
show that `(x) ≤ h(y). By assumption, there is an element w ∈ K such that
x ≤ f(w) and j(w) ≤ y. It follows that

`(x) ≤ (` ◦ f)(w) = (h ◦ j)(w) ≤ h(y),

as desired.
For the last statement of the lemma, if y = ν(z) where z ∈ S and

x ≤ (f ◦ r)(z), let w = r(z). Then x ≤ f(w) and j(w) = (ν ◦ ι ◦ r)(z) ≤
ν(z) = y by the counit of the adjunction (ι, r). Conversely, let j(w) ≤ y and
x ≤ f(w). Since ν is a cosieve, j(w) = (ν ◦ ι)(w) ≤ y implies y = ν(z)
for some z ∈ S with ι(w) ≤ z, and then w = (r ◦ ι)(w) ≤ r(z) so that
x ≤ f(w) implies x ≤ (f ◦ r ◦ ι)(w) ≤ (f ◦ r)(z).

Using this description we can show that pushouts along Dwyer G-maps
are preserved when taking H-fixed points for any subgroup H of G. The
statement about fixed points is a modification of [3, Proposition 2.4].

Lemma 4.8. Let j : K −→ L be a Dwyer G-map of G-posets, such as a
retract of a relative GΠ Sd2 I-cell complex, and let f : K −→ X be any
map of G-posets. Form the pushout diagram

K

j
��

f // X

� �
L // Y
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in GCat. Then Y is a G-poset and the diagram remains a pushout after
taking H-fixed points for any subgroup H of G.

Proof. Ignoring the G-action, the left vertical arrow is a Dwyer map of
posets. Therefore Y is a poset by Lemma 3.5(iv) and is thus a G-poset.
Fix a subgroup H of G; by Lemma 4.2 jH is a Dwyer map, and thus the
description from Lemma 4.7 can be used for XH ∪KH LH .

Example 4.9. Let G be the cyclic group of order two. Let L be the three
object G-poset depicted by 0 −→ 2 ←− 1 equipped with the action that
interchanges 0 and 1, but fixes 2. Let K be the G-subposet that consists of
the elements 0 and 1. Then the inclusionK −→ L is a sieve but not a Dwyer
G-map. If X = ∗ is the terminal G-poset and K −→ X is the unique map,
then the pushout L ∪K X in GPos is the G-poset depicted by ∗ −→ 2, with
trivial G-action. Thus its G-fixed point poset is also ∗ −→ 2. However, the
pushout LG qKG XG is the discrete poset with two elements ∗ and 2.

5. The proof of Theorem 1.1

For our equivariant model structures, we start with the following general
result, which puts together results of the second author [18, Proposition 2.6,
Theorem 2.10] with augmentations of those results due to Bohmann, et al
[3, Propositions 1.4, 1.5, and 1.6], all reformulated in our simpler compactly
generated setting. Recall that OG denotes the orbit category of G.

Definition 5.1. For a category C, let GC denote the category of G-objects
in C and let OG-C denote the category of contravariant functors OG −→ C.
Assuming that C has coproducts, define a functor

⊗ : GSet× C −→ GC

by S ⊗ X = qSX , the coproduct of copies of X indexed by elements of
S, with G-action induced from the action of G on S by permutation of the
copies of X .

We have an adjunction (Λ,Φ) between GC and OG-C. The left adjoint Λ
sends a functor OG −→ C to its value on G/e and the right adjoint Φ sends
a G-object to its fixed point functor.
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Theorem 5.2. Let C be a compactly generated model category. Assume that
for each subgroup H of G, the H-fixed point functor (−)H : GC −→ C

satisfies the following properties.

(i) It preserves colimits of sequences of maps in : Xn −→ Xn+1 in GC,
where each in is a cofibration in C.

(ii) It preserves coproducts.

(iii) It preserves pushouts of diagrams in which one leg is given by a co-
product of maps of the form

id⊗j : G/J ⊗X −→ G/J ⊗ Y,

where j is a generating cofibration (or generating acyclic cofibration)
of C and J is a subgroup of G.6

(iv) For any object X of C, the natural map

(G/J)H ⊗X −→ (G/J ⊗X)H

is an isomorphism in C.

Then GC admits a compactly generated model structure, where a map f in
GC is a fibration or weak equivalence if each fixed point map fH is a fibra-
tion or weak equivalence, so that Φ(f) is a fibration or weak equivalence in
OG-C. The generating (acyclic) cofibrations are the G-maps id⊗j : G/J ⊗
K −→ G/J ⊗ L, where the maps j : K −→ L are the generating (acyclic)
cofibrations of C. Moreover, (Λ,Φ) is then a Quillen equivalence between
GC and OG-C. Further, if C is left or right proper, then so is GC.

By [3, 1.3], the model structure is functorial with respect to Quillen pairs.

Theorem 5.3. Let C and D be compactly generated model categories satisfy-
ing the assumptions of Theorem 5.2 and let (L,R) be a Quillen pair between
them. Then there is an induced Quillen pair between GC and GD, and it is
a Quillen equivalence if (L,R) is a Quillen equivalence.

6We don’t need to assume the condition for acyclic cofibrations, but we do so for conve-
nience.
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Proof of Theorem 1.1. It suffices to verify conditions (i)-(iv) of Theorem 5.2
when C = Pos. Cofibrations in Pos are inclusions and if x ∈ X =
colimXn, then x ∈ XH if and only if x ∈ XH

n for a large enough n; thus
condition (i) holds. Condition (ii) holds by the definition of coproducts in
Cat. Since the action of G on G/J ⊗ X comes from the action of G on
G/J , condition (iv) holds as well.

It remains to check condition (iii). By Lemma 3.6, the generating cofi-
brations in Pos are Dwyer maps. Consider a pushout diagram in GCat

∐
i∈I G/Ji ⊗Ki

q id⊗ji
��

∐
fi // X

��∐
i∈I G/Ji ⊗ Li // Y

where each ji : Ki −→ Li is a Dwyer map and fi : G/Ji ⊗ Ki −→ X
is a map of G-posets. Condition (iii) holds if, for any such diagram, Y is a
G-poset (hence Y H is also a poset) and the diagram remains a pushout after
passage to H-fixed points. This is a special case of Lemma 4.8.

6. Cofibrant posets

Since every cofibrant object in Cat is a poset and, by Remark 3.9, a poset
is cofibrant in Pos if and only if it is cofibrant in Cat, it follows that Pos
and Cat have the same cofibrant objects. We have an explicit cofibrant
replacement functor for Pos, namely double subdivision. While this does
give a large class of cofibrant objects, it does not help to determine whether
or not a given poset is cofibrant. By Lemma 3.12, any cofibration in Pos is
a Dwyer map and it follows immediately from the definition of Dwyer maps
that the map ∅ −→ P is a Dwyer map for any poset P . Our understanding
is summarized in the following picture:
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Dwyer maps

cofibrations

morphisms
∅ −→ P

cofibs.
∅ ↪→ P

It is not difficult to show that most of the sections in this Venn diagram are
nonempty; the only difficulty is to show that there exist morphisms ∅ −→ P
which are not cofibrations. As the referee pointed out to us, it is not hard to
find infinite posets that are not cofibrant, such as the natural numbers with
its reverse ordering. However, as far as we know ours is the first example of
a finite poset that is not cofibrant. Specifically, in Proposition 6.2 we show
that the following model of the 2-sphere, which is a finite poset A whose
classifying space is homeomorphic to S2, is not cofibrant in Pos.

c1 c2

b1

>>OO

b2

`` OO

a1

>>OO

a2

`` OO

This example of a finite, non-cofibrant poset is minimal in dimension and
in cardinality. We prove in Proposition 6.4 that every one-dimensional finite
poset is cofibrant, and Bruckner and Pegel [4] have shown that every poset
with at most five elements is cofibrant.

We first give a tool for showing that posets are not cofibrant.

Lemma 6.1. Let A be a nonempty finite poset. Suppose that A satisfies the
following condition: for any pushout square

Π Sd2 ∂∆[n] //

��

X

� �
Π Sd2 ∆[n] // Y
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if A is a retract of Y then it is also a retract of X . Then A is not cofibrant in
Pos.

Proof. Assume thatA is cofibrant. We prove thatAmust be empty, a contra-
diction. Since Pos is compactly generated and A is cofibrant, A is a retract
of a sequential colimit colimnXn, where X0 = ∅ and Xi −→ Xi+1 is a
pushout of a coproduct of generating cofibrations for i ≥ 0. Since A is fi-
nite, the inclusion A −→ colimnXn factors through some Xn, and then A is
a retract of Xn. Assume n > 0. Since A is finite, the inclusion A −→ Xn

factors through a pushout Yn obtained by attaching only finitely many gen-
erating cofibrations to Xn−1, and then A is a retract of Yn. We can now use
the assumed condition on A to induct downwards one generating cofibration
at a time; our condition ensures that A is a retract of Xn−1. Iterating, we
deduce that A is a retract of X0 = ∅ and thus A = ∅.

We will also need the following explicit description of the generating
cofibrations

Π Sd2 ∂∆[n] −→ Π Sd2 ∆[n].

An element of the poset Π Sd2 ∆[n] is a sequence of strict inclusions

S0 ⊂ . . . ⊂ Sk

of nonempty subsets of n = {0, . . . , n}. We can identify such a sequence
with the totally ordered set {S0, . . . , Sk}. With this identification the order
relation on Π Sd2 ∆[n] is given by subset inclusion. The poset Π Sd2 ∂∆[n]
is the subposet of Π Sd2 ∆[n] given by the sequences S0 ⊂ . . . ⊂ Sk with
Sk 6= n.

We are now ready to show that our model A of the 2-sphere is not cofi-
brant.

Proposition 6.2. The finite poset A is not cofibrant in Pos.

Proof. We will show that A satisfies the condition in Lemma 6.1; since A is
nonempty, this implies that A is not cofibrant.

Let Y be the pushout of a diagram of the form

Π Sd2 ∆[n]←− Π Sd2 ∂∆[n] −→ X,
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where X is any poset. We use the explicit description of the pushout from
Lemma 4.7. Suppose that A is a retract of Y , so that idA admits a factoriza-
tion A i−→ Y

r−→ A.
Consider the map (Π Sd2 ∆[n]) \ {n} −→ Π Sd2 ∂∆[n] defined by

S0 ⊂ . . . ⊂ Sk 7−→

{
S0 ⊂ . . . ⊂ Sk−1 if Sk = n,

S0 ⊂ . . . ⊂ Sk otherwise.

This induces a map p : Y \ {n} −→ X . We show that n /∈ i(A), and that the
composite

A
i−→ Y \ {n} p−→ X −→ Y

r−→ A (3)

is the identity on A. From this we can conclude that A is a retract of X .
Since n ∈ Y is not a codomain of a non-identity arrow, the only el-

ements of A that i could send to n are a1 and a2. We show more gener-
ally, that i(a1), i(a2) ∈ X . If i(a1) ∈ Y \ X or i(a2) ∈ Y \ X , then
i(b1), i(b2), i(c1), i(c2) ∈ Y \ X . Considering i(c1) and i(c2) as totally or-
dered sets of nonempty subsets of n, the intersection i(c1) ∩ i(c2) is an ele-
ment of Y \X and we have a diagram

i(b1)

&&

i(c1)

i(c1) ∩ i(c2)

88

&&
i(b2)

88

i(c2)

in Y . Applying the retraction r : Y −→ A to this diagram yields an arrow
between b1 and b2 or an arrow between c1 and c2. Both cases are impossible.
We have shown that i(a1), i(a2) ∈ X and thus that n /∈ i(A).

We can also show by the same argument as above that i(b1) and i(b2)
cannot both belong to Y \X .

It remains to show that the composite (3) is the identity. Recall that i(a1),
i(a2) and at least one of i(b1), i(b2) belong to X . By symmetry we can
assume that i(b2) ∈ X . We need to show that rpi(b1) = b1, rpi(c1) = c1 and
rpi(c2) = c2. Implicitly, we will use that any arrow in Y from an element in

MAY, ZAKHAREVICH & STEPHAN - HOMOTOPY THEORY OF EQUIVARIANT POSETS

- 102 -



X to an element z in Y \ X factors through p(z). Since i(a1) ≤ i(b1) and
i(a2) ≤ i(b1), we have a diagram

i(a1)

##
pi(b1) // i(b1)

i(a2)

;;

in Y . By applying r to this diagram, we deduce that rpi(b1) = b1 since there
is no arrow between a1 and a2.

Applying r to the diagram

pi(b1)

$$
pi(c1) // i(c1)

i(b2)

::

in Y , we deduce that rpi(c1) = c1. By symmetry, we also have rpi(c2) = c2.
We have shown that A is a retract of X .

Corollary 6.3. Not all finite posets in Thomason’s model structure on Cat
are cofibrant.

The above proof used many special properties of A and thus cannot be
used in general to determine which objects are cofibrant. However, there
is one class of posets that we can prove are cofibrant: the one-dimensional
finite ones. We say that a poset P is (at most) one-dimensional if in any pair
of composable morphisms at least one is an identity morphism.

Proposition 6.4. Every one-dimensional finite poset X is cofibrant.

Proof. We proceed by induction on the number m of elements of X . If
m = 0, then X = ∅ and is thus cofibrant. Now suppose that m ≥ 1. If X
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has no non-identity morphisms (is zero-dimensional), thenX can be built up
by attaching singleton sets Π Sd2 ∆[0] to ∅ and is thus cofibrant.

Otherwise, let a be the domain of a non-identity morphism. Set A =
X \ {a}. By the induction hypothesis A is cofibrant. Let Y = {y0, . . . , yn}
be the set of elements y ∈ X such that there exists a non-identity morphism
a −→ y in X .

Let CY denote the cone on Y obtained by adding a least element ∗ to Y .
Note that Y −→ CY is an inclusion of a cosieve. Thus X ∼= A ∪Y CY by a
dual version of Lemma 4.7.

We distinguish the two cases n = 0 and n > 0. If n = 0, we glue
Π Sd2 ∆[1] to A along a cofibration in such a way that X is a retract of
the resulting pushout, and therefore cofibrant. The inclusion of the vertex
0 into ∆[1] is a cofibration. Applying Π Sd2 to this cofibration yields the
inclusion of the poset {{0}} into Π Sd2 ∆[1]. Identifying the element {0}
with y0, we show that X is a retract of the pushout A ∪Y Π Sd2 ∆[1]. Let
X −→ A ∪Y Π Sd2 ∆[1] be the map

x 7→


{0} ⊂ 1 if x = y0

1 if x = a

x otherwise

The map Π Sd2 ∆[1] −→ CY ,

S0 ⊂ . . . ⊂ Sk 7→

{
y0 if S0 = {0}
∗ otherwise

induces a retraction A ∪Y Π Sd2 ∆[1] −→ X of the map X −→ A ∪Y
Π Sd2 ∆[1] above. Thus X is cofibrant if n = 0 and we now assume that
n > 0.

