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Résumé. Nous étudions une notion générale de dérivation dans le con-
texte des catégories codifférentielles de Blute-Cockett-Seely, généralisant
la notion de dérivation K-linéaire de l’algèbre commutative. Pour une
catégorie codifferentielle (C, T, d), une T -dérivation ∂ : A → M sur une
algèbre A de la monade T est definie comme un morphisme de C dans un
A-module M vérifiant une forme du théorème de dérivation des fonctions
composées par rapport à la transformation dérivateur d. Nous montrons que
ces T -dérivations correspondent aux T -homomorphismes A → W (A,M)

au-dessus de A dans une T -algèbre associée W (A,M). Nous établissons
l’existence de T -dérivations universelles A → ΩT

A dans un A-module
associé ΩT

A, le module de différentiels de type Kähler. Tandis que l’article
précédent de Blute-Cockett-Porter-Seely sur les catégories Kähleriennes a
utilisé une notion de dérivation exprimable sans référence à la monade T ,
nous montrons que l’usage de la notion de T -dérivation ci-dessus résout
un problème ouvert concernant les catégories Kähleriennes, montrant que
la Propriété K pour catégories codifférentielles n’est pas nécessaire. Le
long du chemin, nous établissons une définition succincte et equivalente
de la notion de catégorie codifférentielle en termes d’un morphisme
de monades S → T sur la monade S de l’algèbre symétrique et d’une
transformation d vérifiant le théorème de dérivation des fonctions composées.
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Abstract. We define and study a novel, general notion of derivation in the
setting of the codifferential categories of Blute-Cockett-Seely, generalizing
the notion of K-linear derivation from commutative algebra. Given a
codifferential category (C, T, d), a T -derivation ∂ : A→M on an algebra A
of the monad T is defined as a morphism in C into an A-module M satisfying
a form of the chain rule expressed in terms of the deriving transformation
d. We show that such T -derivations correspond to T -homomorphisms
A → W (A,M) over A valued in an associated T -algebra. We establish
the existence of universal T -derivations A → ΩT

A valued in an associated
A-module of Kähler-type differentials ΩT

A. Whereas previous work of
Blute-Cockett-Porter-Seely on Kähler categories employed a notion of
derivation expressible without reference to the monad T , we show that the
use of the above T -based notion of derivation resolves an open problem
concerning Kähler categories, showing that Property K for codifferential
categories is unnecessary. Along the way, we establish a succinct equivalent
definition of codifferential categories in terms of a given monad morphism
S → T on the symmetric algebra monad S and a compatible transformation
d satisfying the chain rule.
Keywords. Derivation; Kähler differential; differential category; codifferen-
tial category; monoidal category; commutative algebra; module; monad.
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1. Synopsis

Derivations provide a way of transporting ideas from the calculus of mani-
folds to algebraic settings where there is no sensible notion of limit. In this
paper, we consider derivations in certain monoidal categories, called codif-
ferential categories. Differential categories were introduced as the categori-
cal framework for modelling differential linear logic. The deriving transform
of a differential category, which models the differentiation inference rule, is
a derivation in the dual category. We here explore that derivation’s univer-
sality.
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One of the key structures associated to a codifferential category is an
algebra modality. This is a monad T such that each object of the form TC
is canonically an associative, commutative algebra. Consequently, every T -
algebra has a canonical commutative algebra structure, and we show that
universal derivations for these algebras can be constructed quite generally.

It is a standard result that there is a bijection between derivations from
an associative algebra A to an A-module M and algebra homomorphisms
over A from A to A⊕M , with A⊕M being considered as an infinitesimal
extension of A. We lift this correspondence to our setting by showing that in
a codifferential category there is a canonical T -algebra structure on A⊕M .
We call T -algebra morphisms from TA to this T -algebra structure Beck T -
derivations. This yields a novel, generalized notion of derivation.

The remainder of the paper is devoted to exploring consequences of that
definition. Along the way, we prove that the symmetric algebra construc-
tion in any suitable symmetric monoidal category provides an example of
codifferential structure, and using this, we give an alternative definition for
differential and codifferential categories.

2. Introduction

The theory of Kähler differentials [15, 20] provides an analogue of the theory
of differential forms and all of its various uses in settings other than the usual
setting of smooth manifolds. They were originally introduced by Kähler as
an abstract algebraic notion of differential form. One of their advantages is
that they can be applied to varieties which are not also smooth manifolds,
such as singular varieties in characteristic 0 or arbitrary varieties over a field
of characteristic p. In a setting where one does not have access to limits, one
can still talk about derivations. That is to say one passes from the variety to
its coordinate ring, and then considers a module over that ring. A derivation
is then a linear map from the algebra to the module satisfying the Leibniz
rule. The module of Kähler differentials or Kähler module is then a module
equipped with a universal derivation. As usual, such a module is unique up
to isomorphism.

Since this initial work, the idea of extending differential forms to more
and more abstract settings has advanced in a number of different directions.
As one important example, we mention the noncommutative differential
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forms that arise in noncommutative geometry [18].
Differential linear logic [11, 12] arose originally from semantic con-

cerns. Ehrhard [9, 10] had constructed several models of linear logic [14]
in which the hom-sets had a natural differentiation operator. Ehrhard and
Regnier then described this operation as a sequent rule and represented it as
a construction and a rewrite rule for both interaction nets and for λ-calculus.
The corresponding categorical structures were introduced in [3, 4] and called
differential categories and cartesian differential categories. Cartesian differ-
ential categories are an axiomatization of the coKleisli category of a differ-
ential category.

The notion of Kähler category [2] began with the observation that the
deriving transform, the key feature of differential categories, is a derivation
and, under certain assumptions, has a universal property discussed below.
(Actually, we must work with the dual notion of codifferential category. If
we worked with coalgebras and coderivations, we could work in differential
categories and all of the following work, suitably op-ed, would still hold.)
It thus seemed likely that an abstract monoidal setting in which Kähler dif-
ferential modules could be defined would apply to differential categories. In
fact, the original paper only partially resolved this issue. In the present pa-
per, we provide a much more satisfying answer by generalizing the notion
of derivation to take into account all of the codifferential structure, thereby
establishing a suitable universal property in full generality.

A Kähler category is an additive, symmetric monoidal category with an
algebra modality, i.e. a monad T for which each object of the form TC
is equipped with a commutative, associative algebra structure and several
coherence equations hold, such that each of these algebras has a universal
derivation. In essence, we are requiring a Kähler module for each free T -
algebra.

The present paper extends the work of [2] in several ways. It is not sur-
prising that, given all the structure at hand, one can endow every T -algebra
with the structure of a commutative, associative algebra. We show that in
a Kähler category, one can use the existence of Kähler objects for free T -
algebras to derive Kähler objects for all algebras1 that arise as underlying

1We realize that the unavoidable use of the word algebra in two different ways is confus-
ing. The word algebra without a T− in front of it will always mean commutative, associative
algebra.

BLUTE, LUCYSHYN-WRIGHT & O'NEILL - DERIVATIONS IN CODIFFERENTIAL CATEGORIES

- 246 -



algebras of T -algebras. Thus if the algebra category is monadic over the
base, we can derive Kähler modules for all algebras by a single uniform
procedure. These results follow from the M.Sc. thesis of the third author
[21].

We also tackle the idea of what it means to be a derivation. It is well-
known [6] that if A is a commutative algebra and M is an A-module, then
there is a canonical algebra structure on A ⊕M such that derivations from
A to M are in bijective correspondence to algebra maps over A from A
to A ⊕ M . Essentially the algebra A ⊕ M is the extension of A by M -
infinitesimals. This idea was used in a much more general setting by Beck
[1].

While this is a straightforward calculation, it has far-reaching general-
izations. First we show that in a codifferential category, given a T -algebra
(A, a) and a module M over the algebra associated to A, there is a canonical
T -algebra structure on A⊕M which under the passage from T - algebras to
algebras yields the traditional associative algebra structure on A ⊕M from
[1]. We call this T -algebra W (A,M). We then define a Beck T -derivation
on A valued in M to be a map of T -algebras from (A, a) to W (A,M) in
the slice category over A. Beck T -derivations can be equivalently given by
morphisms ∂ : A→M satisfying a chain rule condition with respect to T .

We show that the symmetric algebra monad yields a codifferential cat-
egory in a very general setting and in this case, our notion of Beck T -
derivation is equivalent to the usual notion of derivation.

We define a module of Kähler T -differentials to be an A-module with a
universal Beck T -derivation. We then show that the deriving transform in
a codifferential category is always universal in this sense. In fact, every T -
algebra has a universal T -derivation. Our analysis also yields an equivalent
definition of differential category we believe will be valuable in generaliza-
tions of this abstract notion of differentiation. For example, it generalizes in
a straightforward way to noncommutative settings.

We note that in [8], Dubuc and Kock define a notion of derivation on
an algebra of a Fermat theory, the latter being a finitary set-based algebraic
theory extending the theory of commutative rings and satisfying a certain
axiom. It would be interesting to compare their notion with the notion of T -
derivation defined here in the monoidal context of codifferential categories.

The extension of Kähler categories and codifferential categories to non-
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commutative settings is an important project, and work of this sort has been
initiated by R. Cockett [7]. In that paper, the author has also explored the
relationship between T -algebras and derivations. In particular, he considers
the implications of demanding for each T -algebra A and each A-bimodule
M a given T -algebra structure on A⊕M satisfying certain axioms, whereas
here we have shown that in the setting of a codifferential category, a T -
algebra structure onA⊕M can be defined in terms of the given codifferential
structure.

3. Derivations and categorical frameworks

This section covers the theory of derivations, both in its classical formula-
tion with respect to algebras over a field and several of its more abstract
categorical formulations.

3.1 Classical case

Derivations were originally considered for commutative algebras over a field
and are employed in algebraic geometry and commutative algebra [13, 15].

Definition 3.1. Let k be a commutative ring, A a commutative k-algebra,
and M an A-module. (All modules throughout the paper will be left mod-
ules.)

A k-derivation from A to M is a k-linear map ∂ : A //M such that
∂(aa′) = a∂(a′) + a′∂(a).

One can readily verify under this definition that ∂(1) = 0 and hence
∂(r) = 0 for any r ∈ k.

Definition 3.2. Let A be a k-algebra. A module of A-differential forms is an
A-module ΩA together with a k-derivation ∂ : A // ΩA which is universal
in the following sense: For any A-module M , and for any k-derivation ∂′ :
A //M , there exists a unique A-module homomorphism f : ΩA

//M
such that ∂′ = ∂; f .

Lemma 3.3. For any commutative k-algebra A, a module of A-differential
forms exists.
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There are several well-known constructions. The most straightforward,
although the resulting description is not that useful, is obtained by construct-
ing the free A-module generated by the symbols {∂a | a ∈ A} divided out
by the evident relations, most significantly ∂(aa′) = a∂(a′) + a′∂(a).

3.2 Derivations as algebra maps

We suppose we are working in the category of vector spaces over a field k,
that A is a commutative k-algebra and M an A-module. Define a commuta-
tive algebra structure on A⊕M by

(a,m) · (a′,m′) = (aa′, am′ + a′m)

It is evident that this is associative, commutative and unital. We will
refer to this algebra structure as the infinitesimal extension of A by M . But
its interest comes from the following observation.

Lemma 3.4. There is a bijective correspondence between k-derivations from
A to M and k-algebra homomorphisms from A to A ⊕ M which are the
identity in the first component. Or more succinctly:

Derk(A,M) ∼= Alg/A(A,A⊕M)

Here, Alg/A is the slice category of objects over A in the category Alg
of k-algebras.

We also note that it is straightforward to lift this result to the level of
additive symmetric monoidal categories, see Section 3.3. The notions of
commutative algebra and module are expressible in any symmetric monoidal
category. Once one has additive structure then the notion of derivation is
definable as well. The correspondence of Lemma 3.4 then extends to this
more general setting. Lemma 3.4 also provided Jon Beck [1] a starting point
for a far-reaching generalization of the notion of derivation for the purposes
of cohomology theory. One of the primary contributions of this paper is to
lift the correspondence of Lemma 3.4 to the level of codifferential categories.
The fact that these ideas continue to hold at this level is testament to the
importance of Beck’s ideas about cohomology.
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3.3 Categorical structure

It is a standard observation [19, 17] that the notions of algebra (monoid) and
module over an algebra make sense in any monoidal category and the notion
of commutative algebra makes sense in any symmetric monoidal category.
But to discuss derivations for an algebra we also need additive structure.

Definition 3.5. 1. A symmetric monoidal category C is additive if it is
enriched over commutative monoids and the tensor functor is additive
in both variables2.

2. Let (A,mA, eA) be an algebra in an additive symmetric monoidal cat-
egory3, and M = 〈M, •M : A ⊗ M // M〉 an A-module. Then a
derivation to M is an arrow ∂ : A //M such that (with m being the
multiplication)

m; ∂ = c; 1⊗ ∂; •M + 1⊗ ∂; •M and ∂(1) = 0

Remark 3.6. We note that Lemma 3.4 holds at this level of generality
as well. Indeed, given a commutative algebra A in an additive symmetric
monoidal category C with finite coproducts (equivalently, finite biproducts)
and an A-module M , we can equip A⊕M with the structure of a commuta-
tive algebra [2]. Derivations A→M then correspond to maps A→ A⊕M
in the slice category Alg/A over A in the category Alg of commutative al-
gebras in C [2]. As noted in [2, §4.2], every map of A-modules h : M → N
determines an algebra map 1⊕ h : A⊕M → A⊕N , whence each deriva-
tion ∂ : A→ M determines a composite derivation A ∂−→ M

h−→ N . Further,
given a map of commutative algebras g : A → B, each B-module N deter-
mines an A-module NA, the restriction of scalars of N along g, consisting
of the object N of C equipped with the composite A-action

A⊗N g⊗1−−→ B ⊗N •N−→ B .

Moreover, given an algebra map g : A → B and a derivation ∂ : B → N ,
the composite A

g−→ B
∂−→ N is a derivation A→ NA.

2In particular, we only need addition and unit on Hom-sets, rather than abelian group
structure.

3We will use the notation mA and eA for the multiplication and unit for A.
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As for most algebraic structures, when one adds in an appropriate notion
of universality, the result is a very powerful mathematical object. For deriva-
tions, we obtain the module of Kähler differentials or Kähler module. We
cite [15, 20] for calculations and examples.

