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NEW EDITORIAL BOARD OF THE "CAHIERS' 

 

It is a pleasure to announce that the Editorial Board of the “Cahiers” will 

be enlarged and modified as follows, starting from January 2015: 

 

Chief Editors: 

Ehresmann Andrée (Université de Picardie Jules Verne)  

Gran Marino (Université catholique de Louvain) 

Guitart René (Université Paris 7 Denis Diderot) 

 

Editors: 
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Johnstone Peter (University of Cambridge) 
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Mantovani Sandra (Università degli Studi di Milano) 

Porter Tim (University of Wales Bangor) 

Pradines Jean (Université Paul Sabatier Toulouse) 
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The “Cahiers” were created in 1957 under the initial title  

“Séminaire Ehresmann. Topologie et Géométrie Différentielle”, 

published in the series of the “Séminaires de l’Institut Henri Poincaré”.  

Starting from Volume II, they appeared as an independent publication (ed-

ited by Dunod from 1967 to 1972), the title being changed a few times un-

til 1966, when they were named  

“Cahiers de Topologie et Géométrie Différentielle” 

by Andrée EHRESMANN, Marino GRAN and René GUITART
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EHRESMANN, GRAN & GUITART - NEW EDITORIAL BOARD 

(cf. Charles and Andrée Ehresmann, « Déjà vingt ans … », Vol. XVIII-4 

(1977), 431-432). In that article it was already observed that, by taking into 

account the evolution of the subject, a title such as  “Théorie et Applica-

tions des Catégories” would have been more suitable, since many mathe-

maticians applying category theory to different areas of mathematics had 

already published in the “Cahiers”. This is the reason why, already 30 

years ago (starting from volume XXV in 1984), the present name 

“Cahiers de Topologie et Géométrie Différentielle Catégoriques” 

was chosen, underlying the continuity with the origin of the journal, and 

also the natural change consisting in placing category theory at the centre 

of the research interests of the journal.  

 

Starting from January 2015, the Editorial Board will be enlarged, by in-

cluding a new generation of mathematicians and by opening the journal to 

some new research areas where category theory is developing and is being 

applied. The main research subject of the journal remains pure category 

theory, together with its applications in topology, differential geometry, 

algebraic geometry, universal algebra, homological algebra, algebraic to-

pology. 

 

Papers submitted for publication should be sent to one of the editors as a 

pdf file, with a copy to Andrée Ehresmann (ehres@u-picardie.fr). More 

information on the submission format can be found on the site 

http://ehres.pagesperso-orange.fr/Cahiers/Ctgdc.htm  

where the Index of the papers published in the "Cahiers" since their crea-

tion, as well as English abstracts of those published since 1999, are also 

available. A new website of the journal, hosted by the Université ca-

tholique de Louvain, will be published next year. The articles of the "Ca-

hiers" will also be available on the new website after 2 years. 

 

Correspondence concerning subscriptions and backsets is to be sent to  

Andrée Ehresmann by e-mail: ehres@u-picardie.fr , or by postal mail :  

Mme Ehresmann, Faculté des Sciences, Mathématique, 

33 rue Saint-Leu, F-80039 Amiens. France.  

- 243 -



Résumé. Nous expliquons comment une pseudomonade sur une bicatégorie
réduite à un objet revient à la même chose qu’un voilement (anglais: warping)
sur la catégorie monoı̈dale correspondante. Nous dégageons également une
version de cette équivalence pour les catégories monoı̈dales obliques. Les
catégories monoı̈dales obliques (anglais: skew monoidal categories) sont une
généralisation des catégories monoı̈dales où les morphismes d’associativité et
de l’unité ne sont pas forcément inversibles. Notre analyse nous mène à intro-
duire un processus de normalisation pour les catégories monoı̈dales obliques,
qui produit, d’une manière universelle, une catégorie monoı̈dale oblique pour
laquelle le morphisme d’unité à droite est inversible.
Abstract. We explain the sense in which a warping on a monoidal category is
the same as a pseudomonad on the corresponding one-object bicategory, and
we describe extensions of this to the setting of skew monoidal categories:
these are a generalization of monoidal categories in which the associativity
and unit maps are not required to be invertible. Our analysis leads us to de-
scribe a normalization process for skew monoidal categories, which produces
a universal skew monoidal category for which the right unit map is invertible.
Keywords. monad, bicategory, skew monoidal category, warping
Mathematics Subject Classification (2010). 18C15, 18D05, 18D1

1. Introduction

If C is a monoidal category with tensor product ⊗, and T : C → C is a
functor, then one can define a new product � on C via the formula

A�B = TA⊗B.

In order for this to define a new monoidal structure on C, further structure
on C is required. The notion of warping, introduced in [3], is designed to do
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just that: if T is a warping then C becomes monoidal via the “warped” tensor
product � defined above.

While the notion of warping is quite restrictive, the skew warpings of
[6] are far more common: for example, if T has a monad structure, and this
monad is opmonoidal [12, 11], in the sense that there are suitably coherent
maps T (A ⊗ B) → TA ⊗ TB and TI → I , then T is a skew warping. In
particular, if H is a bialgebra, then the functor H ⊗− : Vect→ Vect has a
skew warping structure.

The price of this extra generality is that the warped tensor product no
long gives a monoidal structure, but only a skew monoidal one, in the sense
of [6] (called left skew monoidal in [15]). These skew monoidal categories
are similar to monoidal categories, except that the associativity and unit
structure morphisms are not required to be invertible. The key insight of
[15] is that these skew monoidal categories can be used to provide a valu-
able new characterization of bialgebroids; this was extended in [6] to the
case of quantum categories.

We have been studying skew monoidal categories in a series of papers
[6, 14, 5, 7], but have so far only scratched the surface of this remarkable
theory, which seems to stem from the fact that skew monoidal categories are
at the same time a generalization of monoidal categories and of categories.

While skew warpings and skew monoidal structures are quite recent,
monads have of course been a central topic in category theory for decades,
and have been generalized in many directions. For example, monads can be
defined in any bicategory [2], and while monads in Cat are just ordinary
monads, monads in Span are categories. Generalizing in a different direc-
tion, one can consider monads not just on categories but on 2-categories or
bicategories, and in this context one often has weaker structures called pseu-
domonads; still more generally, there are various lax notions of monad.

Most of these generalizations rely, directly or indirectly, on the fact that
(ordinary) monads are the same as monoids in a monoidal category of endo-
functors. But there is also another approach, which has largely been de-
veloped and promoted by Manes, for example in [9]; but see also Walters’
thesis [16]. In this approach, one does not specify a functor at all; rather,
for each object A of the category C one gives an object DA and a morphism
KA : A→ DA, and for each morphism f : A→ DB one gives a morphism
Tf : DA→ DB.
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One feature of this approach is that, whereas the usual definition of
monad involves an associative multiplication D ◦ D → D and so requires
the formation of D ◦D and D ◦D ◦D, in Manes’ approach, these iterates of
D are not needed. Thus Marmolejo and Wood use the epithet “no iteration”
to refer to this approach to monads, when in [10] they modify the theory to
deal with pseudomonads. Since this is a little unwieldy, we shall replace “no
iteration” by “mw-”. We leave to the reader the question of whether these
letters denote Manes and Walters, Marmolejo and Wood, or something else
entirely.

The goal of this paper is to describe a close relationship between warp-
ings and skew warpings on the one hand, and mw-monads and pseudo-mw-
monads on the other.

Perhaps the simplest result to state is this:

Let C be a monoidal category, and ΣC the corresponding one-
object bicategory. A warping on C is the same as a pseudomonad
on ΣC.

We prove this in Corollary 5.3 below. We could equally have put pseudo-
mw-monad rather than pseudomonad since, as proved in [10], these amount
to the same thing.

This correspondence between pseudo-mw-monads and pseudomonads
depends heavily on the invertibility of certain structure maps. If one weak-
ens this requirement, the resulting notion of skew mw-monad is no longer
equivalent to any lax version of ordinary pseudomonads. Nonetheless these
skew mw-monads seem to be an interesting structure:

Let C be a monoidal category, and ΣC the corresponding one-
object bicategory. A skew warping on C is the same as a skew
mw-monad on ΣC.

These connections between (possibly skew) warpings and (higher) mw-
monads shed light on both. In one direction, it shows that the “warped”
monoidal structure involving � is really a sort of Kleisli construction, it
suggests that one should consider “algebras” for skew warpings, and it sug-
gests that warpings should be considered on bicategories as well as monoidal
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categories. In the other, it makes clear that some of the axioms for mw-
pseudomonads are redundant, and suggests considering lax/skew variants as
well.

In the final section of the paper, we describe a universal process whereby
a skew monoidal category can be replaced by one which is right normal,
in the sense that the right unit constraint is invertible. We call this process
(right) normalization, and we use it to give a formal account of the relation-
ship between monads and mw-monads.

2. Review of mw-monads

In this section, we recall the definition of mw-monad, and its relationship to
ordinary monads.

The usual notion of monad on a category C consists of a functor D : C →
C equipped with natural transformations m : D2 → D and K : 1→ D satis-
fying associativity and unit laws.

Definition 2.1. An mw-monad on C, consists of the following structure:

• a function D : ob C → ob C

• functions T : C(X,DY ) → C(DX,DY ) assigning to each morphism
f : X → DY a morphism Tf : DX → DY

• a morphism K = KX : X → DX for each X

• subject to the following equations:

Tg ◦ Tf = T (Tg ◦ f)

Tf ◦K = f

TKX = 1DX .

This determines a monad on C as follows. The endofunctor is defined
on objects using D, and sends a morphism f : X → Y to T (KY ◦ f). The
components of the unit are given by the KX . The component at X of the
multiplication is T (1DX). Conversely, for any monad D on C with multipli-
cation M and unit K, we get an mw-monad by defining Tf : DX → DY
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to be Df : DX → D2Y composed with the multiplication D2Y → DY .
These constructions are mutually inverse: see [9].

These mw-monads are in some sense more closely related to their Kleisli
categories than in the usual approach. Given an mw-monad as above, the
Kleisli category CT has the same objects as C, with CT (X, Y ) = C(X,DY );
the identity on X is KX , while the composite of f : X → DY and g : Y →
DZ is Tg ◦ f .

It is also possible to reformulate the usual notion of algebra for a monad
in terms of the mw-monad. This is done in the following definition.

Definition 2.2. Given an mw-monad as above, an algebra consists of an
object A, together with functions E : C(X,A) → C(DX,A) such that, for
all g : Y → A and f : X → DY , we have Eg ◦ KY = g and Eg ◦ Tf =
E(Eg ◦ f).

3. Skew bicategories

There is an evident common generalization of the notions of bicategory and
skew monoidal category, which we shall tentatively call a skew bicategory,
although there are also richer structures which may deserve this name. At
this stage, the only motivation for the definition is to have a common setting
in which to discuss bicategories and skew monoidal categories. In any case,
for this paper, a skew bicategory consists of:

• objects X, Y, Z, . . .

• hom-categories B(X, Y ) for all objects X and Y

• functors M : B(Y, Z)× B(X, Y )→ B(X,Z)

• functors j : 1→ B(X,X)

• (not necessarily invertible) natural transformations

B(Y, Z)× B(X, Y )× B(W,X)
M×1

//

1×M
��

B(X,Z)× B(W,X)

M
��

B(Y, Z)× B(W,Y )
M

// B(W,Z)

α

��
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B(X, Y )
j×1
//

1 --

B(Y, Y )× B(X, Y )

M
��

B(X, Y )

λ
��

B(X, Y )
1×j
//

1 --

B(X, Y )× B(X,X)

M
��

B(X, Y )

ρ

KS

whose components take the form αf,g,h : (hg)f → h(gf), λf : 1f → f ,
and ρf : f → f1, except that usually we omit the subscripts and simply
write α, λ, and ρ. These are required to satisfy five conditions, asserting the
commutativity of all diagrams of the form

(k(hg))f
αf,hg,k

//

1

k((hg)f)
kαf,g,h

''

((kh)g)f

αg,h,kf 77

αf,g,kh ++

k(h(gf))

(kh)(gf)
αgf,h,k

33

(g1)f
αf,1,g

//

2

g(1f)

gλf

��

gf

ρgf

OO

gf

(1g)f
αf,g,1

//

λgf ""

3

1(gf)

λgf||

gf

gf
ρgf

||

gρf

""
4

1

ρ1
��

5

1

(gf)1 α1,f,g

// g(f1) 11

λ1

@@

Example 3.1. In the usual way, we identify one-object skew bicategories
with skew monoidal categories.
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Example 3.2. If the natural transformations α, λ, and ρ are all invertible,
we recover the usual notion of bicategory, except that the usual definition
includes only the first two axioms; but by adapting the argument of [4] for
monoidal categories, or applying the coherence theorem of [8], one easily
deduces that the other three axioms are a consequence of the first two.

4. Skew warpings on skew bicategories

In this section we make the basic definition which is a common generaliza-
tion of skew warpings on skew monoidal categories, and pseudo mw-monads
on bicategories.

Definition 4.1. A skew warping on the skew bicategory B consists of:

• a function D : obB → obB

• functors T : B(X,DY )→ B(DX,DY )

• 1-cells K : X → DX for each X

• natural transformations

B(Y,DZ)× B(X,DY )
T×T

//

T×1
��

B(DY,DZ)× B(DX,DY )

M
��

B(DY,DZ)× B(X,DY )
M
// B(X,DZ)

T
//

v

KS

B(DX,DZ)

B(X,DY )
T×K

//

1 --

B(DX,DY )× B(X,DX)

M
��

B(X,DY )

k

KS 1 K //

j
&&

B(Y,DY )

T
��

B(DY,DY )

v0
��

or, in terms of components

T (Tg.f) v // Tg.Tf

f
k // Tf.K

TK
v0 // 1DY
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for f : X → DY and g : Y → DZ.
These are required to satisfy the following five equations

T (T (Th.g).f) v //

T (v.1)

��

T (Th.g).T f v.1 //

1

(Th.Tg).T f
α

((

T ((Th.Tg).f)
Tα
// T (Th.(Tg.f)) v

// Th.T (Tg.f)
1.v
// Th.(Tg.Tf)

T (Tf.K) v //

2

Tf.TK

1.v0
��

Tf

Tk

OO

ρ
// Tf.1

T (TK.f) v //

T (v0.1)

��

TK.Tf
v0.1 //

3

1.T f

λ
��

T (1.f)
Tλ

// Tf

T (Tg.f).K v.1 //

4

(Tg.Tf).K

α

��

Tg.f

k

OO

1.k
// Tg.(Tf.K)

TK.K
v0.1 //

5

1.K

λ
��

K

k

OO

K

for all f : X → DY , g : Y → DZ, and h : Z → DW .

Example 4.2. A skew warping on a skew monoidal category, in the sense of
[6], is literally the same as a skew warping on the corresponding one-object
skew bicategory.

Example 4.3. Any category can be seen as a skew bicategory with no non-
identity 2-cells. A skew warping on a category is the same thing as an
mw-monad on the category, and so amounts to an ordinary monad on the
category.

Definition 4.4. A warping on a bicategory is a skew warping for which v, k,
and v0 are invertible.

Example 4.5. A warping on a 2-category B is the same as a pseudo mw-
monad (a no iteration pseudomonad in the language of [10]). In more detail,
T is the functor ( )D of [10], while KX is the 1-cell dX . The 2-cells DA, Df ,
and Df,h of [10] are the inverses of suitable components of our v0, k, and
v. Our five axioms are then conditions 8, 2, 3, 5, and 1 respectively of [10],
while the remaining axioms 4, 6, and 7 of [10] amount to naturality of v and
k.
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5. The Kleisli construction for skew warpings

We saw in Section 2 that the Kleisli category of a monad is easily constructed
in terms of the corresponding mw-monad. We now describe an analogous
construction for skew warpings; this is a straightforward generalization of
[6, Proposition 3.6].

Given a skew warping, as in the previous section, there is a new skew
bicategory BT with the same objects as B, and with hom-categories given by
BT (X, Y ) = B(X,DY ). The composition functors are given by

B(Y,DZ)× B(X,DY )
T×1

// B(DY,DZ)× B(X,DY ) M // B(X,DZ)

so that the composite of f : X → DY and g : Y → DZ is Tg◦f : X → DZ.
The identities are given by the K : X → DX . The associativity maps have
the form

T (Th.g).f v.1 // (Th.Tg).f α // Th.(Tg.f)

and the identity maps have the form

TK.f
v0.1 // 1.f λ // f f k // Tf.K.

Remark 5.1. We have numbered the axioms for skew bicategories and for
skew warpings in such a way that to prove axiom n for BT one needs only
axiom n for B and axiom n for the skew warping.