Similarly to the case n = 0, we glue Π Sd2 ∆[n] to A along a cofibration
in such a way that X is a retract of the resulting pushout, and therefore
cofibrant.

The inclusion of the set of vertices of ∆[n] into ∆[n] is a cofibration.
Applying Π Sd2 to this cofibration yields the inclusion of the discrete poset
{{i} | 0 ≤ i ≤ n} into Π Sd2 ∆[n]. Identifying the element {i} with yi, let
Z denote the pushout A∪Y (Π Sd2 ∆[n]). We claim that X is a retract of Z.
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Indeed, let j : X −→ Z be the map

x 7→


{i} ⊂ n if x = yi

n if x = a

x otherwise

The map Π Sd2 ∆[n] −→ CY ,

S0 ⊂ . . . ⊂ Sk 7→

{
yi if S0 = {i}
∗ otherwise

induces a map r : Z −→ X such that rj = idX as desired.

We illustrate the induction step of this proof using the following poset
X:

y0 y1 y2

a1

OO >>

a

`` OO >>

a2

`` OO

After removing a we obtain the following poset A, which by induction hy-
pothesis is cofibrant.

y0 y1 y2

a1

OO >>

a2

`` OO

The poset Z in the proof above can be pictured as follows.
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y0

y1

y2

∗

∗

∗

a
∗0

∗0

∗1 ∗1

∗2

∗2

∗

∗

∗

z0

z1

z2

∗0

∗0

∗1 ∗1

∗2

∗2

a1 a2

Here each vertex is a distinct object of Z (although we have not given the
objects distinct names), and the edges give all of the non-identity morphisms
of Z. The inclusion j : X −→ Z maps ai to ai, yk to zk and a to a. The
retraction r is defined by

r(zk) = r(yk) = r(∗k) = yk r(ai) = ai r(a) = r(∗) = a.

The essential point is that, even in such simple cases as in this section,
proving that a poset is or is not cofibrant is a non-trivial exercise.

7. Fibrant posets

In this section we give a class of examples of fibrant posets. Before we begin
we give several easy lemmas needed in the proofs. First, we show that when
proving a category is fibrant it suffices to consider its connected components.
Here, a category is connected if any two objects are connected by a finite
zigzag of morphisms. A component of a category is a maximal connected
full subcategory, and any category is the disjoint union of its components.

Lemma 7.1. Let C ∈ Cat or Pos. Then C is fibrant if and only if all of its
components are so.
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Proof. The image of a connected category under a functor lies in a single
component. Since each Π Sd2 Λk[n] (resp. Π Sd2 ∆[n]) is connected, any
functor Π Sd2 Λk[n] −→ C lands in a single component. A category C is
fibrant if and only if for every functor f : Π Sd2 Λk[n] −→ C, there exists a
functor h : Π Sd2 ∆[n] −→ C such that the diagram

Π Sd2 Λk[n]
f //

��

C

Π Sd2 ∆[n]

h

77

commutes, and this holds if and only if it holds with C replaced by each of
its components.

Second, we record the following result relating pullbacks and pushouts
to binary products × and binary coproducts ∪ inside a poset P . Its proof
is an exercise using that there is at most one morphism between any two
objects of P .

Lemma 7.2. If the pullback of a given pair of maps x −→ a←− y exists, it
is the product x× y, and if the product x× y exists, it is the pullback of any
pair of maps x −→ a ←− y. Dually, if the pushout of a given pair of maps
x ←− a −→ y exists, it is the coproduct x ∪ y, and if the coproduct x ∪ y
exists, it is the pushout of any pair of maps x←− a −→ y.

The following addendum implies that a poset with binary products or
coproducts is contractible, meaning that its classifying space is contractible.

Lemma 7.3. If P is a poset containing an object c such that either c × x
exists for any x ∈ P or c ∪ x exists for any x ∈ P , then P is contractible.

Proof. We prove the lemma in the first case; the second case follows by
duality. Let P/c be the poset of all elements x over c; this means that x ≤ c,
or, thinking of P and P/c as categories, that there is a morphism x −→ c;
it is contractible since it has the terminal object c −→ c. Since P is a poset,
there is at most one morphism x −→ c for any object x and the functor
P −→ P/c that sends an object y to c × y −→ c is right adjoint to the
forgetful functor that sends x −→ c to x. Therefore the classifying space of
P is homotopy equivalent to that of P/c.
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In [14], Meier and Ozornova construct examples of fibrant categories.
They start from the notion of a partial model category, which is a weakening
of the notion of a model category. Recall that a homotopical category (C,W)
is a category C together with a subcategory W , whose maps we call weak
equivalences, such that every object of C is inW andW satisfies the 2 out
of 6 property: if morphisms h ◦ g and g ◦ f are inW , then so are f , g, h, and
h ◦ g ◦ f .

Definition 7.4 ([2, §1.1]). A partial model category is a homotopical cat-
egory (C,W) such that W contains subcategories U and V that satisfy the
following properties.

(i) U is closed under pushouts along morphisms in C and V is closed under
pullbacks along morphisms in C.

(ii) The morphisms ofW admit a functorial factorization into a morphism
in U followed by a morphism in V .

In (i), it is implicitly required that the cited pushouts and pullbacks exist
in C. For example, if C has a model structure with weak equivalences W
then it has a partial model structure, with U being the subcategory of acyclic
cofibrations and V being the subcategory of acyclic fibrations.

Theorem 7.5 ([14, Main Theorem]). If (C,W) is a homotopical category
that admits a partial model structure, then W is fibrant in the Thomason
model structure on Cat.

In the present context, it is very natural to consider those partial model
structures such that C is a poset. In [8], Droz and Zakharevich classified all
of the model structures on posets.

Theorem 7.6 ([8, Theorem B]). Let P be a poset which contains all finite
products and coproducts, and letW be a subcategory that contains all ob-
jects of P . Then P has a model structure withW as its subcategory of weak
equivalences if and only if the following two properties hold.

(i) If a composite gf of morphisms in P is inW , then both f and g are in
W .
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(ii) There is a functor χ : P −→ P that takes all maps in W to identity
maps and has the property that for every object x ∈ P , the four canon-
ical maps of the diagram

χ(x)× x //

��

χ(x)

��
x // χ(x) ∪ x

in P are weak equivalences.

These two results have the following consequence.

Proposition 7.7. Let P be a poset satisfying the following conditions:

(i) P contains an object c such that c×x and c∪x exist in P for any other
object x ∈ P .

(ii) For any two objects a, b ∈ P , either a× b exists or there does not exist
an x ∈ P such that x ≤ a and x ≤ b. Dually, either a ∪ b exists or
there does not exist an x ∈ P such that x ≥ a and x ≥ b.

Then P is a component of the weak equivalences in a model category and is
therefore fibrant in Pos. Moreover, P is contractible.

Proof. Consider the poset P̃ whose objects are those of P and two further
objects, ∅ and ∗. The morphisms are those of P and those dictated by re-
quiring ∅ to be an initial object and ∗ to be a terminal object (so there is no
morphism ∗ −→ ∅). Condition (ii) ensures that P̃ has all finite products and
coproducts. Indeed, if a, b ∈ P and a× b does not exist in P , then a× b = ∅
in P̃ and dually for coproducts. For all x ∈ P̃ , x × ∗ = x, x × ∅ = ∅,
x ∪ ∅ = x, and x ∪ ∗ = ∗.

LetW be the union of P and the discrete subcategory {∅, ∗} of P . Al-
though P̃ is connected, P is one of the three components of W , the other
two being the discrete components {∅} and {∗} (which are clearly fibrant).
Theorem 7.6 implies that P̃ has a model structure withW as its subcategory
of weak equivalences. Indeed, condition (i) is clear and, for condition (ii),
we define χ : P̃ −→ P̃ by mapping all of P to c (and its identity morphism),
mapping ∅ to ∅, and mapping ∗ to ∗. ThereforeW is fibrant by Theorem 7.5,
hence P is fibrant by Lemma 7.1; P is contractible by Lemma 7.3.

MAY, ZAKHAREVICH & STEPHAN - HOMOTOPY THEORY OF EQUIVARIANT POSETS

- 109 -



For example, if P andQ are any posets satisfying condition (ii) of Propo-
sition 7.7 then the following poset is fibrant:

• •

P

??

c

@@^^

Q

__

•

__ @@

•

^^ ??

Finally, we prove a partial converse to Proposition 7.7 which shows that
in many cases the connected fibrant posets constructed by Theorem 7.5 are
contractible.

Definition 7.8. A map f : a −→ b in a poset P is maximal if there do not
exist any non-identity morphisms z −→ a or b −→ z.

For example, the composition of a sequence of maximal length in P is
maximal.

Proposition 7.9. Let (W ,U ,V) be a partial model structure on a poset P
and let Q be a connected component of W that contains a maximal map.
Then Q contains an object c such that c × x and c ∪ x exist in Q for any
other object x ∈ Q. Therefore Q is contractible.

Proof. Let f : a −→ b be a maximal map inQ and factor it as a map a −→ c
in U followed by a map c −→ b in V , using the functorial factorization. Since
Q is a connected component ofW , c is in Q.

First, we claim that any morphism g : z −→ c in Q is in U . Factor g as
a morphism z −→ w in U followed by a morphism w −→ c in V . Since V
is closed under pullbacks, a ×c w −→ a exists and is in V . However, since
f is maximal inW , we must have a ×c w = a, so there exists a morphism
a −→ w. By Lemma 7.2, the pushout c ∪a w of a −→ c along a −→ w is
w∪ c, and w∪ c = c since P is a poset and there is a map w −→ c. But then
w −→ c is the pushout of a morphism in U , so it is also in U . Thus g is the
composite of two morphisms in U , so it is also in U , as claimed. Dually, any
morphism c −→ z in Q is in V .
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Now let x be any object in Q. Since Q is connected, there is a finite
zigzag of morphisms of Q connecting x to c. If the zigzag ends with

w
h //y z

ioo j //c,

then j is in U , so y ∪z c exists and we can shorten the zigzag via the diagram

w
h //

((

y

##

z
ioo j // c

||
y ∪z c.

The dual argument applies to shorten the zigzag if it ends with

w y
hoo i //z c.

joo

Inductively, we can shorten any zigzag to one of either of the forms

x zoo //c or x //z c.oo

We show that c ∪ x and c × x exist in the first case; the same is true in the
second case by symmetry. Since z −→ c is in U , c∪z x exists, and it is c∪ x
by Lemma 7.2. Since c −→ c∪ x is in V , c×c∪x x also exists, and it is c× x
by Lemma 7.2 again.

ThusQ contains an object c such that c×x and c∪x exists for any object
x ∈ Q, as claimed, and it follows from Lemma 7.3 thatQ is contractible.
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Résumé. Nous prouvons que la notion géométrique de points voisins, de-
rivée du “premier voisinage de la diagonale” en géométrie algébrique, a la
propriété que toute combinaison affine d’un n-tuple quelconque de points
mutuellement voisins a un sens invariant, dans tout schema affine. La preuve
est obtenue par des considérations d’algèbre commutative élémentaire.
Abstract. The geometric notion of neighbour points, as derived from the
“first neighbourhood of the diagonal” in algebraic geometry, is shown to
have the property that affine combinations of any n-tuple of mutual neigh-
bour points make invariant sense, in any affine scheme. The proof is a piece
of elementary commutative algebra.
Keywords. First neighbourhood of the diagonal, neighbour points, affine
schemes, affine combinations.
Mathematics Subject Classification (2010). 14B10, 14B20, 51K10.

Introduction

The notion of “neighbour points” in algebraic geometry is a geometric ren-
dering of the notion of nilpotent elements in commutative rings, and was
developed since the time of Study, Hjelmslev, later by Kähler, and notably,
since the 1950s, by French algebraic geometry (Grothendieck, Weil et al.).
The latter school introduced it via what they call the first neighbourhood of
the diagonal.

In [4], [5] and [8] the neighbour notion was considered on an axiomatic
basis, essentially for finite dimensional manifolds; one of the aims was to
describe a combinatorial theory of differential forms.

In the specific context of algebraic geometry, such theory of differential
forms was also developed in [2], where it applies not only to manifolds, but
to arbitrary schemes.

               CAHIERS DE TOPOLOGIE ET                                                      Vol. LVIII-2 (2017)
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One aspect, present in [5] and [8], but not in [2], is the possibility of
forming affine combinations of finite sets of mutual (1st order) neighbour
points. The present note completes this aspect, by giving the construction
of such affine combinations, at least in the category of affine schemes1 (the
dual of the category of commutative rings or k-algebras).

The interest in having the possibility of such affine combinations is docu-
mented in several places in [8], and is in [5] the basis for constructing, for
any manifold, a simplicial object, whose cochain complex is the deRham
complex of the manifold.

One may say that the possibility of having affine combinations, for sets
of mutual neighbour points, expresses in a concrete way the idea that spaces
are “infinitesimally like affine spaces”.

1. Neighbour maps between algebras

Let k be a commutative ring. Consider commutative k-algebras B and C
and two algebra maps f and g : B → C.2 We say that they are neighbours,
or more completely, (first order) infinitesimal neighbours, if

(f(a)− g(a)) · (f(b)− g(b)) = 0 for all a, b ∈ B, (1)

or equivalently, if

f(a) · g(b) + g(a) · f(b) = f(a · b) + g(a · b) for all a, b ∈ B. (2)

(Note that this latter formulation makes no use of “minus”.) When this holds,
we write f ∼ g (or more completely, f ∼1 g). The relation ∼ is a reflexive
and symmetric relation (but not transitive). If the element 2 ∈ k is invertible,
a third equivalent formulation of f ∼ g goes

(f(a)− g(a))2 = 0 for all a ∈ B. (3)

1Added in proof: Since the construction is local in nature, it is not surprising that it may
be extended to more general schemes, and also to the C∞-context. These issues are dealt
with in [1].

