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Résumé. Nous étudions comment la notion d’espace tangent peut être
étendue aux espaces difféologiques, qui généralisent les variétés régulières
et comprennent les espaces singuliers et de dimension infinie. Nous
nous intéressons à l’espace tangent interne, défini en utilisant les courbes
régulières, et à l’espace tangent externe, défini en utilisant les dérivations
régulières. Nous prouvons des résultats fondamentaux sur ces espaces tan-
gents, les calculons sur des exemples, et observons qu’en général ils sont
différents, même s’ils concident sur de nombreux exemples. Rappelant la
définition du fibré tangent donnée par Hector, nous montrons que la multipli-
cation scalaire et l’addition peuvent ne pas y être régulières. Une définition
du fibré tangent résolvant ce problème est donnée, à l’aide de ce que nous
appelons la difféologie dvs. Ces fibrés tangents sont étudiés, calculés sur des
exemples, et nous étudions si leurs fibres sont des espaces vectoriels munis
de la difféologie fine. Parmi les exemples: espaces singuliers, tores irra-
tionels, espaces vectoriels de dimension infinie, groupes difféologiques, es-
paces d’applications régulières entre variétés régulières.
Abstract. We study how the notion of tangent space can be extended to diffe-
ological spaces, which are generalizations of smooth manifolds that include
singular spaces and infinite-dimensional spaces. We focus on the internal
tangent space, defined using smooth curves, and the external tangent space,
defined using smooth derivations. We prove fundamental results about these
tangent spaces, compute them in many examples, and observe that while they
agree for many of the examples, they do not agree in general. Next, we
recall Hector’s definition of the tangent bundle, and show that both scalar
multiplication and addition can fail to be smooth. We then give an improved
definition of the tangent bundle, using what we call the dvs diffeology, which
fixes these deficiencies. We establish basic facts about these tangent bundles,
compute them in many examples, and study the question of whether the fibres
of tangent bundles are fine diffeological vector spaces. Our examples include
singular spaces, irrational tori, infinite-dimensional vector spaces and diffeo-
logical groups, and spaces of smooth maps between smooth manifolds.
Keywords. diffeological space, tangent space, tangent bundle.
Mathematics Subject Classification (2010). 57P99, 58A05.
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1. Introduction

The notion of smooth manifold has been generalized in many ways, some
of which are summarized and compared in [St1]. Diffeological spaces were
introduced by Souriau [So1, So2] and are one such generalization, which
includes as special cases manifolds with corners, infinite-dimensional man-
ifolds, and a wide variety of spaces with complicated local behaviour. In
fact, the collection of diffeological spaces is closed under taking subsets,
quotients and function spaces, and thus gives rise to a very well-behaved
category. Moreover, the definition of diffeological space is extremely sim-
ple, and we encourage the reader not familiar with the definition to read
Definition 2.1 now. The standard textbook for diffeological spaces is [I3],
and we briefly summarize the basic theory in Section 2.

Tangent spaces and tangent bundles are important tools for studying
smooth manifolds. There are many equivalent ways to define the tangent
space of a smooth manifold at a point. These approaches have been general-
ized to diffeological spaces by many authors, including the following. In the
papers that introduced diffeological groups and spaces, Souriau [So1, So2]
defined tangent spaces for diffeological groups by identifying smooth curves
using certain states. Hector [He] defined tangent spaces and tangent bundles
for all diffeological spaces using smooth curves and a more intrinsic identi-
fication, and these were developed further in [HM, La]. (We point out some
errors in all of [He, HM, La], and give corrected proofs when possible or
counterexamples in other cases.) Vincent [V] defined tangent spaces for dif-
feological spaces by looking at smooth derivations represented by smooth
curves, and built associated tangent bundles using the same construction we
use in this paper. Iglesias-Zemmour [I3, 6.53] defined the tangent space to
a diffeological space at a point as a subspace of the dual of the space of
1-forms at that point, and used these to define tangent bundles.

In this paper, we begin by studying two approaches to defining the tan-
gent space of a general diffeological space at a point. The first is the ap-
proach introduced by Hector, which uses smooth curves, and which we call
the internal tangent space (see Subsection 3.1). The second is a new ap-
proach that uses smooth derivations on germs of smooth real-valued func-
tions, which we call the external tangent space (see Subsection 3.2). In these
subsections, we prove basic facts about these tangent spaces, such as lo-
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cality, and give tools that allow for the computations we do later. We also
show that the internal tangent space respects finite products, and prove the
non-trivial result that the internal tangent space depends only on the plots of
dimension at most 2, while the external tangent space depends only on the
plots of dimension at most 1.

In Subsections 3.3, 4.1 and 4.4, we compute these two tangent spaces for
a diverse set of examples. We summarize some of the computations in the
following table. If the basepoint is not specified, the result is true for any
base point.

Diffeological space and base point Internal External
discrete diffeological space R0 R0

indiscrete diffeological space R0 R0

topological space with continuous diffeology R0 R0

smooth manifold of dimension n Rn Rn

axes in R2 with the pushout diffeology at 0 R2 R2

axes in R2 with the sub-diffeology at 0 R2 R2

three lines intersecting at 0 in R2

with the sub-diffeology at 0
R3 R3

Rn with wire diffeology (n ≥ 2) uncountable
dimension

Rn

1-dimensional irrational torus R R0

quotient space Rn/O(n) at [0] R0 R
[0,∞) with the sub-diffeology of R at 0 R0 R
vector space V with fine diffeology V

diffeomorphism group of a
compact smooth manifold M at 1M

C∞ vector
fields on M

We see that these two tangent spaces coincide in many cases, including of
course for smooth manifolds, but that they are different in general. In Sub-
section 3.4, we briefly describe some variants of our definitions that one
could also consider.

In Section 4, we study tangent bundles. Since the internal tangent space
has better formal properties, and we are able to compute it in more exam-
ples, we define our tangent bundle (as a set) to be the disjoint union of the
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internal tangent spaces. Subsection 4.1 begins by describing the diffeology
that Hector put on this internal tangent bundle [He], and then shows that
it is not well-behaved in general. For example, we show in Example 4.3
that the fibrewise addition and scalar multiplication maps are not smooth in
general, revealing errors in [He, HM, La]. We then introduce a refinement
of Hector’s diffeology, which we call the dvs diffeology, that avoids these
problems. We also reprove the fact that the internal tangent bundle of a dif-
feological group with Hector’s diffeology is trivial, since the original proof
was partially based on a false result, and as a result we conclude that Hector’s
diffeology and the dvs diffeology coincide in this case. In Subsection 4.2,
we give a conceptual explanation of the relationship between Hector’s diffe-
ology and the dvs diffeology: they are colimits, taken in different categories,
of the same diagram.

The two diffeologies on the tangent bundle give rise to diffeologies on
each internal tangent space. In Subsection 4.3, we study the question of
when internal tangent spaces, equipped with either of these diffeologies, are
fine diffeological vector spaces. Here the fine diffeology on a vector space is
the smallest diffeology making the addition and scalar multiplication maps
smooth. We show that for many infinite-dimensional spaces, both Hector’s
diffeology and the dvs diffeology on the internal tangent spaces are not fine.
On the other hand, we also show that the internal tangent space of any fine
diffeological vector space V at any point is isomorphic to V as a diffeologi-
cal vector space. As a by-product, we show that the inverse function theorem
does not hold for general diffeological spaces.

Finally, in Subsection 4.4, we study the internal tangent bundles of func-
tion spaces, and generalize a result in [He, HM] that says that the internal
tangent space of the diffeomorphism group of a compact smooth manifold
at the identity is isomorphic to the vector space of all smooth vector fields
on the manifold. Again we find that in these cases, Hector’s diffeology co-
incides with the dvs diffeology.

The paper [CW2] is a sequel to the present paper. It proves that a diffe-
ological bundle gives rise to an exact sequence of tangent spaces, and gives
conditions under which Hector’s diffeology and the dvs diffeology on the
tangent bundle agree.

All smooth manifolds in this paper are assumed to be finite-dimensional,
Hausdorff, second countable and without boundary, all vector spaces are

CHRISTENSEN & WU - TANGENT SPACES AND BUNDLES FOR DIFFEOLOGICAL SPACESCHRISTENSEN & WU - TANGENT SPACES AND BUNDLES FOR DIFFEOLOGICAL SPACES

- 6 -



assumed to be over the field R, and all linear maps are assumed to be R-
linear.

2. Background on diffeological spaces

We provide a brief overview of diffeological spaces. All the material in this
section can be found in the standard textbook [I3]. For a concise introduction
to diffeological spaces, we recommend [CSW], particularly Section 2 and
the introduction to Section 3.

Definition 2.1 ([So2]). A diffeological space is a setX together with a spec-
ified set DX of functions U → X (called plots) for each open set U in Rn

and for each n ∈ N, such that for all open subsets U ⊆ Rn and V ⊆ Rm:

1. (Covering) Every constant function U → X is a plot;

2. (Smooth Compatibility) If U → X is a plot and V → U is smooth,
then the composite V → U → X is also a plot;

3. (Sheaf Condition) If U = ∪iUi is an open cover and U → X is a
function such that each restriction Ui → X is a plot, then U → X is
a plot.

We usually denote a diffeological space by its underlying set.
A function f : X → Y between diffeological spaces is smooth if for

every plot p : U → X of X , the composite f ◦ p is a plot of Y .

Write Diff for the category of diffeological spaces and smooth maps.
Given two diffeological spaces X and Y , we write C∞(X, Y ) for the set
of all smooth maps from X to Y . An isomorphism in Diff will be called a
diffeomorphism.

Every smooth manifold M is canonically a diffeological space with the
same underlying set and plots taken to be all smooth maps U → M in the
usual sense. We call this the standard diffeology on M , and, unless we say
otherwise, we always equip a smooth manifold with this diffeology. It is
easy to see that smooth maps in the usual sense between smooth manifolds
coincide with smooth maps between them with the standard diffeology.

CHRISTENSEN & WU - TANGENT SPACES AND BUNDLES FOR DIFFEOLOGICAL SPACESCHRISTENSEN & WU - TANGENT SPACES AND BUNDLES FOR DIFFEOLOGICAL SPACES

- 7 -



The set D of diffeologies on a fixed set X is ordered by inclusion, and
is a complete lattice. The largest element in D is called the indiscrete dif-
feology on X , and consists of all functions U → X . The smallest element
in D is called the discrete diffeology on X , and consists of all locally con-
stant functions U → X . The smallest diffeology on X containing a set of
functions A = {Ui → X}i∈I is called the diffeology generated by A. It
consists of all functions f : U → X that locally either factor through the
given functions via smooth maps, or are constant. The standard diffeology
on a smooth manifold is generated by any smooth atlas on the manifold, and
for every diffeological space X , DX is generated by ∪n∈NC∞(Rn, X).

For a diffeological space X with an equivalence relation ∼, the smallest
diffeology onX/∼making the quotient mapX � X/∼ smooth is called the
quotient diffeology. It consists of all functionsU → X/∼ that locally factor
through the quotient map. Using this, we call a smooth map f : X → Y a
subduction if it induces a diffeomorphism X/∼ → Y , where x ∼ x′ if and
only if f(x) = f(x′), and X/∼ has the quotient diffeology.

For a diffeological space Y and a subsetA of Y , the largest diffeology on
A making the inclusion map A ↪→ Y smooth is called the sub-diffeology.
It consists of all functions U → A such that U → A ↪→ Y is a plot of Y .
Using this, we call a smooth map f : X → Y an induction if it induces a
diffeomorphism X → Im(f), where Im(f) has the sub-diffeology of Y .

The category of diffeological spaces is very well-behaved:

Theorem 2.2. The category Diff is complete, cocomplete and cartesian
closed.

The descriptions of limits, colimits and function spaces are quite sim-
ple, and are concisely described in [CSW, Section 2]. We will make use of
these concrete descriptions. Unless we say otherwise, every function space
is equipped with the functional diffeology.

We can associate to every diffeological space the following interesting
topology:

Definition 2.3 ([I1]). Given a diffeological space X , the final topology in-
duced by its plots, where each domain is equipped with the standard topol-
ogy, is called theD-topology on X .
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In more detail, if (X,D) is a diffeological space, then a subset A of X is
open in the D-topology of X if and only if p−1(A) is open for each p ∈ D.
We call such subsetsD-open.

A smooth map X → X ′ is continuous when X and X ′ are equiped with
theD-topology, and so this defines a functorD : Diff → Top to the category
of topological spaces.

Example 2.4. (1) The D-topology on a smooth manifold coincides with the
usual topology.

(2) The D-topology on a discrete diffeological space is discrete, and the
D-topology on an indiscrete diffeological space is indiscrete.

For more discussion of the D-topology, see [CSW].

We will make use of the concept of diffeological group at several points,
so we present it here.

Definition 2.5. A diffeological group is a group object in Diff. That is, a
diffeological group is both a diffeological space and a group such that the
group operations are smooth maps.

A smooth manifold of dimension n is formed by gluing together open
subsets of Rn via diffeomorphisms. A diffeological space is also formed by
gluing together open subsets of Rn via smooth maps, possibly for all n ∈ N.
To make this precise, let DS be the category with objects all open subsets
of Rn for all n ∈ N and morphisms smooth maps between them. Given a
diffeological space X , we define DS/X to be the category with objects all
plots of X and morphisms the commutative triangles

U

p
��

f
// V

q
��

X,

with p, q plots of X and f a smooth map. We call DS/X the category of
plots ofX . Then we have:

Proposition 2.6 ([CSW, Proposition 2.7]). The colimit of the functor F :
DS/X → Diff sending the above commutative triangle to f : U → V is X .
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Given a diffeological space X , the categoryDS/X can be used to define
geometric structures on X . For example, see [I3] for a discussion of differ-
ential forms and the de Rham cohomology of a diffeological space. In this
paper, we will use a pointed version of DS/X to define the internal tangent
space of X .

3. Tangent spaces

We discuss two approaches to defining the tangent space of a diffeological
space at a point: the internal tangent space introduced by Hector using plots,
and the external tangent space defined using smooth derivations of the alge-
bra of germs of smooth functions. We prove basic facts about these tangent
spaces in Subsections 3.1 and 3.2, and then compute them for a wide variety
of examples in Subsection 3.3. Although they are isomorphic for smooth
manifolds, we find that the two approaches are different for a general diffe-
ological space; see Examples 3.22, 3.23, 3.24 and 3.25. In Subsection 3.4,
we mention some other approaches to defining tangent spaces.

3.1 Internal tangent spaces

The internal tangent space of a pointed diffeological space is defined using
plots. It was first introduced in [He], and is closely related to the kinematic
tangent space of [KM] (see Subsection 3.4).

To start, we will define a pointed analog of the category DS/X of plots
of X , introduced just before Proposition 2.6. Let DS0 be the category with
objects all connected open neighbourhoods of 0 in Rn for all n ∈ N and
morphisms the smooth maps between them sending 0 to 0. Given a pointed
diffeological space (X, x), we define DS0/(X, x) to be the category with
objects the plots p : U → X such that U is connected, 0 ∈ U and p(0) = x,
and morphisms the commutative triangles

U

p
��

f
// V

q
��

X,

where p, q ∈ Obj(DS0/(X, x)) and f is a smooth map with f(0) = 0. We
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call DS0/(X, x) the category of plots ofX centered at x. It is the comma
category of the natural functor from DS0 to Diff∗, the category of pointed
diffeological spaces.

Definition 3.1 ([He]). Let (X, x) be a pointed diffeological space. The in-
ternal tangent space Tx(X) of X at x is the colimit of the composite of
functors DS0/(X, x) → DS0 → Vect, where Vect denotes the category of
vector spaces and linear maps, the first functor is the forgetful functor and
the second functor is given by (f : U → V ) 7→ (f∗ : T0(U) → T0(V )).
Given a plot p : U → X sending 0 to x and an element u ∈ T0(U), we write
p∗(u) for the element these represent in the colimit.

Let f : (X, x) → (Y, y) be a smooth map between pointed diffeologi-
cal spaces. Then f induces a functor DS0/(X, x) → DS0/(Y, y). There-
fore, we have a functor T : Diff∗ → Vect. Indeed, the functor T is the
left Kan extension along the inclusion functor DS0 → Diff∗ of the functor
DS0 → Vect sending f : U → V to f∗ : T0(U)→ T0(V ).

Note that the category of plots of a diffeological space centered at a point
is usually complicated. In order to calculate the internal tangent space at a
point efficiently, we need a simpler indexing category.

Let (X, x) be a pointed diffeological space. We define a category G(X,x)
whose objects are the objects in DS0/(X, x), and whose morphisms are
germs at 0 of morphisms in DS0/(X, x). In more detail, morphisms from
p : (U, 0)→ (X, x) to q : (V, 0)→ (X, x) in G(X, x) consist of equivalence
classes of smooth maps f : W → V , where W is an open neighborhood
of 0 in U and p|W = q ◦ f . Two such maps are equivalent if they agree on
an open neighborhood of 0 in U . Then there is a functor G(X, x) → Vect
sending the morphism

U
[f ]
//

��

V

��

X

in G(X, x) to f∗ : T0(U)→ T0(V ), and its colimit is Tx(X).
A local generating set of X at x is a subset G of Obj(G(X, x)), such

that for each object p : (U, 0) → (X, x) in G(X, x), there exist an element
q : (W, 0) → (X, x) in G and a morphism p → q in G(X, x). A local
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generating category of X at x is a subcategory G of G(X, x) such that
Obj(G) is a local generating set of X at x.

Proposition 3.2. If G is a local generating category of X at x, then there
is a natural epimorphism from colim(G ↪→ G(X, x) → Vect) to Tx(X).
Moreover, if G is a final subcategory of G(X, x), then this is an isomorphism.

Proof. The first statement follows from the definition of a local generating
category of X at x, and the second statement follows from [Mac, Theo-
rem IX.3.1].

A local generating set of curves of X at x is a subset C of the inter-
section Obj(G(X, x)) ∩ C∞(R, X) such that for each object p : R → X in
G(X, x), there exist an element q : R → X in C and a morphism p → q in
G(X, x). A local generating category of curves ofX at x is a subcategory
C of G(X, x) such that Obj(C) is a local generating set of curves of X at x.