Definition 3.7. Let C be an additive symmetric monoidal category and let
A be a commutative algebra in C. A module of Kähler differentials is an
A-module ΩA together with a derivation ∂ : A // ΩA, such that for every
A-module M, and for every derivation ∂′ : A //M , there exists a unique
A-module map h : ΩA

//M such that ∂;h = ∂′.

A
∂ //

∂′   AAAAAAAA ΩA

h
��
M

An axiomatization of a very different sort which attempted to capture
the process of differentiation axiomatically is the theory of differential cate-
gories [3]. Since in this paper we wish to work with algebras and derivations
as opposed to coalgebras and coderivations, we work in the dual theory of
codifferential categories.

Definition 3.8. An algebra modality on a symmetric monoidal category C
consists of a monad (T, µ, η) on C, and for each object C in C, a pair of
morphisms (note we are denoting the tensor unit by k)

m : T (C)⊗ T (C) // T (C), e : k // T (C)

making T (C) a commutative algebra such that this family of associative
algebra structures satisfies evident naturality conditions [2].

Definition 3.9. An additive symmetric monoidal category with an algebra
modality is a codifferential category if it is also equipped with a deriving
transform4, i.e. a transformation natural in C

dT (C) : T (C) // T (C)⊗ C

satisfying the following four equations5:
4We use the terminology of a deriving transform in both differential and codifferential

categories.
5For simplicity, we write as if the monoidal structure is strict.
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(d1) e; d = 0 (Derivative of a constant is 0.)

(d2) m; d = (1⊗d); (m⊗1)+(d⊗1); c; (m⊗1) (where c is the appropriate
symmetry) (Leibniz Rule)

(d3) η; d = e⊗ 1 (Derivative of a linear function is constant.)

(d4) µ; d = d;µ⊗ d;m⊗ 1 (Chain Rule)

We make the following evident observation, noting that the morphism
uTCC := e ⊗ 1: C = k ⊗ C → T (C) ⊗ C exhibits T (C) ⊗ C as the free
T (C)-module on C.

Lemma 3.10. When T (C)⊗ C is considered as the free T (C)-module gen-
erated by C, then the above deriving transform is a derivation.

This leaves the question of its universality. We know there is a universal
property for the object T (C) ⊗ C as the free T (C)-module generated by
C. Is this sufficient to guarantee the universality necessary to be a Kähler
module? With this question in mind, the paper [2] introduced the notion of
a Kähler category but only partially answered this question.

Definition 3.11. A Kähler category is an additive symmetric monoidal cat-
egory with

• a monad T ,

• a (commutative) algebra modality for T ,

• for all objects C, a T (C)-module of Kähler differential forms, satisfy-
ing the universal property of a Kähler module.

Thus the previous question can be formulated as whether every codif-
ferential category is a Kähler category. The original paper [2] had a partial
answer to this question. In the present paper, we give a much more satisfying
answer to this question. The key is to generalize even further the notion of
derivation. We use ideas from Jon Beck’s remarkable thesis [1]. This will be
covered in Section 5. In particular, see Definition 5.7 and Theorem 5.11.
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3.4 Universal derivations for T -algebras

In a category with an algebra modality we may endow each T -algebra with
the structure of a commutative algebra, in such a way that the structure map
of the T -algebra is a morphism of associative algebras. Since universal
derivations are a priori only defined for the algebras arising by virtue of the
algebra modality in a Kähler category, it is natural to ask if universal deriva-
tions from these new algebras exist and, if so, how they are constructed. We
examine this issue now and demonstrate that there is a very pleasing an-
swer. The construction of such Kähler modules is from the third author’s
M.Sc. thesis [21]. We first note the following procedure for assigning alge-
bra structure to T -algebras.

Theorem 3.12. Let C be a symmetric monoidal category equipped with an
algebra modality T . The following construction determines a functor from
the category of T -algebras to the category of commutative algebras in C. Let
(A, a) be a T -algebra in such a category. Define the multiplication for an
algebra structure on A by the formula

A⊗ A
η⊗η
−−−−→ TA⊗ TA

m
−−−−→ TA

a
−−−−→ A

with unit given by

k
e

−−−−→ TA
a

−−−−→ A

In particular, every map of T -algebras becomes an associative algebra map.
Also note that if we apply this construction to the free T -algebra (TA, µ),

we get back the original associative algebra (TA,m, e).

Definition 3.13. Let C be an additive symmetric monoidal category. Let A
and B be algebras with universal derivations as in the diagram below. Let
f : A→ B be an algebra homomorphism. Define Ωf : ΩA

// ΩB to be the
unique morphism of A-modules making
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A B
f

//A

ΩA

dA

OO

B

ΩB

dB

OOΩA ΩB

Ωf //

commute, which exists by universality of dA. One can verify that Ω(−) is
functorial.

The existence of Kähler modules for free T -algebras entails that Kähler
modules for arbitrary T -algebras can be obtained by taking a quotient, as is
seen in the following theorem.

Theorem 3.14. Defining ΩA,a as the following coequalizer

ΩT 2A ΩTA

Ωµ //ΩT 2A ΩTA
ΩTa

// ΩTA ΩA,a
Ωa // ΩA,a

gives us the module of Kähler differentials for T -algebra (A, a).

This result was in the M.Sc. thesis of the third author [21]. We do not
give a proof of this result here as it can be obtained in a method similar to
Theorem 5.23. We also note that, under suitable hypotheses, the existence of
Kähler modules for arbitrary commutative algebras follows from Theorem
5.23.

4. The symmetric algebra monad

The most canonical example of an algebra modality is the symmetric algebra
construction. This construction as applied to the category of vector spaces
gives one of the most basic examples of a codifferential category. In this
case, elements of the symmetric algebra are essentially polynomials, which
are differentiated in the evident way. A similar construction works on the
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category of sets and relations [23]. What we observe here is that the sym-
metric algebra construction provides examples of codifferential categories in
a much more general setting.

First, we need to explore a theme which will be the centrepiece of the
last sections of the paper. This is the idea of viewing derivations as algebra
homomorphisms.

Remark 4.1. For the remainder of this section, we assume C is an additive
symmetric monoidal category with finite coproducts and reflexive coequaliz-
ers, the latter of which are preserved by the tensor product in each variable.
Let Alg be the category of commutative algebras in C, and suppose that the
forgetful functor Alg // C has a left adjoint. The resulting adjunction is
then monadic; denote its induced monad by S, so that Alg ∼= CS , and we
henceforth identify these categories. See [19] for details.

4.1 Structure related to the symmetric algebra

We will also need the following straightforward observation:

Proposition 4.2. The (commutative) algebra modalities on C are in bijec-
tive correspondence to pairs (T, ψ), where T is a monad and ψ is a monad
morphism ψ : S → T . Such a morphism induces a functor

Fψ : T -Alg→ S-Alg

Furthermore, the map ψC : SC → TC is a map of algebras.

4.2 Codifferential structure

Definition 4.3. Given an object C in C, recall that SC ⊗ C is the free SC-
module on C. Hence by Remark 3.6, the direct sum SC ⊕ (SC ⊗C) carries
the structure of an algebra, and derivations SC → (SC ⊗ C) correspond to
algebra homomorphisms SC → SC ⊕ (SC ⊗ C) whose first coordinate is
the identity. But since SC is the free algebra on C, the latter correspond to
morphisms C → SC ⊕ (SC ⊗ C) whose first coordinate is η : C → SC.

So let dSC : SC // SC ⊗ C be the derivation corresponding to the
algebra homomorphism SC // SC ⊕ (SC ⊗ C) given on generators as
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(
ηC
uC

)
: C //SC⊕ (SC⊗C), where uC is the map uC : C ∼= k⊗C

e⊗1
−−−−→

SC ⊗ C.

Theorem 4.4. (C, S, d) is a codifferential category.

Proof. S is a commutative algebra modality on C. Since each dSC is by
definition a derivation, the Leibniz rule holds and precomposing dSC by eSC
is the zero map. By the definition of dSC ,

ηC ;

(
1SC
dSC

)
=

(
ηC
uC

)
: C // SC ⊕ (SC ⊗ C)

so that

ηC ; dSC = ηC ;

(
1SC
dSC

)
; π2 =

(
ηC
uC

)
; π2 = uC

and consequently (d3) holds.
It remains only to demonstrate naturality of d and adherence to the chain

rule condition. For naturality, consider a map f : C //D in C; naturality of
d is equivalent to the commutativity of the following square:

SC SC ⊕ (SC ⊗ C)

 1
dSC


//SC

SD

Sf

��

SC ⊕ (SC ⊗ C)

SD ⊕ (SD ⊗D)

Sf⊕(Sf⊗f)

��
SD SD ⊕ (SD ⊗D) 1

dSD


//

Since each morphism in the square is an algebra morphism, commutativity of
this square may be demonstrated by showing that the square is commutative
when preceded by ηC : C // SC. By naturality of η and definition of dD
we have on the left:

ηC ;Sf ;

(
1
dSD

)
= f ; ηD;

(
1
dSD

)
= f ;

(
ηD
uD

)
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By naturality of η and u and by definition of d we have on the right:

ηC ;

(
1
dSC

)
;Sf ⊕ (Sf ⊗ f) =

(
ηC
uSC

)
;Sf ⊕ (Sf ⊗ f)

=

(
ηC ;Sf

uSC ;Sf ⊗ f

)
= f ;

(
ηD
uD

)
and so naturality of d is established.

To show that d adheres to the chain rule, it is necessary and sufficient to
show that the following square commutes

S2C SC
µC //S2C

S2C ⊗ SC

dS2C

��

SC

SC ⊗ C

dSC

��
S2C ⊗ SC SC ⊗ SC ⊗ C

µC⊗dSC
// SC ⊗ SC ⊗ C SC ⊗ C

mSC⊗1
//

When preceded by ηSC , commutativity of the resultant diagram is es-
tablished by a routine verification. In order to show that this verification
suffices, it must be shown that both paths in the above diagram yield deriva-
tions when preceded by ηSC ; the correspondence between derivations and
morphisms of algebras then enables the utilization of the universal property
of η to deduce that the associated morphisms of algebras are equal.

Since µC is an associative algebra homomorphism, µC ; dSC is a deriva-
tion with respect to the S2C-module structure that SC ⊗ C acquires by re-
striction of scalars along µC . As for the counterclockwise composite, the
following computation demonstrates that it adheres to the Leibniz rule

mS2C ; dS2C ;µC ⊗ dSC ;mSC ⊗ 1

= (1⊗ dS2C + c; 1⊗ dS2C);mS2C ⊗ 1;µC ⊗ dSC ;mSC ⊗ 1

= (1⊗ dS2C + c; 1⊗ dS2C);µC ⊗ µC ⊗ 1;mSC ⊗ 1; 1⊗ dSC ;mSC ⊗ 1

= (1⊗ (dS2C ;µC ⊗ dSC) + c; 1⊗ (dS2C ;µC ⊗ dSC));µC ⊗ 1⊗ 1⊗ 1;

mSC ⊗ 1⊗ 1;mSC ⊗ 1

= (1⊗ (dS2C ;µC ⊗ dSC ;mSC ⊗ 1) + c; 1⊗ (dS2C ;µC ⊗ dSC ;mSC ⊗ 1));

µC ⊗ 1⊗ 1;mSC ⊗ 1
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That the counterclockwise composite is 0 when preceded by eS2C is imme-
diate, and the proof is complete.

5. Beck T -derivations

We now explore what we consider to be the main contribution of this pa-
per. The first step in this project is the following theorem, due to the second
author. It lifts the correspondence between derivations and algebra homo-
morphisms to the level of T -algebras. Throughout this section, we assume
that C has finite coproducts.

Theorem 5.1. Let C be a codifferential category with finite coproducts. Let
(A, a) be a T -algebra and M a module over its associated algebra. Then
(A ⊕M,β) is a T -algebra with β : T (A ⊕M) → A ⊕M induced by the
following maps.

β1 : T (A⊕M)
Tπ1
−−−−→ TA

a
−−−−→ A

β2 : T (A⊕M)
d
−−−→ T (A⊕M)⊗ (A⊕M)

T (π1)⊗π2
−−−−→ T (A)⊗M

a⊗1
−−−→ A⊗M

•
−−−→M

Proof. The following four diagrams capture all of the necessary equations.

T 2A TA
Ta

//T 2A

TA

µ

� �

TA

A

a

��
TA Aa

//T (A⊕M) TA
Tπ1

//

T 2(A⊕M)

T (A⊕M)

µ

��

T 2(A⊕M)

T 2A

T 2π1
" "DDDDDDDDDDDDD

T 2(A⊕M)

TA

Tβ1

( (RRRRRRRRRRRRRRRRRRRRRRRR
T 2(A⊕M) T (A⊕M)

Tβ // T (A⊕M)

TA

Tπ1

� �

T (A⊕M)

A

β1

||
T (A⊕M) A

β1

9 9

A⊕M

A

π1

��

A⊕M T (A⊕M)
η //

A TA
η //

T (A⊕M)

TA

Tπ1

��
A

A

1

��2
2222222222 TA

A

a

�������������

A⊕M

A

π1

* *

T (A⊕M)

A

β1

tt

(nat µ)
(T alg)

(nat η)
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(T (A⊕M))⊗2 ⊗ (A⊕M) (TA)⊗2 ⊗MTπ1⊗Tπ1⊗π2// (TA)⊗2 ⊗M A⊗2 ⊗Ma⊗a⊗1// A⊗2 ⊗M A⊗M1⊗• //(T (A⊕M))⊗2 ⊗ (A⊕M)

T (A⊕M)⊗ (A⊕M)

mT (A⊕M)⊗1

� �

(TA)⊗2 ⊗M

TA⊗M

mTA⊗1

��

A⊗2 ⊗M

A⊗M

mA⊗1

��

A⊗M

M

•

��
T (A⊕M)⊗ (A⊕M) TA⊗M

Tπ1⊗π2
/ / TA⊗M A⊗M

a⊗1
/ / A⊗M M•

/ /T (A⊕M) T (A⊕M)⊗ (A⊕M)d / /

T 2(A⊕M)⊗ T (A⊕M)

(T (A⊕M))⊗2 ⊗ (A⊕M)

µ⊗d

� �

T 2A⊗ T (A⊕M)⊗ (A⊕M)

(TA)⊗2 ⊗M

µ⊗Tπ1⊗π2

� �

T 2(A⊕M)⊗ T (A⊕M)

T 2A⊗ T (A⊕M)⊗ (A⊕M)

T 2π1⊗d **UUUUUUUUUUUUUUUUUUUU

(TA)⊗2 ⊗M

A⊗2 ⊗M

a⊗a⊗1

��

T 2A⊗ T (A⊕M)⊗ (A⊕M)

(TA)⊗2 ⊗M

Ta⊗Tπ1⊗π2

& &NNNNNNNNNNNNN

T 2(A⊕M)⊗ T (A⊕M)

TA⊗M
Tβ1⊗β2 - -\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\T 2(A⊕M)⊗ T (A⊕M) T (A⊕M)⊗ (A⊕M)

Tβ⊗β / / T (A⊕M)⊗ (A⊕M)

TA⊗M
Tπ1⊗π2

��
TA⊗M

A⊗M

a⊗1

� �

T (A⊕M)

d

��

T (A⊕M)

M

β2

��

T 2(A⊕M) T (A⊕M)
Tβ / /T 2(A⊕M)

T (A⊕M)

µ

��

T 2(A⊕M)

T 2(A⊕M)⊗ T (A⊕M)

d

&&LLLLLLLLLLLLLLLL

T (A⊕M) M

β2

44

(nat d)

(chain rule)

(alg hom) (alg hom) (act)

(nat µ) (T alg)

†

In the third diagram, the cell marked † commutes by the definitions of β1 and
β2.