2Henceforth, “algebra” means throughout “commutative k-algebra”, and “algebra map”
(or just “map”) means k-algebra homomorphism; and “linear” means k-linear. By ⊗, we
mean ⊗k.
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For, it is clear that (1) implies (3). Conversely, assume (3), and let a, b ∈ B
be arbitrary, and apply (3) to the element a + b. Then by assumption, and
using that f and g are algebra maps,

0 = (f(a+ b)− g(a+ b))2 = [(f(a)− g(a)) + (f(b)− g(b))]2

= (f(a)− g(a))2 + (f(b)− g(b))2 − 2(f(a)− g(a)) · (f(b)− g(b)).

The two first terms are 0 by assumption, hence so is the third. Now divide
by 2.

Note that if C has no zero-divisors, then f ∼ g is equivalent to f = g.

It is clear that the relation ∼ is stable under precomposition:

if h : B′ → B and f ∼ g : B → C, then f ◦ h ∼ g ◦ h : B′ → C, (4)

and (by a small calculation), it is also stable under postcomposition:

if k : C → C ′ and f ∼ g : B → C, then k ◦ f ∼ k ◦ g : B → C ′. (5)

Also, if h : B′ → B is a surjective algebra map, precomposition by h not
only preserves the neighbour relation, it also reflects it, in the following sense

if f ◦ h ∼ g ◦ h then f ∼ g. (6)

This is immediate from (1); the a and b occurring there is of the form h(a′)
and h(b′) for suitable a′ and b′ in B′, by surjectivity of h.

An alternative “element-free” formulation of the neighbour relation (Pro-
position 1.2 below) comes from a standard piece of commutative algebra.
Recall that for commutative k-algebras A and B, the tensor product A ⊗ B
carries structure of commutative k-algebra (A ⊗ B is in fact a coproduct of
A and B); the multiplication map m : B⊗B → B is a k-algebra homomor-
phism; so the kernel is an ideal J ⊆ B ⊗B.

The following is a classical description of the ideal J ⊆ B ⊗ B; we
include it for completeness.

Proposition 1.1. The kernel J of m : B ⊗ B → B is generated by the
expressions 1⊗ b− b⊗ 1, for b ∈ B. Hence the ideal J2 is generated by the
expressions (1⊗ a− a⊗ 1) · (1⊗ b− b⊗ 1). Equivalently, J2 is generated
by the expressions

1⊗ ab + ab⊗ 1 − a⊗ b − b⊗ a.
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Proof. It is clear that 1⊗b−b⊗1 is in J . Conversely, assume that
∑

i ai⊗bi
is in J , i.e. that

∑
i ai · bi = 0. Rewrite the ith term ai ⊗ bi as follows:

ai ⊗ bi = aibi ⊗ 1 + (ai ⊗ 1) · (1⊗ bi − bi ⊗ 1)

and sum over i; since
∑

i aibi = 0, we are left with
∑

i(ai⊗1)·(1⊗bi−bi⊗1),
which belongs to the B ⊗ B-module generated by elements of the form
1⊗b−b⊗1. – The second assertion follows, since ab⊗1+1⊗ab−a⊗b−b⊗a
is the product of the two generators 1⊗ a− a⊗ 1 and 1⊗ b− b⊗ 1, except
for sign. (Note that the proof gave a slightly stronger result, namely that J
is generated already as a B-module, by the elements 1 ⊗ b − b ⊗ 1, via the
algebra map i0 : B → B ⊗B, where i0(a) = a⊗ 1).

From the second assertion in this Proposition immediately follows that
f ∼ g iff

(
f
g

)
: B ⊗ B → C factors across the quotient map B ⊗ B →

(B ⊗ B)/J2 (where
(
f
g

)
: B ⊗ B → C denotes the map given by a ⊗ b 7→

f(a) · g(b)); equivalently:

Proposition 1.2. For f, g : B → C, we have f ∼ g if and only if
(
f
g

)
:

B ⊗B → C annihilates J2.

The two natural inclusion maps i0 and i1 : B → B ⊗ B (given by
b 7→ b ⊗ 1 and b 7→ 1 ⊗ b, respectively) are not in general neighbours, but
when postcomposed with the quotient map π : B ⊗B → (B ⊗B)/J2, they
are:

π ◦ i0 ∼ π ◦ i1,
and this is in fact the universal pair of neighbour algebra maps with domain
B.

2. Neighbours for polynomial algebras

We consider the polynomial algebraB := k[X1, . . . , Xn]. IdentifyingB⊗B
with k[Y1, . . . , Yn, Z1, . . . , Zn], the multiplication map m is the algebra map
given by Yi 7→ Xi and Zi 7→ Xi, so it is clear that the kernel J of m contains
the n elements Zi − Yi. The following Proposition should be classical:

Proposition 2.1. The ideal J ⊆ B⊗B, forB = k[X1, . . . , Xn], is generated
(as a B ⊗B-module) by the n elements Zi − Yi.
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Proof. From Proposition 1.1, we know that J is generated by elements P (Z)−
P (Y ), for P ∈ k[X] (where X denotes X1, . . . , Xn, and similarly for Y and
Z). So it suffices to prove that P (Z)− P (Y ) is of the form

n∑
i=1

(Zi − Yi)Qi(Y , Z).

This is done by induction in n. For n = 1, it suffices, by linearity, to prove
this fact for each monomial Xs. And this follows from the identity

Zs − Y s = (Z − Y ) · (Zs−1 + Zs−2Y + . . .+ ZY s−2 + Y s−1) (7)

(for s ≥ 1; for s = 0, we get 0). For the induction step: Write P (X) as a
sum of increasing powers of X1,

P (X1, X2, . . .) = P0(X2, . . .) +X1P1(X2, . . .) +X2
1P2(X2, . . .) + . . . .

Apply the induction hypothesis to the first term. The remaining terms are of
the form Xs

1Ps(X2, . . .) with s ≥ 1; then for this term, the difference to be
considered is

Y s
1 Ps(Y2, . . .)− Zs

1Ps(Z2, . . .)

which we may write as

Y s
1 (Ps(Y2, . . .)− Ps(Z2, . . .)) + Ps(Z2, . . .)(Y

s
1 − Zs

1).

The first term in this sum is taken care of by the induction hypothesis, the
second term uses the identity (7) which shows that this term is in the ideal
generated by (Z1 − Y1).

From this follows immediately

Proposition 2.2. The ideal J2 ⊆ B ⊗ B, for B = k[X1, . . . , Xn], is ge-
nerated (as a B ⊗B-module) by the elements (Zi− Yi)(Zj − Yj) (for i, j =
1, . . . , n) (identifying B ⊗B with k[Y1, . . . , Yn, Z1, . . . , Zn]).

(The algebra (B ⊗ B)/J2 is the algebra representing the affine scheme
“first neighbourhood of the diagonal” for the affine scheme represented by
B, alluded to in the introduction.)
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An algebra map a : k[X1, . . . , Xn] → C is completely given by an n-
tuple of elements ai := a(Xi) ∈ C (i = 1, . . . , n). Let b : k[X1, . . . , Xn]→
C be similarly given by the n-tuple bi ∈ C. The decision when a ∼ b can be
expressed equationally in terms of these two n-tuples of elements inC, i.e. as
a purely equationally described condition on elements (a1, . . . , an, b1, . . . , bn)
∈ C2n:

Proposition 2.3. Consider two algebra maps a and b : k[X1, . . . , Xn]→ C.
Let ai := a(Xi) and bi := b(Xi). Then we have a ∼ b if and only if

(bi − ai) · (bj − aj) = 0 (8)

for all i, j = 1, . . . , n.

Proof. We have that a ∼ b iff the algebra map
(
a
b

)
annihilates the ideal

J2 for the algebra k[X1, . . . , Xn]; and this in turn is equivalent to that it
annihilates the set of generators for J2 described in Proposition 2.2. But(
a
b

)
((Zi − Yi) · (Zj − Yj)) = (bi − ai) · (bj − aj), and then the result is

immediate.

We therefore also say that the pair of n-tuples of elements in C[
a1 . . . an
b1 . . . bn

]
are neighbours if (8) holds.

For brevity, we call an n-tuple (c1, . . . , cn) of elements in Cn a vector,
and denote it c . Thus a vector (c1, . . . , cn) is neighbour of the “zero” vector
0 = (0, . . . , 0) iff ci · cj = 0 for all i and j.

Remark. Even when 2 ∈ k is invertible, one cannot conclude that (bi −
ai)

2 = 0 for all i = 1, . . . , n implies a ∼ b. For, consider C := k[ε1, ε2] =
k[ε]⊗k[ε] (where k[ε] is the “ring of dual numbers over k”, so ε2 = 0). Then
the pair of n-tuples (n = 2 here) given by (a1, a2) = (ε1, ε2) and (b1, b2) :=
(0, 0) has (ai − bi)2 = ε2i = 0 for i = 1, 2, but (a1 − b1) · (a2 − b2) = ε1 · ε2,
which is not 0 in C.

We already have the notion of when two algebra maps f and g : B → C
are neighbours. We also say that the pair (f, g) form an infinitesimal 1-
simplex (with f and g as vertices). Also, we have with (8) the derived notion

KOCK - AFFINE COMBINATIONS IN AFFINE SCHEMES

- 120 -



of when two vectors a and b in Cn are neighbours, or form an infinitesimal
1-simplex. This terminology is suited for being generalized to defining the
notion of infinitesimal p-simplex of algebra maps B → C, or of infinitesimal
p-simplex of vectors in Cn (for p = 1, 2, . . .), namely a (p + 1)-tuple of
mutual neighbouring algebra maps, resp. neighbouring vectors.

Proposition 2.3 generalizes immediately to infinitesimal p-simplices
(where the Proposition is the special case of p = 1):

Proposition 2.4. Consider p+ 1 algebra maps ai : k[X1, . . . , Xn]→ C (for
i = 0, . . . , p), and let aij ∈ C be ai(Xj), for j = 1, . . . n. Then the ai form
an infinitesimal p-simplex iff for all i, i′ = 0, . . . p and j, j′ = 1, . . . , n

(aij − ai′j) · (aij′ − ai′j′) = 0. (9)

3. Affine combinations of mutual neighbours

LetC be a k-algebra. An affine combination in aC-module means here a lin-
ear combination in the module, with coefficients from C, and where the sum
of the coefficients is 1. We consider in particular the C-module Link(B,C)
of k-linear maps B → C, where B is another k-algebra. Linear combina-
tions of algebra maps are linear, but may fail to preserve the multiplicative
structure (including 1). However

Theorem 3.1. Let f0, . . . , fp be a p + 1-tuple of mutual neighbour algebra
maps B → C, and let t0, . . . , tp be elements of C with t0 + . . . + tp = 1.
Then the affine combination

p∑
i=0

ti · fi : B → C

is an algebra map. The construction is natural in B and in C.

Proof. Since the sum is a k-linear map, it suffices to prove that it preserves
the multiplicative structure. It clearly preserves 1. To prove that it preserves
products a · b, we should compare

∑
tifi(a · b). with

(
∑
i

tifi(a)) · (
∑
j

tjfj(b)) =
∑
i,j

titjfi(a) · fj(b).
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Now use that
∑

j tj = 1; then
∑
tifi(a · b) may be rewritten as∑

ij

titjfi(a · b).

Compare the two displayed double sums: the terms with i = j match since
each fi preserves multiplication. Consider a pair of indices i 6= j; the terms
with index ij and ji from the first sum contribute titj times

fi(a) · fj(b) + fj(a) · fi(b), (10)

and the terms terms with index ij and ji from the second sum contribute titj
times

fi(a · b) + fj(a · b), (11)

and the two displayed contributions are equal, since fi ∼ fj (use the formu-
lation (2)). The naturality assertion is clear.

Theorem 3.2. Let Let f0, . . . , fp be a p+ 1-tuple of mutual neighbour alge-
bra maps B → C. Then any two affine combinations (with coefficients from
C) of these maps are neighbours.

Proof. Let
∑

i tifi and
∑

j sjfj be two such affine combinations. To prove
that they are neighbours means (using (2)) to prove that for all a and b in B,

(
∑
i

tifi(a)) · (
∑
j

sjfj(b)) + (
∑
j

sjfj(a)) · (
∑
i

tifi(b)) (12)

equals ∑
i

tifi(a · b) +
∑
j

sjfj(a · b). (13)

Now (12) equals∑
ij

tisjfi(a)·fj(b)+
∑
ij

tisjfj(a)·fi(b) =
∑
ij

tisj[fi(a)·fj(b)+fj(a)·fi(b)]

For (13), we use
∑

j sj = 1 and
∑

i ti = 1, to rewrite it as the left hand
expression in∑

ij

tisjfi(a · b) +
∑
ij

tisjfj(a · b) =
∑
ij

tisj[fi(a · b) + fj(a · b)].

For each ij, the two square bracket expression match by (2), since fi ∼
fj .
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Combining these two results, we have

Theorem 3.3. Let f0, . . . , fp be a p + 1-tuple of mutual neighbour algebra
maps B → C. Then in the C-module of k-linear maps B → C, the affine
subspace AffC(f0, . . . , fp) of affine combinations (with coefficients from C)
of the fis consists of algebra maps, and they are mutual neighbours.

Note that these two Theorems are also vaild for commutative rigs, i.e. no
negatives are needed for the notions or the theorems.

In [2], the authors describe an ideal J (2)
0p . It is the sum of ideals J2

rs in the
p + 1-fold tensor product B ⊗ . . . ⊗ B, where Jrs is the ideal generated by
is(b) − ir(b) for b ∈ B and r < s (with ik the kth inclusion map). We shall
here denote J (2)

0p just by J
(2)

for brevity; it has the property that the p + 1
inclusions B → B ⊗ . . . ⊗ B become mutual neighbours, when composed
with the quotient map π : B⊗ . . .⊗B → (B⊗ . . .⊗B)/J

(2)
, and this is in

fact the universal p+ 1 tuple of mutual neighbour maps with domain B.
We may, for any given k-algebra B, encode the construction of Theorem

3.1 into one single canonical map which does not mention any individual
B → C. This we do by using the universal p+1-tuple of neighbour elements,
and the generic p+ 1 tuple of elements (to be used as coefficients) with sum
1, meaning (X0, X1, . . . , Xp) ∈ k[X1, . . . , Xp] (whereX0 denotes 1−(X1+
. . .+Xp)). We shall construct a k-algebra map

B → (B⊗p+1/J
(2)

)⊗ k[X1, . . . , Xp]. (14)

By the Yoneda Lemma, this is equivalent to giving a (set theoretical) map,
natural in C,

hom((B⊗p+1/J
(2)

)⊗ k[X1, . . . , Xp], C)→ hom(B,C),

(where hom denotes the set of k-algebra maps). An element on the left
hand side is given by a p + 1-tuple of mutual neighbouring algebra maps
fi : B → C, together with a p-tuple (t1, . . . , tp) of elements in C. With
t0 := 1 −

∑p
1 ti, such data produce an element

∑p
0 ti · fi in hom(B,C), by

Theorem 3.1, and the construction is natural in C by the last assertion in the
Theorem.
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The affine scheme defined by the algebra B⊗p+1/J
(2)

is (essentially)
called ∆

(p)
B in [2], and, (in axiomatic context, for manifolds, in a suitable

sense), the corresponding object is called M[p] in [5] and M(1,1,...,1) in [4] I.
18 (for suitable M ).