Proposition 3.3. If C is a local generating category of curves of X at x,
then the natural map colim(C ↪→ G(X, x)→ Vect)→ Tx(X) is an epimor-
phism.

In particular, every internal tangent vector in Tx(X) is a linear combina-
tion of internal tangent vectors of the form p∗(

d
dt

), where p : R → X is a
smooth curve with p(0) = x, and d

dt
is the standard unit vector in T0(R).

Proof. This is because for each u ∈ T0(U) there exists a pointed smooth
map f : (R, 0)→ (U, 0) such that f∗( ddt) = u.

Moreover, the relations between internal tangent vectors are determined
by the two-dimensional plots:

Proposition 3.4. Let (X, x) be a pointed diffeological space. Let X ′ be
the diffeological space with the same underlying set as X , with diffeology
generated by all plots R2 → X . Then the identity map X ′ → X is smooth
and induces an isomorphism Tx(X

′)→ Tx(X).

Proof. Since R is a retract of R2, every plot R → X factors through a plot
R2 → X , and so X ′ contains the same 1-dimensional plots as X . Therefore,
by Proposition 3.3, the linear map Tx(X ′)→ Tx(X) is surjective.
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To prove injectivity, we need a more concrete description of the internal
tangent spaces. From the description of Tx(X) as a colimit indexed by the
category G(X, x), we can describe Tx(X) as a quotient vector space F/R.
Here F = ⊕pT0(Up), where the sum is indexed over plots p : Up → X
sending 0 to x, andR is the span of the vectors of the form (p, v)−(q, g∗(v)),
where p : (Up, 0) → (X, x) and q : (Uq, 0) → (X, x) are pointed plots,
g : (Up, 0) → (Uq, 0) is a germ of smooth maps with p = q ◦ g as germs at
0, v is in T0(Up), (p, v) denotes v in the summand of F indexed by p, and
(q, g∗(v)) denotes g∗(v) in the summand of F indexed by q. Unless needed
for clarity, we will write such a formal difference as simply v − g∗(v), and
not repeat the conditions on p, q, g and v. We call v− g∗(v) a basic relation,
and call Up the domain of the relation.

Similarly, Tx(X ′) = F ′/R′, where F ′ andR′ are defined as above, but re-
stricting to plots that locally factor through plots of dimension 2. In this nota-
tion, the natural map Tx(X ′)→ Tx(X) is induced by the inclusion F ′ ⊆ F ,
and the surjectivity of this map says that every element of F is equal modulo
R to an element of F ′.

As a start to proving injectivity, we first show that the basic relations
v−g∗(v) are generated by those that have 1-dimensional domain Up. Choose
a germ f : (R, 0)→ (Up, 0) so that f∗( ddt) = v, giving

R
f

��

g◦f
��

Up

p ��

g
// Uq

q��

X.

Then [
(p ◦ f,− d

dt
)− (p, f∗(− d

dt
))
]

+
[
(q ◦ g ◦ f, d

dt
)− (q, (g ◦ f)∗(

d
dt

))
]

=
[
(p ◦ f,− d

dt
) + (p, v)

]
+
[
(p ◦ f, d

dt
)− (q, g∗(v))

]
= (p, v)− (q, g∗(v)),

which shows that our given relation is a sum of relations with domain R.
(This argument is similar to that of Proposition 3.3, and shows how that
argument could be made more formal.)
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We now know that a general element of R can be written in the form
r =

∑
i vi− (gi)∗(vi), where gi : R→ Uqi . Next we show that r can be writ-

ten as a sum of basic relations such that any plot q : Uq → X (sending 0 to x)
with dim(Uq) > 2 appears in at most one term of the sum. Suppose q is such
a plot that appears in more than one term of r. Without loss of generality,
suppose g1 and g2 are the germs (R, 0)→ (Uq, 0) and v1 and v2 are the vec-
tors in T0(R) which give two such terms in r. Let i1 and i2 be the inclusions
of R into R2 as the x- and y-axes, and define a germ g : (R2, 0)→ (Uq, 0)
by g(x, y) = g1(x) + g2(y). Then we have a commutative diagram

R i1 //

g1 ""

R2

g
��

Ri2oo

g2||

Uq
q
��

X

from which it follows that

[v1 − (i1)∗(v1)] + [v2 − (i2)∗(v2)] + [v − g∗(v)] =

[v1 − (g1)∗(v1)] + [v2 − (g2)∗(v2)],

where v := (i1)∗(v1) + (i2)∗(v2) ∈ T0(R2). The first two basic relations
on the left-hand-side involve maps R → R2, while the third involves a map
R2 → Uq. Next, as in the previous paragraph, we replace this third basic
relation by two, one using a map R → R2 and the other a map R → Uq.
The result is that our new set of terms still consists of basic relations with
domain R, but the number of occurrances of the plot q has been reduced by
1. Proceeding in this way, one can ensure that each such q appears at most
once.

Finally, to prove injectivity of the map F ′/R′ → F/R, we need to show
that every element r of F ′ ∩ R is in R′. By the above, we can write r as a
sum r =

∑
i vi − (gi)∗(vi), where gi : R → Uqi and each qi with domain

of dimension bigger than 2 appears in at most one term. Since r is in F ′, its
component in any summand T0(Uq) of F must be zero if q does not locally
factor through a plot of dimension 2. Since such a plot can appear in at
most one term v − g∗(v), no cancellation can occur, so we must have that
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g∗(v) = 0. So it suffices to show that we can eliminate such terms. If v = 0,
then v − g∗(v) = 0, so this term can be dropped. Otherwise, we must have
g(0) = g′(0) = 0, and so we can write g(x) = x2h(x) for a smooth map
h : R→ Uq. Thus we can factor g as

R g
//

i ��

Uq

R2,
f

@@

where i(x) = (x, x2) and f(s, t) = t · h(s). Then v − g∗(v) = [v − i∗(v)] +
[w − f∗(w)], where w = i∗(v) = c d

dx
. The map i has codomain R2, so the

first basic relation is of the required form, but we must still deal with the
second relation. Consider the map i1 : R → R2 sending x to (x, 0). Then
(i1)∗(c

d
dt

) = w, so w−f∗(w) = [−c d
dt
−(i1)∗(−c ddt)]+[c d

dt
−(f ◦ i1)∗(c

d
dt

)].
Again, the first basic relation is of the required form. For the second, note
that the map f ◦ i1 is the zero map, and so c d

dt
− (f ◦ i1)∗(c

d
dt

) = c d
dt

=
c d
dt
− k∗(c ddt), where k : R→ R0 is the zero map in the category G(X, x).
This completes the proof.

Remark 3.5. While the internal tangent space depends only on the two-
dimensional plots, the diffeology on the internal tangent bundle TX that
we define in Section 4 contains all of the information about the diffeology
on X , since X is a retract of TX .

The internal tangent space is local, in the following sense:

Proposition 3.6. Let (X, x) be a pointed diffeological space, and let A be
a D-open neighborhood of x in X . Equip A with the sub-diffeology of X .
Then the natural inclusion map induces an isomorphism Tx(A) ∼= Tx(X).

Proof. This is clear.

We now investigate the tangent space of a product of diffeological spaces,
beginning with binary products.

Proposition 3.7. Let (X1, x1) and (X2, x2) be two pointed diffeological
spaces. Then there is a natural isomorphism of vector spaces

T(x1,x2)(X1 ×X2) ∼= Tx1(X1)× Tx2(X2).
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Proof. The projections prj : X1×X2 → Xj , j = 1, 2, induce a natural map

α = ((pr1)∗, (pr2)∗) : T(x1,x2)(X1 ×X2)→ Tx1(X1)× Tx2(X2).

Define inclusion maps ij : Xj → X1 ×X2 for j = 1, 2 by i1(y1) = (y1, x2)
and i2(y2) = (x1, y2), and consider the map

β = (i1)∗ + (i2)∗ : Tx1(X1)× Tx2(X2)→ T(x1,x2)(X1 ×X2)

sending (v1, v2) to (i1)∗(v1)+(i2)∗(v2). We claim that these maps are inverse
to each other.

To check one of the composites, we first compute

(pr1)∗((i1)∗(v1) + (i2)∗(v2)) = (pr1)∗(i1)∗(v1) + (pr1)∗(i2)∗(v2)

= (idX1)∗(v1) + (cx1)∗(v2) = v1,

where cx1 : X2 → X1 is the constant map at x1 and hence (cx1)∗(v2) = 0.
Similarly, (pr2)∗((i1)∗(v1) + (i2)∗(v2)) = v2, and so α ◦ β is the identity.

By Proposition 3.3, it is enough to check the other composite on internal
tangent vectors of the form p∗(

d
dt

), where p = (p1, p2) : R → X1 ×X2 and
p(0) = (x1, x2). We have

β(α(p∗(
d
dt

))) = (i1)∗(pr1)∗p∗(
d
dt

) + (i2)∗(pr2)∗p∗(
d
dt

)

= (i1)∗(p1)∗(
d
dt

) + (i2)∗(p2)∗(
d
dt

) = p∗(
d
dt

),

where the last equality follows from the diagram

R
∆=(1,1)
��

R ix //

p1

��

R2

p1×p2

��

R
iy

oo

p2

��

X1 i1
// X1 ×X2 X2,i2

oo

using that (p1×p2)◦∆ = p and (ix)∗(
d
dt

)+(iy)∗(
d
dt

) = d
dx

+ d
dy

= ∆∗(
d
dt

).

CHRISTENSEN & WU - TANGENT SPACES AND BUNDLES FOR DIFFEOLOGICAL SPACESCHRISTENSEN & WU - TANGENT SPACES AND BUNDLES FOR DIFFEOLOGICAL SPACES

- 16 -



Remark 3.8. For an arbitrary product X =
∏

j∈J Xj of diffeological spaces
and a point x = (xj), there is also a natural linear map α : Tx(X) →∏

j∈J Txj(Xj) induced by the projections. We will characterize when α is
surjective, and show that this is not always the case.

To do so, we introduce some terminology. An internal tangent vector of
the form p∗(

d
dt

) is said to be representable, and an internal tangent vector
that can be expressed as a sum of m or fewer representables is said to bem-
representable. Recall that by Proposition 3.3, every internal tangent vector
in the domain of α is m-representable for some m. Thus a family of internal
tangent vectors (vj) in the image of α must have the property that each com-
ponent vj is m-representable for m independent of j. In fact, one can show
that the image consists of exactly such families, and therefore that the map
α is surjective if and only if there is an m in N such that for all but finitely
many j in J , every internal tangent vector in Txj(Xj) is m-representable.
Manifolds and many other diffeological spaces have the property that every
internal tangent vector is 1-representable (see the following remark), so α is
often surjective.

Here is an example for which α is not surjective. For each j ∈ N,
consider the diffeological space Xj which is the quotient of j copies of
R where the origins have been identified to one point [0]. One can show
that T[0](Xj) ∼= Rj and contains internal tangent vectors which are j-repre-
sentable but not (j−1)-representable; see Example 3.17. So, with this family
of diffeological spaces, α is not surjective.

We suspect that the map α can fail to be injective as well. The injectivity
is related to the existence of a global bound on the number of basic relations
(see the proof of Proposition 3.4) needed to show that two representable
internal tangent vectors are equal.

See Example 4.24(1) and Proposition 4.27 (with X discrete) for non-
trivial cases in which α is an isomorphism.

Remark 3.9. Let (X, x) be a pointed diffeological space. If every inter-
nal tangent vector in Tx(X) is m-representable, then we say that Tx(X) is
m-representable. This is the case, for example, when the vector space
Tx(X) is m-dimensional. We will show that in fact many diffeological
spaces have 1-representable internal tangent spaces.

Consider the case where X is a smooth manifold. Then the internal
tangent space agrees with the usual tangent space defined using curves, so
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Tx(X) is 1-representable for any x in X .
Remark 4.14 shows that the internal tangent space of a diffeological

group at any point is also 1-representable. In particular, this holds for a
diffeological vector space. It is easy to see that if A ⊆ X is either D-open
in X or a retract of X , x is in A and Tx(X) is m-representable, then so is
Tx(A). In particular, the proof of Proposition 4.28 shows that if Y is a diffe-
ological space with compact D-topology and N is a smooth manifold, then
the internal tangent space of C∞(Y,N) at any point is 1-representable.

Finally, one can also show that the internal tangent space of a homo-
geneous diffeological space (see [CW1, Definition 4.33]) at any point is
1-representable.

3.2 External tangent spaces

In contrast to the internal tangent space, which is defined using plots, the
external tangent space of a pointed diffeological space (X, x) is defined us-
ing germs of real-valued smooth functions on X . This is analogous to the
operational tangent space defined in [KM].

Let Gx(X) = colimB C
∞(B,R) be the diffeological space of germs of

smooth functions of X at x, where the colimit is taken in Diff, B runs
over all D-open subsets of X containing x together with the sub-diffeology,
C∞(B,R) has the functional diffeology, and the maps in the colimit are re-
strictions along inclusions. Gx(X) is a diffeological R-algebra under point-
wise addition, pointwise multiplication and pointwise scalar multiplication,
i.e., all these operations are smooth, and the evaluation map Gx(X) → R
sending [f ] to f(x) is a well-defined smooth R-algebra map.

Definition 3.10. An external tangent vector onX at x is a smooth derivation
on Gx(X). That is, it is a smooth linear map F : Gx(X) → R such that
the Leibniz rule holds: F ([f ][g]) = F ([f ])g(x) + f(x)F ([g]). The external
tangent space T̂xX is the set of all external tangent vectors of X at x.

Clearly T̂xX is a vector space under pointwise addition and pointwise
scalar multiplication. The Leibniz rule implies that F ([c]) = 0 for every
external tangent vector F on X at x and every constant function c : X → R.

Let f : (X, x) → (Y, y) be a pointed smooth map between two pointed
diffeological spaces. Then f induces a linear map f∗ : T̂x(X)→ T̂y(Y ) with
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f∗(F )([g]) = F ([g ◦ f ]) for F ∈ T̂x(X) and [g] ∈ Gy(Y ), where g ◦ f really
means g ◦ f |f−1(Dom(g)). This gives a functor T̂ : Diff∗ → Vect.

We next give an equivalent characterization of the external tangent space
of a diffeological space. Recall that Gx(X) is a diffeological R-algebra, and
the evaluation map Gx(X)→ R is a smooth R-algebra homomorphism. Let
Ix(X) be the kernel of the evaluation map, equipped with the sub-diffeology,
and let Ix(X)/I2

x(X) be the quotient vector space with the quotient diffeol-
ogy. We define T ′x(X) = L∞(Ix(X)/I2

x(X), R), the set of all smooth linear
maps Ix(X)/I2

x(X)→ R. It is a vector space.

Proposition 3.11. The map α : T̂x(X) → T ′x(X) defined by the equation
α(F )([f ] + I2

x(X)) = F ([f ]) is an isomorphism.

Proof. Define β : T ′x(X)→ T̂x(X) by β(G)([g]) = G([g]−[g(0)]+I2
x(X)),

where G ∈ T ′x(X) and [g] ∈ Gx(X). It is straightforward to check that both
α(F ) : Ix(X)/I2

x(X)→ R and β(G) : Gx(X)→ R are smooth, and that α
and β are well-defined inverses to each other.

The external tangent space is also local:

Proposition 3.12. Let (X, x) be a pointed diffeological space, and let A be
a D-open subset of X containing x. Equip A with the sub-diffeology of X .
Then the natural inclusion map induces an isomorphism T̂x(A) ∼= T̂x(X).

Proof. This is clear.

Moreover, the external tangent space is determined by the one-dimen-
sional plots:

Proposition 3.13. Let (X, x) be a pointed diffeological space, and write X ′

for the set X with the diffeology generated by C∞(R, X). Then the natural
smooth map X ′ → X induces an isomorphism T̂x(X

′)→ T̂x(X).

Proof. By [CSW, Theorem 3.7], we know that the D-topology on X ′ co-
incides with the D-topology on X , as they have the same smooth curves.
Let B be a D-open subset of X , equipped with the sub-diffeology of X ,
and write B′ for the same set equipped with the sub-diffeology of X ′. The
natural smooth map 1 : B′ → B induces a smooth map 1∗ : C∞(B,R) →
C∞(B′,R) of R-algebras. We will show that this is a diffeomorphism, which
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then implies thatGx(X) ∼= Gx(X
′) and therefore that T̂x(X ′) ∼= T̂x(X). The

map 1∗ is clearly injective. Surjectivity follows from Boman’s theorem [KM,
Corollary 3.14], which says that a map U → R is smooth if and only if it
sends smooth curves to smooth curves, where U is open in some Rn. To see
that the inverse of 1∗ is smooth, note that the plots U → C∞(B,R) corre-
spond to smooth maps U × B → R. Applying Boman’s theorem again, we
see that these are the same as the plots of C∞(B′,R).

3.3 Examples and comparisons

We now calculate the internal and external tangent spaces of some pointed
diffeological spaces. A table summarizing the results is in the Introduction.

Example 3.14. (1) Let X be a discrete diffeological space. Then for each
x ∈ X , Tx(X) = 0, since the local generating category of X at x with one
object x : R0 → X is final in G(X, x). Also, T̂x(X) = 0, since Ix(X) = 0.

(2) Let X be an indiscrete diffeological space. Then for each x ∈ X ,
Tx(X) = 0, since for any p : R → X ∈ Obj(DS0/(X, x)), there exists
q : R → X ∈ Obj(DS0/(X, x)) such that q ◦ f = p, where f : R → R is
defined by f(x) = x3. Also, one can show easily that T̂x(X) = 0.

Example 3.15. Let (X, x) be a pointed topological space. Write C(X) for
the diffeological space with underlying setX whose plots are the continuous
maps. Then [He, Proposition 4.3] says that Tx(C(X)) = 0.

