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Résumé. Suite aux deux premiers articles de cette série, on étudie ici les
foncteurs adjoints entre catégories multiples de dimension infinie. Le cadre
général est constitué par les catégories multiples chirales - une forme faible
partiellement laxe ayant des interchangeurs dirigés entre les compositions
faibles.
Abstract. Continuing our first two papers in this series, we study adjoints for
infinite-dimensional multiple categories. The general setting is chiral multi-
ple categories - a weak, partially lax form with directed interchanges between
the weak composition laws.
Keywords. multiple category, double category, cubical set, adjoint functor.
Mathematics Subject Classification (2010). 18D05, 55U10, 18A40.

0. Introduction

This is the third paper in a series on weak and lax multiple categories, of
finite or infinite dimension - an extension of weak double and weak cubical
categories.

Our main framework, a chiral multiple category, was introduced in the
first article [GP8], cited below as Part I; it is a partially lax multiple cate-
gory with a strict composition gf = f +0 g in direction 0 (the transversal
direction), weak compositions x+i y in all positive (or geometric) directions
i ∈ N \{0} and a directed ij-interchanger for the i- and j-compositions (for
0 < i < j)

χij(x, y, z, u) : (x+i y) +j (z +i u)→ (x+j z) +i (y +j u). (1)

Part II [GP9] studies multiple limits in this setting. We now investigate
multiple adjoints, extending the study of double adjunctions in [GP2] and
cubical adjunctions in [G3].
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Section 1 is an informal introduction to multiple adjunctions. After a
synopsis of weak and chiral multiple categories, we describe a natural co-
lax/lax adjunction F a G between the weak double categories of spans and
cospans (already studied in [GP2]) and its extension to the corresponding
infinite dimensional, weak multiple categories (of cubical type); the functor
F is constructed with pushouts and is colax, while G is constructed with
pullbacks and is lax. Then we derive from this adjunction other instances,
between chiral multiple categories that are not of cubical type. Other exam-
ples are given in 1.7.

In Section 2 we introduce the strict double category Cmc of chiral mul-
tiple categories (or cm-categories), lax and colax cm-functors and suitable
double cells. Comma cm-categories are also considered. Both topics extend
notions of weak double categories developed in [GP2].

Section 3 reviews the notions of companions and adjoints in a double
category, from [GP2]. Then Sections 4 and 5 introduce and study multiple
colax/lax adjunctions, as adjoint arrows in the double category Cmc.

Finally, Section 6 deals with the preservation of limits by right adjoints,
for cm-categories.

Literature. Strict double and multiple categories were introduced and stud-
ied by C. Ehresmann and A.C. Ehresmann [Eh, BE, EE1, EE2, EE3]. Strict
cubical categories can be seen as a particular case of multiple categories
(as shown in Part I); their links with strict ω-categories are made clear in
[BM, ABS]. Weak double categories (or pseudo double categories) were in-
troduced and studied in our series [GP1 - GP4]; adjunctions and monads in
this setting are also studied in [FGK1, FGK2, Ni]; other aspects are devel-
oped in [DPR, Fi, Ga, P2, P3]. For weak cubical categories see [G1 - G3]
and [GP5]. The three-dimensional case of lax triple categories covers and
combines diverse structures like duoidal categories, Gray categories, Verity
double bicategories and monoidal double categories; see [GP6, GP7]. Fur-
ther information on literature for higher dimensional category theory can be
found in the Introduction of Part I.

Notation. We follow the notation of Parts I and II [GP8, GP9]; the reference
I.2.3 or II.2.3 points to Subsection 2.3 of Part I or Part II. The symbol ⊂
denotes weak inclusion. Categories and 2-categories are generally denoted
as A,B...; weak double categories as A,B...; weak or lax multiple categories
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as A,B... More specific points of notation are recalled below, in 1.1.

Acknowledgments. The authors are grateful to the anonymous referee for a
very careful reading of the paper and detailed comments.

1. Some basic examples of adjunctions

We begin by recalling examples of adjunctions for weak double categories,
studied in [GP2], and their extension to (infinite-dimensional) weak cubical
categories, studied in [G3]. Then we derive from the latter some instances of
adjunctions between chiral multiple categories that are not of a cubical type.

This section is an informal introduction to such adjunctions, precise def-
inition will be given later.

1.1 Notation

The definitions of weak and chiral multiple categories can be found in Part
I, or - briefly reviewed - in Part II, Section 1. Here we only give a sketch of
them, while recalling the notation we are using.

The two-valued index α (or β) varies in the set 2 = {0, 1}, also written
as {−,+}.

A multi-index i is a finite subset of N, possibly empty. Writing i ⊂ N
it is understood that i is finite; writing i = {i1, ..., in} it is understood that i
has n distinct elements, written in the natural order i1 < i2 < ... < in; the
integer n > 0 is called the dimension of i. We write:

ij = ji = i ∪ {j} (for j ∈ N \ i),
i|j = i \{j} (for j ∈ i).

(2)

For a weak multiple category A, the set of i-cells Ai is written as A∗, Ai,
Aij when i is ∅, {i}, {i, j} respectively. Faces and degeneracies, satisfying
the multiple relations, are denoted as

∂αj : Xi → Xi|j, ej : Xi|j → Xi. (3)

The transversal direction i = 0 is set apart from the positive, or geo-
metric, directions. For a positive multi-index i = {i1, ..., in} ⊂ N \{0} the
augmented multi-index 0i = {0, i1, ..., in} has dimension n + 1, but both i
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and 0i have degree n. An i-cell x ∈ Ai of A is also called an i-cube, while a
0i-cell f ∈ A0i is viewed as an i-map f : x→0 y (also written as f : x→ y),
where x = ∂−0 f and y = ∂+0 f . Composition in direction 0 is categorical
(and generally realised by ordinary composition of mappings); it is written
as gf = f+0g, with identities 1x = id(x) = e0(x). The transversal category
tvi(A) consists of the i-cubes and i-maps of A, with transversal composition
and identities.

On the other hand, composition of i-cubes and i-maps in a positive di-
rection i ∈ i (often realised by pullbacks, pushouts, tensor products, etc.) is
written in additive notation

x+i y (∂+i x = ∂−i y),

f +i g : x+i y → x′ +i y
′ (f : x→ x′, g : y → y′, ∂+i f = ∂−i g).

(4)

These operations are categorical and interchangeable up to transversally-
invertible comparisons (for 0 < i < j, see I.3.2)

λix : (ei∂
−
i x) +i x→0 x (left i-unitor),

ρix : x+i (ei∂
+
i x)→0 x (right i-unitor),

κi(x, y, z) : x+i (y +i z)→0 (x+i y) +i z (i-associator),

χij(x, y, z, u) : (x+i y) +j (z +i u)→0 (x+j z) +i (y +j u)

(ij-interchanger).

(5)

The comparisons are natural with respect to transversal maps; λi, ρi and
κi are special in direction i (i.e. their i-faces are transversal identities), while
χij is special in both directions i, j; all of them commute with ∂αk for k 6= i
(or k 6= i, j in the last case). Finally the comparisons must satisfy various
conditions of coherence, listed in I.3.3 and I.3.4.

More generally for a chiral multiple category A the ij-interchangers χij
are not assumed to be invertible (see I.3.7).

1.2 Cubical spans and cospans

Weak multiple categories generalise weak cubical categories and weak sym-
metric cubical categories; the latter were introduced in [G1] for studying
higher cobordism, and give our main examples of weak multiple categories
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of infinite dimension. We begin by recalling two instances in an informal,
incomplete way.

The weak symmetric cubical category Span(C) of cubical spans (or
ωSpan(C)) was constructed in [G1] over a category C with (a fixed choice
of) pullbacks. An n-cube is a functor x : ∨n → C, where ∨ is the formal-
span category

0 uoo // 1 ∨

(0, 0) (u, 0)oo // (1, 0) • //

2
��

1

(0, u)

OO

��

(u, u)oo //

OO

��

(1, u)

OO

��
(0, 1) (u, 1)oo // (1, 1) ∨2.

(6)

(Identities and composites are understood.) An n-map, or transversal
map of n-cubes, is a natural transformation f : x → y : ∨n → C of such
functors; these maps form the category Spann(C) = Cat(∨n,C), with
composition written as gf and identities 1x = id(x). There are obvious
geometric faces and degeneracies (satisfying the cubical relations)

∂αi : Spann(C)→ Spann−1(C),

ei : Spann−1(C)→ Spann(C) (i = 1, ..., n; α = ±).
(7)

Moreover there are geometric composition laws: the i-concatenation
x +i y is defined for i-consecutive n-cubes (i = 1, ..., n; ∂+i x = ∂−i y),
and constructed with pullbacks; it is categorical up to invertible n-maps (un-
itors and associators); similarly we have the i-concatenation f +i g of i-
consecutive n-maps. All pairs of composition laws have a strict interchange.

Viewing Span(C) as a weak multiple category (of cubical type), an n-
cube x : ∨n → C is viewed as an i-cube, for every positive multi-index
i = {i1, ..., in} of dimension n > 0; an n-map is viewed as an i-map.

The 2-dimensional and 3-dimensional truncations of Span(C) are writ-
ten as:

Span(C) = 2Span(C), 3Span(C). (8)

The weak double category Span(C) was studied in our series [GP1] -
[GP4]: its horizontal and vertical arrows are ordinary arrows and spans of C,
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respectively, while a double cell is a morphism of spans. The 3-dimensional
truncation 3Span(C) consists of i-cells for i ⊂ 3 = {0, 1, 2} (or i-cubes and
i-maps for i < 3, in the cubical framework).

Similarly one can find in [G1] the construction of the weak symmet-
ric cubical category Cosp(C) of cubical cospans over a category C with (a
fixed choice of) pushouts. An n-cube is now a functor x : ∧n → C, where
∧ = ∨op is the formal-cospan category 0 → u ← 1; again, a transversal
map of n-cubes is a natural transformation of such functors. Cosp(C) is
transversally dual to Span(Cop).

The 2-dimensional and 3-dimensional truncations are written as:

Cosp(C) = 2Cosp(C), 3Cosp(C). (9)

1.3 The chiral case

Chiral multiple categories of non-cubical type are constructed in [GP7] and
Part I, Section 4.

For instance, if the category C has pullbacks and pushouts, the weak
double category Span(C), of arrows and spans of C, can be ‘amalgamated’
with the weak double category Cosp(C), of arrows and cospans of C, to
form a 3-dimensional structure: the chiral triple category SC(C) whose ar-
rows in direction 0, 1 and 2 are the arrows, spans and cospans of C, in this
order (as required by the 12-interchanger).

The highest cubes, of type {1, 2}, are functors x : ∨×∧→ C, the highest
(3-dimensional) cells are the natural transformations of the latter

(0, 0)

��

(u, 0)oo //

��

(1, 0)

��

• //

2
��

1

(0, u) (u, u)oo // (1, u)

(0, 1)

OO

(u, 1)oo //

OO

(1, 1)

OO

∨×∧.

(10)

Here 0-composition works by ordinary composition in C, 1-composition
by composing spans (with pullbacks) and 2-composition by composing co-
spans (with pushouts).

Higher dimensional examples, like SpCq(C), SpC∞(C) and S−∞C∞(C)
(and the corresponding left-chiral cases) can be found in I.4.4; note that
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S−∞C∞(C) is indexed by all integers, with spans in each negative direction,
ordinary arrows in direction 0 and cospans in positive directions.

1.4 A double adjunction

Let C be a category with distinguished pullbacks and pushouts. For the sake
of simplicity we assume that the distinguished pullback (resp. pushout) of an
identity along any map is an identity.

The weak double categories Span(C) and Cosp(C) of spans and cospans
of C are linked by an obvious colax/lax adjunction

F : Span(C) −→←− Cosp(C) :G,

η : 1 99K GF, ε : FG 99K 1,
(11)

that we describe here in an informal way. (Writing η : 1 99K GF and
ε : FG 99K 1 is an abuse of notation, since the comparisons of F and G
have conflicting directions and cannot be composed. The precise definition
of a colax/lax adjunction of weak double categories can be found in [GP2];
but the reader will find here its multiple extension, in Section 4, and can
easily recover the truncated notion.)

At the basic level of tv∗(Span(C)) = tv∗(Cosp(C)) = C everything is
an identity. At the level 1 (of 1-cubes and 1-maps) F operates by pushout
and G by pullback; the special transversal 1-maps ηx : x → GFx and
εy : FGy → y are obvious (for a span x = (x′, x′′) and a cospan y = (y′, y′′)
with 1-faces A and B):

A

& &

A

& &

y′

++X ηx //

x′
33

x′′ ++

•

88

&&

• •

88

& &

• εy // Y

B

88

B

88

y′′

33 (12)

The triangle identities are plainly satisfied:

ε(Fx).F (ηx) = id(Fx), G(εy).η(Gy) = id(Gy).

Finally it is easy to check that F is, in a natural way, a colax double
functor (while G is lax). The comparison cell

F (x, y) : F (x+1 y)→ Fx+1 Fy
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for concatenation is given by the natural map from the pushout of x +1 y =
(x′z′, y′′z′′) to the cospan Fx+1 Fy (with vertex Z ′ in the diagram below)

A

&&X
x′′

' '

x′ 77

•

&&
Z

z′ 77

z′′ ''

B

88

&&

Z ′

Y
y′

77

y′′ ''

•

88

C

88

(13)

Since we agreed to follow the unitarity constraint for the choice of pull-
backs and pushouts in C, the adjunction is unitary, in the sense that this
property holds for the weak double categories Span(C), Cosp(C) and the
colax/lax double functors F,G. It is also interesting to note that the restricted
adjunction at the ?-level

F∗ : C −→←− C :G∗ η∗ : 1→ G∗F∗, ε∗ : F∗G∗ → 1, (14)

is composed of identity functors and identity transformations.
We also remark that the natural transformations Fη, εF , ηG, Gε at level

1 are invertible (which means that the ordinary adjunction at level 1 is idem-
potent: see [AT, LS]).

1.5 A multiple adjunction

Following [G3], the unitary colax double functor F : Span(C)→ Cosp(C)
can be extended to a unitary colax multiple functor of cubical type

F : Span(C)→ Cosp(C).

For instance, let us take a 2-dimensional span x ∈ Spani(C) indexed by
i = {i, j}, as in the left diagram below

x00 xu0oo // x10 x00 //

��

F (∂−j x)(u)

��

x10oo

��
x0u

OO

��

xuuoo //

OO

��

x1u

OO

��

F (∂−i x)(u)
// colim(x) F (∂+i x)(u)

oo

x01 xu1oo // x11 x01 //

OO

F (∂+j x)(u)

OO

x11

OO

oo

(15)
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The 2-dimensional cospan F (x) = Fi(x) is constructed at the right hand,
with the pushouts F (∂αi x), F (∂

α
j x) of the four faces and, in the central ver-

tex, the colimit of the whole diagram x : ∨2 → C. (The latter can be con-
structed in C as a pushout of pushouts; a general characterisation of the dual
topic, limits ‘generated’ by pullbacks, can be found in [P1].)

One proceeds in a similar way, defining Fi for a positive multi-index
i = {i1, ..., in} of degree n, after all instances of degree n− 1

∂αi (Fi(x)) = Fi|i(∂
α
i x) for α = ± and i ∈ i,

Fi(x)(u) = colim(x), where u = (u, ..., u) ∈ ∨n.
(16)

The definition of F on transversal i-maps is obvious, as well as the
comparison cells for the i-directed concatenation F i(x, y) : F (x +i y) →
Fx+i Fy.

The unitary lax double functor G : Cosp(C) → Span(C) is similarly
extended, using distinguished limits instead of colimits, and gives a unitary
lax multiple functor G : Cosp(C)→ Span(C) of cubical type.

