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Résumé. On étudie la différence entre les catégories internes et les
groupoïdes internes en termes de propriétés de Malcev généralisées—la pro-
priété de Malcev faible d’un côté, et l’n-permutabilité de l’autre. Dans
la première partie de l’article on donne des conditions sur les structures
catégoriques internes qui détectent si la catégorie ambiante est naturellement
de Malcev, de Malcev ou faiblement de Malcev. On démontre que celles-ci
ne dépendent pas de l’existence de produits binaires. Dans la seconde partie
on se concentre sur les variétés d’algèbres universelles.

Abstract. We study the difference between internal categories and internal
groupoids in terms of generalised Mal’tsev properties—the weak Mal’tsev
property on the one hand, and n-permutability on the other. In the first part of
the article we give conditions on internal categorical structures which detect
whether the surrounding category is naturally Mal’tsev, Mal’tsev or weakly
Mal’tsev. We show that these do not depend on the existence of binary
products. In the second part we focus on varieties of algebras.
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Introduction
In this article we study the difference between internal categories and in-
ternal groupoids through the generalised Mal’tsev properties their surround-
ing category may have—the weak Mal’tsev property on the one hand, and
n-permutability on the other. Conversely, or equivalently, we try to better un-
derstand these Mal’tsev conditions by providing new characterisations and
new examples for them, singling out distinctive properties of a given type of
category via properties of its internal categorical structures: internal catego-
ries, (pre)groupoids, relations.

The first part of the text gives a conceptual unification of three levels of
Mal’tsev properties: naturally Mal’tsev categories [10] using groupoids, cat-
egories, pregroupoids, etc. (Theorem 2.2), Mal’tsev categories [2, 3] using
equivalence relations, preorders, difunctional relations (Theorem 2.5), and
weakly Mal’tsev categories [14] via strong equivalence relations, strong pre-
orders, difunctional strong relations (Theorem 2.8). Each of the resulting
collections of equivalent conditions is completely parallel to the others, and
such that a weaker collection of conditions is characterised by a smaller class
of internal structures.

Some of these characterisations are well established, whereas some oth-
ers are less familiar; what is new in all cases is the context in which we prove
them: we never use binary products, but restrict ourselves to categories in
which kernel pairs and split pullbacks exist.

The notion of weakly Mal’tsev category is probably not as well known
as the others. It was introduced in [14] as a setting where any internal re-
flexive graph admits at most one structure of internal category. It turned out
that this new notion is weaker than the concept of Mal’tsev category. But,
unlike in Mal’tsev categories, in this setting not every internal category is
automatically an internal groupoid. This gave rise to the following problem:
to characterise those weakly Mal’tsev categories in which internal categories
and internal groupoids coincide.

In Section 3 we observe that, in a weakly Mal’tsev category with kernel
pairs and equalisers, the following hold: (1) the forgetful functor from in-
ternal categories to multiplicative graphs is an isomorphism; (2) the forgetful
functor from internal groupoids to internal categories is an isomorphism if
and only if every internal preorder is an equivalence relation (Theorem 3.1).

MARTINS-FERREIRA & Van Der LINDEN - CATEGORIES VS. GROUPOIDS

- 84 -



We study some varietal implications of this result in Section 4. In finitary
quasivarieties of universal algebra, the latter condition—that reflexivity and
transitivity together imply symmetry—is known to be equivalent to the vari-
ety being n-permutable, for some n (Proposition 4.4). On the way we recall
Proposition 4.3, a result due to Hagemann [6]—see also the monograph [4],
and the article [9] where it is proved in the context of regular categories. We
furthermore explain how to construct a weakly Mal’tsev quasivariety start-
ing from a Goursat (= 3-permutable) quasivariety (Proposition 4.8), and use
this procedure to show that categories which are both weakly Mal’tsev and
Goursat still need not be Mal’tsev (Example 4.9).

Of course, via part (2) of Theorem 3.1, our Proposition 4.4 implies that,
in an n-permutable weakly Mal’tsev variety, every internal category is an in-
ternal groupoid—but surprisingly, here in fact the weak Mal’tsev property is
not needed: n-permutability suffices, as was recently proved by Rodelo [17]
and further explored in the paper [15]. This indicates that there may still be
hidden connections between these two (a priori independent) weakenings of
the Mal’tsev axiom.

1 Preliminaries
We recall the definitions and basic properties of some internal categorical
structures which we shall use throughout this article.