4. Affine combinations in a k-algebra C

The constructions and results of the previous Section concerning infinitesi-
mal p-simplices of algebra maps B → C, specialize (by taking B =
k[X1, . . . , Xn], as in Section 2) to infinitesimal p-simplices of vectors in Cn;
such a p-simplex is conveniently exhibited in a (p+1)×nmatrix with entries
aij from C: 

a01 . . . a0n
a11 . . . a1n

...
...

ap1 . . . apn


in which the rows (the “vertices” of the simplex) are mutual neighbours.
We may of course form affine (or even linear) combinations, with coeffi-
cients from C, of the rows of this matrix, whether or not the rows are mutual
neighbours. But the same affine combination of the corresponding algebra
maps is in general only a k-linear map, not an algebra map. However, if
the rows are mutual neighbours in Cn, and hence the corresponding alge-
bra maps are mutual neighbours k[X1, . . . , Xn]→ C, we have, by Theorem
3.1 that the affine combinations of the rows of the matrix corresponds to the
similar affine combination of the algebra maps. For, it suffices to check their
equality on the Xis, since the Xis generate k[X1, . . . , Xn] as an algebra.
Therefore, the Theorems 3.2 and 3.3 immediately translate into theorems
about p + 1-tuples of mutual neighbouring n-tuples of elements in the al-
gebra C; recall that such a p + 1-tuple may be identified with the rows of
a (p + 1) × n matrix with entries from C, satisfying the equations (9). We
therefore have (cf. also [6])

Theorem 4.1. Let the rows of a (p + 1) × n matrix with entries from C be
mutual neighbours. Then any two affine combinations (with coefficients from
C) of these rows are neighbours. The set of all such affine combinations form
an affine subspace of the C-module Cn.
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Let us consider in particular the case where the 0th row of a (p+ 1)× n
matrix is the zero vector (0, . . . , 0). Then the following is an elementary
calculation:

Proposition 4.2. Consider a (p + 1) × n matrix {aij} as above, but with
a0j = 0 for j = 1, . . . n. Then the rows form an infinitesimal p-simplex iff

aij · ai′j′ + ai′j · aij′ = 0 for all i, i′ = 1, . . . p, j, j′ = 1, . . . n (15)

and
aij · aij′ = 0 for all i = 1, . . . , p, j = 1, . . . n (16)

hold. If 2 is invertible in C, the equations (16) follow from (15).

Proof. The last assertion follows by putting i = i′ in (15), and dividing by
2. Assume that the rows of the matrix form an infinitesimal p-simplex. Then
(16) follows from ai ∼ 0 by (8). The equation which asserts that ai ∼ ai′
(for i, i′ = 1, . . . , p) is

(aij − ai′j) · (aij′ − ai′j′) = 0 for all j, j′ = 1, . . . n.

Multiplying out gives four terms, two of which vanish by virtue of (16), and
the two remaining add up to (minus) the sum on the left of (15). For the
converse implication, (16) give that the last p rows are ∼ 0; and (16) and
(15) jointly give that ai ∼ ai′ , by essentially the same calculation which we
have already made.

When 0 is one of the vectors in a p + 1-tuple, any linear combination of
the remaining p vectors has the same value as a certain affine combination of
all p + 1 vectors, since the coefficient for 0 may be chosen arbitrarily with-
out changing the value of the linear combination. Therefore the results on
affine combinations of the rows in the (p + 1) × n matrix with 0 as top row
immediately translate to results about linear combinations of the remaining
rows, i.e. they translate into results about p×nmatrices, satisfying the equa-
tions (15) and (16); even the equations (15) suffice, if 2 is invertible. In this
form, the results were obtained in the preprint [6], and are stated here for
completeness. We assume that 2 ∈ k is invertible.

We use the notation from [4] I.16 and I. 18, where set of p × n matri-
ces {aij} satisfying (15) was denoted D̃(p, n) ⊆ Cp·n (we there consider
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algebras C over k = Q, so (16) follows). In particular D̃(2, 2) consists of
matrices of the form[

a11 a12
a21 a22

]
with a11 · a22 + a12 · a21 = 0.

Note that the determinant of such a matrix is 2 times the product of the
diagonal entries. And also note that D̃(2, 2) is stable under transposition of
matrices.

The notation D̃(p, n) may be consistently augmented to the case where
p = 1; we say (a1, . . . , an) ∈ D̃(1, n) if it is neighbour of 0 ∈ Cn, i.e. if
aj · aj′ = 0 for all j, j′ = 1, . . . n. (In [4], D̃(1, n) is also denoted D(n), and
D(1) is denoted D.)

It is clear that a p×nmatrix belongs to D̃(p, n) precisely when all its 2×2
sub-matrices do; this is just a reflection of the fact that the defining equations
(15) only involve two row indices and two column indices at a time. From
the transposition stability of D̃(2, 2) therefore follows that transposition p×n
matrices takes D̃(p, n) into D̃(n, p).

Note that each of the rows of a matrix in D̃(p, n) is a neighbour of 0 ∈
Cn.

The results about affine combinations now has the following corollary in
terms of linear combinations of the rows of matrices in D̃(p, n):

Theorem 4.3. Given a matrix X ∈ D̃(p, n). Let a (p+ 1)× n matrix X ′ be
obtained by adjoining to X a row which is a linear combination of the rows
of X . Then X ′ is in D̃(p+ 1, n).

5. Geometric meaning

Commutative rings often come about as rings O(M) of scalar valued func-
tions on some space M , and this gives some geometric aspects (arising from
the space M ) into the algebra O(M). Does every commutative ring (or k-
algebra) come about this way? This depends of course what “space” is sup-
posed to mean, and what the “scalars” and “functions” are. What could they
be?

Algebraic geometry has over time developed a radical, almost self-refe-
rential answer. The first thing is to define the category E of spaces, and
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among these, a commutative ring object R ∈ E of scalars. The radical
answer consists in taking the category E of spaces and functions to be the
dual of the categoryA of commutative rings, and any commutative ringB to
be the ring O(B) of scalar valued functions on the space B which it defines.
This will come about by letting the ring of scalars R ∈ E be the free ring in
one generator: the polynomial ring in one variable, cf. (17) below.

To fix terminology, we elaborate this viewpoint. For flexibility and gen-
erality, we consider a commutative base ring k, and consider the category
A of commutative k-algebras (the “absolute” case comes about by taking
k = Z).

So E is Aop; for B ∈ A, the corresponding object in E is denoted B
or Spec(B); for M ∈ E , the corresponding object in A is denoted O(M).
Thus, B = O(B) and M = O(M).

We have in particular k[X] ∈ A, the free k-algebra in one generator, and
we put R := k[X]. Then for any M ∈ E ,

homE(M,R) = homE(M, k[X]) = homA(k[X], O(M)) ∼= O(M), (17)

(the last isomorphism because k[X] is the free k-algebra in one generator
X), and since the right hand side is a k-algebra, (naturally in M ), we have
that R is a k-algebra object in E . And (17) documents that O(M) is indeed
canonically isomorphic as a k-algebra to the k-algebra ofR-valued functions
on M .

If E is a category with finite products, algebraic structure on an object R
in E may be described in diagrammatic terms, but it is equivalent to descrip-
tion of the same kind of structure on the sets homE(M,R) (naturally in M ),
thus is a description in terms of elements.

It is useful to think of, and speak of, such an element (map) a : M → R
as an “element of R, defined at stage M”, or just as a “generalized element
(or generalized point3) of R defined at stage M”. We may write a ∈ R, or
a ∈M R, if we need to remember the “stage” at which the element a of R is
defined; and we may drop the word “generalized”.

If f : R → S is a map in E , then for an a : M → R, we have the
composite f ◦ a : M → S; viewing a and f ◦ a as generalized elements of

3Grothendieck called a map M → R “an M -valued point of R”, extending the use in
classical algebraic geometry, where one could talk about e.g. a complex-valued point, or
point defined over C, for R an arbitrary algebraic variety.
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R and S, respectively, the latter is naturally written f(a):

f(a) := f ◦ a.

Subobjects of an arbitrary object R ∈ E may be characterized by which
of generalized elements of R they contain. Maps R → S may be described
by what they do to generalized elements ofR (by post-composition of maps).
This is essentially Yoneda’s Lemma.

Consider in particular the theory of neighbour maps and their affine com-
binations, as developed in the previous sections. It deals with the categoryA
of commutative k-algebras. We shall translate some of the notions and con-
structions into the dual category E , i.e. into the category of affine schemes
over k, using the terminology of generalized elements, or generalized points.

Thus (assuming for simplicity that 2 is invertible in k), we can consider
the criterion (3) for the neighbour relation of algebra maps f, g : B → C; it
translates as follows. Let f and g be points of B (defined at stage C). Then
f ∼ g iff for all a : B → R, we have (a(f) − a(g))2 = 0, or, changing
the names of the objects and maps/elements in question, e.g. X = B, and
refraining from mentioning the common stage of definition of the elements
x and y:

Two points x and y inX are neighbours iff for any scalar valued function
α on X , (α(x) = α(y))2 = 0.

Thus, the basic (first order) neighbour relation ∼ on any object M is
determined by the set of scalar valued functions on it, and by which points
in the ring object R of scalars have square 0. This implies that the neighbour
relation is preserved by any map B → B′ between affine schemes. The
naturality of the construction of affine combinations of mutual neighbour
points in B implies that the construction is preserved by any map B → B′

between affine schemes.
The Proposition 2.3 gets the formulation:

Proposition 5.1. Given two points (a1, . . . , an) and (b1, . . . , bn) ∈ Rn. Then
they are neighbours iff

(bi − ai) · (bj − aj) = 0 (18)

for all i, j = 1, . . . , n.
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Here the (common) parameter space C of the ais and bis is not men-
tioned explicitly; it could be any affine scheme. Note that (18) is typograph-
ically the same as (8); in (18), the ais etc. are (parametrized) points of R
(parametrized by C), in (8), they are elements in the algebra C; but these
data correspond, by (17), and this correspondence preserves algebraic struc-
ture. – Similarly, Proposition 2.4 gets the reformulation:

Proposition 5.2. A p + 1-tuple {aij} of points in Rn form an infinitesimal
p-simplex iff the equations (9) hold.

This formulation, as the other formulations in “synthetic” terms, are the
ones that are suited to axiomatic treatment, as in Synthetic Differential Ge-
ometry, which almost exclusively4 assumes a given commutative ring object
R in a category E , preferably a topos, as a basic ingredient in the axiomat-
ics. (The category E of affine schemes is not a topos, but the category of
presheaves on E is, and it, and some of its subtoposes, are the basic cate-
gories considered in modern algebraic geometry, like in [3].)

Proposition 5.3. Given an affine scheme B, with the k-algebra B finitely
presentable. Then for any finite presentation (with n generators, say) of the
algebra, the corresponding embedding e : B → Rn preserves and reflects
the relation ∼, and it preserves affine combinations of neighbour points.

For, any map between affine schemes preserves the neighbour relation,
and affine combinations of mutual neighbours. The argument for reflection
is as for (6) since the presentation amounts to a surjective map of k-algebras
k[X1, . . . , Xn]→ B.
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Résumé. Nous étudions les espaces stratifiés de Kreck (stratifolds)a d’un
point de vue catégorique. Nous montrons entre autre que la catégorie des
espaces stratifiés de Kreck admet un plongement pleinement fidèle dans la
catégorie des R-algèbres tout comme la catégorie des variétés lisses. Nous
établissons une variante du théorème de Serre-Swan pour les espaces strat-
ifiés de Kreck. En particulier, nous montrons que les fibrés vectoriels sur un
espace stratifié de Kreck forment une catégorie équivalente à celle formée
par les fibrés vectoriels sur un schéma affine qui est canoniquement associé
à, mais en général plus grand que, l’espace stratifié lui-même.

Abstract. Stratifolds are considered from a categorical point of view. We
show among others that the category of stratifolds fully faithfully embeds
into the category of R-algebras as does the category of smooth manifolds.
We prove that a variant of the Serre-Swan theorem holds for stratifolds. In
particular, the category of vector bundles over a stratifold is shown to be
equivalent to the category of vector bundles over an associated affine scheme
although the latter is in general larger than the stratifold itself.

Keywords. Stratifold, differential space, ringed space, vector bundle, the
Serre-Swan theorem.
Mathematics Subject Classification (2010). 18F15, 58A35, 58A40, 55R99.

aThe review article [7] of Kloeckner contains a nice historical review of different
notions of stratified space.

1. Introduction

Stratifolds have been introduced by Kreck [8]. The new notion subsumes
manifolds and algebraic varieties with isolated singularities as examples; see
[3]. One of its advantages is that stratifolds give geometric counterparts
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of singular homology classes of a CW complex in much the same way as
manifolds give geometric homology classes in the sense of Jakob [5]. More
precisely, such a homology class is represented by an appropriate bordism
class of stratifolds. One might therefore expect that stratifolds share some of
the fascinating properties of manifolds and varieties. In this article, we focus
on such properties for stratifolds and investigate them from categorical and
sheaf-theoretical points of view.

Pursell [14] showed that the category of smooth manifolds fully faith-
fully embeds into the category of R-algebras. We extend this result to the
category of stratifolds.

Theorem 1.1. The category of stratifolds fully faithfully embeds into the
category of R-algebras.

A stratifold (S, C) consists of a topological space S and a subalgebra C of
the R-algebra of continuous real-valued functions on the underlying space.
Such a subalgebra defines a ringed space which is called the structure sheaf
of the stratifold. Indeed, the subalgebra is nothing but the algebra of global
sections of the sheaf. The assignment of the algebra to a stratifold, namely
the forgetful functor F defined by F (S, C) = C, gives rise to the embedding
in Theorem 1.1.

Let M be a smooth manifold. Then the prime spectrum of the ring
C∞(M) of real-valued smooth functions with the Zariski topology is larger
than the underlying space M in general. However, the real spectrum, which
is a subspace of the prime spectrum, is homeomorphic to M . This fact is
shown to extend to stratifolds; see Propositions 2.6 and 3.3.