Proposition 5.2. In the definition of a (skew) warping, if B is a bicategory
and if v, v0, and k are invertible, then axioms 3, 4, and 5 follow from the first
two axioms.

Proof. Suppose that the first two axioms hold. Then we can still form the
Kleisli construction BT as above, and the associativity and identity 2-cells
will be invertible and satisfy axioms 1 and 2. Thus as explained in Exam-
ple 3.2 this defines a bicategory, and the remaining (skew) bicategory axioms
3, 4, and 5 hold. Now axioms 4 and 5 for a skew warping are literally the
same as axioms 4 and 5 for the skew bicategory BT , while axiom 3 for a skew
warping is a straightforward consequence of axiom 3 for the skew bicategory
BT .
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Corollary 5.3. A warping on a monoidal category, in the sense of [3], is the
same as a warping on the corresponding one-object bicategory, and so as a
pseudomonad on the one-object bicategory.

Corollary 5.4. Conditions 1, 3, and 5 in [10, Definition 2.1] follow from the
other conditions.

6. Algebras

We now generalize the definition of algebra given in [10, Section 4] to our
setting.

Let B be a skew bicategory, and consider a skew warping on B, as in
Section 4.

Definition 6.1. An algebra for the skew warping consists of an objectA ∈ B
equipped with

• a functor E : B(X,A)→ B(DX,A) for each X

• natural transformations

B(Y,A)× B(X,DY )
E×1
//

E×T
**

B(DY,A)× B(X,DY ) M //

e

��

B(X,A)

E
��

B(DY,A)× B(DX,DY )
M
// B(DX,A)

B(Y,A)
E×K

//

1 --

B(DY,A)× B(Y,DY )

M
��

B(Y,A)

e0

KS

or in terms of components

E(Ea.x) e // Ea.Tx

a
e0 // Ea.K

where a : Y → A and x : X → DY
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subject to axioms asserting the commutativity of the following diagrams.

E(E(Ea.x).y) e //

E(e.1)

��

E(Ea.x).T y e.1 // (Ea.Tx).T y
α

((

E((Ea.Tx).y)
Eα
// E(Ea.(Tx.y)) e

// Ea.T (Tx.y)
1.v
// Ea.(Tx.Ty)

E(Ea.K) e // Ea.TK

1.v0
��

Ea

Ee0

OO

ρ
// Ea.1

E(Ea.x).K e.1 // (Ea.Tx).K

α

��

Ea.x

e0

OO

1.k
// Ea.(Tx.K)

Example 6.2. In the case of a warping on a 2-category, an algebra is the
same as an algebra, in the sense of [10, Section 4], for the corresponding
pseudo mw-monad. Explicitly, in the definition of [10] the functor ( )A is
our E, while the 2-cells Ah and Ag,h are inverses of the components of our
e0 and e. Our three axioms are the axioms 6, 2, and 3 of [10]; while the
remaining three axioms of [10] amount to naturality of e and e0.

Proposition 6.3. In the definition of algebra for a warping on a bicategory,
the third axiom is a consequence of the other two.

Proof. We write as if the bicategory were strict. Consider the following
diagram

Ea.x
e0 //

e0
��

E(Ea.x).K e.1 //

e0
��

Ea.Tx.K

e0
��

E(Ea.x).K
Ee0.1 // E(E(Ea.x).K).K

E(e.1).1
//

e.1
��

E(Ea.Tx.K).K

e.1

��

E(Ea.x).K

e.1

��

E(Ea.x).TK.K

e.1.1

��

1.v0.1oo

Ea.Tx.K Ea.Tx.TK.K
1.1.v0.1
oo Ea.T (Tx.K).K

1.v.1
oo

in which the large region in the bottom right corner commutes by the first
equation (“the pentagon”) and the left central region commutes by the second
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equation (“the unit condition”), while all other regions commute by natural-
ity.

Since e0 and e.1 are invertible we may cancel them, and conclude that
the upper path in the diagram

Ea.Tx.K
e0 //

1.Tk.1

55
E(Ea.Tx.K).K e.1 // Ea.T (Tx.K).K

1.v.1
��

Ea.Tx.TK.K
1.1.v0.1 // Ea.Tx.K

is the identity. But the lower path is also the identity, by the unit condition
for the warping, so the two paths agree. Using invertibility of v and v0 we
can cancel to obtain commutativity of the triangular region on the left. Thus
the central triangular region in the diagram

E(Ea.x).K

T (1.k).1
��

e.1

))

E(Ea.Tx.K).K
e.1

))

Ea.Tx.K

1.Tk.1
��

Ea.x
1.k
//

e0

77

Ea.Tx.K

e0
66

1.Tk.1
// Ea.T (Tx.K).K

also commutes, while the other regions commute by naturality. Cancelling
1.Tk.1 gives the last equation.

Corollary 6.4. The third axiom in the definition of [10, Section 4] is redun-
dant.

7. Formal mw-monads

Monads can be defined in any bicategory [2] or indeed any skew bicategory,
and the formal theory of monads in bicategories is well-understood [13]. If
B is an object of a bicategory K, there is a monoidal structure on K(B,B)
with tensor product given by composition, and a monad in K on the object
B is a monoid in K(B,B).
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Here we sketch a setting for the formal theory of mw-monads. This has
similarities with [1], although it differs both in the motivation and in the
detail.

We write as if the bicategory K were strict. Let i a i∗ be an adjunction
in K, with i : A → B. Then there is a skew monoidal structure on the hom-
category K(A,B), with tensor product g ⊗ f given by gi∗f , and unit i. By
associativity of K we have (h ⊗ g) ⊗ f = hi∗gi∗f = h ⊗ (g ⊗ f), while λ
and ρ are defined by

i⊗ f = ii∗f
εf
// f f

fη
// fi∗i = f ⊗ i

using the unit and counit of the adjunction i a i∗.
A monoid in K(A,B) consists of an arrow d : A → B equipped with

maps K : i→ d and T : di∗d→ d, satisfying the following three equations.

di∗di∗d T11 //

11T
��

di∗d

T
��

di∗d
T

// d

ii∗d K11 //

ε1
##

di∗d

T
��

d

di∗i 11K // di∗d

T
��

d

1η

OO

1
// d

Composition with i defines a functor u = K(i, 1) : K(B,B)→ K(A,B).
For f, g : B → B we have

u(g)⊗ u(f) gii∗fi
1ε11 // gfi u(gf)

while u(1) = i; this makes u into a (normal) monoidal functor. In particular,
it sends monoids to monoids; that is, monads on B to monoids in K(A,B).

Example 7.1. LetK be the bicategory of profunctors. Recall that any functor
f : A→ B defines a profunctor f∗ : A→ B defined by f∗(b, a) = B(b, fa),
and that f∗ has a right adjoint f ∗ defined by f ∗(a, b) = B(fa, b); we often
write f for f∗. Let A be the discrete category on the same set of objects
as B, and let i be the inclusion. Then to give a functor d : A → B and a
2-cell K : i → d in K is to give, for each object x of B, an object dx and a
morphism K : x→ dx. To give T : di∗d→ d is to give morphisms∫ y∈A,a∈B

B(b, dy)×B(iy, a)×B(a, dx)→ B(b, dx)
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natural in b ∈ B and x ∈ A. Now naturality in x and y say nothing, since
A is discrete; while naturality in a and b reduce this, by Yoneda, to giving
maps

T : B(iy, dx)→ B(dy, dx).

The three axioms for a monoid in K(A,B) are exactly the three axioms for
an mw-monad. Thus a functor A → B is a monoid in K(A,B) precisely
when it is an mw-monad. Moreover, given this identification, the monoidal
functor u = K(i, B) sends a monad on B to the corresponding mw-monad.

Motivated by this example, we consider monoids in K(A,B) as our for-
mal notion of mw-monad; of course monoids in K(B,B) are our formal
notion of monad. (This notion of mw-monad depends on A and i, somewhat
as in the treatment of [1].)

In order to compare monads with mw-monads in this formal context, we
should therefore compare monoids inK(B,B) with monoids inK(A,B). In
the following section we propose a more general setting in which to perform
this comparison.

8. Normalization

In this section we show that, under mild conditions, a skew monoidal cate-
gory C can be replaced by a right normal skew monoidal category, meaning
one for which the right unit map ρ is invertible. Furthermore, the two skew
monoidal categories have equivalent categories of monoids. We use this to
complete the comparison between monads and mw-monads begun in the
previous section.

Let C be a skew monoidal category with tensor ⊗ and unit I; we shall
often write XY for X ⊗ Y . Suppose that C has reflexive coequalizers, and
that these are preserved by tensoring on the right. The functor−⊗I : C → C
given by tensoring on the right with the unit I underlies a monad (see [15])
with the maps

(X ⊗ I)⊗ I α // X ⊗ (I ⊗ I)
1⊗λ
// X ⊗ I X

ρ
// X ⊗ I

defining the components of the multiplication and unit. Write CI for the
category of algebras for the monad; we call its objects I-modules. This has
reflexive coequalizers, formed as in C.
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If (Y, y) is an I-module, and X an arbitrary object of C, then X ⊗ Y
becomes an I-module via the action

(XY )I α // X(Y I)
1y
// XY,

with associativity and unit axioms proved using the following diagrams.

((XY )I)I α1 //

α

��

(X(Y I))I
(1y)1

//

α

��

(XY )I

α

��

X((Y I)I)
1(y1)

//

1α
��

X(Y I)

1y

��

(XY )(II) α //

(11)λ

��

X(Y (II))

1(1λ)

��

XY

(XY )I α
// X(Y I)

1y
// XY

XY
ρ
//

1ρ
##

1

##

(XY )I

α

��

X(Y I)

1y

��

XY

Given I-modules (X, x) and (Y, y), we may form the reflexive coequal-
izer

(XI)Y x1 //

α ((

XY

ρ1

yy
q
// X ∧ Y

X(IY )
1λ

77 (8.1)

in C, and this lifts to a coequalizer in the category of I-modules, whose
object-part involves an action c : (X ∧Y )I → X ∧Y . This defines a functor
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∧ : CI × CI → CI . By commutativity of the diagram

((XI)Y )Z α1 //

(x1)1

uu

α

��

(X(IY ))Z
(1λ)1

))
α
��

(XY )Z

α

��

X((IY )Z)

1α
��

1(λ1)

))

(XY )Z

α
��

(XI)(Y Z)
x(11)

uu
(11)q
��

α // X(I(Y Z))

1(1q)
��

1λ // X(Y Z)

1q
��

X(Y Z)

1q
��

(XI)(Y ∧ Z)
x1

uu

α // X(I(Y ∧ Z)) 1λ // X(Y ∧ Z)

quu

X(Y ∧ Z)
q

// X ∧ (Y ∧ Z)

there is a unique induced α1 : (X ∧ Y )Z → X ∧ (Y ∧ Z) whose composite
with q1: (XY )Z → (X∧Y )Z is q.1q.α. The various regions of the diagram

((X ∧ Y )I)Z c1 // (X ∧ Y )Z

α1

��

((XY )I)Z

(q1)1
77

α1
//

α

��

(q1)1

ww

(X(Y I))Z
(1y)1

//

α

��

(XY )Z

q1

OO

α

��

((X ∧ Y )I)Z

α

��

X((Y I)Z)
1(y1)

//

1α
��

X(Y Z)

1q

��

(XY )(IZ)
q(11)

ww

α //

(11)λ
��

X(Y (IZ))

1(1λ)

��

(X ∧ Y )(IZ)

1λ
��

(XY )Z α //

q1
ww

X(Y Z)
1q

// X(Y ∧ Z)

q

��

(X ∧ Y )Z

α1

11 X ∧ (Y ∧ Z)

are easily seen to commute, thus the exterior does so. Cancel the epimor-
phism (q1)1, and deduce the commutativity of the diagram which guarantees
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that α1 factorizes uniquely through q : (X ∧ Y )Z → (X ∧ Y ) ∧ Z to give
a morphism α′ : (X ∧ Y ) ∧ Z → X ∧ (Y ∧ Z) making the triangle in the
diagram

(XY )Z

α

��

q1
// (X ∧ Y )Z

q
//

α1
''

(X ∧ Y ) ∧ Z

α′

��

X(Y Z)
1q
// X(Y ∧ Z) q

// X ∧ (Y ∧ Z)

commute. The larger region on the left commutes by definition of α1, and so
the exterior commutes.

The resulting α′ is clearly natural, and commutativity of the pentagon for
α implies commutativity of the pentagon for α′.

Commutativity of the diagrams

(II)I α //

λ1
��

I(II) 1λ //

λ
zz

II

λ
��

II
λ

// I

I
ρ
//

1
��

II

λ
��

I

shows that λ : II → I makes I into an I-module.
Commutativity of

(II)X

α

��

λ1 // IX

λ

��

I(IX)

λ

;;

1λ
��

IX
λ

// X

shows that λ : IX → X factorizes uniquely through q : IX → I ∧X to give
a map λ′ : I ∧X → X .

On the other hand, the diagram

(XI)I
x1

//

α
$$

XI x
//

ρ
ss

X

ρ
yy

X(II)

1λ

;;
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is a split coequalizer in C, and the solid part is a fork in CI , thus is a coequal-
izer in CI , and so exhibits X itself as X ∧ I . Rather than identify X ∧ I with
X , though, we let ρ′ be the composite

X
ρ
// XI

q
// X ∧ I

and note that this is invertible.
We now show that α′, ρ′, and λ′ make CI into a skew monoidal category.

We have already observed that the pentagon commutes, so we turn to the
four remaining axioms.

Compatibility of α′ and ρ′ follows from the corresponding condition for
α and ρ, and commutativity of the diagrams

XY

q

��

ρ
// (XY )I

q1

��

α // X(Y I)

1q

��

X ∧ Y ρ
//

ρ′ &&

(X ∧ Y )I

q

��

X(Y ∧ I)

q

��

(X ∧ Y ) ∧ I α′ // X ∧ (Y ∧ I)

XY

q

��

1ρ
//

1ρ′ &&

X(Y I)

1q

��

X ∧ Y

1∧ρ′ &&

X(Y ∧ I)

q

��

X ∧ (Y ∧ I)

Compatibility of α′ and λ′ follows from the corresponding condition for
α and λ, and commutativity of the diagrams

(IX)Y

q1

��

α // I(XY )

1q

��

λ

&&

(I ∧X)Y

q

��

I(X ∧ Y )

q

��

λ

&&

XY

q

��

(I ∧X) ∧ Y
α′
// I ∧ (X ∧ Y )

λ′
// X ∧ Y

(IX)Y

q1

��

λ1

&&

(I ∧X)Y

q

��

λ′1
// XY

q

��

(I ∧X) ∧ Y
λ′∧1

// X ∧ Y
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For the triple compatibility condition, observe that the diagram

XY
q
//

ρ′1

&&

ρ1
��

X ∧ Y
ρ′∧1

''

(XI)Y
q1
//

α

��

(X ∧ I)Y q
// (X ∧ I) ∧ Y

α′

��

X(IY )
1q
//

1λ
&&

X(I ∧ Y )

1λ′

��

q
// X ∧ (I ∧ Y )

1∧λ′
��

XY q
// X ∧ Y

commutes and that q is epi; then the axiom for CI follows from that for C.
Finally compatibility of λ′ and ρ′ follows from commutativity of

I ∧ I
λ′

""

I

ρ′
<<

ρ
//

1

66II

q

OO

λ // I.

This now proves that CI is skew monoidal; indeed it is a right normal
skew monoidal category, in the sense that ρ is invertible. The forgetful
functor U : CI → C is a monoidal functor, with U2 : U(X, x) ⊗ U(Y, y) →
U((X, x)∧(Y, y)) given by the quotient map q : XY → X∧Y , and U0 : I →
U(I, λ) the identity.

This process is universal, in the sense that if D is any right normal skew
monoidal category and M : D → C a monoidal functor, then M factorizes
uniquely through U as a skew monoidal functor N : D → CI . For each
object X ∈ D, we have an I-module structure on MX , given by

MX ⊗ I 1⊗M0 //MX ⊗MI
M2 //M(X ⊗ I)

M(ρ−1)
//MX

and this is natural in X , so that M does lift to functor N : D → CI with
UN = M .
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Furthermore, by commutativity of

(MX.I).MY
(1M0)1

//

α

��

(MX.MI).MY
M2.1 //

α

��

M(XI).MY
Mρ−1.1

//

M2

��

MX.MY

M2

��

MX.(I.MY )
1(M01)

//

1λ

��

MX.(MI.MY )

1.M2

��

M((XI)Y )
M(ρ−11)

//

Mα
��

M(XY )

MX.MY

M2

33
MX.M(IY )

M2 //1.Mλoo M(X(IY ))
M(1λ)

//M(XY )

we see that M2 passes to the quotient to give a map N2 : NX ∧ NY →
N(XY ); while M0 underlies a map N0 : I → NI .