One extends the unit η : 1 99K GF by a similar inductive procedure:

∂αi (ηi(x)) = ηi|i(∂
α
i x) (α = ±, i ∈ i),

(ηix)(u) : x(u)→ (GiFix)(u) = lim(Fix),
(17)

where the map (ηix)(u) is given by the universal property of lim(Fix) as
the limit of the cubical cospan Fix : ∧n → C.

Analogously for the counit ε : FG 99K 1. The triangular identities hold.

1.6 Chiral examples

The colax/lax adjunction of weak triple categories of cubical type

F : 3Span(C) −→←− 3Cosp(C) :G, (18)

can be factorised through the chiral triple category SC(C) of spans and co-
spans of C, obtaining two colax/lax adjunctions of chiral triple categories
(no longer of cubical type)

F ′ : 3Span(C) −→←− SC(C) :G′,

F ′′ : SC(C) −→←− 3Cosp(C) :G′′.
(19)
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Here the functor F ′ : 3Span(C)→ SC(C) acts on a 12-cube x

- by pushout on the three 2-directed spans of x,
- as the identity on the two 1-directed boundary spans ∂α2 (x),
- by induced morphisms on the middle 1-directed span.

On the other hand the functor G′ : SC(C)→ 3Span(C) acts by pullback
on the three (2-directed) cospans of x, as the identity on the (1-directed)
boundary spans ∂α2 (x) and by induced morphisms on the middle span. Sim-
ilarly for F ′′ and G′′.

One can also factorise the adjunction (18) through the left chiral triple
category CS(C) of cospans and spans, obtaining two colax/lax adjunctions
of left chiral triple categories.

Similarly, the multiple adjunction constructed in 1.5 can be factorised
through any right chiral multiple category SpC∞(C), or through any left
chiral multiple category CpS∞(C).

However, in infinite dimension, one may prefer to consider a more sym-
metric situation, starting from a colax/lax adjunction of weak multiple cate-
gories indexed by the ordered set Z of integers (pointed at 0)

F : ZSpan(C) −→←− ZCosp :G. (20)

This can be factorised through the chiral multiple category S−∞C∞(C),
obtaining two colax/lax adjunctions of ‘unbounded’ chiral multiple cate-
gories

F ′ : ZSpan(C) −→←− S−∞C∞(C) :G′,

F ′′ : S−∞C∞(C) −→←− ZCosp(C) :G′′.
(21)

1.7 Other examples

Now we start from an ordinary adjunction F a G

F : X −→←− A :G, η : 1→ GF, ε : FG→ 1, (22)

between categories with (a choice of) pullbacks. This can be extended in a
natural way to a unitary colax/pseudo adjunction between the weak multiple
categories of higher spans (of cubical type)

Span(F ) : Span(X) −→←− Span(A) : Span(G). (23)
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In fact there is an obvious 2-functor

Span : Catpb → CxCmc, (24)

defined on the full sub-2-category of Cat containing all categories with (a
choice of) pullbacks, with values in the 2-category of chiral multiple cate-
gories, colax functors and their transversal transformations (see 2.1).

It sends a category C with pullbacks to the chiral multiple category
Span(C) (actually a weak multiple category of symmetric cubical type).

For a functor F : X→ A (between categories with pullbacks), Span(F ),
also written as F for brevity, simply acts by computing F over the dia-
grams of X that form i-cubes and i-maps; formally, over an i-map f : x →
y : ∨n → X, F (f) : F (x)→ F (y) is the composite

F.f : F.x→ F.y : ∨n → A.

This extension is, in a natural way, a unitary colax functor, since iden-
tities of X go to identities of A and a composition x +i y of two spans
x, y : ∨ → X (in any direction i > 0) gives rise to a diagram in X and a
diagram in A

X1 FX1

X

x′ 99

x′′

$$

FX

Fx′ 77

Fx′′

''
P

z′ ::

z′′ $$

X2 FP a //

Fz′
44

Fz′′ **

Q

99

%%

FX2

Y
y′

::

y′′ %%

FY
Fy′

77

Fy′′ ''
X3 FX3

(25)

where the comparison F i(x, y) : F (x +i y) → F (x) +i F (y) is an i-special
transversal map given by the A-morphism a : FP → Q determined by the
universal property of the pullback Q. Similarly we define F i(x, y) for every
i-composition of i-cubes. Note that Span(F ) is pseudo if (and only if) the
functor F : X→ A preserves pullbacks.

Finally, a natural transformation ϕ : F → F ′ : X → A yields a trans-
versal transformation

Span(ϕ) : Span(F )→ Span(F ′) : Span(X)→ Span(A), (26)
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that again will often be written as ϕ. On an i-cube x : ∨n → X, ϕx :
F (x)→0 F

′(x) is the composite of the functor x : ∨n → X with the natural
transformation ϕ : F → F ′ : X → A. Concretely, the transversal i-map
ϕx : F (x)→0 F

′(x) has components ϕ(x(t)), for every vertex t of ∨n.
Now, letting the 2-functor Span : Catpb → CxCmc act on the adjunc-

tion (22), we get an adjunction of weak multiple categories with the proper-
ties stated above: Span(F ) is colax, Span(G) is pseudo and both are unitary.

On the other hand, if X and A have pushouts, the adjunction (22) yields
a pseudo/lax adjunction of weak multiple categories

F : Cosp(X) −→←− Cosp(A) :G. (27)

Finally, if X and A have pullbacks and pushouts, we can extend (22) to
a colax/lax adjunction of chiral triple categories

F : SC(X) −→←− SC(A) :G, (28)

or consider higher-dimensional extensions of ‘type’ SpCq, SpC∞, S−∞C∞,
etc. (see 1.3).

Note that, according to the analysis of [GP6], Section 5, F is a colax-
pseudo morphism of chiral triple categories (i.e. colax for the 1-directed
composition, realised by pullbacks, and pseudo for the 2-directed compo-
sition, realised by pushouts) while G is pseudo-lax.

2. The double category of lax and colax multiple functors

In the 2-dimensional case, weak double categories with lax and colax double
functors and suitable double cells form a strict double category Dbl, a crucial
structure introduced in [GP2] to define colax/lax double adjunctions - also
recalled in Part I.

This construction was extended in [G3], Section 2, to form the strict
double category Wsc of weak symmetric cubical categories, lax and colax
symmetric cubical functors (and suitable double cells), in order to define
colax/lax adjunctions between weak symmetric cubical categories.

We now give a further extension, building the strict double category Cmc
of chiral multiple categories, lax and colax multiple functors, that will be
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used below to define colax/lax adjunctions between chiral multiple cate-
gories.

Comma chiral multiple categories are also considered, extending again
the cases of double and symmetric cubical categories, dealt with in [GP2,
G3].

For Cmc we follow the notation for double categories used in [GP1] -
[GP4]: the horizontal and vertical compositions of cells are written as (π | ρ)
and (π

σ
), or more simply as π|ρ and π⊗σ. Horizontal identities, of an object

or a vertical arrow, are written as 1A and 1u; vertical identities, of an object
or a horizontal arrow, as 1•A and 1•f .

2.1 Lax cm-functors

A chiral multiple category is also called a cm-category, for short.
As defined in I.3.9, a lax multiple functor F : A → B between chiral

multiple categories, or lax cm-functor, has components Fi : Ai → Bi for all
multi-indices i (often written as F ) that agree with all faces, 0-degeneracies
and 0-composition. Moreover, for every positive multi-index i and i ∈ i, F
is equipped with i-special comparison i-maps F i that agree with faces

F i(x) : eiF (x)→0 F (eix) (for x in Ai|i),

F i(x, y) : F (x) +i F (y)→0 F (z) (for z = x+i y in Ai),

∂αj F i(x) = F i(∂
α
j x) (for j 6= i),

∂αj F i(x, y) = F i(∂
α
j x, ∂

α
j y) (for j 6= i).

(29)

and satisfy some axioms. We write down the naturality conditions (lmf.1-
2), frequently used below, while the coherence conditions (lmf.3-5) can be
found in I.3.9.

(lmf.1) (naturality of unit comparisons) For every i|j-map f : x →0 y in A
we have:

F (ejf).F j(x) = F j(y).ej(Ff) : ejF (x)→0 F (ejy). (30)

(lmf.2) (naturality of composition comparisons) For two j-consecutive i-

maps f : x→0 x
′ and g : y →0 y

′ in A we have:

F (f +j g).F j(x, y) = F j(x
′, y′).(F (f) +j F (g)). (31)
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A transversal transformation h : F → G : A → B between lax multiple
functors of chiral multiple categories consists of a face-consistent family of
i-maps in B (its components), one for every positive multi-index i and every
i-cube x in A

hx : F (x)→0 G(x), h(∂αj x) = ∂αj (hx), (32)

under the axioms (trt.1) and (trt.2L), see I.3.9.
We have thus the 2-category LxCmc of cm-categories, lax cm-functors

and their transversal transformations. Similarly one defines the 2-category
CxCmc, for the colax case where the comparisons of colax cm-functors
have the opposite direction. A pseudo cm-functor is a lax cm-functor whose
comparisons are invertible; it is made colax by the inverse comparisons.

2.2 The double category Cmc

Lax and colax cm-functors do not compose well, since we cannot compose
their comparisons. But they give the horizontal and vertical arrows of a strict
double category Cmc, crucial for our study, where ‘internal’ orthogonal ad-
junctions (recalled below, in Section 3) will provide our general notion of
multiple adjunction (Section 4) while companion pairs amount to pseudo
cm-functors (Section 5).

The objects of Cmc are the cm-categories A,B,C, ...; its horizontal ar-
rows are the lax cm-functors R, S...; its vertical arrows are the colax cm-
functors F,G...

A double cell π : (F R
S G)

A R //

•F

��

B
• G

��
π

C
S
// D

(33)

is - roughly speaking - a ‘transformation’ π : GR 99K SF . But the com-
posites GR and SF are neither lax nor colax: the coherence conditions of π
require the individual knowledge of the four ‘functors’, including the com-
parison cells of each of them.

Precisely, the double cell π consists of the following data:
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(a) two lax cm-functors R : A → B and S : C → D, with comparisons as
follows:

Ri(x) : ei(Rx)→0 R(eix), Ri(x, y) : Rx+i Ry →0 R(x+i y),

Si(x) : ei(Sx)→0 S(eix), Si(x, y) : Sx+i Sy →0 S(x+i y),

(b) two colax cm-functors F : A → C and G : B → D, with comparisons as

follows:

F i(x) : F (eix)→0 ei(Fx), F i(x, y) : F (x+i y)→0 Fx+i Fy,

Gi(x) : G(eix)→0 ei(Gx), Gi(x, y) : G(x+i y)→0 Gx+i Gy,

(c) a family of i-maps πx : GR(x)→0 SF (x) of D (for every i-cube x in A),

consistent with faces
π(∂αi x) = ∂αi (πx). (34)

These data have to satisfy the naturality condition (dc.1) and the coher-
ence conditions (dc.2), (dc.3) (with respect to i-directed degeneracies and
composition, respectively)

(dc.1) SFf.πx = πy.GRf : GR(x)→ SF (y) (for f : x→ y in tvi(A)),

(dc.2) SF i(x).πei(x).GRi(x) = SiF (x).ei(πx).GiR(x) (for x in Ai|i),

Gei(Rx)
GRi(x) //

GiR(x)

��

GR(eix)
πei(x) // SF (eix)

SF i(x)

��
eiGR(x)

eiπ(x)
// eiSF (x)

SiF (x)
// SeiF (x)

(dc.3) SF i(x, y).πz.GRi(x, y) = Si(Fx, Fy).(πx+i πy).Gi(Rx,Ry)

(for z = x+i y in Ai),

G(Rx+i Ry)
GRi(x,y) //

Gi(Rx,Ry)

��

GR(z) πz // SF (z)

SF i(x,y)

��
GRx+i GRy πx+iπy

// SFx+i SFy
Si(Fx,Fy)

// S(Fx+i Fy)
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The horizontal composition (π | ρ) and the vertical composition π⊗ σ =
(π
σ
) of double cells are both defined via the composition of transversal maps

(in a cm-category)

A R //

•F

��

•
R′ //

• G

��

•

• H

� �
π ρ

• S //

•F ′

��

• S′ //

• G′

��

•

• H′

� �
σ τ

•
T

// •
T ′

// •

(35)

(π | ρ)(x) = S ′πx.ρRx : HR′R(x)→0 S
′GR(x)→0 S

′SF (x),

(π
σ
)(x) = σFx.G′πx : G′GR(x)→0 G

′SF (x)→0 TF
′F (x),

(36)

(for x in A). We verify below, in Theorem 2.3, that these compositions are
well-defined and satisfy the axioms of a double category.

Within Cmc, we have the strict 2-category LxCmc of cm-categories, lax
cm-functors and transversal transformations: namely, LxCmc is the restric-
tion of Cmc to trivial vertical arrows. Symmetrically the strict 2-category
CxCmc, whose arrows are the colax cm-functors, also lies in Cmc.

As in I.1.2 (for weak double categories), we can also note that a dou-
ble cell π : (F R

1 1) gives a notion of transversal transformation π : R 99K
F : A → B from a lax to a colax functor, while a double cell π : (1 1

S G)
gives a notion of transversal transformation π : G 99K S : A → B from a
colax to a lax functor. Moreover, for a fixed pair A,B of chiral multiple
categories, all the transversal transformations between lax and colax func-
tors (of the four possible kinds) compose, forming a category {A,B} whose
objects are the lax and the colax functors A→ B.

2.3 Theorem

The structure Cmc, as defined above, is indeed a strict double category.

Proof. The argument is much the same as for Dbl in [GP2] and for Wsc in
[G3].

First, to show that the double cells defined in (36) are indeed coherent,
we verify the condition (dc.3) for (π | ρ), with respect to a concatenation
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z = x +i y in A. Our property amounts to the commutativity of the outer
diagram below, formed of transversal maps (omitting the index i in +i and
all comparisons Ri etc.)

HR′Rz
ρRz // S ′GRz S′πz // S ′SFz

S′SF
��

HR′(Rx+Ry)
ρ(Rx+Ry) //

HR′R

OO

S ′G(Rx+Ry)

S′GR

OO

S′GR
��

S ′S(Fx+ Fy)

H(R′Rx+R′Ry)

HR′R

OO

HR′R
��

S ′(GRx+GRy)
S′(πx+πy)// S ′(SFx+ SFy)

S′SF

OO

HR′Rx+HR′Ry
ρRx+ρRy

// S ′GRx+ S ′GRy
S′πx+S′πy

//

S′GR

OO

S ′SFx+ S ′SFy

S′SF

OO

Indeed, the two hexagons commute applying (dc.3) to π and ρ, respec-
tively. The upper square commutes by naturality of ρ on Ri(x, y); the lower
one by axiom (lmf.2) (see 2.1) on the lax functor S ′, with respect to the
i-maps πx : GR(x)→0 SF (x) and πy : GR(y)→0 SF (y)

S ′(πx+i πy).S
′
i(GR(x), GR(y)) = S ′i(SF (x), SF (y)).(S

′(πx)+iS
′(πy)).

Now, both composition laws of double cells have been defined, in (36),
via the composition of transversal maps (in a cm-category), and therefore
are strictly unitary and associative.

Finally, to verify the middle-four interchange law on the four double
cells of diagram (35), we compute the compositions (π | ρ) ⊗ (σ | τ) and
(π ⊗ σ) | (ρ ⊗ τ) on an i-cube x, and we obtain the two transversal maps
H ′HR′Rx →0 T

′TF ′Fx of the upper or lower path in the following dia-
gram

H ′HR′Rx
H′ρRx // H ′S ′GRx

H′S′πx //

τGRx

��

H ′S ′SFx

τSFx

� �
T ′G′GRx

T ′G′πx
// T ′G′SFx

T ′σFx
// T ′TF ′Fx

But these two composites coincide because the square commutes: a con-
sequence of the naturality of τ on the transversal map πx : GR(x)→ SF (x),
by axiom (dc.1) for the double cell τ .