T (A⊕M)⊗ (A⊕M) TA⊗MTπ1⊗π2 //

k ⊗ (A⊕M)

T (A⊕M)⊗ (A⊕M)

e⊗1

OO

k ⊗ (A⊕M) k ⊗ (A⊕M)
1

// k ⊗ (A⊕M)

TA⊗M

e⊗π2

OOT (A⊕M) T (A⊕M)⊗ (A⊕M)
d //

A⊕M

T (A⊕M)

η

OO

A⊕M k ⊗ (A⊕M)
∼= //

TA⊗M A⊗Ma⊗1 //

k ⊗ (A⊕M) k ⊗ (A⊕M)
1
// k ⊗ (A⊕M)

A⊗M

e⊗π2

OOA⊗M M
• //

k ⊗ (A⊕M) A⊕M
∼= // A⊕M

M

π2

OOT (A⊕M) M

β2

( (

A⊕M A⊕M

1

66

(Tπ1 alg hom) (a alg hom)

Definition 5.2. We denote this T -algebra by W (A,M) = 〈A⊕M,βAM〉.

The following result is straightforward.
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Lemma 5.3. Let (A, a) be a T -algebra, and let M be an A-module. Then
π1 : A⊕M → A is a map of T -algebras, whereA⊕M is given the T -algebra
structure just defined.

We also note that the algebra associated to this T -algebra under the
process of Theorem 3.12 coincides with the algebra structure associated to
A⊕M in Remark 3.6.

Proposition 5.4. Let (A, a) be a T -algebra in C and let M be an A-module.
Then the commutative algebra structure carried by the T -algebra A ⊕M
coincides with the commutative algebra structure on A ⊕ M described in
Remark 3.6.

Proof. Since βAM is an algebra homomorphism the multiplication associ-
ated to W (A,M) is

mW (A,M) = ηA⊕M ⊗ ηA⊕M ;mT (A⊕M); β
AM

Since π1 : W (A,M) // A is a T -homomorphism and hence an algebra
homomorphism, mW (A,M); π1 = π1 ⊗ π1;mA and so the first component of
mW (A,M) is given as in Remark 3.6.

The second component is the composite

η ⊗ η;mT (A⊕M); dT (A⊕M);Tπ1 ⊗ π2; a⊗ 1; •

Calculate as follows:

ηA⊕M ⊗ ηA⊕M ;mT (A⊕M); dT (A⊕M);Tπ1 ⊗ π2; a⊗ 1; •
= ηA⊕M ⊗ ηA⊕M ; (1⊗ dT (A⊕M) + c; 1⊗ dT (A⊕M));

mT (A⊕M) ⊗ 1;Sπ1 ⊗ π2; a⊗ 1; •
= (ηA⊕M ⊗ (ηA⊕M ; dT (A⊕M)) + c; ηA⊕M ⊗ (ηA⊕M ; dA⊕M));

(Tπ1; a)⊗ (Tπ1; a)⊗ π2;mA ⊗ 1; •
= (1⊗ (ηA⊕M ; dA⊕M) + c; 1⊗ (ηA⊕M ; dA⊕M));

(π1; ηA; a)⊗ (Tπ1; a)⊗ π2;mA ⊗ 1; •
= (1 + c); 1⊗ eA⊕M ⊗ 1;π1 ⊗ (Tπ1; a)⊗ π2;mA ⊗ 1; •
= (1 + c);π1 ⊗ π2; 1⊗ eA ⊗ 1;mA ⊗ 1; •
= (1 + c);π1 ⊗ π2; •
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We will need the following technical lemmas concerning the T -algebra
W (A,M).

Lemma 5.5. Let (A, a) be a T -algebra, and let M and N be A-modules.
Suppose h : M → N is an A-module map. Then A⊕ h : A⊕M → A⊕N
is a T -algebra map W (A,M)→ W (A,N).

Proof. The result follows from the commutativity of the following two dia-
grams.

T (A⊕M) T (A⊕N)
T (1A⊕h) //

TA

Tπ1

��
TA

1TA
//

Tπ1

��

A

a

��
A

a

��

1A
//

βAM1

##

βAN1

{{

T (A⊕M) T (A⊕N)
T (1A⊕h) //

T (A⊕M)⊗ (A⊕M)

d

� �
T (A⊕N)⊗ (A⊕N)

d

� �
T (1A⊕h)⊗(1A⊕h) //

TA⊗M
Tπ1⊗π2

� �
TA⊗N

Tπ1⊗π2
� �1TA⊗h //

A⊗M
a⊗1M

� �
A⊗N

a⊗1N
��1A⊗h //

M

•M
��

N

•N
��

h
//

βAM2

& &

βAN2

xx

The above calculations allow us to conclude:
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Proposition 5.6. Given a T -algebra A, the above construction defines a
functor:

W (A,−) : A-Mod −→ CT/A

Here, CT is the category of T -algebras and CT/A is the slice category over
A.

It is the above series of observations that allows us to define a generalized
notion of derivation depending on the given codifferential structure of C.

Definition 5.7.

• Let (A, a) be a T -algebra. LetM be anA-module. A Beck T -derivation
for A valued in M is a T -algebra map

A−−−−→W (A,M) in CT/A

in the slice category CT/A.

• A T -derivation is a morphism ∂ : A→M such that

〈1, ∂〉 : A−−−−→ A⊕M

is a T -algebra homomorphism A→ W (A,M).

Remark 5.8. Under the assumptions of Remark 3.1, suppose we are given
A ∈ CS where S is the symmetric algebra monad andM ∈ A−Mod. Then a
morphism ∂ : A //M in C is an S-derivation if and only if ∂ is a derivation.

Remark 5.9. Evidently, the two notions of Beck T -derivation and T -deriva-
tion are in bijective correspondence and we will use the two interchangeably.

We now give several equations for a map ∂ : A → M which are equiva-
lent to ∂ being a T -derivation.

Proposition 5.10. Let (A, a) be a T -algebra, and let M be an A-module. A
morphism ∂ : A→M is a T -derivation if and only if the following diagram
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commutes.

TA T (A⊕M)

T

1A
∂


//

A

a
��

M

β2
��

∂
//

Proof. Since A ⊕M is a product, the requirement that 〈1A, ∂〉 : A → A ⊕
M be a T -algebra homomorphism amounts to two equations, the second of
which is expressed by the above diagram whereas the first commutes by the
following calculation

TA T (A⊕M)

T

1A
∂


//

A

a

��

TA

Tπ1
��

A

a
��

1TA ((QQQQQQQQQQQQQQQ

1A
//

Theorem 5.11. Let (A, a) be a T -algebra, and let M be an A-module. A
morphism ∂ : A→M is a T -derivation if and only if

TA⊗ A A⊗M
a⊗∂

// M•M
//

TA

d
��

A

∂
��

a //

commutes.
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Proof. Calculate as follows:

T (A⊕M) T (A⊕M)⊗ (A⊕M)
d
// T (A⊕M)⊗ (A⊕M) TA⊗M

Tπ1⊗π2
// TA⊗M A⊗M

a⊗1M
// A⊗M M

•M //

TA

T (A⊕M)

T

1A
∂


� �

TA TA⊗ Ad // TA⊗ A

T

1A
∂

⊗
1A
∂


� �

TA⊗ A

TA⊗M

1TA⊗∂

% %LLLLLLLLLLLLLLLLLLLLLLTA⊗ A

A⊗M

a⊗∂

) )SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

T (A⊕M) M

β2

44

Thus the result follows from the previous proposition.

Whereas we have defined the notion of T -derivation in the setting of a
given codifferential category, Theorem 5.11 furnishes an equivalent defini-
tion that is applicable more generally, as follows.

Definition 5.12. Let C be a symmetric monoidal category equipped with an
algebra modality T and arbitrary morphisms dTC : TC → TC⊗C (C ∈ C).
Given a T -algebra A and an A-module M , a T -derivation is a morphism
∂ : A→M such that the diagram of Theorem 5.11 commutes.

The new understanding of derivations captured by the above propositions
allows us, among other things, to reexamine the definition of (co)differential
categories, as seen by the following:

Theorem 5.13. Let C be a symmetric monoidal category equipped with an
algebra modality T and arbitrary morphisms dTC : TC → TC⊗C (C ∈ C).
The Chain Rule equation for d in the definition of codifferential category
is equivalent to the statement that each component dTC is a T -derivation,
where TC ⊗ C is viewed as the free TC-module generated by C.

Proof.

T 2C ⊗ TC TC ⊗ TC ⊗ C
µ⊗dTC

// TC ⊗ C
mTC⊗1C

//

T 2C

dT2C
� �

TC

dTC
� �

µ //
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This equation is both the chain rule and the statement that dTC is a deriva-
tion.

5.1 Universal Beck T -derivations

Definition 5.14. Given a T -algebra A, a module of Kähler T -differentials
is an A-module, denoted ΩT

A, equipped with a universal T -derivation on A.
This can be expressed in either of the following two equivalent ways:

• A T -derivation d : A→ ΩT
A such that for all T -derivations ∂ : A→M ,

there is a unique A-linear map ∂̂ : ΩT
A →M such that d; ∂̂ = ∂.

• A morphism g : A → W (A,ΩT
A) in CT/A such that for each map

∂ : A → W (A,M) in CT/A, there is a unique A-linear homomor-
phism ∂̂ : ΩT

A →M such that g;W (A, ∂̂) = ∂.

We now explore the existence of universal derivations from this new T -
perspective.

Theorem 5.15. Let C be a codifferential category, and let C be an object of
C. Then dTC : TC → T (C)⊗ C is a universal T -derivation.

Proof. Since dTC satisfies the chain rule, it is a T -derivation. Since T (C)⊗C
is the free T (C)-module on C, given any T -derivation ∂ : T (C) // M
there exists a unique T (C)-linear morphism ∂# : TC ⊗ C //M such that
u
T (C)
C ; ∂# = ηC ; ∂. Hence by axiom (d3), the two morphisms from C to M

in the following diagram are equal:

T (C) T (C)⊗ CdTC // T (C)⊗ C

M

∂#

��

T (C)

M

∂
$$JJJJJJJJJJJJ

C T (C)
ηC //C

Equivalently,
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TC W (TC, TC ⊗ C)

 1
dTC


//W (TC, TC ⊗ C)

W (TC,M)

W (TC,∂#)

��

TC

W (TC,M)

1
∂

 ''OOOOOOOOOOOOOOO

commutes when preceded by ηC . Since this is a diagram of T -algebra ho-
momorphisms, it commutes if and only if it commutes when preceded by
ηC

We now address the issue of extending the existence of universal T -
derivations to arbitrary T -algebras.

Proposition 5.16. Let (A, a) and (B, b) be T -algebras and M a B-module.
Let g : A → B be a T -algebra homomorphism. Then g ⊕M : A ⊕M →
B ⊕M is a map of T -algebras W (A,MA) → W (B,M), where MA is M
with evident induced action of A.

Proof. The result follows from the commutativity of the following two dia-
grams.

T (A⊕M) T (B ⊕M)
T (g⊕1M ) //

TA

Tπ1

��
TB

Tg
//

Tπ1

��

A

a

��
B

b

��

g
//

βAM1

##

βBM1

{{
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T (A⊕M) T (B ⊕M)
T (g⊕1M ) //

T (A⊕M)⊗ (A⊕M)

d

� �
T (B ⊕M)⊗ (B ⊕M)

d

� �
T (g⊕1M )⊗(g⊕1M ) //

TA⊗M
Tπ1⊗π2

��
TB ⊗M

Tπ1⊗π2
� �Tg⊗1M //

A⊗M
a⊗1M

� �
B ⊗M

b⊗1M
��g⊗1M //

M

•M
��

M

•M
� �

1M
//

βAM2

&&

βBM2

xx

Proposition 5.17. With assumptions as in previous proposition, let ∂ : A→
M be such that 〈g, ∂〉 : A → W (B,M) is a map of T -algebras. Then
∂ : A→MA is a T -derivation.

Proof. This follows from the following calculation, which uses that g ⊕ 1M
is a T -algebra homomorphism by the previous proposition.

TA T (A⊕M)

T

1A
∂


//TA

A

a

� �

T (A⊕M)

M

βAM2

� �
A M

∂
//

TA

T (B ⊕M)T

g
∂

 ) )SSSSSSSSSSSSS T (A⊕M)

T (B ⊕M)
T (g⊕1M )uukkkkkkkkkk

T (B ⊕M)

M

βBM2� �

A

M
∂

5 5kkkkkkkkkkkkkkkkk

M

M

1M

) )SSSSSSSSSSSSSSSSS
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Definition 5.18. Let Alg be the category of commutative algebras in a cod-
ifferential category C and let (−)−Mod : Algop → Cat be the usual functor
associating to an algebra its category of representations. The functor acts on
morphisms by the usual restriction of scalars.