Since monoids in a skew monoidal category are just monoidal functors
out of the terminal skew monoidal category, and this terminal skew monoidal
category is right normal (in fact monoidal), it follows that the monoids in CI
are the same as the monoids in C.

We summarize this as follows:

Theorem 8.1. Let C be a skew monoidal category, and suppose that C has
coequalizers of reflexive pairs of the form (8.1), and that these are preserved
by tensoring on the right. Then the category CI of right I-modules is a right
normal skew monoidal category, and the forgetful functor U : CI → C is a
normal monoidal functor. Furthermore, it is universal, in the sense that for
any right normal skew monoidal categoryD, composition with U induces an
equivalence between the category of monoidal functors fromD to CI and the
category of monoidal functors from D to C.

We call CI the right normalization of the skew monoidal category C.
The next result is our promised formal approach to the comparison of

monads and mw-monads.

Theorem 8.2. Let i : A → B be a morphism in a bicategory K, and sup-
pose that i has a right adjoint i a i∗ and is opmonadic (of Kleisli type).
Suppose further that for any h : B → B, the functor K(h,B) : K(B,B) →
K(B,B) preserves any existing coequalizers of reflexive pairs. Then the
skew monoidal category K(A,B) satisfies the conditions of the previous
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theorem, and the right normalization K(A,B)I is given by K(B,B). Thus
monoids in K(A,B) are equivalent to monoids in K(B,B).

Proof. The adjunction i a i∗ induces an adjunction K(i∗, B) a K(i, B),
which in turn induces a monad on K(A,B), and this monad is precisely that
given by tensoring on the right with the unit i of K(A,B). Since i is op-
monadic, K(i, B) is monadic, and so K(B,B) is equivalent to the category
of I-modules.

Using again the fact that i is opmonadic, the diagram

gii∗ii∗
gεii∗

//

gii∗ε
// gii

∗ gε
// g

is a coequalizer in K(B,B), and now composing on the right with fi, we
see that the required coequalizers (8.1) exist, with gi ∧ fi = (gf)i.

Thus the normalization does exist, and since u : K(B,B)→ K(A,B) is
a monoidal functor with right normal domain (in fact monoidal domain), we
have the comparison v : K(B,B) → K(A,B)I . From the construction of v
it is clear that this is a monoidal equivalence.

Example 8.3. Consider the case of Example 7.1, where K is the bicategory
of profunctors, and i : A→ B is the inclusion of the discrete category A on
the same set of objects as B. Since i is the identity on objects it is indeed
opmonadic, whileK(A,B) is cocomplete with colimits preserved by tensor-
ing on either side, thus the conditions of the theorem hold. We recover the
correspondence between monads and mw-monads by observing that a pro-
functor g : B → B is a functor if and only if the composite gi : A → B is
one.
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Résumé. Nous construisons le foncteur de Weil TA correspondant à une
algèbre de Weil A = K ⊕ N : c’est un foncteur de la catégorie des variétés
différentiables sur un corps ou anneau topologique K (de caractéristique
quelconque) vers la catégorie des variétés définies sur A. Ce résultat
généralise simultanément ceux sur les foncteurs de Weil classiques (cf.
[KMS93]) et ceux conernant les foncteurs tangent itérés et les foncteurs de
jets généraux ([Be08, Be13]). Nous étudions des aspects algébriques de ces
foncteurs (leur “K-théorie” et l’action du “groupe de Galois” AutK(A)), en
vue d’applications en géométrie différentielle.

Abstract. We construct the Weil functor TA corresponding to a general
Weil algebra A = K ⊕ N : this is a functor from the category of manifolds
over a general topological base field or ring K (of arbitrary character-
istic) to the category of manifolds over A. This result simultaneously
generalizes results known for ordinary, real manifolds (cf. [KMS93]), and
results obtained in [Be08] for the case of the higher order tangent functors
(A = T kK) and in [Be13] for the case of jet rings (A = K[X]/(Xk+1)).
We investigate some algebraic aspects of these general Weil functors (“K-
theory of Weil functors”, action of the “Galois group” AutK(A)), which will
be of importance for subsequent applications to general differential geometry.

Keywords. Weil functor, Taylor expansion, scalar extension, polynomial
bundle, jet, differential calculus.
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1. Introduction

The topic of the present work is the construction and investigation of general
Weil functors, where the term “general” means: in arbitrary (finite or infinite)
dimension, and over general topological base fields or rings. Compared to
the (quite vast) existing literature on Weil functors (see, e.g., [KMS93, K08,
K00, KM04]), this adds two novel viewpoints: on the one hand, extension
of the theory to a very general context, including, for instance, base fields
of positive characteristic, and on the other hand, introduction of the point of
view of scalar extension, well-known in algebraic geometry, into the context
of differential geometry. This aspect is new, even in the context of usual,
finite-dimensional real manifolds. We start by explaining this item.

A quite elementary approach to differential calculus and -geometry over
general base fields or -rings K has been defined and studied in [BGN04,
Be08]; see [Be11] for an elementary exposition. The term “smooth” always
refers to the concept explained there, and which is called “cubic smooth” in
[Be13]. The base ring K is a commutative unital topological ring such that
K×, the unit group, is open dense in K, and the inversion map K× → K,
t 7→ t−1 is continuous. For convenience, the reader may assume that K is
a topological k-algebra over some topological field k, where k is his or her
favorite field, for instance k = R, and one may think of K as R ⊕ jR with,
for instance, j2 = −1 (K = C), or j2 = 1 (the “para-complex numbers”) or
j2 = 0 (“dual numbers”). In our setting, the analog of the “classical” Weil
algebras, as defined, e.g., in [KMS93], is as follows:

Definition 1.1. A Weil K-algebra is a commutative and associative K-algebra
A, with unit 1, of the form A = K⊕NA, whereN = NA is a nilpotent ideal.
We assume, moreover,N to be free and finite-dimensional over K. We equip
A with the product topology on N ∼= Kn with respect to some (and hence
any) K-basis.

As is easily seen (Lemma 3.2), A is then again of the same kind as K,
hence it is selectable as a new base ring. Since an interesting Weil algebra A
is never a field, this explains why we work with base rings, instead of fields.
Our main results may now be summarized as follows (see Theorems 3.6 and
4.4 for details):
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Theorem 1.2. Assume A = K⊕N is a Weil K-algebra. Then, to any smooth
K-manifold M , one can associate a smooth manifold TAM such that:

1. the construction is functorial and compatible with cartesian products,

2. TAM is a smooth manifold over A (hence also over K), and for any
K-smooth map f : M → N , the corresponding map TAf : TAM →
TAN is smooth over A,

3. the manifold TAM is a bundle over the base M , and the bundle chart
changes in M are polynomial in fibers (we call this a polynomial bun-
dle, cf. Definition 4.1),

4. if M is an open submanifold U of a topological K-module V , then
TAU can be identified with the inverse image of U under the canonical
map VA → V , where VA = V ⊗K A is the usual scalar extension of
V ; if, in this context, f : U → W is a polynomial map, then TAf
coincides with the algebraic scalar extension fA : VA → WA of f .

The Weil functor TA is uniquely determined by these properties.

The Weil bundles TAM are far-reaching generalizations of the tangent
bundle TM , which arises in the special case of the “dual numbers over K”,
A = TK = K ⊕ εK (ε2 = 0). The theorem shows that the structure of the
Weil bundle TAM is encoded in the ring structure of A in a much stronger
form than in the “classical” theory (as developed, e.g., in [KMS93]): the
manifold TAM plays in all respects the rôle of a scalar extension of M ,
and hence TA can be interpreted as a functor of scalar extension, and we
could write MA := TAM – an interpretation that is certainly very com-
mon for mathematicians used to algebraic geometry, but rather unusual for
someone used to classical differential geometry; in this respect, our results
are certainly closer to the original ideas of André Weil ([W53]) than much
of the existing literature. In subsequent work we will exploit this link be-
tween the “algebraic” and the “geometric” viewpoints to investigate features
of differential geometry, most notably, bundles, connections, and notions of
curvature.

The algebraic point of view naturally leads to emphasize in differential
geometry certain aspects well-known from the algebraic theory. First, Weil
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algebras and -bundles form a sort of “K-theory” with respect to the opera-
tions

1. tensor product: A⊗K B ∼= K⊕ (NA ⊕NB ⊕NA ⊗NB),

2. Whitney sum: A⊕K B := (A⊗K B)/(NA ⊗K NB) ∼= K⊕NA ⊕NB.

Whereas (2) corresponds exactly to the Whitney sum of the corresponding
bundles over M , one has to be a little bit careful with the bundle interpre-
tation of (1) (Theorem 4.5): Weil bundles are in general not vector bundles,
hence there is no plain notion of “tensor product”; in fact, (1) rather corre-
sponds to composition of Weil functors:

TA⊗BM ∼= T B(TAM).

Second, following the model of Galois theory, for understanding the struc-
ture of the Weil bundle TAM over M , it is important to study the auto-
morphism group AutK(A). Indeed, by functoriality, any automorphism Φ
of A induces canonically a diffeomorphism ΦM : TAM → TAM which
commutes with all A-tangent maps TAf , for any f belonging to the K-
diffeomorphism group of M , DiffK(M). Thus we have two commuting
group actions on TAM : one of AutK(A) and the other of DiffK(M). An
important special case is the one of a graded Weil algebra (Chapter 5; in
[KM04] the term homogeneous Weil algebra is used): in this case, there exist
“one-parameter subgroups” of automorphisms, and the Weil algebra carries
as new structure a “composition like product” similar to the composition of
formal power series (Theorem 5.7).

In [Be08] and [Be13], two prominent cases of Weil functors have been
studied, and the present work generalizes these results: the higher order
tangent functors T k, corresponding to the iterated tangent rings, T k+1K :=
T (T kK), and the jet functors Jk, corresponding to the (holonomic) jet rings
JkK := K[X]/(Xk+1). Since both cases play a key rôle for the proof of our
general result, we recall (and slightly extend) the results for these cases (see
Appendices A and B). In particular, we describe in some detail the canonical
K×-action, which appears already in the framework of difference calculus,
and which gives rise to the natural grading of these Weil algebras.
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The core part for the proof of Theorem 1.2 is a careful investigation of
the relation between two foundational concepts, namely those of jet, and
of Taylor expansion. As is well-known in the classical setting (see, e.g.,
[Re83]), both concepts are essentially equivalent, but the jet-concept is of
an “invariant” or “geometric” nature, hence makes sense independently of a
chart, whereas Taylor expansions can be written only with respect to a chart,
hence are not of “invariant” nature. This is reflected by a slight difference
in their behaviour with respect to composition of maps: for jets we have the
“plainly functorial” composition rule

Jkx(g ◦ f) = Jkf(x)g ◦ Jkxf , (1.1)

whereas for Taylor polynomials (which we take here without constant term)
we have truncated composition of polynomials:

Taykx(g ◦ f) =
(
Taykf(x)g ◦ Taykxf

)
mod (deg > k) . (1.2)

This lack of functoriality is compensated by the advantage that, like every
polynomial, the Taylor polynomial always admits algebraic scalar exten-
sions, so that the k-th order Taylor polynomial P = Taykxf : V → W
of a K-smooth function f : V ⊃ U → W at x ∈ U extends naturally
to a polynomial PA : V ⊗K A → W ⊗K A. Our general construction of
Weil functors combines both extension procedures: in a first step, based on
differential calculus reviewed in Appendices A and B, we construct the jet
functor Jk, which associates to each smooth map f its (“simplicial”) k-jet
Jkf . Using this invariant object, we define in a second step the Taylor poly-
nomial Taykxf at x by a “chart dependent” construction (Section 2.2), and
then we prove the transformation rule (1.2) (Theorem 2.13). Note that, in
the classical case, our Taylor polynomial Taykxf coincides of course with the
usual one, but we do not define it in the usual way in terms of higher order
differentials (since we then would have to divide by j!, which is impossible
in arbitrary characteristic). In a third step, we consider the algebraic scalar
extension of the Taylor polynomial from K to N : if the degree k is higher
than the order of nilpotency of N , then

TA
x f := (Taykxf)N : VN := V ⊗N → WN (1.3)

satisfies a plainly functorial transformation rule, so that finally the Weil
functor TA can be defined by TAf : U × VN → W × WN , (x, y) 7→
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(
f(x), TA

x f(y)
)
. This strategy requires to develop some general tools on

continuity and smoothness of polynomials, which we relegate to Appendix
C.

From the viewpoint of analysis, the interplay between jets and Taylor
polynomials is reflected by the interplay between (generalized) difference
quotient maps and (various) remainder conditions for the remainder term
in a “limited expansion” of a function f around a point x. The first aspect
is functorial and well-behaved in arbitrary dimension, hence is suitable for
defining our general differential calculus; it implies certain radial limited
expansions, together with their multivariable versions, which represent the
second aspect, and which are the starting point for defining Taylor polyno-
mials (Chapter 2).

This work is organized in four main chapters and three appendices, as
follows:

2. Taylor polynomials, and their relation with jets
3. Construction of Weil functors
4. Weil functors as bundle functors on manifolds
5. Canonical automorphisms, and graded Weil algebras
Appendix A: Difference quotient maps and K×-action
Appendix B: Differential calculi
Appendix C: Continuous polynomial maps, and scalar extensions

The results of the present work are part of the thesis [So12], and they
gave rise to further developments presented in [Be14]. Recently, we learned
about the work of V.V. Shurygin (see [Sh02] for an overview); although its
framework is different from ours, it has important links with the approach
presented here.

Notation. As already mentioned, K is a commutative unital topological
base ring, with dense unit group K×, and A is a Weil K-algebra. Concerning
“cubic” and “simplicial” differential calculus, specific notation is explained
in Appendices A and B. In particular, superscripts of the form [·] refer to
“cubic”, and superscripts of the form 〈·〉 refer to “simplicial” differential
calculus. In general, the “cubic” notions are stronger than the “simplicial”
ones (“cubic implies simplicial”, see Theorem B.6). As a rule, boldface
variables are used for k-tuples or n-tuples, such as, e.g., v = (v1, . . . , vk),
0 = (0, . . . , 0).
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2. Taylor polynomials, and their relation with jets

2.1 Limited expansions

Let V,W be topological K-modules and f : U → W a map defined on an
open set U ⊂ V . Notation concerning extended domains, like U [1] and U 〈k〉,
is explained in Appendix A.

Definition 2.1. We say that f admits radial limited expansions if there exist
continuous maps ai : U × V → W and Rk : U [1] → W such that, for
(x, v, t) ∈ U [1],

f(x+ tv) = f(x) +
k∑
i=1

tiai(x, v) + tkRk(x, v, t)

and the remainder condition Rk(x, v, 0) = 0 hold. We say that f admits
multi-variable radial limited expansions if there exist continuous maps bi :
U × V i → W and Sk : U 〈k〉 → W , such that, for v = (v1, . . . , vk) ∈ V k

with x+
∑k

i=1 t
ivi ∈ U ,

f(x+tv1+. . .+t
kvk) = f(x)+

k∑
i=1

tibi(x, v1, . . . , vi)+t
kSk(x,v; 0, . . . , 0, t)

and the remainder condition Sk(x,v; 0, . . . , 0, 0) = 0 hold.

Taking 0 = v2 = v3 = . . . = vk, the multi-variable radial condition
implies the radial condition. For the next result, cf. Appendix B for definition
of the class C〈k〉.

Theorem 2.2 (Existence and uniqueness of limited expansions). Assume f :
U → W is of class C〈k〉. Then f admits limited expansions of both types
from the preceding definition, and such expansions are unique, given by

bi(x, v1, . . . , vi) = f 〈i〉(x, v1, . . . , vi;0),

ai(x, h) = f 〈i〉(x, h,0;0).

Proof. Existence follows from Theorem B.5, by letting there s0 = s1 =
. . . = sk−1 = 0 and sk = t. Uniqueness is proved as in [BGN04], Lemma
5.2.
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Recall from Appendix B the definition of the class C [k], and the fact that
C [k] implies C〈k〉 (Theorem B.6).

Corollary 2.3. Assume f is of class C [2k]. Then, for i = 1, . . . , k, the nor-
malized differential

ai(x, ·) : V → W,h 7→ Di
hf(x) := ai(x, h)

is continuous and polynomial (in the sense of Definition C.2), homogeneous
of degree i, hence smooth.

Proof. See [Be13], Cor. 1.8. The last statement follows from Theorem C.3.