We now show that T̂x(C(X)) = 0 as well. Let A be a D-open subset of
C(X), equipped with the sub-diffeology, and fix a smooth map g : A → R.
It suffices to show that g is locally constant. Let p : R → A be a plot of
A; that is, p is a continuous map R → X whose image is in A. Since g is
smooth, so is g ◦p : R→ R. Moreover, for any continuous h : R→ R, p◦h
is a plot of A and so g ◦ p ◦ h is smooth as well. Taking h(t) = |t| + a for
each a ∈ R, for example, one sees that g ◦ p is constant and so g is locally
constant.

Example 3.16. It is a classical result that for every pointed smooth manifold
(X, x), Tx(X) ∼= Rn ∼= T̂x(X), with n = dim(X). In fact, any derivation
F : Gx(X)→ R is smooth. This follows from Proposition 3.12 and [CSW,
Lemma 4.3].
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Example 3.17. Let X be the pushout of R R00oo 0 // R in Diff. The
commutative diagram

R0 0 //

0
��

R
i2
��

R
i1
// R2,

where i1(s) = (s, 0) and i2(t) = (0, t), induces a smooth injective map
i : X → R2, and we identify points in X with points in R2 under the map i.
Note that the diffeology on X is different from the sub-diffeology of R2 (see
Example 3.19), but the D-topology on X is the same as the sub-topology of
R2. It is not hard to check that

Tx(X) =

{
R, if x 6= (0, 0)

R2, if x = (0, 0).

We claim that the same is true for the external tangent spaces T̂x(X):

T̂x(X) =

{
R, if x 6= (0, 0)

R2, if x = (0, 0).

The first equality follows from Proposition 3.12 and Example 3.16. For the
second equality, we define maps a : T̂(0,0)(X)→ T̂0(R)⊕ T̂0(R) sending F
to (F1, F2) with Fk([f ]) = F ([f̃k]), where f̃k(x1, x2) = f(xk) for k = 1, 2,
and b : T̂0(R) ⊕ T̂0(R) → T̂(0,0)(X) sending (G1, G2) to G with G([g]) =
G1([g ◦ j1]) + G2([g ◦ j2]), where j1, j2 are the structural maps from the
pushout diagram of X . It is clear that both a and b are well-defined linear
maps and that they are inverses, so the second equality follows.

By the same method, one can show that if Xj is the quotient of j copies
of R with the origins identified to one point [0], then

Tx(Xj) = T̂x(Xj) =

{
R, if x 6= [0]

Rj, if x = [0].

Remark 3.18. Note that in the above example dim(0,0)(X) = 1 < 2 =
dim(T(0,0)(X)); see [I2] for the definition of the dimension of a diffeological
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space at a point. In general, unlike smooth manifolds, there is no relationship
between the dimension of a diffeological space at a point and the dimension
of its tangent space at that point.

Example 3.19. Let Y = {(x, y) ∈ R2 | xy = 0} with the sub-diffeology of
R2. The map i introduced in Example 3.17 gives a smooth bijectionX → Y .
However, this map is not a diffeomorphism. To see this, let f : R → R be
defined by

f(x) =

{
e−

1
x , if x > 0

0, if x ≤ 0.

Then f is a smooth function, and R → R2 defined by x 7→ (f(x), f(−x))
induces a plot of Y , but not a plot of X .

Although X and Y are not diffeomorphic, their internal and external
tangent spaces at any point are isomorphic. This is clear away from the
origin, so consider y = (0, 0) ∈ Y . Both [He, Example 4.4(i)] and [HM,
Example 6.2] claim without proof that Ty(Y ) = R2. We sketch a proof here.
The inclusion map i : Y → R2 induces a linear map i∗ : Ty(Y )→ Ty(R2) =
R2. There is also a linear map f : R2 → Ty(Y ) sending (1, 0) to p∗( ddt) and
sending (0, 1) to q∗( ddt), where p : R → Y is defined by x 7→ (x, 0) and
q : R → Y is defined by x 7→ (0, x). It is clear that i∗ ◦ f = 1R2 , so
f is injective. To prove that f is surjective, it is enough to show that if
r : R→ Y is a plot sending 0 to y and r does not locally factor through p or
q near 0, then r∗( ddt) = 0. It is easy to observe that if we write the composite
i ◦ r : R → R2 as (f1, f2), then f1(0) = f2(0) = 0 = f ′1(0) = f ′2(0),
and hence the conclusion follows from an argument similar to that used in
Example 3.25 below.

Now we claim that Gy(Y ) = Gy(X) as diffeological spaces, from which
it follows that T̂y(Y ) = T̂y(X), which is R2 by Example 3.17. To see
that Gy(Y ) = Gy(X), we first note that the D-topologies on X and Y
are equal, both being the sub-topology of R2. There is a cofinal system of
D-open neighbourhoods of y each of which is diffeomorphic to Y (resp. X)
when given the sub-diffeology of Y (resp. X). Thus it is enough to show
that C∞(Y,R) = C∞(X,R) as diffeological spaces. There is a canonical
smooth injection i : C∞(Y,R) → C∞(X,R) induced by the smooth bijec-
tion X → Y . To show that this is a diffeomorphism, it suffices to show that
every plot V → C∞(X,R) factors through i. By adjointness, this is equiv-
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alent to showing that every smooth map V × X → R factors through the
bijection V ×X → V ×Y . A smooth map V ×X → R is the same as a pair
of smooth maps g, h : V ×R→ R such that g(v, 0) = h(v, 0) for all v ∈ V .
Such a map extends to a smooth map V ×R2 → R which sends (v, (x, y)) to
g(v, x) + h(v, y)− g(v, 0), and therefore the restriction to V × Y is smooth.
(See [V, Example 12(c)] for a similar argument.)

By the same method, one can show that if Yj is the union of all coordinate
axes in Rj with the sub-diffeology, then

Ty(Yj) = T̂y(Yj) =

{
R, if y 6= 0

Rj, if y = 0.

Example 3.20. Let A = Y3 from the previous example, and let

B = {(x, y) ∈ R2 | x = 0 or y = 0 or x = y},

a union of three lines through the origin, with the sub-diffeology of R2. We
prove below that A and B are diffeomorphic. This is also proved in [Wa,
Example 2.72], using a more complicated argument. It follows that T0(B) =
T̂0(B) = R3, which shows that the induction B ↪→ R2 does not induce a
monomorphism under T0 or T̂0.

Consider the smooth function R3 → R2 sending (x, y, z) to the pair
(x + z/

√
2, y + z/

√
2). This restricts to a smooth bijection A → B send-

ing (x, 0, 0) to (x, 0), (0, y, 0) to (0, y), and (0, 0, z) to (z, z)/
√

2. Write
f : B → A for its inverse. We will show that f is smooth. By Boman’s theo-
rem [KM, Corollary 3.14], it is enough to check that for any plot p : R→ B,
f ◦ p is smooth. And for this, it is enough to check that if we regard f ◦ p
as a map R → R3, all derivatives exist at all points. This follows from the
following claim, where we also regard the derivatives of p as maps R→ R2.

Claim. For each t in R, p(k)(t) is in B and (f ◦ p)(k)(t) = f(p(k)(t)).

Proof. We first prove this for k = 1. If p(t) 6= (0, 0) or p′(t) 6= (0, 0), then
this is clear, since, near t, p must stay within one of the three lines.

Now suppose p(t) = (0, 0) = p′(t). Then

(0, 0) = p′(t) = lim
h→0

p(t+ h)− p(t)
h

= lim
h→0

p(t+ h)

h
.
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Therefore, if the limits exist, we have

(f ◦ p)′(t) = lim
h→0

f(p(t+ h))− f(p(t))

h
= lim

h→0

f(p(t+ h))

h
.

But ‖f(p(t + h))‖ = ‖p(t + h)‖, and so the last limit exists and equals
(0, 0, 0), which is f(p′(t)).

For general k, we have (f ◦ p)(k)(t) = (f ◦ p′)(k−1)(t) = · · · =
(f ◦ p(k))(t), as required.

Remark 3.21. Given a pointed diffeological space (X, x), there is a natu-
ral morphism β : Tx(X) → T̂x(X) which is defined on the generators by
β(p∗(u))([f ]) = u([f ◦ p]), where u is in T0(U) ∼= T̂0(U), p : U → X is
a plot of X with U connected, 0 ∈ U and p(0) = x, and [f ] is in Gx(X).
It is straightforward to show that β(p∗(u)) : Gx(X) → R is smooth. By
the definition of push-forwards of tangent vectors on smooth manifolds, it
is clear that β is well-defined. Then we can linearly extend it to be de-
fined on Tx(X). Clearly β is linear, and β induces a natural transformation
T → T̂ : Diff∗ → Vect. However in general, β is neither injective nor
surjective; see the following examples.

Example 3.22. (1) Let X be Rn equipped with the diffeology generated by
the set C∞(R,Rn) of smooth curves. This is sometimes called the “wire” or
“spaghetti” diffeology. It is clear that X is not diffeomorphic to Rn with the
standard diffeology, if n ≥ 2. By Proposition 3.13, we know that T̂x(X) ∼=
T̂x(Rn) ∼= Rn for any x ∈ X .

On the other hand, one can show that in this case the relations between
generating internal tangent vectors are determined by smooth curves in X ,
and hence that Tx(X) has uncountable dimension when n ≥ 2. For example,
the internal tangent vectors (pα)∗(

d
dt

) for α ∈ R are all linearly independent,
where pα : R→ X sends x to (x, αx).

This example shows that the internal tangent space of a diffeological
space at a point is not determined by the plots of curves.

(2) Let Y be Rn equipped with the diffeology generated by the set
C∞(R2,Rn) of smooth planes. (One might call this the “lasagna” diffe-
ology.) Then Y is neither diffeomorphic to X in (1) if n ≥ 2, nor diffeo-
morphic to Rn with the standard diffeology if n ≥ 3. But by Proposition 3.4
and (1) above, Ty(Y ) ∼= Rn ∼= T̂y(Y ) for any y ∈ Y .
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Example 3.23. Let T 2 = R2/Z2 be the usual 2-torus, and let Rθ be the
image of the line {y = θx} under the quotient map R2 → T 2, with θ a
fixed irrational number. Note that T 2 is an abelian Lie group, and Rθ is a
subgroup. The quotient group T 2/Rθ with the quotient diffeology is called
the 1-dimensional irrational torus of slope θ. One can show that T 2/Rθ

is diffeomorphic to T 2
θ := R/(Z + θZ) with the quotient diffeology; see [I3,

Exercise 31 on page 31].
Let x be the identity element in T 2

θ . Since the D-topology on T 2
θ is

indiscrete, the only smooth maps T 2
θ → R are the constant maps, which

implies that T̂x(T 2
θ ) = 0. This was also observed in [He, Example 4.2].

On the other hand, we claim that Tx(T 2
θ ) = R. Given a commutative

solid square
U

f

~~

g

  
R

π ��

R
π��

T 2
θ

with U a connected open subset of Rn, f and g smooth maps, and π the
quotient map, the difference f−g is a continuous function landing in Z+θZ,
and thus is constant. In particular, if 0 ∈ U and f(0) = 0 = g(0), then
f = g. Moreover, since plots U → T 2

θ locally lift to R, they lift as germs.
(In fact, the uniqueness implies that they lift globally.) This shows that π
is a terminal object of G(T 2

θ , x) and therefore that Tx(T 2
θ ) ∼= T0(R) ∼= R.

See [He, Example 4.2] for a geometric explanation of this result.

Example 3.24. Let O(n) act on Rn in the usual way. Then the orbit space
Hn with the quotient diffeology bijects naturally with the half line [0,∞),
but Hn and [0,∞) with the sub-diffeology of R are not diffeomorphic, nor
are Hn and Hm for n 6= m (see [I2]). By Proposition 3.3, it is easy to see
that T[0](Hn) = 0.

We claim that T̂[0](Hn) = R. To prove this, observe that the natural map

C∞(Hn,R) −→ {f ∈ C∞(Rn,R) | f is O(n)-invariant}

is a diffeomorphism, where the right-hand-side is equipped with the sub-
diffeology of C∞(Rn,R). This follows from the fact that the functor U ×−
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is a left adjoint for any open subset U of a Euclidean space, and therefore
commutes with quotients. Next, consider the natural smooth map

φ : {f ∈ C∞(Rn,R) | f is O(n)-invariant} → {g ∈ C∞(R,R) | g is even},

which sends f to the function g : R → R defined by g(t) = f(t, 0, . . . , 0),
where the right-hand-side is equipped with the sub-diffeology of C∞(R,R).
The map φ is injective, by rotational invariance. By [Wh, Theorem 1], any
smooth even function g : R → R can be written as h(t2) for a (non-unique)
smooth function h : R → R, which implies that φ is surjective: given g,
define f by f(x) = h(‖x‖2). To see that φ is a diffeomorphism, use the
Remark at the end of [Wh], which says that Theorem 1 holds for functions
of several variables which are even in one of them. Note that under the iden-
tifications provided by the above maps, the diffeological algebra G[0](Hn) of
germs coincides with the diffeological algebra G of germs of even smooth
functions from R to R at 0. Thus it suffices to compute the smooth deriva-
tions on G.

It is easy to check that the map D : G → R which sends g to g′′(0)
is a derivation. It is smooth since the second derivative operator [CSW,
Lemma 4.3] and evaluation at 0 are. And it is non-zero, since D(j) = 2,
where j : R → R is defined by j(x) = x2. Now suppose that F is any
derivation on G. If g is a germ of an even smooth function R → R near
0, then g(x) = g(0) + x2h(x) for some even smooth germ h. Thus F (g) =
F (j)h(0) whileD(g) = 2h(0), and so F = (F (j)/2)D. Therefore, T̂[0](Hn)
is 1-dimensional.

We note in passing thatG can also be described as the algebra of germs of
smooth functions onH1, so the argument above can be viewed as a reduction
to the case where n = 1.

The technique used in the following example to show that an internal
tangent vector is zero is used in many other examples in this paper.

Example 3.25. Let Hsub = [0,∞), as a diffeological subspace of R. Let us
calculate T0(Hsub) and T̂0(Hsub).

We will first show that T0(Hsub) = 0. By Proposition 3.3, it suffices to
show that every tangent vector of the form p∗(

d
dt

) is zero, where p : R →
Hsub is a smooth curve with p(0) = 0 and d

dt
is the standard unit vector

in T0(R). It follows from Taylor’s formula that p′(0) = 0, and hence that
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p(x) = x2r(x) for some plot r : R → Hsub. We define q : R2 → Hsub by
q(x, y) = y2r(x), which is clearly a plot of Hsub. This restricts to p on the
diagonal y = x, and so p∗( ddt) = q∗(

d
dx

+ d
dy

) = q∗(
d
dx

) + q∗(
d
dy

). Thus our
tangent vector is the sum of the tangent vectors obtained by restricting q to
the axes. The restriction of q to the x-axis gives the zero function, and the
restriction of q to the y-axis gives the function h : R → Hsub sending y to
y2r(0). The former clearly gives the zero tangent vector. For the latter, since
h(y) = h(−y), we have that h∗( d

dy
) = h∗(− d

dy
) = −h∗( d

dy
), which implies

that h∗( d
dy

) = 0. Hence our original vector is 0, and so T0(Hsub) = 0.
To calculate T̂0(Hsub), consider the squaring map α : H1 → Hsub, where

H1 = R/O(1) is described in Example 3.24. The map α is smooth, since it
fits into a diagram

R j
//

����

R

H1 α
// Hsub .
?�

OO

We therefore have a smooth map α∗ : C∞(Hsub,R) → C∞(H1,R). Re-
garding the latter as consisting of even smooth functions R → R, α∗ sends
a smooth function h : Hsub → R to the smooth function mapping t to
h(t2). This is clearly injective, and by [Wh] it is surjective and a diffeo-
morphism. Also note that by [CSW, Lemma 3.17], the D-topology on Hsub

is the same as the sub-topology of R. This implies that the algebrasG0(Hsub)
and G[0](H1) of germs are isomorphic as diffeological algebras, and there-
fore that T̂0(Hsub) ∼= T̂[0](H1) ∼= R. A non-zero element of T̂0(Hsub) is
given by the smooth derivation sending f to f ′(0). Under the isomorphism,
this corresponds to D/2 ∈ T̂[0](H1) from Example 3.24.

3.4 Other approaches to tangent spaces

We have studied the internal and external tangent spaces in some detail be-
cause we find them to be the most natural definitions. Rather than arguing
that one of them is the “right” definition, we simply point out that it depends
on the application. The internal tangent space fits most closely with the def-
inition of a diffeological space, as it works directly with the plots, so it will
form the basis for the next section, on tangent bundles.
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There are many other possible approaches to defining tangent spaces, and
again, these will be useful for different applications. We briefly summarize
a few variants of our approaches here.

3.4.1 Variants of the internal tangent space

We have seen in Proposition 3.3 that the internal tangent space Tx(X) is
spanned by vectors of the form p∗(

d
dt

), where p : R → X is a smooth
curve sending 0 to x. One could instead use smooth maps from [0,∞) to X
sending 0 to x, with relations coming from higher-dimensional quadrants.
With such a definition, [0,∞) as a diffeological subspace of R would have a
non-trivial tangent space at 0.

Our internal tangent spaces were defined as colimits in the category of
vector spaces. One could instead take the colimit in the category of sets,
which would mean that every tangent vector is representable by a smooth
curve.

These two choices are independent; one could form a tangent space using
either one or both of them.

3.4.2 Variants of the external tangent space

An external tangent vector is defined to be a smooth derivationGx(X)→ R.
One might instead consider all derivations. For all examples in Subsec-
tion 3.3 we would get the same external tangent spaces, but in general we
don’t know if every derivation is automatically smooth.

Independently, one could also change the definition of the space Gx(X)
of germs of smooth functions at x, for a general diffeological space X . It
was defined at the beginning of Subsection 3.2 using the D-topology on
X . However, when studying diffeological bundles [I1], the correct notion
of “locality” uses the plots, not the D-open subsets. Moreover, for global
smooth functions, we have that C∞(X,R) = limC∞(U,R), where the limit
is taken in the category of sets and the indexing category is the category
DS/X of plots U → X . Thus, by analogy, one might define the germs
of smooth functions at x to be limG0(U), where the indexing category is
the category DS0/(X, x) of pointed plots (U, 0) → (X, x). This has the
advantage of being closer to the definition of the internal tangent space, but
we have not investigated it in detail.
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There is an established definition of differential forms on a diffeological
space [I3], and one could instead define the tangent space to be the dual of
the space of 1-forms at a point. This is closely related to the external tangent
space we study, since a germ f of a smooth function gives rise to a 1-form
df .