Composing with the functor F op : (CT )op → Algop we obtain a functor
H : CT op → Cat. When we apply the usual Grothendieck construction to
this functor, we obtain a category fibred over CT which we call ModT . Ob-
jects are pairs (A,M) with A a T -algebra and M an A-module. Arrows
are pairs (g, h) : (A,M) → (B,N) with g : A → B a T -algebra map and
h : M → NA a map of A-modules. Here NA is the restriction of scalars of
N along g (Remark 3.6).

Theorem 5.19. There is a functor W : ModT → (CT )→ that makes the
following diagram commute:

ModT (CT )→W //ModT

CT
��???????? (CT )→

CT
cod����������

The functor is defined by:

On objects: (A,M) 7→ [W (A,M)
π1
−−−−→ A]

On arrows: (A,M)
(g,h)

−−−−→ (B,N) 7→ the following:

W (A,M) W (B,N)
W (h,g):=g⊕h //W (A,M)

A

π1

��

W (B,N)

B

π1

��
A Bg

//

This functor is fibred over the base category CT .

Proof. We evidently have that (1⊕h); (g⊕1) = g⊕h is a map of T -algebras
by Lemma 5.5 and Proposition 5.16, and so we have a functor making the
triangle commute.
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Now given a T -algebra homomorphism g : A → B and a B-module N ,
we get a cartesian arrow over g in ModT as (g, 1N) : (A,NA) → (B,N). It
suffices to show that

W (A,NA) W (B,N)
W (g,1N ) //W (A,NA)

A

π1

��

W (B,N)

B

π1

��
A Bg

//

is a pullback. Given f : Q → A and q : Q → W (B,N) in CT such that
f ; g = q; π1, we find that q = 〈f ; g, ∂〉 for some ∂ : Q → N . By Lemma
5.17, we conclude ∂ : Q → NQ is a T -derivation. So 〈1Q, ∂〉 is a T -algebra
map and thus 〈1Q, ∂〉; f ⊕ 1 = 〈f, ∂〉 : Q→ W (A,NA) is a T -algebra map.
The result now follows.

Definition 5.20. Let A be a T -algebra and (B,M) in ModT . Let
Der(A, (B,M)) be the set of all pairs (g, ∂) with g : A → B a T -algebra
map and ∂ : A→MA a T -derivation.

We now record two related results which are straightforward.

Proposition 5.21. The operation Der of the previous definition is functorial
in both variables and forms part of a natural isomorphism:

CT (A,W (B,M)) ∼= Der(A, (B,M))

This result extends to the slice category in a straightforward way.

Proposition 5.22. Given a T -algebra map g : A→ B, we have the following
natural isomorphism:

CT/B(A,W (B,M)) ∼= Der(A,MA)

We now present the main result of the section, demonstrating that the
construction of Kähler modules for T -algebras lifts to the setting of T -
derivations.
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Theorem 5.23. Suppose C has reflexive coequalizers, and that these are pre-
served by ⊗ in each variable. Then every T -algebra (A, a) has a universal
T -derivation.

Proof. Let g : A // B be a morphism of T -algebras, and suppose that
universal T -derivations dA : A //ΩT

A, dB : B //ΩT
B exist. Then there is a

unique A-linear morphism ΩT
g such that

A Bg
//A

ΩT
A

dA

OO

B

ΩT
B

dB

OO
ΩT
A ΩT

B

ΩTg //

commutes, where ΩT
B is considered as an A-module by restriction of scalars

along g. This follows from the observation that g; dB : A // ΩT
B is a T -

derivation.

Lemma 5.24. Suppose we are given morphisms in the category Alg as fol-
lows which constitute a reflexive coequalizer in C

A1 A2

f //A1 A2g
// A2 A3

k // A3

Let Mi be an Ai-module for i = 1, 2, and let φ : M1
// f ∗(M2) and

γ : M1
// g∗(M2) be A1-linear, where f ∗(M2) and g∗(M2) denote M2

equipped with the A1-module structures induced by f and g, respectively.
Suppose

M1 M2

φ //M1 M2γ
//M2 M3

κ //M3

is a reflexive coequalizer in C. Then there is a unique A3-module structure
on M3 such that κ : M2

// k∗(M3) is A2-linear.

Proof. Since ⊗ preserves reflexive coequalizers, the rows and columns of
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the following diagram are reflexive coequalizers:

A1 ⊗M1 A1 ⊗M2

1⊗φ //A1 ⊗M1 A1 ⊗M2
1⊗γ

// A1 ⊗M2 A1 ⊗M3
1⊗κ //A1 ⊗M1

A2 ⊗M1

g⊗1

��

A1 ⊗M1

A2 ⊗M1

f⊗1

��
A2 ⊗M1

A3 ⊗M1

k⊗1

��

A2 ⊗M1 A2 ⊗M2

1⊗φ //A2 ⊗M1 A2 ⊗M2
1⊗γ

// A2 ⊗M2 A2 ⊗M3
1⊗κ //

A1 ⊗M2

A2 ⊗M2

g⊗1

��

A1 ⊗M2

A2 ⊗M1

f⊗1

��
A2 ⊗M2

A3 ⊗M2

k⊗1

��
A3 ⊗M1 A3 ⊗M2

1⊗φ //A3 ⊗M1 A3 ⊗M2
1⊗γ

// A3 ⊗M2 A3 ⊗M3
1⊗κ //

A1 ⊗M3

A2 ⊗M3

g⊗1

��

A1 ⊗M3

A2 ⊗M3

f⊗1

��
A2 ⊗M3

A3 ⊗M3

k⊗1

��
A3 ⊗M3

By Johnstone’s lemma, Lemma 0.17, p. 4 [16], it follows that the top row of

A1 ⊗M1 A2 ⊗M2

f⊗φ //A1 ⊗M1 A2 ⊗M2
g⊗γ

// A2 ⊗M2 A3 ⊗M3
k⊗κ //

M1 M2

φ //M1 M2γ
//M2 M3

κ //

A1 ⊗M1

M1

•1

��

A2 ⊗M2

M2

•2

��

A3 ⊗M3

M3

•3

���
�
�
�
�A3 ⊗M3

M3

is also a reflexive coequalizer. We have that

f ⊗ φ; •2;κ = 1A1 ⊗ φ; f ⊗ 1M2 ; •2;κ

= •1;φ;κ

= •1; γ;κ

= 1A1 ⊗ γ; g ⊗ 1M2 ; •2;κ

= g ⊗ γ; •2;κ

It follows that •3 : A3⊗M3
//M3 is constructed as the unique map making

the right-hand square in the above diagram commute. Hence it suffices to

BLUTE, LUCYSHYN-WRIGHT & O'NEILL - DERIVATIONS IN CODIFFERENTIAL CATEGORIES

- 271 -



show that •3 is anA3-module structure map onM3. Again using Johnstone’s
Lemma, the top row of the following diagram is a reflexive coequalizer

A1 ⊗ A1 ⊗M1 A2 ⊗ A2 ⊗M2

f⊗f⊗φ //A1 ⊗ A1 ⊗M1 A2 ⊗ A2 ⊗M2
g⊗g⊗γ

// A2 ⊗ A2 ⊗M2 A3 ⊗ A3 ⊗M3
k⊗k⊗κ //

M1 M2

φ //M1 M2γ
//M2 M3

κ //

A1 ⊗ A1 ⊗M1

M1

1⊗•1;•1=mA1
⊗1;•1

��

A2 ⊗ A2 ⊗M2

M2

1⊗•2;•2=mA2
⊗1;•2

��

A3 ⊗ A3 ⊗M3

M3

���
�
�
�
�A3 ⊗ A3 ⊗M3

M3

It follows that there is a unique map A3⊗A3⊗M3
//M3 making the right-

hand square commute. Since both 1A3 ⊗ •3; •3 and mA3 ⊗ 1M3 ; •3 satisfy
this, the result follows.

Continuing with the proof of our theorem, since µA and Ta are T -algebra
morphisms, they induce maps ΩT

µ and ΩT
Ta from ΩT

T 2A to ΩT
TA, which exist by

Theorem 4.14. Furthermore, there exists a map ΩT
Tη induced by Tη, which

splits both of these maps. Consider the following diagram. We define dA as
the unique morphism in C such that a; dA = dTA; ΩT

a , which exists since a
is the coequalizer of µ and Ta. Here we take ΩT

a : ΩT
TA

// ΩT
A to be the

coequalizer.

ΩT
T 2A ΩT

TA

ΩTµ //ΩT
T 2A ΩT

TA
ΩTTa

// ΩT
TA ΩT

A

ΩTa //

T 2A TA
µ //T 2A TA
Ta

// TA A
a //T 2A

ΩT
T 2A

dT2A

OO

TA

ΩT
TA

dTA

OO

A

ΩT
A

dA

OO�
�
�
�
�

A

ΩT
A

One readily verifies that the preceding lemma applies so that ΩT
A is equip-

ped with an A-module structure, which makes ΩT
a TA-linear. We find that

dA = ηA; dTA; ΩT
a since a; ηA; dTA; ΩT

a = dTA; ΩT
a = a; dA, where the

first equation is established through a short computation using the fact that
a; ηA = ηTA;Ta.
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Since
TA A

a //TA

W (TA,ΩT
TA)

1TA
dTA


��

W (TA,ΩT
TA) W (A,ΩT

A)
W (a,ΩTa )

//

A

W (A,ΩT
A)

1A
dA


��

commutes, it follows that the right-hand map is a T -algebra homomorphism
and therefore that dA is a T -derivation. Indeed, the counterclockwise com-
posite is evidently a T -algebra homomorphism, and since a is a T -algebra
homomorphism that is split epi in C, the fact that the right-hand map is a
T -algebra homomorphism follows readily.

Now suppose that ∂ : A // M is a T -derivation. Then a; ∂ is a T -
derivation, which must factor through dTA via a morphism of TA-modules
∂′. Since

dT 2A; ΩT
Ta; ∂

′ = Ta; dTA; ∂′

= Ta; a; ∂

= µ; a; ∂

= µ; dTA; ∂′

= dT 2A; ΩT
µ ; ∂′

it follows from the universal property of dT 2A that ΩT
Ta; ∂

′ = ΩT
µ ; ∂′, so that

∂′ factors uniquely through ΩT
a via a map ∂# : ΩT

A
//M . Since a ⊗ ΩT

a is
a coequalizer, the following computation shows that this map is A-linear:

a⊗ ΩT
a ; •A; ∂# = •TA; ΩT

a ; ∂#

= •TA; ∂′

= 1TA ⊗ ∂′; a⊗ 1A; •A
= a⊗ ΩT

a ; 1A ⊗ ∂#; •A
Finally, we show that ∂# is the unique A-linear morphism, which makes

A ΩA
dA //A

M

∂

��??????????? ΩA

M

∂#

��
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commute. First, observe that a; dA; ∂# = dTA; ΩT
a ; ∂# = dTA; ∂′ = a; ∂

so that this does indeed commute after cancellation of a. Now suppose that
there exists another A-linear map k : ΩT

A
//M such that dA; k = ∂. Then

dTA; ΩT
a ; k = a; dA; k

= a; ∂

= dTA; ∂′

= dTA; ΩT
a ; ∂#

The universal property of dTA dictates that ΩT
a ; k = ΩT

a ; ∂# and therefore
k = ∂# and the proof is complete.

6. An alternative definition of (co)differential category

Realization of the importance of the symmetric algebra in the analysis of
Kähler categories also has the benefit that it leads to a succinct alternative
definition of codifferential category as follows.

Theorem 6.1. Let C be an additive symmetric monoidal category for which
the symmetric algebra monad S on C exists. Assume that C has reflexive
coequalizers and that these are preserved by the tensor product in each vari-
able. Then to equip C with the structure of a codifferential category is, equiv-
alently, to equip C with

1. a monad T ,

2. a monad morphism λ : S → T , and

3. a transformation dTC : TC → TC ⊗ C natural in C ∈ C

such that

(a) the diagram

SC

dSC
��

λC // TC

dTC
��

SC ⊗ C λC⊗1C// TC ⊗ C
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commutes for each C ∈ C, where dSC is the deriving transformation
carried by S, and

(b) the Chain Rule axiom of Definition 3.9 holds, i.e. each dTC is a T -
derivation.

Proof. By Remark 4.1, the category of commutative algebras in C is monadic
over C and so can be identified with the category of S-algebras. By Theorem
4.2, we know that algebra modalities on C are in bijective correspondence
with pairs (T, λ) consisting of a monad T on C and a monad morphism
λ : S → T . Suppose we are given such a pair (T, λ), together with a natural
tranformation dT (−) satisfying (a) and (b).

Claim: Any T -derivation ∂ : A → M is, in particular, an S-
derivation, equivalently by Remark 5.8, a derivation in the ordi-
nary sense (Definition 3.5).

To prove this claim, observe that the following diagram commutes, by
(a) and Definition 5.12, where a is the given T -algebra structure on A.

SA

dSA
��

λA // TA

dTA
� �

a // A

∂
��

SA⊗ A
λA⊗1

// TA⊗ A
a⊗∂

// A⊗M •
//M

But the upper row is the S-algebra structure acquired by A via Theorem 4.2,
so by Definition 5.12 the Claim is proved.

We have assumed that d satisfies the Chain Rule axiom, equivalently that
each component dTC : TC → TC ⊗C is a T -derivation (Theorem 5.13), so
by the Claim, dTC is an S-derivation, equivalently, an ordinary derivation.
Hence the axioms (d1) and (d2) of Definition 3.9 hold, since together they
assert exactly that each component dTC is an ordinary derivation. We also
know that axiom (d4) (the Chain Rule) holds, by assumption (b), so it suf-
fices to prove that (d3) holds. Indeed, (d3) asserts that the periphery of the
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following diagram commutes

C
o
��

ηTC

))

ηSC

// SC

dSC
��

λC
// TC

dTC
��

k ⊗ C e⊗1 //

e⊗1

55SC ⊗ C λC⊗1 // TC ⊗ C

(1)

where ηT and ηS are the units of T and S, respectively. The upper cell
commutes since λ is a monad morphism, and the lower cell commutes since
λC is an S-homomorphism, i.e a homomorphism of algebras. The leftmost
cell commutes since C is a codifferential category when equipped with S
(4.4), and the rightmost cell commutes by (a).