2.2 Taylor polynomials

We can now define Taylor polynomials, which are the core of the construc-
tion of Weil functors.

Definition 2.4. Let f : U → W be of class C[2k] and fix x ∈ U . The
polynomial

Taykxf : V → W, h 7→
k∑
i=1

Di
hf(x) =

k∑
i=1

ai(x, h)

is called the k-th order Taylor polynomial of f at the point x.

Theorem 2.5. If f : U → W is of class C[2`], then for all k ≤ `, Taykxf
is a smooth polynomial map of degree at most k, without constant term.
If, moreover, f is itself a polynomial map of degree at most k, then Tayk0f
coincides with f , up to the constant term:

f = f(0) + Tayk0f ,

and the homogeneous part fi of f is equal to ai(0, ·) = f 〈i〉(0, ·,0;0).

Proof. The fact that Taykxf is smooth and polynomial follows from Corol-
lary 2.3. Next, assume that f is a homogeneous polynomial, say, of degree
j with j ≤ k. Uniqueness of the radial Taylor expansion (Theorem 2.2) im-
plies that, for every homogeneous map of degree j and of class C[2k], we have
f(h) = f 〈j〉(0, h,0;0) (see [Be08], Cor. 1.12 for the proof in case j = 2,
which generalizes without changes), whence the claim.
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The radial limited expansion can now be written as

f(x+ th) = f(x) + Taykxf(th) + tkRk(x, h, t) . (2.1)

If the integers are invertible in K, then, by uniqueness of the expansion, it
coincides with the usual Taylor expansion: Dj

vf(x) = 1
j!
djf(x)(v, . . . , v),

see [BGN04].

2.3 Normalized differential and polynomiality

Definition 2.6. Let f : U → W be of class C[2k]. Recall from above the
definition of the normalized differential Di

vf(x) := f 〈i〉(x, v,0;0). We de-
fine, for all multi-indices α ∈ Nk such that |α| :=

∑
iαi ≤ k, and for

all v ∈ V k, x ∈ U , the normalized polynomial differential (which is well-
defined, by Corollary B.7)

Dα
v f(x) :=

(
Dαk
vk
◦ . . . ◦Dα1

v1

)
f(x).

The following is a generalization of Schwarz’s Lemma (Th. B.2 (iv)):

Lemma 2.7. Let f : U ⊂ V → W a a map of class C[2k]. Then, for all multi-
indices α ∈ Nk such that |α| :=

∑
iαi ≤ k, and for all v ∈ V k, the map

Dα
v f(x) does not depend on the order in wich we compose the normalized

differentials Dαi
vi

.

Proof. Dα
v f(x) is obtained, by restriction to s = 0, from the map

Dα
v,sf(x) :=

(
Dαk
vk,s(k)

◦ . . . ◦Dα1

v1,s(1)

)
f(x),

where for all 1 ≤ i ≤ k, we let Dαi
vi,s(i)

:= f 〈αi〉(x, vi,0; s(i)). From the
definition of the simplicial different quotient map, we get, for non-singular
s(1):

Dα1

v1,s(1)
f(x) =

α1∑
j1=0

f
(
x+ (s

(1)
j1
− s(1)0 )v1

)∏
i=0,...,ĵ1,...,α1

(s
(1)
j1
− s(1)i )

.

By induction, we get, for non singular s(i):(
Dαk
vk,s(k)

◦ . . . ◦Dα1

v1,s(1)

)
f(x) =

α1∑
j1=0

· · ·
αk∑
jk=0

f
(
x+

∑k
`=1(s

(`)
j`
− s(`)0 )v`

)
k∏̀
=1

∏
i=0,...,ĵ`,...,α`

(s
(`)
j`
− s(`)i )

.
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Obviously, the right-hand side term does not change if we apply the operators
Dαi
vi,s(i)

in another order. Hence, by continuity and density of K× in K, this
remains true for singular values of s(i), and in particular for s(i) = 0.

Theorem 2.8. Let f : U → W be a map of class C[2k]. Then:

1. For all x ∈ U and for all multi-indices α ∈ Nk such that |α| ≤ k,
the map V k → W,v 7→ Dα

v f(x) is polynomial multi-homogeneous of
multidegree α.

2. The map v 7→ f 〈j〉(x,v;0) is polynomial. More precisely, for all
1 ≤ j ≤ k,

f 〈j〉(x,v;0) =
∑

α∈Nk,
∑k
i=1 iαi=j

Dα
v f(x) . (2.2)

Proof. (1) Note that Dα
v f(x) =

(
Dαk
vk
◦ . . . ◦Dα1

v1

)
f(x) is polynomial ho-

mogeneous of degree αk in vk, by Corollary 2.3. By the previous lemma, the
value of Dα

v f(x) is independent of the order in which we compose the nor-
malized differentials. Therefore Dα

v f(x) is also polynomial homogeneous
of degree αi in vi for all 1 ≤ i ≤ k, i.e., v 7→ Dα

v f(x) is a polynomial
multi-homogeneous map of multidegree α.

(2) On the one hand, we use the k-th order radial limited expansion,
successively for each variable vi, 1 ≤ i ≤ k. This is well-defined (see
Corollary B.7).

f
(
x+

∑k
i=1 t

ivi

)
= f

(
x+

∑k
i=2 t

ivi + t1v1

)
=

k∑
α1=0

tα1Dα1
v1
f
(
x+

k∑
i=2

tivi
)

+ tkR1
k(x, v1, t)

=
k∑

α1=0

k−α1∑
α2=0

tα1t2α2(Dα2
v2
◦Dα1

v1
)f
(
x+

k∑
i=3

ti
)

+ tkR1
k(x, v1, t) + tkR2

k(x, v1, v2, t)
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=
∑

0≤α1,...,αk≤k,
∑
i αi≤k

tα1 . . . tkαk
(
Dαk
vk
◦ . . . ◦Dα1

v1

)
f(x)

+
k∑
i=1

tkRi
k(x, v1, . . . , vi, t)

=
∑

α∈Nk,|α|≤k

t
∑
i iαiDα

v f(x) + tkRk(x,v, t),

= f(x) +
k∑
j=1

∑
α∈Nk,

∑
i iαi=j

tjDα
v f(x) + tkRk(x,v, t),

where

Rk(x,v, t) :=
k∑
i=1

Ri
k(x, v1, . . . , vi, t) +

∑
j>k

∑
α∈Nk,

∑
i iαi=j

tj−kDα
v f(x)

satisfies the remainder condition Rk(x,v, 0) = 0. On the other hand, we use
the k-th order multi-variable radial limited expansion:

f(x+
k∑
i=1

tivi) = f(x)+
k∑
j=1

tjf 〈j〉(x, v1, . . . , vj;0)+tkSk(x,v; 0, . . . , 0, t)

Relation (2.2) now follows by uniqueness of this expansion (Theorem 2.2).

Remark 2.9. If the integers are invertible in K, then relation (2.2) reads

f 〈j〉(x,v;0) =
∑

α∈Nk,
∑
i iαi=j

d|α|f(x,vα)

α!
, (2.3)

where α! := α1! . . . αk! and vα := (v1, . . . , v1︸ ︷︷ ︸
α1×

, . . . , vk, . . . , vk︸ ︷︷ ︸
αk×

) (vi appear-

ing αi times). Indeed, Dα1
v1
f(x) = dα1f(x)(v1,...,v1)

α1!
; iterating this, and using

Theorem B.2, we get

Dα1,α2
v1,v2

f(x) =
(
Dα2
v2
◦Dα1

v1

)
f(x) =

dα2

(
dα1f(·)(v1,...,v1)

α1!

)
(x)(v2, . . . , v2)

α2!

=
dα1+α2f(x)(v1, . . . , v1, v2, . . . , v2)

α1!α2!
,
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and so on: by induction, we have fα(x,v) =
d|α|f(x,vα)

α!
, whence (2.3).

Note that these formulae are in keeping with the formulae given in [Be08],
Chapter 8; however, the methods used there are less well adapted to the case
of arbitrary characteristic.

2.4 The simplicial K-jet as a scalar extension.

Recall from Appendix B the definition of the (simplicial) k-jet of f , Jkf ,
and that J

〈k〉
(s) and in particular Jk are functors (Theorem B.4). They commute

with direct products, and hence, applied to the ring (K,+,m) with ring mul-
tiplication m and addition a, they yield new rings, denoted by J

〈k〉
(s)K, resp.

JkK. These rings have been determined explicitly in [Be13]:

J
〈k〉
(s)K ∼= K[X]/

(
X(X − s1) · · · (X − sk)

)
, JkK ∼= K[X]/(Xk+1).

(2.4)
We denote the class of the polynomial X in JkK by δ, so that 1, δ, . . . , δk is
a K-basis of JkK. The following facts can be proved in a conceptual way,
without using the explicit isomorphism:

Lemma 2.10. The K-algebra JkK is N-graded, i.e., of the form

JkK = E0 ⊕ E1 ⊕ . . .⊕ Ek with Ej · Ei ⊂ Ei+j.

In particular, E1 ⊕ . . .⊕ Ek is a nilpotent subalgebra.

Proof. This is a direct consequence of Theorem B.4: Jkm commutes with
the canonical K×-action; hence this action is by ring automorphisms. Thus
the eigenspaces Ej = {x ∈ JkK | ∀r ∈ K× : r.x = rjx} define a grading
of JkK.

The canonical projection

πk : JkK→ K, [P (X)] 7→ P (0)

is a ring homomorphism having a section σk : K→ JkK, t 7→ t · 1 (classes
of constant polynomials), called the canonical injection or canonical zero
section. We denote by Jk0K = 〈δ, . . . , δk〉 the kernel of πk (the fiber of
πk : JkK → K over 0). Note that JkK is again a topological ring having a
dense unit group; hence we can speak of maps that are smooth (or of class
C[k]) over this ring.
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Theorem 2.11 (Simplicial Scalar Extension Theorem). If f : U → W is
smooth over K, then f admits a unique extension to JkK-smooth map F :
JkU → JkW : there exists a unique map F : JkU → JkW (namely, F =
Jkf ) such that

1. F is smooth over the ring JkK, and

2. F (x) = f(x) for all x ∈ U , that is, F ◦ σU = σW ◦ f , where σU :
U → JkU and σW : W → JkW are the canonical injections.

More precisely, any JkK-smooth map F : JkU → JkW is uniquely deter-
mined by its restriction to the base σU(U) ⊂ JkU .

Proof. Existence has been proved in [Be13], Theorem 2.7. Uniqueness is
a consequence of Theorem 2.8: for F as in the claim, we will establish
an “explicit formula” in terms of its values on the base σU(U). Let z =
(v0, . . . , vk) = v0 + δv1 + . . . + δkvk ∈ JkU , with x ∈ U and vi ∈ V .
Since F is smooth over the ring JkK, we may take t = δ and use the radial
expansion of F (cf. proof of Theorem 2.8) at order k + 1: we get

F
(
x+

k∑
i=1

δivi
)

= F (x) +
∑

06=α∈Nk
δ
∑
i iαiDα

v F (x),

where no remainder term appears, since δk+1 = 0. This formula implies
uniqueness since, as follows directly from the proof of Lemma 2.7, Dα

v F (x)
is determined by its values on the base (i.e., if F (x) = 0 for all x ∈ U , then
Dα
v F (x) = 0).

Corollary 2.12. Assume P,Q : V → W are K-smooth polynomial maps.
Then:

i) JkP : JkV → JkW is a JkK-smooth JkK-polynomial map, and co-
incides with the algebraic scalar extension (cf. Appendix A, Definition
C.6) PJkK of P from K to JkK.

ii) The restriction Jk0P of JkP to the fiber Jk0V = V ⊗KJk0K over 0 is again
a polynomial map, and it coincides with the algebraic scalar extension
of P from K to the (non-unital) ring Jk0K.

BERTRAM & SOUVAY - A GENERAL CONSTRUCTION OF WEIL FUNCTORS

- 279 -



iii) Assume P (0) = Q(0). Then Jk0P = Jk0Q if, and only if, P ≡ Q
mod (deg > k) (i.e., P and Q coincide up to terms of degree > k).

Proof. i) The extension PJkK of P from K to JkK is JkK-smooth, JkK-
polynomial and satisfies the extension condition:

PJkK ◦ σU = σW ◦ P,

(see Theorem C.7, with A = JkK). By the preceding theorem, the JkK-
smooth map JkP coincides with PJkK, and thus is JkK-polynomial.

Item ii) is proved by the same argument. Finally, iii) follows from ii)
since the algebraic scalar extension of a polynomial whithout constant term
P from K to Jk0K vanishes if and only if P contains no homogeneous terms
of degree j = 1, . . . , k.

2.5 Link between Taylor polynomials and simplicial jets

It follows from Theorem 2.8 that Jkf(x,v) is polynomial in v. We are going
to show that this polynomial can be interpreted as a scalar extension of the
Taylor polynomial Taykxf :

Theorem 2.13 (Scalar extension of the Taylor polynomial). Assume f, g :
U → W and h : U ′ → W ′ are of class C[2k] such that f(x) = g(x) and
h(U ′) ⊂ U . Then:

i) Taykxf = Taykxg ⇐⇒ Jkxf = Jkxg.

ii) The polynomial map Jkxf is the scalar extension of the Taylor polyno-
mial Taykxf from K to the nilpotent part Jk0K = δK⊕ . . .⊕ δkK of the
ring JkK:

Jkxf = (Taykxf)Jk0K .

iii) We have the following “chain rule for Taylor polynomials”:

Taykx(g ◦ h) =
[
Taykh(x)g ◦ Taykxh

]
mod (deg > k)

(where mod (deg > k) denotes truncated polynomial composition).
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Proof. i), “⇐”: Assume Jkxf = Jkxg, then

Taykxf(v) =
k∑
i=1

f 〈i〉(x, v,0;0) = α ◦ Jkxf(v,0) = α ◦ Jkxf ◦ κ(v)

with the maps α : Jk0W = W k → W , (w1, . . . , wk) 7→ w1 + . . .+wk and κ :
V → Jk0V , v 7→ (v,0) . It follows that Jkxf = Jkxg implies Taykxf = Taykxg.

i), “⇒”: Assume that Taykxf = Taykxg. Then for φ := f − g we have
φ(x) = 0 and Taykxφ = 0, i.e.,

∀j = 1, . . . , k, ∀v ∈ V : φ〈j〉(x, v,0;0) = 0.

In order to prove that Jkxφ = 0, we have to show that φ〈j〉(v0, . . . , vj;0) = 0,
for all v ∈ JkU . This is done by computing φ(x + tv1 + t2v2 + . . . + tkvk)
in two different ways, using first the radial limited expansion, and then the
multi-variable radial limited expansion: let w := v1 + tv2 + . . . + tk−1vk;
since φ(x) = 0 and Tayjxφ = 0 for j = 1, . . . , k, we get

φ(x+ tw) =
k∑
j=0

tjφ〈j〉(x,w,0;0) + tk(φ〈k〉(x,w,0;0, t)− φ〈k〉(x,w,0;0))

= tk(φ〈k〉(x,w,0;0, t)− φ〈k〉(x,w,0;0)) .

On the other hand, the multi-variable limited expansion gives, with x =: v0,

φ(x+tv1+. . .+t
kvk) =

k∑
j=0

tjφ〈j〉(v0, . . . , vj;0)+tk(φ〈k〉(v;0, t)−φ〈k〉(v;0)).

By uniqueness of the radial limited expansion, φ〈j〉(v0, . . . , vj;0) = 0 for
j = 1, . . . , k.

(ii) Choose the origin in V such that x = 0. Now let f : U → W
be of class C[2k] and let P := Tayk0f . Since P coincides (up to the additive
constant P (0) = 0) with its own Taylor polynomial (Theorem 2.5), it follows
that Tayk0f = Tayk0P , whence, by (i), Jk0f = Jk0P , and the latter is Jk0K-
polynomial, and coincides with its algebraic scalar extension from K to Jk0K
(Corollary 2.12). Note that the homogeneous parts of degree > k vanish,
hence Jkxf is of degree at most k.
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(iii) Let R := Tayk0(g ◦ h), P := Taykh(0)g, Q := Tayk0h. By (i), Jk0h =

Jk0Q and Jkh(0)g = JkQ(0)P . Using this, and functoriality of Jk, we get

Jk0R = Jk0(g ◦ h) = Jkh(0)g ◦ Jk0h = JkQ(0)P ◦ Jk0Q = Jk0(P ◦Q),

whence, by Corollary 2.12, R ≡ P ◦Q mod (deg > k).