3.4.3 A mixed variant

Finally, recall that in Remark 3.21 we defined a natural transformation
β : T → T̂ . One could consider the image of this natural transformation.
That is, one identifies internal tangent vectors if they give rise to the same
directional derivative operators. Something very close to this is done in [V],
except that the derivative operators are only compared on global smooth
functions rather than germs of smooth functions.

In [I3], a mixed variant of the definition involving 1-forms is proposed,
and worked out in some detail. Each 1-dimensional plot centered at a point
gives rise to a smooth linear functional on 1-forms, and the tangent space is
defined to be the span of such linear functionals. This definition agrees with
the internal tangent space in all examples where we know both.

One can also consider mixed variants involving sets rather than vector
spaces. For example, the set of external tangent vectors which are repre-
sented by smooth curves is called the kinematic tangent space in [St2]. A
very similar approach was taken in [So1], which discussed the case in which
X is a diffeological group, and used certain “states” X → C to determine
when two internal tangent vectors are equal.

4. Internal tangent bundles

We discussed the internal tangent space of a diffeological space at a point
in Subsection 3.1. As usual, if we gather all of the internal tangent spaces
together, we can form the internal tangent bundle. In Subsection 4.1, we
begin by recalling the diffeology Hector defined on this bundle [He]. We
show that it is not well-behaved in general and also point out some errors
in [He, HM, La]. We then introduce a refinement of Hector’s diffeology,
called the dvs diffeology, give several examples and counterexamples, and

CHRISTENSEN & WU - TANGENT SPACES AND BUNDLES FOR DIFFEOLOGICAL SPACESCHRISTENSEN & WU - TANGENT SPACES AND BUNDLES FOR DIFFEOLOGICAL SPACES

- 29 -



describe the internal tangent bundle of a diffeological group. In Subsec-
tion 4.2, we give a conceptual explanation of the relationship between Hec-
tor’s diffeology and the dvs diffeology: they are colimits, taken in different
categories, of the same diagram. In Subsection 4.3, we study the question
of when internal tangent spaces are fine diffeological vector spaces. Finally,
in Subsection 4.4, we study the internal tangent bundles of function spaces,
and generalize a result in [He, HM] that says that the internal tangent space
of the diffeomorphism group of a compact smooth manifold at the identity
is isomorphic to the vector space of all smooth vector fields on the manifold.

4.1 Definitions and examples

In this subsection, we recall Hector’s diffeology on the internal tangent bun-
dle of a diffeological space. Then we observe in Example 4.3 that when the
internal tangent bundle is equipped with Hector’s diffeology, neither addi-
tion nor scalar multiplication are smooth in general. This provides a coun-
terexample to some claims in [He, HM, La]. To overcome this problem, we
introduce a refinement of Hector’s diffeology, called the dvs diffeology, on
the tangent bundle. Proposition 4.13 extends some results about internal tan-
gent spaces to internal tangent bundles. Then we prove in Theorem 4.15 that
the internal tangent bundle of a diffeological group is always trivial, as the
original proof in [HM] was partially based on a false result. We also show
that, in this case, Hector’s diffeology and the dvs diffeology agree.

Definition 4.1. The internal tangent bundle TX of a diffeological space
X is defined to be the set

∐
x∈X Tx(X). Hector’s diffeology [He] on TX

is generated by the maps Tf : TU → TX , where f : U → X is a
plot of X with U connected, TU has the standard diffeology, and for each
u ∈ U , Tuf : Tu(U) → Tf(u)(X) is defined to be the composite Tu(U) →
T0(U − u)→ Tf(u)(X), with U − u the translation of U by u. The internal
tangent bundle of X with Hector’s diffeology is denoted TH(X), and Tx(X)
with the sub-diffeology of TH(X) is denoted THx (X). We write elements of
TX as (x, v), where v ∈ Tx(X).

Recall that by the universal property of colimits, for any smooth map
f : X → Y and any x ∈ X , we have a linear map f∗ : Tx(X) → Tf(x)(Y ).
It is straightforward to check that TH : Diff → Diff is a functor, and
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hence that f∗ : THx (X) → THf(x)(Y ) is smooth. Moreover, the natural map
πX : TH(X) → X is smooth (indeed, it is a subduction), and therefore
π : TH → 1 is a natural transformation. Also the zero section X → TH(X)
is smooth.

Definition 4.2. A diffeological vector space is a vector space object in Diff.
More precisely, it is both a diffeological space and a vector space such that
the addition and scalar multiplication maps are smooth.

The following example shows that THx (X) is not a diffeological vector
space in general. In fact, both the addition map THx (X)×THx (X)→ THx (X)
and the scalar multiplication map R × THx (X) → THx (X) can fail to be
smooth. Therefore, both [HM, Proposition 6.6] and [La, Lemma 5.7] are
false.

Example 4.3. Let X be the diffeological space introduced in Example 3.17,
two copies of R glued at the origin thought of as a subset of R2. We first show
that the addition map TH(0,0)(X) × TH(0,0)(X) → TH(0,0)(X) is not smooth. To
see this, let f, g : R → T(0,0)(X) be given by f(x) = (x, 0) and g(x) =
(0, x), where we use the natural identification T(0,0)(X) ∼= R2. Clearly f
and g are smooth as maps R → TH(0,0)(X). We will show that the sum
h = f + g : R → TH(0,0)(X) given by x 7→ (x, x) is not smooth. Any
plot p : U → X must locally factor through one of the axes, and so the
diffeology on TH(0,0)(X) is generated by plots factoring through one of the
axes. Clearly h is not locally constant and does not locally factor through a
generating plot, so it is not smooth. Now we show that scalar multiplication
R× TH(0,0)(X)→ TH(0,0)(X) is not smooth. This is because the (non-smooth)
map h can be described as the composite R → R × TH(0,0)(X) → TH(0,0)(X),
where the first map is given by t 7→ (t, (1, 1)), which is clearly smooth. Note
that, away from the axes, the diffeology on TH(0,0)(X) is discrete.

Remark 4.4. It follows that the fibrewise scalar multiplication map
R× TH(X)→ TH(X) is also not smooth in general. This is particularly
surprising given the following observation. A generating plot of TH(X) is
of the form Tf : TU → TH(X), where f : U → X is a plot of X with U
connected. Thus one might expect the plots 1R×Tf : R×TU → R×TH(X)
to generate the product diffeology on R × TH(X). If so, the commutative

CHRISTENSEN & WU - TANGENT SPACES AND BUNDLES FOR DIFFEOLOGICAL SPACESCHRISTENSEN & WU - TANGENT SPACES AND BUNDLES FOR DIFFEOLOGICAL SPACES

- 31 -



square

R× TU 1R×Tf //

��

R× TH(X)

��

TU
Tf

// TH(X)

would imply that scalar multiplication on TH(X) is smooth. The problem
is that there may be tangent vectors in TH(X) which are not in the image of
any generating plot TU → TH(X), in which case one needs to consider con-
stant plots as well. However, this argument has shown that if every tangent
vector in X is 1-representable (Remarks 3.8 and 3.9), then scalar multipli-
cation is smooth. This will be the case when X is a diffeological group
(Remark 4.14). It is not hard to see that the converse is true as well: when
scalar multiplication is smooth, every tangent vector inX is 1-representable.

We will introduce a new diffeology on the internal tangent bundle of a
diffeological space that makes the addition and scalar multiplication maps
smooth. We first introduce the following concept:

Definition 4.5. Let X be a diffeological space. A diffeological vector space
over X is a diffeological space V , a smooth map p : V → X and a vec-
tor space structure on each of the fibres p−1(x) such that the addition map
V ×X V → V , the scalar multiplication map R × V → V and the zero
section X → V are smooth. Here R × V has the product diffeology and
V ×X V has the sub-diffeology of the product diffeology on V × V . In other
words, a diffeological vector space over X is a vector space object in the
overcategory Diff/X over the field object pr2 : R×X → X .

In the case when X is a point, we recover the concept of diffeological
vector space.

Note that if V is a diffeological vector space over X , then it is automati-
cally the case that each fibre of p, with the sub-diffeology, is a diffeological
vector space. It also follows that p is a subduction.

Now we give a construction that we will use to enlarge the diffeology on
TH(X) in order to make it a diffeological vector space over X . A similar
construction can be found in [V, Theorem 5.1.6 and Definition 6.2.1], using
a different definition of the tangent spaces. One can show that the notion of
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regular vector bundle in [V] exactly matches our notion of a diffeological
vector space over a diffeological space.

Proposition 4.6. Let p : V → X be a smooth map between diffeological
spaces, and suppose that each fibre of p has a vector space structure. Then
there is a smallest diffeology D on V which contains the given diffeology
and which makes V into a diffeological vector space over X .

Proof. We first take the largest diffeology on V making p : V → X smooth.
It is easy to see that this diffeology contains the original diffeology on V
and makes V into a diffeological vector space over X . Now consider the
intersection D of all diffeologies Di on V which have these two properties.
We claim that D also has these two properties. It is clear that D contains
the original diffeology on V and that p : (V,D) → X and the zero section
X → (V,D) are smooth. A plot in V ×X V consists of plots q1, q2 : U → V
inD such that p◦ q1 = p◦ q2. Since the pointwise sum q1 + q2 : U → V is in
each of the diffeologies Di, it is in D as well. Thus V ×X V → V is smooth
with respect to D. Similarly, R× V → V is smooth. Therefore, (V,D) is a
diffeological vector space over X .

We write Ṽ for V equipped with the diffeology D.
In the special case where X is a point and the vector space V starts with

the discrete diffeology, the above proposition proves that there is a smallest
diffeology on V making it into a diffeological vector space. This diffeology
is called the fine diffeology; see Subsection 4.3 and [I3, Chapter 3].

Note that the largest diffeology on V making p : V → X smooth, which
was used in the proof of the above proposition, is not generally interesting,
since it induces the indiscrete diffeology on each fibre.

Remark 4.7. One can give a more concrete description of the diffeology D
on V described in Proposition 4.6: it is generated by the linear combinations
of the original plots of V and the composite of the zero section with plots of
X . More precisely, given a plot q : U → X , plots q1, q2, . . . , qk : U → V
such that p ◦ qi = q for all i, and plots r1, r2, . . . , rk : U → R in the standard
diffeology on R, the linear combination U → V sending u to r1(u)q1(u) +
· · · + rk(u)qk(u) in p−1(q(u)) is a plot in D, and every plot in D is locally
of this form. Note that when k = 0, this is the composite of the plot q of X
with the zero section of V .
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One consequence is the following description of the fibres of Ṽ . For
x ∈ X , write Ṽx for p−1(x) with the sub-diffeology of Ṽ and Ṽx for the same
set with the diffeology obtained by starting with the sub-diffeology of V and
completing it to a vector space diffeology using Proposition 4.6. It is not hard
to see that these diffeologies agree. (See also [V, Proposition 6.2.2(iiii)].)
More generally, this construction commutes with pullbacks.

The following two results also follow immediately from Remark 4.7.

Proposition 4.8. Let

V
f
//

p
��

W

q
��

X g
// Y

be a commutative diagram in Diff, such that each fibre of p and q has a
vector space structure and f |p−1(x) : p−1(x) → q−1(g(x)) is linear for each
x ∈ X . Then the map f : Ṽ → W̃ is smooth. Furthermore, if both f and g
in the original square are inductions, then so is f : Ṽ → W̃ .

Proposition 4.9. Let p : V → X and q : W → Y be smooth maps between
diffeological spaces. Assume that each fibre of p and q has a vector space
structure. Then Ṽ × W̃ is isomorphic to Ṽ ×W as diffeological vector
spaces over X × Y .

Here is the new diffeology on the internal tangent bundle of a diffeolog-
ical space:

Definition 4.10. We define the dvs diffeology on TX to be the smallest dif-
feology containing Hector’s diffeology which makes TX into a diffeological
vector space over X . The internal tangent bundle of X with the dvs diffe-
ology is denoted T dvs(X), and Tx(X) with the sub-diffeology of T dvs(X) is
denoted T dvsx (X).

As a convention, whenever Hector’s diffeology coincides with the dvs
diffeology for a tangent space or a tangent bundle, we omit the superscript.

By Proposition 4.8 and the corresponding results for Hector’s diffeology,
it is clear that T dvs : Diff → Diff is a functor, and we have a natural trans-
formation π : T dvs → 1. Hence, for any smooth map f : X → Y and any x
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in X , the induced map f∗ : T dvsx (X)→ T dvsf(x)(Y ) is a smooth linear map be-
tween diffeological vector spaces. Also, the natural map πX : T dvs(X)→ X
is a subduction.

Example 4.11. When X is a smooth manifold, it follows from Example 3.16
that TX agrees with the usual tangent bundle as a set. In fact, it is not
hard to check that Hector’s diffeology on TX coincides with the standard
diffeology, regarding TX as a smooth manifold. Since TX is a diffeologi-
cal vector space over X , the dvs diffeology on TX also coincides with the
standard diffeology.

Remark 4.12. Example 3.17 shows that TX → X is not a diffeological bun-
dle [I1] in general, whether TX is equipped with Hector’s diffeology or the
dvs diffeology, since the pullback along a non-constant plot passing through
the origin would have fibres of different dimensions. The same example also
shows that TX → X is not a fibration in the sense of [CW1], with either
diffeology. Indeed, there is no dashed arrow in Diff making the diagram

0 //
� _

��

TX

��

R //

==

X

commute, where the top map sends 0 to (1, 1) ∈ T(0,0)(X) and the bottom
map is the inclusion of the x-axis.

Now we extend Propositions 3.6 and 3.7 from internal tangent spaces to
internal tangent bundles:

Proposition 4.13.

1. If A is a D-open subset of a diffeological space X , equipped with the
sub-diffeology of X , then TH(A)→ TH(X) is an induction such that
THa (A) → THa (X) is a diffeomorphism for each a ∈ A. The same is
true for the dvs diffeology.

2. Let X and Y be diffeological spaces. Then there is a natural diffeo-
morphism TH(X×Y )→ TH(X)×TH(Y ) which commutes with the
projections to X × Y , and the same is true for the dvs diffeology.
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Proof. (1) To see that TH(A) → TH(X) is an induction, note that for any
plot p : U → X , p−1(A) is an open subset of U since A is D-open in X , and
we have a commutative square

T (p−1(A)) �
�

//

��

TU

Tp
��

TH(A) // TH(X).

It follows that, for each a in A, the map THa (A) → THa (X) is an induction
as well. By Proposition 3.6, this map is an isomorphism of vector spaces,
and therefore it is a diffeomorphism. The corresponding result for the dvs
diffeology then essentially follows from Proposition 4.8.

(2) The first statement follows directly from Proposition 3.7 and the fact
that for any plots p : U → X and q : V → Y , we have the following
commutative square

T (U × V )

T (p×q)
��

∼= // TU × TV
Tp×Tq
��

TH(X × Y ) // TH(X)× TH(Y ),

and the second statement follows then from Proposition 4.9.

We end this subsection with a discussion of the internal tangent bundles
of diffeological groups (see Definition 2.5).

Remark 4.14.

1. Let e be the identity in a diffeological group G. It is shown in [HM,
Proposition 6.4] that the multiplication map G × G → G induces
the addition map Te(G) × Te(G) → Te(G). It follows that the addi-
tion map THe (G) × THe (G) → THe (G) is smooth. Moreover, [HM,
Corollary 6.5] implies that every element in Te(G) can be written as
p∗(

d
dt

), where p : R → G is a single smooth curve with p(0) = e,
and so it follows from Remark 4.4 that scalar multiplication is smooth
as well. Therefore, THe (G) is a diffeological vector space. Since left-
multiplication by any g ∈ G is a diffeomorphism, we also see that
THg (G) is a diffeological vector space and that THe (G) and THg (G)
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are isomorphic as diffeological vector spaces. Similarly, T dvse (G) and
T dvsg (G) are isomorphic as diffeological vector spaces.

2. If V is a diffeological vector space, one might hope that the scalar
multiplication map R×V → V induces the scalar multiplication map
R×T0(V )→ T0(V ), where we use that Tr(R) ∼= R for any r ∈ R and
that T respects finite products. (We omit superscripts here because we
are not using the diffeology in this remark.) But since induced maps
are always linear, and scalar multiplication is bilinear, this will only
happen when T0(V ) = 0. Instead, for fixed r ∈ R, we can consider
the map V → V sending v to rv. It is not hard to show that for r ∈ Q,
this induces the map T0(V )→ T0(V ) sending u to ru. We conjecture
that this is true for any r ∈ R. It is true if for any u ∈ T0(V ), there
exist plots p : R → V and q : R → V such that p(0) = 0, p∗( ddt) = u
and p(t) = tq(t) for t in a neighborhood of 0 ∈ R. This condition
is satisfied when V = C∞(X,Rn) with the functional diffeology, for
any diffeological space X , or when V is a retract of such a space in
the category of diffeological vector spaces.

Although the proof of [HM, Proposition 6.8] was partly based on a false
result, the proposition is still correct:

Theorem 4.15. Let G be a diffeological group. Then TH(G) is a diffeo-
logical vector space over G and all of TH(G), G × THe (G), T dvs(G) and
G × T dvse (G) are isomorphic as diffeological vector spaces over G. There-
fore, THg (G) = T dvsg (G) for any g ∈ G.