The results mentioned above lead us naturally to considering the affine
scheme of the global sections of the structure sheaf of a stratifold. In conse-
quence, we see that the restriction of the affine scheme to the real spectrum is
isomorphic to a given stratifold as a ringed space; see Theorem 3.5. We are
convinced that the result, a sheaf-theoretic description of a stratifold, enables
one to consider stratifolds in the framework of derived differential geometry
[6, 20] though this issue is not pursued in this manuscript; see Remark 3.6.

The category of vector bundles over a smooth manifold M is equivalent
to the category of finitely generated projective modules over C∞(M) by a
classical result of Swan [21]. An analogous result for algebraic varieties has
been obtained by Serre [15]. It is thus worthwhile to investigate a Serre-
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Swan type theorem for stratifolds. To this end, we introduce the appropriate
notion of vector bundle over stratifolds; see Definition 4.1 and Proposition
4.7. With our definition, we get the following result; see Theorem 4.9 for the
precise statement.

Theorem 1.2. The Serre-Swan theorem holds for stratifolds.

As a consequence, we deduce that the category of vector bundles over
a stratifold is equivalent to that of vector bundles over the affine scheme
associated to the stratifold though the underlying prime spectrum is larger
than the stratifold itself in general; see Remark 4.18.

The rest of this article is organized as follows. In Section 2, after re-
calling the definition of a stratifold and its important properties, we prove
Theorem 1.1. We investigate stratifolds and their category from a sheaf-
theoretical point of view in Section 3. In Section 4, the notion of vector
bundle over a stratifold is introduced and the Serre-Swan theorem is shown
to hold for any stratifold. In Section 5, we characterize morphisms of strat-
ifolds by local data, and describe them inside the category of diffeological
spaces; see [19, 4]. In Section 6, we study the product of stratifolds from
a categorical perspective. This is used in Section 4 in the course of proving
the Serre-Swan theorem.

We conclude this section with comments. An important device in the
study of stratifolds is the existence of so-called local retractions near each
point of the stratifolds; see [8]. These retractions are essential at several
places in this article; see Sections 4, 5 and 6. Some of proofs in Sections 2
and 3 are straightforward. Yet, they are instructive for clarifying what prop-
erties of manifolds and stratifolds are responsible for the obtained results.
These results are needed to set up a framework for describing the Serre-
Swan theorem in our context. One of highlights in this manuscript is that
a version of the Serre-Swan theorem for stratifolds is proved without using
tautological bundles or the Whitney immersion theorem as is usually done
for proving the theorem in the case of a manifold.

2. The real spectrum of a stratifold

This section contains a brief review of stratifolds. We begin with the defini-
tion of a differential space in the sense of Sikorski [18].
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Definition 2.1. A differential space is a pair (S, C) consisting of a topolog-
ical space S and an R-subalgebra C of the R-algebra C0(S) of continuous
real-valued functions on S, which is supposed to be locally detectable and
C∞-closed.

Local detectability means that f ∈ C if and only if for any x ∈ S,
there exist an open neighborhood U of x and an element g ∈ C such that
f |U = g|U .

C∞-closedness means that for each n ≥ 1, each n-tuple (f1, ..., fn) of
maps in C and each smooth map g : Rn → R, the composite h : S → R
defined by h(x) = g(f1(x), ...., fn(x)) belongs to C.

Let (S, C) and (S ′, C ′) be differential spaces. We call a continuous map
f : S → S ′ a morphism of the differential spaces, denoted f : (S, C) →
(S ′, C ′), if f induces a map f ∗ : C ′ → C; that is, ϕ ◦ f ∈ C for each ϕ ∈ C ′.
Thus we define a category Diff of differential spaces. Let Mfd denote the
category of smooth manifolds. It is readily seen that the functor i : Mfd →
Diff defined by i(M) = (M,C∞(M)) is a fully faithful embedding.

For any smooth paracompact manifoldM , the defining subalgebraC∞(M)
of C0(M) has two additional properties:

(i) It extends to a sheaf of R-algebras U 7→ C∞(U).

(ii) For any open cover U of M , there exists a smooth partition of unity
subordinate to U . In particular, the sheaf C∞ is generated by global
sections in the sense that the canonical map C∞(M) → (C∞)x is
surjective for any x ∈ M , where (C∞)x denotes the R-algebra of the
germs at x.

This in turn implies that C∞(U) can be recovered from C∞(M) as the set
of locally extendable functions on U . With this in mind, we introduce such
functions in the context of differential spaces.

For a differential space (S, C) and a subspace Y of S, we call an element
g ∈ C0(Y ) a locally extendable function if for any x ∈ Y , there exists an
open neighborhood V of x in Y and h ∈ C such that g|V = h|V . Let CY
be the subalgebra of C0(Y ) consisting of locally extendable functions on Y .
Then it follows that (Y, CY ) is a differential space; see [8, page 8]. Thus any
subspace of a differential space inherits the structure of a differential space.
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Let (S, C) be a differential space and x ∈ S. The vector space consisting
of derivations on the R-algebra Cx of the germs at x is denoted by TxS, which
is called the tangent space of the differential space at x; see [8, Chapter 1,
section 3].

Definition 2.2. A stratifold is a differential space (S, C) such that the fol-
lowing four conditions hold:

(1) S is a locally compact Hausdorff space with countable basis;

(2) the skeleta skk(S) := {x ∈ S | dimTxS ≤ k} are closed in S;

(3) for each x ∈ S and open neighborhood U of x in S, there exists a
bump function at x subordinate to U ; that is, a non-negative func-
tion ρ ∈ C such that ρ(x) 6= 0 and such that the support suppρ :=
{p ∈ S | ρ(p) 6= 0} is contained in U ;

(4) the strata Sk := skk(S) − skk−1(S) are k-dimensional smooth mani-
folds such that restriction along i : Sk ↪→ S induces an isomorphism
of stalks

i∗ : Cx
∼=→ C∞(Sk)x.

for each x ∈ Sk.

A stratifold is finite-dimensional if there is a non-negative integer n such
that S = skn(S). In particular, the tangent spaces of a finite-dimensional
stratifold are finite-dimensional.

In what follows, we assume that all stratifolds are finite-dimensional.
We may simply write S for a stratifold or differential space (S, C) if no
confusion arises. A smooth manifold (M,C∞(M)) is a typical example of
a stratifold. We define the category Stfd of stratifolds as the full subcategory
of Diff spanned by the stratifolds. Observe that the embedding Mfd → Diff
mentioned above factors through Stfd.

We here recall important properties of a stratifold.

Remark 2.3. Let (S, C) be a stratifold with strata {Si} .
(i) Let U be an open subset of S and CU the subalgebra of C consisting of
locally extendable functions of C0(U) in C. Then (U, CU) is a stratifold with
strata {Si ∩ U}; see [8, Example 5, page 22].
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(ii) For any x ∈ Si, there exist an open neighborhood U of x in S and a
morphism

rx : (U, CU) → (U ∩ Si, CU∩Si)

such that rx|U∩Si = id. Such a map is called a local retraction near x; see
[8, Proposition 2.1]
(iii) Any locally compact Hausdorff space with countable basis is paracom-
pact and in particular countable at infinity. This together with the other prop-
erties of a stratifold (S, C) shows that for any open cover U of S, there exists
a partition of unity subordinate to U consisting of functions in C, i.e. the
structure sheaf OS of the stratifold (S, C) is fine; see [8, Proposition 2.3] and
Sections 3 and 4.

We refer the reader to the book [8] of Kreck for other fundamental prop-
erties, examples of stratifolds and fascinating results on the stratifold homol-
ogy.

For an R-algebra F , we define |F| to be the set of all morphisms of R-
algebras from F to R which preserve the unit. Moreover, we define a map
f̃ : |F| → R by f̃(x) = x(f) for any f ∈ F . Let F̃ be the R-algebra of
maps from |F| to R of the form f̃ for f ∈ F . Then we consider the Gelfand
topology on |F|; that is, |F| is regarded as the topological space with the
open basis

{f̃−1(U) | U : open in R, f̃ ∈ F̃};

see [11, 2.1] and [12, 3.12]. Thus the assignment of a topological space to
an R-algebra gives rise to a contravariant functor

| | : R-Alg → Top

which is called the realization functor, where R-Alg denotes the category of
R-algebras.

By definition, the map τ : F → F̃ defined by τ(f) = f̃ is surjective.
It follows that τ is an isomorphism if F is a subalgebra of the R-algebra of
continuous functions on a space; see [12, 3.14].

Lemma 2.4. Let (S, C) be a stratifold. Then the map θ : S → |C| defined by
θ(p)(f) = f(p) is a homeomorphism.
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Proof. In virtue of Remark 2.3, the same argument as in the proof of [12,
Theorem 7.2] shows that θ is a bijection.

For any open set U in R and f ∈ C, we see that θ−1(f̃−1(U)) = f−1(U)

since f̃ ◦ θ = f . This implies that θ is continuous.
LetW be an open set of S. By definition, a stratifold has a bump function

for each x ∈ W ; that is, there exists a non-negative function fx ∈ C such
that suppfx ⊂ W and fx(x) 6= 0. Then we see that x ∈ f−1

x (R+) ⊂ W for
any x ∈ W and hence W =

∪
x∈W f−1

x (R+). Therefore, it follows that

θ(W ) = θ(
∪
x∈W

f−1
x (R+)) =

∪
x∈W

(θ−1)−1f−1
x (R+) =

∪
x∈W

f̃x
−1

(R+).

Observe that f̃x ◦ θ = fx as mentioned above. This shows that θ is open.

Let F be a subalgebra of C0(X) the R-algebra of continuous maps from
a space X to R. We call the pair (X,F) a continuous space. Let Csp be the
category of continuous spaces. Observe that a morphism ϕ : (X,FX) →
(Y,FY ) is a continuous map ϕ : X → Y which satisfies the condition that
f ◦ ϕ ∈ FX for any f ∈ FY . By definition, the category Diff of differential
spaces is a full subcategory of Csp; therefore, the categories Mfd and Stfd
are full subcategories of Csp as well.

Proposition 2.5. The map θ : S → |C| gives rise to an isomorphism θ :

(S, C) → (|C|, C̃) of continuous spaces.

Proof. Recall the isomorphism τ : C → C̃. We consider the composite
θ∗ ◦ τ : C → C̃ → C. Then it is readily seen that (θ∗ ◦ τ)(f) = f for any
f ∈ C. This implies that θ∗ : C̃ → C is a well-defined isomorphism. Since
(θ−1)∗θ∗(f̃) = f̃ , it follows that (θ−1)∗ : C → C0(|C|) factors through the
subalgebra C̃ and that (θ−1)∗ : C → C̃ is an isomorphism. This completes
the proof.

We call a maximal ideal m of C real if the quotient C/m is isomorphic to
R as an R-algebra. Let Specr C be the real spectrum, namely the subset of the
prime spectrum Spec C of C consisting of real ideals. We consider Specr C
the subspace of Spec C with the Zariski topology. It is readily seen that a map
u : |C| → Specr C defined by u(ϕ) = Ker ϕ is bijective. Moreover, the map
u is continuous. In fact, for an open base D(f) = {m ∈ Specr C | f /∈ m}
for some f ∈ C, we see that u−1(D(f)) = f̃−1(R\{0}).
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Proposition 2.6. (cf. [11, Remark, page 23] ) The bijection u : |C|
∼=→

Specr C is a homeomorphism.

Proof. With the same notation as in Lemma 2.4, we see that u(f̃x
−1

(R+)) =

D(fx). We observe that f̃x is non-negative since f̃x ◦ θ = fx with θ the
bijection.

In consequence, the space Specr C is homeomorphic to |C| and hence the
underlying space S:

S ∼= |C| ∼= Specr C ⊂ Spec C.

Remark 2.7. In [6, 4.3] and [2], the spectrum for an R-algebra corresponds
to what we call the real spectrum of the R-algebra, which in general is not
the same as its prime spectrum.

The following result yields Theorem 1.1.

Theorem 2.8. The forgetful functor F : Stfd → R-Alg defined by F (S, C) =
C is fully faithful; that is, the induced map F : HomStfd((S, C), (S ′, C ′)) →
HomR-Alg(C ′, C) is a bijection.

Proof. For a morphism ϕ : (S, C) → (S ′, C ′) of stratifolds, namely a mor-
phism of continuous spaces, we have a commutative diagram

(2.1) S
θ
∼=

//

ϕ

��

|C|
|ϕ∗|

��
S ′ θ

∼=
// |C ′|.

In fact, we see that for any f ′ ∈ C ′ and p ∈ S,

(|ϕ∗| ◦ θ)(p)(f ′) = |ϕ∗|(θ(p))(f ′) = θ(p)(ϕ∗(f ′))

= θ(p)(f ′ ◦ ϕ) = (f ′ ◦ ϕ)(p)

and that (θ ◦ ϕ)(p)(f ′) = θ(ϕ(p))(f ′) = f ′(ϕ(p)). This yields that F is
injective.
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For any morphism u : C ′ → C of R-algebras, we define ϕ : S → S ′ to
be the composite

S
θ
∼=

// |C| |u| // |C ′| θ−1

∼=
// S ′.

Observe that |u| is a continuous map defined by |u|(p) = p ◦ u; see [12,
3.19]. For any x ∈ |C|, we see that |u|∗(f̃)(x) = (f̃ ◦ |u|)(x) = f̃(x ◦ u) =

(x ◦ u)(f) = ũ(f)(x). Thus it follows that |u|∗ : C̃ ′ → C̃ is well defined.
Moreover, we have a commutative diagram

(2.2) C̃ ′
|u|∗ //

θ∗
��

C̃
θ∗

��
C ′

u
// C.

This follows from the fact that for any f̃ ′ ∈ C̃ and x ∈ S,

(θ∗ ◦ |u|∗)(f̃ ′)(x) = (|u| ◦ θ)∗(f̃ ′)(x) = (f̃ ′ ◦ (|u| ◦ θ))(x)
= ((|u| ◦ θ)(x))(f ′) = (|u|(θ(x)))(f ′)

= θ(x)(u(f ′)) = u(f ′)(x).

Furthermore, we see that (u ◦ θ∗)(f̃ ′)(x) = u(θ(f̃ ′))(x) = (u(f̃ ′ ◦ θ))(x) =
u(f ′)(x). This enables us to deduce that ϕ∗ = u. It turns out that F is a
bijection.