GRANDIS & PARE ADJOINTS IN MULTIPLE CATEGORIES...  (III)

- 19 -



2.4 Comma cm-categories

Comma double categories [GP2] also have a natural extension to the multiple
case.

Given a colax cm-functor F : A → C and a lax cm-functor R : X → C
with the same codomain, we can construct the comma cm-category F ↓R,
where the projections P and Q are strict cm-functors and π is a double cell
of Cmc

F ↓R P //

•
Q

��

A

•
F

��
π

X
R

// C

(37)

An i-cube of F ↓R is a triple (a, x; c : Fa →0 Rx) where a is an i-cube
of A, x is an i-cube of X and c is an i-map of C. An i-map (h, f) : (a, x; c)→0

(a′, x′; c′) comes from a pair of i-maps h : a →0 a
′ (in A) and f : x →0 x

′

(in X) that give in C a commutative square of transversal maps

Fa
c //

Fh

��

Rx

Rf

��
Rf.c = c′.Fh.

Fa′
c′
// Rx′

(38)

Faces and transversal composition are obvious. The degeneracies are
defined using the fact that F is colax and R is lax:

ei(a, x; c : Fa→0 Rx) = (eia, eix;Ri(x).eic.F i(a)). (39)

Similarly the i-concatenation is defined as follows

(a, x; c) +i (b, y; d)

= (a+i b, x+i y; u : F (a+i b)→0 R(x+i y)),

u = Ri(x, y).(c+i d).F i(a, b) :

F (a+i b) →0 Fa+i Fb →0 Rx+i Ry →0 R(x+i y).

(40)

The associativity comparison for the i-composition of three i-consecutive
i-cubes of F ↓R

(a, x; c), (a′, x′; c′), (a′′, x′′; c′′),
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is given by the pair (κi(a), κi(x)) of associativity i-isomorphisms for our
two triples of i-cubes, namely a = (a, a′, a′′) in A and x = (x, x′, x′′) in X

(κi(a), κi(x)) : (a, x; c) +i ((a
′, x′; c′) +i (a

′′, x′′; c′′))

→0 ((a, x; c) +i (a
′, x′; c′)) +i (a

′′, x′′; c′′).
(41)

The coherence of this i-map, as in diagram (38) above, is proved in the
lemma below.

Similarly one constructs the unitors λi, ρi and the interchangers χij of
F ↓R, using those of A and X.

Finally, the strict cm-functors P and Q are projections, while the com-
ponent of the ‘transformation’ π on the i-cube (a, x; c) of F ↓R is the trans-
versal map:

π(a, x; c) = c : Fa→ Rx. (42)

2.5 Lemma

The pair (κ(a), κ(x)) is indeed an i-map ofF ↓R, with domain and codomain
as specified in (41).

Proof. First, these two i-cubes of F ↓R can be written as:

(a, x; c) + ((a′, x′; c′) + (a′′, x′′; c′′)) = (a1, x1; c1),

((a, x; c) + (a′, x′; c′)) + (a′′, x′′; c′′) = (a2, x2; c2),
(43)

where a1, x1, a2, x2, c1, c2 are defined as follows (by commutative diagrams
in the last two cases, and always leaving the index i understood for +, F , R)

a1 = a+ (a′ + a′′), x1 = x+ (x′ + x′′),

a2 = (a+ a′) + a′′, x2 = (x+ x′) + x′′,
(44)

Fa1
c1 //

F (a, a′+a′′)
��

Rx1

Fa+ F (a′ + a′′)

1+F (a′, a′′)
��

Rx+R(x′ + x′′)

R(x, x′+x′′)

OO

Fa+ (Fa′ + Fa′′)
c+(c′+c′′)

// Rx+ (Rx′ +Rx′′)

1+R(x′, x′′)

OO
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Fa2
c2 //

F (a+a′, a′′)
��

Rx2

F (a+ a′) + Fa′′

F (a,a′)+1
��

R(x+ x′) +Rx′′

R(x+x′, x′′)

OO

(Fa+ Fa′) + Fa′′
(c+c′)+ c′′

// (Rx+Rx′) +Rx′′

R(x, x′)+1

OO

Now our claim, i.e. the condition for (κ(a), κ(x)) expressed in diagram
(38), amounts to

Rκ(x).c1 = c2.Fκ(a) : Fa1 → Rx2. (45)

First, the coherence of the lax functor R with the associator κ gives (ap-
plying axiom (lmf.4) of I.3.9):

Rκ(x).c1

= Rκ(x).R(x, x′ + x′′).(1 +R(x′, x′′)).(c+ (c′ + c′′)).

(1 + F (a′, a′′)).F (a, a′ + a′′)

= R(x+ x′, x′′).(R(x, x′) + 1).κR(x).(c+ (c′ + c′′)).

(1 + F (a′, a′′)).F (a, a′ + a′′).

Second, the coherence of the colax functor F with κ gives (applying the
corresponding axiom, with reversed comparisons F ):

c2.Fκ(a)

= R(x+ x′, x′′).(R(x, x′) + 1).((c+ c′) + c′′).

(F (a, a′) + 1).F (a+ a′, a′′).Fκ(a)

= R(x+ x′, x′′).(R(x, x′) + 1).((c+ c′) + c′′).

κ(Fa).(1 + F (a′, a′′)).F (a, a′ + a′′).

Finally, condition (45) follows from the naturality of κ on the triple of
transversal maps (c, c′, c′′) : Fa → Rx, which gives the commutative dia-
gram

Fa+ (Fa′ + Fa′′)
κ(Fa) //

c+(c′+c′′)

��

(Fa+ Fa′) + Fa′′

(c+c′)+c′′

��
Rx+ (Rx′ +Rx′′)

κ(Rx)
// (Rx+Rx′) +Rx′′
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2.6 Theorem (Universal properties of commas)

(a) For a pair of lax cm-functors S, T and a cell ϕ as below (in Cmc) there
is a unique lax cm-functor L : Z → F ↓ R such that S = PL, T = QL
and ϕ = (ψ |π) where the cell ψ is defined by the identity 1: QL → T (a
horizontal transformation of lax cm-functors)

Z S //

•1

��

A

• F

��

Z L //

•1

��

F ↓R P //

• Q

��

A

• F

��
ϕ = ψ π

Z
T
// X

R
// C Z

T
// X

R
// C

(46)

Moreover L is pseudo or strict if and only if both S and T are.

(b) A similar property holds for a pair of colax cm-functors G,H and a
double cell ϕ′ : (G 1

R FH).

Proof. (a) L is defined as follows on an i-cube z and an i-map f : z → z′ of
Z

L(z) = (Sz, Tz; ϕz : FSz → RTz),

L(f) = (Sf, Tf).
(47)

The comparison transversal mapsLi are constructed with the laxity trans-
versal maps S and T (and are invertible or degenerate if and only if the latter
are)

Lix = (Six, T ix) : ei(Lx)→ Lei(x) (for x in Zi|i),

Li(x, y) = (Si(x, y), T i(x, y)) : Lx+i Ly → L(z)
(for z = x+i y in Zi).

(48)

Here Lx+i Ly is the i-cube defined as below (applying (40) and writing
+i as +)

Lx+ Ly = (Sx, Tx; ϕx : FSx→ RTx) + (Sy, Ty; ϕy : FSy → RTy)

= (Sx+ Sy, Tx+ Ty; u),

u = Ri(Tx, Ty).(ϕx+ ϕy).F iSx, Sy) :

F (Sx+ Sy)→ FSx+i FSy → RTx+RTy → R(Tx+ Ty).
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Letting z = x +i y, the coherence condition (38) on the transversal map
Li(x, y) = (Si(x, y), T i(x, y)) of F ↓R (with z = x+i y)

RT i(x, y).u = ϕz.FSi(x, y), (49)

F (Sx+i Sy)
u //

FSi(x,y)
��

R(Tx+i Ty)

RT i(x,y)
��

FS(z) ϕz
// RT (z)

follows from the coherence condition (dc.3) of ϕ as a double cell in Cmc
(where RT i(x, y) = RT i(x, y).Ri(Tx, Ty))

RT i(x, y).(ϕx+i ϕy).F i(Sx, Sy) = ϕz.FSi(x, y), (50)

F (Sx+i Sy)
FSi(x,y) //

F i(Sx,Sy)

��

FS(z)
ϕz // RT (z)

1

��
FSx+i FSy ϕx+iϕy

// RTx+i RTy
RT i(x,y)

// RT (z)

The uniqueness of L is obvious.

3. Companions and adjoints in double categories

This brief section, taken from [GP2], Section 1, studies the connections be-
tween horizontal and vertical morphisms in a double category: horizontal
morphisms can have vertical companions and vertical adjoints (the latter
were called ‘conjoints’ in [DPR]). Such phenomena are interesting in them-
selves and typical of double categories.

D is always a weak double category, that we assume to be unitary for the
sake of simplicity. We shall apply these notions to Cmc, which is strict.

3.1 Orthogonal companions

In the weak double category D, the horizontal morphism f : A → B and
the vertical morphism u : A •−→ B are made (orthogonal) companions by
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assigning a pair (η, ε) of cells as below, called the unit and counit, that satisfy
the identities η|ε = 1•f and η ⊗ ε = 1u

A

•1

��

A

• u

��

A
f //

•u

��

B

• 1

��
η ε

A
f
// B B B

(51)

Given f , this is equivalent (by unitarity) to saying that the pair (u, ε)
satisfies the following universal property:

(a) for every cell ε′ : (u′ fg B) there is a unique cell λ : (u′ Ag u) such that
ε′ = λ|ε

A
f //

•u′

��

B

• 1

��

A

•u′

��

A
f //

• u

��

B

• 1

��
ε′ λ ε

A′ g
// B A′ g

// B B

(52)

In fact, given (η, ε), we can (and must) take λ = η ⊗ ε′; on the other
hand, given ε′ we define η : (A A

f u) by the equation η|ε = 1•f and deduce
that η ⊗ ε = 1u because (η ⊗ ε) | ε = (η|ε)⊗ ε = ε = (1u|ε).

Similarly, also the pair (u, η) is characterised by a universal property

(b) for every cell η′ : (A g
f u

′) there is a unique cell µ : (u g
B u′) such that

η′ = η|µ.

Therefore, if f has a vertical companion, this is determined up to a
unique special isocell, and will often be written as f∗. Companions com-
pose in the obvious (covariant) way: if g : B → C also has a companion g∗,
then the vertical arrow g∗f∗ : A •−→ C is companion to gf : A → C, with
unit (

η | 1
1• | η′

)
: (A A

gf g∗f∗).

Companionship is preserved by unitary lax or colax double functors.
We say that D has vertical companions if every horizontal arrow has a

vertical companion. The weak double categories recalled in Section 1 have
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vertical companions, given by the obvious embedding of horizontal arrows
into the vertical ones.

Companionship is simpler for horizontal isomorphisms. If f is one and
has a companion u, then its unit and counit are also horizontally invertible
and determine each other:

(ε | 1•g | η) = η ⊗ ε = 1u (g = f−1), (53)

as one can see rewriting (ε | 1•g | η) as follows, and then applying middle-four
interchange

A
f //

•1

��

B
g //

•
1

��

A

• 1

��

A

• u

��
1•f 1•g η

A f //

•u

��

B g //

•
1

��

A f //

• 1

��

B

• 1

��
ε 1•g 1•f

B B g
// A

f // B

Conversely, the existence of a horizontally invertible cell η : (A A
f u)

implies that f is horizontally invertible, with companion u and counit as
above.

3.2 Orthogonal adjoints

Transforming companionship by horizontal (or vertical) duality, the arrows
f : A → B and v : B •−→ A are made orthogonal adjoints by a pair (α, β)
of cells as below

A
f //

•1

��

B

• v

��

B

•v

��

B

• 1

��
α β

A A A
f
// B

(54)

with α|β = 1•f and β ⊗ α = 1v. Then, f is the horizontal adjoint and v the
vertical one. (In the general case there is no reason of distinguishing ‘left’
and ‘right’, unit and counit; see the examples of [GP2], Section 1.3).
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Again, given f , these relations can be described by universal properties
for (v, β) or (v, α)

(a) for every cell β′ : (v′ gf B) there is a unique cell λ : (v′ g
A v) such that

β′ = λ|β,

(b) for every cell α′ : (A f
g v
′) there is a unique cell µ : (v B

g v′) such that
α′ = α|µ.

The vertical adjoint of f is determined up to a special isocell and will
often be written as f ∗; vertical adjoints compose, contravariantly: (gf)∗ can
be constructed as f ∗g∗.

We say that D has vertical adjoints if every horizontal arrow has a verti-
cal adjoint. Plainly, this is the case for the weak double categories recalled
in Section 1.

3.3 Proposition

Let f : A → B have a vertical companion u : A •−→ B. Then the arrow
v : B •−→ A is vertical adjoint to f if and only if u a v in the bicategory VD
(of objects, vertical arrows and special cells).

Proof. Given four cells η, ε, α, β as above (in 3.1, 3.2), we have two special
cells

η ⊗ α : 1• → u⊗ v, β ⊗ ε : u⊗ v → 1•,

that are easily seen to satisfy the triangle identities in VD. The converse is
similarly obvious.

4. Multiple adjunctions

We now define a colax/lax adjunction between chiral multiple categories, a
notion that occurs naturally in various situations, as already seen in Section
1.

4.1 Colax/lax adjunctions

A colax/lax cm-adjunction (η, ε) : F a G, or a colax/lax adjunction between
chiral multiple categories, will be an orthogonal adjunction in the double
category Cmc (as defined in 3.2).

GRANDIS & PARE ADJOINTS IN MULTIPLE CATEGORIES...  (III)

- 27 -



The data amount thus to:

- a colax cm-functor F : X→ A, the left adjoint,

- a lax cm-functor G : A→ X, the right adjoint,

- two Cmc-cells η : 1X 99K GF and ε : FG 99K 1A (unit and counit) that
satisfy the triangle equalities:

X
•F

��

X A G // X
• F

��

η ⊗ ε = 1F ,

η ε

A
G
// X A A ε | η = 1•G.

(55)

We speak of a pseudo/lax (resp. a colax/pseudo) adjunction when the left
(resp. right) adjoint is pseudo, and of a pseudo (or strict) adjunction when
both adjoints are pseudo (or strict).

From general properties (see 3.2), we already know that the left adjoint
of a lax cm-functor G is determined up to transversal isomorphism (which
amounts to a special invertible cell between vertical arrows in Cmc) and that
left adjoints compose, contravariantly. Similarly for right adjoints.

As in 2.2, the arrow of a colax cm-functor is marked with a dot when
displayed vertically, in a double cell of Cmc. Again, we may write unit
and counit as η : 1 99K GF and ε : FG 99K 1, but we should recall that
the coherence conditions of such ‘transformations’ involve the comparison
cells of F and G. Therefore (as with double categories, in [GP2]), a general
colax/lax adjunction cannot be seen as an adjunction in some bicategory;
although this is possible for a pseudo/lax or a colax/pseudo adjunction, as
we shall prove in the next section.

4.2 A description

To make the previous definition explicit, a colax/lax adjunction (η, ε) : F a
G between the cm-categories X and A consists of the following items.

(a) A colax cm-functor F : X→ A, with comparison transversal maps

F i(x) : F (eix)→0 ei(Fx), F i(x, y) : F (x+i y)→0 Fx+i Fy.
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(b) A lax cm-functor G : A→ X, with comparison transversal maps

Gi(a) : ei(Ga)→0 G(eia), Gi(a, b) : Ga+i Gb→0 G(a+i b).