Proof. In the proof of [HM, Proposition 6.8], Hector and Macias-Virgos de-
fined the map F : G × THe (G) → TH(G) sending (g, v) to (g, (Lg)∗(v)),
where Lg : G → G is left multiplication by g, and they argued that F is a
diffeomorphism. But in the proof that F is smooth, they used that THe (G)
is a fine diffeological vector space, which is not true in general; see Exam-
ple 4.24 for counterexamples. It is easy to fix this. Let a be the composite
G × TH(G) → TH(G) × TH(G) ∼= TH(G × G) → TH(G), where the
first map is given by σ × 1TH(G) with σ : G → TH(G) the zero section,
the second map is the isomorphism from Proposition 4.13(2), and the third
map is induced from the multiplication G × G → G. Clearly a is smooth,
and it is straightforward to check that F equals a|G×TH

e (G), and is therefore
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smooth. One can also see that F−1 : TH(G) → G × THe (G) is given by
F−1(g, v) = (g, a(g−1, (g, v))), which is smooth. So TH(G) is diffeomor-
phic to G × THe (G), and the diffeomorphism respects the projections to G
and the linear structures on the fibres. In particular, TH(G) is a diffeological
vector space over G. The rest then follows directly from Definition 4.10.
(The last statement also follows from the second paragraph of Remark 4.7
and Remark 4.14(1).)

Because of the previous result, our convention allows us to write TG and
Tg(G) (without superscripts) when G is a diffeological group. This includes
the case when G is a diffeological vector space.

4.2 A conceptual description of the Hector and dvs diffeologies

In this subsection we give a categorical explanation of the difference between
Hector’s diffeology and the dvs diffeology on the internal tangent bundle
of a diffeological space. To summarize briefly, they can both be described
as the colimit of a natural diagram, but the colimits take place in different
categories. This material is not needed in the rest of the paper.

For a diffeological space X , a vector space with diffeology over X
is a diffeological space V , a smooth map p : V → X and a vector space
structure on each of the fibres Vx = p−1(x), with no compatibility condi-
tions. The category VSD has as objects the vector spaces with diffeology
over diffeological spaces, and as morphisms the commutative squares

V
g
//

��

W

��

X
f
// Y

in Diff such that for each x ∈ X , g|Vx : Vx → Wf(x) is linear.

Proposition 4.16. The category VSD is complete and cocomplete.

Proof. Let F : I → VSD be a functor from a small category, and write Vi →
Xi for F (i). There are two functors t, b : VSD → Diff, sending the above
commutative square to g : V → W and f : X → Y , respectively. Write
limVi and limXi for the limits of the functors t ◦ F and b ◦ F , respectively.
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Then it is easy to check that there is a canonical smooth map limVi → limXi

which is the limit of F in VSD.
Next, write X = colimXi for the colimit of the functor b ◦ F . Let C be

the category of elements of b ◦ F . Then C has as objects the pairs (i, a) for
i ∈ Obj(I) and a ∈ Xi, and as morphisms (i, a) → (j, b) the morphisms
f : i→ j in I such that b(F (f)) : Xi → Xj sends a to b. There is a natural
bijection between π0(C) and the underlying set of X . For any x ∈ X , the
connected full subcategory Cx of C corresponding to x consists of the objects
(i, a) such that a ∈ Xi is sent to x ∈ X by the cocone map Xi → X . There
is a functor Cx → Vect sending (i, a) to Vi,a, the fibre above a ∈ Xi in Vi,
and sending f : (i, a) → (j, b) to t(F (f))|Vi,a : Vi,a → Vj,b. Let Vx be the
colimit of this functor and let V be the disjoint union

∐
x∈X Vx. There is a

canonical map Vi → V for each i ∈ Obj(I), and we equip V with the small-
est diffeology making these maps smooth. Then the canonical projection
V → X is smooth, and one can check that this is the colimit of F .

We write DVS for the full subcategory of VSD with objects diffeolog-
ical vector spaces over diffeological spaces (see Definition 4.2). Proposi-
tions 4.6 and 4.8 imply that the forgetful functor DVS → VSD has a left
adjoint, sending p : V → X to p : Ṽ → X . It is clear that if p : V → X
is a diffeological vector space over X , then Ṽ = V . Therefore, the category
DVS is also complete and cocomplete, with the limit computed in VSD, and
the colimit obtained by applying the left adjoint functor to the corresponding
colimit in VSD. Also, Proposition 4.9 says that the left adjoint commutes
with finite products.

Recall that DS is the category with objects all open subsets of Rn and
morphisms smooth maps between them. The main result of this subsection
is now straightforward to check.

Theorem 4.17. Let X be a fixed diffeological space. Consider the functor
DS/X → DVS defined by

U

p
��

f
// V

q
��

X

7−→
TU

Tf
//

πU
��

TV

πV
��

U
f
// V.

The colimit of this functor is πX : T dvs(X) → X , and the colimit of the
composite functor DS/X → DVS → VSD is πX : TH(X)→ X .
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This can also be phrased as saying that the functors TH : Diff → VSD
and T dvs : Diff → DVS are left Kan extensions of the natural functors
DS → VSD and DS → DVS along the inclusion functor DS → Diff.

4.3 Fineness of internal tangent spaces

Recall that any vector space V has a smallest diffeology making it into a
diffeological vector space. This diffeology is called the fine diffeology, and
its plots are exactly those maps which locally are of the form U → Rn → V ,
where the first map is smooth and the second map is linear; see [I3, Chap-
ter 3]. In this subsection, we study when THx (X) and T dvsx (X) are fine diffe-
ological vector spaces, giving examples where they are fine and where they
are not.

The material in this subsection is independent of the material in the fol-
lowing subsection.

From Example 4.3, we know that THx (X) in general is not a fine diffe-
ological vector space. We now give a condition implying that T dvsx (X) is
fine.

Proposition 4.18. Let (X, x) be a pointed diffeological space. Assume that
there exists a local generating set G of X at x with the property that for any
q : U → X in G, if f : V → U is a smooth map from an open subset V of
Rn such that q ◦ f = cx (the constant map), then f is locally constant. Then
T dvsx (X) is a fine diffeological vector space.

Proof. By the second half of Remark 4.7, the diffeology on T dvsx (X) is the
smallest diffeology containing Hector’s diffeology which makes T dvsx (X)
into a diffeological vector space. Thus it suffices to show that Hector’s
diffeology is contained in the fine diffeology. That is, we need to show
that every plot V → THx (X) locally smoothly factors through a linear map
Rn → THx (X). Let p : V → THx (X) be a plot. Since Hector’s diffeology
on TX is generated by maps TU → TX induced by plots U → X , for each
v0 ∈ V there is a connected open neighbourhood V ′ of v0 in V such that p|V ′
is either constant or of the form V ′

g−→ TU → TX , with image in Tx(X),
where g is smooth. In the first case, every constant map factors smoothly
through a linear map R → Tx(X). In the second case, shrinking V ′ further
if necessary, we can assume that U → X is in the local generating set G.
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The composite V ′
g−→ TU → U → X is constant, and so by hypothesis, g

must land in Tu(U) for some u ∈ U . This shows that p|V ′ smoothly factors
through the linear map Tu(U) → Tx(X). Since Tu(U) is diffeomorphic to
Rn, for some n, we are done.

Here are some results that follow from Proposition 4.18:

Example 4.19. T dvsx (X) is a fine diffeological vector space when:

1. X is a smooth manifold, and x is any point of X;

2. X is the axes in R2 with the pushout diffeology (Example 3.17), and
x is any point of X;

3. X is a 1-dimensional irrational torus (Example 3.23), and x is any
point of X .

Remark 4.20. Since the irrational torus T 2
θ is a diffeological group, by Theo-

rem 4.15 we know that TH[0](T
2
θ ) ∼= T dvs[0] (T 2

θ ). So by (3) of the above example,
both of them have the fine diffeology. Therefore, the map T0(R)→ T[0](T

2
θ )

induced by the quotient map R → T 2
θ from Example 3.23 is a linear diffeo-

morphism. As a consequence, the inverse function theorem does not hold for
general diffeological spaces when tangent spaces are equipped with either
Hector’s diffeology or the dvs diffeology, in the sense that, if f : A→ B is a
smooth map between diffeological spaces such that f∗ : THa (A)→ THf(a)(B)

(or f∗ : T dvsa (A) → T dvsf(a)(B)) is a linear diffeomorphism for some a ∈ A,
then it is not true that there exist D-open neighborhoods A′ and B′ of a ∈ A
and f(a) ∈ B, respectively, such that f : A′ → B′ is a diffeomorphism.

Example 4.21. Note that any smooth linear bijection from a diffeological
vector space to a fine diffeological vector space is a linear diffeomorphism.
As a consequence, we know that the tangent space T dvs0 (Y ) of the axes Y in
R2 with the sub-diffeology (Example 3.19) has the fine diffeology.

Proposition 4.22. Let V be a fine diffeological vector space. Then T0(V ) ∼=
V as diffeological vector spaces.

Proof. Recall that the vector space T0(V ) is the colimit of T0(U) taken over
the category G(V, 0). Consider the full subcategory G of G(V, 0) consisting
of inclusions W ↪→ V of finite-dimensional linear subspaces. It is not hard
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to see that this is a final subcategory, in the sense that the overcategory p/G
is non-empty and connected for each object p in G(V, 0). Therefore, we can
restrict to the subcategory G and find that, as vector spaces,

T0(V ) ∼= colim
W∈G

T0(W ) ∼= colim
W∈G

W ∼= V.

By the criteria in Proposition 4.18, we know that T dvs0 (V ) is a fine diffeo-
logical vector space, and so T dvs0 (V ) ∼= V as diffeological vector spaces. By
Theorem 4.15, TH0 (V ) = T dvs0 (V ) as diffeological vector spaces.

Remark 4.23. When V is fine, it follows from Theorem 4.15 that TV ∼=
V ×V as diffeological vector spaces over V . This is not true for an arbitrary
diffeological vector space; see Example 3.14(2).

Example 4.24. The following examples show that when G is a diffeologi-
cal group, Te(G) is not necessarily fine, contradicting the argument given
in [HM, Proposition 6.8]. As a consequence, although the vector space
Te(G) is a colimit in the category of vector spaces of T0(U), the diffeo-
logical vector space Te(G) is not a colimit in the category of diffeological
vector spaces of T0(U) with the fine diffeology. For properties of (fine) dif-
feological vector spaces, see [Wu].

1. Let X =
∏

ω R be the countable product of copies of R with the prod-
uct diffeology. Then there is a canonical smooth map TX →

∏
ω TR

which induces a smooth linear map α : T0(X) →
∏

ω R, where we
identify T0(R) with R in the natural way. Consider the plot p : R2 →
X sending (s, t) to (t, st, s2t, s3t, . . .). It induces one of Hector’s gen-
erating plots TR2 → TX . The restriction of TR2 to the s-axis is a
rank-2 bundle whose total space U is diffeomorphic to R3. The com-
posite U ↪→ TR2 → TX gives a plot q in T0(X), since the plot p
sends the s-axis to the point 0 in X . Now consider the composite
α ◦ q : U → T0(X) →

∏
ω R. At the point (s, 0), it sends ∂s to 0 and

∂t to (1, s, s2, s3, . . .). As s varies, these (1, s, s2, s3, . . .)’s are all lin-
early independent in

∏
ω R. Since α is linear, q doesn’t locally factor

through any finite-dimensional linear subspace of T0(X). Therefore,
the diffeology on T0(X) is strictly larger than the fine diffeology. It
follows from Theorem 4.15 that the same is true for Tx(X) for any
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x ∈ X , since X is a diffeological group (in fact, a diffeological vector
space).

While it isn’t needed above, one can also show that α is an isomor-
phism, so T0(X) ∼= X as vector spaces. The surjectivity follows from
Remark 3.8, and the injectivity follows from the fact thatX is a diffeo-
logical group, using an argument similar to that used in Example 3.25.
In fact, Proposition 4.27 shows that α is a diffeomorphism.

2. Write Y for C∞(Rn,R), where n ≥ 1, and write 0̂ for the zero func-
tion in Y . Define φ : Y → X by f 7→ (f(0), ∂f

∂y1
(0), ∂

2f
∂y2

1
(0), . . .).

Then φ is a smooth map, by [CSW, Lemma 4.3]. Let p : R2 → Y
be defined by p(s, t)(y) = tesy1 . Then p is a plot of Y . The re-
striction of TR2 to the s-axis is a rank-2 bundle whose total space U
is diffeomorphic to R3. As in (1), one can check that the compos-
ite U ↪→ TR2 → TY gives a plot q in T0̂(Y ), but the composite
α ◦ T0̂φ ◦ q : U → T0̂(Y ) → T0(X) →

∏
ω R does not locally fac-

tor through a finite-dimensional linear subspace of
∏

ω R. Therefore,
Tf (Y ) is not a fine diffeological vector space for any f ∈ Y .

3. Let M be a smooth manifold of positive dimension, and let i : Rn →
M be a smooth chart. Using a smooth partition of unity one can show
that for any smooth map f : R2×Rn → R, there exists a smooth map
g : R2 ×M → R such that g ◦ (1× i)|R2×B = f |R2×B, where B is an
open neighborhood of 0 in Rn. By (2), we know that Tf (C∞(M,R))
is not a fine diffeological vector space for any f ∈ C∞(M,R).

As a corollary of (3), if M is a compact smooth manifold of positive
dimension, and U is an open subset of Rn for some n ∈ Z+, then for any
f ∈ C∞(M,U) =: Z, both THf (Z) and T dvsf (Z) are not fine. This follows
from Proposition 4.13(1) and the fact that Z = C∞(M,U) is a D-open
subset of C∞(M,Rn) [CSW, Proposition 4.2].

4.4 Internal tangent bundles of function spaces

In this subsection, we first observe in Proposition 4.25 that for any diffeo-
logical spaces X and Y , there is always a natural smooth map

γ : TH(C∞(X, Y ))→ C∞(X,TH(Y )).
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In Propositions 4.27 and 4.28, we give two special cases when the above
map is actually a diffeomorphism, and it follows that in these cases we have
TH(C∞(X, Y )) = T dvs(C∞(X, Y )). In particular, we recover in Corol-
lary 4.29 the fact that the internal tangent space of the diffeomorphism group
of a compact smooth manifold at the identity is isomorphic to the vector
space of all smooth vector fields on the manifold.

Stacey [St2] also studies the map γ, but with a different focus.

Proposition 4.25. Let X and Y be diffeological spaces. There is a smooth
map

γ : TH(C∞(X, Y )) −→ C∞(X,TH(Y )),

which is natural in X and Y , and which makes the following triangle com-
mutative:

TH(C∞(X, Y ))
γ

//

πC∞(X,Y ) &&

C∞(X,TH(Y ))

(πY )∗xx

C∞(X, Y ).

Proof. Observe that the map τ : C∞(R, Y ) → TH(Y ) defined by α 7→
(α(0), α∗(

d
dt

)) is smooth, since for any plot q : U → C∞(R, Y ), we have a
commutative diagram

U

��

q
// C∞(R, Y )

τ

��

TU × TR
T q̃
// TH(Y )

in Diff, where the left vertical map is defined by u 7→ ((u, 0), (0, d
dt

)), and
q̃ : U × R→ Y is the adjoint of q.

Now we first partially define γ : TH(C∞(X, Y ))→ C∞(X,TH(Y )) by
sending (f, p∗(

d
dt

)) to τ ◦ p̂, where p : R → C∞(X, Y ) is a plot such that
p(0) = f , and p̂ is the double adjoint of p, using the cartesian closedness of
Diff. One can show that the following triangle

TH(C∞(X, Y ))
γ

//

πC∞(X,Y ) &&

C∞(X,TH(Y ))

(πY )∗xx

C∞(X, Y ),
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commutes, so we can linearly extend this on each fibre to define γ. It is
straightforward to check that the map γ is well-defined. Moreover, γ is
smooth: given any plots q : U → C∞(X, Y ) and r : V → X , the com-
posite

TU
Tq
// TH(C∞(X, Y ))

γ
// C∞(X,TH(Y ))

is smooth since for the adjoint map TU ×X → TH(Y ) we have a commu-
tative diagram

TU × V 1×r //

1×σ
��

TU ×X

��

TU × TV
Tβ
// TH(Y ),

where σ is the zero section, and β is the composite

U × V 1×r // U ×X q̃
// Y.

The naturality of γ directly follows from its definition.

Aside 4.26. Note that when X is discrete, the map γ just defined coincides
with the map α from Remark 3.8 in the case where each Xj is equal to Y . In
fact, there is a framework which encompasses both the map γ in the previous
proposition and the map α in Remark 3.8 as special cases. Let f : Y → X
be a fixed smooth map between diffeological spaces. Write Γ(f) for the set
of all smooth sections of f equipped with the sub-diffeology of C∞(X, Y ),
and write A for the set

{g ∈ C∞(X,TH(Y )) | πY ◦ g ∈ Γ(f) and f∗(g(x)) = (x, 0) for all x ∈ X}

of “vertical” sections of TH(Y ) → X , equipped with the sub-diffeology
of C∞(X,TH(Y )). Then (πY )∗ : C∞(X,TH(Y )) → C∞(X, Y ) restricts
to a smooth map (πY )∗ : A → Γ(f). Moreover, γ : TH(C∞(X, Y )) →
C∞(X,TH(Y )) from the previous proposition induces a smooth map
γ : TH(Γ(f))→ A, and we have a commutative triangle

TH(Γ(f))
γ
//

πΓ(f) !!

A

(πY )∗
��

Γ(f).
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In particular, if the fixed map f is the projection pr1 : X × Y → X , then we
recover the previous proposition. And if J is a discrete diffeological space,
{Xj}j∈J is a set of diffeological spaces, and the fixed map f :

∐
j∈J Xj → J

sends each Xj to j, then the map γ : TH(Γ(f))→ A discussed above is the
same as the map α discussed in Remark 3.8.

We will now focus on cases in which TH(Y ) = T dvs(Y ), so we write
TY to simplify the notation. In this situation, it is straightforward to show
that (πY )∗ : C∞(X,TY ) → C∞(X, Y ) is a diffeological vector space over
C∞(X, Y ). Given a smooth map f : X → Y , we write Sf (X, Y ) =
{g ∈ C∞(X, TY ) | πY ◦ g = f} for the fibre of (πY )∗ over f , a diffe-
ological vector space. The map γ restricts to a natural smooth linear map
γf : THf (C∞(X, Y ))→ Sf (X, Y ).

Proposition 4.27. Let X be a diffeological space. Then the natural map
γ : T (C∞(X,Rn)) → C∞(X,TRn) from Proposition 4.25 is an isomor-
phism of diffeological vector spaces over C∞(X,Rn).

