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Résumé. Il existe des systèmes de transitions cubiques contenant des cubes
ayant un nombre arbitrairement grand de faces. Un système de transition
régulier est un système de transitions cubique tel que tout cube a le bon nom-
bre de faces. Les propriétés catégoriques et homotopiques des systèmes de
transitions réguliers sont similaires à celles des cubiques. On donne une de-
scription combinatoire complète des objets fibrants dans les cas cubiques et
réguliers. Un des deux appendices contient un lemme indépendant sur la re-
striction d’une adjonction à une sous-catégorie réflective pleine.
Abstract. There exist cubical transition systems containing cubes having an
arbitrarily large number of faces. A regular transition system is a cubical
transition system such that each cube has the good number of faces. The cat-
egorical and homotopical results of regular transition systems are very similar
to the ones of cubical ones. A complete combinatorial description of fibrant
cubical and regular transition systems is given. One of the two appendices
contains a general lemma of independant interest about the restriction of an
adjunction to a full reflective subcategory.
Keywords. higher dimensional transition system, combinatorial model cate-
gory, weak factorization system, left determined model category
Mathematics Subject Classification (2010). 18C35,18G55,55U35,68Q85

1. Introduction

Presentation

The purpose of Cattani-Sassone’s notion of higher dimensional transition
system introduced in [4] is to model the concurrent execution of n actions
by a transition between two states labelled by a multiset {u1, . . . , un} of ac-
tions. A multiset is a set with a possible repetition of its elements: e.g. {u}
is not equal to {u, u}. A higher dimensional transition system for Cattani
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Figure 1: a||b : Concurrent execution of a and b

and Sassone consists of a set of states S, a set of actions L, a set of labels
Σ together with a labelling map µ : L → Σ, and a set of tuples (α, T, β)
of transitions where α and β are two states and T is a multiset of actions.
All these data have to satisfy several axioms which are detailed in the orig-
inal paper [4]. The higher dimensional transition a||b depicted by Figure 1
consists of the transitions (α, {a}, β), (β, {b}, δ), (α, {b}, γ), (γ, {a}, δ) and
(α, {a, b}, δ). The labelling map is the identity map. Note that with a = b,
we would get the 2-dimensional transition (α, {a, a}, δ) which is not equal to
the 1-dimensional transition (α, {a}, δ). The latter actually does not exist in
Figure 1. Indeed, the only 1-dimensional transitions labelled by the multiset
{a} are (α, {a}, β) and (γ, {a}, δ).

In [7], Cattani-Sassone’s notion is reworded in a more convenient math-
ematical setting by introducing the notion of weak transition system. The
transition (α, {a, b}, δ) is then represented by the tuple (α, a, b, δ). The set
of transitions has therefore to satisfy the Multiset axiom (here: if the tu-
ple (α, a, b, δ) is a transition, then the tuple (α, b, a, δ) has to be a transition
as well) and the Composition axiom which is a topological version (in the
sense of topological functors) of Cattani-Sassone’s interleaving axioms. The
Composition axiom is called the Coherence axiom in [7]. The terminol-
ogy is changed in the next paper [8] because this axiom behaves a little bit
like a partial 5-ary composition in the proofs 1. For example, the Compo-
sition axiom is the key axiom for interpreting the higher dimensional tran-
sition system modeling the n-cube as the free object generated by a “pure”

1In the nLab page devoted to higher dimensional transition systems, T. Porter uses the
terminology “patching axiom”, which is quite a good idea too.
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n-dimensional transition (this weak transition system consists of two states
and a n-dimensional transition going from one state to the other one) [7,
Theorem 5.6]. Indeed, the free compositions generated by the Composition
axiom generate all transitions of lower dimension between the intermediate
states (i.e. with a source different from the initial state and a target differ-
ent from the final state) . Weak transition systems assemble into a locally
finitely presentable categoryWTS such that the forgetful functor forgetting
the transitions, and keeping the states and the actions, is topological in the
sense of [1, Definition 21.1].

The full coreflective subcategory CTS of cubical transition systems was
then introduced in [8]. They consist of the weak transition systems which are
equal to the union of their subcubes. It was preferred to the full coreflective
category ofWTS of colimits of cubes because the latter does not contain the
boundary of a 2-cube. The category CTS is sufficient to describe the path
spaces of all process algebras for any synchronization algebra because their
path spaces are colimits of cubes and because all colimits of cubes are unions
of cubes. Indeed, the weak transition system associated with a process alge-
bra is obtained by starting from a labelled precubical set using the method
described in [5], and by taking the free symmetric labelled precubical set
generated by it [6], and then by applying the colimit-preserving realization
functor from labelled symmetric precubical sets to weak transition systems
constructed in [7].

However, the notion of cubical transition system is still too general. In-
deed, a n-dimensional transition in a cubical transition system may have an
arbitrarily large number of faces in each dimension. Here is a simple ex-
ample of a 2-transition X with 2n + 2 edges for an arbitrarily large integer
n ≥ 1:

• the set of states is {I, F, a, b1, . . . , bn}

• the set of actions is {u, v} with µ(u) 6= µ(v) (µ denotes the labelling
map)

• the transitions are the tuples

{(I, u, v, F ), (I, v, u, F ), (I, u, a), (a, v, F ),

(I, v, bi), (bi, u, F ) | i ≤ 1 ≤ n.}
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The weak transition system above is cubical because it is the union, for 1 ≤
i ≤ n, of the 2-cubes Zi having the set of vertices {I, F, a, bi}, the set of
actions {u, v} and the set of six transitions

{(I, u, v, F ), (I, v, u, F ), (I, u, a), (a, v, F ), (I, v, bi), (bi, u, F )}.

To avoid such a behavior, it suffices to replace the Intermediate state ax-
iom by the Unique intermediate state axiom, also called CSA2 (see Defini-
tion 2.2). The latter axiom is already introduced in [7] to formalize Cattani-
Sassone’s notion of higher dimensional transition systems in the setting of
weak transition systems. We obtain a full reflective subcategory RTS of
that of cubical transition systems whose objects are called the regular tran-
sition systems. Roughly speaking, a regular transition system is a Cattani-
Sassone transition system which does not necessarily satisfy CSA1 (see Def-
inition 2.4). There is the chain of functors

RTS ⊂reflective CTS ⊂coreflective WTS
ω−→topological Set

{s}∪Σ

where ω is the topological functor towards a power of the category of sets
forgetting the transitions: s denotes the sort of states and each element x
of the set of labels Σ denotes the sort of actions labelled by x. With the
notations above, one has

ω(a||b) = ({α, β, γ, δ}, {a}, {b})

since the labelling map is the identity map. One has

ω(X) = ({I, F, a, b1, . . . , bn}, {u}, {v})

since µ(u) 6= µ(v).
Note that none of the categories of colimits of cubes and of regular transi-

tion systems is included in the other one: see the final comment of Section 2.
This paper is devoted to the geometric properties of regular transition

systems and to their relationship with cubical ones. Their study requires the
use of the whole chain of functors above which is the composite of a right
adjoint followed by a left adjoint followed by a topological functor. Despite
the fact that colimits are different in RTS and in CTS, the main results are
very similar to the ones obtained for cubical transition systems in [8]. We
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will therefore follow the plan of [8]. The left determined model structure
with respect to the cofibrations of cubical transition systems between regular
ones is proved to exist. It is proved that the Bousfield localization by the
cubification functor is the model structure having the same class of cofibra-
tions and the fibrant objects are the regular transitions systems such that for
any transition (α, u1, . . . , un, β), the tuple (α, v1, . . . , vn, β) is a transition if
µ(ui) = µ(vi) for 1 ≤ i ≤ n. The homotopical structure of this Bousfield
localization will be completely elucidated. Roughly speaking, after identify-
ing each action of a regular transition system with its label and after remov-
ing all non-discernable higher dimensional transitions, two regular transition
systems are weakly equivalent if and only if they are isomorphic.

Outline of the paper

Section 2 introduces all definitions of higher dimensional transition systems
used in this paper: weak, cubical, regular. It starts with the notion of regu-
lar transition system (Definition 2.2), and then by removing some axioms,
the notions of cubical transition system and of weak transition system are
recalled. This section does not contain anything new, except the notion of
regular transition system. Section 3 is a technical section which provides
a sufficient condition for an ω-final lift of cubical transition systems to be
cubical (Theorem 3.3). This result is used in the construction of several cu-
bical transition systems. Section 4 deals with the most elementary properties
of regular transition systems. The reflection CSA2 : CTS → RTS is stud-
ied. The definition of the cubification functor is recalled and its relationship
with regular transition systems is explained. Section 5 establishes the ex-
istence of the left determined model structure of regular transition systems.
The weak equivalences of this model structure are completely characterized.
The Bousfield localization of the left determined model category of regu-
lar transition systems by the cubification functor is studied and completely
elucidated in Section 6. The comparison with cubical transition systems is
discussed there. The proof of Theorem 6.12 is postponed to Section A to
not overload Section 6. Finally, Section 7 completely characterizes the fi-
brant cubical and regular transition systems in the Bousfield localizations
by the cubification functor. Section B is a categorical lemma of indepen-
dant interest providing a easy way to restrict an adjunction to a full reflective
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subcategory.

Prerequisites and notations

All categories are locally small. The set of maps in a category K from X
to Y is denoted by K(X, Y ). The initial (final resp.) object, if it exists, is
always denoted by ∅ (1 resp.). The identity of an object X is denoted by
IdX . A subcategory is always isomorphism-closed. We refer to [2] for lo-
cally presentable categories, to [19] for combinatorial model categories, and
to [1] for topological categories, i.e. categories equipped with a topological
functor towards a power of the category of sets. We refer to [12] and to [11]
for model categories. For general facts about weak factorization systems,
see also [13]. The reading of the first part of [16], published in [15], is rec-
ommended for any reference about good, cartesian, and very good cylinders.

2. Regular higher dimensional transition systems

This section does not contain anything new, except the notion of regular
transition system. It collects definitions and facts about the various notions
of transition systems which were expounded in the previous papers of this
series [7] and [8]. To keep this section concise, the definition of a regular
transition system is given first, and then by removing some axioms, the def-
initions of a cubical transition system and of a weak transition system are
recalled. It is necessary to recall all these definitions because most of the
proofs of this paper make use of the whole chain of functors

RTS ⊂reflective CTS ⊂coreflective WTS
ω−→topological Set

{s}∪Σ

where Set is the category of sets.

Notation 2.1. A nonempty set of labels Σ is fixed.

Definition 2.2. A regular higher dimensional transition system consists of a
triple

X = (S, µ : L→ Σ, T =
⋃
n≥1

Tn)

where S is a set of states, where L is a set of actions, where µ : L → Σ
is a set map called the labelling map, and finally where Tn ⊂ S × Ln × S
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for n ≥ 1 is a set of n-transitions or n-dimensional transitions such that one
has:

• (All actions are used) For every u ∈ L, there is a 1-transition (α, u, β).

• (Multiset axiom) For every permutation σ of {1, . . . , n} with n ≥ 2, if
the tuple (α, u1, . . . , un, β) is a transition, then the tuple

(α, uσ(1), . . . , uσ(n), β)

is a transition as well.

• (Composition axiom 2) For every (n+ 2)-tuple (α, u1, . . . , un, β) with
n ≥ 3, for every p, q ≥ 1 with p+ q < n, if the five tuples

(α, u1, . . . , un, β), (α, u1, . . . , up, ν1), (ν1, up+1, . . . , un, β),

(α, u1, . . . , up+q, ν2), (ν2, up+q+1, . . . , un, β)

are transitions, then the (q+2)-tuple (ν1, up+1, . . . , up+q, ν2) is a tran-
sition as well.

• (Unique intermediate state axiom or CSA2) 3. For every n ≥ 2,
every p with 1 ≤ p < n and every transition (α, u1, . . . , un, β) of
X , there exists a unique state ν such that both (α, u1, . . . , up, ν) and
(ν, up+1, . . . , un, β) are transitions.

A map of regular transition systems

f : (S, µ : L→ Σ, (Tn)n≥1)→ (S ′, µ′ : L′ → Σ, (T ′n)n≥1)

consists of a set map f0 : S → S ′, a commutative square

L
µ
//

f̃
��

Σ

L′
µ′
// Σ

2This axiom is called the Coherence axiom in [7] and [8].
3This axiom is also called CSA2 in [7]
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such that if the tuple (α, u1, . . . , un, β) is a transition, then the tuple

(f0(α), f̃(u1), . . . , f̃(un), f0(β))

is a transition. The corresponding category is denoted by RTS. The n-
transition (α, u1, . . . , un, β) is also called a transition from α to β. The
maps f0 and f̃ will be also denoted by f .

Notation 2.3. The labelling map from the set of actions to the set of labels
will be very often denoted by µ. The set of states of a regular transition
system X is denoted by X0.

The category RTS of regular higher dimensional transition systems is
a full subcategory of the category of cubical transition systems CTS intro-
duced in [8]. By definition, a cubical transition system satisfies all axioms
of higher dimensional transition system but one: the Unique intermediate
state axiom is replaced by the Intermediate state axiom, the state ν is not
necessarily unique anymore. The category CTS is a full subcategory of the
category of weak transition systemsWTS introduced in [7]. By definition, a
weak transition system satisfies all axioms of regular transition systems but
two: the Unique intermediate state axiom is removed and an action is not
necessarily used. Weak transition system is the “minimal” definition: the
multiset axiom is indeed required to ensure that the concurrent execution of
n actions does not depend on the order of the labelling, and the composition
axiom is required (even if its use is often hidden) e.g. to ensure that labelled
n-cubes are free objects (e.g. see the proof of [7, Theorem 5.6]). One has
the inclusions of full subcategories RTS ⊂ CTS ⊂ WTS. The inclusion
RTS ⊂ CTS is strict since the introduction gives an example of cubical tran-
sition system which is not regular. The situation is summarized in Table 1.
Let us recall now the definition of CSA1 for this sequence of definitions to
be complete:

Definition 2.4. [7, Definition 4.1 (2)] and [8, Definition 7.1] A cubical tran-
sition system satisfies the First Cattani-Sassone axiom (CSA1) if for every
transition (α, u, β) and (α, u′, β) such that the actions u and u′ have the
same label in Σ, one has u = u′.

The categoryWTS is locally finitely presentable and the functor

ω :WTS −→ Set{s}∪Σ
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C-S Regular Cubical Weak
Multiset axiom yes yes yes yes
Composition axiom yes yes yes yes
All actions used yes yes yes no
Intermediate state axiom yes yes yes no
Unique Intermediate state axiom yes yes no no
CSA1 yes no no no

Table 1: Summary of all variants of transition systems (C-S meaning
Cattani-Sassone).

taking the weak higher dimensional transition system

(S, µ : L→ Σ, (Tn)n≥1)

to the ({s}∪Σ)-tuple of sets (S, (µ−1(x))x∈Σ) ∈ Set{s}∪Σ is topological by
[7, Theorem 3.4].

Let us recall that the paradigm of topological functor is the underlying
set functor from the category of general topological spaces to that of sets.
The notion of topological functor is a generalization of the notions of initial
and final topologies [1]. More precisely, a functor ω : C → D is topological
if each cone (fi : X → ωAi)i∈I where I is a class has a unique ω-initial
lift (the initial structure) (f i : A → Ai)i∈I , i.e.: 1) ωA = X and ωf i = fi
for each i ∈ I; 2) given h : ωB → X with fih = ωhi, hi : B → Ai for
each i ∈ I , then h = ωh for a unique h : B → A. Topological functors
can be characterized as functors such that each cocone (fi : ωAi → X)i∈I
where I is a class has a unique ω-final lift (the final structure) f i : Ai → A,
i.e.: 1) ωA = X and ωf i = fi for each i ∈ I; 2) given h : X → ωB
with hfi = ωhi, hi : Ai → B for each i ∈ I , then h = ωh for a unique
h : A → B. A limit (resp. colimit) in C is calculated by taking the limit
(resp. colimit) inD, and by endowing it with the initial (resp. final) structure.
In particular, a topological functor is faithful and it creates all limits and
colimits.

The category CTS is a full coreflective locally finitely presentable sub-
category ofWTS by [8, Corollary 3.15]. The composite functor

CTS ⊂ WTS ω−→ Set{s}∪Σ
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is faithful and colimit-preserving.
The inclusion CTS ⊂ WTS is strict. Here are two families of examples

of weak transition systems which are not cubical:

1. The weak transition system x = (∅, {x} ⊂ Σ,∅) for x ∈ Σ is not
cubical because the action x is not used.

2. Let n ≥ 0. Let x1, . . . , xn ∈ Σ. The pure n-transition

Cn[x1, . . . , xn]ext

is the weak transition system with the set of states {0n, 1n}, with the
set of actions

{(x1, 1), . . . , (xn, n)}
and with the transitions all (n+ 2)-tuples

(0n, (xσ(1), σ(1)), . . . , (xσ(n), σ(n)), 1n)

for σ running over the set of permutations of the set {1, . . . , n}. It
is not cubical for n > 1 because it does not contain any 1-transition.
Intuitively, the pure transition is a cube without faces of lower dimen-
sion.