(c) An ordinary adjunction Fi a Gi for every positive multi-index i

ηi : 1→ GiFi : tvi(X)→ tvi(X), εi : FiGi → 1: tvi(A)→ tvi(A),

εiFi.Fiηi = 1Fi
, Giεi.ηiGi = 1Gi

.

(Note that there is an abuse of notation: for the sake of simplicity we
write as Fi the functor tvi(F ) : tvi(X) → tvi(A), which involves the com-
ponents Fi : Xi → Ai and F0i : X0i → A0i of F .)

Explicitly this means that we are assigning:

- transversal maps ηix : x →0 GiFix in X (for x in Xi), also written as
ηx : x→0 GFx,

- transversal maps εia : FiGia →0 a in A (for a in Ai), also written as
εa : FGa→0 a,

satisfying the naturality conditions (c1) (for transversal maps f : x →0 y in
X and h : a→0 b in A) and the triangle identities (c2),

(c1) ηy.f = GFf.ηx, εb.FGh = h.εa,

(c2) εFx.Fηx = 1Fx, Gεa.ηGa = 1Ga.

(d) These families η = (ηi) and ε = (εi) must respect faces

η(∂αi x) = ∂αi (ηx), ε(∂αi a) = ∂αi (εa), (56)

and be coherent with the comparison cells of F and G:

(d1) (coherence of η and ε with i-identities) for x in X and a in A:

GF i(x).η(eix) = Gi(Fx).ei(ηx),

(η(ei(x) = ei(ηx), if F and G are unitary),
(57)

ε(eia).FGi(a) = ei(εa).F i(Ga),

(ε(eia) = ei(εa), if F and G are unitary),
(58)
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(d2) (coherence of η and ε with i-composition) for z = x +i y in X and
c = a+i b in A:

GF i(x, y).ηz = Gi(Fx, Fy).(ηx+i ηy), (59)

εc.FGi(a, b) = (εa+i εb).F i(Ga,Gb). (60)

z

ηz

��

ηx+i ηy // GFx+i GFy

Gi(Fx,Fy)
��

F (Ga+Gb)
FGi(a,b) //

F i(Ga,Gb)
��

FGc

εc

��
GFz

GF i(x,y)
// G(Fx+i Fy) FGa+ FGb

εa+i εb
// c

4.3 Lemma

(a) In a colax/lax cm-adjunction (η, ε) : F a G, the comparison maps of
G determine the comparison maps of F , through the ordinary adjunctions
Fi a Gi, as

F i(x) = εei(Fx).FGi(Fx).F ei(ηx) :

Fei(x)→ Fei(GFx)→ FG(eiFx)→ eiFx,
(61)

F i(x, y) = ε(Fx+i Fy).FGi(Fx, Fy).F (ηx+i ηy) :

F (x+i y)→ F (GFx+GFy)→ FG(Fx+ Fy)→ Fx+i Fy.
(62)

Dually, the comparison maps of F determine the comparison maps of G,
through the ordinary adjunctions.

(b) If all the components of η, ε are invertible, then G is pseudo if and only
if F is.

Note. Loosely speaking, point (a) says that a lax multiple functor can only
have a colax left adjoint (if any), and symmetrically. This fact will be com-
pleted in Theorem 5.3, showing that if a lax functor has a lax adjoint, the
latter is necessarily pseudo.

Proof. (a) The first equation of (d1) says that the adjoint map of F i(x), i.e.
(F i(x))

′ = GF i(x).η(eix), must be equal to f = Gi(Fx).ei(ηx). The
adjoint map of the latter gives F i(x) = f ′ = εei(Fx).F (f).

In the same way the first equation of (d2) determines F i(x, y). Point (b)
is a straightforward consequence.
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4.4 Theorem (Characterisation by transversal hom-sets)

A multiple adjunction (η, ε) : F a G can equivalently be given by a colax
cm-functor F : X → A, a lax cm-functor G : A → X and a family (Li) of
functorial isomorphisms indexed by the positive multi-indices i ⊂ N

Li : tvi(A)(Fi(−),=) → tvi(X)(−, Gi(=)) :

tvi(X)
op×tvi(A)→ Set,

Li(x, a) : tvi(A)(Fx, a)→ tvi(X)(x,Ga).

(63)

The components Li(x, a), also written as L(x, a) or just L, have to com-
mute with faces and be coherent with the positive operations (through the
comparison maps of F and G), i.e. must satisfy the following conditions
(ad.1-3):

(ad.1) Li(∂
α
i x, ∂

α
i a) = ∂αi (Li(x, a)),

(ad.2) L(eix, eia)(ei(h).F (x)) = G(a).ei(Lh) (for h : Fx→ a in A),

Fei(x)
F (x) // ei(Fx)

ei(h) // ei(a)

ei(x)
ei(Lh) // ei(Ga)

G(a) // Gei(a)

(ad.3) L((h+i k).F i(x, y)) = Gi(a, b).(Lh+i Lk)

(for h : Fx→ a, k : Fy → b in tvi(A)),

F (x+i y)
F i(x,y) // Fx+i Fy

h+ik // a+i b

x+i y
Lh+iLk // Ga+i Gb

Gi(a, b) // G(a+i b)

In this equivalence, Li(x, a) is defined by the unit η as

Li(x, a)(h) = Gh.ηix : x→ GFx→ Ga (h : Fx→ a in tvi(A)). (64)

The other way round, the component ηi : 1→ GiFi : Xi → Xi of the unit
is defined by L as

ηi(x) = Li(x, Fx)(idFx) : x→ GF (x) (for x in Xi). (65)
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Proof. We have only to verify the equivalence of the conditions (56)-(60)
with the conditions above.

This is straightforward. For instance, to show that (59) implies (ad.3),
let h : Fx → a and k : Fy → b be i-consecutive i-maps in A, and apply
L = L(x+i y, a+i a) as defined above, in (64):

L((h+i k).F i(x, y)) = G(h+i k).GF i(x, y).η(x+i y)

= G(h+i k).Gi(Fx, Fy).(ηx+i ηy) (by (59))
= Gi(a, b).(Gh+i Gk).(ηx+i ηy) (by (lmf.2))
= Gi(a, b).(Lh+i Lk).

4.5 Corollary (Characterisation by commas)

With the previous notation, a multiple adjunction amounts to an isomorphism
of chiral multiple categories L : F ↓A → X ↓G over the cartesian product
X×A

F ↓A L //

''

X↓G

ww
=

X×A
(66)

Proof. A straightforward consequence of the previous theorem.

4.6 Theorem (Right adjoint by universal properties)

Let a colax cm-functor F : X→ A be given.
The existence (and choice) of a right adjoint lax cm-functor G amounts

to a family (rad.i) of conditions and choices, indexed by the positive multi-
indices i:

(rad.i) for every i-cube a in A there is a universal arrow (Ga, εia : F (Ga)→
a) from the functor Fi : tvi(X)→ tvi(A) to the object a, and we choose one,

provided that these choices commute with faces.
Explicitly, the universal property means that, for each i-cube x in X and

i-map h : Fx →0 a in A there is a unique f : x →0 Ga such that h =
εa.Ff : Fx→0 F (Ga)→0 a.
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The comparison i-maps of G

Gi(a) : ei(Ga)→0 G(eia), Gi(a, b) : Ga+i Gb→0 G(a+i b), (67)

are then given by the universal property of ε, as the unique solution of the
equations (58), (60), respectively.

Proof. The conditions (rad.i) are plainly necessary, including consistency
with faces.

Conversely, each (rad.i) provides an ordinary adjunction (ηi, εi) : Fi a Gi

for the categories tvi(X), tvi(A), so that G, η and ε are correctly defined - as
far as cubes, transversal maps, faces, transversal composition and transversal
identities are concerned.

Now we define the comparison maps Gi as specified in the statement, so
that the coherence properties of ε are satisfied (see (58), (60)). One verifies
easily, for such transversal maps, the axioms of naturality and coherence (see
2.1).

Finally, we have to prove that η : 1 99K GF satisfies the coherence prop-
erty (59)

GF i(x, y).ηz = Gi(Fx, Fy).(ηx+i ηy), (68)

with respect to a composition z = x +i y of i-cubes in X (similarly one
proves (57)). By the universal property of ε, it will suffice to show that the
composite ε(Fx +i Fy).F (−) takes the same value on both terms of (68).
In fact, on the left-hand term we get F i(x, y)

ε(Fx+i Fy).FGF i(x, y).Fηz = F i(x, y).εFz.Fηz = F i(x, y).

We get the same on the right-hand term of (68), using (60), the naturality
of F i, the 0i-interchange in A and a triangle identity

ε(Fx+i Fy).FGi(Fx, Fy).F (ηx+i ηy)

= (εFx+i εFy).F i(GFx,GFy).F (ηx+i ηy)

= (εFx+i εFy).(Fηx+i Fηy).F i(x, y)

= (εFx.Fηx+i εFy.Fηy).F i(x, y)

= (1Fx +i 1Fy).F i(x, y)

= F i(x, y).
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4.7 Theorem (Factorisation of adjunctions)

Let F a G be a colax/lax adjunction between X and A. Then, using the
isomorphism of cm-categories L : F ↓ A → X ↓G (Corollary 4.5), we can
factorise the adjunction

X
F ′ // F ↓A L //
P

oo X↓G
Q //

L−1
oo A

G′
oo

F = QLF ′, G = PL−1G′,

(69)

as a composite of:

- a coreflective colax/strict adjunction F ′ a P (with unit PF ′ = 1),
- an isomorphism L a L−1,
- a reflective strict/lax adjunction Q a G′ (with counit QG′ = 1),

where the comma projections P and Q are strict cm-functors.

Proof. We define the lax cm-functor G′ : A → X ↓ G by the universal
property of commas 2.6(a), applied to G : A→ X, 1: A→ A and ϕ = 1•G as
in the diagram below

A G //

•1

��

X

• 1

��

A G′ //

•1

��

1↓G P //

• Q

��

X

• 1

��
ϕ = ψ π

A
1
// A

G
// X A

1
// A

G
// X

(70)

G′(a) = (Ga, a; 1 : Ga→ Ga),

G′i(a) = (Gi(a), 1) : (eiGa, eia;Gi(a))→ (G(eia), eia; 1),

G′i(a, b) = (Gi(a, b), 1) :

(Ga+i Gb, a+i b;Gi(a, b))→ (G(a+i b), a+i b; 1).

Similarly, we define the colax cm-functor F ′ : X → F ↓ A by the dual
result 2.6(b)

F ′(x) = (x, Fx; 1 : Fx→ Fx),

F ′i(x) = (1, F i(x)) : (eix, F (eix); 1)→ (eix, Feix;F i(x)),

F ′i(x, y) = (1, F i(x, y)) :

(x+i y, F (x+i y); 1)→ (x+i y, Fx+i Fy;F i(x, y)).

(71)
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The coreflective adjunction F ′ a P is obvious

η′x = 1x : x→ PF ′x,

ε′(x, a; f : Fx→ a) = (1x, f) :

(x, Fx; 1 : Fx→ Fx)→ (x, a; f : Fx→ a),

(72)

as well as the reflective adjunction Q a G′ and the factorisation above.

5. Multiple adjunctions and pseudo cm-functors

We consider now cm-adjunctions where the left or right adjoint is a pseudo
cm-functor. Then we introduce adjoint equivalences of chiral multiple cate-
gories.

5.1 Comments

Let us recall, from 4.1, that a pseudo/lax cm-adjunction F a G is a colax/lax
adjunction between cm-categories where the left adjoint F is pseudo.

Then the comparison cells of F are horizontally invertible and the com-
posites GF and FG are lax cm-functors; it follows (from definition 2.2)
that the unit and counit are horizontal transformations of such functors.
Therefore a pseudo/lax cm-adjunction gives an adjunction in the 2-category
LxCmc of cm-categories, lax cm-functors and transversal transformations
(see 2.2); and we shall prove that these two facts are actually equivalent
(Theorem 5.3).

Dually a colax/pseudo cm-adjunction, where the right adjoint G is
pseudo, will amount to an adjunction in the 2-category CxCmc of cm-
categories, colax cm-functors and transversal transformations. Finally a
pseudo cm-adjunction, where both F and G are pseudo, will be the same
as an adjunction in the 2-category PsCmc whose arrows are the pseudo
cm-functors.

5.2 Theorem (Companions in Cmc)

A lax cm-functor G has an orthogonal companion F in the double category
Cmc if and only if it is pseudo; then one can define F = G∗ as the colax
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cm-functor which coincides with G except for comparison maps, that are
transversally inverse to those of G.

Proof. We restrict to unitary cm-categories, for simplicity. If G is pseudo, it
is obvious that G∗, as defined above, is an orthogonal companion.

Conversely, suppose that G : A → X (lax) has an orthogonal companion
F (colax). There are thus two double cells η, ε in Cmc)

A A

• F

� �

A G //

•F

��

X

η ε

A
G
// X X X

(73)

which satisfy the identities η|ε = 1•G, η ⊗ ε = 1F .
This means two ‘transformations’ η : F 99K G, ε : G 99K F , as defined

in 2.2; for every i-cube a in A, we have two transversal maps ηa and εa in X

ηa : Fa→ Ga, εa : Ga→ Fa, (74)

consistently with faces. These maps are transversally inverse, because of the
previous identities (see (36))

ηa.εa = (η | ε)(a) = 1Ga, εa.ηa = (η ⊗ ε)(a) = 1Fa. (75)

Applying now the coherence condition (dc.3) (of 2.2) for the transforma-
tions η, ε and a concatenation c = a+i b in A we find

ηc = Gi(a, b).(ηa+i ηb).F i(a, b) : Fc→ Gc,

εa+i εb = F i(a, b).εc.Gi(a, b) : Ga+i Gb→ Fa+i Fb.
(76)

Since all the components of η and ε are transversally invertible, this
proves that Gi(a, b) has a left inverse and a right inverse transversal map,
whence it is invertible. Similarly for degeneracies.

Therefore G is pseudo and F is transversally isomorphic to G∗.
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5.3 Theorem

(a) (Pseudo/lax adjunctions) For every adjunction F a G in the 2-category
LxCmc, the functor F is pseudo and the adjunction is pseudo/lax, in the
sense of 4.1 (or 5.1).

(b) (Colax/pseudo adjunctions) For every adjunctionF a G in the 2-category
CxCmc, the functor G is pseudo and the adjunction is colax/pseudo, in the
sense of 4.1 (or 5.1).

Note. More formally, (a) can be rewritten saying that, in the double category
Cmc, if the horizontal arrow G has a ‘horizontal left adjoint’ F (within the
horizontal 2-category HCmc = LxCmc), then it also has an orthogonal ad-
jointG∗ (colax). (Then, applying Proposition 3.3, it would follow that F and
G∗ are companions, whence F is pseudo, by Theorem 5.2, and isomorphic
to G∗.)

Proof. It suffices to prove (a); again, we only deal with the comparisons of
a composition.

Let the lax structures of F : X → A and G : A → X be given by the
following comparison maps, where z = x+i y and c = a+i b

λi(x, y) : Fx+i Fy → F (x+i y), Gi(a, b) : Ga+i Gb→ G(a+i b),

so that we have:

ηz = Gλi(x, y).Gi(Fx, Fy).(ηx+i ηy) :

z → GFx+i GFy → G(Fx+i Fy)→ GFz,

εa+i εb = εc.FGi(a, b).λi(Ga,Gb) :

FGa+i FGb→ F (Ga+i Gb)→ FG(a+i b)→ c.

(77)

We construct a colax structure F for F , letting

F i(x, y) = ε(Fx+i Fy).FGi(Fx, Fy).F (ηx+i ηy) :

Fz → F (GFx+i GFy)→ FG(Fx+i Fy)→ Fx+i Fy.