When X is discrete, this shows that T (
∏

j∈X Rn) ∼=
∏

j∈X TRn as diffe-
ological vector spaces over

∏
j∈X Rn; see Proposition 3.7, Remark 3.8 and

Example 4.24(1).

Proof. We first prove that for each f ∈ C∞(X,Rn), the restriction
γf : Tf (C

∞(X,Rn)) → Sf (X,Rn) of γ to the fibre over f is an isomor-
phism of vector spaces.

Since in this case, γ is a smooth map between diffeological vector spaces
over C∞(X,Rn), it is enough to prove that γf is a bijection for n = 1.

We first prove injectivity. Note that C∞(X,R) is a diffeological group.
Corollary 6.5 of [HM] says that for any diffeological groupG, every element
of Te(G) comes from a plot U → G. (Compare with Example 4.3.) Since
Te(G) ∼= Tg(G), the same is true for Tg(G). By the proof of Proposition 3.3,
every internal tangent vector is in fact of the form p∗(

d
dt

), where p : R→ G
is a plot with p(0) = g. Also note that:

(1) If α : U ×X → R is smooth for U some open subset of a Euclidean
space, then ∂α

∂ui
: U × X → R is also smooth for any coordinate ui in U ,

since for any plot β : W → X , ∂α
∂ui
◦ (1U × β) = ∂

∂ui
(α ◦ (1U × β)).

(2) If K is a compact subset of U , φ : K → R is an integrable function,
and F : U ×X → R is smooth, then by [G, Theorem V.2.9.9], the function
X → R defined by

∫
K
φ(s)F (s, x) ds is smooth.
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Now assume that a plot p : R → C∞(X,R) with p(0) = f induces 0 ∈
Sf (X,R); that is, the adjoint map p̃ : R×X → R is smooth, p̃(0, x) = f(x)
and ∂p̃

∂t
(0, x) = 0 for all x ∈ X . We can conclude that p̃(t, x) = f(x) +

tg(t, x) for g(t, x) =
∫ 1

0
(D1p̃)(st, x) ds, and this g is in C∞(R × X,R)

by (1) and (2). Note that g(0, x) = 0 for all x ∈ X . Then we define
q : R2 → C∞(X,R) by q(t1, t2)(x) = f(x) + t1g(t2, x). The restriction of
q to either axis is a constant map R→ C∞(X,R), so q∗( d

dt1
) = 0 = q∗(

d
dt2

)
in Tf (C∞(X,R)). And the restriction of q to the diagonal is p, so, as in the
argument given in Example 3.25, p∗( ddt) = 0 in Tf (C∞(X,R)).

For surjectivity, take any (f, g) ∈ Sf (X,R); that is g : X → R is any
smooth map. Define p : R → C∞(X,R) by t 7→ (x 7→ f(x) + tg(x)). It
is straightforward to check that p is a plot with p(0) = f and that the map
γf : Tf (C

∞(X,R))→ Sf (X,R) sends p∗( ddt) to g.
Hence, together with Proposition 4.25, we have proved so far that the

map γ : T (C∞(X,Rn)) → C∞(X,TRn) is a smooth bijection and linear
on each fibre. We claim that in this case, γ−1 is also smooth, and hence γ
is an isomorphism of diffeological vector spaces over C∞(X,Rn). Here is
the proof. Notice that it is enough to prove this for n = 1. For any plot
q = (q1, q2) : U → C∞(X,TR), we define a smooth map ρ : R × U →
C∞(X,R) by ρ(t, u) = q1(u)+tq2(u). The smoothness of γ−1 follows from
the commutative diagram

U

��

q
// C∞(X,TR)

γ−1

��

TR× TU
Tρ
// T (C∞(X,R)),

where the left vertical map is given by u 7→ ((0, d
dt

), (u, 0)).

As direct consequences, the map γf : Tf (C
∞(X,Rn)) → Sf (X,Rn) is

an isomorphism between diffeological vector spaces, and

C∞(X,Rn)× C∞(X,Rn) ∼= C∞(X,TRn) ∼= T (C∞(X,Rn))

as diffeological vector spaces over C∞(X,Rn). Moreover, we have:

Proposition 4.28. Let X be a diffeological space such that its D-topology
is compact, and let N be a smooth manifold. Then the natural map
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γ : TH(C∞(X,N)) → C∞(X,TN) from Proposition 4.25 is an isomor-
phism of diffeological vector spaces over C∞(X,N).

Proof. Let N → Rn be a smooth embedding, and let U be an open tubu-
lar neighborhood of N with inclusions i : N → U and j : U → Rn,
and a smooth retraction r : U → N such that r ◦ i = 1N . Since the D-
topology on X is compact, [CSW, Proposition 4.2] implies that C∞(X,U)
is a D-open subset of C∞(X,Rn), and hence by Proposition 4.13(1),
j∗ : TH(C∞(X,U)) → T (C∞(X,Rn)) is an induction, and for each f
in C∞(X,U), the restriction j∗,f : THf (C∞(X,U)) → Tf (C

∞(X,Rn))
is an isomorphism. It is straightforward to see that j∗ : C∞(X,TU) →
C∞(X,TRn) is also an induction, and for each f ∈ C∞(X,U), the re-
striction j∗,f : Sf (X,U) → Sf (X,Rn) is an isomorphism, since U is open
in Rn. So by Proposition 4.27 and the functoriality of γ, we know that
γU : TH(C∞(X,U)) → C∞(X,TU) is an isomorphism of diffeological
vector spaces over C∞(X,U). Since γ : TH(C∞(X,N)) → C∞(X,TN)
is a retract of γU , it is also an isomorphism of diffeological vector spaces
over C∞(X,N).

In this case, since TH(C∞(X,N)) is a diffeological vector space over
C∞(X,N), it follows that TH(C∞(X,N)) = T dvs(C∞(X,N)).

Note that, if M is a smooth manifold, then Diff(M), the set of all diffeo-
morphisms from M to itself, is a diffeological group, when equipped with
the sub-diffeology of C∞(M,M). So we recover Proposition 6.3 of [HM]:

Corollary 4.29. LetM be a compact smooth manifold. Then T1M (Diff(M))
is isomorphic to the vector space of all smooth vector fields on M .

Proof. This follows from Propositions 3.6 and 4.28, and the fact that
Diff(M) is a D-open subset of C∞(M,M) since M is a compact smooth
manifold [CSW, Corollary 4.15].
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Résumé. Dans cet article, nous donnons des conditions nécessaires et suff-
isantes pour qu’une paire de morphismes d’une catégorie de Kleisli, as-
sociée à une monade générale, ait un égalisateur. Nous proposons aussi, dans
différents cas de monades intéressantes, un meilleur critère pour l’existence
d’un égalisateur et dans ces cas nous explicitons ce qu’est l’égalisateur
(lorsqu’il existe).
Abstract. In this article, we give necessary and sufficient conditions for a
pair of morphisms in a Kleisli category, corresponding to a general monad, to
have an equalizer. We also present a better criterion for equalizers in a num-
ber of cases of interesting monads, and in all these cases we explain what an
equalizer (if it exists) of a pair of morphisms is.
Keywords. equalizer, Kleisli category, (representation, add-point or excep-
tion, M -set, power object) monad.
Mathematics Subject Classification (2010). 18A30, 18C15, 18C20.

1. Introduction

The richness of a given category depends on to what degree the category is
complete and/or cocomplete. In particular this is true about the kleisli cat-
egories, that are being widely used in different areas such as, the semantics
of linear logic, [2], computing, [6], Maltsev varieties, [5], extension of func-
tors, [11], factorization-related monads, [4], and information systems, [9], to
mention a few.

In [10], the completeness/cocompleteness of Kleisli categories are tack-
led, however as the author mentions, the results are powerless in concrete
instances. In this article, we attempt the problem of the existence of equaliz-
ers in Kleisli categories. It is known that the category of sets and relations,
the Kleisli category for the power set monad, does not have equalizers, [3].
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So we try to answer the question of when a given pair of morphisms has
equalizers. First we give some equivalent conditions for the existence of
equalizers of a given pair of maps in a general Kleisli category. Then we
present a better criterion for the existence of equalizers in a number of cases
of interesting monads.

2. Preliminaries

A monad on a category E , [1], is a triple T = (T, η, µ), where T : E // E
is a functor, η : I // T and µ : T 2 // T are natural transformations
rendering commutative the following square and triangles.

T3
Tµ
//

µT

��

T2

µ

��
T2

µ
// T

T
Tη
//

1T
  

AAAAAAAA T2

µ

��

T
ηT
oo

1T
~~}}}}}}}}

T

Some examples of monads that we use in this article, are:

Example 2.1. a) [1], [7], [12]. Let E be a category in which partial mor-
phisms are represented, such as a quasitopos. Let ηX : X // X̃ represent
partial morphisms toX (such a map is mono) and be universal, i.e., pullback
of ηX along all morphisms exists. The functor ∼: E // E , taking X to
X̃ , the natural transformation η : I // ∼ and the natural transformation

µ :∼2 // ∼, where µX : ˜̃X // X̃ is defined by the following pullback
square:

X
1X //

η
X̃
ηX p.b.

��

X

ηX

��
˜̃X ∃!µX

// X̃

form a monad R = (∼, η, µ), called the representation monad.
b) [3]. Let E be a category with a coproductive terminal object 1, i.e.,

a terminal object whose coproduct with any other object exists. The func-
tor A = −q 1 : E // E , the natural transformation η : I // A, with
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ηX = ν1 : X // X q 1, and the natural transformation µ : A2 // A de-

fined by µX = 1
⊕

ν2 : (X q 1)q 1 // X q 1, where ν1 and ν2 are re-
spectively the first and the second injections of the coproduct, form a monad
A = (A, η, µ), called the add-point or exception monad.

c) [3]. Let (M, ?, 1) be a monoid. The functor M : Set // Set de-
fined on objects by M̂(X) = M ×X , together with the natural transforma-
tions η and µ, with ηX(x) = (1, x) and µX(m1, (m2, x)) = (m1 ? m2, x)
form a monad M = (M̂, η, µ) called the M -Set monad. We denote m ? n
also by mn. Note that ηX = 〈1̃, 1X〉, with 1̃ the constant map with value
1 ∈M and 1X the identity function. Also µX ∼= ?× 1X .

d) [1], [8], [12]. Let E be a topos. The covariant power object functor

P : E // E , where P ( X
f
// Y ) = PX

∃f
// PY , the singleton nat-

ural transformationI
η
// P and the monad multiplication µ : P 2 // P ,

where µX = m̃ : P 2X // PX is the transpose of m : X × P 2X // Ω
and m is defined as follows:

N
n′ //

n p.b.

��

EX × EPX //

λX×λPX p.b.

��

1

t×t

��
X × PX × P2X

1×∆PX×1
// X × (PX)2 × P2X

εX×εPX
// Ω× Ω

N
n //

α

&& &&LLLLLLLLLLL X × PX × P2X
π13 // X × P2X

M
77

m

77oooooooooooo

M //

m p.b.

��

1

t

��
X × P2X

m

// Ω

with ε denoting the evaluation, ∆ the diagonal and π13 the evident pro-
jection, form a monad P = (P, η, µ), called the power object monad.

For naturality of µ in part (c) of 2.1, see [12]. We show µ commutes with
the internal join. But first, with:

U : Sub(X × (PX)2)× Sub(X × (PX)2) // Sub(X × (PX)2)

the external join or union, ∨X : (PX)2 // PX the internal join and the
map f−1(g) denoting the pullback of g along f , we have:
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Lemma 2.2. The map v obtained by the pullback:

V
v′ //

v p.b.

��

EX

λX

��
X × (PX)2

1×∨X
// X × PX

is v = π−1
12 (λX)∪ π−1

13 (λX) = (λX × 1)∪ π132(λX × 1), where the maps

X × (PX)2
π12 //

π13

// X × PX and π132 : X × (PX)2 // X × (PX)2 are

the evident projections.

Proof. By the above pullback diagram, the classifying map of v is v̂ =
εX(1× ∨X). Now form the following pullbacks.

V1

v′1 //

v1 p.b.

��

Ex

λX

��
X × (PX)2

π12
// X × PX

V2

v′2 //

v2 p.b.

��

Ex

λX

��
X × (PX)2

π13
// X × PX

Take the epi-mono factorization of v1 ⊕ v2 : V1 q V2
// X × (PX)2

to get:

V1 q V2
v1⊕v2 //

## ##FFFFFFFFF X × (PX)2

V ′

v1∪v2

::uuuuuuuuu

The following diagram shows v̂1 ∪ v2 = εX(1× ∨X).

(v1, v2) ∈ Sub(X × (PX)2)× Sub(X × (PX)2)

poo
∪ // Sub(X × (PX)2) 3 v1 ∪ v2

poo
hom(X × (PX)2,Ω)× hom(X × (PX)2,Ω)

poo
∨ // hom(X × (PX)2,Ω) 3 εX (1× ∨X )

poo
hom((PX)2, PX)× hom((PX)2, PX)

poo
∨ // hom((PX)2, PX) 3 ∨X

pp
1 ∈ hom((PX)2, (PX)2)

∨ // hom((PX)2, PX) 3 ∨X

HOSSEINI & QASEMI NEZHAD - EQUALIZERS IN KLEISLI CATEGORIES

- 54 -



It follows that v̂ = v̂1 ∪ v2 and so v = v1 ∪ v2, proving the first equality.
Since the squares:

EX × PX
π1 //

λX×1

��

EX

λX

��
X × (PX)2

π12
// X × PX

and EX × PX
π1 //

π132(λX×1)

��

EX

λX

��
X × (PX)2

π13
// X × PX

are pullbacks, we get the second equality.

Theorem 2.3. The monad multiplication µ of P preserves the internal join,
i.e., for each X the following square commutes.

(P2X)2
∨PX //

µ2
X=µX×µX

��

P2X

µX

��
(PX)2

∨X
// PX

Proof. We have ∨Xµ2
X = µX∨PX if and only if their transposes are equal,

i.e., εX(1X×∨Xµ2
X) = εX(1X×(µX∨PX)) if and only if εX(1X×∨X)(1X×

µ2
X) = εX(1X × µX)(1X × ∨PX) if and only if w = k, where w and k are

obtained by the following pullbacks.

W
w′ //

w

��

V

v

��

X × (P2X)2

1×µ2
// X × (PX)2

and K
k′ //

k

��

M
m′ //

m

��

EX

λX

��
X × (P2X)2

1×∨
// X × P2X

1×µ
// X × PX

Form the pullback squares:

K̇
k̇′ //

k̇

��

N

n

��
X × PX × (P2X)2

1×1×∨
// X × PX × P2X

and V̇
v̇′ //

v̇

��

EPX

λPX

��
PX × (P2X)2

1×∨
// PX × P2X

So we have the following diagram in which both squares are pullbacks.

K̇
k̇′ //

k̇

��

N

n

��

n′ // EX × EPX

λX×λPX

��

X × PX × (P2X)2
1×1×∨

// X × PX × P2X
1×∆×1

// X × (PX)2 × P2X
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Since (1 × ∆ × 1)(1 × 1 × ∨) = (1 × 1 × ∨)(1 × ∆ × 1), we get the
following pullback squares.

K̇ //

k̇

��

EX × V̇
1×v̇′

//

λX×v̇

��

EX × EPX

λX×λPX

��

X × PX × (P2X)2
1×∆×1

// X × (PX)2 × (P2X)2
1×1×∨

// X × (PX)2 × P2X

Therefore in the following cube, the right and left faces are commutative
and all the other faces are pullbacks. Also since α is epi, so is it’s pullback
π.

K̇ k̇′ //

π

yytttttttttt

k̇

!!DDDDDDDDDDDDDDDDDD N

α

vvmmmmmmmmmmmmmmm

n

��
@@@@@@@@@@@@@@@@@

K k′ //

k

��
7777777777777777 M

m

  
AAAAAAAAAAAAAAAAAA

X × PX × (P2X)2
1×1×∨ //

π134
vvnnnnnnnnnnnn

X × PX × P2X

π13
wwooooooooooo

X × (P2X)2 1×∨ // X × P2X

by 2.2, v̇ = (λPX × 1) ∪ π132(λPX × 1) and so:

λX × v̇ = λX × [(λPX × 1) ∪ π132(λPX × 1)] =
[λX × (λPX × 1)] ∪ [λX × (π132(λPX × 1))]

Therefore

k̇ = (1×4× 1)−1(λX × v̇) =
[(1×4×1)−1(λX×(λPX×1))]∪ [(1×4×1)−1(λX×(π132(λPX×1)))] =
[(1×4× 1× 1)−1((λX × λPX)× 1)] ∪ [(1×4× 1× 1)−1(π1243((λX ×

λPX)× 1))] =
(n× 1) ∪ π1243(n× 1)

Hence taking the epi-mono factorization of (n× 1)⊕ (π1243(n× 1)), we
get the below commutative triangle; while the bottom square is the left face
of the above cube.
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(N × P2X) q (N × P2X)
(n×1)⊕(π1243(n×1))

//

'' ''OOOOOOOOOOOOO X × PX × (P2X)2

π134

((PPPPPPPPPPPP

K̇

π

&& &&MMMMMMMMMMMM
88

k̇

88qqqqqqqqqqq
X × (P2X)2

K
66

k

66mmmmmmmmmmmmmm

On the other hand using 2.2, we have:

w = (1× µ2)−1(v) =
(1× µ2)−1[π−1

12 (λX) ∪ π−1
13 (λX)] =

[(π12(1× µ2))−1(λX)] ∪ [(π13(1× µ2))−1(λX)] =
[((1× µ)π12)

−1(λX)] ∪ [((1× µ)π13)
−1(λX)] =

[π−1
12 (1× µ)−1(λX)] ∪ [π−1

13 (1× µ)−1(λX)] =
[π−1

12 (m)] ∪ [π−1
13 (m)] =

(m× 1) ∪ π132(m× 1)

In the following diagram, the commutativity of the top triangle can be
easily verified and that of the bottom triangle follows from the fact that w =
(m× 1) ∪ π132(m× 1).