We give now some important examples of regular transition systems. In
each of the following examples, the axioms of regular higher dimensional
transition systems are satisfied for trivial reasons.

Notation 2.5. For n ≥ 1, let 0n = (0, . . . , 0) (n-times) and 1n = (1, . . . , 1)
(n-times). By convention, let 00 = 10 = ().

1. Every set X may be identified with the cubical transition system hav-
ing the set of states X , with no actions and no transitions.

2. For every x ∈ Σ, let us denote by ↑x↑ the cubical transition system
with four states {1, 2, 3, 4}, one action x and two transitions (1, x, 2)
and (3, x, 4). The cubical transition system ↑x↑ is called the double
transition (labelled by x) where x ∈ Σ.

Let us introduce now the cubical transition system corresponding to the
labelled n-cube.
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Proposition 2.6. [7, Proposition 5.2] Let n ≥ 0 and x1, . . . , xn ∈ Σ. Let
Td ⊂ {0, 1}n × {(x1, 1), . . . , (xn, n)}d × {0, 1}n (with d ≥ 1) be the subset
of (d+ 2)-tuples

((ε1, . . . , εn), (xi1 , i1), . . . , (xid , id), (ε
′
1, . . . , ε

′
n))

such that

• im = in implies m = n, i.e. there are no repetitions in the list
(xi1 , i1), . . . , (xid , id)

• for all i, εi ≤ ε′i

• εi 6= ε′i if and only if i ∈ {i1, . . . , id}.

Let µ : {(x1, 1), . . . , (xn, n)} → Σ be the set map defined by µ(xi, i) = xi.
Then

Cn[x1, . . . , xn] = ({0, 1}n, µ : {(x1, 1), . . . , (xn, n)} → Σ, (Td)d≥1)

is a well-defined cubical transition system called the n-cube.

The n-cubes Cn[x1, . . . , xn] for all n ≥ 0 and all x1, . . . , xn ∈ Σ are
regular by [7, Proposition 5.2] and [7, Proposition 4.6]. For n = 0, C0[], also
denoted byC0, is nothing else but the one-state higher dimensional transition
system ({()}, µ : ∅→ Σ,∅).

By [8, Theorem 3.6], the category CTS is a small-injectivity class of
WTS. More precisely being cubical is equivalent to being injective with
respect to the set of inclusions Cn[x1, . . . , xn]ext ⊂ Cn[x1, . . . , xn] and x1 ⊂
C1[x1] for all n ≥ 0 and all x1, . . . , xn ∈ Σ. Note that the composition
axiom plays a central role in this result.

Finally, let us notice that there is the isomorphism of weak transition
systems

↑x↑∼= lim−→ (C1[x]← x→ C1[x])

for any label x of Σ, the colimit being taken in WTS. The double transi-
tion ↑x ↑ is an example of cubical transition system, and even of regular
transition system, which is not a colimit of cubes. Another example of reg-
ular transition system which is not a colimit of cubes is the boundary of a
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labelled 2-cube (see [8]). This was the main motivation for introducing cu-
bical transition systems. Conversely, by [7, Proposition 9.7], there exists a
labelled precubical set K such that its realization T(K) as weak transition
system does not satisfy CSA2. Every labelled precubical set is a colimit
of cubes, therefore T(K) is a colimit of cubes since the realization func-
tor from labelled symmetric precubical sets to weak transition systems is
colimit-preserving. Hence the weak transition system T(K) is an example
of a colimit of cubes which is not regular (but it is cubical as any colimit of
cubes).

3. Intermediate state axiom and ω-final lifts

Let S be a set of objects of a locally presentable category K. For each object
X of K, the colimit of the natural forgetful functor Ŝ↓X → K, where Ŝ is
the full small category of K generated by S, is denoted by (s ∈ S may be
omitted)

lim−→
s→ X
s ∈ S

s.

By [17, Proposition 3.1(i)], the full subcategory of colimits of objects of S is
a coreflective subcategoryKS ofK. The right adjoint to the inclusion functor
KS ⊂ K is precisely given by the functorial mapping

X 7→ lim−→
s→ X
s ∈ S

s.

By [8, Theorem 3.11], a weak transition system is cubical if and only if
it is canonically a colimit of cubes and double transitions. In other terms, a
weak transition system X is cubical if and only if the canonical map

qX : lim−→
f : Cn[x1, . . . , xn]→ X

f :↑x↑→ X

dom(f)→ X

is an isomorphism. The functorial mapping X 7→ dom(qX) is the coreflec-
tion of the inclusion CTS ⊂ WTS. The image of x for any x ∈ Σ by the
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coreflection WTS → CTS is therefore the initial cubical transition system
∅. This implies that the category CTS is not a concretely coreflective sub-
category ofWTS over ω because the set of actions is not preserved. Hence
there is no reason for an ω-final lift of cubical transition systems to be cubi-
cal. This holds anyway in the situation of Theorem 3.3 which will be used
several times in the paper.

Proposition 3.1. Let X = lim−→Xi be a colimit of weak transition systems. If
all Xi satisfy the Intermediate state axiom, then so does X .

Proof. Let Ti be the image by the canonical map Xi → X of the set of
transitions of Xi. Let G0 =

⋃
i Ti. Let us define Gα by induction on the

transfinite ordinal α ≥ 0. If α is a limit ordinal, then let Gα =
⋃
β<αGβ .

If the set of tuples Gα is defined, then let Gα+1 be obtained from Gα by
adding the set of all (q + 2)-tuples (ν1, up+1, . . . , up+q, ν2) such that there
exist five tuples (α, u1, . . . , un, β), (α, u1, . . . , up, ν1), (ν1, up+1, . . . , un, β),
(α, u1, . . . , up+q, ν2) and (ν2, up+q+1, . . . , un, β) of the set Gα for some p ≥
1 and q ≥ 1. For cardinality reason, the transfinite sequence stabilizes and
by [7, Proposition 3.5], there exists an ordinal α0 such that Gα0 is the set of
transitions ofX . Every transition ofG0 satisfies the Intermediate state axiom
since it is satisfies by all Xi. Suppose that all transitions of Gα satisfies the
Intermediate state axiom. Take a tuple (ν1, up+1, . . . , up+q, ν2) of Gα+1 like
above. Suppose that q ≥ 2 and let q > r ≥ 1. There exists a state ν3 of
X such that the tuples (α, u1, . . . , up+r, ν3) (ν3, up+r+1, . . . , un, β) are two
transitions of Gα since all transitions of Gα satisfy the Intermediate state
axiom by induction hypothesis. From the five tuples

(α, u1, . . . , un, β), (α, u1, . . . , up+r, ν3), (ν3, up+r+1, . . . , un, β)

(α, u1, . . . , up+q, ν2), (ν2, up+q+1, . . . , un, β)

ofGα, one deduces that the tuple (ν3, up+r+1, . . . , up+q, ν2) belongs toGα+1.
From the five tuples

(α, u1, . . . , un, β), (α, u1, . . . , up, ν1), (ν1, up+1, . . . , un, β),

(α, u1, . . . , up+r, ν3), (ν3, up+r+1, . . . , un, β),

one deduces that the tuple (ν1, up+1, . . . , up+r, ν3) belongs to Gα+1. Hence
Gα+1 satisfies the Intermediate state axiom. One deduces thatX satisfies the
Intermediate state axiom.
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Proposition 3.2. Consider the following map, functorial with respect to the
weak transition system X:

rX : lim−→
f : Cn[x1, . . . , xn]→ X

f : x→ X

dom(f)→ X.

The map rX is always bijective on states and actions and one-to-one on
transitions. The map rX is an isomorphism if and only if X satisfies the
Intermediate state axiom.

Proof. Let α be a state of X . Then there exists a map C0 → X sending the
unique state ofC0 to α. Hence rX is onto on states. Let α and β be two states
of dom(rX) sent to the same state γ of X . Then the diagram {α} ← {γ} →
{β} is a subdiagram in the colimit calculating dom(rX). Hence α = β in
dom(rX). So rX is bijective on states. Let u be an action of X . Then there
exists a map µ(u) → X sending the action µ(u) to u. This implies that
rX is onto on actions. Let u and v be two actions of dom(rX) sent to the
same action w of X . Then the diagram {µ(u)} ← {µ(w)} → {µ(v)} is a
subdiagram in the colimit calculating dom(rX). Hence u = v in dom(rX)
and rX is bijective on actions. Hence by [10, Proposition 4.4], rX is always
one-to-one on transitions.

By Proposition 3.1, the weak transition system dom(rX) satisfies the
Intermediate state axiom. Therefore, if rX is an isomorphism, then X sat-
isfies the Intermediate state axiom. Conversely, let us suppose that X sat-
isfies the Intermediate state axiom. Let (α, u1, . . . , un, β) be a transition
of X . This transition gives rise to a map of weak transition systems φ :
Cn[µ(u1), . . . , µ(un)]ext → X . Since X satisfies the Intermediate state ax-
iom, it is injective with respect to the inclusion Cn[µ(u1), . . . , µ(un)]ext ⊂
Cn[µ(u1), . . . , µ(un)] (see the proof of [8, Theorem 3.6]) 4. Hence φ factors
as a composite Cn[µ(u1), . . . , µ(un)]ext → Cn[µ(u1), . . . , µ(un)] → X . By
definition of dom(rX), φ factors as a composite

Cn[µ(u1), . . . , µ(un)]ext −→ Cn[µ(u1), . . . , µ(un)] −→ dom(rX)
rX−→ X.

Hence rX is onto on transitions.
4Note that the composition axiom of weak transition systems is used here. It is worth

noting that its use is often hidden.
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Theorem 3.3. Let (fi : ω(Ai) → W )i∈I be a cocone of Set{s}∪Σ such that
the weak transition systems Ai are cubical for all i ∈ I . Then the ω-final
lift W satisfies the Intermediate state axiom. Assume moreover that every
action u of W is the image of an action of Aiu for some iu ∈ I . Then the
ω-final lift W is cubical.

Proof. Let C be the full subcategory of weak transition systems satisfying
the Intermediate axiom. By Proposition 3.2 and [17, Proposition 3.1(i)], the
category is a full coreflective subcategory of WTS, the right adjoint being
given by the kelleyfication-like functor X 7→ dom(rX). Unlike the coreflec-
tion fromWTS to CTS, the new coreflection preserves the set of actions (and
also the set of states). This means that the category C is concretely coreflec-
tive over ω. Hence W satisfies the Intermediate state axiom by the dual of
[1, Proposition 21.31]. Let u be an action of W . Then, by hypothesis, there
exists an action v of some Aiu such that the map fiu : Aiu → W takes v to u.
Since Aiu is cubical by hypothesis, there exists a transition (α, v, β) of Aiu .
Hence the triple (fiu(α), u, fiu(β)) is a transition of W . This means that all
actions of W are used. In other terms, W is cubical.

Note that we have also proved that the forgetful functor C ⊂ WTS ω−→
Set{s}∪Σ is topological by [1, Theorem 21.33]. We give the first application
of this result. It states that the image of a cubical transition system is cubical.

Corollary 3.4. Let f : X → Y be a map of weak transition systems. Let
LX (LY resp.) be the set of actions of X (Y resp.). Then f factors as a
composite X → f(X) → Y such that the map f(X) → Y is the inclusion
f(X0) ⊂ Y 0 on states and the inclusion f(LX) ⊂ LY on actions. If X is
cubical, then f(X) is cubical.

Proof. Consider the ω-final lift f(X) of the map of Set{s}∪Σ

ω(X) −→ (f(X0), f(LX))

induced by f . Then f(X) is a solution. Assume now that X is cubical. By
Theorem 3.3, the weak transition system f(X) is cubical and the proof is
complete.
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4. Most elementary properties of regular transition systems

A weak transition system satisfies the Unique intermediate state axiom or
CSA2 if and only if it is orthogonal to the set of inclusions

Cn[x1, . . . , xn]ext ⊂ Cn[x1, . . . , xn]

for all n ≥ 0 and all x1, . . . , xn ∈ Σ by [7, Theorem 5.6]. By [2, Theo-
rem 1.39], there exists a functor

CSA2 :WTS → WTS

such that for any weak transition system Y satisfying CSA2 and any weak
transition system X , the weak transition system CSA2(X) satisfies CSA2
and there is a natural bijectionWTS(X, Y ) ∼=WTS(CSA2(X), Y ). Write

ηX : X → CSA2(X)

for the unit of this adjunction. The following proposition provides an easy
way to check that a cubical transition system is regular.

Proposition 4.1. LetX be a cubical transition system. Let Y be a weak tran-
sition system satisfying CSA2. Let f : X → Y be a map of weak transition
systems which is one-to-one on states. Then X is regular.

Note that the hypothesis that X is cubical cannot be removed. Indeed,
the inclusion

Cn[x1, . . . , xn]ext ⊂ Cn[x1, . . . , xn]

for x1, . . . , xn ∈ Σ is one-to-one on states because it is the inclusion

{0n, 1n} ⊂ {0, 1}n.

The target Cn[x1, . . . , xn] satisfies CSA2. But the pure n-transition

Cn[x1, . . . , xn]ext

does not satisfy CSA2 for n ≥ 2 because it does not even satisfy the Inter-
mediate state axiom.
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Proof. Let (α, u1, . . . , un, β) be a transition of X with n ≥ 2. Let 1 ≤
p ≤ n − 1. Since X is cubical, there exist two states ν1 and ν2 such that
(α, u1, . . . , up, νi) and (νi, up+1, . . . , un, β) are transitions of X for i = 1, 2.
Then the five tuples

(f(α), f(u1), . . . , f(un), f(β)),

(f(α), f(u1), . . . , f(up), f(ν1)), (f(ν1), f(up+1), . . . , f(un), f(β))

(f(α), f(u1), . . . , f(up), f(ν2)), (f(ν2), f(up+1), . . . , f(un), f(β))

are transitions of Y . Since Y satisfies CSA2 by hypothesis, one has f(ν1) =
f(ν2). Since f is one-to-one on states by hypothesis, one obtains ν1 = ν2.
Therefore X satisfies CSA2.

Proposition 4.2. Let X be a cubical transition system. There exists a push-
out diagram of cubical transition systems

X0 ⊂
//

(ηX)0

��

X

ηX

��

CSA2(X)0 ⊂
// CSA2(X)

where the horizontal maps are the inclusion of the set of states into the corre-
sponding cubical transition system. For all cubical transition systemsX , the
unit map ηX : X → CSA2(X) is onto on states and the identity on actions.

Once again, the hypothesis that X is cubical cannot be removed. Indeed,
let us consider again the case of a pure n-transition X = Cn[x1, . . . , xn]ext

with x1, . . . , xn ∈ Σ. Then CSA2(X) = Cn[x1, . . . , xn] by [7, Theo-
rem 5.6]: in plain English, the n-cube is the free regular transition system
generated the pure transition consisting of its n! n-dimensional transitions.
The commutative square

{0n, 1n}
⊂

//

(ηCn[x1,...,xn]ext )
0

��

Cn[x1, . . . , xn]ext

ηCn[x1,...,xn]ext

��

{0, 1}n ⊂
// Cn[x1, . . . , xn]
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is not a pushout diagram. The unit map ηCn[x1,...,xn]ext is not onto on states.
However, it is still bijective on actions.

We could actually prove that the map ηX : X → CSA2(X) is always
bijective on actions for any weak transition system X . We leave the proof of
this fact to the interested reader because it will not be used in this paper.

Proof. The natural transformation from the state set functor (−)0 : CTS →
Set ⊂ CTS to the identity functor of CTS gives rise to a commutative dia-
gram of cubical transition systems:

X0 ⊂
//

(ηX)0

��

X

ηX

��

CSA2(X)0 ⊂
// CSA2(X).

Consider the pushout diagram of cubical transition systems

X0 ⊂
//

(ηX)0

��

X

ηX

��

CSA2(X)0 // Z.

By the universal property of the pushout, the unit map ηX : X → CSA2(X)
factors uniquely as a composite

X −→ Z −→ CSA2(X).

Since the forgetful functor ω : WTS → Set{s}∪Σ forgetting the transitions
is topological, and since the inclusion CTS ⊂ WTS is colimit-preserving,
the state set functor X 7→ X0 from CTS to Set is colimit-preserving. Hence
the set map Z0 → CSA2(X)0 is bijective. Therefore, by Proposition 4.1, the
cubical transition system Z satisfies CSA2. Hence we obtain Z = CSA2(X)
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by the universal property of the adjunction. The functor taking a cubical
transition system to its set of actions is the composite functor

CTS ⊂ WTS ω−→ Set{s}∪Σ −→ SetΣ L7→
∐
x∈Σ Lx

// Set

which is colimit-preserving as well. Therefore, one obtains the pushout dia-
gram of sets

∅ //

��

set of actions of X

��

∅ // set of actions of CSA2(X).