3. Construction of Weil functors

3.1 Weil algebras

The notion of Weil algebra has been defined in the introduction (Definition
1.1). Weil algebras form a category:

Definition 3.1. A morphism of Weil K-algebras is a continuous K-algebra
homomorphism φ : A → B preserving the nilpotent ideals: φ(NA) ⊂ NB.
The automorphism group of A is denoted by AutK(A).

Lemma 3.2. The canonical projection πA : A → K of a Weil algebra is
continuous, and so is its section σA : K→ A, x 7→ x · 1. The unit group A×
is open and dense in A, and inversion A× → A is continuous.

Proof. Recall first that every element of the group Gl(n + 1,K) acts by
homeomorphisms on Kn+1 (with product topology), hence the topology on
A = K⊕N is indeed independent of the chosen K-basis. The continuity of
πA and of σA is then clear.

An element x+y ∈ A = K⊕N is invertible if, and only if, x is invertible
in K: indeed, its inverse is given by

(x+ y)−1 = x−1
r∑
j=0

(−1)j(x−1y)j,

where r ∈ N is such that N r = 0. Hence A× = K× × N is open and
dense in A, and inversion is seen to be continuous since inversion in K is
continuous.

Example 3.3. The iterated tangent rings and the jet rings,

T kK ∼= K[X1, . . . , Xk]/(X
2
1 , . . . , X

2
k) ∼= K⊕

⊕
α∈{0,1}k,α 6=0

εαK ,
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JkK ∼= K[X]/(Xk+1) ∼= K⊕
k⊕
j=1

δjK ,

(cf. (2.4)) are Weil K-algebras. Note that the permutations of the elements
εα, induced by the permutation group Sk, define natural Weil algebra auto-
morphisms of T kK. The canonical K×-action (Appendix A) on T kK and
on JkK is also by automorphisms. More generally, the following truncated
polynomial algebras in several variables are Weil algebras:

Wr
k(K) := K[X1, . . . , Xk]/Ir

where I := I0 := 〈X1, . . . , Xk〉 is the ideal generated by all linear forms
and Ir := Ir+1 is the ideal of all polynomials of degree greater than r. This
is indeed a Weil algebra: as a K-module, this quotient is the space of poly-
nomials of degree at most r in k variables, which is free. For k = 1, we
have Wr

1(K) = JrK, in particular, W1
1 = TK. If A is any Weil algebra, and

a1, . . . , an a K-basis of N , then, if N r+1 = 0,

Wr
n(K)→ A = K⊕N , P 7→

(
P (0), P (a1, . . . , an)

)
is well-defined and defines a surjective algebra homomorphism. Thus every
Weil algebra is a certain quotient of an algebra Wr

n(K). If K is a field, then
such a representation with minimal r and n is in a certain sense unique, with
n = dim(N /N 2) and r the smallest integer with N r+1 = 0 (see [K08],
Sections 1.5 – 1.7 for the real case; the arguments carry over to a general
field), but if K is not a field, this will no longer hold (for instance, K itself
may then be a Weil algebra over some other field or ring). It goes without
saying that a “classification” of Weil algebras is completely out of reach.

Lemma 3.4. Let A = K ⊕ N and B = K ⊕M be two Weil algebras over
K.

1. The tensor product A⊗ B (where ⊗ = ⊗K) is a Weil algebra over K,
with decomposition

A⊗ B = K⊕ (N ⊕M⊕N ⊗M) .

2. The “Whitney sum” A⊕K B := A⊗B/N ⊗M is a Weil algebra over
K, with decomposition

A⊕K B ∼= K⊕ (N ⊕M)
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3. Both constructions are related by the following “distributive law”

A⊗K
(
B⊕ B′

) ∼= (A⊗K B
)
⊕A
(
A⊗K B′

)
.

Proof. The tensor product of two commutative algebras is again a commuta-
tive algebra, and we have a chain of idealsN ⊗M ⊂ (N ⊕M⊕N⊗M) ⊂
A⊗B. Since A⊗B is again free and finite-dimensional over K, the product
topology is canonically defined on A ⊗ B and on the respective quotients.
The given decompositions are standard isomorphisms on the algebraic level,
and by the preceding remarks they are also homeomorphisms.

Example 3.5. The tensor product T kK ⊗ T `K is naturally isomorphic to
T k+`K. The direct sum TK⊕K . . .⊕KTK (n factors) is naturally isomorphic
to W1

n(K) (the Weil algebra of “n-velocities”). The Weil algebra T kK is a
quotient of W1

k(K).

3.2 Extended domains

As a first step towards the definition of Weil functors, we have to define
the extended domains of open sets U in a topological K-module V . The
algebraic scalar extension TAV := VA := V ⊗ A decomposes as

VA = V ⊗ (K⊕N ) = V ⊕ (V ⊗N ) = V ⊕ VN ,

and, if N is homeomorphic to Kn with respect to a K-basis of N , then VN
is isomorphic, as topological K-module, to V n with product topology. The
canonical projection and its section,

πV := πA
V : VA = V ⊕ VN → V, σV := σA

V : V → V ⊕ VN

are continuous. More generally, for any non-empty subset U ⊂ V we define
the A-extended domain to be

TAU := (πV )−1(U) = U × VN ⊂ VA.

For any x ∈ U , the set TA
x U := TA({x}) ∼= VN ⊂ TAU is called the fiber

over x.
Let P : V → W be a K-polynomial map, of degree at most k. Let

PA : VA → WA be its scalar extension from K to A and PN : VN → WN
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be its scalar extension from K to N . That is, if P =
∑k

i=0 Pi with Pi
homogeneous of degree i, then

PA(v ⊗ a) =
k∑
i=0

(Pi)A(v ⊗ a) =
k∑
i=0

Pi(v)⊗ ai

(cf. Appendix C). Then PA extends P in the sense that PA(v⊗1) = P (v)⊗1,
i.e.,

PA ◦ σV = σW ◦ P.

Note that we have also P ◦ πV = πW ◦ PA. In the same way, we define PN ;
mind that there is no commutative diagram of sections, as there is no natural
section K→ N .

3.3 Construction of Weil functors

The following main result generalizes Theorem 2.11 from JkK to the case
of an arbitrary Weil algebra A:

Theorem 3.6. (Existence und uniqueness of Weil functors) Let f : U → W
be of class C[∞] over K and A a Weil K-algebra. Then f extends to an
A-smooth map: there exists a map TAf : TAU → TAW such that:

1. TAf is of class C[∞]
A ,

2. TAf ◦ σU = σW ◦ f , i.e., TAf(x,0) = (f(x),0) for all x ∈ U ,

3. πW ◦ TAf = f ◦ πU .

The map TAf is uniquely determined by properties (1) and (2): if F :

TAU → TAW is of class C[∞]
A and such that F ◦ σU = σW ◦ f , then

F = TAf . More generally, any A-smooth map F : TAU → TAW is entirely
determined by its values on the base σU(U).

Proof. Let f : U → W be of class C[2k]. Assume A = K ⊕ N is a Weil
algebra with N nilpotent of order k + 1. For all x ∈ U , define

TA
x f := (Taykxf)N : VN → WN
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to be the scalar extension from K toN of the Taylor polynomial Taykxf , and
let

TAf : TAU → TAW, (x, z) 7→
(
f(x), TA

x f(z)
)
.

It satisfies property (3). Since TA
x f is polynomial without constant term,

property (2) of the theorem is fulfilled. In order to prove property (1), we
prove first that TAf is continuous: first of all, according to Theorem C.7
(Appendix C), since P := Taykxf : V → W is a continuous polynomial,
its scalar extension PN : VN → WN , z 7→ (Taykxf)N (z) is continuous. By
direct inspection of the proof of Theorem C.7, one sees that the dependence
on x is also continuous, i.e., (x, z) 7→ (Taykxf)N (z) is again continuous, and
hence (x, y) 7→ TAf(x, y) is continuous (cf. Remark C.9).

Next we prove the functoriality rule TA(f ◦ g) = TAf ◦ TAg. For this,
we use the “chain rule for Taylor polynomials” (Theorem 2.13, Part (iii)),
together with nilpotency of N and the fact that, if P is a polynomial con-
taining only terms of degree > k, then PN = 0 by nilpotency. From this we
get

TA
x (g ◦ f) = (Taykx(g ◦ f))N

=
(
Taykf(x)g ◦ Taykxf mod (deg > k)

)
N

=
(
Taykf(x)g ◦ Taykxf

)
N

=
(
Taykf(x)g

)
N◦
(
Taykxf

)
N

= TA
f(x)g ◦ TA

x f .

Thus TA is a functor. It is obviously product preserving in the sense that
TA(f × g) = TAf × TAg.

Now we can prove that TAf is smooth over A. In fact, all arguments
used for the proof of [Be08], Theorem 6.2 (see also [Be13], Theorems 3.6,
3.7) apply: TA(K) = K ⊗ A is again a ring, and this ring is canonically
isomorphic to A itself; the conditions defining the class C[1] over K can be
defined by a commutative diagram invoking direct products, hence, applying
a product preserving functor yields the same kind of diagram over the ring
A = TAK. One gets that

(TAf)]1[,A = TA(f ]1[,K).

Since f [1] is smooth, TA(f [1],K) is continuous by the preceding steps, hence
(TAf)]1[,A admits a continuous extension (TAf)[1],A = TA(f [1],K), proving
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that TAf is C[1] over A. By induction, f is then actually C[∞] over A. This
proves the existence statement.

Uniqueness is proved by adapting the method used in the proof of The-
orem 2.11: fix a K-basis (1 = a0, a1, . . . , an) of A and write an element of
TAU in the form x +

∑n
i=1 aivi with x ∈ U and vi ∈ V . For F = TAf , we

develop in a similar way as in the proof of Theorem 2.8, replacing the scalar
ti by ai (i = 1, . . . , n) and taking k + 1-th order radial expansions:

F
(
x+

n∑
i=1

aivi
)

= F (x) +
∑

0 6=α∈Nn
aαDα

v F (x), (3.1)

where, as in the proof of Theorem 2.11, no remainder term appears, be-
cause of the nilpotency of a1, . . . , an. Since x ∈ U , we have by assumption
F (x) = f(x), and since all vi ∈ V , as in the proof of Theorem 2.11, it
follows that Dα

v F (x) = Dα
v f(x), hence TAf is determined by its values on

the base. In the same way, we can develop any TAK-smooth map F , thus
proving that F is determined by its values on the base U .

Equation (3.1) gives in fact an expansion for any A-smooth function F .
It can be considered as a generalization of Theorem 2.1 from [Sh02].

4. Weil functors as bundle functors on manifolds

4.1 Manifolds

Next we state the manifold-version of the preceding result. In order to fix
terminology, let us recall the definition of smooth manifolds:

Definition 4.1. Let V be a topological K-module, called the model space
of the manifold. A (smooth) K-manifold (with atlas, and modelled on V )
is a pair (M,A), where M is a topological space and A is a K-atlas of
M , i.e., an open covering (Ui)i∈I of M , together with bijections φi : Ui →
Vi := φi(Ui) onto open subsets Vi ⊂ V , such that the chart changes φij :=

φi ◦ φ−1j |φj(Vji) : Vji → Vij are of class C[∞]
K , where Vij := φi(Ui ∩Uj). Then

K-smooth maps between manifolds are defined in the usual way.
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For our purposes, it will be useful to assume always that a manifold is
given with atlas (maximal or not). The category of K-manifolds will be
denoted by ManK. If A is a Weil K-algebra, then the category ManA of
smooth A-manifolds is well-defined.

Theorem 4.2. (Weil functors on manifolds)

1. There is a unique functor TA :ManK →ManA, which coincides on
open subsets U of topological K-modules with the assignment U 7→
TAU , f 7→ TAf described in Theorem 3.6. Moreover, this functor is
product preserving.

2. The construction from (1) is functorial in A: if Φ : A → B is a mor-
phism of Weil K-algebras, then this defines canonically and in a func-
torial way for all K-manifolds M a smooth map ΦM : TAM → T BM
such that, for all K-smooth maps f : M → N , we have

T Bf ◦ ΦM = ΦN ◦ TAf.

Proof. Recall that a manifold is equivalently given by the following data:

• a topological K-module V (the model space),

• open sets (Vij)i,j∈I ⊂ V , where I is a discrete index set,

• K-smooth maps (φij)i,j∈I (“chart changes”) satisfying the cocycle re-
lations:

φii = id and φijφjk = φik (where defined).

We may then define the K-manifold M to be the set of equivalence classes
M := S/ ∼, where S := {(i, x)|x ∈ Vii} ⊂ I × V and (i, x) ∼ (j, y) if and
only if φij(y) = x, equipped with the quotient topology. Conversely, we put
Vi := Vii, Ui := {[(i, x)], x ∈ Vi} ⊂ M and φi : Ui → Vi, [(i, x)] 7→ x to
recover the previous data.

Now we prove the existence statement in (1). The functor TA associates
to the topological K-module V , to the open sets Vij ⊂ V and to the K-
smooth maps φij , the topological A-module TAV , the open sets TAVij ⊂
TAV and the A-smooth maps TAφij . If M is a K-manifold with model V
and atlas (Vij, φij), then TAV is a model and (TAVij, T

Aφij) is an atlas of
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A-manifold. With those data, we have seen that we can construct an A-
manifold, denoted by TAM .

The proof of the uniqueness statement in (1) is obvious, since a manifold
is entirely given by its model, charts domains and chart changes.

(2) For open U ⊂ V we define ΦU : V ⊗A ⊃ TAU → V ⊗ B, v ⊗ a 7→
v ⊗ Φ(a). This is a K-linear and continuous map, hence K-smooth. In
particular, the collection of maps ΦU : TAU → T BU for chart domains U
defines a well-defined smooth map ΦM : TAM → T BM .

Since ΦV commutes with scalar extension of polynomials (PB ◦ ΦV =
ΦW ◦ PA), it also commutes with extended maps, i.e., T Bf ◦ ΦM = ΦN ◦
TAf .

Remark 4.3. If Φ : A → B is as in (2), then any B-module becomes an
A-module by r.v := Φ(r).v. In this way, the target manifold T BM can
also be seen as a smooth manifold over A, in such a way that ΦM becomes
A-smooth. This remark will be important for further developments in differ-
ential geometry (subsequent work).

4.2 Weil functors: bundle point of view

Next we state the bundle version of the main theorem, and we give the formu-
lation of certain operations on Weil bundles in terms of their Weil algebras.
The precise definitions of notions related to bundles are explained after the
statement of the results.

Theorem 4.4 (Weil functors as bundle functors). Let M ∈ManK modelled
on V and A = K⊕N a Weil algebra such thatN is nilpotent of order k+1.
Then

1. TAM is a (A,K)-smooth polynomial bundle of degree k with section
over M and with fiber modelled on VN = V ⊗K N . More precisely,
the chart changes are polynomial in fibers of degree k and without
constant term. In particular, if N 2 = 0, then TAM is a vector bundle
over M .

2. TA :ManK → SBunA
K is the unique functor into bundles with section

which coincides on open subsets U in topological K-modules with the
assignment U 7→ TAU .
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3. If Φ : A→ B is a morphism of Weil algebras, then (ΦM , idM) is a K-
smooth and intrinsically linear bundle morphism between TAM and
T BM .

Theorem 4.5 (The “K-theory of Weil bundles”). Let A = K⊕N and B =
K⊕M be K-Weil algebras.

1. The Weil functor defined by the Whitney sum A ⊕K B of two Weil al-
gebras (cf. Lemma 3.4) is naturally isomorphic to the Whitney sum of
TA and T B over the base manifold, i.e., for all M ∈ManK,

TA⊕KBM ∼= TAM ×M T BM,

where ×M denotes the bundle product over M . By transport of struc-
ture, this defines a structure of A⊕K B-manifold on TAM ×M T BM .

2. The Weil functor defined by the tensor product A ⊗K B is isomorphic
to the composition T B ◦ TA, and the typical fiber of TA⊗KBM over M
is K-diffeomorphic to

VN ⊕ VM ⊕ VN⊗M.

3. There is a natural bundle isomorphism TA⊗BM ∼= T B⊗AM called the
generalized flip.

4. There is a natural “distributivity isomorphism” of bundles over TAM

TA(T BM ×M T B′M) ∼= TAT BM ×TAM TAT B′M.