Now it is sufficient to verify that F i(x, y) and λi(x, y) are transversally
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inverse, using the naturality of ε, λ and (77):

λi(x, y).F i(x, y)

= λi(x, y).ε(Fx+i Fy).FGi(Fx, Fy).F (ηx+i ηy)

= εFz.FGλi(x, y).FGi(Fx, Fy).F (ηx+i ηy)

= εF (z).F (ηz) = 1Fz,

F i(x, y).λi(x, y)

= ε(Fx+i Fy).FGi(Fx, Fy).F (ηx+i ηy).λi(x, y)

= ε(Fx+i Fy).FGi(Fx, Fy).λi(GFx,GFy).(Fηx+i Fηy)

= (εFx+i εFy).(Fηx+i Fηy)

= εFx.Fηx+i εFy.Fηy = 1Fx +i 1Fy = 1Fx+iFy.

5.4 Equivalences of cm-categories

An adjoint equivalence between two cm-categories X and A will be a pseudo
cm-adjunction (η, ε) : F a Gwhere the transversal transformations η : 1X →
GF and ε : FG→ 1A are invertible.

The following properties of a cm-functor F : X → A will allow us (in
the next theorem) to characterise this fact in the usual way, under the mild
restriction of transversal invariance (see II.1.6):

(a) We say that F is faithful if all the ordinary functors Fi : tvi(X)→ tvi(A)
(between the categories of i-cubes and their transversal maps) are faithful:
given two i-maps f, g : x →0 y of X between the same i-cubes, F (f) =
F (g) implies f = g.

(b) Similarly, we say that F is full if all the ordinary functors Fi : tvi(X) →
tvi(A) are: for every i-map h : F (x) →0 F (y) in A there is an i-map
f : x→0 y in X such that F (f) = h.

(c) Finally, we say that F is essentially surjective on cubes if every Fi is: for
every i-cube a in A there is some i-cube x in X and some invertible i-map
h : F (x)→0 a in A.
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5.5 Theorem (Characterisations of equivalences)

Let F : X → A be a pseudo cm-functor between two transversally invariant
cm-categories (see II.1.6). The following conditions are equivalent:

(i) F : X→ A belongs to an adjoint equivalence of cm-categories,

(ii) F is faithful, full and essentially surjective on cubes (see 5.4),

(iii) every ordinary functor Fi : tvi(X) → tvi(A) is an equivalence of cate-
gories.

Moreover, if F is unitary, one can make its ‘quasi-inverse’ unitary as
well.

Remark. The axiom of choice is assumed.

Proof. By our previous definitions in 5.4, conditions (ii) and (iii) are about
the family of ordinary functors (Fi) and are well known to be equivalent (as-
suming (AC)). Moreover, if F belongs to an adjoint equivalence (η, ε) : F a
G, every Fi is obviously an equivalence of categories.

Conversely, let us assume that every Fi is an equivalence of ordinary cat-
egories and let us extend the pseudo cm-functor F to an adjoint equivalence,
proceeding by induction on the degree n > 0 of the positive multi-index i.

First, F∗ : tv∗(X)→ tv∗(A) is an equivalence of categories and we begin
by choosing an adjoint quasi-inverse G∗ : tv∗(A)→ tv∗(X).

In other words, we choose for every ?-cube (or object) a some G(a) in X
and some isomorphism εa : FG(a)→ a in A; then a transversal map h : a→
b in A is sent to the unique X-map G(h) : G(a) → G(b) coherent with the
previous choices (since F∗ is full and faithful). Finally the isomorphism
ηx : x→ GF (x) is determined by the triangle equations (for every ?-cube x
of X).

Assume now that the components of G, ε and η have been defined up to
degree n − 1 > 0, and let us define them for a multi-index i of degree n,
taking care that the new choices be consistent with the previous ones.

First, for every i-cube a in A we want to choose some i-cube G(a) in X
and some i-isomorphism εa : FG(a) → a in A, consistently with all faces
∂αi (i ∈ i). In fact there exists (and we choose) some i-cube x and some
i-isomorphism u : F (x) → a. Then, by the inductive hypothesis, we have a
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family of 2n transversal isomorphisms of A

vαi = ∂αi u
−1.ε(∂αi a) : FG(∂

α
i a)→ ∂αi a→ F (∂αi x) (i ∈ i, α = ±),

which can be uniquely lifted as transversal isomorphisms tαi of X, since F is
full and faithful

tαi : G(∂
α
i a)→ ∂αi x, vαi = F (tαi ).

The family (vαi ) has consistent positive faces (see II.1.6), because this
is true of the family (∂αi u

−1)i,α, by commuting faces, and of the family
(ε(∂αi a))i,α by inductive assumption. It follows that also the family (tαi )
has consistent positive faces.

By transversal invariance in X we can fill this family (tαi ) with a (chosen)
transversal i-isomorphism t : y → x, and we define the i-cube G(a) and the
i-isomorphism εa as follows:

G(a) = y, εa = u.F t : FG(a)→ F (x)→ a.

This choice is consistent with faces:

∂αi (εa) = (∂αi u).F t
α
i = (∂αi u).v

α
i = ε(∂αi a).

Now, since Fi is full and faithful, a transversal i-map h : a → b in A
is sent to the unique X-map G(h) : G(a) → G(b) satisfying the condition
εb.F (Gh) = h.εa (naturality of ε).

Again, the i-isomorphism ηx : x→ GF (x) is determined by the triangle
equations, for every i-cube x of X.

The comparison i-maps Gi are uniquely determined by their coherence
conditions (see 4.2), for an i|i-cube a and an i-composition of i-cubes c =
a+i b in A

εeia.FGi(a) = ei(εa).F i(Ga),

εc.FGi(a, b) = (εa+i εb).F i(Ga,Gb).

Moreover Gi(a) and Gi(a, b) are invertible, because so are their images
by F , full and faithful.

The construction of G, ε and η is now achieved. One ends by proving
that G is indeed a pseudo cm-functor, and that ε, η are coherent with the
comparison cells of F and G.
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Finally, let us assume that F is unitary: F i(x) : F (eix) → ei(Fx) is
always an identity. To make G unitary we assume that - in the previous
inductive construction - the following constraint has been followed: for a
j-degenerate i-cube a = ejc we always choose the transversal isomorphism
u = ej(εc) : F (ej(Gc))→ ejc. It follows that each

vαi : FG(∂
α
i ejc)→ F (∂αi ejGc)

is the identity; then tαi : G(∂
α
i ejc) → ∂αi ejGc is the identity as well. We

(choose to) fill their family with the identity t : ejGc→ ejGc, which gives

G(ejc) = ejGc, ε(ejc) = u.F t = ej(εc).

If a is also j′-degenerate, the commutativity of degeneracies ensures that
both constructions give the same result.

6. Limits and adjoints for cm-categories

We briefly recall the definition of cones and limits from Part II, Section 3,
and prove that unitary right adjoints preserve the limits of cm-functors.

6.1 Lift functors

First we recall a tool from II.1.5, II.1.8. For the positive integer j there is
a j-directed lift 2-functor with values in the 2-category of chiral multiple
categories indexed by the ordered set N|j = N \{j}, pointed at 0

Qj : LxCmc→ LxCmcN|j. (78)

On a cm-category A the cm-categoryQjA is - loosely speaking - that part
of A that contains the index j, reindexed without it:

(QjA)i = Aij,

(∂αi : (QjA)i → (QjA)i|i) = (∂αi : Aij → Aij|i),

(ei : (QjA)i|i → (QjA)i) = (ei : Aij|i → Aij) (i ∈ i ⊂ N|j);
(79)

similarly for compositions and comparisons. In the same way for a lax cm-
functor F : A→ B and a transversal transformation h : F → G : A→ B we
let

(QjF )i = Fij, (Qjh)i = hij (i ⊂ N|j). (80)
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There is also an obvious restriction 2-functorRj : LxCmc→ LxCmcN|j
where the multiple category RjA is that part of A that does not contain the
index j. The j-directed faces and degeneracies of A are not used in QjA, but
yield three natural transformations, also called faces and degeneracy, that
act as follows for i ⊂ N|j

Dα
j : Qj → Rj : LxCmc→ LxCmcN|j, (Dα

j )i = ∂αj : Aij → Ai,

Ej : Rj → Qj : LxCmc→ LxCmcN|j, (Ej)i = ej : Ai → Aij,

Dα
j Ej = id.

(81)

All the functors Qj commute. By composing n of them in any order we
get an iterated lift functor of degree n, in a positive direction i = {i1, ..., in}

Qi : LxCmc→ LxCmcN|i, Qi(A) = Qin ...Qi1(A),

tv∗(Qi(A)) = tvi(A).
(82)

6.2 Cones

Let X and A be cm-categories, and let X be small. Consider the diagonal
functor (of ordinary categories)

D : tv∗A→ PsCmc(X,A). (83)

where tv∗A is the ordinary category of ?-cubes (objects) of A and their trans-
versal maps.

D takes each objectA of A to a unitary pseudo functor X→ A, ‘constant’
at A via the family of the total i-degeneracies ei = ei1 ...ein : A∗ → Ai

DA : X→ A

DA(x) = ei(A), DA(f) = id(eiA) (for x, f in tviX),

DAi(x) = id(eiA) : ei(DA(x))→ DA(eix) (for x in Xi|i),

DAi(x, y) = λi : ei(A) +i ei(A)→ ei(A) (for x, y in Xi),

(84)

where λi = λi(eiA) = ρi(eiA) is a left and right unitor of A.
Similarly, a ?-map f : A → B in A is sent to the constant transversal

transformation

Df : DA→ DB : X→ A,

(Df)(x) = ei(f) : ei(A)→ ei(B) (x in tviX).
(85)
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Let T : X→ A be a lax functor. A (transversal) cone of T will be a pair
(A, h : DA → T ) formed of an object A of A (the vertex of the cone) and
a transversal transformation of lax functors h : DA → T : X → A; in other
words, it is an object of the ordinary comma category (D ↓ T ), where T is
viewed as an object of the category LxCmc(X,A).

By definition (cf. II.1.8), the transversal transformation h amounts to
assigning the following data:

- a transversal i-map hx : ei(A)→ Tx, for every i-cube x in X,

subject to the following axioms of naturality and coherence:

(tc.1) Tf.hx = hy (for every i-map f : x→0 y in X),

(tc.2) h commutes with positive faces, and agrees with positive degeneracies
and compositions:

h(∂αi x) = ∂αi (hx), (x in Xi),

h(eix) = T i(x).ei(hx) : ei(A)→0 T (eix) (x in Xi|i),

h(z) = T i(x, y).(hx+i hy).λ
−1
i : ei(A)→0 T (z) (z = x+i y in Xi).

As remarked in II.3.2, a unitary lax functor G : A → B preserves diag-
onalisation, in the sense that G.DA = D(GA); therefore G takes a cone
(A, h : DA→ T ) of T to a cone (GA,Gh) of GT .

6.3 Limits of degree zero

As defined in II.3.3, the (transversal) limit of degree zero lim(T ) = (L, t)
of a lax functor T : X → A between chiral multiple categories is a universal
cone (L, t : DL→ T ).

In other words:

(tl.0) L is an object of A and t : DL → T is a transversal transformation of
lax functors,

(tl.1) for every cone (A, h : DA→ T ) there is precisely one ?-map f : A→
L in A such that t.Df = h.

We say that A has limits of degree zero on X if all these exist.
Theorem II.3.6 proves that all limits of degree zero in A can be con-

structed from products, equalisers and tabulators - all of degree zero; it also
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gives a corresponding result for the preservation of such limits by unitary lax
multiple functors. (Tabulators, the basic form of higher limits, were sketched
in Part I and studied in Part II, Section 3.)

6.4 Multiple limits

The general definition of multiple limits in a chiral multiple category A was
given in II.4.4.

(a) For a positive multi-index i ⊂ N and a chiral multiple category X we say
that A has limits of type i on X if QiA has limits of degree zero on X.

(b) We say that A has limits of type i if this happens for all small chiral
multiple categories X.

(c) We say that A has limits of all degrees (or all types) if this happens for all
positive multi-indices i.

(d) We say that A has multiple limits of all degrees if all the previous limits
exist and are preserved by the multiple functors (see 6.1)

Dα
j : Qij(A)→ RjQi(A), Ej : RjQi(A)→ Qij(A) (j /∈ i). (86)

In this case, if A is transversally invariant one can always operate a choice
of multiple limits such that this preservation is strict.

The Main Theorem of Part II (II.4.5) shows that all multiple limits in A
can be constructed from multiple products, multiple equalisers and multiple
tabulators; again, it also gives a corresponding result for the preservation of
such limits by multiple functors.

We are now ready to prove the preservation properties of unitary adjoints.

6.5 Theorem (Adjoints and limits of degree zero)

Let (η, ε) : F a G be a colax/lax cm-adjunction, where both functors are
unitary.

Then G : A → B preserves all (the existing) limits of degree zero of lax
cm-functors T : X→ A.

Proof. The argument is the usual one. Let (A, h : DA(A) → T ) be a limit
of T in A. We want to prove that the pair (GA,Gh : G.DA(A) → GT ) is a
limit of GT in B.
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First, since G is unitary, GDA(A) = DB(GA) and the pair (GA,Gh) is
indeed a cone of the lax cm-functor GT : X→ B.

Moreover, given a cone (B, k′ : DB(a) → GT ) of GT , with transversal
components k′x : ei(B)→ GTx for every i-cube x in X, the adjunction gives
a family h′x : Fei(B) → Tx, that is a cone (FB, h′ : DA(FB) → T ) in A.
Therefore there is precisely one transversal map f : FB → A in A such that
h.Df = h′. This means precisely one transversal map g : B → GA in B
such that Gh.Dg = k′.

6.6 Remark

Since the lift 2-functor

Qi : LxCmc→ LxCmcN|j

preserves cm-adjunctions, it follows that, if the cm-category A has multiple
limits on X, these are preserved by a right adjoint cm-functor G : A → B
(under the previous unitarity assumptions).
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[EE3] A. Ehresmann - C. Ehresmann, Multiple functors IV. Monoidal
closed structures on Catn, Cahiers Top. Géom. Diff. 20 (1979), 59-
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[GP5] M. Grandis - R. Paré, From cubical to globular higher categories, in:
Liber Amicorum en l’honneur de Mme A.C. Ehresmann, Diagrammes
67-68 suppl. (2012), 117-148.
Preprint available at: http://www.dima.unige.it/∼grandis/CGlb.pdf
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1

Résumé. Etant donné une catégorie additive et equationelle, munie d’une
structure fermeé monoı̈dale symetrique ainsi que d’un objet dualisateur po-
tentiel, on trouve des conditions suffisantes pour que la catégorie des objets
topologiques sur cette catégorie admette une bonne notion des souscatégories
pleines qui contiennent des objets fortement et faiblement topologisés. On
montre que chacune des souscatégories est équivalente à la catégorie chu de
la catégorie originale par rapport à l’objet dualisateur.
Abstract. Given an additive equational category with a closed symmetric
monoidal structure and a potential dualizing object, we find sufficient con-
ditions that the category of topological objects over that category admits a
good notion of full subcategories of strong and weakly topologized objects
and show that each is equivalent to the chu category of the original category
with respect to the dualizing object.
Keywords. spherically complete fields, duality, Chu construction
Mathematics Subject Classification (2010). 18D15, 22D35, 46A20

1. Introduction

This paper is a continuation of [5, 6, 7]. The first reference showed that
the full subcategory of the category of (real or complex) topological vec-
tor spaces that consists of the Mackey spaces (defined in 2.5 below)is ∗-
autonomous and equivalent to both the full subcategory of weakly topolo-
gized topological vector spaces and to the full subcategory of topological
vector spaces topologized with the strong, or Mackey topology. This means,
first, that those subcategories can, in principle at least, be studied without
taking the topology into consideration. Second it implies that both of those
categories are ∗-autonomous.

In [6], we showed that the category of topological abelian groups had
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2

similar properties: that both the weakly and strongly topologized abelian
groups formed a ∗-autonomous category.