Conversely, let us instead assume that (C, T, d) is a codifferential cate-
gory. Then since axiom (d3) holds, the periphery of the diagram (1) com-
mutes, but we also know that the upper, lower, and leftmost cells in (1)
commute. Hence, whereas our aim is to show that (a) holds, i.e., that the
rightmost square in (1) commutes, we know that this square ‘commutes
when preceded by ηSC’. But by axioms (d1) and (d2), dTC is an ordinary
derivation, equivalently, an S-derivation (3.5), so the composite λC ; dTC is
an S-derivation since λC is an algebra map. Also, dSC is an S-derivation,
and one readily checks that λC ⊗ 1 : SC ⊗ C → TC ⊗ C is a morphism
of SC-modules (where TC ⊗ C carries the SC-module structure that it ac-
quires by restriction of scalars along the algebra homomorphism λC). Hence
the composite dSC ;λC ⊗ 1 is an S-derivation. Therefore both composites in
the square in question are S-derivations and so are uniquely determined by
their composites with ηSC : C → SC, which are equal.

An advantage of this definition is that it immediately paves the way for
variations of the theory of differential categories and differential linear logic.
For example, to obtain noncommutative variants, one can replace the sym-
metric algebra in the above construction with a different endofunctor.
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Résumé. Nous donnons une concise introduction aux ω-groupoı̈des faibles
de Grothendieck. Notre but est de démontrer que, dans certains contextes, ce
simple langage est utile à la construction de ω-groupoı̈des faibles globulaires.
Pour cela, nous reformulons briévement la construction, due à van den Berg
et Garner, d’un ω-groupoı̈de faible de Batanin à partir d’un type en utilisant
le langage des ω-groupoı̈des faibles de Grothendieck. Cette construction
s’applique aussi aux espaces topologiques ainsi qu’aux complexes de Kan.
Abstract. A short introduction to Grothendieck weak ω-groupoids is given.
Our aim is to give evidence that, in certain contexts, this simple language is
a convenient one for constructing globular weak ω-groupoids. To this end,
we give a short reworking of van den Berg and Garner’s construction of a
Batanin weak ω-groupoid from a type using the language of Grothendieck
weak ω-groupoids. This construction also applies to topological spaces and
Kan complexes.
Keywords. Higher groupoids. Globular sets.
Mathematics Subject Classification (2010). 18D05.

1 Introduction
Around 2009/2010 van den Berg and Garner [3] and Lumsdaine [11] inde-
pendently showed that a type in intensional type theory gives rise to a weak
ω-category in the sense of Batanin [2].1 In [3] this weak ω-category was
shown, moreover, to be a weak ω-groupoid.
Shortly after these papers appeared, Georges Maltsiniotis [12] brought to
attention, and simplified, a further globular definition of weak ω-groupoid
that first appeared at the beginning of Grothendieck’s manuscript Pursuing

1To be precise, both papers employed the mild reformulation of Batanin’s definition given
by Leinster in [10].

               CAHIERS DE TOPOLOGIE ET                                                       Vol. LVII-4 (2016)

GEOMETRIE DIFFERENTIELLE CATEGORIQUES

NOTE ON THE CONSTRUCTION OF GLOBULAR WEAK

omega-GROUPOIDS FROM TYPES, TOPOLOGICAL SPACES...

by John BOURKE

- 281 -



Stacks [9].
At the end of 2015 I read the papers of van den Berg–Garner and Maltsin-

iotis around the same time. Being struck by the low-tech and transparent
nature of the Grothendieck definition, I figured that it should be significantly
easier to communicate the main results of [3] by substituting Batanin’s weak
ω-groupoids for Grothendieck’s.

The goal of this largely expository note is to explain precisely that. We
give a self contained introduction to Grothendieck weak ω-groupoids and
in that language give a direct reworking, attempting nothing original, of the
central results and proofs of [3]. For the reader unfamiliar with type theory
let us point out that the main construction applies to topological spaces and
Kan complexes as well as to types. Our thesis is that Grothendieck weak
ω-groupoids provide a transparent and workable notion of globular weak
ω-groupoid, and our economical reworking of the main result of loc.cit. is
intended as evidence to that effect.

On setting down to write the present note I became aware that a closely
related connection between Grothendieck weak ω-groupoids and intensional
type theory was already made by Brunerie [5] in 2013. He defined an inten-
sional type theory whose models provide a notion of weak ω-groupoid, and
has shown that each type naturally gives rise to a weak ω-groupoid of that
kind. It is expected that these type theoretic weak ω-groupoids, after some
minor modifications 2, are essentially the same as the Grothendieck weak ω-
groupoids described here, although the precise details of this correspondence
are not yet written down.

Let us now give a brief summary of what follows. In Section 2 we recall
the notion of Grothendieck weak ω-groupoid. This material is from [12]
up to insignificant notational distinctions. Section 3 closely follows [3] in
introducing identity type categories and iterating the path object construction
to build globular objects in such categories. We additionally point out that
topological spaces and Kan complexes form identity type categories. Section
4 introduces endomorphism globular theories whilst Section 5 reinterprets
the main result and proof of [3] using Grothendieck weak ω-groupoids.

The author thanks Clemens Berger, Guillaume Brunerie, Richard Garner

2One needed modification concerns the shapes of operations that are allowed: the con-
tractible contexts of [5] encode globular sets such as the free span that are not encoded by
the tables of dimensions described here.
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and Mark Weber for useful discussions on this topic.

2 Globular theories and ω-groupoids

2.1 The globe category and ω-graphs
The category of globes G is freely generated by the graph

0
τ1
//

σ1 //
1

τ2
//

σ2 //
. . .

τn−1

//

σn−1
//
n− 1

τn
//

σn //
n . . .

subject to the relations σn ◦ σn−1 = τn ◦ σn−1 and τn ◦ σn−1 = σn ◦ σn−1.
These relations ensure that G(n,m) = {σn,m, τn,m} for n < m where

σn,m and τn,m are obtained by composing sequences of σi’s and τi’s respec-
tively. We typically abbreviate σn,m and τn,m by σ and τ when the context is
clear.

A functor A : Gop → C is called an ω-graph or globular object in C and
is specified by objects A(n) together with morphisms

A(n)
sn //

tn
// A(n− 1)

where we write sn = A(τn) and tn = A(σn). Similarly we write sn,m =
A(τn,m) and tn,m = A(σn,m), or just s and t if the context is clear.

2.2 Globular sums and globular products
A table of dimensions is a sequence n = (n1, . . . , nk) of natural numbers with
n2i−1 > n2i < n2i+1 and k ∈ {1, 3, 5, . . .}. Given n, a functor D : G → C
determines a diagram

D(n2) D(n4)
. . .

D(nk−1)

D(n1) D(n3) D(n5) D(nk−2) D(nk)

Dτ
||

Dσ
""

Dτ
||

Dσ
""

Dτ
||

Dσ
""

in C whose colimit is called a globular sum and denoted by D(n). If all such
colimits exist then we say that C admits D-globular sums (or just globular
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sums). For Y : G → [Gop,Set] the globular sums Y (1) and Y (1, 0, 2, 1, 2)
are depicted below.

• •// • • •//
��

@@
//

��

��

Though we have not labelled them differently, it is important to note that all
of the cells depicted above are distinct.

Likewise an ω-graph A : Gop → C determines a diagram

A(n2) A(n4)

. . .

A(nk−1)

A(n1) A(n3) A(n5) A(nk−2) A(nk)

t "" s|| t "" s|| t "" s||

whose limit, denoted A(n), is called a globular product.

2.3 Globular theories
We now describe the category Θ0 that plays the same role for globular theories
as the skeletal category of finite sets plays for Lawvere theories.

To construct Θ0 observe that the category of globular sets [Gop,Set] is
cocomplete and therefore admits Y -globular sums. Taking the full subcate-
gory of [Gop,Set] on the globular sums yields the initial, up to equivalence,
category with globular sums. Θ0 is a skeleton of this: we can view its objects
as the tables of dimensions whilst Θ0(n,m) = [Gop,Set](Y (n), Y (m)). The
functor

D : G→ Θ0

factors the Yoneda embedding and is given by Dn = (n) on objects. We
record the universal property of its dual.

Lemma 2.1. Let C be a category admitting A-globular products. There exists
an essentially unique extension

Θop
0

A(−)

  

Gop

Dop

OO

A
// C
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of A to a globular product preserving functor A(−) : Θop
0 → C. This sends n

to the globular product A(n).

Definition 2.2. A globular theory consists of an identity on objects functor

J : Θop
0 → T

that preserves globular products.

The category Mod(T, C) of T-algebras in C is the full subcategory of
[T, C] containing the globular product preserving functors. Observe that there
is a forgetful functor

U : Mod(T, C)→ [Gop, C]

given by restriction along J ◦Dop : Gop → T. If U(X) = A then we call X
a T-algebra structure on A.

Remark 2.3. The category Θ0 was first described by Berger [4] using level
trees. Globular theories were also first described in ibid., in which the
definition was formulated using a sheaf condition equivalent to J’s preserving
globular products. The only difference with Definition 2.2 is that Definition
1.5 of ibid. required that J be faithful, as it typically is.

2.4 Contractibility and weak ω-groupoids
Let A : Gop → C. By a parallel pair of n-cells in A is meant a pair

f, g : X ⇒ A(n)

such that either n = 0 or sn ◦ f = sn ◦ g and tn ◦ f = tn ◦ g. A lifting for
such a pair is an arrow h : X → A(n+ 1) such that

A(n+ 1)

s

��

t
��

X

h

;;

f
//

g
// A(n)

commutes..

BOURKE - NOTE ON GLOBULAR WEAK Omega GROUPOIDS...

- 285 -



The ω-graph A is said to be contractible if each parallel pair of n-cells in
A has a lifting, whilst a globular theory J : Θop

0 → T is said to be contractible
if its underlying ω-graph

J ◦Dop : Gop → T

is contractible.

Definition 2.4. A Grothendieck weak ω-groupoid is an algebra for some
contractible globular theory.

Let J : Θop
0 → T be a contractible globular theory and let us agree not

to write the action of J . Where are the operations for a weak ω-groupoid
in T? The map representing composition of 1-cells should have domain the
pullback below left.

(1, 0, 1)
q
//

p

��

(1)

s

��

(1)

t
��

s

��

(2)

t
��

s

��

(1) t // (0) (1, 0, 1)
s◦p
//

t◦q
//

m
;;

(0) (1, 0, 1, 0, 1)
m◦(m,1)

//

m◦(1,m)
//

a

66

(1)

Now the parallel 0-cells in the second diagram admit, by contractibility of
T, a lifting m and this encodes the sought for composition. Associativity of
composition up to a 2-cell is encoded by the lifting a for the parallel 1-cells
in the third diagram. Weak inverses are encoded by the lifting for the parallel
pair

(1)
t //

s
// (0) .

And so on. For further details see Section 1.7 of [12] or Section 3 of [1].

Remark 2.5. In [12] a weak ω-groupoid is defined to be an algebra for a
Gr-coherator – a certain kind of contractible globular theory. By Theorem
3.14 of loc.cit. the Gr-coherators are precisely the cellular contractible glob-
ular theories and therefore are weakly initial amongst contractible globular
theories. It follows that an ω-graph admits weak ω-groupoid in the present
sense just when it admits an algebra structure for a Gr-coherator.
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3 Identity type categories and iterated path ob-
jects

3.1 Identity type categories
An identity type category [3] is a category C equipped with a weak factorisa-
tion system (L,R)3 satisfying the following properties:

• A terminal object 1 exists and for eachX ∈ C the unique map ! : X → 1
is an R-map.

• Pullbacks of R-maps exist and the pullback of an L-map along an
R-map is again an L-map.

As shown in [8, 3] the syntactic category of an intensional type theory admits
the structure of an identity type category.

Further examples arise from Quillen model categories C whose cofibra-
tions are pullback stable along fibrations. Since weak equivalences between
fibrant objects are always stable under pullback along fibrations (see Propo-
sition 13.1.2 of [6]) the trivial cofibrations between fibrant objects in such
model categories are also stable under pullback along fibrations. So for such
C it follows that the full subcategory of fibrant objects Cf is an identity type
category when equipped with the restricted (trivial cofibration/fibration)-weak
factorisation system.

In the Strøm model structure on topological spaces [16] the cofibra-
tions –closed cofibrations– are stable under pullback along the fibrations, the
Hurewicz fibrations. This is Theorem 12 of [15]. Since all topological spaces
are fibrant the category of topological spaces is therefore an identity type cat-
egory. In the standard model structure on simplicial sets [13] the cofibrations
are the monos and so are pullback stable along all maps; it follows that the
full subcategory of fibrant objects – the Kan complexes – is an identity type
category.

3The definition of [3] actually only requires certain factorisations to exist but is equivalent
to the present formulation by the argument of Lemma 2.4 of [14]. See also Lemma 11 of [8]
for the original type theoretic argument.
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3.2 Iterating the path object construction
Starting with an object X of C the goal now is to build an ω-graph X?

with X?(0) = X . X?(1) is to be the path object of X: that is, an (L,R)-
factorisation

X?(0)
i0,1

// X?(1)
〈s1,t1〉

// X?(0)×X?(0)

of the diagonal map. Then s1, t1 : X?(1) ⇒ X?(0) will be the underlying
1-graph of X?.

The inductive construction of an (n+ 1)-graph from an n-graph makes
use of the (n + 1)-boundary Bn+1X? of an n-graph. This has B1X? =
X?(0)×X?(0) whilst for higher n, it is given by the pullback below

Bn+1X?

qn

��

pn
// X?(n)

〈sn,tn〉
��

X?(n)
〈sn,tn〉

// BnX?

(3.1)

in which the map
〈sn, tn〉 : X?(n)→ BnX? (3.2)

is inductively constructed.
Let us note that by restriction one can speak of the (n+1)-boundary of an

ω-graph, and it is not hard to see that this represents parallel pairs of n-cells
in the ω-graph, as were defined in Section 2.4.