We stress once again that the bundles TAM and T BM are in general not
vector bundles, so that there is no natural “fiberwise notion of tensor prod-
uct”. Nevertheless, there exists some relation between the bundle TA⊗BM
and what one might expect to be a “fiberwise tensor product”; this question
is closely related to the topic of connections and will be left to subsequent
work. – Before turning to the (easy) proofs of both theorems, let us give the
relevant definitions:

Definition 4.6. An (A,K)-smooth fiber bundle (with atlas) is given by:
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1. a surjective K-smooth map π : E → M from an A-smooth manifold
E (the total space), onto a K-smooth manifold M (the base),

2. a type: an operation on the left µ : G× F → F , (g, y) 7→ ρ(g)y of a
group G (the structural group) on a K-smooth manifold F (the typical
fiber),

3. a bundle atlas, which induces the condition of local triviality: there
are

• a K-manifold atlas (Ui, φi)i of M , and

• A-diffeomorphisms αi : π−1(Ui)→ Vi×F , called bundle charts,
such that the following diagram commutes:

E ⊃ π−1(Ui)
αi //

π

''

Vi × F
φ−1
i ◦prVi
��

Ui

4. We require the bundle charts to be compatible, that is, for all bundle
chart changes

αij := αi ◦ α−1j : Vij × F → Vij × F,

there exist maps γij : Vij → G (transition functions) satisfying

αij(x, y) = (φij(x), ρ(γij(x))y).

A bundle morphism between two (A,K)-smooth bundles π : E → M and
π′ : E ′ →M ′ is, as usual, a pair of maps (Φ, φ), where Φ : E → E ′ is an A-
smooth map and φ : M →M ′ is a K-smooth map such that π′ ◦ Φ = φ ◦ π.
Finally, a bundle with section is a fiber bundle together with a K-smooth
section σ : M → E of π : E →M , and a morphism of bundles with section
is a morphism of fiber bundles commuting with sections: Φ ◦ σ = σ′ ◦ φ.

Note that if we fix x ∈ Vij , then the maps y 7→ ρ(γij(x))y are K-
diffeomorphisms, so that we can see G (in fact ρ(G)) as a subgroup of
DiffK(F ). We do not require µ and γij to be smooth. If it is the case (in
particular, if G is a K-Lie group), then the bundle is said to be strongly dif-
ferentiable. Obviously, (A,K)-smooth bundles form a category, denoted by
BunA

K. Bundles with section also form a category, denoted by SBun.
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Definition 4.7 (Polynomial bundle). Let V,W be topological K-modules.

1. A fiber bundle with atlas is called a K-polynomial bundle of degree
k if the typical fiber is a K-module and if the structural group G acts
polynomially of degree k on the typical fiber F (thus ρ(G) is then a
subgroup of the polynomial group GPk(F ), see Definition C.2), i.e., if
the bundle chart changes αij are K-polynomial of degree k in fibers.
In particular, an affine bundle is a polynomial bundle of degree 1. If,
moreover, the bundle chart changes are without constant term, then
the bundle is a vector bundle.

2. A map f : E → E ′ between fiber bundles with atlas is called in-
trinsically K-linear (resp. K-polynomial) if the typical fibers are K-
modules, if it maps fibers to fibers and if, with respect to all charts
from the given atlasses, the chart representation of f : Ex → E ′f(x) is
K-linear (resp. K-polynomial).

Proof. (of Theorem 4.4) (1) We have seen that TAM is an A-manifold.
Moreover, the Weil algebras morphisms πA : A → K and its section σA :
K → A, t 7→ t · 1 induce K-smooth morphisms πA

M : TAM → M and its
section σA

M : M → TAM by Theorem 4.2. Locally, over a chart domain
U , πA is given by the linear map TAU = U × VN → U . The section σA is
locally given by U → U × VN , x 7→ (x, 0).

Let us show that this bundle is indeed locally trivial, with typical fiber
VN , and that the chart changes are polynomial in fibers. The bundle atlas is
given by the K-manifold atlas (Ui, φi) of M and by the A-diffeomorphisms
αi : Ui × VN → Vi × VN , (x, y) 7→ TAf(x, y) = (f(x), (Taykxf)N (y)). The
maps y 7→ (Taykxf)N (y) are K-smooth polynomial, of degree at most k and
without constant term, hence define an (A,K)-smooth polynomial bundle
over M . In particular, if N is nilpotent of order 2, then TAM → M is a
polynomial bundle of degree 1 without constant term, that is, a vector bun-
dle. This proves part (1), and part (2) follows directly from the uniqueness
statement in 3.6, and (3) from 4.2.

Proof. (of Theorem 4.5). (1) Let f : V ⊃ U → W smooth over K. The
result follows from

TAU ×U T BU = U × VN × VM = TA⊕KBU
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and applying part (2) of the preceding theorem.
(2) Let f : V ⊃ U → W smooth over K. We have

T B(TAU)) = T B(U × VN ) = (U × VN )× (V × VN )M

= U × VN × VM × VN⊗M
= U × VN⊕M⊕N⊗M
= TA⊗BU

Applying twice Theorem 3.6 and noting that σA
TAU ◦ σ

A
U = σA⊗A

U , it follows
that

T B(TAf) : T B(TAU)→ (W ⊗K A)⊗K B

is an extension of f that is smooth over the ring T B(TAK) = T BA = A⊗KB.
Hence, by the uniqueness statement in Theorem 4.2, T B(TAf) = TA⊗Bf .

(3) follows from the Weil algebra isomorphism A⊗ B ∼= B⊗ A.
(4) follows from (1), (2), (3) and Lemma 3.4 (3).

5. Canonical automorphisms, and graded Weil algebras

5.1 Canonical automorphisms

Concerning the action of the “Galois group” AutK(A), Theorem 4.4 implies
immediately that it acts canonically by certain intrinsically K-linear bundle
automorphisms of TAM , called canonical automorphisms:

AutK(A)× TAM → TAM, (Φ, u) 7→ ΦM(u) .

This action commutes with the natural action of the diffeomorphism group
DiffK(M):

DiffK(M)× TAM → TAM, (f, u) 7→ TAf(u) .

Here are some important examples of canonical automorphisms:

Example 5.1. For each r ∈ K×, there is a canonical automorphism TK →
TK, x + εy 7→ x + εry. The corresponding canonical map TM → TM is
multiplication by the scalar r in each tangent space. This example general-
izes in two directions:
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Example 5.2. By induction, the preceding example yields an action of (K×)k

by automorphisms on the iterated tangent manifold T kK. The action of the
diagonal subgroup K× then gives the canonical K×-action ρ[·] described in
Appendix B.

Example 5.3. For each r ∈ K×, there is a canonical automorphism JkK→
JkK, P (X) 7→ P (rX). The corresponding action of K× by automorphisms
is the action ρ〈·〉 described in Appendix B. It is remarkable that, in these
cases, the canonical automorphisms can be traced back to isomorphisms on
the level of difference calculus (Appendix A):

Theorem 5.4. Let r ∈ K×, s ∈ Kk andM a K-manifold with atlas modelled
on V . There is a canonical bundle isomorphism

Jk(s1,...,sk)M → Jk(r−1s1,...,r−1sk)
M

given in all bundle charts by v = (v0, . . . , vk) 7→ r.v = (v0, rv1, . . . , r
kvk).

Proof. This is a restatement of the homogeneity property Theorem B.4 (ii)
in terms of the invariant language of manifolds (cf. [Be13] for notation).

There is a similar result for the K×-action on the bundles T k(t)M . For
general automorphisms Φ of JkK or T kK, it seems to be difficult or even
impossible to realize them as limit cases of a families of isomorphisms in
difference calculus.

Example 5.5. The map TTK → TTK, x + ε1y1 + ε2y2 + ε1ε2y12 7→
x + ε1y2 + ε2y1 + ε1ε2y12 is an automorphism, called the flip. The cor-
responding canonical diffeomorphism TTM → TTM is also called the flip
(see [KMS93]). By induction, we get an action of the symmetric group Sk
on T kM (see [Be08]). Recall ([BGN04]) that the flip comes from Schwarz’s
Lemma, and that the proof of Schwarz’s Lemma in loc. cit. uses a symmetry
of difference calculus in t = (t1, t2, t12) when t12 = 0. It is not clear whether
such a symmetry extends to difference calculus for all t.

In a similar way, for any Weil algebra A, the map A⊗ A→ A⊗ A, a⊗
a′ 7→ a′ ⊗ a is an automorphism, called the generalized flip. The corre-
sponding canonical diffeomorphism TA⊗AM → TA⊗AM is also called the
generalized flip.
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5.2 Graded Weil algebras and their automorphisms

Definition 5.6. A Weil algebra A = K ⊕ N is called N-graded (of length
k) if it is of the form A = A0 ⊕ . . . ⊕ Ak with free submodules Ai such that
Ai · Aj ⊂ Ai+j and A0 = K.

In [KM04], graded Weil algebras are called homogeneous Weil algebras.
All examples of Weil algebras considered so far are graded – in fact, it is
not so easy to construct a Weil algebra that does not admit an N-grading
(see [KM04]) – and in Lemma 2.10 we have seen that such gradings arise
naturally in differential calculus. We are interested in graded Weil algebras
because they admit a “big” group of automorphisms. First of all, there is an
obvious “one-parameter family” of automorphisms, which generalizes the
canonical K×-action on T kK and on JkK from Example 5.3: if we denote
an element a of A =

⊕k
i=0Ai by (ai)0≤i≤k, where ai ∈ Ai for all i, then, for

r ∈ K×,
A→ A, (ai)0≤i≤k 7→ (riai)0≤i≤k

is an automorphism. We will show that in fact there are “multi-parameter
families” of automorphisms: recall that usual composition of formal power
series without constant term, Q,P ∈ K[[X]]0, is given by the following
explicit formula, for Q(X) =

∑∞
n=1 bnX

n and P (X) =
∑∞

n=1 anX
n:

Q◦P (X) =
∞∑
n=1

cnX
n with cn =

n∑
j=1

bj
∑

α∈Nj ,|α|=n

aα1 · · · aαj . (5.1)

If Q has constant term b0, then the same formulae make sense, with c0 = b0,
so that we get an algebra endomorphismQ 7→ Q◦P . If P has non-vanishing
constant term, then the composition is not defined. In order to define, for any
P ∈ K[[X]], an algebra endomorpism, we let

RP : K[[X]]→ K[[X]], Q 7→ RP (Q) := Q ◦ (XP ) (5.2)

(where (XP )(X) := XP (X)). From (5.1) we get the explicit formula

(RP (Q))(X) = (
∞∑
n=0

bnX
n) ◦ (X

∞∑
n=0

anX
n) =

∞∑
n=0

unX
n (5.3)
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with un =
n∑
j=1

bj
∑

α1+...+αj=n−j
aα1 · · · aαj (for n = 0, this has to be inter-

preted as u0 = b0). It turns out that this formula is compatible with any
graded Weil algebra:

Theorem 5.7. Let A be a graded Weil algebra. Then, for any a = (ai) ∈ A,
the map

Ra : A→ A, b = (bi) 7→ Ra(b) = (ui)i

with u0 = b0 and

∀n > 0 : un =
n∑
j=1

bj
∑

α1+...+αj=n−j

aα1 · · · aαj .

is an algebra endomorphism of the Weil algebra (A,+, ·). It is an automor-
phism if, and only if, a ∈ A×, i.e., iff a0 ∈ K×.

Proof. Ra is well-defined: with notation from the theorem, we have indeed
un ∈ An. The map Ψ : A → A[[X]], (ai)i 7→

∑k
i=0 aiX

i is a K-linear
map onto its image A′ := A0 ⊕ A1X ⊕ · · · ⊕ AkX

k. It intertwines all
algebraic structures considered so far: addition +, algebra product · (here
we use nilpotency of A) and the correspondence a 7→ Ra from the theorem
with the correspondence denoted by R from Equation (5.2). Therefore the
claims now follow immediately from the corresponding facts seen above for
rings of formal power series A[[X]].

Corollary 5.8. With assumptions and notation as in the theorem, for every
element a ∈ A, there is an intrinsically linear endomorphism induced by Ra

on each Weil bundle TAM , and this is an automorphism if a ∈ A×.

Example 5.9. If a = a0 = r ∈ K×, the operators Ra give us again the
canonical K×-action.

Example 5.10. Let A = T kK = K⊕
⊕

α ε
αK (cf. [Be08], Chapter 7), and

let a such that ai = 0 for i 6= 1 and ai = εj for a fixed j ∈ {1, . . . , k}. Then
Ra is the shift operator denoted by S0j in [Be08], Chapter 20.

Example 5.11. Similarly, for A = JkK = K[X]/(Xk+1), with a = a1 = δ,
we get a “shift” [P (X)] 7→ [P (X2)].
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Let us close this section by showing that the automorphisms from Theo-
rem 5.7 form a group. In general, this subgroup of AutK(A) is proper (for
instance, the flip of TTK is not of this type), but it seems to be fairly “big”.

Theorem 5.12. Using notation from Theorem 5.7, we have for all a, b ∈ A,

Ra ◦Rb = RaRa(b).

The “product” defined on A by b ? a := aRa(b) is associative and right-
distributive. The map

(A, ?)→ (End(A), ◦), a 7→ Ra

is a semigroup homomorphism, and A× is mapped to AutK(A). An explicit
formula for ? is given by

(ai) ? (bi) = (un), un =
n∑
j=0

bj
∑

α0+...+αj=n−j

aα0 · · · aαj .

Proof. Using the map Ψ from the proof of Theorem 5.7, the first claim
amounts to noting that, for power series P,Q, S,

S ◦ (XQ) ◦ (XP ) = S ◦ (X · P · (Q ◦XP )),

and the fact that ? is associative is proved similarly by noting that

Q ? P = P · (Q ◦XP ) =
1

X
((XQ) ◦ (XP )),

so that ? is obtained by push-forward, via the shift P 7→ XP , from usual
associative composition ◦ on A[[X]]0. Finally, the fact that a 7→ Ra is semi-
group morphism holds by definition, and the explicit formula follows from
(5.1).

A. Difference quotient maps and K×-action

In this appendix we recall some basic definitions concerning difference cal-
culus from [BGN04] and [Be13], and we emphasize the fact that the group
K× acts, in a natural way, on all objects. In this appendix, K may be any
commutative unital ring and V any K-module (no topology will be used).
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A.1 Domains and K×-action

Let U ⊂ V be a non-empty set, called “domain”. We define two kinds of
“extended domains”, the cubic one, denoted by U [k] and the simplicial one,
denoted by U 〈k〉 for k ∈ N, which will later be used as domains of definition
of generalized kinds of tangent maps, for a given map defined on U . By
convention, U [0] := U =: U 〈0〉.

Definition A.1 (“cubic domains”). The first extended domain of U is

U [1] := {(x, v, t) ∈ V × V ×K|x ∈ U, x+ tv ∈ U} .

We say that U is the base of U [1], and the maps

π[1] : U [1] → U, (x, v, t) 7→ x, and σ[1] : U → U [1], x 7→ (x, 0, 0)

are called the canonical projection, resp. injection. We call

U ]1[ := {(x, v, t) ∈ U [1]| t ∈ K×}

the set of non-singular elements in the extended domain. Letting t = 0, we
define the most singular set or tangent domain

TU := {(x, v, 0) ∈ U [1]} ∼= U × V.

By induction, we define the higher order extended cubic domains (resp., the
set of their non-singular elements) for k ∈ N by

U [k+1] := (U [k])[1], U ]k+1[ := (U ]k[)]1[ ,

and let T k+1U := T (T kU). There are canonical projections π[k]
[j] : U [k] →

U [j], and their sections σ[k]
[j] : U [j] → U [k] called canonical injections, for all

j ≤ k. Note that

U [2] ⊂ (V 2 ×K)× (V 2 ×K)×K ∼= V 4 ×K3,

and similarly we will consider U [k] as a subset of V 2k × K2k−1 and identify
T kU with U × V 2k−1. Elements of V will be called “space variables”, and
elements of K will be called “time variables”. We separate space variables
and time variables. Correspondingly, we denote elements of U [k] by (v, t) =(
(vα)α⊂{1,...,k}, (tα)∅6=α⊂{1,...,k}

)
. With this notation, we have in particular,

v∅ ∈ U , and T kU = {
(
v,0

)
∈ U [k]}.
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An explicit description of the extended domains for k > 1 by conditions
in terms of sets is fairly complicated, as the number of variables growths
exponentially. In order to get a rough understanding of their structure, it is
useful to note a sort of “homogeneity property”.

Definition A.2. The zero order action of K× on U is trivial: K× × U → U ,
(r, x) 7→ x. The canonical K×-action on U [1] is given by

ρ[1] : K× × U [1] → U [1], (r, (x, v, t)) 7→ ρ[1](r).(x, v, t) := (x, rv, r−1t).