Later, André Joyal raised the question whether the results of [5] remained
valid for vector spaces over the field Qp of p-adic rationals. This question
was mentioned, but not answered, in [7]. Thinking about this question, I
realized that there is a useful general theorem that answers this question for
any locally compact field and also for locally compact abelian groups. The
current paper provides a positive answer to Joyal’s question.

All these results follow from a systematic use of the chu construction,
see Section 3 below.

To state the main results, we need a definition. A normed field is spheri-
cally complete if any family of closed balls with the finite intersection prop-
erty has non-empty intersection. It is known that every locally compact field
is spherically complete (so this answers Joyal’s question since Qp, as well as
its finite extensions, is locally compact) and spherically complete is known
to be strictly stronger than metrically complete.

Theorem 1.1. Let K be a spherically complete field and |K| its underlying
discrete field. Then the following five categories are equivalent:

1. chu(K-Vect, |K|) (Section 3)

2. The category Vw(K) of topological K-spaces topologized with the
weak topology for all their continuous linear functionals into K.

3. The category Vs(K) of topological K-spaces topologized with the
strong topology (see Section 2) for all their continuous linear func-
tionals into K.

4. The category Vw(|K|) of topological |K|-spaces topologized with the
weak topology for all their continuous linear functionals into |K|.

5. The category Vs(|K|) of topological |K|-spaces topologized with the
strong topology (see Section 2) for all their continuous linear func-
tionals into |K|.

and all are ∗-autonomous (see beginning of Section 3).

The methods also apply to give the results of [6].
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1.1 Terminology

We assume that all topological objects are Hausdorff. As we will see, each
of the categories contains an object K with special properties. It will be
convenient to call a morphism V //

K a functional on V . In the case of
abelian groups, the word “character” would be more appropriate, but it is
convenient to have one word. In a similar vein, we may refer to a mapping
of topological abelian groups as “linear” to mean additive. We will be deal-
ing with topological objects in categories of topological vector spaces and
abelian groups. If V is such an object, we will denote by |V | the underlying
vector space or group.

If K is a topological field, we will say that a vector space is linearly
discrete if it is a categorical sum of copies of the field.

2. The strong and weak topologies

2.1 Blanket assumptions.

In this section, we deal with a certain category T of topological algebras and
a distinguished objectK, usually called the dualizing object. Maps V //K

in T will be called functionals. A bijective map V // V ′ will be called a
weak isomorphism if it induces a bijection Hom(V ′, K) // Hom(V,K).
We show that for any V , there is a space τV with the finest possible topology
for which τV //V is a weak isomorphism and a space σV with the coarsest
possible topology for which V //σV is a weak isomorphism. We show that
σ and τ are functors for which the weak isomorphisms just mentioned are
natural transformations.

Throughout this section, we make the following assumptions.

1. A is an additive equational closed symmetric monoidal category and
T is the category of topological A-algebras.

2. K is a uniformly complete object of T .

3. there is a neighbourhood U of 0 in K such that

(a) U contains no non-zero subobject;
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(b) whenever ϕ : T // K is such that ϕ−1(U) is open, then ϕ is
continuous.

In connection with point 2, in the application to spherically complete
fields, K will be the ground field and we have already noted that sperically
complete fields are metrically complete. In the application to topological
groups, K will the compact circle group.

Point 3 says that, in some sense, the neighbourhood U is small. The ex-
istence of such a neighbourhood in the circle group is well known, although
we provide an argument.

Lemma 2.1. Suppose there is an embedding T � � //
∏

i∈I Ti and there is a
morphism ϕ : T //K. Then there is a finite subset J ⊆ I and a commutative
diagram

T0

K

ϕ0

��

T

T0
��

T

K

ϕ

��

T
∏

i∈I Ti
� � //

T0
∏

j∈J Tj
� � //

∏
i∈I Ti

∏
j∈J Tj
��

Moreover, we can take T0 closed in
∏

j∈J Tj .

Proof. Since ϕ−1(U) is a neighbourhood of 0 in T , it must be the meet with
T of a neighbourhood of 0 in

∏
i∈I Ti. From the definition of the product

topology, we must have a finite subset J ⊆ I and neighbourhoods Uj of 0 in
Tj such that

ϕ−1(U) ⊇ T ∩ (
∏
j∈J

Uj ×
∏
i∈I−J

Ti)

It follows that
U ⊇ ϕ(T ∩ (

∏
j∈J

0×
∏
i∈I−J

Ti))

But the latter is a subobject of K contained in U and therefore must be 0.
Now let

T0 =
T

T ∩ (
∏

j∈J 0×
∏

i∈I−J Ti)
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topologized as a subspace of
∏

j∈J Tj and ϕ0 be the induced map. It is
immediate that ϕ−10 (U) ⊇

∏
j∈J Uj which is a neighbourhood of 0 in the

induced topology and hence ϕ0 is continuous. Finally, since K is complete,
we can replace T0 by its closure in

∏
j∈J Tj .

Theorem 2.2. Suppose S is a full subcategory of T that is closed under finite
products and closed subobjects and that K ∈ S satisfies the assumptions in
2.1. If V is the closure of S under all products and all subobjects and K is
injective in S , then it is also injective in V .

Proof. It is sufficient to show that if V ⊆
∏

i∈I Si with each Si ∈ S , then ev-
ery morphism V //K extends to the product. But the object V0 constructed
in the preceding lemma is a closed suboject of

∏
j∈J Sj so that V0 ∈ S and

the fact that K is injective in S completes the proof.

Recall that a weak isomorphism V // V ′ is a bijective morphism that
induces a bijection on the functionals.

Of course, a bijective morphism induces an injection so the only issue is
whether the induced map is a surjection.

Proposition 2.3. A finite product of weak isomorphisms is a weak isomor-
phism.

Proof. Assume that J is a finite set and for each j ∈ J , Vj // V ′j is a weak
isomorphism. Then since finite products are the same as finite sums in an
additive category, we have

Hom(
∏

V ′j , K) ∼= Hom(
∑

V ′j , K) ∼=
∏

Hom(V ′j , K)

∼=
∏

Hom(Vj, K) ∼= Hom(
∑

Vj, K) ∼= Hom(
∏

Vj, k)

Theorem 2.4. Assume the conditions of Theorem 2.2 and also suppose that
for every object of S , and therefore of V , there are enough functionals to
separate points. Then for every object V of V , there are weak isomorphisms
τV // V // σV with the property that σV has the coarsest topology that
has the same functionals as V and τV has the finest topology that has same
functionals as V .
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Proof. The argument for σ is standard. Simply retopologize V as a subspace
of KHom(V,K). This is the weakest topology for which all the functionals are
continuous and obviously no weaker topology will admit all the functionals.

Let {Vi // V } range over the isomorphism classes of weak isomor-
phisms to V . We define τV as the pullback in

V V I//

τV

V
��

τV
∏
Vi//

∏
Vi

V I
��

The bottom map is the diagonal and is a topological embedding so that the
top map is also a topological embedding. We must show that every func-
tional on τV is continuous on V . Let ϕ be a functional on τV . From injec-
tivity, it extends to a functional ψ on

∏
Vi. By Lemma 2.1, there is a finite

subset J ⊆ I and a functional ψ0 on
∏

j∈J Vj such that ψ is the composite∏
i∈I Vi

//
∏

j∈J Vj
ψ0 //K. Thus we have the commutative diagram

τV
∏

i∈I Vi
∏

j∈I Vj

K

V V I V J

// //

ψ0

%%

�� �� ��
// //

99

The dashed arrow exists because of Proposition 2.3, which completes the
proof.

Remark 2.5. We will call the topologies on σV and τV the weak and strong
topologies, respectively. They are the coarsest and finest topology that have
the same underlying A structure and the same functionals as V . The strong
topology is also called the Mackey topology.

Proposition 2.6. Weak isomorphisms are stable under pullback.
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Proof. Suppose that

V ′ V
‘

//

W ′

V ′

f

��

W ′ W//W

V

f ′

��

and the bottom arrow is a weak isomorphism. Clearly, W ′ //W is a bijec-
tion, so we need only show that Hom(W,K) // Hom(W ′, K) is surjective.

I claim that W ′ ⊆ W × V ′ with the induced topology. Let us define W ′′

to be the subobject W ×V V ′ with the induced topology. Since W ′ //W
and W ′ // V are continuous, the topology on W ′ is at least as fine as that
of W ′′. On the other hand, we do have W ′′ //W and W ′′ // V ′ with the
same map to V so that we have W ′′ //W ′, so that the topology on W ′′ is
at least as fine as that of W ′. Then we have a commutative diagram

W × V ′ W × V//

W ′

W × V ′

� _

��

W ′ W//W

W × V

(id,f)

��

Apply Hom(−, K) and use the injectivity of K to get:

Hom(W,K)× Hom(V ′, K) Hom(W,K)× Hom(V,K)oo
∼=

Hom(W ′, K)

Hom(W,K)× Hom(V ′, K)

OOOO
Hom(W ′, K) Hom(W,K)oo Hom(W,K)

Hom(W,K)× Hom(V,K)

OO

The bottom arrow is a bijection and the left hand arrow is a surjection, which
implies that the top arrow is a surjection.

Proposition 2.7. σ and τ are functors on V .

Proof. For σ, this is easy. If f : W // V is a morphism, the induced
σf : σW // σV will be continuous if and only if its composite with every
functional on V is a functional on W , which obviously holds.
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To see that τ is a functor, suppose f : W // V is a morphism. Form the
pullback

τV V//

W ′

τV

f ′

��

W ′ W//W

V

f

��

Since τV // V is a weak isomorphism, the preceding proposition implies
that W ′ //W is a weak isomorphism. But since τW has the finest topol-
ogy with that property, it follows that the topology on τW is finer than
that of W ′ and hence τW // W factors through W ′ and the composite
τW //W ′ // τV .

Proposition 2.8. If V // V ′ is a weak isomorphism, then σV // σV ′ and
τV // τV ′ are isomorphisms.

Proof. For σ, this is obvious. Clearly, τV // V // τV ′ is also a weak
isomorphism so that τV is one of the factors in the computation of τV ′

and then τV ′ // τV is a continuous bijection, while the other direction is
evident.

Corollary 2.9. Both σ and τ are idempotent, while στ ∼= σ and τσ ∼= τ .

Proposition 2.10. For any V, V ′ ∈ V , we have Hom(σV, σV ′) ∼= Hom(τV, τV ′).

Proof. It is easiest to assume that the underlying objects |V | = |σV | = |τV |
and similarly for V ′. Then for any f : V // V ′, we also have that |f | =
|σf | = |τf |. Thus the two composition of the two maps below

Hom(σV, σV ′) // Hom(τσV, τσV ′) = Hom(τV, τV ′)

and
Hom(τV, τV ′) // Hom(στV, στV ′) ∼= Hom(σV, σV ′)

give the identity in each direction.

Let Vw ⊆ V and Vs ⊆ V denote the full subcategories of weak and
strong objects, respectively. Then as an immediate corollary to the preced-
ing, we have:
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Theorem 2.11. τ : Vw
//Vs and σ : Vs

//Vw determine inverse equiva-
lences of categories.

3. Chu and chu

A ∗-autonomous is a symmetric monoidal closed category equipped with
a “dualizing object” ⊥. We will denote the monoidal structure by ⊗ with
tensor unit > and the closed structure by −◦. The basic assumption is that
for every object A the canonical map A // (A−◦⊥)−◦⊥ is an isomor-
phism. We let A∗ = A−◦⊥. Many things follow from this, e.g. A−◦B ∼=
B∗−◦A∗, A ⊗ B ∼= (A−◦B∗)∗, and A−◦B ∼= (A ⊗ B∗)∗. See [2] for all
details.

Now we add to the assumptions on A that it be a symmetric monoidal
closed category in which the underlying set of A−◦B is Hom(A,B). We
denote by E and M the classes of surjections and injections, respectively.

We briefly review the categories Chu(A , K) and chu(A , K). See [4] for
details. The first has a objects pairs (A,X) of objects of A equipped with a
“pairing” 〈−,−〉 : A ⊗ X // K. A morphism (f, g) : (A,X) // (B, Y )
consists of a map f : A //B and a map g : Y //X such that

A⊗X K
〈−,−〉

//

A⊗ Y

A⊗X

A⊗g

��

A⊗ Y B ⊗ Yf⊗Y // B ⊗ Y

K

〈−,−〉

��

commutes. This says that 〈fa, y〉 = 〈a, gy〉 for all a ∈ A and y ∈ Y .
This can be enriched over A by internalizing this definition as follows. Note
first that the map A ⊗ X // K induces, by exponential transpose, a map
X // A−◦K. This gives a map Y −◦X // Y −◦ (A−◦K) ∼= A ⊗
Y −◦K. There is a similarly defined arrow A−◦B // A⊗ Y −◦K. De-
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fine [(A,X), (B, Y )] so that

Y −◦X A⊗ Y −◦K//

[(A,X), (B, Y )]

Y −◦X
��

[(A,X), (B, Y )] A−◦B// A−◦B

A⊗ Y −◦K
��

is a pullback. Then define

(A,X)−◦ (B, Y ) = ([(A,X), (B, Y )], A⊗ Y )

with 〈(f, g), a⊗ y〉 = 〈fa, y〉 = 〈a, gy〉 and

(A,X)⊗ (B, Y ) = (A⊗B, [(A,X), (Y,B)])

with pairing 〈a ⊗ b, (f, g)〉 = 〈b, fa〉 = 〈a, gb〉. The duality is given by
(A,X)∗ = (X,A) ∼= (A,X)−◦ (K,>) where > is the tensor unit of A .
Incidentally, the tensor unit of Chu(A , K) is (>, K).

The category Chu(A , K) is complete (and, of course, cocomplete). The
limit of a diagram is calculated using the limit of the first coordinate and the
colimit of the second. The full subcategory chu(A , K) ⊆ Chu(A , K) con-
sists of those objects (A,X) for which the two transposes of A ⊗X //K
are injective homomorphisms. When A // //X −◦K, the pair is called sep-
arated and when X // //A−◦K, it is called extensional. In the general case,
one must choose a factorization system (E ,M ) and assume that the arrows
in E are epic and that M is stable under −◦, but here these conditions are
clear. Let us denote by Chus(A , K) the full subcategory of separated pairs
and by Chue(A , K) the full subcategory of extensional pairs.

The inclusion Chus(A , K) � � // Chu(A , K) has a left adjoint S and
the inclusion Chue(A , K) � � // Chu(A , K) has a right adjoint E. More-
over, S takes an extensional pair into an extensional one and E does the
dual. In addition, when (A,X) and (B, Y ) are separated and extensional,
(A,X)−◦ (B, Y ) is separated but not necessarily extensional and, dually,
(A,X)⊗ (B, Y ) is extensional, but not necessarily separated. Thus we must
apply the reflector to the internal hom and the coreflector to the tensor, but
everything works out and chu(A , K) is also ∗-autonomous. See [4] for de-
tails.
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In the chu category it is evident that for any (f, g) : (A,X) // (B, Y ),
f and g determine each other uniquely. So a map could just as well be
described as an f : A // B such that x.ỹ ∈ X for every y ∈ Y . Here
ỹ : B // K is the evaluation at y ∈ Y of the exponential transpose
Y //B−◦K.

Although the situation in the category of abelian groups is as described,
in the case of vector spaces over a field, the hom and tensor of two separated
extensional pairs turns out to be separated and extensional already ([3]).

4. The main theorem

Theorem 4.1. Assume the hypotheses of Theorem 2.4 and also assume
that the canonical map > // K −◦K is an isomorphism. Then the cate-
gories of weak spaces and strong spaces are equivalent to each other and to
chu(A , K) and are thus ∗-autonomous.