This means that X → CSA2(X) is the identity on actions. By Corol-
lary 3.4, there exists a cubical transition system ηX(X) such that ηX : X →
CSA2(X) factors as a composite X → ηX(X) → CSA2(X) such that the
map ηX(X) → CSA2(X) is the inclusion ηX(X0) ⊂ CSA2(X)0 on states
and an inclusion on actions. By Proposition 4.1, ηX(X) satisfies CSA2.
Therefore ηX(X) = CSA2(X) by the universal property of the adjunction.
Hence the map ηX : X → CSA2(X) is onto on states.

Proposition 4.3. If X is cubical, then CSA2(X) is regular. In particular, if
X is regular, then CSA2(X) is regular.

Proof. By definition, CSA2(X) satisfies the Unique Intermediate State ax-
iom. By Proposition 4.2, the unit X → CSA2(X) is the identity on actions.
Therefore all actions of CSA2(X) are used since they are used in X which
is cubical.

Proposition 4.4. The category RTS is a full reflective subcategory of CTS
and the reflection is the functor CSA2 : CTS → RTS which is the restriction
of CSA2 :WTS → WTS to cubical transition systems.

Proof. Let X be a cubical transition system and Y a regular transition sys-
tem. By Proposition 4.3, one has the bijection of sets

CTS(X, Y ) ∼= RTS(CSA2(X), Y ).

It is therefore the left adjoint of the inclusionRTS ⊂ CTS.
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Proposition 4.5. The categoryRTS is locally finitely presentable.

Proof. We already know that the cubes together with the double transitions
are a dense generator of CTS by [8, Theorem 3.11 and Corollary 3.12]. But
they are regular. So RTS has a dense and hence strong generator because
colimits inRTS are calculated, first, by taking the colimits in CTS and, then,
the image by the reflection CSA2 : CTS → RTS. The category RTS is
also cocomplete for the same reason. The proof is complete with [2, Theo-
rem 1.20].

We can now introduce the cubification functor.

Definition 4.6. [7] [8, Definition 3.13] Let X ∈ WTS. The cubification
functor is the functor Cub :WTS −→WTS defined by

Cub(X) = lim−→
Cn[x1,...,xn]→X

Cn[x1, . . . , xn],

the colimit being taken inWTS.

For any X ∈ WTS, the weak transition system Cub(X) is cubical and
the colimit can be taken in CTS since the latter is coreflective inWTS.

Proposition 4.7. Let X be a weak transition system. Then the canonical
map

πX : Cub(X) −→ X

is bijective on states.

Proof. The argument is given in the proof of [8, Theorem 3.11].

Proposition 4.8. Let X be a regular transition system. Then the cubical
transition system Cub(X) is regular and the colimit

lim−→
Cn[x1,...,xn]→X

Cn[x1, . . . , xn]

is the same inRTS, in CTS and inWTS.
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Proof. The weak transition system Cub(X) is cubical because it is a colimit
of cubes. The canonical map πX : Cub(X) → X is bijective on states
by Proposition 4.7. Therefore Cub(X) is regular by Proposition 4.1. We
already know that the colimit is the same in CTS and inWTS since CTS is a
full coreflective subcategory ofWTS. The functor CSA2 : CTS → RTS is a
left adjoint to the inclusionRTS ⊂ CTS by Proposition 4.4. So it is colimit-
preserving and one obtains, because the cubes are regular, the isomorphism:

CSA2

(
lim−→
CTS Cn[x1, . . . , xn]

) ∼= lim−→
RTS Cn[x1, . . . , xn].

The left-hand term is CSA2(Cub(X)) which is isomorphic to Cub(X) since
Cub(X) is regular.

5. The left determined model category of regular transition
systems

Let us start this section with a few remarks about the terminology.

Notation 5.1. For every map f : X → Y and every natural transformation
α : F → F ′ between two endofunctors of K, the map f ? α is defined by the
diagram:

FX

αX

��

f
// FY

��

αY

��

F ′X

F ′f

00

// •
f?α

##

F ′Y.

For a set of morphisms A, let A ? α = {f ? α, f ∈ A}.

Let (C,W ,F) be a model structure on a locally presentable category
K where C is the class of cofibrations, W the class of weak equivalences
and F the class of fibrations. A cylinder for (C,W ,F) is a triple (Cyl :
K → K, γ0 ⊕ γ1 : Id⊕ Id ⇒ Cyl, σ : Cyl ⇒ Id) consisting of a functor
Cyl : K → K and two natural transformations γ0 ⊕ γ1 : Id⊕ Id⇒ Cyl and
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σ : Cyl⇒ Id such that the composite σ ◦ (γ0⊕γ1) is the codiagonal functor
Id⊕ Id ⇒ Id and such that the functorial map σX : Cyl(X) → X belongs
toW for every object X . We will often use the notation γ = γ0 ⊕ γ1. The
cylinder is good if the functorial map γX : XtX → Cyl(X) is a cofibration
for every object X . It is very good if, moreover, the map σX : Cyl(X)→ X
is a trivial fibration for every object X . A good cylinder is cartesian if

• The functor Cyl : K → K has a right adjoint Path : K → K called
the path functor.

• There are the inclusions C ? γε ⊂ C for ε = 0, 1 and C ? γ ⊂ C.

The notions above can be adapted to a cofibrantly generated weak factoriza-
tion system (L,R) by considering the combinatorial model structure

(L,Mor(K),R).

They can be also extended to any set of maps I by considering the associated
cofibrantly generated weak factorization system in the sense of [3, Proposi-
tion 1.3].

Definition 5.2. Let n ≥ 1 and x1, . . . , xn ∈ Σ. Let ∂Cn[x1, . . . , xn] be the
regular transition system defined by removing from the n-cube Cn[x1, . . . ,
xn] all its n-transitions. It is called the boundary of Cn[x1, . . . , xn].

Notation 5.3. Denote by I the set of maps of cubical transition systems:

I = {C : ∅→ {0}, R : {0, 1} → {0}}
∪ {∂Cn[x1, . . . , xn]→ Cn[x1, . . . , xn] | n ≥ 1 and x1, . . . , xn ∈ Σ}

∪ {C1[x]→↑x↑| x ∈ Σ}.

By [8, Corollary 6.8] and [10, Theorem 4.6], there exists a (necessarily
unique) left determined model category structure on CTS (denoted by CTS as
well) with the set of generating cofibrations I. A map of cubical transition
systems is a cofibration of this model structure if and only if it is one-to-
one on actions. By [8, Proposition 5.5], this model category has a cartesian
and very good cylinder Cyl : CTS → CTS defined on objects as follows:
for a cubical transition system X = (S, µ : L → Σ, T ), Cyl(X) has the
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same set of states S, the set of actions L × {0, 1} with the labelling map
L× {0, 1} → L→ Σ and a tuple (α, (u1, ε1), . . . , (un, εn), β) is a transition
of Cyl(X) if and only if (α, u1, . . . , un, β) is a transition of X . The map
γεX : X → Cyl(X) for ε = 0, 1 is induced by the identity on states and by
the mapping u 7→ (u, ε) on actions. The map σX : Cyl(X)→ X is induced
by the identity on states and by the projection (u, ε) 7→ u on actions.

Proposition 5.4. One has the natural isomorphism of cubical transition sys-
tems

CSA2(Cyl(X)) ∼= Cyl(CSA2(X))

for every cubical transition system X .

Proof. We have just recalled that the canonical map σX : Cyl(X) → X
is bijective on states. Therefore, by Proposition 4.1, one has Cyl(RTS) ⊂
RTS. By Proposition 4.2, for every cubical transition system X , one has
the pushout diagram of weak transition systems (and of cubical transition
systems since colimits are the same):

X0 //

��

X

��

CSA2(X)0 // CSA2(X).

Since Cyl : CTS → CTS is a left adjoint, one obtains the pushout diagram
of cubical transition systems:

Cyl(X0) //

��

Cyl(X)

��

Cyl(CSA2(X)0) // Cyl(CSA2(X)).

For any set E viewed as a cubical transition system, one has Cyl(E) = E.
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Therefore one obtains the pushout diagram of cubical transition systems:

X0 //

��

Cyl(X)

��

CSA2(X)0 // Cyl(CSA2(X)).

Since CSA2(X) is regular, the cubical transition system Cyl(CSA2(X)) is
regular. Therefore, by Proposition 4.2, the cubical transition systems

Cyl(CSA2(X))

and
CSA2(Cyl(X))

satisfy the same universal property. Hence we obtain the natural isomor-
phism

CSA2(Cyl(X)) ∼= Cyl(CSA2(X)).

Theorem 5.5. There exists a (necessarily unique) left determined model cat-
egory structure on RTS (denoted by RTS) such that the set of generating
cofibrations is CSA2(I) = I and such that the fibrant objects are the fi-
brant cubical transition systems which are regular. The cartesian cylinder is
the restriction to RTS of the cylinder of CTS defined above. The restricted
cylinder is very good. The reflection CSA2 : CTS → RTS is a left Quillen
homotopically surjective functor. The inclusion RTS ⊂ CTS reflects weak
equivalences.

Proof. Thanks to Proposition B.1 applied with Proposition 5.4, we see that
Cyl : CTS → CTS and its right adjoint Path : CTS → CTS restrict to
endofunctors ofRTS. We then apply [15, Lemma 5.2] which is reexplained
also in [10, Theorem 9.3]. The only thing which remains to be proved is that
the restriction Cyl : RTS → RTS is a very good cylinder. Consider the
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following commutative square of solid arrows ofRTS:

CSA2(A) //

CSA2(f)

��

Cyl(X)

σX

��

CSA2(B) //

k

::

X

where f ∈ I and X ∈ RTS. Because of the adjunction, the existence of
a lift k is equivalent to the existence of a lift in the following commutative
square of solid arrows of CTS:

A //

f

��

Cyl(X)

σX

��

B //

`

<<

X.

So the restriction of Cyl toRTS is very good as well.

The end of the section is devoted to a characterization of the weak equiv-
alences of the left-determined model structureRTS.

Proposition 5.6. (Compare with [8, Proposition 7.8]) Every regular tran-
sition system satisfying CSA1 is fibrant in RTS. The category of regular
transition systems satisfying CSA1 is a small-orthogonality class ofRTS.

Proof. Every regular transition system satisfying CSA1 is fibrant in CTS
by [8, Proposition 7.8], and therefore fibrant in RTS by Corollary 5.5. A
regular transition system is CSA1 if and only if it is orthogonal to the maps
σC1[x] : Cyl(C1[x])→ C1[x] for all x ∈ Σ.

The full subcategory of regular transition systems satisfying CSA1 is
therefore a full reflective subcategory by [2, Theorem 1.39]. Write CSARTS1 :
RTS −→ RTS for the reflection. The full subcategory of cubical tran-
sition systems satisfying CSA1 is also a small-orthogonality class and a
full reflective subcategory of CTS by [8, Proposition 7.2]. Write CSACTS1 :
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CTS −→ CTS for the reflection. The functor CSARTS1 : RTS → RTS
(CSACTS1 : CTS → CTS resp.) can be defined as follows. Let X0 = X . We
construct by transfinite induction a sequence of regular (cubical resp.) tran-
sition systems as follows: if for α ≥ 0, there exist two transitions (α, u, β)
and (α, u′, β) with u 6= u′ and µ(u) = µ(u′), consider the pushout diagram
inRTS (in CTS resp.)

Cyl(C1[µ(u)])

(µ(u), 1, 0) 7→ u
(µ(u), 1, 1) 7→ u′

//

σC1[µ(u)]

��

Xα

��

C1[µ(u)] // Xα+1,

otherwise let Xα+1 = Xα. If α is a limit ordinal, then let Xα = lim−→β<α
Xβ ,

the colimit being calculated RTS (in CTS resp.). By a cardinality argument
(all maps Xα → Xα+1 are onto on actions), the sequence stabilizes. The
colimit is CSARTS1 (X) (CSACTS1 (X) resp.).

Let X be a regular transition system. The canonical map

X → CSACTS1 (X)

is then a transfinite composition of pushouts in CTS of maps of {σC1[x] |
x ∈ Σ}. Since a colimit is calculated in RTS by taking the colimit in CTS
and by taking the image by the functor CSA2, the map CSA2(X) = X →
CSA2(CSACTS1 (X)) is a transfinite composition of pushouts inRTS of maps
of {σC1[x] | x ∈ Σ}. Thus, CSARTS1 (X) is orthogonal to CSA2(X) = X →
CSA2(CSACTS1 (X)). Hence the canonical map X → CSARTS1 (X) factors
uniquely as a composite

X −→ CSA2(CSACTS1 (X)) −→ CSARTS1 (X).

Proposition 5.7. There exists a regular transition system X such that the
“comparison map”

CSA2(CSACTS1 (X))→ CSARTS1 (X)

is not an isomorphism.
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Proof. A cubical transition system is completely defined by giving the list of
all transitions and the actions identified by the labelling map. We consider
the regular transition system X having the transitions

(α, u1, u2, β), (α, u2, u1, β), (α, u1, χ), (χ, u2, β), (α, u2, ν), (ν, u1, β),

(α, u′1, u
′
2, β), (α, u′2, u

′
1, β), (α, u′1, χ

′), (χ′, u′2, β), (α, u′2, ν
′), (ν ′, u′1, β),

(γ, v, χ), (γ, v′, χ′), (U1, u1, V1), (U1, u
′
1, V1), (U2, u2, V2), (U2, u

′
2, V2)

such that all actions are labelled by some x ∈ Σ. By applying the functor
CSACTS1 : CTS → CTS to X , the actions ui and u′i are identified because of
the presence of the transitions

(U1, u1, V1), (U1, u
′
1, V1), (U2, u2, V2), (U2, u

′
2, V2).

The functor CSACTS1 : CTS → CTS does not make the identification v = v′

because these two actions are used in the transitions (γ, v, χ) and (γ, v′, χ′)
and because it is assumed that χ 6= χ′. The cubical transition system

CSACTS1 (X)

therefore consists of the transitions 5

(α, u1, u2, β), (α, u2, u1, β), (α, u1, χ), (χ, u2, β), (α, u2, ν), (ν, u1, β),

(α, u1, u2, β), (α, u2, u1, β), (α, u1, χ
′), (χ′, u2, β), (α, u2, ν

′), (ν ′, u1, β),

(γ, v, χ), (γ, v′, χ′), (U1, u1, V1), (U2, u2, V2).

The latter cubical transition system is not regular. Indeed, in the regular tran-
sition system CSA2(CSACTS1 (X)), the identifications of states χ = χ′ and
ν = ν ′ are made. We obtain for CSA2(CSACTS1 (X)) the list of transitions

(α, u1, u2, β), (α, u2, u1, β), (α, u1, χ), (χ, u2, β), (α, u2, ν), (ν, u1, β),

(γ, v, χ), (γ, v′, χ), (U1, u1, V1), (U2, u2, V2).

The map CSA2(CSACTS1 (X)) → CSARTS1 (X) therefore identifies the ac-
tions v and v′. Hence it is not an isomorphism.

5The states are preserved by CSACTS
1 since the canonical map X → CSACTS

1 (X) is a
transfinite composition of pushouts of maps of the form Cyl(C1[z]) → C1[z] for z ∈ Σ,
because these maps are all of them state-preserving and because the state set functor from
CTS to Set is colimit-preserving. Beware of the fact that the functor CSARTS

1 is not state-
preserving.
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Proposition 5.8. (Compare with [8, Proposition 7.4]) Let Y be a regular
transition system satisfying CSA1. Let X be a regular transition system.
Then two homotopy equivalent maps f, g : X → Y are equal. In other
terms, each of the two canonical maps X → Cyl(X) induces a bijection
RTS(Cyl(X), Y ) ∼= RTS(X, Y ).

Proof. By [8, Proposition 7.4], one has the bijection of sets

CTS(Cyl(X), Y ) ∼= CTS(X, Y ),

the binary product being calculated in CTS. The category RTS is a full
reflective subcategory of CTS by Proposition 4.4. Thus, there is the bijection
RTS(Cyl(X), Y ) ∼= RTS(X, Y ) where the binary product is calculated in
RTS.

The following model-categorical lemma is implicitly used several times
in [8] and [10] and it will be used again several times in this paper. Let us
state it clearly:

Lemma 5.9. Let M be a left proper combinatorial model category such
that the generating cofibrations are maps between finitely presentable ob-
jects. Let C be a class of weak equivalences ofM satisfying the following
condition: in every pushout diagram ofM of the form

A

g∈C

��

φ
// C

f

��

B // D

either φ is a cofibration or f is an isomorphism. Then every map of cellM(C)
is a weak equivalence ofM, where cellM(C) is the class of transfinite com-
position of pushouts of maps of C.