(N × P2X) q (N × P2X)
π134((n×1)⊕π1243(n×1))=(n13×1⊕π132(n13×1))

//

(α×1)q(α×1)
** **UUUUUUUUUUUUUUUU X × (P2X)2

(M × P2X) q (M × P2X)

(m×1)⊕π132(m×1)
44hhhhhhhhhhhhhhhhhh

(( ((PPPPPPPPPPPPP

W

w

CC����������������

Therefore w and k are the mono part of the morphism π134((n × 1) ⊕
π1243(n× 1)) and so are equal.

Lemma 2.4. The monad multiplication µ of P preserves the false map, i.e.,
for each X the following triangle commutes.

1

fX
''OOOOOOOOOOOOO

fPX // P2X

µX

��
PX
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Proof. Since fPX ≤ ηPXfX , by 2.3, µXfPX ≤ µXηPXfX . So µXfPX ≤ fX ,
implying µXfPX = fX .

3. Preservation of Equalizers

Denoting the Kleisli category of a monad T by ET and the morphism in ET

associated to f : X // TY in E by f̂ : X // Y , we have:

Lemma 3.1. For a monad T in E , the functor U : ET // E defined by:

U( X
f̂
// Y ) = TX

µY T (f)
// TY

is right adjoint to the functor I : E // ET defined by:

I( X
f
// Y ) = X

η̂Y f // Y

Proof. See [1], [3].

Proposition 3.2. The functor U : ET // E preserves and reflects equaliz-
ers.

Proof. The preservation of equalizers follows from 3.1. To prove U reflects

equalizers, let E ê // X
f̂
//

ĝ
// Y be a diagram in ET such that the diagram

TE
µXT (e)

// TX
µY T (f)

//

µY T (g)
// TY is an equalizer in E . It follows that

µY T (f)µXT (e) = µY T (g)µXT (e). Also by monad axioms µXηTX = 1TX
and by naturality of η, ηTXe = T (e)ηE . So µY T (f)e = µY T (f)µXηTXe =
µY T (f)µXT (e)ηE = µY T (g)µXT (e)ηE = µY T (g)µXηTXe = µY T (g)e
and thus f̂ ê = ĝê.

Now if there is k̂ : Z // X such that f̂ k̂ = ĝk̂, then µY T (f)k =

µY T (g)k and so there is a unique k̄ : Z // TE such that µXT (e)k̄ = k.

Therefore ˆ̄k : Z
// E is in ET and êˆ̄k = k̂.

If there is k̂′ such that êk̂′ = k̂, then ̂µXT (e)k′ = k̂. It follows that
µXTek

′ = k and so k′ = k̄. Therefore ˆ̄k = k̂′ and the result follows.
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Theorem 3.3. Let E be a category and T = (T, η, µ) be a monad on E . For
morphisms f̂ , ĝ : X // Y in ET, the following conditions are equivalent.

a) In ET, there is a morphismE ê // X such that E ê // X
f̂
//

ĝ
// Y is

an equalizer.
b) In E , there is a morphism e : E // TX such that the diagram

TE
µXT (e)

// TX
µY T (f)

//

µY T (g)
// TY is an equalizer.

c) In E , there is a morphism m : M // TX , an object E and an iso-

morphism ϕ : TE //M such that M
m // TX

µY T (f)
//

µY T (g)
// TY is an

equalizer and the following diagram is commutative.

T2E
µE //

T (mϕ)

��

TE

mϕ

��
T2X µX

// TX

In this case the morphism ê of part (a) corresponds to the morphism e of
part (b) which in turn corresponds to the morphism mϕηE of part (c).

Proof. The equivalence of (a) and (b) follows from 3.2.
(b) ⇒ (c) : Setting M = TE, m = µXT (e) and ϕ = idTE , it is enough

to show the square in (c) commutes. By naturality of µ and monad definition
we have, µXT (e)µE = µXµTXT

2e = µXTµXT
2e = µXT (µXT (e)), as

desired.
(c) ⇒ (b) : Setting e = mϕηE : E // TX , we have, µXT (e) =

µXT (mϕηE) = µXT (mϕ)TηE = mϕµETηE = mϕ. The result now fol-
lows from the fact that ϕ is an isomorphism andm is an equalizer of µY T (f)
and µY T (g).

The last assertion holds obviously.

Lemma 3.4. Let partial morphisms in a category E be representable by
universal arrows, and let R be the representation monad. The morphisms

X
f
//

g
// Ỹ have an equalizer in E if and only if the morphisms X̃

µY f̃ //

µY g̃
// Ỹ

do.
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In this case an equalizer of µY f̃ and µY g̃ is ẽf,g, where ef,g is an equal-
izer of f and g.

Proof. Suppose an equalizer ef,g : E // X of f and g exists in E . Con-
sider the following diagram in which all the squares are pullbacks and the
triangle commutes.

E

ef,g
//

ηE

��

X
f
//

g
//

ηX

��

Ỹ

η
Ỹ

��

1

��
???????

Ẽ
ẽf,g

// X̃
f̃
//

g̃

// ˜̃Y µY

// Ỹ

We show ẽf,g is an equalizer of µf̃ and µg̃. Pulling back ηY along µY f̃ ẽf,g
and µY g̃ẽf,g, and using the fact that fef,g = gef,g, we get the same pull-
back square. Since ηY represents partial morphisms, by uniqueness we get
µY f̃ ẽf,g = µY g̃ẽf,g.

Now suppose h : H // X̃ is given such that µY f̃h = µY g̃h. Form the
following pullback.

H′

β

��

h′ // X

ηX

��
H

h

// X̃

We have fh′ = µY ηỸ fh
′ = µY f̃ηXh

′ = µY f̃hβ = µY g̃hβ = µY g̃ηXh
′ =

µY ηỸ gh
′ = gh′. So there is a unique morphism α : H ′ // E such that

ef,gα = h′. Now there is a unique morphism γ rendering pullback the fol-
lowing square.

H′

β

��

α // E

ηE

��
H

γ
// Ẽ

Now pullback of ηX along ẽf,gγ and along h yields the same 2-source. So
by uniqueness, ẽf,gγ = h. Now if γ′ satisfies ẽf,gγ′ = h, then ẽf,gγ′ = ẽf,gγ.
Form the following pullback.
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H′′

β′

��

α′ // E

ηE

��
H

γ′
// Ẽ

The equality ẽf,gγ′ = ẽf,gγ, yields H ′′ = H ′, β′ = β and ef,gα = ef,gα
′.

Since ef,g is mono, α = α′. Since ηE represents partial morphisms, unique-
ness yields γ = γ′, as desired.

Conversely suppose an equalizer i : I // X̃ of µY f̃ and µY g̃ exists in
E . Form the following pullback.

E

j

��

i′ // X

ηX

��
I

i

// X̃

One can easily verify that fi′ = gi′. Now suppose h : H // X is given
such that fh = gh. We have µY f̃ηXh = µY ηỸ fh = µY ηỸ gh = µY g̃ηXh.
So there is a unique α : H // I such that iα = ηXh. The above pullback
square now yields a unique k : H // E such that i′k = h and jk = α.
Now if there is k′ such that i′k′ = h, then ijk′ = ηXi

′k′ = ηXh = iα. Since
i is mono, jk′ = α. uniqueness implies k′ = k. This proves an equalizer of
f and g exists and is i′.

The last assertion holds for the direct implication. To prove it for the
converse, first we show the morphism j in the above pullback square is a
partial morphism classifier. Let the partial morphism:

D

id

��

d // E

Z

be given. There is a unique morphism δ making the big square below a
pullback.

D

id

��

d // E

j

��

i′ // X

ηX

��
Z

δ

AA
I

i

// X̃
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Since fi′d = gi′d, the pullback of ηY along both µY f̃ δ and µY g̃δ yields the
same 2-source. Uniqueness of representation gives µY f̃ δ = µY g̃δ. There-
fore there is a unique λ : Z // I such that iλ = δ. It can be easily shown
that the square:

D

id

��

d // E

j

��
Z

λ

// I

commutes and so is a pullback.
To show uniqueness, suppose there is λ′ : Z // I making the above

square a pullback. Then iλ′ makes the above big square a pullback and so
iλ′ = iλ. Therefore λ′ = λ, as desired. Hence j is a partial morphism
classifier.

Since ηE is also a partial morphism classifier, there is an isomorphism
ϕ : Ẽ // I such that ϕηE = j. It follows that the square:

E

ηE

��

i′ // X

ηX

��

Ẽ
iϕ

// X̃

is a pullback and that iϕ = ĩ′ is an equalizer of µY f̃ and µY g̃. The result
follows.

Theorem 3.5. Let partial morphisms in a category E be representable by
universal arrows, and let R be the representation monad. The morphisms

X
f̂
//

ĝ
// Y in the Kleisli category ER have an equalizer if and only if the

morphisms X
f
//

g
// Ỹ in E have an equalizer.

In this case an equalizerE ê // X of f̂ and ĝ corresponds to the map

E
e=ηXef,g

// X̃ , whereE
ef,g
// X is an equalizer of f and g.

Proof. The first assertion follows from 3.3 and 3.4. To prove the last asser-
tion, by 3.3 we have ê : E // X is an equalizer of f̂ and ĝ in ER if and
only if µX ẽ : E // X̃ is an equalizer of µY f̃ and µY g̃ and by 3.4, if and
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only if µX ẽ = ẽf,g, with ef,g an equalizer of f and g. Now consider the fol-
lowing diagram in which pullback of ηX along e is formed to get the mono
k; and all the other squares are known to be pullbacks.

K

1

��

1 // K

k

��

i′ // X

ηX

��

1 // X

ηX

��

K

ηK

��

k // E

ηE

��

e // X̃

η
X̃

��

K̃
k̃

// Ẽ
ẽ

// ˜̃X µX

// X̃

It follows from the above big pullback square that µX ẽk̃ = ĩ′. Now by 3.4,
on the one hand i′ is an equalizer of f and g and on the other hand ĩ′ is an
equalizer of µY f̃ and µY g̃. Therefore µX ẽk̃ and µX ẽ are both equalizers of
µY f̃ and µY g̃. Thus k̃ and so k are isomorphisms. Hence ef,g = i′k−1 is an
equalizer of f and g; and e = ηXi

′k−1 = ηXef,g, concluding the proof.

Corollary 3.6. Let R be the representation monad on a topos E . The Kleisli
category ER has equalizers. Furthermore an equalizer ê : E // X of a

pair X
f̂
//

ĝ
// Y in ER corresponds to e = ηXef,g : E // X̃ , where the

map ef,g : E // X is an equalizer of f and g.

Proof. Follows from 3.5 and the fact a topos has equalizers.

Saying f : Aq 1 // B q 1 is point preserving if it renders commuta-
tive the following triangle,

1

ν2
""EEEEEEEE

ν2 // E q 1

f

��
X q 1

we have:

Theorem 3.7. Let A be the add-point monad on a category E with a copro-

ductive terminal object 1. The morphisms X
f̂
//

ĝ
// Y in the Kleisli category
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EA have an equalizer if and only if the morphisms X q 1
f⊕ν2

//

g⊕ν2

// Y q 1

in E have an equalizer i : I // X q 1 and there exists an object E and an
isomorphism ϕ : E q 1 // I such that iϕ is point preserving.

In this case an equalizerE ê // X of f̂ and ĝ corresponds to the map

E
e=iϕν1

// X q 1.

Proof. The square:

(E q 1) q 1
µE=1⊕ν2 //

(iϕ)q1

��

E q 1

iϕ

��
(X q 1) q 1

µX=1⊕ν2
// X q 1

commutes if and only if iϕ(1 ⊕ ν2) = (1 ⊕ ν2)((iϕ) q 1) if and only if
(iϕ)⊕ (iϕν2) = (iϕ)⊕ ν2 if and only if iϕν2 = ν2 if and only if iϕ is point
preserving. The result follows by 3.3.

Definition 3.8. A category is called well add-pointed, provided that it has a
coproductive terminal object 1, in which coproducts with 1 are disjoint and
universal and squares of the form:

A

ν1

��

f
// B

ν1

��
A q 1

fq1
// B q 1

1

ν2

OO

// 1

ν2

OO

are pullbacks.

Denoting an equalizer of the pair X
f
//

g
// Y q 1 by Ef,g

� � ef,g // X, we

have:

Corollary 3.9. Let A be the add-point monad on a well add-pointed category

E . The morphisms X
f̂
//

ĝ
// Y in the Kleisli category EA have an equalizer if

and only if the morphisms X
f
//

g
// Y q 1 in E have an equalizer.
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In this case an equalizerEf,g
ê // X of f̂ and ĝ corresponds to the map

Ef,g
e=ν1ef,g

// X q 1.

Proof. Suppose an equalizer of X
f̂
//

ĝ
// Y exists in EA. By 3.7, an object E

and an isomorphism ϕ : E q 1 // I exist such that iϕ is point preserving,
where i : I // X q 1 is an equalizer of f ⊕ ν2 and g ⊕ ν2.

In the below diagram, the left squares are easily seen to be pullbacks, the
right top square is formed to be a pullback and the right bottom square is a
pullback because iϕ is point preserving and i is a mono.

E

ϕν1

��

1 // E

ν1

��
I

ϕ−1
// E q 1

1

ϕν2

OO

// 1

ν2

OO

E′

α

��

β
// X

ν1

��
I

i // X q 1

1

ϕν2

OO

// 1

ν2

OO

Since E is well add-pointed, the left vertical arrows in the above left and right
diagrams are coproducts and so there is an isomorphism ψ : E // E ′,
such that αψ = ϕν1. Now we have the following pullback squares, the left
of which can be verified easily.

E

ν1

��

ψ
// E′

α

��

β
// X

ν1

��
E q 1

ϕ
// I

i

// X q 1

One can now directly verify that βψ is an equalizer of f and g, as desired.

Conversely, suppose Ef,g
� � ef,g // X is an equalizer of X

f
//

g
// Y q 1 in

E . We show eq 1 : E q 1 // X q 1 is an equalizer of f ⊕ ν2 and g⊕ ν2.
Obviously (f ⊕ ν2)(eq 1) = (g⊕ ν2)(eq 1). Now given h : A // X q 1
such that (f ⊕ ν2)h = (g ⊕ ν2)h, form the following pullbacks.
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B

ν1

��

k // X

ν1

��
A

h // X q 1

C

ν2

OO

// 1

ν2

OO

Now the morphism k equalizes f and g and so there is a unique morphism
k̄ : B // Ef,g such that ef,gk̄ = k. Since the left vertical arrows in the

above diagram form a coproduct, h̄ = (ν1k̄)⊕ (ν2!) : A // E q 1.
We have (eq 1)h̄ = h. Uniqueness follows from the fact that eq 1 is mono,
as E is well add-pointed. The result now follows from 3.7 by taking ϕ = 1.

The last assertion can be verified easily.

Lemma 3.10. Let (M, ?, 1) be a monoid.
a) The relation on M , defined by m ≤ n if there is a ∈ M such that

n = am, is reflexive and transitive, i.e., a preorder.
b) The relation on M , defined by m ∼ n if there are a, b ∈ M such that

am = bn, is reflexive and symmetric.
c) The equivalence relations R≤ induced by ” ≤ ” and R∼ induced by

” ∼ ” are equal.

Proof. (a) and (b) are Obvious.
c) Letting k ≤≥ k′ to mean k ≤ k′ or k′ ≤ k, one has nR≤n′ if and only

if there are k1, k2, · · · , ki ∈ M such that n ≤≥ k1 ≤≥ k2 · · · ≤≥ ki ≤≥ n′.
On the other hand we have nR∼n′ if and only if there are k1, k2, · · · , ki ∈M
such that n ∼ k1 ∼ k2 · · · ∼ ki ∼ n′. The result follows from the facts that
k ≤≥ k′ implies k ∼ k′; and k ∼ k′ implies there are a, b ∈ M such that
ak = bk′ so that k ≤ ak = bk′ ≥ k′, and therefore kR≤k′. The result then
follows.

Setting R = R≤ = R∼, we have:

Lemma 3.11. Let (M, ?, 1) be a monoid and X be a set. On M ×X ,
a) the relation (m,x) ≤ (n, y) if m ≤ n and x = y, is a preorder.
b) the relation (m,x) ∼ (n, y) if m ∼ n and x = y, is reflexive and

symmetric.
c) the relation (m,x)R(n, y) if mRn and x = y, is an equivalence rela-

tion.
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Proof. Follows from 3.10.

Definition 3.12. Let M = (M̂, η, µ) be the M -Set monad and consider the

functions X
f
//

g
//M × Y . We set:

a) I
� � i //M ×X to be the equalizer of M ×X

f∗=(?×1)(1×f)
//

g∗=(?×1)(1×g)
//M × Y .

b) İ to be those (m,x) ∈ I for whichm is right cancelable, i.e. am = bm
implies a = b.

The relations on M × X given in 3.11, induce relations on I and İ .
Denoting the quotient map to İ/R by q : İ // İ/R, for sets A ⊆ B ⊆
M × X , the up segment of A in B by B ↑ A= {b ∈ B : there is a ∈
A such that b ≥ a} and the image of a function s by Im(s), we have:

Definition 3.13. Let M = (M̂, η, µ) be the M -Set monad and consider the

functions X
f
//

g
//M × Y . We say E ⊆ I is invariantly (f, g)-compatible if

I↑E= I .

Theorem 3.14. Let M = (M̂, η, µ) be the M -Set monad. The morphisms

X
f̂
//

ĝ
// Y in the Kleisli category SetM have an equalizer if and only if there

is a section s : İ/R // İ of q : İ // İ/R such that Im(s) is invariantly
(f, g)-compatible.

In this case an equalizerIm(s) ê // X of f̂ and ĝ corresponds to the

map Im(s) � � e //M ×X.

Proof. Suppose an equalizer of the pair X
f̂
//

ĝ
// Y in SetM is the map

ê : E // X . Without loss of generality we assume the corresponding map

E
� � e //M ×X is the inclusion. By 3.3,M × E

e∗=(?×1)(1×e)
//M ×X

is an equalizer of M ×X
f∗
//

g∗
//M × Y . Since I

� � i //M ×X is also an
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equalizer, there is a bijectionM × E ψ
// I such that iψ = e∗. It follows

that ψ(m,n, x) = (mn, x). Let (n, x) ∈ E. On the one hand (n, x) =
ψ(1, n, x) ∈ I , thus E ⊆ I . On the other hand if a, b ∈ M and an = bn,
then since e∗ is mono, a = b, thus E ⊆ İ .