Proof. The first claim is just Theorem 2.11. Now define F : V // chu
by F (V ) = (|V |,Hom(V,K)) with evaluation as pairing. We first de-
fine the right adjoint R of F . Let R(A,X) be the object A, topologized
as a subobject of KX . Since it is already inside a power of K, it has
the weak topology. Let f : |V | // A be a homomorphism such that
for all x ∈ X , x̃.f ∈ Hom(V,K). This just means that the composite
V // R(A,X) //KX πx //K is continuous for all x ∈ X , exactly what
is required for the map into R(A,X) to be continuous. The uniqueness of f
is clear and this establishes the right adjunction.

We next claim that FR ∼= Id. That is equivalent to showing that
Hom(R(A,X), K) = X . Suppose ϕ : R(A,X) // K is a functional.
By injectivity, it extends to a ψ : KX //K. It follows from 2.1, there is a
finite set of elements x1, . . . , xn ∈ X and morphisms θ1, . . . , θn such that ψ

factors as KX // Kn (θ1,...,θn) // K. Applied to R(A,X), this means that
ϕ(a) = 〈θ1x1, a〉 + · · · + 〈θnxn, a〉. But the θi ∈ I and the tensor products
are over I so that the pairing is a homomorphism A⊗IX //K. This means
that ϕ(a) = 〈θ1x1 + · · · θnxn, a〉 and θnx1 + · · ·+ θnxn ∈ X .

Finally, we claim thatRF = S, the left adjoint of the inclusion Vw ⊆ V .
If V ∈ V , then RFV = R(|V |,Hom(V,K)) which is just V with the weak
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topology it inherits from KHom(V,K), exactly the definition of SV . It follows
that F |Vw is an equivalence.

Since Vw and Vs are equivalent to a ∗-autonomous category, they are
∗-autonomous.

The fact that the categories of weak and Mackey spaces are equivalent
was shown, for the case of B (Banach) spaces in [8, Theorem 15, p. 422].
Presumably, the general case has also been long known, but I am not aware
of a reference.

5. Examples.

Example 1. Vector spaces over a spherically complete field

Let K be a spherically complete field. Let U = {× ∈ K | ||x|| < 1}. As a
ranges over the non-zero elements of K, the sets of the form aU are a neigh-
bourhood base at 0. If V is a topologicalK-vector space and ϕ : |V | //K is
a linear mapping such that ϕ−1(U) is open in V , then ϕ−1(aU) = aϕ−1(U)
which is open by continuity of division and thus ϕ is actually continuous
on V . That U contains no K-subspace of K and that K // K −◦K is an
isomorphism are obvious.

This example includes all locally compact fields, see [15, Corollary
20.3(i)].

We take for S the category of normed linear K-spaces, except in the
case that K is discrete, we require also that the spaces have the discrete
norm. We know that K is injective in the discrete case. The injectivity of
K in the real or complex case is just the Hahn-Banach theorem, which has
been generalized to ultrametric fields according to the theorem following the
definition:

An ultrametric is a metric for which the ultratriangle inequality, ||x +
y|| ≤ ||x|| ∨ ||y||, holds. This is obviously true for p-adic and t-adic norms.
Spherically complete means that the meet of any descending sequence of
closed balls is non-empty. This is known to be satisfied by locally compact
ultrametric spaces.

Theorem 5.1 (Ingelton). Let K be a spherically complete ultrametric field.
E a K-normed space and v a subspace of E. For every bounded linear
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functional ϕ defined on V , there exists a bounded linear functional ψ defined
on E whose restriction to V is ϕ and such that ||ϕ|| = ||ψ||.

The proof is found in [14]
Notice that if K is non-discrete, then what we have established is that

both Vs and Vw are equivalent to chu(Vect-|K|, |K|). But exactly the same
considerations show that the same is true if we ignore the topology onK and
use the discrete norm. The category S will now be the category of discrete
finite-dimensional |K|-vector spaces. Its product and subobject closure will
consist of spaces that are mostly not discrete, but there are still full subcat-
egories of weakly and strongly topologized spaces within this category and
they are also equivalent to chu(Vect-|K|, |K|).

Thus, these categories really do not depend on the topologies. Another
interpretation is that this demonstrates that, for these spaces, the space of
functionals replaces the topology, which was arguably Mackey’s original
intention.

Example 2. Locally compact abelian groups.

For the abelian groups, we take for V the category of those abelian that
are subgroups (with the induced topology) of products of locally compact
abelian groups. The object K in this case is the circle group R/Z. A sim-
ple representation of this group is as the closed interval [−1/2, 1/2] with the
endpoints identified and addition mod 1. The group is compact. Let U be
the open interval (−1/3, 1/3). It is easy to see that any non-zero point in
that interval, added to itself sufficiently often, eventually escapes that neigh-
borhood so that U contains no non-zero subgroup. It is well-known that the
endomorphism group of the circle is Z.

If f : G // K is a homomorphism such that T = f−1(U) is open in
G, let T = T1, T2, . . . , Tn, . . . be a sequence of open sets in G such that
Ti+1 + Ti+1 ⊆ Ti for all i. Let Ui = (−2−i/3, 2−i/3) ⊆ K. Then the
{Ui} form a neighborhood base in K and one readily sees that f−1(Ui) ⊆ Ti
which implies that f is continuous.

We take for S the category of locally compact abelian groups. The fact
that K is an injective follows directly from the Pontrjagin duality theorem.
A result [9, Theorem 1.1] says that every locally compact group is strongly
topologized. Thus both categories of weakly topologized and strongly topol-
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ogized groups that are subobjects of products of locally compact abelian
groups are equivalent to chu(Ab, |K|) and thus are *-autonomous.

We can ask if the same trick of replacing K = R/Z by |K|, as in the
first example, can work. It doesn’t appear so. While Hom(K,K) = Z, the
endomorphism ring of |K| has cardinality 2c and is non-commutative, so we
cannot draw no useful inference about maps from |K|n // |K|, even for
finite n.

Example 3. Modules over a self injective cogenerator.

If we examine the considerations that are used in vector spaces over a field, it
is clear that what is used is that a field is both an injective module over itself
and a cogenerator in the category of vector spaces. Then if K is a such a
commutative ring, we can let T be the category of topologicalK-modules, S
be the full subcategory of submodules of finite powers ofK with the discrete
topology and V the limit closure of S . Then chu(ModK , K) is equivalent to
each of the categories Vs and Vw of topological K-modules that are strongly
and weakly topologized, respectively, with respect to their continuous linear
functionals into K.

We now show that there is a class of commutative rings with that prop-
erty. Let k be a field and K = k[x]/(xn). When n = 2, this is called the ring
of dual numbers over k.

Proposition 5.2. K is self injective.

We base this proof on the following well-known fact:

Lemma 5.3. Let k be a commutative ring, K is a k-algebra, Q an injective
k-module, and P a flat right K-module then Homk(K,Q) is an injective
K-module.

The K-module structure on the Hom set is given by (rf)(a) = f(ar) for
r ∈ K and a ∈ P .

Proof. Suppose A // // B is an injective homomorphism of K-modules.
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Then we have

Homk(P ⊗R B,Q) Homk(P ⊗R A,Q)// //

HomR(B,Homk(P,Q))

Homk(P ⊗R B,Q)

∼=

��

HomR(B,Homk(P,Q)) HomR(A,Homk(P,Q))// HomR(A,Homk(P,Q))

Homk(P ⊗R A,Q)

∼=

��

and the flatness of P , combined with the injectivity of Q force the bottom
arrow to be a surjection.

of 5.2. From the lemma it follows that Homk(K, k) is a K-injective. We
claim that, as K-modules, Homk(K, k) ∼= K. To see this, we map
f : K // Homk(K, k). Since these are vector spaces over k, we be-
gin with a k-linear map and show it is K-linear. A k-basis for K is
given by 1, x, . . . , xn−1. We define f(xi) : K // k for 0 ≤≤ n − 1 by
f(xi)(xj) = δi+j,n (the Kronecker δ). For this to be K-linear, we must show
that f(xxi) = xf(xi). But

f(xxi)(xj) = f(xi+1(xj)) = δi+1+j,n = f(xi)(xj+1) = (xf(xi))(xj)

Clearly, the f(xi), for 0 ≤ i ≤ n are linearly independent and so f is an
isomorphism.

Proposition 5.4. K is a cogenerator in the category of K-modules.

Proof. Using the injectivity, it suffices to show that every cyclic mod-
ule can be embedded into K. Suppose M is a cyclic module with gen-
erator m. Let i be the first power for which xim = 0. I claim that
m,xm, . . . , xi−1m are linearly independent over k. If not, suppose that
λ0m + λ1xm + · · ·λi−1xi−1m = 0 and not all coefficients 0. Let λj be the
first non-zero coefficient, so that λjxj + · · · + λi−1x

i−1m = 0. Multiply
this by xi−j−1 and use that xlm = 0 for l ≥ i to get λjxi−1m = 0. But
by assumption, xi−1m 6= 0 so that this would imply that λj = 0, con-
trary to hypothesis. Thus there is a k-linear map f : M // K given by
f(xjm) = xn−i+j . Since the xj are linearly independent, this is k-linear and
then it is clearly K-linear.
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6. Interpretation of the dual of an internal hom

These remarks are especially relevant to the vector spaces, although they are
appropriate to the other examples. The fact that (U −◦V )∗ ∼= U −◦V ∗ can
be interpreted that the dual of U −◦V is a subspace of V −◦U , namely those
linear transformations of finite rank. An element of the form u ⊗ v∗ acts
as a linear transformation by the formula (u ⊗ v∗)(v) = 〈v, v∗〉u. This is a
transformation of row rank 1. Sums of these elements is similarly an element
of finite rank.

This observation generalizes the fact that in the category of finite dimen-
sional vector spaces, we have that (U −◦V )∗ ∼= V −◦U (such a category is
called a compact ∗-autonomous category). In fact, Halmos avoids the com-
plications of the definition of tensor products in that case by defining U ⊗ V
as the dual of the space of bilinear forms on U ⊕ V , which is quite clearly
equivalent to the dual of U −◦V ∗ ∼= V −◦U∗ ([10, Page 40]). (Incidentally,
it might be somewhat pedantic to point out that Halmos’s definition makes
no sense since U ⊕ V is a vector space in its own right and a bilinear form
on a vector space is absurd. It would have been better to use the equivalent
form above or to define Bilin(U, V ).)

Since linear transformations of finite rank are probably not of much in-
terest in the theory of topological vector spaces, this may explain why the
internal hom was not pursued.
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Abstract. An autograph is a set A with an action of the free monoı̈d with 2

generators, and an autographic monad is a monad on the topos of autographs.
In previous papers we have shown that knots and double-categories are ex-
amples, and we proved that basic graphic algebras are autographic algebras.
In this third paper we add three new results. We explain how to get concrete
representations of autographs and conversely how to collect any representa-
tion into an autograph. We precise previous results and extend them, showing
that knots and general links and grid diagrams are autographs, and that gen-
eral graphic algebras are some autographic algebras.
Résumé. Un autographe est un ensemble A équipé d’une action du monoı̈de
libre à deux générateurs, une algèbre autographique est une algèbre d’une
monade sur le topos des autographes. Dans deux articles précédents nous
avons vu que les diagrammes de nœuds et les 2-graphes sont des exemples,
et que les algèbres graphiques basiques sont autographiques.
Dans ce troisième article, nous ajoutons trois résultats nouveaux. Nous mon-
trons comment représenter concrètement les autographes, et réciproquement
comment collecter une représentation en un autographe, nous expliquons
précisément comment les nœuds, les entrelacs, les diagrammes de grilles, et
aussi les catégories doubles, sont des exemples d’autographes, et nous iden-
tifions les algèbres graphiques générales avec des algèbres autographiques.
Keywords. graph, autograph, autographic algebra, autographic monad, knot,
link, double category.
Mathematics Subject Classification (2010). 18C, 57M25.

1. Category Rep(A, d, c) of representations of an autograph

Of course the construction in this section could work when Set is replaced by
an arbitrary topos E , providing Auto[Rel(E)] and Auto[E ], and consequently
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with the topos Agraph we would get Auto[Agraph], etc.

Definition 1.1. 1 — An autograph is the data A = (A, dA, cA) of a set A
and two maps dA : A → A, cA : A → A. Abusively, often the set A will
be denoted by A, and dA and cA are denoted by d and c. If we denote by
FM(2) = {d, c}∗ the free monoı̈d on two generators d and c (and with unit
v) then an autograph is an action A(−) of FM(2), with A(υ) = A,A(d) =
dA, A(c) = cA. We represent a ∈ A with dAa = v and cAa = w, by:
a : v → w, or v a→ w.
2 — The category of autographs is Agraph = SetFM(2) — a topos of course
— a morphism in it from A to A′ being a map f : A→ A′ satisfying

d′fa = fda, c′fa = fca.

3 — An autocategory [3, Definition 6.1] is an autograph with identifier and
a unitary and associative composition for consecutive arrows.

The purpose of this section is to show how to represent concretely such
autographs, and, starting from these representations, how to elaborate new
“collected” autographs.

1.1 From Autorelations to autographs, and conversely

Proposition 1.2. Considered as sets we have FM(2) = FA(()) = FA({f})
(the free autograph on one generator, see [3]), and they consist in words
written with c and d, with maps d(−) and c(−) given bym 7→ dm,m 7→ cm.
By a (binary) Autorelation we mean a family of sets R = (Rm)m∈FM(2), with

Rm ⊆ Rdm ×Rcm,

or with the induced “projections” cm : Rm → Rcm and dm : Rm → Rdm.
The set of these R is denoted by Auto[Rel].
In such an R, each element ξ in R() or in any Rm generates an image Rξ of
FM(2) which is an autograph, and the set R∞ disjoint union of the Rm

R∞ = ∪̇mRm = ∪m (Rm × {m}),

is itself an autograph, union of these Rξ. Furthermore πR : (ξ,m) 7→ m is
a morphism of autographs

πR : R∞ → FA(()).
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Conversely, given a morphism of autographs π : S → FA(()) we can recon-
struct an autorelation, with Rm = π−1(m).

Example 1.3. Given a data B of 3 sets X, Y, Z and 6 maps cX : X → Y ,
cY : Y → Z, cZ : Z → X , and dX : X → Z, dY : Y → X , dZ : Z → Y ,
we get maps X

(cX ,dX)−→ Y × Z, Y
(cY ,dY )−→ Z × X , Z

(cZ ,dZ)−→ X × Y , and a
finite generator of an autorelation

X ⊂ Y × Z, Y ⊂ Z ×X, Z ⊂ X × Y,

the associated autorelation B being given by B() = X and

Bc = Y,Bd = Z,Bcc = Z,Bdc = X,Bcd = X,Bdd = Y,Bccc = X, . . .

Example 1.4. With notations from [3, Proposition 3.1.], interpreting each
Rm as N, with “projections” c(n) = t1(n) = 3n + 1, d(n) = t2(n) =
3n+2, we get an autorelation “on” N = FA(3N), of which the corresponding
autograph is FA(3N)× FA({f}), equipped with a morphism

FA(3N)× FA({f})→ FA({f}).

Proposition 1.5. An autographA = (A, dA, cA) determinesA
(dA,cA)−→ A×A,

and so we get an autorelation “on” A, as in examples 1.3 and 1.4.

1.2 SetR(A, d, c) of relational representations of an autograph

Definition 1.6. A relational representation (or a spanning representation) of
an autograph (A, d, c) is a data ϕ = (Φ, φd, φc), with for each f ∈ A, the
data of a set Φ(f) and of a span of functions

Φ(df)
φd(f)←− Φ(f)

φc(f)−→ Φ(cf),

which are the induced “projections” associated to a specified inclusion

Φ(f) ⊂ Φ(df)× Φ(cf).