Proof. Since M is left proper, f is always a weak equivalence of M. By
[18, Proposition 4.1], the class of weak equivalences ofM is closed under
transfinite composition. Hence the proof is complete.
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Lemma 5.10. For all x ∈ Σ, the map σC1[x] : Cyl(C1[x]) → C1[x] satisfies
the conditions of Lemma 5.9 forM = RTS.

Proof. Consider a pushout diagram ofRTS

Cyl(C1[x])

σC1[x]

��

φ
// C

f

��

C1[x] // D.

The map f : C → D factors as a composite f : C → E → CSA2(E) =
D where E is the colimit in CTS. If φ is not a cofibration, then φ is constant
on actions. In this case, C ∼= E by the proof of [8, Theorem 7.10], there-
fore E is regular. One obtains D = CSA2(E) ∼= E ∼= C. Hence f is an
isomorphism.

Theorem 5.11. (Compare with [8, Theorem 7.10]) A map f : X → Y
of regular transition systems is a weak equivalence for the left determined
model structure ofRTS if and only if the map CSARTS1 (f) : CSARTS1 (X)→
CSARTS1 (Y ) is an isomorphism.

Proof. By Lemma 5.10, a map of regular transition systems f : X → Y
is a weak equivalence if and only if the map CSARTS1 (f) : CSARTS1 (X) →
CSARTS1 (Y ) is a weak equivalence. Since CSARTS1 (X) and CSARTS1 (Y ) are
fibrant by Proposition 5.6, a map of regular transition systems f : X → Y
is a weak equivalence if and only if the map CSARTS1 (f) : CSARTS1 (X) →
CSARTS1 (Y ) is a homotopy equivalence. The proof is complete with Propo-
sition 5.8.

6. Bousfield localization of the regular t.s. by the cubifica-
tion functor

We now deal with the Bousfield localization ofRTS by the cubification func-
tor Cub and we compare this Bousfield localization with the one of CTS by
the same cubification functor.

GAUCHER - THE GEOMETRY OF CUBICAL AND REGULAR TRANSITION SYSTEMS

- 270 -



•

x1

��

x

?? • •

x2

��

x

?? •

Figure 2: The cubical transition system Zx1,x2
x contains four states and three

actions x1, x2, x with µ(x1) = µ(x2) = x.

Let x ∈ Σ. Consider the unique map px : C1[x] t C1[x] →↑x↑ bijective
on states and sending the actions of the source C1[x] t C1[x] to their label.
Let us factor px as a composite (all maps are bijective on states)

C1[x] t C1[x] �
�

pcofx

x1 7→ x1
x2 7→ x2

// Zx1,x2
x '

x1 7→ x1
x2 7→ x2
x 7→ x

// ↑x↑

with Zx1,x2
x is depicted in Figure 2, and where x1 and x2 are the two actions

of C1[x]tC1[x] with µ(x1) = µ(x2) = x. The left-hand map is a cofibration
because it is one-to-one on actions. One has the isomorphisms

CSARTS1 (Zx1,x2
x ) ∼= CSARTS1 (↑x↑) ∼= CSACTS1 (Zx1,x2

x )

∼= CSACTS1 (↑x↑) ∼=↑x↑,

so the right-hand map is a weak equivalence of CTS by [8, Theorem 7.10]
and of RTS by Theorem 5.11. Therefore pcofx is a cofibrant replacement of
px both in CTS and inRTS.

Notation 6.1. Let S = {px | x ∈ Σ} and Scof = {pcofx | x ∈ Σ}.

Proposition 6.2. For a cubical transition systemX , the following statements
are equivalent:

1. The labelling map µ is one-to-one.

2. X is S-injective.

3. X is S-orthogonal.

GAUCHER - THE GEOMETRY OF CUBICAL AND REGULAR TRANSITION SYSTEMS

- 271 -



If any one of these statements is true, then X satisfies CSA1 and is Scof -
orthogonal.

Proof. The equivalence (1) ⇐⇒ (2) ⇐⇒ (3) and the fact that these three
conditions imply CSA1 is [10, Proposition 8.2]. LetX be a cubical transition
system satisfying (1). Consider the diagram of cubical transition systems:

C1[x] t C1[x]

pcofx

��

φ
// X

Zx1,x2
x ,

`

;;

where x1 and x2 are the two actions of C1[x] t C1[x]. Define ` on states by
`(α) = φ(α) for all states α, and on actions by `(xi) = φ(xi) for i = 1, 2
and `(x) = φ(x1). Since X satisfies (1), one has φ(x1) = φ(x2). We deduce
that ` is a well-defined map of cubical transition systems. The map ` is the
only solution because pcofx is bijective on states and the image by ` of the
actions of Zx1,x2

x is necessarily the unique action of X labelled by x. Hence
X is Scof -orthogonal.

Proposition 6.3. (Compare with [8, Proposition 8.4]) For every regular
transition system X , the canonical map πX : Cub(X) → X belongs to
cellRTS(S)

Proof. The difficulty is, once again, that colimits are not calculated in the
same way in RTS and in CTS. Let (ui1, u

i
2)i∈I be the family of pairs of

actions of X such that πX(ui1) = πX(ui2), which implies µ(ui1) = µ(ui2).
Since X is cubical, for all i ∈ I , there exist 1-transitions (αij, u

i
j, β

i
j) of X

for j = 1, 2. Let φi : C1[µ(ui1)] t C1[µ(ui2)] → X be the map of cubical
transition systems sending the two 1-transitions of the source to (αij, u

i
j, β

i
j)

for j = 1, 2. Since πX : Cub(X) → X is the identity on states by Proposi-
tion 4.7, one obtains the following commutative diagram of regular transition
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systems: ∐
i∈I
C1[µ(ui1)] t C1[µ(ui2)]

φi
//

∐
i∈I

p
µ(ui1)

��

Cub(X)

πX

��∐
i∈I
↑µ(ui1)↑ // X.

Consider the pushout diagram of regular transition systems:

∐
i∈I
C1[µ(ui1)] t C1[µ(ui2)]

φi
//

∐
i∈I

p
µ(ui1)

��

Cub(X)

��∐
i∈I
↑µ(ui1)↑ // Z.

The colimit Z is calculated in RTS by taking the colimit T in CTS and by
taking the image by the reflection CSA2. Hence the map πX : Cub(X)→ X
factors as a composite

Cub(X) −→ T −→ CSA2(T ) = Z
h−→ X.

The map Cub(X) → T is a pushout in CTS of the map
∐

i∈I pµ(ui1). The
latter is bijective on states, therefore the map Cub(X) → T is bijective
on states as well. The map T → Z is onto on states by Proposition 4.2.
Hence the map g : Cub(X) → Z is onto on states. Let α and β be two
states of Cub(X) mapped to the same state γ of Z. Then γ is mapped to
πX(α) = πX(β) by Z → X . Hence α = β by Proposition 4.7. Therefore
g : Cub(X) → Z is bijective on states, and so is the map of cubical transi-
tion systems h : Z → X . By construction, the latter map is one-to-one on
actions. Therefore h : Z → X is one-to-one on transitions by [10, Propo-
sition 4.4]. Any action u is used by a 1-transition (α, u, β) of X . Hence
πX : Cub(X) → X is onto on actions. Thus, there exists an action v of
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Cub(X) such that πX(v) = u. This means that h(g(v)) = u. Hence h
is onto on actions as well. To conclude that h is an isomorphism, consider
a transition (α, u1, . . . , un, β) of X . It gives rise to a map of weak transi-
tion systems Cn[µ(u1), . . . , µ(un)]ext → X which factors as a composite
Cn[µ(u1), . . . , µ(un)]ext → Cn[µ(u1), . . . , µ(un)] → X since X is cubical.
One obtains the composite map of weak transition systems

Cn[µ(u1), . . . , µ(un)]ext −→ Cn[µ(u1), . . . , µ(un)]

−→ Cub(X) −→ Z −→ X.

Hence h is onto on transitions.

Lemma 6.4. For all x ∈ Σ, the map px : C1[x] t C1[x] →↑x↑ satisfies the
conditions of Lemma 5.9 forM = LCubRTS.

Proof. Consider a pushout diagram ofRTS

C1[x] t C1[x]

px

��

φ
// C

f

��

↑x↑ // D.

The map f : C → D factors as a composite f : C → E → CSA2(E) = D
where E is the colimit in CTS. If φ is not a cofibration, then φ is constant
on actions. In this case, C ∼= E by the proof of [8, Proposition 8.5], there-
fore E is regular. One obtains D = CSA2(E) ∼= E ∼= C. Hence f is an
isomorphism.

Theorem 6.5. (Compare with [8, Theorem 8.6]) LetWCub be the Grothen-
dieck localizer generated by the class of maps f : X → Y of regular transi-
tion systems such that Cub(f) : Cub(X)→ Cub(Y ) is a weak equivalence
ofRTS (the left determined model structure). LetW(S) be the Grothendieck
localizer generated by the set of maps S . Then one hasWCub =W(S).

Proof. The proof is mutatis mutandis the proof of [8, Theorem 8.6]. Let us
sketch it. By Proposition 6.3, the counit πX : Cub(X) → X belongs to
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cellRTS(S) for all regular transition systems. By Lemma 6.4, one deduces
that cellRTS(S) ⊂ W(S). Hence, for all regular transition systems X , the
counit πX : Cub(X) → X belongs toW(S). Let f : X → Y be a map of
WCub. Consider the commutative diagrams:

Cub(X)
Cub(f)

//

��

Cub(Y )

��

X
f

// Y.

We have just proved that the vertical maps belong toW(S). Since Cub(f)
is a weak equivalence of RTS, i.e. it belongs to the smallest Grothendieck
localizerW(∅) ⊂ W(S), one deduces by the two-out-of-three property that
the bottom map f belongs toW(S) as well. Hence we obtain the inclusion
WCub ⊂ W(S). Since Cub(px) is an automorphism of C1[x] ∪ C1[x], one
has S ⊂ WCub, and thereforeW(S) ⊂ WCub.

Corollary 6.6. (Compare with [8, Corollary 8.7]) The Bousfield localization
of the left determined model structure ofRTS with respect to the functor Cub
exists.

Proof. The combinatorial model category RTS is left proper since all ob-
jects are cofibrant. We want to Bousfield localize with respect to a set of
maps S. Hence the proof is complete.

Notation 6.7. Let us write LCub CTS (LCubRTS resp.) for the Bousfield
localization of CTS (RTS resp.) by the functor Cub.

Proposition 6.8. A regular transition system is fibrant in LCubRTS if and
only if it is fibrant in LCub CTS.

Proof. The proof is similar to the proof of Theorem 5.5.

Proposition 6.9. (Compare with [8, Theorem 8.11 (1)(2)(3)]) The category

injRTS(S)
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of S-injective regular transition systems is a small-orthogonality class and
a full reflective subcategory of RTS. Write LRTSS : RTS → RTS for the
reflection. The unit map X → LRTSS (X) belongs to cellRTS(S) for any
regular transition system X .

Proof. By Proposition 6.2, being S-injective is equivalent to being S-orthog-
onal. By [2, Theorem 1.39], the subcategory injRTS(S) is then a reflective
subcategory of RTS. For any regular transition system X , the map X → 1
factors as a composite X → F (X) → 1 where the left-hand map belongs
to cellRTS(S) and the right-hand map belongs to injRTS(S) by using the
small object argument in the locally presentable categoryRTS. Then F (X)
is S-orthogonal by Proposition 6.2. We deduce that the map X → F (X)
factors uniquely as a composite X → LRTSS (X)→ F (X) by the property of
the adjunction. But the map X → LRTSS (X) factors uniquely as a composite
X → F (X)→ LRTSS (X) since the map X → F (X) belongs to cellRTS(S)
and since LRTSS (X) is S-orthogonal. Hence the functor F and LRTSS are
isomorphic.

The next proposition compares the functor LRTSS : RTS → RTS with
the functor LCTSS : CTS → CTS defined in an analogous way in [8]:

Proposition 6.10. Let X be a regular transition system. Then one has the
natural isomorphism

CSA2(LCTSS (X)) ∼= LRTSS (X).

Proof. The map LCTSS (X) → CSA2(LCTSS (X)) is bijective on actions by
Proposition 4.2. Hence the labelling map of CSA2(LCTSS (X)) is one-to-one
since the labelling map of LCTSS (X) is one-to-one by Proposition 6.2. Since
the map X → 1 factors as a composite

X −→ LCTSS (X) −→ CSA2(LCTSS (X)) −→ 1,

and since CSA2(LCTSS (X)) is S-injective and regular, the latter satisfies the
same universal property as LRTSS (X). Hence the proof is complete.

Theorem 6.11. (Compare with [8, Theorem 8.10]) A map of regular tran-
sition systems f : X → Y is a weak equivalence of the Bousfield lo-
calization LCubRTS of RTS by the set of maps S if and only if the map
LRTSS (f) : LRTSS (X)→ LRTSS (Y ) is an isomorphism.
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Proof. We already saw in the proof of Theorem 6.5 that every map of

cellRTS(S)

is a weak equivalence of LCubRTS. This implies that for all morphisms of
regular transition systems f : X → Y , if LRTSS (f) is an isomorphism, then
f belongs toW(S). Conversely, let us suppose that f : X → Y is a weak
equivalence of LCubRTS. Then LRTSS (f) : LRTSS (X) → LRTSS (Y ) is a map
of regular transition systems between two S-injective regular transition sys-
tems. By Proposition 6.2, both LRTSS (X) and LRTSS (Y ) satisfy CSA1 and are
Scof -orthogonal. By [8, Proposition 7.7], both LRTSS (X) and LRTSS (Y ) are
fibrant in LCub CTS, and therefore fibrant in LCubRTS by Proposition 6.8.
In other terms, LRTSS (f) : LRTSS (X) → LRTSS (Y ) is a weak equivalence
between two cofibrant-fibrant objects of the Bousfield localization. Hence,
LRTSS (f) is a weak equivalence of the left determined model structure RTS.
By Proposition 6.2, both LRTSS (X) and LRTSS (Y ) satisfy CSA1. By Proposi-
tion 5.8, one deduces that LRTSS (f) is an isomorphism.

Proposition 6.12 and Theorem 6.13 help to understand the difference
between the weak equivalences of LCub CTS and of LCubRTS.

Proposition 6.12. For all cubical transition systems X , the map X →
LCTSS (X) is bijective on states and onto on actions. There exists a cubical
transition system X0 such that the map X0 → LCTSS (X0) is not onto on tran-
sitions. For all regular transition systems Y , the map Y → LRTSS (Y ) is onto
on states, on actions and on transitions. There exists a regular transition
system Y0 such that the map Y0 → LRTSS (Y0) is not bijective on states.

Proof. This is a corollary of Proposition A.2 and Proposition A.6 of Ap-
pendix A.

Theorem 6.13. There exists a strict inclusion of sets{
weak equivalences of LCub CTS between regular t.s.

}
⊂
{

weak equivalences of LCubRTS
}
.

In other terms, if f : X → Y is a weak equivalence of LCub CTS between two
regular transition systems, then f is a weak equivalence of LCubRTS. There
exists a weak equivalence of LCubRTS which is not a weak equivalence of
LCub CTS.
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Proof. Let f : X → Y be a weak equivalence of LCub CTS between two
regular transition systems. Then by [8, Theorem 8.10], the map LCTSS (f) is
an isomorphism. The map CSA2(LCTSS (f)) is therefore an isomorphism. So,
by Proposition 6.10, LRTSS (f) is an isomorphism. Hence by Theorem 6.11,
f is a weak equivalence of LCubRTS.

Now we want to find a weak equivalence g of LCubRTS which is not a
weak equivalence of LCub CTS. One has

ω(C2[x, x]) = ({0, 1}2, {(x, 1), (x, 2)})

by Proposition 2.6 with x ∈ Σ. Consider the set {0, 1}2 × {−,+} and
let us make the identifications (0, 0,−) = (0, 0,+) = I and (1, 1,−) =
(1, 1,+) = F . Write S for the quotient. Let W = (S, {u, v−, v+}). For
α ∈ {−,+}, consider the map φα : ω(C2[x, x]) → W of Set{s}∪Σ induced
by the mappings (ε1, ε2) 7→ (ε1, ε2, α) for (ε1, ε2) ∈ {0, 1}2, (x, 1) 7→ u
and (x, 2) 7→ vα. Consider the ω-final lift W of the cone of maps φ−, φ+ :
ω(C2[x, x]) ⇒ W . By Theorem 3.3, the weak transition system W is cu-
bical. The only higher dimensional transitions of W are the four transitions
(I, u, v±, F ) and (I, v±, u, F ). Hence the unique state ν such that the tuples
(I, u, ν) and (ν, v±, F ) are transitions of W is ν = (1, 0,±). It turns out that
the unique state ν ′ such that the tuples (I, v±, ν ′) and (ν ′, u, F ) are transi-
tions of W is ν ′ = (0, 1,±). One deduces that W is regular. There exists
a map of cubical transition systems g : W → C2[x, x] defined as follows:
it takes the state (ε1, ε2,±) to (ε1, ε2) for (ε1, ε2) ∈, {0, 1}2, the action u to
(x, 1) and the actions v− and v+ to (x, 2). It is easy to see that one has the
isomorphisms

LRTSS (W ) ∼= C2[x, x] ∼= LRTSS (C2[x, x]),

hence g is a weak equivalence of LCubRTS by Theorem 6.11. Since g is
not bijective on states, the map LCTSS (f) is not bijective on states by Proposi-
tion 6.12. Therefore the map LCTSS (f) is not an isomorphism. Hence g is not
a weak equivalence of LCub CTS by [8, Theorem 8.10].