This is well-defined: x+tv ∈ U if and only if x+r−1trv ∈ U . Moreover, the
sets U ]1[ and TU are stable under this action. The canonical action of K× on
U [2] is defined as follows: write (x, u, t) = ((v∅, v1, t1), (v2, v12, t12), t2) ∈
U [2] with x ∈ U [1], u ∈ V [1] and t ∈ K such that x+ tu ∈ U [1]. For r ∈ K×,
let

ρ[2](r)
(
(v∅, v1, t1), (v2, v12, t12), t2

)
=
(
ρ[1](r).x, rρ[1](r).u, r

−1t
)

=
(
(v∅, rv1, r

−1t1), (rv2, r
2v12, t12), r

−1t2
)

By induction, we define the canonical action ρ[k+1] : K× × U [k+1] → U [k+1]

via
ρ[k+1](r).

(
x, u, t

)
:=
(
ρ[k](r).x, rρ[k](r).u, r

−1t
)
,

which can also be written as

ρ[k+1](r).
(
(vα)α, (tα)α 6=∅

)
:=
(
(r|α|vα)α, (r

|α|−2tα)α 6=∅
)
,

where |α| is the cardinality of the set α ⊂ {1, . . . , k + 1}. The sets U ]k+1[

and T k+1U are stable under this action.

The canonical projections and injections are equivariant with respect to
this action. Note that the operator ρ[k](r) is K-linear. An element of U [k]

will be called homogeneous of degree ` if it is an eigenvector for all ρ[k](r),
where r ∈ K×, with eigenvalue r`. For instance, elements x in the base U
are homogeneous of degree zero. Now we define another kind of extended
domain and explain its relation to the ones considered above:
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Definition A.3 (“simplicial domains”). Let U ⊂ V be non-empty, and let (in
all the following) s0 := 0. For k ∈ N?, we define the extended simplicial
domains by U 〈1〉 := U [1],

U 〈k〉 :=
{

(v; s) ∈ V k+1 ×Kk
∣∣

v0 ∈ U, ∀i = 1, . . . , k : v0 +
i∑

j=1

j−1∏
m=0

(si − sm)vj ∈ U
}
.

Its set of non-singular elements is

U 〉k〈 := {(v; s) ∈ U 〈k〉 | ∀i 6= m : si − sm ∈ K×}.

Its set of most singular elements is

JkU := {(v;0) ∈ U 〈k〉} ∼= U × V k.

For j < k, there are obvious canonical projections and injections

π
〈k〉
〈j〉 : U 〈k〉 → U 〈j〉, and its section σ

〈k〉
〈j〉 : U 〈j〉 → U 〈k〉 .

For the subset of most singular elements, there are also the canonical pro-
jection πk : JkU → U and its section σk : U → JkU .

Compared to the cubic case, this definition has two advantages: it is “ex-
plicit”, and the number of variables grows linearly instead of exponentially;
its drawback is that it is not inductive. This will be overcome by imbedding
the simplicial domains into the cubic ones (Lemma A.5 below). Note that
in [Be13], s0 has been considered as a variable. Since all “simplicial formu-
las” invoke only differences si − sj , this variable may be frozen to the value
s0 = 0, as done here. There is an obvious K×-action:

Definition A.4. We define the canonical action ρ〈k〉 of K× on U 〈k〉 by

ρ〈k〉(r)
(
v0, . . . , vk; s1, . . . , sk

)
:=
(
v0, rv1, r

2v2, . . . , r
kvk; r

−1s1, . . . , r
−1sk

)
.

It is immediately seen that ρ〈k〉(r)(v; s) ∈ U 〈k〉 if and only if (v; s) ∈ U 〈k〉,
and that U 〉k〈 and JkU are stable under this action.
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Like in the cubic case, projections and injections are K×-equivariant, and
we may speak of homogeneous elements (of degree `). Again, elements from
the base U are homogeneous of degree zero. An important difference with
the cubic case is that here scalars are always homogeneous of the same de-
gree −1. Next, we define an equivariant imbedding into the cubic domains:

Lemma A.5. The map gk : U 〈k〉 → U [k] defined by gk(v; s) := (u, t) with

uα =

{v0 if α = ∅
vi if α = {1, . . . , i}
0 else

tα =

{ 1 if α = {i, i+ 1}
si − si−1 if α = {i}

0 else

is a well-defined, K-affine and K×-equivariant imbedding of U 〈k〉 into U [k].
Moreover, gk(U 〉k〈) ⊂ U ]k[.

Proof. The fact that gk(U 〈k〉) ⊂ U [k] is directly checked (and follows also
from the recursion procedure used in [Be13], Lemma 1.5). In order to check
the K×-equivariance gk ◦ ρ〈k〉(r) = ρ[k](r) ◦ gk, note that on the level of
space variables v, homogeneous elements vi of degree i are sent again to
homogeneous elements of degree i (since |{1, . . . , i}| = i). On the level of
time variables s, homogeneous elements si of degree −1 are sent again to
homogeneous elements of degree −1 (since |{i}| = 1) and, for |α| = 2,
the K×-action on homogeneous scalars is trivial. Altogether, this implies the
equivariance. The map gk is clearly injective: the inverse (of its corestriction
to gk(U 〈k〉) is given by: gk−1|gk(U〈k〉)(u, t) := (v; s) with{

v0 = u∅
vi = u{1,...,i} for all i > 1

and

{
s0 = 0

si =
∑i

j=0 t{j}

Note that this inverse is also K-affine.

The proof shows that the scalar components tα with |α| = 2 play a spe-
cial rôle since they are the only ones that are homogeneous of degree zero;
one may say that they are a sort of “pivots”. Related to this, note that gk does
not map JkU to T kU . The imbedding gk has been used in [Be13], Theorem
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1.6. For k = 1, g1 is the identity, and for k = 2, 3 , we have explicitly

g2(v0, v1, v2; s1, s2) =
(
(v0, v1, s1), (0, v2, 1), s2 − s1

)
,

g3(v0, v1, v2, v3; s1, s2, s3) =
((

(v0, v1, s1), (0, v2, 1), s2 − s1
)
,(

(0, 0, 0), (0, v3, 0), 1
)
, s3 − s2

)
.

A.2 Difference calculus

Let V,W be K-modules, U ⊂ V a non-empty set and f : U → W a map.
We first define “cubic” difference quotients and then “simplicial” ones, also
called generalized divided differences. The map gk will imbed them into the
cubic calculus.

Definition A.6 (“cubic difference quotients”). The first order difference quo-
tient of f is the map

f ]1[ : U ]1[ → W, (x, v, t) 7→ f(x+ tv)− f(x)

t
,

and the extended tangent map is the map

T ]1[f : U ]1[ → W ]1[, (x, v, t) 7→ (f(x), f ]1[(x, v, t), t).

The higher order cubic difference quotients and higher order extended tan-
gent maps are defined by induction

f ]k+1[ :=
(
f ]k[
)]1[

: U ]k+1[ → W

T ]k+1[f :=
(
T ]k[
)]1[

: U ]k+1[ → W ]k+1[.

In [Be13], explicit formulae for f ]2[ and T ]2[f are given; they are quite
complicated. Here are two main properties of this construction:

Theorem A.7. Let f : U → W and g : U ′ → W ′ with f(U) ⊂ U ′. Then

i) Functoriality: T ]k[(g ◦ f) = T ]k[g ◦ T ]k[f and T ]k[idU = idT ]k[U .

ii) Homogeneity: for all r ∈ K×, T ]k[f ◦ ρ[k](r) = ρ[k](r) ◦ T ]k[f .
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Proof. (i) For k = 1, this is an easy computation, and for k > 1, it follows
immediately by induction (see [BGN04]). (ii) For k = 1:

T ]1[f(x, rv, r−1t) =
(
f(x),

f(x+ r−1trv)− f(x)

r−1t
, r−1t

)
=
(
f(x), rf ]1[(x, v, t), r−1t

)
and for k > 1, the result follows by induction.

Now we come to simplicial difference calculus and to its imbedding into
cubic calculus. In the following, recall that, by definition, s0 = 0.

Definition A.8 (“simplicial difference quotients”). For a map f : U → W
we define (generalized) divided differences f 〉k〈 : U 〉k〈 → W by

f 〉1〈(v0, v1; s1) := f ]1[(v0, v1, s1) =
f(v0)

s0 − s1
+
f(v0 + (s1 − s0)v1)

s1 − s0

f 〉k〈(v; s) :=
f(v0)∏

j=1,...,k

(s0 − sj)
+

k∑
i=1

f
(
v0 +

i∑
j=1

j−1∏
m=0

(si − sm)vj
)

∏
j=0,...,̂i,...,k

(si − sj)

and the extended k-jet is the map J〉k〈f : U 〉k〈 → W 〉k〈 sending (v; s) to

J〉k〈f(v; s) :=
(
f(v0), f

〉1〈(v0, v1; s1), . . . , f
〉k〈(v0, . . . , vk; s1, . . . , sk); s).

Theorem A.9. The map gk : U 〈k〉 → U [k] defines an imbedding of simplicial
into cubic difference calculus in the sense that, for all f : U → W , we have

T ]k[f ◦ gk = (−1)kgk ◦ J〉k〈f :
U 〉k〈

J〉k〈f−→ W 〉k〈

gk ↓ (−1)kgk ↓
U ]k[ T ]k[f−→ W ]k[

Proof. See [Be13], Lemma 1.5 and Theorem 1.6.

Theorem A.10. Let f : U → W and g : U ′ → W ′ with f(U) ⊂ U ′. Then

i) Functoriality: J〉k〈(g ◦ f) = J〉k〈g ◦ J〉k〈f and J〉k〈idU = idJ〉k〈U .

ii) Homogeneity: for all r ∈ K×, J〉k〈f ◦ ρ〈k〉(r) = ρ〈k〉(r) ◦ J〉k〈f .

Proof. Both statements can be seen as a consequence of Theorems A.7 and
A.9 above. An independent proof of (i) is given in [Be13], Theorem 2.10,
and (ii) can also be proved by an easy direct computation.
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B. Differential calculi

Differential calculus is the extension of difference calculus to singular val-
ues. In order to do this, we need additional structure, such as, e.g., topology.
We therefore assume that K is a topological ring such that its unit group K×
is open dense in K, and we assume that V,W are topological K-modules,
U ⊂ V is open and f : U → W is a continuous map. The class of con-
tinuous maps will be denoted by C0 (see [BGN04] for other “C0-concepts”).
There are two concepts of differential calculus, which we call “cubic” and
“simplicial”.

Definition B.1 (“cubic differentiability”). We say that f : U → W is of
class C[1]K (or just C[1] if the base ring K is clear from the context) if there
exists a continuous map f [1] : U [1] → W extending the first order difference
quotient map: for all (x, v, t) ∈ U ]1[, we have f [1](x, v, t) = f(x+tv)−f(x)

t
. By

density of K× in K, the map f [1] is unique if it exists, and so is the value

df(x)v := f [1](x, v, 0) =: ∂vf(x).

The extended tangent map is the map T [1]f : U [1] → W [1] defined by

(x, v, t) 7→ T [1]f(x, v, t) =: T
[1]
(t)f(x, v) :=

(
f(x), f [1](x, v, t), t

)
.

The classes C[k]K (or shorter: just C[k]) are defined by induction: we say that
f is of class C[k+1] if it is of class C[k] and if f [k] : U [k] → W is again of class
C[1], where f [k] := (f [k−1])[1]. The higher order extended tangent maps are
defined by T [k+1]f := T [1](T [k]f), and the k-th order cubic differentials, at
x ∈ U , are defined by dkf(x) : V k → W, (v1, . . . , vk) 7→ ∂v1 . . . ∂vkf(x).

Theorem B.2. Let f : U → W , g : U ′ → W ′ of class C[k] with f(U) ⊂ U ′.

i) Functoriality: T [k](g ◦ f) = T [k]g ◦ T [k]f and T [k]idU = idT [k]U .

ii) Homogeneity: for all r ∈ K×, T [k]f ◦ ρ[k](r) = ρ[k](r) ◦ T [k]f .

iii) Linearity: the differential df(x) : V → W is continuous and linear.

iv) Symmetry: the k-th order cubic differential map dkf(x) : V k → W is
continuous, k times multilinear and symmetric.
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Proof. (i) and (ii) follow “by density” from Theorem A.7. Homogeneity of
the differential is a special case of (ii), and additivity is proved in a similar
way (see [BGN04]). (iv) is a direct consequence of (iii) and of Schwarz’
Lemma ([BGN04]).

Functoriality is equivalent to saying that, for t ∈ K fixed, T [1]
(t) is a functor,

and for t = 0 this gives the usual chain rule. Moreover, for each t, the
functor T [1]

(t) commutes with direct products: T [1]
(t) (f×g) is naturally identified

with T [1]
(t)f × T

[1]
(t)g. Analogously, for fixed time variables t, T [k]

(t) are functors

commuting with direct products. In particular, for t = 0, T [k]
(0) is a functor,

called iterated tangent functor and denoted by T k. Note that T 1 =: T is the
usual tangent functor. From this, we deduce that T [k]K, T [k]

(t)K and T kK are
again rings, with product and addition obtained by applying the functor to
product and addition in K. See [Be13] for more information on these rings.

Definition B.3 (“simplicial differentiability”). We say that f is of class C〈k〉K ,
or just of class C〈k〉, if, for all 1 ≤ ` ≤ k, there are continuous maps f 〈`〉 :
U 〈`〉 → W extending f 〉`〈. Note that, by density of K× in K, the extension
f 〈`〉 is unique (if it exists), and hence in particular the value f 〈`〉(v;0), called
the `-th order simplicial differential is uniquely determined. We define also

J〈k〉f : U 〈k〉 → W 〈k〉, (v; s) 7→ (f(v0), f
〈1〉(v0, v1; s1), . . . , f

〈k〉(v; s); s),

and, for any fixed element s ∈ Kk, we define the simplicial s-extension of f
by

J
〈k〉
(s)f : J

〈k〉
(s)U → W k+1, v 7→ J〈k〉f(v; s) ,

where J
〈k〉
(s)U :=

{
v ∈ V k+1| (v; s) ∈ U 〈k〉

}
. The simplicial k-jet of f is

Jkf := J
〈k〉
(0)f : JkU → JkW, v 7→ Jkf(v) =

(
f 〈`〉(v0, . . . , v`;0)

)
`=0,...,k

.

where f 〈0〉 := f by convention.

Theorem B.4. Let f : U → W and g : U ′ → W ′ of class C〈k〉 with f(U) ⊂
U ′.

i) Functoriality: J〈k〉(g ◦ f) = J〈k〉g ◦ J〈k〉f and J〈k〉idU = idJ〈k〉U .
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ii) Homogeneity: for all r ∈ K×, J〈k〉f ◦ ρ〈k〉(r) = ρ〈k〉(r) ◦ J〈k〉f .

This follows “by density” from Theorem A.10. As in the cubic case,
for fixed time variables s, J

〈k〉
(s) is a functor commuting with direct products.

From this, it follows as above that J〈k〉K, J
〈k〉
(t)K and JkK are again rings.

Again, we refer to [Be13] for more information on these rings. In particular,
for s = 0, J

〈k〉
(0) is a functor called the k-th order jet functor, denoted by

Jk. Note that J1 = T 1 is the usual tangent functor, and that for s = 0,
functoriality gives equation (1.1). According to [Be13], Theorem 1.7 and
Corollary 1.11, there is an equivalent characterization of the class C〈k〉 in
terms of “limited expansions”, having the advantage that no denominator
terms appear:

Theorem B.5. A map f : U → W is of class C〈k〉 if, and only if the following
simplicial limited expansions hold: for all 1 ≤ ` ≤ k, there exist continuous
maps f 〈`〉 : U 〈`〉 → W such that, whenever (v, s) ∈ U 〈`〉,

f
(
v0 +

k∑
j=1

j−1∏
`=0

(sk − s`)vj
)

= f(v0)+

k∑
j=1

j−1∏
`=0

(sk − s`)f 〈j〉(v0, . . . , vj; s0, . . . , sj)

The maps f 〈`〉 defined by this condition coincide with those defined in the
definition above.

Theorem B.6 (“cubic implies simplicial”). If f is of class C[k], then f is
of class C〈k〉, and the map gk : U 〈k〉 → gk(U

〈k〉) ⊂ U [k] defines a smooth
imbedding of simplicial into cubic differential calculus in the sense of Theo-
rem A.9.

Proof. This follows “by density” from Theorem A.9 (see [Be13], Theorem
1.6).

We conjecture that also “simplicial implies cubic”, i.e., if f is C〈∞〉, then
it is also of class C[∞], but at present this conjecture is not settled. Therefore
we will work throughout with a C[k]-assumption.
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Corollary B.7. If f is of class C[k], then f 〈j〉 is of class C[k−j], for all j ≤ k.

Proof. Via the imbedding gj : U 〈j〉 → U [j], we can consider f 〈j〉 : U 〈j〉 →
W as a partial map of f [j] : U [j] → W . The latter is of class C[k−j], hence
the former is also of class C[k−j], and by the preceding theorem thus also of
class C〈k−j〉.