We denote byR(A, d, c) the set of these relational representations.
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Proposition 1.7. Given a relational representation ϕ = (Φ, φd, φc) of an
autograph A = (A, dA, cA), we collect it over A, constructing a map of
autograph

πϕ : Σϕ = (Sϕ, dϕ, cϕ) −→ (A, dA, cA) = A

with
Sϕ = {(f, u); f ∈ A, u ∈ Φ(f)},

dϕ(f, u) = (φd(u), dAf), cϕ(f, u) = (φc(u), cAf), qϕ(f, u) = f.

Example 1.8. A relational representation of FA(()) is exactly an autorela-
tion as in 1.2, so the set Autorel[Set] of autorelations is R(FA)(()), and the
πR is a case of a πϕ.

1.3 From autorelations to automaps, and conversely

Definition 1.9. We define Auto[Set] as the set of automaps, an automap
being a sequence f = (fm)m∈FM(2) of maps fm : Gdm → Gcm, each Gn

being the graphic of fn,

Gn = {(x, y);x ∈ Gdn, y ∈ Gcn, y = fn(x)} ' Gdn.

Of course such an automap is an autorelation, and Auto[Set] ⊂ Auto[Rel].

Proposition 1.10. An autorelation R determines an automap R̂ given by
maps R̂m : P(Rcm)→ P(Rdm) with P(E) the set of subsets of E, and

R̂m(X) = {y ∈ Rdm;∃z ∈ Rm, (cm(z) ∈ X ∧ dm(z) = y)}.

So we get an injection −̂ : Auto[Rel] −→ Auto[Set].

1.4 Set F(A, d, c) of functional representations of an autograph

Definition 1.11. A functional representation of an autograph (A, d, c) is a
data (Φ, φ), with for each f ∈ A, the data of sets Φ(df) and Φ(cf), and of a
function

φ(f) : Φ(df)→ Φ(cf).

The set of these functional representations is denoted by F(A, d, c), and as a
functional representation is a special case of a relational representation —
with Φ(f) = Φ(df) — we have F(A, d, c) ⊂ R(A, d, c).
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Proposition 1.12. The definition in the construction of Auto[Set] in Propo-
sition 1.9 determines each automap as a functional representation of the
free autograph FA(()), and Auto[Set] as a subset of F(FA(())). A fortiori,
Auto[Rel] being a subset of Auto[Set], it is also a subset of F(FA(())).

Proposition 1.13. As in the case of Proposition 1.10 we have an injection

−̂ : R(A, d, c) −→ F(A, d, c).

Proposition 1.14. We get a category Rep(A, d, c) of representations of an
autograph, with objects the elements of F(A, d, c), a morphism from (Φ, φ)
to (Φ′, φ′) being a double collection (tdf , t

c
f )f∈A of maps

tdf : Φ(df)→ Φ′(df), tcf : Φ(cf)→ Φ′(cf),

such that
tcfφf = φ′f t

d
f .

1.5 The regular representation, object of Rep(A, d, c)

The natural representation for a category is given by Yoneda’s lemma, with
at first the following basic fact. For each category C we have a faithful rep-
resentation by a functor UC : C −→ Set, given by UC(A) = ∪̇X Hom(X,A),
and UC(f)(u) = f.u, when f : A → B. In the special case where C is the
free category of paths in a graph G, this provides the representation of G by
action on its paths. Similarly for an autograph (A, d, c) we have:

Proposition 1.15. For each autograph A we have the following faithful reg-
ular representation f 7→ (Γ(f), γ(f)) with:
1 — The set Γ(f) of (d, c)-paths (cf. [3, Definition 1.4]) with end f i.e.

(zn)0≤n≤k−1, with cz0 = dz1, cz1 = dz2 . . . , czk−2 = dzk−1 and czk−1 = f.

2 — A map γ(f) : Γ(df)→ Γ(cf), given by concatenation with f , by

γ(f)((zn)0≤n≤k−1) = (z′n)0≤n≤k,

with z′n = zn if n < k, and z′k = f .
Shortly if (zn)0≤n≤k−1 = z, then (z′n)0≤n≤k = fz, or γ(f)(z) = fz.
So (A, d, c) can be identified with a special element of F(A, d, c) or object
of Rep(A, d, c).

GUITART - AUTOCATEGORIES: III ...

- 71 -



2. Double categories, Knots, Links, Grid Diagrams

In the first paper of this series [3] we obtained that the topos Agraph of auto-
graphs is a common setting for knots and 2-categories or double categories.
Here this result is strengthened and extended, using 2-dimensional paths in
double categories and grid diagrams.

2.1 Double categories and knots as well formed 2-dim words

Proposition 2.1. A double category C is determined by an associated auto-
category Ass(C), according to the following picture to represent a 2-block b
as an autograph:

A 2-block b as an autograph

b cb

db

cdbddb

ccb

dcb

cddb
  =
dccb

cccb
  =
ccdb

ddcb
  =
dddb

cdcb
  =
dcdb

idb
icb

idcb

iccb

iddb  icdb

Proof. A 2-block b (fig.[1] below) is considered as an arrow from its two
oriented versions, its vertical orientation bv and its horizontal orientation bh.
Then bv is an arrow from dvb to cvb, etc. (fig.[2]). Hence (fig.[3]) a resulting
autograph, which can be completed and redrawn as in Proposition 2.1 above.
The full description of Ass(C) is explained in [3, Proposition 7.1], but we
have to correct a typos there: in the picture an autoarrow Ibv = (bv)

θ : bv →
bv should be added.
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[1]

�1

�2

�3

�4

dhb chb

dvb

cvb

b
bh

bv

[2]

�1 �3

�2 �4
�′1

�′2

�′3

�′4

b

bv

bh

dvb

cvb

dhb chb

[3]

b

db

cb

ddb

cdb

dcb ccb

In particular we have shown how the two horizontal and vertical compo-
sitions, denoted by∞ and 8

b b′

a a′

and compatible according to

(a′∞a)8(b′∞b) = (a′8b′)∞(a8b),

are replaced by a unique composition law.

Proposition 2.2. Any knot or link can be presented as a 2-dim rectangular
“well formed” word, on a rectangle Rn,m of dimension n × m made with
the tiles from the set T of the 9 following tiles (a word is well formed if each
line decoration into any tile arriving on a side of this tile is pursued in the
next adjacent tile). Of course it is a map L : Rn,m → T, and of course such
a data is representable as an autograph.
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Consequently a link is a 2-dim path in the double category generated by these
tiles (or in the corresponding autograph according to Proposition 2.1).

Remark 2.3. Hence the question of isotopy type of links becomes a ques-
tion of 2-dim rewriting, as explained in [2] (This is also near from studies
on mosaics [6]). There are vertical (or horizontal) dilatations: if a column
consists only in empty tiles or horizontal line tiles, we can add a new similar
column juxtaposed to the first one; and furthermore they are analogous to
the three Reidemeister moves.

Example 2.4. The following 2-dim word is a borromean link.

2.2 Knots, from their knot diagrams

In the paper [3, section 4] for a knot K we introduced an associated auto-
graph As(K), used for trefoil or borromean knot and link. The following
Proposition 2.5 strengthens this result.

Proposition 2.5. If K is an alternating knot, then from As(K) we recover the
Gauss’code of K, and so this knot is determined by its associated autograph.
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For a general knot a modification of the construction is necessary, fol-
lowing Proposition 2.6

Proposition 2.6. If K is an arbitrary knot, then from the autograph As(Kaa)
— with Kaa defined in the proof — we recover the Gauss’code of K, and so
this knot is determined by this autograph.

Proof. If the knot is not alternating, then we cannot recover the Gauss’code
from As(K). For example the K in the next picture is a not-alternating knot,
and we consider an arc which is not going in an alternative way, as e from
b to h, passing over in two consecutive crossings; hence we have c and f
arriving to e, but in As(K) we have no information on the order in which
these arrows arrived on e: following e which one is the first met, c or f? So
before considering As(K) we decide to modify K into Kaa as follows. In
K we observe arcs which are alternating, as d, f , g, h, and the others, a, b,
c, e are said to be not-alternating. Each of these not-alternating arcs (see in
Kaa) is now decomposed by introducing autoarrows, 2, 5, 8, 12, and we have
a = 1.2.3, b = 4.5.6, c = 7.8.9, e = 11.12.13. Now c or rather 9 arrives to
11, whereas 14 arrives to a different arc, namely 13, and we can recover the
Gauss’code of K from As(Kaa). For the Gauss’code see [5, p.666].

K

a

b
c

d
e

f

g
h

10

2

Kaa

13

4

5

 6
7

11
12

13

14

15

16

8
9

2.3 Grid diagrams and links isotopy types

Proposition 2.7. Any link can be associated to an autograph determining its
isotopy type.
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Proof. A Grid diagram [7], is an n × n square with n triangles and n cir-
cles placed in distinct places, such that each row and each column contains
exactly one triangle and one circle. In the next picture the first left drawing
is an example with n = 8. Given such a grid, we join the triangle and the
circle in each column by continuous straight vertical lines (second step in the
picture), and then in each row we join the triangle and the circle by a straight
line passing under the previously vertical straight lines it meets (third step).
And finally (fourth step) we look at a link. In this example it is a borromean
link (but presented differently from the picture given in [3, Example 4.5]).
Another borromean example is furnished by Example 2.4.

grid diagram colums over rows under link

Now, as any isotopic type of link can be obtained in this way [1], we con-
clude if we can show that any grid can be determined by an autograph, and
this is obvious since a grid is a graph.

3. Graphic monads among autographic monads

3.1 The topos Agraph of autographs, between Graph and Set

3.1.1 Autographs and graphs

According to [3, def.1.1., p.66], [4, def.1.1.-1.2, p.152], we have:

Definition 3.1 (Graphs). Let G(2) be the category with objects υ0 and υ1,
five non-identity arrows

γ0, δ0 : υ1 → υ0, ι : υ0 → υ1, δ, γ : υ1 → υ1,
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identities on υ1, υ0, equations: δ0.ι = 1υ0 , γ0.ι = 1υ0 , γ = ι.γ0, δ = ι.δ0.

υ0
ι // υ1

δ0

ww

γ0

gg

δ

��

γ

GG

A presheaf G on G(2), i.e. an object of Graph = SetG(2) is named a graph.
Any c ∈ G(υ0) is named a vertex or a carfour, and if f ∈ G(υ1), f is
named an arrow; the fact that G(δ0)(f) = c and G(γ0)(f) = c′ is written:
f : c→ c′.

3.1.2 The comparison V and its equivalent W

With [4, Prop.1.4 p.153, Prop.2.2. p.154] the comparison between auto-
graphs and graphs is given by a functor V : Graph→ Agraph. :

Proposition 3.2. The categories Agraph and Graph are toposes, inscribed
in the sequence

Graph V→ Agraph U→ Set,

where U = evav
FM(2) is the monadic forgetful functor given by evaluation at

v, (A, (dA, cA)) 7→ A, and V = Φ = (−).φ is the monadic functor induced
by the map φ : FM(2)→ G(2); v, c, d 7→ v1, γ, δ.

Remark 3.3. In a graph G the G(ι) = φ associates to each vertex an arrow.
Hence we have the more general situation of flexigraph in [3, Defg. 5.4.]. An
autograph A appears as a special case of a flexigraph, when φ = 1A. Let us
recall also from [4] that with graphs we have 2 types of arities (vertices and
arrows), wheras with autographs only 1 type (arrows) is considered. Next
Proposition 3.4 clarifies thist point.

Proposition 3.4. The category G(2) is the Karoubian envelope of the monoı̈d
M(2) = {1, c, d}, with equations c2 = c, d2 = d, cd = d, dc = c, and
Graph is equivalent to SetM(2). Up to this equivalence, the functor V is the
functor W = Setφ̄ induced by the composition with the monoı̈d quotient
homomorphism φ̄ given by v 7→ 1, c 7→ c, d 7→ d:

φ̄ : FM(2)→M(2),

W = Setφ̄ : SetM(2) → SetFM(2) .
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3.2 From graphic monads to autographic monads

In the second paper of this series [4], via graphic monoı̈ds of Lawvere we
have shown that basic Albert Burroni’s graphic algebras are autographic al-
gebras; and especially as autographic algebras we get categories as well as
autocategories. Now we have to precise the study for graphic algebras which
are not necessarily basic. Albert Burroni defined a graphic algebra as an
algebra of a monad on Graph (a graphic monad); similarly we defined an
autographic algebra as an algebra of a monad on Agraph (an autographic
monad). So we have to complete the result in the general case, for algebras
of arbitrary monads on Graph = SetG(2) ' SetM(2) and their transport via
the W in Proposition 3.4.

Generally speaking, for any homomorphism of monoı̈ds ϕ : F →M the
induced functor

Setϕ : SetM → SetF

is monadic, This works for our W = Setφ̄ : SetM(2) → SetFM(2) from Propo-
sition 3.4, as well as for any quotient map of monoı̈ds

qM : FM(2)→M,

the corresponding WqM = SetqM , its left adjoint LanqM , TM = (−)qM LanqM
and TM = (TM , r) the associated idempotent monad on SetFM(2) = Agraph.
So, for a given qM — see [4, Proposition 2.6]) — the topos SetM is a reflex-
ive subcategory of Agraph, with for any E = (A, d, c) a reflexion

rE : E → TM(E),

given by a quotient set TM(E) = TM(A, d, c) = A/[qM ], quotient of A by
the smallest congruence [qM ] on E compatible with qM .

Proposition 3.5. With the notations above for a given qM : FM(2) → M
(and the associated monad TM ) on Agraph, we consider another monad
T = (T, η, µ) on SetM . Then the functor

(SetM ]T
UT−→ SetM

WqM−→ SetFM(2) = Agraph

determines a monad T̄ = (T̄ , η̄, µ̄) on Agraph, of which an algebra θ̄ on E
is a composition θ̄ = λθ of an algebra θ = rE θ̄ of T on TM(E) and of a
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special section λ = θ̄ηE/[q] of the reflexion rE : E → TM(E).
Consequently we have

(SetM ]T ' AgraphT̄ ∩ AgraphTM .

In particular this is true for M = M(2) and the corresponding W , and al-
gebras of graphic monad are such special algebras of autographic monads.

Proof. With (T̄ = (T̄ , η̄, µ̄) the monad associated to WqMUT we have, with
TM(E) = E/[q] = A/[qM ] and rE : E → E/[q], the following formula:
T̄ (E) = T (E/[q]), η̄E = ηE/[q]rE , µ̄E = µE/[q], T̄ 2(E) = T 2(E/[q]).

If (E, θ̄) is a T̄-algebra on E, then we introduce θ = rE θ̄, and so Tθ =
T (rE θ̄). The T̄-associativity θ̄T̄ θ̄ = θ̄µ̄E implies, by composition on the left
with rE , rE θ̄T (rE θ̄) = rE θ̄µ̄E i.e. the T-associativity: θ.Tθ = θµE/[q]. Also
from T̄-unitarity we obtain T-unitarity, θηE/[q] = 1E/[q], from θ̄η̄E = 1E] by
composition on the left with rE: θηE/[q]rE = rE . So we obtain (E/[q], θ) a
T-algebra on E/[q].

In fact introducing λ = θ̄ηE/[q], we obtain λθ = θ̄, and rEλ = 1E/[q].
For the first we have θ̄ηE/[q]rE θ̄ = θ̄, i.e. θ̄η̄E θ̄ = θ̄. For the second, by
composition on the right with the epimorphism θ we get rEλθ = θ, or
rE θ̄ηE/[q]θ = θ, θηE/[q]θ = θ.

So any θ̄, T̄-algebra on E, determines two things: θ, an algebra on E/[q],
and λ, a section of rE : E → E/[q]. Conversely, given θ and λ, we recover
θ̄ = λθ.
Especially, a T-algebra is a T̄-algebra on a E such that E ' E/[q], i.e. a E
equipped with a TM -algebra structure (λ = 1E = rE).
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