We can now completely elucidate this model structure thanks to the fol-
lowing result:
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Theorem 6.14. (Compare with [8, Theorem 8.11 (4)(5)]) The left adjoint
LRTSS : LCubRTS → injRTS(S) induces a left Quillen equivalence between
LCubRTS and injRTS(S) equipped with the discrete model structure (all
maps are cofibrations and fibrations and the weak equivalences are the iso-
morphisms).

Proof. For any fibrant object X of injRTS(S), the map LRTSS (X)→ X is an
isomorphism and X is cofibrant in LCubRTS. For any cofibrant object Y of
LCubRTS, Y is fibrant in injRTS(S) and the map Y → LRTSS (Y ) is a weak
equivalence of LCubRTS by Proposition 6.9 and by Lemma 6.4. This is the
definition of a Quillen equivalence.

Theorem 6.11 does not mean that two regular transition systems are
weakly equivalent if and only if they are isomorphic. Indeed, for any reg-
ular transition system X , the unit map X → LRTSS (X), by identifying the
actions of X with their labelling, modifies the geometric structure of X by
forcing identifications of states (see Proposition 6.12). Roughly speaking,
this map removes all non-discernable transitions. This behaviour is slightly
different from the one of the unit mapX → LCTSS (X). Once again by Propo-
sition 6.12, the unit map X → LCTSS (X) also identifies the actions of a cu-
bical transition system X by their labelling, but the latter map is constant
on states, and not necessarily onto on transitions. It may create new transi-
tions which are actually not observable and which are killed by applying the
functor CSA2 : CTS → RTS.

7. Fibrant regular and cubical transition systems

The purpose of this last section is to describe completely the fibrant regular
and cubical transition systems. We already know by Proposition 6.8 that the
fibrant regular transition systems are exactly the fibrant cubical ones which
are regular. Thus, we just have to give a combinatorial characterization of
the fibrant objects of LCub CTS. Corollary 7.16 encompasses the results of
[8] and [9].

Definition 7.1. A cubical transition system X is combinatorially fibrant if
for any n ≥ 1, any state α and β and any actions u1, v1, . . . , un, vn such that
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µ(ui) = µ(vi) for 1 ≤ i ≤ n, if the tuple (α, u1, . . . , un, β) is a transition of
X , then the tuple (α, v1, . . . , vn, β) is a transition of X as well.

Proposition 7.2. Let X = (S, µ : L → Σ, T ) be a combinatorially fibrant
cubical transition system. Write Path : CTS → CTS for the right adjoint
of the cartesian cylinder Cyl : CTS → CTS. Then the cubical transition
system Path(X) has S as its set of states and L ×Σ L as its set of actions,
the labelling map is the composite map µ : L ×Σ L → L → Σ and a
tuple (α, (u0

1, u
1
1), . . . , (u0

n, u
1
n), β) of S × (L ×Σ L)n × S is a transition of

Path(X) if and only if there exist ε1, . . . , εn ∈ {0, 1} such that the tuple
(α, uε11 , . . . , u

εn
n , β) is a transition of X .

Proof. Let us recall that the cartesian cylinder Cyl : CTS → CTS is the
restriction of an endofunctor ofWTS defined in the same way. The functor
Cyl : WTS → WTS has a right adjoint PathWTS : WTS → WTS defined
on objects as follows [8, Proposition 5.8]: for a weak transition system X =
(S, µ : L → Σ, T ), the weak transition system PathWTS(X) has the same
set of states S, the set of actions is L×Σ L and a tuple

(α, (u−1 , u
+
1 ), . . . , (u−n , u

+
n ), β)

with n ≥ 1 is a transition of PathWTS(X) if and only if the 2n tuples
(α, u±1 , . . . , u

±
n , β) are transitions of X . The right adjoint of the functor

Cyl : CTS → CTS is equal to the composite functor

Path : CTS ⊂ WTS PathWTS
//WTS // CTS,

where the right-hand functor fromWTS to CTS is the coreflection.
Let (u, v) ∈ L ×Σ L. Since u is used in X , there exists a transition

(α, u, β) of X . Since µ(u) = µ(v) and since X is combinatorially fibrant,
the triple (α, v, β) is a transition of X . This means that the couple (u, v) ∈
L ×Σ L is used by the transition (α, (u, v), β) of PathWTS(X). We deduce
that all actions of PathWTS(X) are used. Consider a transition

(α, (u−1 , u
+
1 ), . . . , (u−n , u

+
n ), β)

of PathWTS(X) with n ≥ 2. Let 1 ≤ p ≤ n−1. SinceX is cubical, there ex-
ists a state γ such that the tuples (α, u−1 , . . . , u

−
p , γ) and (γ, u−p+1, . . . , u

−
n , β)
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are two transitions of X . But X is combinatorially fibrant. This implies that
all tuples (α, u±1 , . . . , u

±
p , γ) and (γ, u±p+1, . . . , u

±
n , β) are transitions of X .

Therefore the two tuples

(α, (u−1 , u
+
1 ), . . . , (u−p , u

+
p ), γ), (γ, (u−p+1, u

+
p+1), . . . , (u−n , u

+
n ), β)

are transitions of PathWTS(X). This means that the weak transition system
PathWTS(X) satisfies the Intermediate state axiom. We have just proved that
ifX is combinatorially fibrant, then the weak transition system PathWTS(X)
is cubical: in other terms, one has Path(X) = PathWTS(X) in this case. Fi-
nally and because X is combinatorially fibrant, all tuples (α, u±1 , . . . , u

±
n , β)

are transitions ofX if and only if there exist ε1, . . . , εn ∈ {0, 1} such that the
tuple (α, uε11 , . . . , u

εn
n , β) is a transition of X . This completes the proof.

Proposition 7.3. If the cubical transition system X is combinatorially fi-
brant, then so is the cubical transition system Path(X).

Proof. Let X = (S, µ : L → Σ, T ) be a combinatorially fibrant cubical
transition system. Let

(α, (u−1 , u
+
1 ), . . . , (u−n , u

+
n ), β), (α, (v−1 , v

+
1 ), . . . , (v−n , v

+
n ), β)

be two tuples of S×(L×ΣL)n×S with n ≥ 1 and µ(u−i , u
+
i ) = µ(v−i , v

+
i ) for

1 ≤ i ≤ n. Let us suppose that (α, (u−1 , u
+
1 ), . . . , (u−n , u

+
n ), β) is a transition

of Path(X). Then the tuple (α, u−1 , . . . , u
−
n , β) is a transition of X . But for

all 1 ≤ i ≤ n, one has

µ(u−i ) = µ(u+
i ) = µ(u−i , u

+
i ) = µ(v−i , v

+
i ) = µ(v−i ) = µ(v+

i ).

So, all tuples (α, v±1 , . . . , v
±
n , β) are transitions of X because X is combi-

natorially fibrant. This implies that the tuple (α, (v−1 , v
+
1 ), . . . , (v−n , v

+
n ), β)

is a transition of Path(X). This is the definition of combinatorial fibrancy
applied to Path(X).

Proposition 7.4. Let X be a cubical transition system. If X is combinatori-
ally fibrant, then it is injective with respect to any map of the form f ? γε for
ε = 0, 1 for any cofibration of cubical transition systems f .
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Proof. Let f : A → B be a map of cubical transition systems. Let L be the
set of actions of X . By adjunction, the cubical transition system X is injec-
tive with respect to f ? γε if and only if the map πε : Path(X)→ X satisfies
the RLP with respect to f . Let us recall that the map πε : Path(X) → X
is the identity on states and the projection on the (ε + 1)-th component
L ×Σ L → L on actions by Proposition 7.2. Consider a diagram of solid
arrows of cubical transition systems:

A

f

��

φ
// Path(X)

πε

��

B
ψ

//

`

<<

X.

Since the right vertical map is onto on actions and the left vertical map is
one-to-one on actions, there exists a set map ˜̀ : LB → L ×Σ L from the
set of actions of B to the set of actions of Path(X) such that the following
diagram of sets is commutative, LA being the set of actions of A (note that
π̃ε is the projection on the (ε+ 1)-th component):

LA

f

��

φ
// L×Σ L

πε

��

LB
ψ

//

˜̀
<<

L.

Let ` : B → Path(X) defined on states by `(α) = ψ(α) and on actions by
`(u) = ˜̀(u). The diagram

A

f

��

φ
// Path(X)

πε

��

B
ψ

//

`

<<

X
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is commutative since its right vertical map is the identity on states. It just
remains to prove that ` : B → Path(X) is a well-defined map of cubical
transition systems. Let (α, u1, . . . , un, β) be a transition of B. It suffices to
prove that the tuple

(α, ˜̀(u1), . . . , ˜̀(un), β)

is a transition of Path(X) to complete the proof. Without lack of generality,
we can suppose that ε = 0, which means that ˜̀(u) = (ψ(u), χ(u)). One
obtains

(α, ˜̀(u1), . . . , ˜̀(un), β) = (α, (ψ(u1), χ(u1)), . . . , (ψ(un), χ(un)), β).

Since ψ maps the transitions of B to transitions of X , the tuple

(α, ψ(u1), . . . , ψ(un), β)

is a transition of X . Since µ(ψ(u)) = µ(u) = µ(χ(u)) for all actions u of
B, and since X is combinatorially fibrant, the tuple

(α, (ψ(u1), χ(u1)), . . . , (ψ(un), χ(un)), β)

is then a transition of Path(X) by Proposition 7.2.

Proposition 7.5. Let X be a cubical transition system. If X is combinatori-
ally fibrant, then it is injective with respect to the maps of Scof .

Proof. Let x ∈ Σ. Consider a diagram of solid arrows of cubical transition
systems

C1[x] t C1[x]

pcofx

��

φ
// X

Zx1,x2
x ,

`

;;

where x1 and x2 are the two actions of C1[x]tC1[x] and where Zx1,x2
x is the

cubical transition system depicted in Figure 2. Define ` on states by `(α) =
φ(α), and on actions by `(xi) = φ(xi) for i = 1, 2 and `(x) = φ(x1). Let
(αi, φ(xi), βi) for i = 1, 2 be the images by φ of the two transitions ofC1[x]t
C1[x]. SinceX is combinatorially fibrant, the two triples (αi, φ(x3−i), βi) for
i = 1, 2 are two transitions of X . The map ` is therefore a well-defined map
of cubical transition systems.
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Proposition 7.6. Let X = (S, µ : L → Σ, T ) and X ′ = (S ′, µ′ : L′ →
Σ, T ′) be two cubical transition systems. The binary product X × X ′ has
S × S ′ as its set of states, L ×Σ L

′ = {(x, x′) ∈ L × L′, µ(x) = µ′(x′)} as
its set of actions and the labelling map µ ×Σ µ

′ : L ×Σ L
′ → Σ. A tuple

((α, α′), (u1, u
′
1), . . . , (un, u

′
n), (β, β′)) is a transition of X ×X ′ if and only

if µ(ui) = µ′(u′i) for 1 ≤ i ≤ n with n ≥ 1, the tuple (α, u1, . . . , un, β) is a
transition of X and (α′, u′1, . . . , u

′
n, β

′) a transition of X ′.

Proof. The binary product is the same in CTS and inWTS because CTS is
a small-injectivity class ofWTS. The theorem is then a consequence of [8,
Proposition 5.5].

Proposition 7.7. Let X be a cubical transition system. If X is combinatori-
ally fibrant, then it is injective with respect to any map of the form f ? γ for
any map of cubical transition systems f which is onto on states.

Proof. Let f : A → B be a map of cubical transition systems. By adjunc-
tion, the cubical transition system X is injective with respect to f ? γ if and
only if the map π : Path(X)→ X ×X satisfies the RLP with respect to f .
Consider a diagram of solid arrows of cubical transition systems:

A

f

��

φ
// Path(X)

π

��

B
ψ=(ψ0,ψ1)

//

`

<<

X ×X.

Since the set map f : A0 → B0 is onto by hypothesis, for any state α of
B, there exists s(α) ∈ A0 such that f(s(α)) = α. Let ` : B → Path(X)
defined on states by `(α) = φ(s(α)) and on actions by `(u) = ψ(u) (since
X is combinatorially fibrant, the map π : Path(X)→ X ×X is the identity
on actions by Proposition 7.2). We are going to prove that ` is a well-defined
map of cubical transition systems and that it is a lift of the diagram above.

` is a lift for the sets of actions. One has the following diagram of solid
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arrows between the sets of actions:

LA

f

��

φ
// LX ×Σ LX

LB
ψ

//

ψ

;;

LX ×Σ LX .

It is evident that the two triangles commute since the square of solid arrows
commutes.

` is a lift for the sets of states. One has the diagram of solid arrows be-
tween the sets of states:

A0

f

��

φ
// X0

∆

��

B0 ψ=(ψ0,ψ1)
//

φ◦s

;;

s

@@

X0 ×X0,

where ∆ : s 7→ (s, s) is the codiagonal map. For any state β of B0, one has

ψ(β)

= ψ(f(s(β))) since s is a section of f
= π(φ(s(β))) since ψ ◦ f = π ◦ φ
= (φ(s(β)), φ(s(β))) by Proposition 7.6.

Hence we obtain ψ0 = ψ1 = φ ◦ s on states, and therefore ∆ ◦ φ ◦ s = ψ on
states. We deduce that the bottom triangle commutes on states. For any state
α of A0, one has

∆(φ(s(f(α))))

= ψ(f(s(f(α)))) since ∆ ◦ φ = ψ ◦ f
= ψ(f(α)) since s is a section of f
= ∆(φ(α)) because the square above is commutative.
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Hence we obtain φ ◦ s ◦ f = φ on states. We obtain that the top triangle
commutes.

` maps a transition of B to a transition of Path(X). Let

(α, u1, . . . , un, β)

be a transition of B. Then one has

(`(α), `(u1), . . . , `(un), `(β)) = (φ(s(α)), ψ(u1), . . . , ψ(un), φ(s(β)))

= (ψ0(α), ψ(u1), . . . , ψ(un), ψ0(β)).

The tuple (ψ0(α), ψ0(u1), . . . , ψ0(un), ψ0(β)) is a transition of X since it is
the image by the composite map of cubical transition systems ψ0 : B →
X ×X → X of the transition (α, u1, . . . , un, β) of B. Therefore by Propo-
sition 7.2 applied with ε1 = · · · = εn = 0, the tuple

(`(α), `(u1), . . . , `(un), `(β))

is a transition of Path(X) since X is combinatorially fibrant. This means
that

` : B −→ Path(X)

is a well-defined map of cubical transition systems.

Proposition 7.8. Let X be a cubical transition system. If X is combinatori-
ally fibrant, then it is injective with respect to any map of the form (f ?γ)?γ
for any map of cubical transition systems f .

Proof. Let f : A→ B be a map of cubical transition systems. The map f ?γ
goes from (BtB)tAtACyl(A) to Cyl(B). Since the forgetful functor from
CTS to Set taking a cubical transition system to its underlying set of states
is colimit-preserving, the set of states of the source of f ? γ is B0 tA0 B0.
Hence the map f ?γ is onto on states. Then by Proposition 7.7,X is injective
with respect to (f ? γ) ? γ.

Notation 7.9. Let I and S be two sets of maps of a locally presentable cate-
gory K. Let Cyl : K → K be a cylinder. Denote by ΛK(Cyl, S, I) the set of
maps defined as follows:

• Λ0
K(Cyl, S, I) = S ∪ (I ? γ0) ∪ (I ? γ1)
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• Λn+1
K (Cyl, S, I) = Λn

K(Cyl, S, I) ? γ

• ΛK(Cyl, S, I) =
⋃
n≥0 Λn

K(Cyl, S, I).

Theorem 7.10. LetX be a cubical transition system. IfX is combinatorially
fibrant, then it is fibrant.