We conclude this section with comments concerning Theorems 1.1 and
2.8.

Remark 2.9. A stratifold (S, C) is a differential space. Then it is readily
seen that

HomStfd((S, C), (R, C∞(R))) = C.

Remark 2.10. The result [12, 7.19] asserts that the category Mfd of man-
ifolds is equivalent to the category of smooth R-algebras, which is a full
subcategory of the category R-Alg. Moreover, we have the embedding j :
Mfd → Stfd as mentioned above. However, Theorem 1.1 is not an immedi-
ate consequence of these results.
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3. The structure sheaf of a stratifold

The goal of this section is to give a sheaf-theoretical extension of Theorem
1.1.

Let X be a space and C an R-subalgebra of C0(X) the R-algebra of real-
valued continuous functions on X . Recall that for any open subset U of X ,
an element f ∈ C0(U) is called locally extendable in C if for any element x
in U , there exist an open neighborhood Vx of x in U and a function g ∈ C
such that f |Vx = g|Vx . It is readily seen that the pair (X,OX) is a ringed
subspace of (X,C0) of real-valued continuous functions, where OX(X) = C
and OX(U) is the R-subalgebra of C0(U) consisting of locally extendable
elements in C for any open subset U of X . Such a ringed subspace (X,OX)
is called a ringed continuous space.

A map between the underlying spaces of ringed continuous spaces, which
induces a well-defined map between global sections, gives rise to a mor-
phism of ringed spaces. The proof is straightforward. More precisely, we
have

Lemma 3.1. Let (X,OX) and (Y,OY ) be ringed continuous spaces. Let
f : X → Y be a continuous map. Suppose that f ](g) := g ◦ f is in OX(X)
for any g ∈ OY (Y ). Then f ] induces a well-defined morphism of sheaves
f ]| : OY → f∗OX .

Let (RS)C0 be the category of ringed continuous spaces on locally com-
pact, Hausdorff spaces with countable basis whose morphisms are continuos
maps between underlying spaces satisfying the assumption on Lemma 3.1.
Observe that every stratifold (S, C) gives rise to a ringed continuous space
(S,OS). Its sheaf of rings OS will be called the structure sheaf of the strati-
folds (S, C), and is explicitly given by OS(U) = CU for an open set U of S;
see Remark 2.3.

Definition 3.2. A ringed continuous space (X,OX) is called fine if the sheaf
of rings OX is fine; that is, if for every locally finite cover U of X , there
exists a partition of unity into a sum of global sections si ∈ OX(X) whose
supports are subordinate to U .

We work with the full subcategory f(RS)C0 of (RS)C0 consisting of fine
ringed continuous spaces. We have seen in Remark 2.3 that the category
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Stfd fully faithfully embeds into f(RS)C0 . Moreover, we have the following
extensions of results in Section 2.

Proposition 3.3. (i) The functor F which assigns global sections gives rise
to fully and faithful embedding form the category f(RS)C0 into R-Alg.
(ii) Let (X,OX) be in f(RS)C0 . Then there exist functional homeomorphisms

X ∼= |OX(X)| ∼= SpecrOX(X).

(iii) The category f(RS)C0 is a full subcategory of RS the category of ringed
spaces.

Proof. The proofs of Theorem 1.1 and Proposition 2.5 yield those of (i) and
(ii).

Let (f, ϕ) : (X,OX) → (Y,OY ) be a morphisms of ringed spaces. In
order to prove (iii), it suffices to show that ϕ = f ]. We define a continuous
map g : X → Y by g = θ−1◦|ϕY |◦θ. The commutative diagram (2.2) allows
us to deduce that g] : OY (Y ) → (f∗OX)(Y ) = OX(X) is nothing but the
map ϕY . For any open set U of Y , we consider a commutative diagram

OY (U)
ϕU ,g

]| // (f∗OX)(U)

OY (Y )

i]

OO

ϕY =g]
// (f∗OX)(Y ),

i]

OO

where i : U → Y denotes the inclusion. By applying the realization functor
| | to the diagram above, we see that ϕU = g]|. In fact, |i]| is the inclusion i
up to homeomorphism θ; see the commutative diagram (2.1). Suppose that
g(x) 6= f(x) for some x ∈ X . Then there exists an open neighborhood
Vf(x) of f(x) such that g(x) is not in Vf(x). On the other hand, since the map
g]| = ϕVf(x)

: OY (Vf(x)) → (f∗OX)(Vf(x)) is well defined, it follows that
Vf(x) ⊃ g(f−1(Vf(x))) and hence g(x) is in Vf(x), which is a contradiction.
We have (f, f ]) = (g, g]) = (f, ϕ). This completes the proof of (iii).

We recall the category Csp of continuous spaces; see Section 2. Let
S : R-Alg → Csp be the contravariant functor defined by SF = (|F|, F̃).
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By the definition of a morphism in Csp, we see that the same maps Φ and Ψ
as in Section 5 below give bijections

HomCspop(SF , (X, C))
Φ // HomR-Alg(F , F (X, C)),
Ψ

oo

where F : Cspop → R-Alg is the forgetful functor defined by F (X, C) = C.
In fact, for g in Csp, the map Φ(g) factors through C and hence Φ is well
defined. For ϕ : F → C and f̃ ∈ F̃ , we have (|ϕ| ◦θ)∗(f̃) = ϕ(f) ∈ C. This
implies that Ψ is well defined. Thus S is the left adjoint of F . Let U : Csp →
Top be the forgetful functor which assigns a continuous space the underlying
space. We define a functor m : f(RS)C0 → Csp by m(X,O) = (X,O(X))
for a fine ringed continuous space (X,O). With these functors, we have a
digram

(3.1) Csp U //
F

''PPPPPPPPPPP Top

(RS)C0 ⊃ f(RS)C0

m

OO

F
// R-Alg

S

ggPPPPPPPPPPP
Specr( )

OO

Stfd
F

66nnnnnnnnnnn
l

OO

in which the upper square and the triangles except for the upper right-hand
side one are commutative up to isomorphism; see Propositions 2.5 and 2.6.
Proposition 3.3 (i) yields that the functor F : f(RS)C0 → R-Alg gives rise
to an equivalence of categories between f(RS)C0 and its image, which is a
full subcategory R-Alg. One might remember the same result in algebraic
geometry as the fact that the category of affine schemes is equivalent to the
category of commutative rings with the global section functor.

Remark 3.4. An object in f(RS)C0 which comes from Stfd is a locally ringed
space; that is, the ring of germs at each point is local. This follows from the
definition of a stratifold and [11, Theorem 1.8].

Let A be an R-algebra and U an open set of SpecrA. We put MU :=∩
m∈U mc, where mc denotes the complement of m. Then MU is a multi-

plicative set. We denote by M−1
U A the localization of A with respect to MU .

Define the structure sheaf Â on SpecrA by the sheafification of the presheaf
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U ; M−1
U A. Observe that the sheaf Â is the inverse image of the affine

scheme (SpecA, Ã) of A along the inclusion SpecrA ↪→ SpecA.
The following proposition asserts that a stratifold is indeed a restriction

of an affine scheme.

Theorem 3.5. Let (S,OS) be a fine ringed space which comes from a strat-
ifold (S, C) and i : SpecrOS(S) → SpecOS(S) the inclusion. Then (S,OS)

is isomorphic to i∗(SpecOS(S), ÕS(S)) as a ringed space, where (Spec

OS(S), ÕS(S)) is the affine scheme associated with the ring OS(S).

Proof. We recall the homeomorphism θ : S
∼=−→ |S| and u : |S|

∼=−→
SpecrOS(S) in Section 2. Let m be the composite u ◦ θ. Then we have

m(p) = (u ◦ θ)(p) = Kerθ(p) = {f ∈ C | f(p) = 0} =: mp.

In order to prove the theorem, it suffices to show that (S,OS) is isomorphic
to the structure sheaf (SpecrOS(S), ÔS(S)). To this end, we construct an
isomorphism from ÔS(S) to m∗OS .

For an open set U of SpecrOS(S), we define αU : M−1
U OS(S) →

(m∗OS)(U) by α([f/s]) = f · 1
s
. Observe that s(p) 6= 0 for each p in

m−1(U). This implies that αU is well defined. We see that αU induces a
morphism of presheaves. Moreover, the morphism of presheaves gives rise
to a morphism α̂ : ÔS(S) → m∗OS of sheaves. The natural map

αp : ÔS(S)mp
= colimmp∈V ÔS(S)(V ) = OS(S)mp

→ colimp∈UOS(U) =: Cp
defined by α([f/s]) = fp · ( 1

sp
) is well defined. Here OS(S)mp

denotes the
localization of the ring OS(S) at mp. In fact, if s ∈ mc

p = OS(S)\mp,
then s(p) = θ(p)(s) 6= 0. Since (S,OS(S)) is a stratifold, it follows that
1/s ∈ OS(U) for some open set U of S. This follows from the condition (4)
in Definition 2.2; see the proof of [8, Proposition 2.3]. Moreover, there exists
a bump function at each x ∈ S. Thus the proof of [11, Corollary 1.6] enables
us to conclude that αp is an isomorphism. It turns out that α̂ = qp∈Sαp and
hence α̂ is an isomorphism. We have the result.

Remark 3.6. For a stratifold (S, C), we regard C as a C∞-ring; see [6, 2, 9].
Theorem 3.5 asserts that the structure sheaf (S,OS) of (S, C) is a C∞-ringed
space in the sense of Joyce [6] and is isomorphic to the spectrum of the C∞-
ring C; see [6, Definition 4.12] for example.
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4. Vector bundles and the Serre-Swan theorem for strati-
folds

Generalizing the notion of smooth vector bundle over a manifold, we define
a vector bundle over a stratifold.

Definition 4.1. Let (S, CS) be a stratifold and (E, CE) a differential space.
A morphism of differential spaces π : (E, CE) → (S, CS) is a vector bundle
over (S, CS) if the following conditions are satisfied.

(1) Ex := π−1(x) is a vector space over R for x ∈ S.

(2) There exist an open cover {Uα}α∈J of S and an isomorphism φα :
π−1(Uα) → Uα × Rnα of differential spaces for each α ∈ J . Here
π−1(Uα) is regarded as a differential subspace of (E, CE); see Re-
mark 2.3, and Uα × Rnα is considered the product of the substratifold
(Uα, CUα) of (S, CS) and the manifold (Rnα , C∞(Rnα)); see Section 6.

(3) The diagram

π−1(Uα)
φα //

π ''OOOOOOOO
Uα × Rnα

pr1wwnnnnnnnnn

Uα

is commutative, where pr1 is the projection onto the first factor.

(4) The composite pr2 ◦ φα|Ex : Ex → Uα × Rnα → Rnα is a linear
isomorphism, where pr2 : Uα × Rnα → Rnα denotes the projection
onto the second factor.

We call a vector bundle π : (E, CE) → (S, CS) bounded if for the index
set J of the cover which gives the trivialization, the set of integer {nα}α∈J is
bounded. Observe that the integer nα is constant on a connected component
of S.

Let πE : E → S and πF : F → S be vector bundles over a stratifold
S, We define a morphism ϕ : E → F of bundles to be a morphism of
differential spaces from E to F such that πF ◦ ϕ = πE and the restrictions
on each stalks ϕx : Ex → Fx are linear maps. We denote by VBb(S,C) the
category of vector bundles over (S, C) of bounded rank.
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Definition 4.2. Let π : (E, CE) → (S, CS) be a vector bundle over a strat-
ifold (S, CS). A morphism of differential spaces s : (U, CU) → (E, CE) is
called a section on U if π ◦ s = id(U,CU ). We denote by Γ(U,E) the set of all
sections.

We observe that Γ(U,E) is an OS(U)-module through the identification
CU = OS(U). Moreover, we have the following proposition.

Proposition 4.3. The assignment Γ( , E) : U ; Γ(U,E) gives rise to an
OS-module.

Proof. We begin by showing that the assignment gives rise to a set-valued
sheaf. Let i : U → V be an inclusion between open sets U and V of S.
Since i is a morphism of stratifolds, restricting along i takes a section on V
to a section on U .

Let {Vγ}γ be an open cover of an open set U of S. Suppose that {sγ}γ in∏
γ Γ(Vγ, E) satisfies the condition that resVγ

Vγ∩Vγ′ (sγ) = res
Vγ′

Vγ∩Vγ′ (sγ′) for
any γ and γ′. In the category Top of topological spaces, we have a section
s : U → E with resUVγ

(s) = sγ for any γ. We need to verify that s is a
morphism of differential spaces. For any x ∈ U , there exists an open set Vγ
such that x ∈ Vγ . Since sγ is a morphism of differential spaces, it follows
that (s∗(p))|Vγ = s∗γ(p) ∈ CVγ for p ∈ CE . By the definition of CVγ , we see
that there exists an open neighborhood Wγ of x with Wγ ⊂ Vγ such that
(s∗(p))|Wγ = ((s∗(p))|Vγ )|Wγ = p ◦ sγ|Wγ = h|Wγ for some h ∈ CS . This
enables us to conclude that s∗(p) ∈ CU and hence Γ( , E) is a sheaf.

For s and t in Γ(U,E), we define a section (s+ t) in Top by (s+ t)(x) =
s(x) + t(x) for any x ∈ U . We show that (s + t) is in Γ(U,E). Let sγ ,
tγ : Vγ → π−1(Vγ) be the restrictions of s and t to Vγ , respectively. We
define s̃γ : Vγ → Vγ × Rn and t̃γ : Vγ → Vγ × Rn by φγ ◦ sγ and φγ ◦ tγ ,
respectively. Here φγ : π−1(Vγ)

∼=→ Vγ × Rn denotes a local trivialization.

Assertion 4.4. Let sγ be in Γ(Vγ , E). Then sγ : Vγ → π−1(Vγ) is a mor-
phism of differential spaces.

Thus s̃γ and s̃γ are morphisms of differential spaces. The projection
pr2 : Vγ × Rn → Rn into the second factor is a morphism of stratifolds and
so are pr2 ◦ s̃γ and pr2 ◦ t̃γ . We see that pr2 ◦ s̃γ + pr2 ◦ t̃γ is a morphism
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of stratifolds. Proposition 6.1 below yields a morphism (sγ + tγ)
′ : Vγ →

Vγ × Rn of stratifolds which fits into a commutative diagram

Vγ
1Vγ

))RRRRRRRRRRRRRRRRR
pr2◦fsγ+pr2◦ etγ

uulllllllllllllllll

(sγ+tγ)′

��
Rn Vγ × Rn

pr2
oo

pr1
// Vγ.