Now the pullback (3.1) exists in an identity type category because the in-
ductively defined map (3.2) is an R-map at each stage. For the inductive step,
we observe that the identity on X?(n) induces a diagonal 〈1, 1〉 : X?(n)→
Bn+1X? whose (L,R)-factorisation

X?(n)
in,n+1

// X?(n+ 1)
〈sn+1,tn+1〉

// Bn+1X?

is taken to define X?(n+ 1). The two maps sn+1, tn+1 : X?(n+ 1) ⇒ X?(n)
then extend X? to an (n + 1)-graph. Because the projections in (3.1) are
pullbacks of R-maps, they are R-maps too. And since sn+1 and tn+1 are
obtained by composing these projections with the R-map 〈sn, tn〉 it follows
that both sn+1 and tn+1 are R-maps as well.
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Induction now produces an ω-graph X? that we call the iterated path
object and whose relevant properties we now record.

Lemma 3.1. The iterated path object X? is a reflexive globular context [3] ,
i.e.,

1. There exist L-maps in,n+1 : X?(n) → X?(n + 1) with sn ◦ in,n+1 =
tn ◦ in,n+1.

2. The maps sn, tn : X?(n + 1) ⇒ X?(n) and 〈sn, tn〉 : X?(n + 1) →
BnX? are R-maps.

Remark 3.2. A couple of points are perhaps worth noting. Firstly, the maps
in,n+1 exhibit X? as a reflexive (globular object / ω-graph). Secondly, the
above construction of X? from X can be understood in terms of the Reedy
structure on the reflexive globe category R. For J a Reedy category (see [7] for
instance) let J≤n denote the full subcategory on the objects of degree at most
n. Then extensions of A : J≤n → C to J≤n+1 correspond to factorisations of
the map LnA→MnA from the n-th latching object ofA to the n-th matching
object of A, a colimit and limit respectively. It follows that for C a sufficiently
bicomplete category equipped with a weak factorisation system, there is a
canonical method of inductively constructing an object X? : J → C from
X ∈ C. Specialised to the Reedy category R and an identity type category
(C, L,R) this yields the iterated path object construction.

4 Endomorphism theories
Let C be a category with A-globular products and consider the extension
A(−) : Θop

0 → C of A as below.

Θop
0

A(−)

( (

JA // End(A)

KA

��

Gop

Dop

OO

A
// C

Factoring A(−) as identity on objects followed by fully faithful yields the
endomorphism theory

JA : Θop
0 → End(A)
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ofA. This has the same objects as Θ0 whilst End(A)(n,m) = C(A(n), A(m)).
Since A(−) preserves globular products so do both JA : Θop

0 → End(A) and
KA : End(A)→ C. The first fact establishes that End(A) is a globular theory
whilst the second exhibits the canonical End(A)-algebra structure on A.

We will use the following lemma, whose proof is a matter of tracing
through the definitions, to construct weak ω-groupoids.

Lemma 4.1. Let C admit A-globular products. Then End(A) is contractible
if and only if each parallel pair f, g : A(n) ⇒ A(m) of m-cells in A with
domain a globular product has a lifting.

5 The weak ω-groupoid structure
Theorem 5.1. Let C be an identity type category. The for each X ∈ C the
iterated path object X? admits the structure of a weak ω-groupoid.

Proof. More generally we will show that each reflexive globular context
A : Gop → C admits the structure of a weak ω-groupoid. Firstly we establish
some notation. On composing the L-maps in,n+1 : A(n) → A(n + 1)
we obtain further L-maps in,m : A(n) → A(m) for n < m which will be
abbreviated by i, excepting the case n = 0 where we write in : A(0)→ A(n).

Now the L-maps in : A(0) → A(n) assemble into a cone i : ∆A(0) →
A ∈ [Gop, C] under A(0). This induces a factorisation

Gop

A
$$

i/A
// A(0)/C

U
��

C

of A through A(0)/C. Here the functor i/A sends n to in : A(0) → A(n)
whilst U is the forgetful functor.

We will prove the theorem by showing:

1. The category A(0)/C has i/A-globular products preserved by U ;

2. The endomorphism theory End(i/A) is contractible.
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Then the composite

End(i/A)
Ki/A

// A(0)/C U // C

will exhibit the structure of a End(i/A)-algebra – and hence weak ω-groupoid
– on A.

For (1) we proceed by induction over the length k of a table of dimensions
n = (n1, . . . , nk). As usual we write A(n) for the globular product in C with
pnj : A(n)→ A(nj) the j’th projection. We write in : A(0)→ A(n) for the
globular product in A(0)/C which then satisfies

A(0)
in // A(n)

pnj
// A(nj) = A(0)

inj
// A(nj) .

For the base case n = (n1) we have A(n) = A(n1) with the identity
projection, and in1 : A(0) → A(n1) as globular product in A(0)/C. For
n+ = (n1, . . . nk, nk+1, nk+2) the globular product A(n+) in C can be con-
structed as the pullback in the rectangle below

A(0)

in

##

ink+2

((

in+

##

A(n+)

q

��

pn
+

k+2
// A(nk+2)

s

��

A(n)
pnk

// A(nk) t
// A(nk+1)

(5.1)

which exists since s : A(nk+2) → A(nk+1) is an R-map. By the universal
property of the pullback there exists a unique map in+ : A(0) → A(n+)
rendering commutative the two triangles. Since U creates pullbacks this is
the pullback, and hence globular product, in A(0)/C.

By induction we have now proven (1). A further consequence of the
inductive construction is that the final projection

pnk : A(n)→ A(nk)

is an R-map. This is trivial in the base case, and clear in the inductive step
since the final projection pn+

k+2 is the pullback of a composite t◦pnk of R-maps.
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Now the main ingredient in proving (2) is, in fact, to show that each
morphism

in : A(0)→ A(n)

is an L-map and again this is done by induction. In the base case we have
the L-map in1 : A(0)→ A(n1). For the inductive step we start by observing
that the right vertical arrow s : A(nk+2)→ A(nk+1) of (5.1) has section the
L-map i : A(nk+1) → A(nk+2). It follows that its pullback q has a unique
section i′ satisfying the commutativity in the left square below.

A(n)

1

))

t◦pnk
��

i′ // A(n+)

pn
+

k+2
��

q
// A(n)

t◦pnk
��

A(nk+1)

1

55i
// A(nk+2) s

// A(nk+1)

Since the right and outer rectangles above are pullbacks the left one is a
pullback too and, since pn+

k+2 ∈ R and i ∈ L, it follows that i′ ∈ L. Therefore
to prove that in+ ∈ L it suffices to show that in+ = i′ ◦ in. Both maps give
in when postcomposed by q. Composing with the other pullback projection
gives

pn
+

k+2 ◦ i′ ◦ in = i ◦ s ◦ pnk ◦ in = i ◦ t ◦ ink
= i ◦ ink+1

= ink+2
= pn

+

k+2 ◦ in+

as required.
To complete the proof we must show that the endomorphism theory

End(i/A) is contractible. By Lemma 4.1 this is equally to show that each
parallel pair of m-cells in i/A : Gop → A(0)/C with domain a globular
product A(n) has a lifting. Such a parallel pair are depicted below left.

A(0)

in
��

im

##

A(0)

in
��

im+1
// A(m+ 1)

〈s,t〉
�� s

��

t

��

A(n)
f
//

g
// A(m) A(n)

f
11

g 11

〈f,g〉
// Bm+1A

pm

%%qm
%%

A(m)

BOURKE - NOTE ON GLOBULAR WEAK Omega GROUPOIDS...

- 292 -



These induce a unique map 〈f, g〉 : A(n) → Bm+1A to the boundary such
that pn ◦ 〈f, g〉 = f and qn ◦ 〈f, g〉 = g. In the diagram above right all paths
from A(0) to A(m) coincide as im : A(0) → A(m). Since the pullback
projections pm and qm are jointly monic it follows that the square commutes.
Now in is an L-map and 〈s, t〉 an R-map. Therefore there exists a diagonal
filler h : A(n)→ A(m+1) in the square and this gives the desired lifting.

Remark 5.2. The preceding construction of a Grothendieck weak ω-groupoid
is simpler than that of a Batanin weak ω-groupoid for a couple of reasons.
One is that Batanin’s weak ω-groupoids are defined as a special case of his
weak ω-categories and so another step is required. Another reason is that
endomorphism theories seem easier to handle with globular theories rather
than globular operads.
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Résumé. Un résumé de la vie et du travail de Reinhard Börger (1954–2014)
est presenté en mettant l’accent sur ses oeuvres premières ou non publiées.
Abstract. A synopsis of the life and work of Reinhard Börger (1954–2014)
is presented, with an emphasis on his early or unpublished works.
Keywords. cogenerator, strong generator, semi-topological functor, total cat-
egory, extensive category, sequentially convex space.
Mathematics Subject Classification (2010). 18A30, 18A20, 18A40,
18B30, 18D20, 16S10, 28E99, 11A99.

1. A Brief Curriculum Vitae

On June 6, 2014, Reinhard Börger passed away, after persistent heart com-
plications. He had taught at Fernuniversität in Hagen, Germany, for over
three decades where he had received his Dr. rer. nat. (Ph.D.) in 1981, with
a thesis [15] on notions of connectedness, written under the direction of Di-
eter Pumplün. He had continued to work on mathematical problems until
just hours before his death.

Born on August 19, 1954, Reinhard went to school in Gevelsberg (near
Hagen) before beginning his mathematics studies at Westfälische Wilhelms-
Universität in Münster in 1972. A year later he won a runner-up prize at the
highly competitive national Jugend forscht competition. Quite visibly, math-
ematics seemed to always be on his mind, and he often seemed to appear out
of nowhere at lectures, seminars or informal gatherings. These sudden ap-
pearances quickly earned him his nickname Geist (ghost), a name that he
willingly adopted for himself as well. His trademark ability to then launch
pointed and often unexpected, but always polite, questions, be it on mathe-
matics or any other issue, quickly won him the respect of all.

Reinhard’s interest in category theory started early during his studies in
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Münster when, supported by a scholarship of the prestigious Studienstiftung
des Deutschen Volkes, he took Pumplün’s course on the subject that eventu-
ally led him to write his 1977 Diplomarbeit (M.Sc. thesis) about congruence
relations on categories [3]. For his doctoral studies he accepted a scholarship
from the Cusanuswerk and followed Pumplün from Münster to Hagen where
Pumplün had accepted an inaugural chair at the newly founded Fernuniver-
sität in 1975. After the completion of his doctoral degree in 1981 with an
award-winning thesis, he assumed a number of research assistantships, at
the Universities of Karlsruhe (Germany) and of Toledo (Ohio, USA), and
back at Fernuniversität. For his Habilitationsschrift [31], which earned him
the venia legendi in 1989, he developed a categorical approach to integration
theory. Beginning from 1990 he worked as a Hochschuldozent at Fernuni-
versität, interrupted by a visiting professorship at York University in Toronto
(Canada) in 1993, and in 1995 he was appointed Außerplanmäßiger Profes-
sor at Fernuniversität, a position that he kept until his premature death in
2014.

In what follows I give a synopsis of Reinhard’s mathematical work, em-
phasizing early, incomplete or not easily accessible contributions. After a
brief account in Section 2 of his work up to the completion of his M.Sc. the-
sis, I recall some of his early contributions to the development of categor-
ical topology (Section 3), before describing in Section 4 some aspects of
his Ph.D. thesis and the work that emanated from it. Section 5 sketches
the work on integration theory in his Habilitationsschrift, and Section 6
highlights some of his more isolated mathematical contributions. For Rein-
hard’s substantial contributions in the area of convexity theory, inspired by
the Pumplün–Röhrl works on convexity (such as [86, 87]), we refer to the
article [81] by his frequent coauthor on the subject, Ralf Kemper.

Acknowledgements. I am indebted to Dieter (“Nico”) Pumplün and Hol-
ger Petersson at Fernuniversität for their strong encouragement and valuable
advice during the preparation of this article, an extended version of which
appeared in the local preprint series Seminarberichte (vol. 87, 2015). Sin-
cere thanks are also due to Ottmar Loos and Diethard Pallaschke for their
help in recovering information and materials that may easily have been lost
otherwise. Andrea Börger provided information on Reinhard’s contributions
outside mathematics, for which I am grateful as well. Last, but not least, I
thank the editors of the Cahiers for publishing this article.
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2. First Steps

The earliest written mathematical work of Reinhard that I am aware of and
that may still be of interest today, is the three-page mimeographed note [1]
giving a sufficient condition for the non-existence of a cogenerating (also
called coseparating) set of objects in a category K. While the existence of
such a set in the category of R-modules and, in particular, of abelian groups,
is standard, none of the following categories can possess one: fields; skew
fields; (commutative; unital) rings; groups; semigroups; monoids; small cat-
egories. Reinhard’s theorem, found when he was still an undergraduate stu-
dent, gives a unified reason for this, as follows.

Theorem 2.1. Let K have (strong epi,mono)-factorizations and admit a
functor U to Set that preserves monomorphisms. If, for every cardinal num-
ber κ, there is a simple object A in K with the cardinality of UA at least κ,
then there is no cogenerating set in K.

(He defined an object A to be simple if the identity morphism on A is not
constant while every strong epimorphism with domain A must be constant
or an isomorphism; a morphism f is constant if for all parallel morphisms
x, y composable with f one has fx = fy.) Reinhard returned to the theme
of the existence of cogenerators repeatedly throughout his career, see [16,
34, 44, 45, 49, 50].

In 1975 Reinhard and I discussed various generalizations of the notion
of right adjoint functor that had appeared in the literature at the time, in par-
ticular Kaput’s [80] locally adjunctable functors. We tightened that notion to
strongly locally right adjoint and proved, among other things, preservation
of connected limits by such functors. Our paper [2] was presented at the
“Categories” conference in Oberwolfach in 1976, and we discussed it with
Yves Diers who was working on a slightly stricter notion for his thesis [71]
that today is known under the name multi-right adjoint functor. Diers’ only
further requirement to our strong local right adjointness was that the local
adjunction units of an object, known as its spectrum, must form a set. With-
out this size restriction, Reinhard and I had already given in [2] a complete
characterization of the spectrum of an object, as follows.

Theorem 2.2. For a strongly locally right adjoint functor U : A → X and
an objectX ∈ X , its spectrum is the only full subcategory of the comma cat-
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egory (X ↓ U) that is a groupoid, coreflective, and closed under monomor-
phisms.