Next we define s : İ/R // İ . Let [(m,x)] ∈ İ/R, with (m,x) ∈ İ .
Then ψ−1(m,x) = (m′, ṁ, x), with (ṁ, x) ∈ E and m = m′ṁ. Set
s([(m,x)]) = (ṁ, x). If [(m,x)] = [(n, x)], then mRn, i.e., there are
k1, k2, · · · , ki such that m ∼ k1, k1 ∼ k2, · · · , ki ∼ n. Also s([(m,x)]) =
(ṁ, x), with (ṁ, x) ∈ E, m = m′ṁ and s([(n, x)]) = (ṅ, x), with (ṅ, x) ∈
E and n = n′ṅ. Since each (kj, x) ∈ İ ⊆ I , kj = k′j k̇i with (k̇j, x) ∈ E; and
since m ∼ k1, there are a, b ∈M such that am = bk1. Then am′ṁ = bk′1k̇1.
Monotonicity of e∗ implies ṁ = k̇1. Continuing in this manner, we get
k̇1 = k̇2 = · · · = k̇i = ṅ. So (ṁ, x) = (ṅ, x) and therefore s is well
defined. Now m = m′ṁ implies m ∼ ṁ and so [(ṁ, x)] = [(m,x)]. It fol-
lows that qs([(m,x)]) = q(ṁ, x) = [(ṁ, x)] = [(m,x)]. Hence qs = 1,
i.e., s is a section of q. To show E = Im(s), we know Im(s) ⊆ E.
Now if (m,x) ∈ E, then (m,x) ∈ I and so m = m′ṁ with (ṁ, x) ∈ E.
Since (m,x) and (ṁ, x) are in E and 1m = m′ṁ, monotonicity of e∗ yields
m = ṁ. Hence (m,x) = (ṁ, x) = s([(m,x)]) ∈ Im(s). Thus E ⊆ Im(s).
Therefore E = Im(s). Finally we show I ↑ Im(s)= I . Let (n, x) ∈ I .
We know n = n′ṅ with (ṅ, x) ∈ E. It follows that (n, x) ≥ (ṅ, x) and
(ṅ, x) ∈ E = Im(s). Thus (n, x) ∈I ↑ Im(s). Hence I ↑ Im(s)= I , i.e.,
Im(s) is invariantly (f, g)-compatible.

Conversely suppose there is a section s : İ/R // İ of the morphism

q : İ // İ/R such that Im(s) is invariantly (f, g)-compatible. Denote

by Im(s) � � e //M ×X the inclusion. For (m,n, x) ∈ M × Im(s), we
have f ∗e∗(m,n, x) = (mnf1(x), f2(x)), where f1 and f2 denote the first
and the second projection of f , respectively. Since (n, x) ∈ Im(s) ⊆ I ,
we have (nf1(x), f2(x)) = (ng1(x), g2(x)). It follows that f ∗e∗(m,n, x) =
g∗e∗(m,n, x). Hence f ∗e∗ = g∗e∗.

Now suppose h : A //M ×X is given such that f ∗h = g∗h. Let
a ∈ A and h(a) = (m,x). Then f ∗(m,x) = g∗(m,x) and so (m,x) ∈
I =I ↑ Im(s). So (m,x) ≥ (ṁ, x) with (ṁ, x) ∈ Im(s). It follows that
m = m′ṁ and (ṁ, x) ∈ Im(s). Define h̄ : A //M × Im(s) by h̄(a) =
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(m′, ṁ, x). If a = b, then h(a) = h(b) = (m,x). m = m′ṁ = n′ṅ with
(ṁ, x) and (ṅ, x) in Im(s). So (ṁ, x) ∼ (ṅ, x), (ṁ, x) = s([(k, x)]) and
(ṅ, x) = s([(l, x)]), for some k and l. It follows that [(k, x)] = qs([(k, x)]) =
[(ṁ, x)] = [(ṅ, x)] = qs([(l, x)]) = [(l, x)]. Therefore (ṁ, x) = (ṅ, x) and
so ṁ = ṅ. Now m′ṁ = n′ṅ implies m′ṁ = n′ṁ and since ṁ is right
cancelable, we get m′ = n′. So h̄(a) = (m′, ṁ, x) = (n′, ṅ, x) = h̄(b).
Hence h̄ is well defined. One can easily prove e∗h̄ = h and e∗ is mono.
Uniqueness of h̄ with e∗h̄ = h therefore follows. Hence e∗ is an equalizer of
f ∗ and g∗ and by 3.3 the result follows.

Finally the last assertion obviously holds.

Denoting an equalizer of the pair X
f
//

g
//M × Y by Ef,g

� � ef,g // X, we

have:

Corollary 3.15. Let M = (M̂, η, µ) be the M -Set monad with (M, ?, 1) an

abelian monoid. The morphisms X
f̂
//

ĝ
// Y in the Kleisli category SetM

have an equalizer if and only if for (m,x) ∈M ×X , mf1(x) = mg1(x) and
f2(x) = g2(x) implies x ∈ Ef,g.

In this case an equalizerEf,g
ê // X of f̂ and ĝ corresponds to the map

Ef,g
e=〈1̃,ef,g〉

//M ×X .

Proof. Suppose the equalizer of f̂ and ĝ exists. Then by 3.14, we have the
existence of a section s : İ/R // İ of q : İ // İ/R such that Im(s) is

invariantly (f, g)-compatible. Let (m,x) ∈ Im(s). Then (m,x) ∈ İ ⊆ I
and so mf1(x) = mg1(x), f2(x) = g2(x) and m is right cancelable. Since
the monoid is abelian, m is also left cancelable. Therefore f1(x) = g1(x).
It follows that f(x) = g(x), i.e., x ∈ Ef,g. Now suppose x ∈ Ef,g. Then
(1, x) ∈ I and so there is (ux, x) ∈ Im(s) such that 1 ≥ ux. Therefore
1 = aux = uxa, i.e., ux is invertible. If (m,x) and (n, x) are in Im(s),
then since mn = nm, e∗(m,n, x) = e∗(n,m, x). Therefore m = n and so
(m,x) = (n, x). Putting these together we conclude that Im(s) = {(ux, x) :
x ∈ Ef,g}, where each ux is invertible.
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Now if (m,x) ∈ M × X , mf1(x) = mg1(x) and f2(x) = g2(x), then
(m,x) ∈ I and therefore (m,x) ≥ (n, x) with (n, x) ∈ Im(s). This implies
x ∈ Ef,g.

Conversely suppose for (m,x) ∈ M × X , mf1(x) = mg1(x) and

f2(x) = g2(x) implies x ∈ Ef,g. It is easy to see forEf,g
e=〈1̃,ef,g〉

//M ×X ,

M × Ef,g e∗ //M ×X is the inclusion. Now direct computation shows that
e∗ is an equalizer of f ∗ and g∗. The result then follows by 3.3.

The last assertion follows easily.

Definition 3.16. Let P be the power object monad on a topos E and let

f : 1 // PX denote the false map. Given morphisms X
f
//

g
// PY ,

a) a morphism A
a // PX is said to be (f, g)-invariant relative to µ,

if it factors through the equalizer i : I // PX of PX
µP (f)

//

µP (g)
// PY , i.e., if

µP (f)a = µP (g)a.
b) a morphism 1

a // PX is said to be (f, g)-simple if it is a minimal
element of E(1, PX) that is not equal to f and that is (f, g)-invariant relative
to µ, where E(A,PX) is partially ordered by a ≤ b if b = a ∨ b.

Lemma 3.17. Let P be the power object monad on a topos E and consider

the maps X
f
//

g
// PY in E . A morphism e : E // PX is (f, g)-invariant

if and only if the morphism µXP (e) : PE // PX is.

Proof. Suppose e is (f, g)-invariant. We have:

µY P (f)µXP (e) = µY µPY P
2(f)P (e) =

µY P (µY )P 2(f)P (e) = µY P (µY P (f)e)

Similarly µY P (g)µXP (e) = µY P (µY P (g)e). The result then follows.
Now suppose µXP (e) is (f, g)-invariant. We have:

µY P (f)e = µY P (f)µXηPXe = µY P (f)µXP (e)ηE

Similarly
µY P (g)e = µY P (g)µXP (e)ηE . The result then follows.
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Recall that, [8], a well-pointed topos is one in which parallel morphisms
are equal if they are equal when composed on the right with all the global
elements; also that a well-pointed topos is two-valued.

Lemma 3.18. A topos is well-pointed if and only if for all X , the sink
( 1

x // X )x∈hom(1,X) is a coproduct.

Proof. For an objectX of a well-pointed topos, setGX = qhom(1,X)1. There
is a unique ϕ making the following triangle commute.

1
νx //

x

  BBBBBBBB GX

ϕ

��
X

If αϕ = βϕ, then for all x ∈ hom(1, X), αϕνx = βϕνx and so for all
x ∈ hom(1, X), αx = βx. Therefore α = β, implying ϕ is an epimorphism.
(Note if hom(1, X) = ∅, then the assertion for all x ∈ hom(1, X), αx = βx
is vacuously true, implying α = β, so that there is at most one morphism
with domain X , implying ϕ is an epimorphism).

Now given f : 1 // GX , form the pullback:

Ax //

f−1(νx) p.b.

��

1

νx

��
1

f

// GX

Since the topos is two-valued and Ax is a subobject of 1, it is either 0 or 1.
If for all x, Ax = 0, then f−1(νx) is ! : 0 // 1. So 1 = f−1(⊕xνx) =
⊕xf−1(νx) = ⊕x! =!, which is a contradiction. Therefore there exists x
such that Ax = 1. It follows that there is x such that f = νx.

Now if 1
f
//

g
// GX are morphisms with ϕf = ϕg, then there are x and

y such that f = νx and g = νy. So ϕνx = ϕνy implying x = y. It follows
that f = νx = νy = g. So ϕ is a monomorphism, hence an isomorphism.

The converse follows from the fact that a coproduct is an epi sink.

Lemma 3.19. In a well-pointed topos a morphism that has a unique right
inverse is an isomorphism.
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Proof. Suppose f : A // B has a unique right inverse g : B // A. Let
a : 1 // A be a morphism. For b ∈ hom(1, B), define kb ∈ hom(1, A) by

kb =

{
gb if b 6= fa

a if b = fa
. By 3.18, there is a unique morphism k : B // A

rendering commutative the following triangle.

1

kb
''NNNNNNNNNNNNN

b // B

k

��
A

Now for all b ∈ hom(1, B), fkb = fkb =

{
fgb if b 6= fa

fa if b = fa
= b. It follows

that fk = 1. Uniqueness of g yields k = g. So a = kfa = kfa = gfa.
Therefore for all a ∈ hom(1, A), gfa = a. It follows that gf = 1. Hence g
is the inverse of f .

Lemma 3.20. Let P be the power object monad on a topos E . If the ar-
rows e : E // PX and z : 1 // PE are given, then for all arrows
b : 1 // Z , eẑb ≤ µXP (e)z, where ẑ is the corresponding subobject of
z obtained by:

Z //

ẑ p.b.

��

1

t

��
E

z̃

// Ω

Proof. Let b : 1 // Z be given. ẑ is classified by z̃ and one can easily
verify that ẑb is classified by η̃ẑb = εE(1 × ηE)(1 × ẑ)〈1, b!〉. Now since
ẑb ≤ ẑ, η̃ẑb ≤ z̃. It follows that ηẑb ≤ z and so by 2.3, µXP (e)ηẑb ≤
µXP (e)z which in turn implies eẑb ≤ µXP (e)z.

Lemma 3.21. Let P be the power object monad on a topos E . If the map
e : E // PX in E is such that µXP (e) is a monomorphism, then the map
fX : 1 // PX does not factor through e.

Proof. Suppose there is f ′ : 1 // E such that fX = ef ′. Then we have
µXP (e)ηEf

′ = µXηPXef
′ = fX and by 2.4 and the fact that P (e) = ∃e
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preserves the false map, we have µXP (e)fE = fX . So µXP (e)ηEf
′ =

µXP (e)fE . Since µXP (e) is a monomorphism, we get ηEf ′ = fE . This im-
plies the subobjects f ′ : 1 // E and ! : 0 // E, corresponding to ηEf ′

and fE respectively, are equal; which is a contradiction.

Lemma 3.22. a) In a topos, if !E : 0 // E is the unique morphism, then
P (!E) = fE .

b) In a well-pointed topos, if b : 1 // E and z : 1 // PE are mor-
phisms such that fE 6= z ≤ ηEb, then z = ηEb.

Proof. a) Since f0 : 1 // P (0) = 1 is the identity morphism and P (!A)f0
= ∃!Af0 = fA, we get P (!A) = fA.

b) Since the corresponding subobjects of z and ηEb are respectively the
maps ẑ : Z // E and b : 1 // E, we get ẑ ≤ b, i.e., there is a mor-
phism α : 1 // Z such that bα = ẑ. But then α is a monomorphism and
since the topos is well-pointed, Z = 0 or Z = 1. If Z = 0, then z = fE , a
contradiction. So Z = 1, implying ẑ = b. It then follows that z = ηEb.

For a pair of morphisms X
f
//

g
// PY , denoting an equalizer of the pair

PX
µP (f)

//

µP (g)
// PY by i : I // PX , and setting:

S = { a : 1 // PX | a is (f, g)-simple}

we have:

Theorem 3.23. Let P be the power object monad on a well-pointed topos

E . The morphisms X
f̂
//

ĝ
// Y in the Kleisli category EP have an equal-

izer if and only if there is a unique morphism I
s // P (qS1) such that

µXP (⊕a∈Sa)s = i.

In this case an equalizerqS1
ê // X of f̂ and ĝ corresponds to the map

qS1
e=⊕a∈Sa

// PX .
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Proof. LetE ê // X be an equalizer of f̂ and ĝ. By 3.3,PE
µXP (e)

// PX
is an equalizer of µP (f) and µP (g). Since i is also an equalizer of this pair,
there is a unique isomorphism s : I // PE such that µP (e)s = i. We are
done as soon as we show E = qS1 and e = ⊕a∈Sa.

To prove E = qS1, we show S ∼= E(1, E). The result then follows by
3.18.

In case E ∼= 0, then PE ∼= 1 and so there is a unique morphism from
1 to PE. It follows that the only morphism from 1 to PE is fE . Now if
a ∈ S , then there is a unique a′ : 1 // PE such that a = µXP (e)a′. But
then a′ = fE and so by 2.4, a = fX , a contradiction. Hence S = ∅ and so
S = E(1, E) = ∅.

Now assume E 6∼= 0. Let a ∈ S. Since a is (f, g)-invariant, there is a
unique 1

z // PE such that µXP (e)z = a. If Z = 0, then z̃ = f ! and
z = fE . But then by 2.4, a = fX , a contradiction. So Z 6= 0 and therefore
by 3.18, hom(1, Z) 6= ∅. Now let b : 1 // Z be any morphism. By 3.20,
eẑb ≤ a. Now since µP (e) is (f, g)-invariant, so is e by 3.17. It follows
that eẑb is (f, g)-invariant and by 3.21, eẑb 6= fX . Since a is (f, g)-simple,
eẑb = a. Define κ : S // E(1, E) to take a to ẑb.

Now let b ∈ E(1, E). We show eb is (f, g)-simple. Since e is (f, g)-
invariant, so is eb. Also by 3.21, eb 6= fX . Now if a : 1 // PX is (f, g)-
invariant, a 6= fX and a ≤ eb, then there is z : 1 // PE such that a =
µXP (e)z. By 2.3, we have µXPe(z∨ηEb) = (µXP (e)z)∨ (µXP (e)ηEb) =
a ∨ eb = eb = µXP (e)ηEb. So z ∨ ηEb = ηEb, i.e., z ≤ ηEb. Since
a 6= fX , by 2.4, z 6= fE . Now by 3.22, z = ηEb and so a = µXP (e)z =

µXP (e)ηEb = eb as desired. Define κ′ : E(1, E) // S to take b to eb.

One can easily verify that S
κ // E(1, E)
κ′
oo establishes an isomorphism.

Using the isomorphisms κ and κ′, one could get the isomorphisms be-
tween qS1 and qE(1,E)1 ∼= E. Some computations then show e = ⊕a∈Sa.

Now suppose there is a unique morphism I
s // P (qS1) such that

µXP (⊕a∈Sa)s = i. Set E = qS1 and e = ⊕a∈Sa. Since each a ∈ S
is (f, g)-invariant, so is e and by 3.17, so is µXP (e). Therefore there exists
a unique r : PE // I such that ir = µXP (e). Now irs = µXP (e)s = i,
implying rs = 1. Now if there is s′ such that rs′ = 1, then µXP (e)s′ =
irs′ = i. Uniqueness implies s′ = s. Therefore r has a unique right inverse
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s. By 3.19, r is an isomorphism. Thus PE
µXP (e)

// PX
µY P (f)

//

µY P (g)
// PY

is an equalizer and by 3.3, we are done.
The last assertion is easily seen to be valid.

Let P be the power set monad and X
f
//

g
// PY be functions in the cat-

egory Set. Let’s call a subset A of X , (f, g)-invariant if
⋃
a∈A f(a) =⋃

a∈A g(a) and (f, g)-simple if it is minimal non-empty (f, g)-invariant. Set-
ting S = {A ⊆ X : A is (f, g)-simple}, we have:

Corollary 3.24. Let P be the power set monad. The morphisms X
f̂
//

ĝ
// Y

in the Kleisli category SetP have an equalizer if and only if every (f, g)-
invariant subset of X can be uniquely written as a union of (f, g)-simple
subsets.

In this case an equalizerS ê // X of f̂ and ĝ corresponds to the map

S
� � e // PX.

Proof. Follows from 3.23 and the existence of a unique s satisfying the
equality µXP (⊕a∈Sa)s = i.
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