Define sγ + tγ : Vγ → π−1(Vγ) to be the composite φ−1
γ ◦ (sγ + tγ)

′. Observe
that (sγ+tγ)(x) = (s+t)(x) = (sγ′ +tγ′)(x) for x ∈ Uγ∩Uγ′ . Since Γ(, E)

is a sheaf, it follows that there exists a unique extension s̃+ t ∈ Γ(U,E) of
{sγ + tγ}γ . It is readily seen that s̃+ t = s+ t.

The same argument as above does work well to show that sk defined
by sk(x) = k(x)s(x) is in Γ(U,E) for k ∈ CU and s ∈ Γ(U,E). This
completes the proof.

Proof of Assertion 4.4. Let x be an element in Vγ . For any ρ ∈ Cπ−1(Vγ),
by definition, there exists an open neighborhood Wsγ(x) of sγ(x) such that
ρ|Wsγ (x)

= ρ|Wsγ (x)
for some ρ ∈ CE . Thus we see that

ρ ◦ sγ|s−1
γ (Wsγ (x))

= ρ|Wsγ (x)
◦ sγ|s−1

γ (Wsγ (x))
= ρ|Wsγ (x))

◦ sγ|s−1
γ (Wsγ (x))

= ρ ◦ sγ|s−1
γ (Wsγ (x))

.

Since sγ : Vγ → E is a morphism of differential spaces, it follows that ρ◦ sγ
is in CVγ . Then ρ ◦ sγ is a restriction of a map in CS to an appropriate open
neighborhood of x and hence so is ρ ◦ sγ . We have the result.

We denote by LE the OS-module of Proposition 4.3.

Lemma 4.5. Let pr1 : S × Rn → S be the product bundle over a stratifold
(S, C). The map ei : S → S × Rn defined by ei(x) = (x, ei) is a section of
this bundle for i = 1, ..., n, where {e1, ..., en} is a canonical basis for Rn.

Proof. We prove that ei is a morphism of differential spaces. Suppose that f
is in CS×Rn ; see Section 6. Then there are local retractions rx : Ux → Ux∩Sj
and ry = id : Uy → Uy such that f |Ux×Uy = f(rx × ry) for x ∈ Sj

and y = ei ∈ Rn. This yields that f ◦ ei|Ux = f ◦ ei ◦ rx. Since the
restriction map ei|Sj : Sj → Sj×Rn is smooth, it follows that the composite
f ◦ ei|Sj : Sj → Sj × Rn → R is also smooth. In consequence, we have
f ◦ ei ∈ C.
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Proposition 4.6. The transition functions gαβ : Uα ∩ Uβ → GLn(R) are
morphisms of stratifolds.

Proof. By the definition of the transition function, we see that φβφ−1
α (x, v) =

(x, gαβ(x)v). It follows from Lemma 4.5 that the composite

ψj : Uα ∩ Uβ
ej // Uα ∩ Uβ × Rn φβφ

−1
α // Uα ∩ Uβ × Rn pr2 // Rn

is a morphism of differential spaces. Therefore, for the well-defined map
ψ∗
j : C∞(Rn) → CUα∩Uβ

, we see that uij := ψ∗
j (pi) = pi ◦ ψj ∈ CUα∩Uβ

and gαβ(x) = (uij(x)), where pi : Rn → R is the projection onto the
ith factor. It turns out that gαβ is a morphism of stratifolds. In fact, for
any f ∈ CGLn(R), there exists a smooth map f : Mnn(R) = Rn2 → R
whose restriction coincides with f . Then we have g∗αβ(f)(x) = fgαβ(x) =

f(u11(x), u12(x), ..., unn(x)) = f(u11(x), u12(x), ..., unn(x)). This yields
that g∗αβ(f) is in CUα∩Uβ

.

Proposition 4.7. Let π : (E, CE) → (S, CS) be a vector bundle in the sense
of Definition 4.1. Then the differential space (E, CE) admits a stratifold
structure for which π is a morphism of stratifolds.

Proof. Without loss of generality, we assume that there exists a countable
trivialization. Indeed S has a countable basis. Thus the existence of a count-
able basis ofE follows from the local triviality. Moreover, the local triviality
allows us to deduce that E is a Hausdorff space.

Let Si be a stratum of S. Observe that Si is a manifold for each i.
By virtue of Proposition 4.6, we see that π−1(Si) is a manifolds and π :
π−1(Si) → Si is a smooth vector bundle. It remains to prove that for
any x ∈ Si, the inclusion i : π−1(Si) → E induces an isomorphism
i∗ : C(E)x → C∞(π−1(Si))x. Suppose that x is in Uα with φα : π−1(U)

∼=→
Uα × Rn a trivialization. Then we have a commutative diagram

(CE)x
i∗ //

res∗ ∼=
��

C∞(π−1(Si))x

res∗∼=
��

(Cπ−1(Uα))x
i∗ // C∞(π−1(Si ∩ Uα))x

(CUα×Rn)φα(x)
(i×1Rn )∗ //

φ∗α ∼=
OO

C(Si ∩ Uα × Rn)φα(x)

φ∗α∼=
OO
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The stratifold structure on Uα × Rn allows us to deduce that (i × 1Rn)∗

is an isomorphism. Then we see that the upper horizontal arrow i∗ is an
isomorphism.

The local triviality of the bundle implies the existence of a bump func-
tion. In fact, the existence is a local property. This completes the proof.

Proposition 4.8. Let (S, C) be a stratifold and (E, π) ∈ VBb(S,C). Then the
OS-module LE is a locally free module.

Proof. Let ({Uα}, {φα : π−1(Uα) → Uα × Rnα}) be a trivialization. De-
fine sections si ∈ LE(Uα) by si = φ−1

α ◦ ei|Uα for i = 1, ..., nα. Then
these sections are bases of LE(Uα), so there exists an isomorphism between
LE(Uα) and OS(Uα)

nα . This induces an isomorphism between LE|Uα and
Onα
S |Uα .

For f ∈ HomVBb(S,C)
(E,F ), we define a map f∗ : Γ(U,E) → Γ(U, F )

by f∗(s) = f ◦ s. Since fx : Ex → Fx are linear maps, it follows that
f∗ is a morphism of OS(U)-modules. Thus f∗ gives rise to a morphism
Lf : LE → LF . Let Lfb(S) be the full subcategory of OS-Mod consisting
of locally free OS-modules of bounded rank. Proposition 4.8 enables us to
define a functor L : VBb(S,C) → Lfb(S). Our goal of this section is to verify
that the global section functor is an equivalence of categories as well as the
usual result in case of smooth manifolds.

Theorem 4.9. Let (S, C) be a stratifold. Then the global section functor

Γ(S,−) : VBb(S,C) → Fgp(C)

gives rise to an equivalence of categories, where Fgp(C) denotes the cate-
gory of finitely generated projective modules over C.

We shall prove Theorem 4.9 by using the result due to Morye [10],
Proposition 4.3 and an equivalence between categories VBb(S,C) and Lfb(S)
for a stratifold (S, C), which is proved below.

Lemma 4.10. Let X be a topological space and {Xα} an open cover of
X . Suppose (Xα, Cα) is a differential space for each α. Define C to be the
subalgebra of C0(X) consisting of f : X → R such that f |Xα ∈ Cα for all
α. Then the pair (X, C) is a differential space.
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Proof. The proof is straightforward. We check that C is a locally detectable
R-algebra. Let f be in C0(X). Assume further that, for each x ∈ X , there
are an open neighborhood Ux of x and hx ∈ C such that f |Ux = hx|Ux . Since
hx|Xα ∈ Cα, f |Ux∩Xα = hx|Ux∩Xα and Cα is locally detectable, it follows that
f |Xα ∈ Cα and hence f ∈ C by definition.

Proposition 4.11. The functor L : VBb(S,C) → Lfb(S) is essentially surjec-
tive.

Proof. If F ∈ Lfb(S), then there is an open cover {Uα} and isomorphisms
ϕα : F|Uα → Onα

S |Uα . Put Uα,β := Uα ∩ Uβ . We have a transition function
gαβ : Uαβ → GLn(R) induced by the isomorphisms ϕα and ϕβ . More
precisely, consider the sequence of morphisms of OUαβ

-modules

OS|Uαβ

inj // On
S|Uαβ

ϕ−1
β

∼=
// F|Uαβ

ϕα

∼=
// On

S|Uαβ

pi // OS|Uαβ
,

where inj and pi denote the inclusion into the jth factor and the projection
onto the ith factor, respectively. We define uij ∈ OS|Uαβ

(Uαβ) by uij =

piϕαϕ
−1
β inj(1) with unit 1 in OS|Uαβ

(Uαβ) = O(Uαβ). Then gαβ is defined
by gαβ(x) = (uij(x)) for x ∈ Uαβ .

For each x ∈ Uα∩Uβ ∩Uγ , these transition functions satisfy the relation
gαβ(x)gβγ(x) = gαγ(x). This enables us to define a space E by the quotient
space (

⊔
α Uα × Rnα)/ ∼, where the equivalence relation ∼ is defined by

(x, v) ∼ (y,w) if x = y ∈ Uαβ and v = gαβ(x)w. Let ρ :
⊔
α Uα×Rnα → E

be the canonical projection. Then we define a continuous map π : E → S
by π(ρ(x, v)) = x. Since the restriction ρα : Uα × Rnα → π−1(Uα) is a
homeomorphism, it gives a subalgebra Cα of C0(π−1(Uα)) which is natu-
rally isomorphic to CUα×Rnα . By Lemma 4.10, we have a differential space
(E, CE).

If f ∈ CS , then (f ◦π)|ρα(Uα×Rnα ) ∈ Cα since the projection Uα×Rnα →
Uα is a morphism of differential spaces; see Section 6. This implies that
f ◦ π ∈ CE and hence the map π : (E, CE) → (S, CS) is a morphism of
differential spaces. Moreover, we can see that the morphism π is a vector
bundle with trivializations ({Uα}, {ρα}).

We shall show that LE is isomorphic to F . For s ∈ LE(Uα), we define
ŝ ∈ OS(Uα)

nα by the composite pr2 ◦ ρ−1
α ◦ s : Uα → π−1(Uα) → Uα ×
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Rn → Rn. Since ψα : LE(Uα) → OS(Uα)
nα defined by ψα(s) = ŝ is

an isomorphism, it gives rise to an isomorphism ψα : LE|Uα → Onα
S |Uα .

The definitions of ψα and E allow us to deduce that ϕ−1
α ◦ ψα = ϕ−1

β ◦ ψβ .
Therefore, we have a morphisms of equalizers

LF (U) //
∏

α LF (Uα ∩ U)
resα

αβ //

resβ
αβ

//

ϕ−1
α ψα

∼=
��

∏
αβ LF (Uα ∩ Uβ ∩ U)

ϕ−1
α ψα=ϕ−1

β ψβ∼=
��

F(U) //
∏

αF(Uα ∩ U)
resα

αβ //

resβ
αβ

//
∏

αβ F(Uα ∩ Uβ ∩ U).

This yields that LE ∼= F as an OS-module. Hence the functor L is essen-
tially surjective.

Proposition 4.12. The functor L is fully faithful.

Proof. Let f and g be morphisms from (E, πE) to (F, πF ). Assume that
Lf = Lg. Then for all sections s ∈ Γ(U,E), we see that f ◦ s = g ◦ s. This
implies that f = g.

Suppose that f : LE → LF is a morphism in Lfb(S) and ϕα : LE|Uα →
On
S|Uα and ψα : LF |Uα → Om

S |Uα are trivializations which is induced by the
given trivializations of E and F ; see Proposition 4.8. Then we obtain the
following commutative diagram

On
S|Uα

ϕ−1
α

∼=
//

tα
��

LE|Uα

f

��
Om
S |Uα LF |Uα .ψα

∼=oo

The morphism tα induces a morphism tα : Uα → Matm,n(R) of stratifolds
with such way of defining gαβ in the proof of Proposition 4.11. We define a
map ηα : E|Uα

∼= Uα × Rn → Uα × Rm ∼= F |Uα by ηα(x, v) = (x, tα(x)v).
This map is a morphism of stratifolds since the restriction on each manifold
(Uα ∩ Si) × Rn is smooth and for l ∈ CS×Rm , there are local retraction rx :
Ux → Ux∩Si and open set V of Rn such that l◦ηα|Ux×V = l◦ηα(rx× idV ).
Then the maps ηα induce a morphism η : E → F with ηα = η|π−1(Uα) :
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π−1
E (Uα) → π−1

F (Uα). In fact, we have a commutative diagram

On
S|Uα,β

ϕα◦ϕ−1
β //

''OOOOOOOOOO

tβ

��

On
S|Uα,β

tα

� �

LE|Uα,β

77oooooooooo

f
��

LF |Uα,β

''OOOOOOOOOO

Om
S |Uα,β

77oooooooooo

ψα◦ψ−1
β

// Om
S |Uα,β

.

By the construction of Lη, it is readily seen that Lη = f and hence the
functor L is full.

Thanks to Propositions 4.11 and 4.12, we see that the functor L is an
equivalence of categories. We shall prove that the category Lfb(S) is equiv-
alent to the full subcategory of the category Γ(S,OS)-Mod consisting of
finitely generated projective modules, which is denoted by Fgp(Γ(S,OS)).

Following Morye, we say that the Serre-Swan theorem holds for a locally
ringed space (X,OX) if the global section functor induces an equivalence
of categories between Lfb(X) and Fgp(Γ(X,OX)). The following theorem
then completes the proof of Theorem 4.9.

Theorem 4.13. (Morye, [10, Corollary 3.2]) Let (X,OX) be a locally ringed
space such that X is a paracompact Hausdorff space of finite covering di-
mension, and OX is a fine sheaf of rings (cf. Definition 3.2). Then the
Serre-Swan theorem holds for (X,OX).

The structure sheaf OS of a stratifold (S, C) is fine and the underlying
space S is paracompact; see Remark 2.3(iii). In order to prove Theorem 4.9,
it is thus sufficient to show that the covering dimension dimS of S is finite.

Theorem 4.14. [13, Proposition 5.1 in chapter 3] Any n-dimensional para-
compact manifold M (without boundary) has covering dimension dimM =
n.
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Theorem 4.15. [13, Proposition 5.11 in chapter 3] LetX be a normal space
and A and B be subspaces of X such that X = A ∪ B. Then, dimX ≤
dimA+ dimB + 1.

Corollary 4.16. Any finite-dimensional stratifold has finite covering dimen-
sion.