Proof. Let X be a combinatorially fibrant cubical transition system. By
Proposition 7.4 and Proposition 7.5, it is Λ0(Cyl,Scof , I)-injective. Let
f : A → B be a map of cubical transition systems. Let ε ∈ {0, 1}. The
map f ? γε goes from B tA Cyl(A) to Cyl(B). Since the forgetful func-
tor from CTS to Set taking a cubical transition system to its underlying set
of states is colimit-preserving, the set of states of the source of f ? γε is B0.
Hence f ?γε is bijective on states. Therefore all maps of Λ0(Cyl,Scof , I) are
bijective on states. Then, by Proposition 7.7,X is Λ1(Cyl,Scof , I)-injective.
The cubical transition system X is Λn(Cyl,Scof , I)-injective for all n ≥ 2
by Proposition 7.8. Hence X is fibrant in the Bousfield localization of CTS
by the cofibrations of Scof by [8, Corollary 6.8] and [10, Theorem 4.6]. But
Bousfield localizing by Scof is the same as Bousfield localizing by S, which
is the same as Bousfield localizing by the cubification functor. Hence the
proof is complete.

Notation 7.11. Let x ∈ Σ. The two maps from C1[x] to ↑x↑ are denoted by
cεx for ε = 0, 1. One has px = c0

x t c1
x for all x ∈ Σ.

Proposition 7.12. Let x ∈ Σ. Consider the pushout diagram of CTS

C1[x]
c0x //

γ0
C1[x]

��

↑x↑

��

Cyl(C1[x]) // Cyl(C1[x])t0,0 ↑x↑ .

The composite

θx : C1[x] t C1[x]
γ1
C1[x]

tc1x
// Cyl(C1[x])t ↑x↑ // Cyl(C1[x])t0,0 ↑x↑

is a trivial cofibration of LCub CTS.
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C1[x] t C1[x]

α
x1 // β

γ
x2 // δ

θx−→



Cyl(C1[x])t0,0 ↑x↑

α
x1

++

x2

33 β

γ
x2 // δ

Figure 3: Cofibration θx with µ(x1) = µ(x2) = x

Proof. The map θx is depicted in Figure 3. It is bijective on actions, therefore
it is a cofibration. One has LCTSS (C1[x]tC1[x]) ∼= LCTSS (Cyl(C1[x])t0,0 ↑x↑
) ∼=↑x↑. Hence it is a weak equivalence of LCub CTS by [8, Theorem 8.10].

Proposition 7.13. In the following, the notation t 0n = 0n
1n = 1n

means the identi-

fication of the initial states (the final states resp.) of the two summands. Let
n ≥ 2 and x1, . . . , xn ∈ Σ. Then the map

ηx1,...,xn : ∂Cn[x1, . . . , xn] t 0n = 0n
1n = 1n

Cn[x1, . . . , xn]

−→ Cn[x1, . . . , xn] t 0n = 0n
1n = 1n

Cn[x1, . . . , xn]

induced by the inclusion ∂Cn[x1, . . . , xn] ⊂ Cn[x1, . . . , xn] is a trivial cofi-
bration of LCub CTS.

Proof. The map ηx1,...,xn is bijective on actions: the set of actions is

{(x1, 1), . . . , (xn, n)} × {0, 1},

with for example 0 for the left-hand term and 1 for the right-hand term.
Hence it is a cofibration. The map ηx1,...,xn is also bijective on states: the set
of states is a set denoted by {0, 1}n t 0n = 0n

1n = 1n

{0, 1}n, which means the quo-

tient of the coproduct {0, 1}nt{0, 1}n by the identifications of 0n (1n resp.)
of the left-hand term with 0n (1n resp.) of the right-hand term. Since the
map X → LCTSS (X) is bijective on states for all cubical transition systems
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X , the map of cubical transition systems

LCTSS (ηx1,...,xn) : LCTSS

(
∂Cn[x1, . . . , xn] t 0n = 0n

1n = 1n

Cn[x1, . . . , xn]

)
−→

LCTSS

(
Cn[x1, . . . , xn] t 0n = 0n

1n = 1n

Cn[x1, . . . , xn]

)
is bijective on states as well. The set of actions of the source and tar-
get of LCTSS (ηx1,...,xn) is {x1, . . . , xn}. Since LCTSS (ηx1,...,xn) is one-to-one
on action by [8, Remark 8.8], it is bijective on actions. By [10, Proposi-
tion 4.4], the map LCTSS (ηx1,...,xn) is one-to-one on transitions by. To see
that the map LCTSS (ηx1,...,xn) is also onto on transitions, it suffice to see that
the n! n-transitions of the left-hand n-cube of the target are the n! tuples
(0n, xσ(1), . . . , xσ(n), 1n) which are actually transitions of the source because
of the identifications of the two initial states and the two final states. So
LCTSS (ηx1,...,xn) is an isomorphism. Therefore by [8, Theorem 8.10], the map
ηx1,...,xn is a weak equivalence of LCub CTS.

Proposition 7.14. A cubical transition system is combinatorially fibrant if
and only if it is injective with respect to θx and ηx1,...,xn for all x, x1, . . . , xn ∈
Σ.

Proof. Let X a combinatorially fibrant cubical transition system. Then X is
fibrant by Theorem 7.10. Since the maps θx and ηx1,...,xn for all

x, x1, . . . , xn ∈ Σ

are trivial cofibrations by Proposition 7.12 and Proposition 7.13, X is injec-
tive with respect to these maps. Conversely, letX be a cubical transition sys-
tem which is injective with respect to θx and ηx1,...,xn for all x, x1, . . . , xn ∈
Σ. Let (α, x1, β) be a transition of X and let x2 an action of X such that
µ(x1) = µ(x2). The injectivity of X with respect to θµ(x1) proves that the
triple (α, x2, β) is a transition of X . Let (α, x1, . . . , xn, β) be a transition of
X with n ≥ 2. Let y1, . . . , yn be n actions of X with µ(xi) = µ(yi) for
1 ≤ i ≤ n. The injectivity of X with respect to ηµ(x1),...,µ(xn) proves that
the triple (α, y1, . . . , yn, β) is a transition of X . So, X is combinatorially
fibrant.
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Corollary 7.15. Let X be a cubical transition system. If X is fibrant, then it
is combinatorially fibrant.

Proof. Let X be a fibrant cubical transition system. Then it is injective with
respect to any trivial cofibration of LCub CTS. By Proposition 7.12, Proposi-
tion 7.13 and Proposition 7.14, it is then combinatorially fibrant.

Corollary 7.16. A cubical transition system X is fibrant in LCub CTS if and
only it is combinatorially fibrant.

Corollary 7.17. Every S-injective cubical transition system is fibrant in
LCub CTS.

Proof. Let (α, u1, . . . , un, β) and (α, v1, . . . , vn, β) as in the statement of
Theorem 7.16. Since X is S-injective, the labelling map µ is one-to-one by
Proposition 6.2. Therefore ui = vi for 1 ≤ i ≤ n.

In particular, all cubical transition systems of the form LCTSS (X) and all
regular transition systems of the form LRTSS (X) are fibrant because they are
S-injective.

A. Proof of Proposition 6.12

Proposition A.1. Let x ∈ Σ. Every pushout of px : C1[x] t C1[x] →↑x↑ in
CTS is bijective on states, and onto on actions. There exists a pushout of px
which is not onto on transitions.

Proof. The category CTS is a full coreflective category of WTS, which
means that the colimits in CTS are calculated in WTS. Therefore the for-
getful functors taking a cubical transition system to their sets of states and
actions are colimit-preserving. Since px is bijective on states (onto on ac-
tions resp.), any pushout of px in CTS is therefore bijective on states (onto
on actions resp.).

Let x ∈ Σ. One has ω(C3[x, x, x]) = ({0, 1}3, {(x, 1), (x, 2), (x, 3)}) by
Proposition 2.6. Consider the quotient set

S = {0, 1}3 × {−,+}/ ((0, 0, 0,−) = (0, 0, 0,+) = I

and (1, 1, 1,−) = (1, 1, 1,+) = F ) .
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Let
W = (S, {u1, u

0, u1, u3}) ∈ Set{s}∪Σ

with µ(u1) = µ(u0) = µ(u1) = µ(u3) = x. For α ∈ {−,+}, consider the
map

φα : ω(C3[x, x, x])→ W

of Set{s}∪Σ induced by the mappings (ε1, ε2, ε3) 7→ (ε1, ε2, ε3, α) for

(ε1, ε2, ε3) ∈ {0, 1}3, (x, 1) 7→ u1, (x, 2) 7→ uα, (x, 3) 7→ u3.

Consider the ω-final lift W of the cone of maps

φ−, φ+ : ω(C3[x, x, x]) ⇒ W.

By Theorem 3.3, the weak transition system W is cubical. Finally, consider
the pushout diagram of cubical transition systems:

C1[x] t C1[x] //

px

��

W

��

↑x↑ //W

where the top horizontal arrow sends the 1-transition (0, (x, 1), 1) of the
left-hand copy of C1[x] to ((1, 0, 0,−), u−, (1, 1, 0,−)) and the 1-transition
(0, (x, 1), 1) of the right-hand copy of C1[x] to ((1, 0, 0,+), u+, (1, 1, 0,+)).
We claim that the map of cubical transition systems

W −→ W

is not surjective on transitions. Indeed W contains the transitions

(I, u1, u
α, u3, F )

for α ∈ {−,+}, and the four transitions

(I, u1, (1, 0, 0,−)), ((1, 0, 0,−), u−, u3, F ),

(I, u1, u
+, (1, 1, 0,+)), ((1, 1, 0,+), u3, F ).
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The cubical transition system W does not contain any transition from

(1, 0, 0,−)

to
(1, 1, 0,+).

In the pushout W , the identification u− = u+ is made. Therefore from
the five preceding transitions, one obtains by using the composition axiom a
transition ((1, 0, 0,−), u−, (1, 1, 0,+)).

Proposition A.2. Every map of cellCTS(S) is bijective on states and onto on
actions. There exists a map of cellCTS(S) which is not onto on transitions.

Proof. A map of cubical transition systems is onto on actions if and only
if it satisfies the RLP with respect to the maps ∅ → x for any x ∈ Σ.
As a consequence, the class of maps of cubical transition systems which
are onto on actions is accessible and accessibly embedded in the category
of maps of cubical transition systems by [19, Proposition 3.3]. Hence any
map of cellCTS(S) is onto on actions. All maps of S are bijective on states.
Since the state set functor from CTS to Set is colimit-preserving, all maps
of cellCTS(S) are bijective on states. The last assertion is a corollary of
Proposition A.1.

Proposition A.3. Let x ∈ Σ. Every pushout of px : C1[x] t C1[x] →↑x↑ in
RTS is onto on states, on actions and on transitions.

Proof. Consider a pushout diagram inRTS:

C1[x] t C1[x]

px

��

// X

f

��

↑x↑ // X ′.

The category RTS is a full reflective subcategory of CTS. Therefore a col-
imit in RTS is calculated by taking the image by the reflection CSA2 :
CTS → RTS of the colimit in CTS. The canonical map Z → CSA2(Z)
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is onto on states and bijective on actions for all cubical transition systems
Z by Proposition 4.2. Therefore by Proposition A.1, the map f is onto
both on states and on actions. Let X = (S, µ : L → Σ, T ) and X ′ =
(S ′, µ : L′ → Σ, T ′). Write f(T ) for the set of transitions of X ′ of the
form (f(α), f(u1), . . . , f(un), f(β)) such that the tuple (α, u1, . . . , un, β)
belongs to T . One has f(T ) ⊂ T ′. Let f(u) be an action of X ′. Then there
exists a transition (α, u, β) of X since X is cubical. Therefore the tuple
(f(α), f(u), f(β)) belongs to f(T ). This means that all actions of X ′ are
used by a transition of f(T ). Let (f(α), f(u1), . . . , f(un), f(β)) be a tran-
sition of f(T ). Then (α, uσ(1), . . . , uσ(n), β) is a transition of X for all per-
mutations σ of {1, . . . , n}. So the tuple (f(α), f(uσ(1)), . . . , f(uσ(n)), f(β))
is a transition of f(T ). Let n ≥ 3 and p, q ≥ 1 with p+ q < n. Let

(α, u1, . . . , un, β), (α, u1, . . . , up, µ), (µ, up+1, . . . , un, β),

(α, u1, . . . , up+q, ν), (ν, up+q+1, . . . , un, β)

be five transitions of f(T ). Let

(α, u1, . . . , un, β) = (f(γ), f(v1), . . . , f(vn), f(δ)).

There exist two states ε and η of X such that the five tuples

(γ, v1, . . . , vp, ε), (γ, v1, . . . , vp+q, η), (ε, vp+1, . . . , vn, δ),

(η, vp+q+1, . . . , vn, δ), (ε, vp+1, . . . , vp+q, η)

are transitions of X since X is cubical and by using the composition axiom
in X . Therefore, the five tuples

(f(γ), f(v1), . . . , f(vp), f(ε)), (f(γ), f(v1), . . . , f(vp+q), f(η)),

(f(ε), f(vp+1), . . . , f(vn), f(δ)), (f(η), f(vp+q+1), . . . , f(vn), f(δ)),

(f(ε), f(vp+1), . . . , f(vp+q), f(η))

are transitions of f(T ). So the five tuples

(α, u1, . . . , up, f(ε)), (α, u1, . . . , up+q, f(η)),

(f(ε), up+1, . . . , un, β), (f(η), up+q+1, . . . , un, β),

(f(ε), up+1, . . . , up+q, f(η))
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are transitions of f(T ). The point is thatX ′ is regular. One deduces f(ε) = µ
and f(η) = ν. One obtains

(µ, up+1, . . . , up+q, ν) = (f(ε), f(vp+1), . . . , f(vp+q), f(η)) ∈ f(T ).

Let n ≥ 2 and 1 ≤ p < n. Let (f(α), f(u1), . . . , f(un), f(β)) be a
transition of f(T ). Since X is cubical, there exists a state µ such that
(α, u1, . . . , up, µ) and (µ, up+1, . . . , un, β) are two transitions ofX . SinceX ′

is cubical, there exists a state ν of X ′ such that (f(α), f(u1), . . . , f(up), ν)
and (ν, f(up+1), . . . , f(un), f(β)) are transitions of X ′. Since X ′ is regular,
one has f(µ) = ν. Therefore

(f(α), f(u1), . . . , f(up), ν)

and
(ν, f(up+1), . . . , f(un), f(β))

belong to f(T ). We have proved that the tuple Y = (S ′, L′ → Σ, f(T ))
is a regular transition system. The map X → X ′ factors uniquely as a
composite X → Y → X ′. The map ↑ x ↑→ X ′ factors uniquely as a
composite ↑x↑→ Y → X ′. By the universal property of the pushout, one
obtains X ′ = Y and T ′ = f(T ).

Proposition A.4. A map of regular transition systems is onto on states if and
only if it satisfies the RLP with respect to the map ∅ → {0}. The class of
maps of regular transition systems which are onto on states is accessible and
accessibly embedded in the category of maps of regular transition systems.

Proof. The first assertion is obvious. The second assertion is then a conse-
quence of [19, Proposition 3.3].

Proposition A.5. A map of regular transition systems is onto on transitions if
and only if it satisfies the RLP with respect to the maps ∅→ Cn[x1, . . . , xn]
for n ≥ 1 and x1, . . . , xn ∈ Σ. The class of maps of regular transition
systems which are onto on transitions is accessible and accessibly embedded
in the category of maps of regular transition systems.

Proof. Let f : X → Y be a map of regular transition systems which is onto
on transitions. Consider a commutative diagram of weak transition systems
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with X and Y regular:

Cn[x1, . . . , xn]
k2 // X

f

��

Cn[x1, . . . , xn]ext

k1

77

`

44

⊂
// Cn[x1, . . . , xn]

φ
// Y.

The lift ` exists since the map f : X → Y is onto on transitions by hypoth-
esis. Since X is cubical, the map ` : Cn[x1, . . . , xn]ext → X factors as a
composite

` : Cn[x1, . . . , xn]ext
k1−→ Cn[x1, . . . , xn]

k2−→ X.

The point is that Y is regular. Thus, Y is orthogonal to the inclusion

Cn[x1, . . . , xn]ext ⊂ Cn[x1, . . . , xn]

by [7, Theorem 5.6]. Therefore k1 is the inclusion Cn[x1, . . . , xn]ext ⊂
Cn[x1, . . . , xn] and φ = f ◦ k2. We deduce that f satisfies the RLP with
respect to the maps ∅→ Cn[x1, . . . , xn] for n ≥ 1 and x1, . . . , xn ∈ Σ.

Conversely, let us suppose that f : X → Y is a map of regular transition
systems which satisfies the RLP with respect to the maps

∅→ Cn[x1, . . . , xn]

for n ≥ 1 and x1, . . . , xn ∈ Σ. Let (α, u1, . . . , un, β) be a transition of Y .
It yields a map Cn[µ(u1), . . . , µ(un)]ext → Y . Since Y is cubical, this map
factors as a composite Cn[µ(u1), . . . , µ(un)]ext ⊂ Cn[µ(u1), . . . , µ(un)] →
Y . By hypothesis, the right-hand map factors as a composite

Cn[µ(u1), . . . , µ(un)]→ X
f→ Y.