These works actually precede Reinhard’s M.Sc. thesis [3] (summarized
in [5]) whose starting point was a notion presented in Pumplün’s categories
course that went beyond the classical notion (as given in [72]) which con-
fines equivalent morphism to the same hom set. Without that restriction,
for any equivalence relation ∼ on the class of morphisms of a category K
to be (uniquely) normal Pumplün required the existence of a (uniquely de-
termined) composition law for the equivalence classes that makes K/∼ a
category and the projection P : K → K/∼ a functor. Reinhard showed that
the behaviour of a compatible equivalence relation ∼ on the morphism class
of a category K (so that u ∼ u′ and v ∼ v′ implies uv ∼ u′v′ whenever the
composites are defined) requires great caution:

Theorem 2.3. Each of the following statements on an equivalence relation
∼ on the class of morphisms of a category K implies the next, but none of
these implications is reversible:

• ∼ is compatible, and 1A ∼ 1B only if A = B, for all objects A,B ∈
K;

• ∼ is compatible, and for all u : A → B, v : C → D with 1B ∼ 1C ,
there are u′ : A′ → B′, v′ : C ′ → D′ with u ∼ u′, v ∼ v′ and
B′ = C ′;

• ∼ is uniquely normal;

• ∼ is normal;

• there is a functor F with domain K inducing ∼ (so that u ∼ u′ ⇐⇒
Fu = Fu′);

• ∼ is compatible.

3. Semi-topological functors and total cocompleteness

Brümmer’s [68], Shukla’s [90], Hoffmann’s [77] and Wischnewsky’s [98]
theses and Wyler’s [100, 99], Manes’ [84] and Herrlich’s [75, 76] semi-
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nal papers triggered the development of what became known as Categor-
ical Topology, with various groups in Germany, South Africa, the United
States and other countries working intensively throughout the 1970s on ax-
iomatizations of “topologically behaved” functors and their generalizations
and properties; see [69] for a survey. Reinhard and I, long before he started
working on his doctoral dissertation, were very much part of this effort. Here
are some examples of results that he has influenced the most.

Topologicity of a functor P : A → X may be defined by the sole
requirement that initial liftings of (arbitrarily large) so-called P -structured
sources exist, without the a-priori assumption of faithfulness of P . (This is
Brümmer’s [68] definition, although he did not use the name topological for
such functors in his thesis.) Herrlich realized that faithfulness is a conse-
quence of the definition, with a proof that made essential use of the small-
ness of hom-sets for the categories in question. Reinhard’s spontaneous idea
then was to use a Cantor-type diagonal argument instead that works also for
not necessarily locally small categories. In [8] we came up with a general
theorem that not only proves the faithfulness of topological and, more gen-
erally, semi-topological functors [94, 78, 95] , but that also entails Freyd’s
theorem that a small category with (co)products must be, up to categorical
equivalence, a complete lattice, and that in fact reproduces Cantor’s original
theorem about the cardinality of a a set being always exceeded by that of its
power set, as follows:

Theorem 3.1. Consider a (possibly large) family (ti : Ai → C)i∈I of mor-
phisms and an object B in a category K, such that any family (hi : Ai →
B)i∈I factors as hi = hti (i ∈ I) for some h : C → B. If there is a surjec-
tion I → K(C,B), then for any morphisms f, g : C → B one has fti = gti
for some i ∈ I .

Semi-topological functors in their various incarnations (also called solid
functors, at Herrlich’s urging) were a topic of Reinhard’s and my joint inter-
est for considerable time, in particular in conjunction with strong complete-
ness properties of the participating categories, as witnessed by our papers
[9, 16, 34, 35, 38]. In [96] I had shown that the fundamental property of
totality (or total cocompletness) introduced by Street and Walters [92] lifts
from X to A along a semi-topological P : A → X , and in [66] total cate-
gories with a (strong) generating set of objects were characterized as the cat-
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egories admitting a semi-topological (and conservative) functor into some
small discrete power of Set. For our paper [34] Reinhard constructed an
incredible example:

Theorem 3.2. There is a total category A with a (single-object) strong
generator but no regularly generating set of objects. A is cowell-powered
with respect to regular epimorphisms but not with respect to strong epimor-
phisms; A does not admit co-intersections of arbitrarily large families of
strong epimorphisms. The colimit closure B of the strong generator in A
fails to be complete since it doesn’t even possess a terminal object.

Since totality entails a very strong completeness property, called hyper-
completeness by Reinhard (see [16]), the colimit closure B in the example
above fails badly to inherit totality from its ambient category A. A com-
parison with the following affirmative result on totality of colimit closures
obtained in [38] demonstrates how “tight” this example is:

Theorem 3.3. Let the cocomplete category B be the colimit closure of a
small full subcategory G, and assume that every extremal epimorphisms in
B is the colimit of a chain of regular epimorphisms of length at most α, for
some fixed ordinal α. Then B is total and admits large co-intersections of
strong epimorphisms, and G is strongly generating in A.

4. Connectedness, coproducts, and extensive categories

Reinhard’s doctoral dissertation [15] relates various categorical notions of
connectedness studied throughout the 1970s with each other, adds new con-
cepts and gives some surprising applications. Starting points for him were
the notions of component subcategory (initiated by Herrlich [74] and devel-
oped further by Preuß [85], Strecker [91] and Tiller [97]), of left-constant
subcategory (also initiated by Herrlich [74] in generalization of the corre-
spondence between torsion and torsion-free classes and fully characterized
within the category of topological spaces by Arhangel’skii and Wiegandt
[67]), and the notion of strongly locally coreflective [2] or multi-coreflective
[71] subcategory (already mentioned in Section 2 in the dual situation and
applied in topology by Salicrup [88]).

Let us concentrate here on a more category-intrinsic approach to con-
nectedness to which Reinhard greatly contributed and which led him to make
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significant contributions to preservation properties of coproducts in abstract
and concrete categories. The starting point is the easy observation that a
topological space X is (not empty and) connected if, and only if, every con-
tinuous map X →

∐
i∈I Yi into a topological sum factors uniquely through

exactly one coproduct injection; in other words, if the covariant hom-functor
Top → Set represented by X preserves coproducts. Trading Top for any
category K with coproducts Hoffmann [77] called such objects X Z-objects,
Reinhard preferred the name coprime, while most people will nowadays use
the term connected in K. More specifically, for a cardinal number α, let
us call X α-connected in K if the hom-functor of X preserves coproducts
indexed by a set of cardinality ≤ α.

In his thesis Reinhard was the first to explore this concept deeply in the
dual category of the category Rng of unital (but not necessarily commuta-
tive) rings. α-connectedness of a ring R now means that every unital ho-
momorphism f :

∏
β<α Sβ → R depends only on exactly one coordinate

(so that it factors uniquely through precisely one projection of the direct
product). While it is easy to see that, without loss of generality, one may
assume here that every ring Sβ is the ring Z of integers, and that the finitely-
connected (i.e., α-connected, for every finite α) rings are precisely those that
traditionally are called connected (i.e., those rings that have no idempotent
elements other than 0 and 1), Reinhard unravelled several surprises in the in-
finite case. Calling a ring ultraconnected when it is ℵ0-connected, he proved
in [15] (see also [21]) that the countable case governs the arbitrary infinite
case precisely when there are no uncountable measurable cardinals:

Theorem 4.1. If there are no uncountable measurable cardinals, then the
connected objects in Rngop are precisely the ultraconnected rings. If there
are uncountable measurable cardinals, then there are no ultraconnected ob-
jects in Rngop.

The fields R and C of real and of numbers are ultraconnected, and so is
every subring of an ultraconnected ring. But none of the following connected
rings is ultraconnected: the cyclic rings of cardinality pm (p prime, m ≥ 1),
the ring Zp of p-adic integers and its field of fractions Qp

The Theorem remains valid if Rng is traded for the category of com-
mutative unital rings. Its proof makes essential use of a general categorical
result that Reinhard had first presented at a meeting on “Categorical Algebra

THOLEN - MATHEMATICAL TRIBUTE TO R. BôRGER

- 301 -



and Its Applications” held in Arnsberg (Germany) in 1979 (see [13]):

Theorem 4.2. For a category K with an initial object and α-indexed co-
products (α an infinite cardinal), a functor F : K → Set preserves such
coproducts if, and only if, F preserves β-indexed coproducts for every mea-
surable β ≤ α.

He only subsequently learned that Trnková [93] had proved this theorem
earlier in the special case that also the domain of F is Set. In [25], keeping
the general domain K, he went on to expand it further to functors with target
categories other than Set.

The themes touched upon in, or emerging from, Reinhard’s thesis very
much reverberate in today’s research. I can mention here only one exam-
ple in this regard. It concerns the important notion of extensive category, a
term introduced by Carboni, Lack and Walters in [70]: a category K with
(finite) coproducts and pullbacks is (finitely) extensive if (finite) coproducts
are universal (i.e., stable under pullback) and disjoint (i.e., the pullback of
any two coproduct injections with distinct labels is the initial object). This is
a typically geometric property shared by Set and Top, while a pointed ex-
tensive category must be trivial. Every elementary topos is finitely extensive,
and Grothendieck topoi (i.e., the localizations of presheaf categories) may be
characterized as those Barr-exact categories with a generating set of objects
that are extensive. In a (finitely) extensive category the (finitely) connected
objects are characterized as a topologist would expect: they are precisely the
coproduct-indecomposable objects, i.e., those non-initial objects X with the
property that whenever X is presented as a coproduct of Y and Z, one of
Y, Z must be initial.

Reinhard started his studies of the universality and disjointness proper-
ties of coproducts years before the appearance of [70]. His initial account
[26] went through a multi-year period of refinement, extension and correc-
tion before it finally got published in [46]. But his first account already
contains all the ingredients to the proof of a refined analysis of the notion
of (finite) extensitivity that is missing from [70]; it shows that universality
almost implies disjointness, as follows:

Theorem 4.3. A category with (finite) coproducts and pullbacks is (finitely)
extensive if, and only if, non-empty (binary) coproducts are universal and
pre-initial objects are initial.
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(A pre-initial object admits at most one morphism into any other ob-
ject, while an initial object admits exactly one. A streamlined proof of the
Theorem is contained in [79].) The dual of the category of commutative uni-
tal rings is finitely extensive, and Reinhard gave an example showing that
commutativity is essential here, although Rngop still has the disjointness
property.

5. Measure and Integration

Given the wide range of his mathematical interests, it is hardly surprising that
a large part of Reinhard’s work addresses analytic themes, which are also
at the core of his Habilitationsschrift [31], titled “A categorical approach
to integration theory” (written in German, with the preprint [28] giving a
compressed English version of it). Before Reinhard started his work in this
area, there had been only few attempts to present measure and integration
theory in a categorically satisfactory fashion, with limited follow-up work;
among others, see [82, 83, 73]. Of these, Reinhard’s approach may be seen
as a further development of Linton’s early work.

The starting point in his approach is the elementary, but crucial, obser-
vation that integration of simple functions is given by a universal property.
Specifically, for a Boolean algebraB (with top and bottom elements 1 and 0)
and a real vector space A, the space M(B,A) of charges µ : B → A (i.e., of
maps µ with µ(u∨ v) = µ(u) +µ(v) for all u, v ∈ B with u∧ v = 0) is rep-
resentable when considered as a functor in A, so that for the fixed Boolean
algebra B there is a real vector space EB with M(B,−) ∼= HomR(EB,−) :
VecR → Set. Hence, there is a charge χB : B → EB such that any charge
µ : B → A factors as µ = l · χB, for a uniquely determined R-linear map
l : EB → A. For a set algebra B of a set Ω, EB is the space of simple
functions, and χB assigns to a subset of Ω in B its characteristic function. In
particular then, for A = R and a charge µ, the corresponding map l assigns
to a simple function its integral with respect to µ.

Since every bounded measurable function is the uniform limit of simple
functions, it is clear that one must provide for a “good” convergence setting
to arrive at a satisfactory integration theory, and Reinhard formulates the
following necessary steps to this end: 1. express the integration of simple
functions categorically in sufficient generality; 2. provide for a “convenient
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convergence environment”, by replacing the category of sets by a suitable
category of topological spaces; 3. test the categorical theory obtained against
classical approaches to, and results in, integration theory. Unfortunately, as
Reinhard explains in the 18-page introduction to his Habilitationsschrift, this
obvious roadmap is loaded with specific obstacles.

The “simple integration theory” sketched above relies crucially on the
fact that the symmetric monoidal-closed category VecR lives over the Carte-
sian closed category Set, with the left adjoint L to the forgetful functor V :
VecR → Set preserving the monoidal structure: L(X×Y ) ∼= L(X)⊗L(Y )
for all setsX, Y . Since the category Top fails to be Cartesian closed and can
therefore not replace Set, the first question then is which subtype of topo-
logical or analytic structure one should add on both sides of the adjunction
without losing its “monoidal well-behavedness”. A good replacement candi-
date for Set is the Cartesian closed category SeqHaus of sequential Haus-
dorff spaces (in which every sequentially closed subset is actually closed).
However, since even its finite (categorical) products generally carry a finer
topology than the product topology, vector space objects in !SeqHaus may
fail to be topological vector spaces. To overcome this and other “technical”
obstacles, Reinhard restricts himself to considering only vector spaces in
which convergence to 0 may be tested with convex neighbourhoods of 0, thus
replacing the functor V above by the forgetful functor SCS→ SeqHaus of
sequentially convex spaces. Reassuringly, SCS is still big enough to contain
all Banach spaces (real or complex), even all locally convex Fréchet spaces.

His general categorical setting and theory is centred around a right-adjoint
functor V : A → X with a (semi-)additive category A where, for simplic-
ity, I assume here that both A and X be finitely complete and cocomplete.
For every Boolean algebra object B in X and every A in A he gives a cat-
egorical construction of the set M(B,A) of A-valued measures on B. As
described in the elementary case of set-based charges, a representation of
M(B,−) : A → Set defines a universal measure χB : B → EB, where
EB plays the role of L(∞)(B) in concrete situations, and the factorization
of an arbitrary measure µ through χB defines the integral with respect to
µ. Multiplicativity of measures, a property that Reinhard defines in this ab-
stract setting, requires a symmetric monoidal structure on A and the well-
behavedness of the left adjoint L of V with re! spect to that structure on A
and the Cartesian structure of X . Under mild hypotheses he then shows that
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the universal measure is automatically multiplicative and that E, considered
as a functor B → R to the category R of commutative monoid objects in
the additive category A, is left adjoint. As a particular consequence then,
E preserves binary coproducts, a fact that may be interpreted as Fubini’s
Theorem, as one may explain for the specific categories considered earlier.