Proof. By the definition of a stratifold, we see that S = S1 t S2 t ... t Sn,
where Si is a manifold of dimension i. Theorems 4.14 and 4.15 imply that
dimS <∞.

By definition, it follows that Γ(S,OS) = OS(S) = C. Thus Proposition
4.13 and the results above enable us to deduce the following corollary.

Corollary 4.17. Let (S, C) be a stratifold and OS the structure sheaf. Then
the global sections functor Γ(S,−) : Lfb(S) → Fgp(C) is an equivalence.

We are now ready to prove the main theorem in this section.

Proof of Theorem 4.9. Corollary 4.17, Proposition 4.11 and 4.12 yield The-
orem 4.9

Remark 4.18. Theorem 3.5 states that a stratifold (S, C) can be regarded
as a subsheaf of an affine scheme of the form SpecOS(S). Since the space
SpecOS(S) is compact, it follows that the real spectrum SpecrOS(S) is a
proper subspace of the prime spectrum if S is non-compact; see Proposition
3.3. Moreover, in general, there exists a point in SpecOS(S) which is a max-
imal ideal but not in the real spectrum. Such a point is called a ghost; see [12,
8.22]. However, Theorem 4.9 and the original Serre-Swan theorem yield that
the category VBb(S,C) is equivalent to VBbSpecOS(S) the category of vector
bundles over the affine scheme SpecOS(S) via the category Fgp(Γ(S,OS));
see [10, Corollary 3.1] and [16, Theorem 6.2] for example.

5. A local characterization of morphisms of stratifolds

In this section, we describe morphisms of stratifolds inside the category of
diffeological spaces. On the way we obtain a characterization of them by
local data. We use the terminology of the book [4] for diffeology.
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Let Diffeology be the category of diffeological spaces; see [4]. We define
a functor k : Stfd → Diffeology by k(S, C) = (S,DC) and k(φ) = φ for a
morphism φ : S → S ′ of stratifolds, where

DC = {u : U → S | U : open in Rq, q ≥ 0, φ ◦ u ∈ C∞(U) for any φ ∈ C}.

Observe that a plot in DC is a set map. The functor k is faithful, but not
full; that is, for a continuous map f : S → S ′, it is more restrictive to
be a morphism of stratifolds (S, C) → (S ′, C ′) than to be a morphism of
diffeological spaces (S,DC) → (S ′,DC′).

We recall the fully faithful functor ` : Mfd → Diffeology defined in [4,
4.3]; see also [1, Theorem 2.3]. For a diffeological space (X,D), the set
X admits a topology which is referred as the D-topology. More precisely,
a subset A of X is open if and only if p−1(A) is open for any plot p ∈ D.
We denote by T (X,D) the topological space. It is readily seen that the
assignment of a topological space to a diffeological space induces a functor
T : Diffeology → Top.

For a topological space Y , we define a diffeological space D(Y ) =
(Y,DY ) in which the set of plots DY consists of all continuous maps U → Y
for any open subset U of Rq and for q ≥ 0.

Let DR be the standard diffeology on R. For each diffeological space
(X,D), we have an R-algebra F ′((X,D)) := HomDiffeology((X,D), (R,DR))
with the algebra structure defined pointwise. A usual argument enables us
to conclude that F ′ gives rise to a contravariant functor F ′ : Diffeology →
R-Alg.

Summarizing the functors mentioned above, we have a diagram

(5.1) Diffeology
T //

F ′

!!CC
CC

CC
CC

CC
CC

CC
CC

C
Top

D
oo

C0( )

��

Stfd

k

OO

F

((QQQQQQQQQQQ

Mfd

j

OO

C∞( )
//

`

??

R-Alg

| |

OO

in which the lower triangle and the left-hand side diagram are commutative.
We observe that the functor T is a left adjoint toD; see [17, Proposition 3.1].
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Moreover, it follows that the functor C0 and | | are adjoints. In fact, we have
bijections

HomTop(X, |F|)
Φ // HomR-Alg(F , C0(X))
Ψ

oo

which are defined by the composites Φ(g) : F τ→ F̃ l→ C0(|F|) g∗→ C0(X)

with the inclusion l and Ψ(ϕ) : X
θ→ |C0(X)| |ϕ|→ |F|, respectively. The

bijectivity follows from a straightforward computation.
We give here a characterization of morphisms of stratifolds in Diffeology

with local data.

Proposition 5.1. A morphism of diffeological spaces f : (S,DC) → (S ′,DC′)
stems from a morphism of stratifolds f : (S, C) → (S ′, C ′) if and only
if for any x ∈ S, there exist local retractions rx : Ux → Ux ∩ Si and
rf(x) : Vf(x) → Vf(x) ∩ S ′j such that rf(x) ◦ f ◦ rx = rf(x) ◦ f on some
neighborhood of x.

Proof. By definition, for any x ∈ S, there exists uniquely an integer i such
that x is in Si. Let rx : Ux → Ux ∩ Si be a local retraction. The stratum
Si is an i-dimensional manifold. Therefore, we have a local diffeomorphism
ϕi : Vx → Ux ∩ Si for some open subset Vx of Ri. Let u : Vx → S be the
composite l ◦ ϕi, where l : Ux ∩ Si → S is the inclusion.

Suppose that f : (S,DC) → (S ′,DC′) is a morphism of diffeological
spaces. In order to prove the “if” part, it suffices to show that for any x ∈
S, the induced morphism f ∗ : C ′

f(x) → Set(S,R)x factors through the R-
algebra Cx of germs, where Set(S,R)x denotes the germ at x of set maps
S → R associated with open neighborhoods of x. In fact, it follows that for
any α ∈ C ′, f ∗([α]f(x)) = [α ◦ f ]x ∈ Cx. Then there exists β ∈ C such that
(α ◦ f)|Wx = β|Wx for some open subset Wx of S. Since the R-algebra C is
locally detectable, we see that f : S → S ′ is a morphism of stratifolds and
hence k(f) = f .

Consider the following diagram

C ′
f(x)

(f◦u)∗

vvmmmmmmmmmmmmm
f∗

**VVVVVVVVVVVVVVVVVVVVV

C∞(Vx)ϕ−1
i (x)

ψ∗
i

∼=
//
C∞(Si)x

r∗x
∼=

//

ϕ∗
i

oo Cx s
//

l∗
oo Set(S,R)x,
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where ψi is the local inverse of ϕi and s denotes the inclusion. Observe that
(f ◦ u)∗ : C ′

f(x) → C∞(Vx)ϕ−1
i (x) is well defined since f is a morphism of

diffeological spaces. For any α ∈ C ′, we see that α = r∗f(x)(α) in C ′
f(x); see

[8, page 19]. Thus it follows that

r∗xψ
∗
i (f ◦ u)∗(r∗f(x)(α)) = α ◦ rf(x) ◦ f ◦ l ◦ ϕi ◦ ψi ◦ rx

= α ◦ rf(x) ◦ f ◦ rx = α ◦ rf(x) ◦ f = α ◦ f.

The third equality follows from the assumption. This implies that f ∗ factors
through the algebra Cx since r∗xψ

∗
i (f ◦ u)∗(r∗f(x)(α)) is in Cx.

We prove the “only if” part. Let f : (S, C) → (S ′, C ′) be a morphism
of stratifolds and rx : Ux → Ux ∩ Si and rf(x) : Vf(x) → Vf(x) ∩ S ′j are
appropriate local retractions. Without loss of generalities, we may assume
that the image of rf(x) is contained in a local coordinate V ′

f(x) of the manifold
Vf(x)∩S ′j . We have r∗x◦ψ∗

i ◦(f ◦u)∗ = f ∗. Observe that (f ◦u)∗ = ϕ∗
i ◦l∗◦f ∗

and that the target of f ∗ is the algebra Cx. Let πk be an element in C∞(Vf(x)∩
S ′j)f(x) obtained by extending the composite V ′

f(x)

∼=→ V ′ t→ Rj prk→ R by

a bump function at f(x), where V ′
f(x)

∼=→ V ′ is the homeomorphism of the
local coordinate, t is the inclusion and prk denotes the projection onto the
kth factor. Then for the element r∗f(x)(πk) ∈ C ′

f(x), we have r∗x ◦ ψ∗
i ◦ (f ◦

u)∗(r∗f(x)(πk)) = f ∗ ◦ r∗f(x)(πk). The same argument as above enables us to
deduce that

πk ◦ rf(x) ◦ f ◦ rx = πk ◦ rf(x) ◦ f

on some neighborhood Wx of x and hence rf(x) ◦ f ◦ rx = rf(x) ◦ f on Wx.
This completes the proof.

Corollary 5.2. LetM be a manifold and (S, C) a stratifold. Then the functor
k : Stfd → Diffeology induces a bijection

k∗ : HomStfd((M,C∞(M)), (S, C))
∼=→ HomDiffeology((M,DC∞(M)), (S,DC)).

In the rest of this section, we give a subcategory of Diffeology which is
equivalent to Stfd as a category.

Definition 5.3. Let (S, C) and (S ′, C ′) be stratifolds. A continuous map f :
S → S ′ is (C, C ′)-admissible if for any x ∈ S, there exist local retractions
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rx and rf(x) near x and f(x), respectively such that rf(x) ◦ f ◦ rx = rf(x) ◦ f
and for each φ ∈ C ′, the restriction of φ ◦ f : S → R to any stratum Si of
(S, C) is smooth.

The proof of Proposition 5.1 yields the following result, which recovers
as special case [8, Exercise 2.6(11)].

Proposition 5.4. A continuos map f : S → S ′ induces a morphism of strat-
ifolds (S, C) → (S ′, C ′) if and only if f is (C, C ′)-admissible.

Let (S, C), (S ′, C ′) and (S ′′, C ′′) be stratifolds. Proposition 5.4 immedi-
ately implies that (C, C ′)-admissible continuous maps compose with (C ′, C ′′)-
admissible continuous maps S ′ → S ′′.

Let k : Stfd → Diffeology be the functor in (5.1) and 〈Imk〉 the full
subcategory of Diffeology consisting of objects which come from Stfd by
k. By the argument above, we have a wide subcategory 〈Imk〉W of 〈Imk〉
consisting of admissible maps and the same class of objects as in 〈Imk〉.
Then Proposition 5.1 establishes the following theorem.

Theorem 5.5. The functor k : Stfd → Diffeology induces an equivalence
k : Stfd → 〈Imk〉W of categories. In particular, one has a natural bijection

k∗ : HomStfd((S, C), (S ′, C ′))
∼=→ Hom〈Imk〉W ((S,DC), (S

′,DC′)).

6. Cartesian product of stratifolds

We recall the product of stratifolds defined in [8]. Let (S, CS) and (S ′, CS′)
be stratifolds. We define a stratifold with the underlying topological space
S × S ′. Let CS×S′ be the R-algebra consisting of functions f : S × S ′ → R
which are smooth on every products Si × (S ′)j and for each (x, y) ∈ Si ×
(S ′)j , there are local retractions rx : Ux → Si∩Ux and ry : Vy → (S ′)j ∩Vy
for which f |Ux×Vy = f(rx× ry). Then (S ×S ′, CS×S′) is a stratifold and the
projections into first and second factors are morphisms of stratifolds; see [8,
Appendix A].

Proposition 6.1. The product of stratifolds mentioned above is the cartesian
product in the category Stfd.
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We use lemmas to prove Proposition 6.1.

Lemma 6.2. Let f1 : (S1, C1) → (S ′
1, C ′

1) and f2 : (S2, C2) → (S ′
2, C ′

2) be
morphisms of stratifolds. Then the product of maps

f1 × f2 : (S1 × S2, CS1×S2) → (S ′
1 × S ′

2, CS′
1×S′

2
)

is a morphism of stratifolds.

Proof. For x ∈ Si, assume that x ∈ Ski
i and fi(x) ∈ S ′

i
ji . Then we have a

diagram
C ′
fi(x)

∼= //

f∗i
��

C∞(S ′
i
ji)fi(x)

Cx
∼= // C∞(Si

ki)x

in which horizontal maps induced by the inclusions are isomorphisms. There-
fore, for a smooth map ϕ defined on an appropriate neighborhood of fi(x) in
S ′
i
ji , we see that ϕ ◦ rfi(x) ◦ fi is a smooth map on some neighborhood of x

in Ski
i , where rfi(x) denotes a local retraction near fi(x). Thus, we infer that

for any h in CS′
1×S′

2
,

h ◦ (f1 × f2)|Sk1
1 ×Sk2

2
= h ◦ (rf1(x1) × rf2(x2)) ◦ (f1 × f2)

= (h ◦ ϕ−1
α ) ◦ (ϕα ◦ (rf1(x1) × rf2(x2)) ◦ (f1 × f2)

on some neighborhood of (x1, x2) in Sk11 × Sk22 , where ϕα is a local coordi-
nate around (f1(x1), f2(x2)) of the manifold S ′

1
j1 × S ′

2
j2 . This implies that

h ◦ (f1 × f2)|Sk1
1 ×Sk2

2
is smooth. Since f1 and f2 are admissible, it follows

that for h ∈ CS′
1×S′

2
,

h ◦ (f × f2) ◦ (rx1 × rx2) = h ◦ (rf1(x1) × rf2(x2)) ◦ (f × f2) ◦ (rx1 × rx2)

= h ◦ (rf1(x1) × rf2(x2)) ◦ (f × f2)

= h ◦ (f × f2)

on an appropriate neighborhood of (x1, x2) in S1 × S2. This completes the
proof.

By the same argument as in the proof of Lemma 6.2, we have the follow-
ing lemma.
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Lemma 6.3. The diagonal map ∆ : S → S×S is a morphism of stratifolds.

Proof of Proposition 6.1. Let (S, C), (S ′, C ′) and (Z, C1) be stratifolds. Let
f1 : (Z, C1) → (S, C) and f2 : (Z, C1) → (S ′, C ′) be morphisms of strati-
folds. It suffices to show that (f1×f2)◦∆ is a morphism of stratifolds. This
follows from Lemmas 6.2 and 6.3
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[8] M. Kreck, Differential Algebraic Topology, From Stratifolds to Exotic
Spheres, Graduate Studies in Math., 110, AMS, 2010.

AOKI & KURIBAYASHI - ON THE CATEGORY OF STRATIFOLDS

- 158 -



[9] I. Moerdijk and G.E. Reyes, Models for smooth infinitesimal analysis,
Springer-Verlag, New York, 1991.

[10] A.S. Morye, Note on the Serre-Swan Theorem, Math. Nachr. 286
(2013), 272–278.
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