Thus, the map Cn[µ(u1), . . . , µ(un)]ext → Y factors as a composite

Cn[µ(u1), . . . , µ(un)]ext → X → Y.

Hence f is onto on transitions.
The last assertion is then a consequence of [19, Proposition 3.3].
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Proposition A.6. Every map of cellRTS(S) is onto on states, on actions and
on transitions.

Proof. A map of cellRTS(S) is a transfinite composition of maps which are
onto on states and on transitions by Proposition A.3. By Proposition A.4
and Proposition A.5, every map of cellRTS(S) is then onto on states and
on transitions. Let f : X → Y be a map of cellRTS(S). Let u be an
action of Y . Then there exists a transition (α, u, β) of Y . Consider the
map C1[µ(u)] → Y taking the 1-transition of C1[µ(u)] to (α, u, β). Then it
factors as a composite C1[µ(u)] → X → Y . The image of the 1-transition
of C1[µ(u)] by the left-hand map yields a 1-transition (γ, v, δ) of X such
that (f(γ), f(v), f(δ)) = (α, u, β). Therefore f(v) = u and f is onto on
actions.

B. Restricting an adjunction to a full reflective subcategory

The following proposition provides a tool to easily restrict the cylinder and
the path functors of cubical transition systems to the reflective subcategory
of regular ones. It is stated in a more general setting than the one of locally
presentable categories.

Proposition B.1. Let A ⊂ K be two categories with A full and reflective.
Let R : K → A be the reflection. Consider an adjunction F a G : K → K.
Then the following conditions are equivalent:

(i) F (A) ⊂ A and G(A) ⊂ A.

(ii) There is a natural isomorphism R(F (X)) ∼= F (R(X)) for every X ∈
K.

If one of the two preceding conditions is satisfied, the restriction of F to A
is left adjoint to the restriction of G to A.

Proof. The last assertion easily follows from the sequence of isomorphisms

A(F (A), B) ∼= K(F (A), B) ∼= K(A,G(B)) ∼= A(A,G(B))

for any A,B ∈ A and from the fact that A is a full subcategory of K.
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Let us prove now the implication (i)⇒ (ii). For any object X of K and
any object A of A, one has:

A(R(F (X)), A)
∼= K(F (X), A) because R is the left adjoint of A ⊂ K
∼= K(X,G(A)) because G is the right adjoint of F
∼= A(R(X), G(A)) by adjunction and since G(A) ∈ A
∼= K(R(X), G(A)) because A is a full subcategory of K
∼= K(F (R(X)), A) because G is the right adjoint of F
∼= A(F (R(X)), A) because A is full in K and F (A) ⊂ A.

By Yoneda applied in A, one obtains the natural isomorphism R(F (X)) ∼=
F (R(X)).

Let us prove now the implication (ii) ⇒ (i). Let A be an object of A.
Then the unit map ηA : A → R(A), which is an isomorphism since A ∈ A,
gives rise to the isomorphism F (A) ∼= F (R(A)). By (ii), one then obtains
the isomorphism F (A) ∼= R(F (A)). Hence F (A) ∈ A. We want to prove
now that G(A) ∈ A. One has the sequence of bijections

K(G(A), G(A))
∼= K(F (G(A)), A) because G is the right adjoint of F
∼= A(R(F (G(A)), A) because R is the left adjoint of A ⊂ K
∼= K(R(F (G(A)), A) because A is a full subcategory of K
∼= K(F (R(G(A)), A) because of (ii)
∼= K(R(G(A)), G(A)) because G is the right adjoint of F .

This means that the identity of G(A) factors as a composite

G(A)
ηG(A)−→ R(G(A))

r−→ G(A),

i.e r ◦ ηG(A) = IdG(A). Hence ηG(A) has a left inverse. We follow now the
argument of [14]. By using the naturality of the unit η : Id→ R, one obtains
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the commutative diagram

R(G(A)) r //

ηR(G(A))

��

G(A)

ηG(A)

��

R(R(G(A)) Rr // R(G(A)).

Since r ◦ ηG(A) = IdG(A), one has

Rr ◦R(ηG(A)) = R(r ◦ ηG(A)) = R(IdG(A)) = IdR(G(A)) .

For all objects Z of K, the map R(ηZ) : R(Z) → R(R(Z)) is an isomor-
phism by the universal property of the reflection R. With Z = G(A), one
obtains that R(ηG(A)) is an isomorphism. Therefore Rr = R(ηG(A))

−1 is an
isomorphism. The map ηR(G(A)) is an isomorphism as well since ηR(G(A)) =
R(ηG(A)). Therefore

ηG(A) ◦
(
r ◦ (Rr ◦ ηR(G(A)))

−1
)

= IdR(G(A)) .

Hence ηG(A) has a right inverse. Thus, ηG(A) : G(A) → R(G(A)) is an
isomorphism. Hence G(A) ∈ A.
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Résumé. Une catégorie avec tangente est une catégorie équipée d’un
endofoncteur ayant les propriétés abstraites du foncteur fibré tangent sur
la catégorie des variétés lisses. Parmi les exemples on trouve beaucoup de
contextes appropriés pour la géométrie différentielle: par exemple, certaines
variétés, les C∞-anneaux, et les modèles de la géométrie diffrentielle
synthétique induisent des catégories avec tangente. Rosicky a montré que
dans ce contexte abstrait on peut définir une loi de crochet de Lie pour les
champs de vecteurs correspondants. Cet auteur a aussi donné une preuve de
l’identité de Jacobi pour cette loi: toutefois sa preuve n’a jamais été publiée,
elle était assez complexe, et nécessitait d’hypothèses supplémentaires sur la
catégorie avec tangente.
Nous donnons ici une preuve beaucoup plus courte de l’identité de Jacobi
dans ce contexte, sans aucune hypothèse supplémentaire. En outre, les
techniques développées pour cette preuve, notamment l’utilisation d’un
calcul graphique, pourraient être utiles pour démontrer dautres résultats dans
les catégories avec tangente.

Abstract. A tangent category is a category equipped with an endofunctor
with abstract properties modelling those of the tangent bundle functor on the
category of smooth manifolds. Examples include many settings for differen-
tial geometry; for example, convenient manifolds, C∞-rings, and models of
synthetic differential geometry all give rise to tangent categories. Rosický
showed that in this abstract setting, one can define a Lie bracket operation for
the resulting vector fields. He also provided a proof of the Jacobi identity for
this bracket operation; however, his proof was unpublished, quite complex,
and made additional assumptions on the tangent category.
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We provide a much shorter proof of the Jacobi identity in this setting
that does not make any additional assumptions. Moreover, the techniques
developed for the proof, namely the use of a graphical calculus, may be of
use in proving other results for tangent categories.

Keywords. Tangent categories, Lie bracket, generalized differential geome-
try, synthetic differential geometry.
Mathematics Subject Classification (2010). 18D99, 51K10.

1. Introduction

Tangent categories, first developed by Rosický [8] provide an axiomatic de-
scription of the tangent bundle functor. Within this abstract framework, one
is interested in determining how many properties of the ordinary tangent
bundle for finite dimensional smooth manifolds hold. For example, one can
define vector fields for such an abstract tangent bundle, and Rosický showed
that one can define a Lie bracket for two such vector fields.

Unfortunately, however, the proof of an important identity for the Lie
bracket, namely the Jacobi identity

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0

proved elusive. Rosický did find a very long, intricate proof (approximately
80 pages); however, the proof also made additional assumptions on the tan-
gent category and was not published.

In this paper, we give a shorter proof of this key identity that does not
make any additional assumptions on the tangent category. Most of the work
involved in trying to prove the identity consists of calculations with many
applications of various functors and natural transformations. Our key sim-
plification is the use of a graphical calculus to handle these calculations. By
judicious use of this graphical calculus, we are able to manipulate the com-
plex sequence of terms in the Jacobi identity for tangent categories much
more easily and thus are able to perform the necessary calculations to re-
duce the expression to zero.

In addition to the simplification of the proof that this paper provides, we
also believe that the technique we employ in this proof (namely, the use of
graphical calculus) will greatly aid further calculations in tangent categories.
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2. Tangent categories and their Lie bracket

Rosický gave the original definition of tangent categories [8]; here, we pro-
vide a modified version of the axioms found in [2].

Throughout this paper we will be writing composition in diagrammatic
order, so that f followed by g is written as fg. An additive bundle over
an object M in a category X is a commutative monoid in the slice category
X/M , while an additive bundle morphism between two such objects is the
obvious notion of morphism of such objects.

Definition 2.1. For a category X, tangent structure T = (T, p, 0,+, `, c) on
X consists of the following data:

• (tangent functor) a functor T : X→ X with a natural transformation
p : T → I such that each pM : T (M) → M admits finite wide
pullbacks along itself which are preserved by each T n.

• (additive bundle) natural transformations + : T2 → T (where T2 is
the pullback of p over itself) and 0 : I → T making each pM : TM →
M an additive bundle;

• (vertical lift) a natural transformation ` : T → T 2 such that for each
M

(`M , 0M) : (p : TM →M,+, 0)→ (Tp : T 2M → TM, T (+), T (0))

is an additive bundle morphism;

• (canonical flip) a natural transformation c : T 2 → T 2 such that for
each M

(cM , 1) : (Tp : T 2M → TM, T (+), T (0))→ (p : T 2M → TM,+, 0)

is an additive bundle morphism;

• (coherence of ` and c) c2 = 1 (so c is a natural isomorphism), `c = `,
and the following diagrams commute:

T ` //

`
��

T 2

T (`)
��

T 2
`T
// T 3

T 3 T (c) //

cT
��

T 3 cT // T 3

T (c)
��

T 3

T (c)
// T 3

cT
// T 3

T 2

c
��

`T // T 3 T (c) // T 3

cT
��

T 2

T (`)
// T 3
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• (universality of vertical lift) defining the “derived lift” v : T2M →
T 2M by v := 〈π0`, π10T 〉T (+), the following diagram is a pullback1:

T2(M)

π0p=π1p

��

v // T 2(M)

T (p)

��
M

0
// T (M)

A pair (X,T) is known as a tangent category.

Example 2.2. The category of finite dimensional smooth manifolds with
their usual tangent bundle forms a tangent category.

It is useful to look at how these axioms work in this particular example.
In particular, it is useful to see the local form of each of the above natural
transformations. Locally on U , TU ∼= Rn×U ; we shall represent an element
of this tangent bundle by the pair 〈v, x〉. Similarly T2U = Rn×Rn×U and
T 2U = Rn×Rn×Rn×U . The natural transformations above are given by
the following equations:

• projection: p(〈v, x〉) = x;

• addition: +(〈v1, v2, x〉) = 〈v1 + v2, x〉;

• canonical flip: c(〈d, v, w, x〉) = 〈d, w, v, x〉;

• vertical lift: `(〈v, x〉) = 〈v, 0, 0, x〉;

• derived lift: v(〈v1, v2, x〉) = 〈v1, 0, v2, x〉.

A global expression for the derived lift v is also given by

v(〈v1, v2, x〉) =
d

dt
|t=0(tv1 + v2)

(see [3], pg. 55). As we shall see, the universal property of this derived lift
v (that is, the final axiom for a tangent category) is essential for defining the
Lie bracket of two vector fields.

1In [2] this condition is given as the requirement that v is the equalizer of T (p) and
pp0: this followed the approach in [8]. However, we now believe that the condition is more
naturally expressed as a pullback.
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Example 2.3. In any model of synthetic differential geometry, the infinites-
imally linear objects form a tangent category, where TM = MD.

Another perspective on the tangent category axioms comes from seeing
where the axioms come from in this model:

• projection p : MD →M comes from applying M (−) to 0 : 1→ D;

• addition + : MD(2) →MD comes from the diagonal ∆ : D → D(2);

• the lift ` : MD → (MD)D ∼= MD×D comes from multiplication
D ×D → D;

• canonical flip c : MD×D → MD×D comes from the twist D × D →
D ×D.

Example 2.4. Convenient manifolds with the kinematic tangent bundle (see
[4] section 28) form a tangent category, with similar transformations as in
the category of finite dimensional smooth manifolds.

Example 2.5. Any Cartesian differential category [1] is a tangent category,
with T (A) = A× A and T (f) = 〈Df, π1f〉.

Example 2.6. A source of examples from [8] uses the fact that if (X,T) is
a tangent category then the functors from X to set which preserve both the
wide pullbacks of T n(p) and the pullback in the universality of the lift forms
a tangent category. The tangent functor is given by T ∗(F ) := TF . In fact,
this works for any category Y in place of set and functors X → Y which
preserve the required pullbacks. This source of examples includes C∞-rings
(see [7] chapter 1) and more generally the product preserving functors from
any Cartesian differential category.

Example 2.7. The category of functors from any category to a tangent cat-
egory Cat(C,X) inherits the tangent structure of X pointwise. Thus, for
example, the category of arrows in a tangent category X2 is again a tangent
category.

For more examples and theory of tangent categories, see [8] and [2].
We now turn to vector fields and their associated bracket in this abstract

setting.
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Definition 2.8. For M an object of a tangent category (X,T), a vector field
on M is a section of the projection pM : TM →M ; that is, a map x : M →
TM with xpM = 1.

For two vector fields x and y onM , we will write x+y for the expression
〈x, y〉+, and x− y for 〈x, y−〉+.

Now, for vector fields x and y on M , consider the following map:

xT (y)− yT (x)c : M → T 2M.

One can show (see [2], lemma 3.13) that T (p) of this expression gives 0, so
by the universality of the vertical lift, we get an associated unique map from
M to T2M , and then by composing with the first projection, an associated
unique map from M → TM , which we denote by [x, y].

Definition 2.9. For vector fields x and y on an object M in a tangent cate-
gory (X,T) (with negatives), their Lie bracket is [x, y] as defined above.

Note that we need negation in order to be able to define this bracket.
Accordingly, throughout the rest of the paper we assume we are working in
a tangent category which has negatives.

This abstract definition generalizes definitions in the existing models: for
the standard model, see [4], lemma 6.13; for synthetic differential geometry,
see [8], page 6.

It is not difficult to prove the following properties of the bracket operation
in this setting (see [2], theorem 3.17):

• [x, y] is again a vector field on M .

• [x1 + x2, y] = [x1, y] + [x2, y] and [x, y1 + y2] = [x, y1] + [x, y2].

• [x, y]− = [y, x].

The key property we are interested in, however, is the Jacobi identity:

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0.

This is crucial as without it one does not have a Lie bracket. As men-
tioned above, Rosický did not include a proof of this in his paper, but did
provide to us an approximately 80 page handwritten manuscript containing
a proof which assumed some additional pullbacks to be present in the tan-
gent category. The goal in this paper is to prove this result more efficiently
and without the use of additional limits.
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3. Graphical language for tangent categories

The key to our simpler proof is the use of the graphical language of 2-
categories. Graphical languages for monoidal categories have been exten-
sively used (see [6] for an overview). The graphical language for a 2-
category (or bicategory) is similar, but involves using regions for objects.
Thus, in a 2-category, the objects are represented as regions, the arrows as
strings, and the 2-cells as boxes connecting those strings.

In particular, we will be using this graphical language for the 2-category
CAT of categories, functors, and natural transformations. Thus, in our di-
agrams, regions represent categories, wires represent functors, and boxes
represent natural transformations.

For the calculations we are interested in, most of the regions will be
the chosen tangent category X, while most of the wires will be the tangent
functor T . However, we will also use the terminal category 1, as we need
to handle vector fields. We can view an object M of X as a functor 1 → X,
and then a vector field x on M can be viewed as a natural transformation
M → MT . Thus, in this graphical language, the vector field x will be
represented by the diagram

x

where we have omitted the labelling of the regions and wires:

• the top and middle-right regions are the category X of the tangent cat-
egory;

• the bottom region is 1, the terminal category;

• the left and bottom right wires are the object M , viewed as a functor
1→ X;

• the top right wire is the functor T : X→ X.

In general in any calculation involving vector fields, the left-most and bottom
wires will always be M ; all other wires will be T .

COCKETT & CRUTTWELL - THE JACOBI IDENTITY FOR TANGENT CATEGORIES

- 307 -



We will represent ` : T → T 2 by a splitting of wires, and c : T 2 → T 2

by a crossing of wires:

` : ◦ and c:

It is useful to view the coherence axioms for ` and c in this graphical form.
`c = ` is

◦ = ◦

The axiom T (c)cT (c) = cT (c)c is

=

`T (`) = `` is

◦
◦

= ◦
◦

and `T (c)c = cT (`) is

◦ =
◦

(Note that there is a similar version of this, c` = T (`)cT (c) simply by ap-
plying c and T (c) to both sides of the above equation).