Indeed, for A = SCS,X = SeqHaus, a Boolean algebra object B in
X is now called a sequential Hausdorff Boolean algebra, and a commuta-
tive monoid object R inA gives a commutative sequentially convex algebra.
The fact that the functor E : SHBool → SCA preserves binary coprod-
ucts implies that, for B0, B1 in SHBool, an element in E(B0 ⊗ B1), i.e.,
an integrable functionoid on the coproduct B0 ⊗ B1 in SHBool, may be
considered a “functionoid in two variables”, and its “iterated integral” with
respect to measures µ0, µ1 on B0, B1 respectively, coincides with its integral
with respect to the (real-valued) “product measure” on the coproductB0⊗B1

in SHBool determined by µ0, µ1.
This is only a coarse and partial sketch of the work presented in his Ha-

bilitationsschrift. Reinhard kept working on refining and extending his inte-
gration theory till the end of his life. Beyond his published article [61] there
are preliminary versions of a planned monograph on categorical integration
theory of 2006 (see [57]) and 2010 (see [62]) which await some editorial
work before they will hopefully be made available to a wider audience.

6. Across Mathematics

In the previous sections I have tried to give an impression of Reinhard’s con-
tributions to category theory and its applications to algebra, topology and
analysis. But I haven’t touched upon many of his other contributions (as
listed in the References) that have no apparent connection to the type of
work mentioned so far, for example in number theory (algebraic or analytic)
and topology (general or algebraic), of which I can mention here only very
few examples. They should underline his fascination with “concrete” ob-
jects and problems, his mastery of which was as strong as that of “abstract”
mathematical theories. Take, for example, the intricate proof of his solution
[39] to the problem of “How to make a path injective” that cleverly utilizes
the order of the unit interval I = [0, 1]:
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Theorem 6.1. Let ϕ : I → X be a continuous path from a to b in a
Hausdorff space X, a 6= b. Then there exist an injective continuous path
ψ : I → X from a to b, a closed subset A ⊆ I and a continuous order-
preserving map p : I → I with p(A) = I and ψ · p|A = ϕ.

In [53] he constructs “A non-Jordan measurable regularly open subset
of the unit interval”, and in [33] he exploits the role of rational numbers in R
to give a surprisingly easy example of a “reasonable” connected Hausdorff
space in which every point has a hereditarily disconnected neighbourhood.
In fact, he proves the following theorem.

Theorem 6.2. There is a topology on the set of real numbers finer than the
Euclidean topology, making it a connected Hausdorff space that is the union
of two hereditarily disconnected open subspaces.

His proof takes less than a page and “adds” just a little elementary num-
ber theory to everybody’s knowledge of the topology of the real line. Quite
a different side of number theory is displayed in Reinhard’s informal discus-
sion note [30] that was sparked by the observation 6! · 7! = 10! and the quest
for other integer solutions x, y, z of x! ·y! = z! with 1 ≤ x ≤ y. Hence, after
discarding the “trivial” solutions 1, y, y with y ≥ 1 and x, x! − 1, x! with
x ≥ 3 he asked whether the set S of non-trivial solutions is finite or, in fact,
contains any triple other than 6, 7, 10. His note, which asks for input from
specialist number theorists, does not settle this question, but it does provide
the following constraint on members of S that he obtained with analytic
methods:

Theorem 6.3. Any non-trivial integer solution to x! ·y! = z! with 1 ≤ x ≤ y

must satisfy 2
√

x
2 − x < y. As a consequence, there is no non-trivial integer

solution to that equation with x = y.

7. Farewell

As a former colleague and frequent coauthor I belong to the many privileged
people with whom Reinhard generously shared the depth and breadth of his
mathematical knowledge and ideas. They include his teachers as much as
his students and the accidental acquaintance at a conference, all of whom
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may have experienced his initial shyness that, however, could quickly give
way to a spark in his eyes when confronted with an interesting mathematical
question, usually followed by a rapid flow of pointed remarks that were often
difficult to comprehend at first. Reinhard’s premature death is surely a great
loss to all of us.

Despite his superior talents Reinhard was a fundamentally modest per-
son, with firm beliefs in Christian values. He saw no conflict between sci-
ence and his religion, the principles of which he consistently upheld as a
letter writer to papers and author of non-mathematical articles. His life-long
dedicated engagement in local parish work as well as his contributions to na-
tional organizations addressing social and environmental issues, especially
regarding the impact of individual car traffic, may not have been as visible
to the people around him as they deserved to be. For example, in spite of
having known him since his early university student times, it took me years
to understand that his passion for railways and especially the use of local
trains and public transport were rooted in much more than just a hobby.

Reinhard hardly ever talked much about himself, neither about his ac-
complishments nor his problems. His mathematical coworkers would rarely
hear from him about his engagements outside mathematics, even when these
were professionally related to his mathematical activities, such as his ambi-
tion to learn the Czech language. And only when asked directly would one
hear the proud father speak about his three sons Lukas, Simon and Jonas.
He fought hard to overcome the consequences of a devastating stroke some
seven years before his death, especially as he was looking forward to cele-
brate later in 2014 his sixtieth birthday and the thirtieth anniversary of his
wedding to Andrea Börger. Sadly, he lost that battle.

In what follows I first list, in approximate chronological order and typeset
in italics, Reinhard Börger’s written mathematical contributions, including
unpublished or incomplete works, to the extent I was able to trace them,
followed by an alphabetical list of references to other works cited in this
article.
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[85] G. Preuß. Über den E-Zusammenhang und seine Lokalisation. Thesis, Freie
Universität, Berlin 1967.
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[87] D. Pumplün and H. Röhrl. Banach spaces and totally convex spaces II. Comm.
Algebra., 13(5):1047–1113, 1985.

[88] G. Salicrup. Local monocoreflectivity in topological categories. Lecture Notes
in Math. 915:293–309, Springer, Berlin 1982.

[89] Z. Semadeni. Banach spaces of continuous functions, Vol. 1. PWN Polish
Scientific Publishers, Warsaw 1971

[90] W. Shukla. On top categories. Thesis, Indian Institute of Technology, Kanpur
1971.

[91] G.E. Strecker. Component properties and factorizations. Math. Centre Tracts
52:123–140, 1974.

[92] R. Street and R. F. C. Walters. Yoneda structures on 2-categories. J. of Algebra,
50(2):350–379, 1978.
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RESUMES DES ARTICLES PUBLIES 

dans le Volume LVII (2016) 
 

 
 

 

CHRISTENSEN & ENXIN WU, Tangent spaces and tangent bundles for 

diffeological spaces, 3-50.  

Les auteurs étudient comment la notion d’espace tangent peut être étendue 

aux espaces difféologiques, qui généralisent les variétés régulières et com-

prennent les espaces singuliers et de dimension infinie. Ils s'intéressent à 

l’espace tangent interne, défini en utilisant les courbes régulières, et à l'es-

pace tangent externe, défini en utilisant les dérivations régulières. Ils prou-

vent des résultats fondamentaux sur ces espaces tangents, les calculent sur 

des exemples, et observent qu'en général ils sont différents même s’ils 

coïncident sur de nombreux exemples. Rappelant la définition du fibré tan-

gent donnée par Hector ils montrent que la multiplication scalaire et 

l’addition peuvent ne pas y être régulières. Une définition du fibré tangent 

résolvant ce problème est donnée, à l’aide de ce qu’ils appellent la difféo-

logie dvs. Ces fibrés tangents sont étudiés, calculés sur des exemples, et on 

étudie si leurs fibres sont des espaces vectoriels munis de la difféologie 

fine. Parmi les  exemples : espaces singuliers, tores irrationnels, espaces 

vectoriels de dimension infinie, groupes difféologiques, espaces 

d’applications régulières entre variétés régulières. 

 

HOSSEINI & QASEMI-NEZHAD, Equalizers in Kleisli categories, 51-76.  

Cet article donne des conditions nécessaires et suffisantes pour qu’une 

paire de morphismes d’une catégorie de Kleisli associée à une monade 

générale ait un égalisateur. On propose aussi, dans différents cas de mo-

nades intéressantes, un meilleur critère pour l’existence d’un égalisateur et 

dans ces cas, on explicite ce qu’est l’égalisateur (lorsqu’il existe). 

 
T. JANELIDZE-GRAY, Calculus of E-Relations in incomplete relatively 

regular categories, 83-102.  

L’auteur définit une catégorie régulière relative incomplète comme une 

paire (C;E), où C est une catégorie arbitraire et E une classe 
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d’épimorphismes réguliers dans C satisfaisant certaines conditions. Elle 

développe un ‘calcul relatif des relations’ dans ces catégories ; on peut 

l’appliquer aux relations (R; r1; r2) : A → A dans C telles que les mor-

phismes r1 et r2 sont dans E. Ceci généralise plusieurs résultats connus, y 

compris le travail récent avec J. Goedecke sur les catégories relatives de 

Goursat. On définit les catégories régulières relatives incomplètes de Gour-

sat et : (a) on prouve les versions relatives incomplètes des conditions 

équivalentes définissant les catégories régulières relatives de Goursat ; (b) 

on montre que dans ce contexte l’axiome E-Goursat est équivalent à la 

version relative du Lemme 3 x 3. 

 

GRANDIS &PARE, An introduction to multiple categories (on weak and 

lax multiple categories, I), 103-159. 

Les auteurs introduisent les catégories multiples faibles de dimension infi-

nie, une extension des catégories doubles et triples. Ils considèrent aussi 

une forme ‘chirale’ partiellement laxe, ayant des inter-changeurs dirigés, et 

une forme plus laxe déjà étudiée dans deux articles précédents en dimen-

sion trois sous le nom de « inter-catégorie ». Dans ce contexte ils entre-

prennent une étude des tabulateurs, des limites supérieures de base, qui 

sera poursuivie dans l’article suivant. 

 

GRANDIS & PARE, Limits in multiple categories (on weak and lax mul-

tiple categories, II), 163-202. 

Cette suite de l’article précédent étudie les limites multiples dans les caté-

gories multiples chirales (de dimension infinie) -- une forme faible partiel-

lement laxe ayant des inter-changeurs dirigés. Après avoir défini les limites 

multiples, on prouve qu’elles sont engendrées par les produits, égalisateurs 

et tabulateurs multiples, tous étant supposés être respectés par les opéra-

tions de face et dégénérescence. Les tabulateurs sont donc les limites supé-

rieures de base, comme dans le cas des catégories doubles. On considère 

aussi les inter-catégories, une forme plus laxe de catégorie multiple étu-

diée dans deux articles précédents. Dans ce cadre plus général les limites 

de base ci-dessus peuvent encore être définies, mais une théorie générale 

des limites multiples n’est pas développée ici. 

 

W. RUMP, The completion of a quantum B-algebra, 203-228. 
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On montre que les quantales sont les objets injectifs dans la catégorie des 

quantum B-algèbres, et que chaque quantum B-algèbre a une enveloppe 

injective. Par une construction explicite, l’enveloppe injective se révèle 

comme une complétion, plus générale que la complétion de Dedekind-

MacNeille. Un résultat récent de Lambek et al., où des structures rési-

duelles surviennent de manière surprenante, est expliqué à la lumière des 

quantum B-algèbres, fournissant un autre exemple de leur ubiquité. Des 

connexions aux structures promonoïdales et aux multi-catégories sont indi-

quées. 

 

N. GILL, On a conjecture of Degos, 229-238. 

Cette note donne une preuve d’une conjecture de Degos à propos des 

groupes engendrés par des matrices compagnons dans GLn(q). 

 

BLUTE, LUCYSHYN-WRIGHT & O'NEILL - Derivations in codifferential 

categories, 243-280. 

Etude d’une notion générale de dérivation dans le contexte des catégories 

codifférentielles de Blute-Cockett-Seely, généralisant la notion de dériva-

tion K-linéaire de l’algèbre commutative. Pour une catégorie codifféren-

tielle (C; T; d), une T-dérivation ∂: A → M sur une algèbre A de la monade 

T est définie comme un morphisme de C dans un A-module M vérifiant 

une forme du théorème de dérivation des fonctions composées par rapport 

à la transformation dérivateur d. On montre que ces T-dérivations corres-

pondent aux T-homomorphismes de A  dans une T-algèbre associée 

W(A;M). Les auteurs montrent l’existence de T-dérivations universelles de 

A dans un A-module associé ΩT
A,  le module de différentiels de type Kä-

hler. Tandis que l’article précédent de Blute-Cockett-Porter-Seely sur les 

catégories Kählériennes utilisait une notion de dérivation exprimable sans 

référence à la monade T, on montre que l’usage de la notion de T-

dérivation ci-dessus résout un problème ouvert concernant les catégories 

Kähériennes, montrant que la Propriété K pour catégories codifférentielles 

n’est pas nécessaire. Au cours du chemin, on établit une définition suc-

cincte et équivalente de la notion de catégorie codifférentielle en termes 

d’un morphisme de monades S → T sur la monade S de l’algèbre symé-

trique et d’une transformation d vérifiant le théorème de dérivation des 

fonctions composées. 
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J. BOURKE, Note on the construction of globular weak ω-groupoids 

from types, topological spaces..., 281-294. 

Courte introduction aux ω-groupoïdes faibles de Grothendieck. Le but est 

de démontrer que, dans certains contextes, ce simple langage est utile à la 

construction de ω-groupoïdes faibles globulaires. Pour cela, l’auteur re-

formule brièvement la construction, due à van den Berg et Garner, d’un ω-

groupoïde faible de Batanin à partir d’un type en utilisant le langage des ω-

groupoïdes faibles de Grothendieck. Cette construction s’applique aussi 

aux espaces topologiques ainsi qu’aux complexes de Kan. 

 

W. THOLEN, A mathematical tribute to Reinhard Börger, 295-314. 

Un bref résumé de la vie et du travail de Reinhard Börger (1954–2014) est 

présenté, en mettant l’accent sur ses premiers travaux et sur ses travaux 

non publiés. 
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