C. Continuous polynomial maps, and scalar extensions

The purpose of this appendix is to show that continuous K-polynomial map-
pings are K-smooth, and that their scalar extensions by Weil K-algebras A
are again continuous, hence smooth over A.

C.1 Continuous (multi-)homogeneous maps

As in the main text, V,W are topological modules over a topological ring K.

Theorem C.1 (separation of homogeneous parts). Assume P =
∑k

i=0 Pi is
a sum of K-homogeneous maps Pi : V → W of degree i (i.e., for all r ∈ K,
Pi(rx) = riPi(x)). Then the following are equivalent:

1. The map P : V → W is continuous.

2. For i = 0, . . . , k, the homogeneous part Pi : V → W is continuous.

Assume P =
∑
α∈Nn Pα : V n → W is a finite sum of multi-homogeneous

maps Pα : V n → W , with α = (α1, . . . , αn), i.e., for all r ∈ K and 1 ≤
i ≤ n, Pα(x1, . . . , rxi, . . . , xn) = rαiPα(x1, . . . , xn). Then the following
are equivalent:

1. The map P : V n → W is continuous.

2. For all α ∈ Nn, the multi-homogeneous part Pα : V n → W is contin-
uous.

Proof. We prove the first equivalence. Obviously, (2) implies (1). Let us
prove the converse. Assume that P is continuous. Since P0 is constant,
it is continuous. Without loss of generality, we may assume that P0 = 0.
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Fix scalars r1, . . . , rk ∈ K and define continuous maps (depending on these
scalars)

Q1(x) := r1P (x)− P (r1x) =
k∑
i=2

(r1 − ri1)Pi(x),

Qi+1(x) := (ri+1)
i+1Qi(x)−Qi(ri+1x).

Then Qi is a linear combination of Pi+1, . . . , Pk, and in particular, we find
that Qk−1(x) = λPk(x) with

λ = (r1 − rk1)(r22 − rk2) · · · (rk−1k−1 − r
k
k−1).

In order to prove that Pk is continuous, it suffices to show that we may choose
r1, . . . , rk−1 ∈ K such that the scalar λ is invertible, because then we have
Pk(x) = λ−1Qk−1(x). Since Qk−1 is continuous by construction, it then
follows that Pk is continuous.

To prove our claim, write rii−rki = rii(1−rmi ) withm = k− i. Since the
map f : K→ K, r 7→ 1− rm is continuous and K× is open, U := f−1(K×)
is open, and U is non-empty since 0 ∈ U . Since K× is open and dense,
U ′ := U ∩ K× is open and non-empty, and we may choose ri ∈ U ′. Doing
so for all i, we get an invertible scalar λ.

Having proved that Pk is continuous, we replace P by P − Pk and show
as above that Pk−1 is continuous, and so on for all homogeneous parts.

The second equivalence is proved similarly: proceed as above with re-
spect to the first variable x1 in order to separate terms according to their
degree in x1, then use the same procedure with respect to the second vari-
able x2, and so on.

C.2 Continuous polynomial maps

The following general definition of a K-polynomial map, given in [Bou71],
ch. 4, par. 5, has been used in [BGN04] (loc. cit., Appendix A, Def. A.5):

Definition C.2. A map p : V → W between K-modules V and W is called
homogeneous polynomial of degree k if, for any system (ei)i∈I of generators
of V , there exist coefficients aα ∈ W (where α : I → N has finite support
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and |α| :=
∑

i αi = k) such that

p

(∑
i∈I

tiei

)
=
∑
α

tαaα where tα :=
∏
i

tαii .

If V is free (in particular, if K is a field), then this is equivalent to saying
that there exists a k times multilinear map m : V k → W such that p(x) =
m(x, . . . , x). In any case, a polynomial map is a finite sum of homogeneous
polynomial maps.

The set of polynomial maps p : V → W is denoted by Pol(V,W ), and
we let Pol(V,W )0 := {p : V → W polynomial | p(0) = 0}. If V = W ,
the set of polynomial maps p : V → V having an inverse polynomial map
q : V → V forms a group denoted by GP(V ), called the general polynomial
group of V . By GP(V )0 we denote the stabilizer subgroup of 0.

Note that, if p(x) = m(x, . . . , x), then continuity of p does not always
imply continuity of m (if the integers are invertible in K, then, by polariza-
tion, we may find symmetric and continuous m).

Theorem C.3. Every continuous K-polynomial map p : V → W is K-
smooth.

Proof. Assume p : V → W is continuous polynomial. By theorem C.1, we
may assume without loss of generality that p is homogeneous of degree k.
Assume first that p(x) = m(x, . . . , x) with multilinear m : V k → W . Since
f is continuous,

F : V × V → W, (x, v) 7→ p(x+ v) = m(x+ v, . . . , x+ v) .

is continuous and polynomial. Using multilinearity, we expand

p(x+ v) = m(x+ v, . . . , x+ v) =
k∑
i=0

Mk−i,i(x, v), (C.1)

where Mk−i,i(x, v) is the sum of all terms in the expansion of m containing
i times the argument v and k− i times the argument x. The i-th term in (C.1)
is the homogeneous part of bi-degree (k− i, i) of the continuous map F , and
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hence, by theorem C.1, is again a continuous function of (x, v). Now, for
t ∈ K×, we get by a similar expansion as above

p[1](x, v, t) =
f(x+ tv)− f(x)

t
=

k∑
i=1

ti−1Mk−i,i(x, v),

and since Mk−i,i(x, v) is continuous, the right hand side defines a continu-
ous function of (x, v, t), proving that a continuous extension of the difference
quotient function exists, and hence p is C[1]. Moreover, p[1] is again continu-
ous polynomial (of total degree at most 2k−1), hence by induction it follows
that p is of class C[∞].

If p(x) is not directly given by a multilinear map m, then fix a system
of generators (ei) of V and consider the free module E spanned by the ei,
together with its canonical surjection E → V . The map F lifts to map
F̃ : E2 × K → W , which we may decompose as above, giving rise to a
map m̃ and to maps M̃k−i,i. Passing again to the quotient, we see that the
bi-homogeneous components Mk−i,i are still continuous maps, and p[1] can
be extended continuously as above.

Definition C.4. Assume p : V → W is a polynomial map of the form
p(x) = m(x, . . . , x) where m : V k → W is K-multilinear. For n ∈ N,
α = (α1, . . . , αn) ∈ Nn with |α| :=

∑n
i=1 αi = k and v = (v1, . . . , vn) ∈

V n , let
Mα(v) := m(v1 : α1 ; . . . ; vn : αn)

be the sum of all terms m(w1, . . . , wk) with exactly αi among w1, . . . , wk
equal to vi.

Lemma C.5. Assume p : V → W is a polynomial map of the form p(x) =
m(x, . . . , x) where m : V k → W is K-multilinear. Then, if p is continuous,
so is the map

Mα : V n → W, v = (v1, . . . , vn) 7→Mα(v) ,

and it does not depend on the choice of m, so that we may write pα(v) :=
Mα(v).
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Proof. This follows as above, by considering the continuous map

F : V n → W, v 7→ p

(
n∑
i=1

vi

)
= m

(
n∑
i=1

vi, . . . ,
n∑
i=1

vi

)

whose α-homogeneous component is precisely Mα.

C.3 Scalar extensions

A scalar extension of K is, by definition, a commutative and associative K-
algebra A. If A is unital, then there is a natural map K→ A, t 7→ t · 1.

Definition C.6. Let p : V → W be a K-polynomial map, homogeneous of
degree k. If p(x) = m(x, . . . , x) with multilinear m : V k → W , then the
scalar extension from K to A of p is the map

pA : VA = V ⊗K A→ WA, v ⊗ a 7→ P (v)⊗ ak = mA(av, . . . , av),

where mA : (VA)k → WA is the multilinear map defined by the universal
propery of the tensor product. If V is not free, let as above E → V be the
surjection defined by a system of generators, define P̃A : EA → WA; then
this map passes to V as a map PA : VA → WA.

Theorem C.7. Assume K is a topological ring with dense unit group, and
A a scalar extension of K which is a topological K-algebra, homeomorphic
to Kn with respect to some K-basis a1, . . . , an. Assume p : V → W is
continuous polynomial over K. We equip VA with the product topology with
respect to the decomposition

VA = V ⊗K (
n⊕
i=1

Kai) =
n⊕
i=1

(V ⊗ ai),

and similarly for WA. Then pA : VA → WA is a continuous A-polynomial
map.

Proof. Note that the topology on VA does not depend on the choice of the
K-basis of A since the group GLn(K) acts by homeomorphisms. Assume
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first that p is homogeneous of degree k and of the form p(x) = m(x, . . . , x).
Then we have:

pA

(
n∑
i=1

vi ⊗ ai

)
= mA

(
n∑
i=1

vi ⊗ ai, . . . ,
n∑
i=1

vi ⊗ ai

)

=
n∑

j1,...,jk=1

m(vj1 , . . . , vjk)⊗ aj1 · · · ajk

=
∑

(α1...,αn)∈Nn:∑n
i=1 αi=k

Mα1,...,αn(v1, . . . , vn)⊗ aα1
1 · · · aαnn

=
∑

α∈Nn,|α|=k

Mα(v)⊗ aα

According to Lemma C.5, the map Mα is continuous, and hence pA is con-
tinuous. If p is not of the form p(x) = m(x, . . . , x), then we use similar
arguments as at the end of the proof of Theorem C.3.

Remark C.8. If A is unital, then we have a natural injection σA : V → V A,
v 7→ v ⊗K 1A, and pA “extends” p in the sense that pA ◦ σA = σA ◦ p.

Remark C.9. If p is as in the theorem, depending moreover continuously on
a parameter y (say, p(x) = py(x), jointly continuous in (x, y)), then, since
Mα does not depend on the choice of m (see lemma C.5), the proof of the
theorem shows that (y, z) 7→ (py)A(z) is again jointly continuous in (y, z).
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mites sont 'libres'. Cet article développe une théorie des pro-objets en dimension 

2. Etant donnée une 2-catégorie C, on construit une 2-catégorie 2-Pro(C), dont les 

les objets sont appelés 2-pro-objets. On montre que 2-Pro(C) a toutes les proprié-

tés basiques attendues, correctement relativisées au contexte 2-catégorique, y 

compris la propriété universelle analogue au cas de Pro(C). Cette théorie va au-

delà du cas des catégories enrichies sur Cat, car les auteurs considèrent une notion 

non-stricte de pseudo-limite, qui est usuellement celle d'intérêt pratique. 

 

BEZHANISHVILI & HARDING , Stable Compactifications of frames, 37-65.  

Les auteurs proposent une nouvelle description des compactifications stables de 

Smyth des espaces T0 comme plongements dans des espaces compacts stables qui 

sont denses pour la “patch topology”, et ils relient ces compactifications stables 

au cas des espaces ordonnés. Dans ce cas “sans point”, on introduit une notion de 

compactification stable d’un frame qui étend la compactification stable de Smyth 

d’un espace T0, ainsi que la compactification de Banaschewski d’un "frame". On 

caractérise l’ensemble ordonné des compactifications stables d’un frame en 

termes de proximités sur le frame, et en termes de sous-frames stablement com-

pacts du frame de ses idéaux. Ces résultats sont alors appliqués aux compactifica-

tions cohérentes de frames, et reliés à la compactification spectrale d’un espace 

T0 considérée par Smyth. 

 

R. GUITART, Autocategories: I. A common setting for knots and 2-categories, 

66-80. 

Un autographe est une action du monoïde libre à 2 générateurs, et peut être repré-

senté en dessinant des flèches entre des flèches, sans utiliser d’objets. Par 

exemple on a les graphes et les 2-graphes. La notion d’autocatégorie est sem-

blable à celle de catégorie, en remplaçant le graphe sous-jacent par un autographe. 

Les exemples sont les diagrammes de noeuds ou d’entrelacs (cas non-stratifiés), 

les catégories, 2-catégories et catégories doubles (cas stratifiés), qui ainsi résident  

dans la même catégorie des autocatégories.   
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MARTINS-FERREIRA & VAN DER LINDEN, Categories vs. groupoids via gener-

alised Mal’tsev properties, 83-112. 

On étudie la différence entre les catégories internes et les groupoïdes internes en 

termes de propriétés de Malcev généralisées — la propriété de Malcev faible d’un 

côté, et la n-permutabilité de l’autre. Dans la première partie de l’article on donne 

des conditions sur les structures catégoriques internes qui détectent si la catégorie 

ambiante est naturellement de Malcev, de Malcev ou faiblement de Malcev. On 

démontre que celles-ci ne dépendent pas de l’existence de produits binaires. Dans 

la seconde partie on se concentre sur les variétés d’algèbres universelles. 

 

M. MENNI, Sufficient cohesion over atomic toposes, 113-150. 

Soit (D; Jat) un site atomique et j: Sh(D; Jat) → D^ le topos des faisceaux associé. 

Tout foncteur : C → D induit un morphisme géométrique C^ → D^ et, en pre-

nant le produit fibré le long de j, un morphisme géométrique q: F → Sh(D; Jat). 

L'auteur donne une condition suffisante sur  pour que q satisfasse le Nullstellen-

satz et la Cohésion Suffisante au sens de la Cohésion Axiomatique. Ceci est moti-

vé par les exemples où D
op

 est une catégorie d’extensions finies d’un corps. 

 

R. GUITART, Autocategories: II. Autographic algebras, 151-160. 

Cet article est la suite de l'article page 66. La catégorie des autographes est un 

topos, et une algèbre autographique sera une algèbre d’une monade sur ce topos. 

Ici ces algèbres sont comparées aux algèbres graphiques de Burroni, via les mo-

noïdes graphiques de Lawvere, en utilisant les critères de monadicité de Lair et de 

Coppey. Le point est que lorsque l’on remplace une situation graphique par une 

situation autographique, on transforme une situation à 2 types d’arités en une 

situation à 1 type, le type “objet” étant évité. Ainsi les graphes, les algèbres gra-

phiques basiques, les autographes dans une catégorie d’algèbres de Lawvere, les 

éléments de topos graphiques 2-engendrés, les catégories, les autocatégories, et 

les autographes associatifs sont des algèbres autographiques. 

 

D. GARRAWAY, Q-Valued Sets and Relational-Sheaves, 161-204. 

L'auteur  montre qu’un faisceau de quantaloïdes est un semi-foncteur lax idempo-

tent, qui préserve les suprema (un faisceau relationnel). Ceci implique que pour 

un topos de Grothendieck E, un faisceau est un faisceau relationnel sur la catégo-

rie des relations de E et donc E est équivalent à la catégorie des faisceaux rela-

tionnels et transformations fonctionnelles. Cette théorie est développée dans le 

cadre de “taxons” enrichis, c’est-à-dire des semi-catégories enrichies avec une 

condition structurelle additionnelle. 
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ALLOUCH & SIMPSON, Classification des matrices associées aux catégories 

finies, 205-240. 

In this paper, the authors find necessary and sufficient conditions for a positive 

square matrix to have at least one corresponding category. A corollary is that it 

suffices to verify these conditions for every sub-matrix of order ≤ 4. 

 

LACK & STREET, On monads and warpings, 244-266. 

Les auteurs expliquent comment une pseudo-monade sur une bicatégorie réduite à 

un objet revient à la même chose qu’un voilement (anglais: warping) sur la caté-

gorie monoïdale correspondante. Ils dégagent également une version de cette 

équivalence pour les catégories monoïdales obliques. Les catégories monoïdales 

obliques (anglais: skew monoidal categories) sont une généralisation des catégo-

ries monoïdales où les morphismes d’associativité et d’unité ne sont pas forcé-

ment inversibles. Cette analyse mène à introduire un processus de normalisation 

pour les catégories monoïdales obliques, qui produit, d’une manière universelle, 

une catégorie monoïdale oblique pour laquelle le morphisme d’unité à droite est 

inversible. 

 

BERTRAM & SOUVAY, A general construction of Weil functors, 267-313. 

Les auteurs construisent le foncteur de Weil T
A
 correspondant à une algèbre de 

Weil A = K  N : c’est un foncteur de la catégorie des variétés différentiables sur 

un corps ou anneau topologique K (de caractéristique quelconque) vers la catégo-

rie des variétés définies sur A. Ce résultat généralise simultanément ceux sur les 

foncteurs de Weil classiques et ceux concernant les foncteurs tangents itérés et les 

foncteurs de jets généraux. Ils étudient des aspects algébriques de ces foncteurs 

(leur “K-théorie” et l’action du “groupe de Galois” AutK(A)), en vue 

d’applications en géométrie différentielle.  
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