Addition as directly defined is potentially problematic, as it involves a
pullback, which is not easily represented graphically. However, we can view
addition of vector fields in a different way: for vector fields x and y,

x+ y = xT (y)〈Tp, p〉+
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Moreover, the map µ1 := 〈Tp, p〉+ : T 2M → TM is a natural transfor-
mation2. Thus we have x + y = xT (y)µ1, and using ⊕ for the natural
transformation µ1, we can represent the addition of two vector fields x and
y by the diagram

x

y

⊕

µ1 has the following coherence with ` (the proof can be found in [2], propo-
sition 3.8):

⊕ ◦ =

◦

◦

⊕

⊕

Negation will be represented by a dot; see below for an example.
We also need ways to deal with the Lie bracket and its universal property.

Since the lift ` is monic ([2], lemma 2.13), one way is to post-compose the
bracket with `, giving the following equation:

[x, y]` = xT (y)T 2(x)T 3(y)− T (−)T (c)µ1T (µ1).

This is originally due to Rosický; a proof can be found in [2], lemma 3.16.
This equation is then given graphically as

[x, y] ◦ =

x

y

x

y

•

•

⊕

⊕

2In fact, it is the multiplication for a monad structure on T : see [2], section 3.2.
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In fact, since `c = ` and [x, y] = −[y, x], there are many variants of this
identity; we will return to this in the next section.

We also have the following result:

Lemma 3.1. For vector fields a and b

aT (b)T (`)`T (c)µ1 = bT (a)T (`)`T (c)µ1T (c).

Proof.

aT (b)T (`)`T (c)µ1

= aT (b)T (`)`T (c)〈T (p), p〉+

= 〈aT (b)T (`)`T (c)T (p), aT (b)T (`)`T (c)p〉+

= 〈aT (b)T (`)`T 2(p), aT (b)T (`)`pc〉+

= 〈aT (b)T (`p)`, aT (b)T (`)`pc〉+

= 〈aT (b)T (p0)`, aT (b)T (`)p0c〉+

= 〈aT (0)`, b`T (0)〉+

= 〈a`T 2(0), b`T (0)〉+

= 〈a`T 2(0), b`T (0)〉+ T (c)T (c)

= 〈a`T 2(0)T (c), b`T (0)T (c)〉+ T (c)

= 〈a`T (0), b`T 2(0)〉+ T (c)

= 〈b`T 2(0), a`T (0)〉+ T (c)(by symmetry)
= bT (a)T (`)`T (c)µ1T (c)

Graphically, this shows that “vector fields which are lifted to have a level
in common commute”:

x

y

◦

◦

⊕

=

y

⊕

x

◦

◦
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4. Proof of the Jacobi identity

This graphical calculus is very helpful when understanding how to manipu-
late complicated expressions, and helps suggests additional variants of iden-
tities. However, even it can get unwieldy when dealing with the large terms
in the Jacobi identity. Thus, it is helpful to represent the terms that occur in
the expansion of the Jacobi identity with a shorthand notation.

Typically, such terms consist of a sequence of vector fields, each of which
is connected to one of three possible levels by addition, or two levels by a
lift then a pair of additions. Thus, if a vector field a is connected to level i
by addition, we write that term as ai, and if that term is lifted then connected
to levels i and j by addition, we write it as aij . We will also additionally
simplify by writing the negation of a vector field a by ã. As an example, in
this notation the identity

[x, y] ◦ =

x

y

x

y

•

•

⊕

⊕

is written as
[x, y]12 = x̃1ỹ2x1y2.

This notation brings us closer to the notation used to prove the Jacobi identity
in models of synthetic differential geometry: see the proofs in [5] and [7].
Indeed, some of the results we establish below are inspired by some of the
calculations in those proofs.

Lemma 4.1. For vector fields a, x, y, z in a tangent category, we have the
following identities:

1. Bracket expansion:

[x, y]12 = x̃1ỹ2x1y2 = x1y2x̃1ỹ2 = y1x̃2ỹ1x2 = ỹ1x2y1x̃2

= x̃2ỹ1x2y1 = x2y1x̃2ỹ1 = y2x̃1ỹ2x1 = ỹ2x1y2x̃1.
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2. Two terms lifted to have a level in common commute:

x12y13 = y13x12 and x12y23 = y23x12.

3. Brackets commute with their constituents:

x1[x, y]12 = [x, y]12x1 and x2[x, y] = [x, y]x2

4. a12z3ã12z̃3 = z3ã12z̃3a12.

Proof. 1. As mentioned earlier, [2], lemma 3.16 proves the first equation.
The fact that `c = ` accounts for half of the forms. As ` − T (−) =
− − ` = ` we obtain the forms in which the negations have been
flipped from the top two wires to the bottom two wires or from the
outside wires to the inside wires. As [y, x]− = [x, y] we get the form
in which the order of vector fields is flipped and the negation moved
from top two to the inside (or outside) two wires.

2. The first version was established in lemma 3.1; the second version is
similar.

3. Using 1,
x1[x, y]12 = x1ỹ2x̃1y2x1 = [x, y]12x1.

The other identity is proved similarly.

4. We use 1 and the coherence of ` with ⊕:

a

z

ã

z̃

◦

◦

⊕

⊕
⊕

=

a

z

ã

z̃

⊕

⊕ ◦
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= [a,z] ◦

◦

=

z

ã

z̃

a

⊕

⊕
◦

=

z

ã

z̃

a

⊕

◦

◦

⊕

⊕

With these lemmas established, we can now give a relatively short proof
of the Jacobi identity in a tangent category.

Theorem 4.2. (Jacobi identity) For vector fields x, y, z in a tangent category
(X,T),

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0.

Proof. We will actually prove a variant of the standard identity, namely

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

First, recall that x+ y can be represented as xT (y)µ1, so that the term above
can be written in the graphical language as

[[x, y], z]

[[y, z], x]

⊕

[[z, x], y]

⊕
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We then post-compose the term with ``. Using the coherence of ` with
⊕, we then get the term

[[x, y], z]123[[y, z], x]123[[z, x], y]123

We will now use the four parts of lemma 4.1 and negation to simplify the
above term. In the proof below, a line underneath a term indicates that it
is the term that will be modified next, the numerals indicate which part of
lemma 4.1 is being used, and neg. indicates the use of negation, either to
reduce a pair of terms or to add a pair of terms.

[[x, y], z]123 [[y, z], x]123 [[z, x], y]123

(1) = [x, y]12z3[y, x]12z̃3[y, z]23x1[z, y]23x̃1[x, z]13ỹ2[z, x]13y2

(2,3) = [x, y]12[x, z]13z3[y, x]12z̃3[y, z]23x1[z, y]23x̃1ỹ2[z, x]13y2

(1) = [x, y]12[x, z]13z3[y, x]12z̃3[y, z]23x1[z, y]23x̃1ỹ2x1z̃3x̃1z3y2

(neg.) = [x, y]12[x, z]13z3[y, x]12z̃3[y, z]23x1[z, y]23x̃1ỹ2x1y2ỹ2z̃3x̃1z3y2

(1) = [x, y]12[x, z]13z3[y, x]12z̃3[y, z]23x1[z, y]23[x, y]12ỹ2z̃3x̃1z3y2

(2,3) = [x, y]12[x, z]13z3[y, x]12z̃3[x, y]12[y, z]23x1[z, y]23ỹ2z̃3x̃1z3y2

(1) = [x, y]12[x, z]13z3[y, x]12z̃3[x, y]12[y, z]23x1z̃3ỹ2z3y2ỹ2z̃3x̃1z3y2

(neg.) = [x, y]12[x, z]13z3[y, x]12z̃3[x, y]12[y, z]23x1z̃3ỹ2x̃1z3y2

(2,3) = [y, z]23[x, y]12[x, z]13z3[y, x]12z̃3[x, y]12x1z̃3ỹ2x̃1z3y2

(4) = [y, z]23[x, y]12[x, z]13[y, x]12z̃3[x, y]12z3x1z̃3ỹ2x̃1z3y2

(neg.) = [y, z]23[x, y]12[x, z]13[y, x]12z̃3[x, y]12z3x1z̃3x̃1x1ỹ2x̃1z3y2

(1) = [y, z]23[x, y]12[x, z]13[y, x]12z̃3[x, y]12[z, x]13x1ỹ2x̃1z3y2

(2,3) = [y, z]23[x, y]12[x, z]13[z, x]13[y, x]12z̃3[x, y]12x1ỹ2x̃1z3y2

(neg.) = [y, z]23[x, y]12[y, x]12z̃3[x, y]12x1ỹ2x̃1z3y2

(neg.) = [y, z]23z̃3[x, y]12x1ỹ2x̃1z3y2

(neg.) = [y, z]23z̃3[x, y]12x1ỹ2x̃1y2ỹ2z3y2

(1) = [y, z]23z̃3[x, y]12[y, x]12ỹ2z3y2

(neg.) = [y, z]23z̃3ỹ2z3y2

(1) = [y, z]23[z, y]23

(neg.) = 0123
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Thus, since ` is monic ([2], lemma 2.13), we have

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

as required.
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RESUMES DES ARTICLES PUBLIES 

dans le Volume LVI (2015) 
 
 

 

A. KOCK, Duality for generic algebras, 2-14. 

Les théorèmes de dualité affirment souvent que l’application canonique d’un ob-

jet dans son dual double (ou peut-être dual double convenablement “restreint”) est 

un isomorphisme. Les deux dualisations utilisées dans la formation du dual 

double sont relatives à un objet basique R. Un exemple en est la dualité de Gel-

fand. Cette note montre que l’algèbre générique R d’une théorie algébrique peut 

servir comme un tel objet basique : le dual double (convenablement restreint) 

d’un objet représentable y(C), dans le topos de préfaisceaux E dans lequel R vit, 

est isomorphe, via δ, à y(C) lui-même. La preuve utilise un “couplage complet” – 

une notion abstraite de la preuve. Parmi les corollaires : l’anneau générique R est 

un modèle pour la géométrie différentielle synthétique. 

   
J. CHICHE, Théories homotopiques des 2-catégories, 15-75. 

This text develops a homotopy theory of 2-categories analogous to 

Grothendieck’s homotopy theory of categories in Pursuing Stacks. We define the 

notion of basic localizer of 2-Cat, a 2-categorical generalization of Grothen-

dieck’s notion of basic localizer, and we show that the homotopy theories of Cat 

and 2-Cat are equivalent in a remarkably strong sense: there is an isomorphism, 

compatible with localization, between the ordered classes of basic localizers of 

Cat and 2-Cat. It follows that weak homotopy equivalences in 2-Cat can be inter-

nally characterized, without mentioning topological spaces or simplicial sets.  

 

A. EHRESMANN, Parcours d'un topologue-catégoricien : Jean-Marc Cordier 

(1946-2014), 76-80. 

This Note contains the List of publications of Cordier, and an outline of his works 

(several in collaboration with Bourn or Porter), from Topology, to Shape Theory 

and Coherent Homotopy. 

 

D. ARA, Structures de catégorie de modèles à la Thomason sur la catégorie 

des 2-catégories strictes, 83-108. 

This paper is a complement to J. Chiche's paper in Volume LVI-1 (cf. above) 

which studies homotopy theories on 2-Cat, given by classes of weak equivalences 

called basic localizers of 2-Cat (a 2-categorical generalization of Grothendieck's 

notion). The author deduces, from Chiche's results and a result he has obtained 

with G. Maltsiniotis, that for essentially every basic localizer W of 2-Cat, there is 

a model category structure à la Thomason on 2-Cat whose weak equivalences are 
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given by W; such structures model exactly combinatorial left Bousfield localiza-

tion of the classical homotopy theory of simplicial sets. 

 

S. A. SOLOVYOV. Localification procedure for affine systems, 109-.131. 

Motivé par le concept d’ensemble affine de Y. Diers, cet article étudie la notion 

de système affine, qui généralise les systèmes topologiques de S. Vickers. La 

catégorie des ensembles affines est isomorphe à une sous-catégorie pleine coré-

flexive de la catégorie des systèmes affines. L'auteur donne une condition néces-

saire et suffisante pour que la catégorie duale de la variété des algèbres, sous-

jacentes aux ensembles affines, soit isomorphe à une sous-catégorie réflexive de 

la catégorie des systèmes affines. D'où une reformulation de l’équivalence sobrié-

té-spatialité pour les ensembles affines, analogue à l’équivalence entre les catégo-

ries des espaces topologiques sobres et des “locales” spatiaux 

 

E. MEHDI-NEZHAD, Abstract annihilation graphs, 133-145. 

L'article propose un nouveau contexte, beaucoup plus général, pour l'étude des 

graphes diviseurs-de-zero/annulateurs-d’idéaux, où les sommets des graphes ne 

sont pas des éléments/idéaux d´un anneau commutatif, mais éléments d´un en-

semble ordonné abstrait (qui imite le treillis des idéaux), muni d’une loi binaire 

(qui imite le produit d’idéaux). On considère aussi le niveau intermédiaire des 

congruences de structures algébriques qui admettent une ”bonne” théorie des 

commutateurs. 

 

L. STRAMACCIA, The coherent category of inverse systems, 147-159. 

Pour toute catégorie de modèles C enrichie dans la catégorie des groupoïdes  Grd, 

on définit la catégorie ProC, dont les objets sont les systèmes inverses dans C; 

elle est isomorphe à la catégorie d'homotopie de Steenrod Ho(ProC), et à la caté-

gorie de pro-homotopie cohérente définie par Lisica et Mardešiċ si C est la caté-

gorie des espaces topologiques. 

 

BARR, KENNISON & RAPHAEL, On reflective and coreflective hulls, 163-208.  

Cet article étudie l’enveloppe réflective engendrée par une sous-catégorie pleine 

d’une catégorie complète. Il s’agit de la plus petite sous-catégorie qui est pleine et 

réflective. Comme application on obtient l’enveloppe coréflective de la sous-

catégorie pleine de cubes pointés dans la catégorie des espaces topologiques poin-

tés. Par la suite on détermine l’enveloppe réflective de la catégorie des espaces 

métriques dans la catégorie des espaces uniformes, ainsi que d'autres sous-

catégories. 

 

SHEN & THOLEN, Limits and colimits of quantaloid-enriched categories and 

their distributors, 209-231. 

Pour un petit quantaloïde Q les auteurs prouvent que la catégorie des petites Q-
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catégories et leurs Q-foncteurs est totale and co-totale, et que la catégorie des Q-

distributeurs et leurs Q-Chu-transformations est aussi totale et co-totale. 

 

CARLETTI & GRANDIS, Generalised pushouts, connected colimits and 

codiscrete groupoids, 232-240. 

Brève étude d'une espèce de colimites, appellée ici ‘pushout généralisé’. On 

prouve que, dans une catégorie quelconque, l’existence de ces colimites corres-

pond à celle des colimites connexes ; dans le cas fini, ceci se réduit à l’existence 

de pushouts ordinaires et co-égalisateurs (Paré, 1993). La motivation est que tout 

groupoïde est, à équivalence près, un pushout généralisé de groupoïdes co-

discrets. Pour les groupoïdes fondamentaux d’espaces convenables on donne des 

résultats plus fins pour des pushouts généralisés finis. 

 

P. GAUCHER, The geometry of cubical and regular transition systems, 242-

300.  

Il existe des systèmes de transitions cubiques contenant des cubes ayant un 

nombre arbitrairement grand de faces. Un système de transition régulier est un 

système de transitions cubiques tel que tout cube a le bon nombre de faces. Les 

propriétés catégoriques et homotopiques des systèmes de transitions réguliers sont 

similaires à celles des cubiques. On donne une description combinatoire complète 

des objets fibrants dans les cas cubiques et réguliers.  

Un des deux appendices contient un lemme indépendant sur la restriction d’une 

adjonction à une sous-catégorie réflective pleine. 

  

COCKETT & CRUTTWELL. The Jacobi identity for tangent categories, 301-

316. 

Une catégorie avec tangente est une catégorie équipée d’un endofoncteur ayant 

les propriétés abstraites du foncteur fibré tangent sur la catégorie des variétés 

lisses. Parmi les exemples figurent de nombreux contextes appropriés pour la 

géométrie différentielle : certaines variétés, C
∞
-anneaux et modèles de la géomé-

trie différentielle synthétique induisent des catégories avec tangente. Rosicky a 

montré que dans ce contexte abstrait on peut définir une loi de crochet de Lie pour 

les champs de vecteurs correspondants, et il a prouve l’identité de Jacobi pour 

cette loi ; toutefois sa preuve n’a jamais été publiée, elle était assez complexe, et 

nécessitait des hypothèses supplémentaires sur la catégorie avec tangente.  

Ici on donne une preuve beaucoup plus courte de l’identité de Jacobi dans ce con-

texte, sans aucune hypothèse supplémentaire. En outre, les techniques dévelop-

pées pour cette preuve, notamment l’utilisation d’un calcul graphique, pourraient 

être utiles pour démontrer d'autres résultats dans les catégories avec tangente. 
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