1.1 Split pullbacks
Let C be any category. A diagram in C of the form

E
p2 ,2

p1

��

C
e2

lr

g

��
A

f ,2

e1

LR

B
r

lr

s

LR

(A)

such that

gp2 “ f p1, p1e2 “ rg, e1r “ e2s, p2e1 “ s f
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and
p1e1 “ 1A, f r “ 1B, gs “ 1B, p2e2 “ 1C

is called a double split epimorphism. When we call a double split epimor-
phism a pullback we refer to the commutative square of split epimorphisms
f p1 “ gp2. Any pullback of a split epimorphism along a split epimorphism
gives rise to a double split epimorphism; we say that C has split pullbacks
when the pullback of a split epimorphism along a split epimorphism always
exists.

In a category with split pullbacks C , any diagram such as

A
f ,2

α

�$

B
r

lr
s
,2

β

��

C
glr

γ

z�
D

(B)

where f r “ 1B “ gs and αr “ β “ γs induces a diagram

C

e2z� g �$

γ

"*
AˆB C

π2
:D

π1 �$

B

rz�

s
Zd

β ,2 D

A

f
:D

e1
Zd

α

4< (C)

in which the square is a double split epimorphism. This kind of diagram
will appear in the statements of Theorem 2.2, 2.5 and 2.8 as part of a uni-
versal property: under certain conditions we expect it to induce a (unique)
morphism ϕ : AˆB C Ñ D such that ϕe1 “ α and ϕe2 “ γ.

1.2 Internal groupoids
A reflexive graph in C is a diagram of the form

C1

d ,2

c
,2 C0elr (D)

such that de “ 1C0 “ ce.
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A multiplicative graph in C is a diagram of the form

C2

π2 ,2

π1
,2

m ,2 C1
e2lr

e1lr

d ,2

c
,2 C0elr (E)

where
me1 “ 1C1 “ me2, dm “ dπ2 and cm “ cπ1

and the double split epimorphism

C2
π2 ,2

π1

��

C1e2
lr

c

��
C1

d ,2

e1

LR

C0e
lr

e

LR

is a pullback. Observe that a multiplicative graph is in particular a reflexive
graph (de “ 1C0 “ ce) and that the morphisms e1 and e2 are universally
induced by the pullback:

e1 “ x1C1 , edy and e2 “ xec, 1C1y.

When the category C admits split pullbacks we shall refer to a multiplicative
graph simply as

C2
m ,2 C1

d ,2

c
,2 C0.elr

An internal category is a multiplicative graph which satisfies the asso-
ciativity condition mp1ˆ mq “ mpmˆ 1q.

An internal groupoid is an internal category where both squares dm “

dπ2 and cm “ cπ1 are pullbacks (see for instance [1, Proposition A.3.7]).
Equivalently, there should be a morphism t : C1 Ñ C1 with ct “ d, dt “ c
and mx1C1 , ty “ ec, mxt, 1C1y “ ed.

In the following sections we shall consider the obvious forgetful functors

GrpdpC q
U3 ,2 CatpC q

U2 ,2 MGpC q
U1 ,2 RGpC q

from groupoids in C to internal categories, to multiplicative graphs, to re-
flexive graphs. We write U12 and U123 for the induced composites U1U2 and
U1U2U3, respectively.
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1.3 Internal pregroupoids
A pregroupoid [12, 11, 7] in C is a span

pd, cq “

D
d

z�

c

�$
D0 D10

together with a structure of the form

DˆD0 DˆD1
0

D
p2 ,2

p1

��

p1q

DˆD1
0

D
c2 ,2

c1

��

i2
lr

p2q

D

c

��
DˆD0 D d2 ,2

d1

��

i1

LR

p3q

D c
,2

d

��

D10

D
d

,2 D0

(F)

where (1), (2) and (3) are pullback squares, the morphisms i1, i2 are deter-
mined by

p1i1 “ 1DˆD0 D, p2i1 “ xd2, d2y

and
p2i2 “ 1DˆD1

0
D, p1i2 “ xc1, c1y

and there is a further morphism p : DˆD0 DˆD1
0

D Ñ D which satisfies the
conditions

pi1 “ d1 and pi2 “ c2, (G)
dp “ dc2 p2 and cp “ cd1 p1. (H)
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When C admits split pullbacks and kernel pairs, we shall refer to a pregroup-
oid structure simply as a structure

D10

DˆD0 DˆD1
0

D
p ,2 D

c

4<

d
"*
D0.

(I)

In order to have a visual picture, we may think of the object D as having
elements of the form

cpxq dpxqxlr or ¨ ¨
xlr

and hence the “elements” of D ˆD0 D, D ˆD1
0

D and D ˆD0 D ˆD1
0

D are,
respectively, of the form

¨ ¨
xlr y ,2 ¨ , ¨

x ,2 ¨ ¨
ylr

and
¨ ¨

xlr y ,2 ¨ ¨.
zlr

Observe that the morphism p is a kind of Mal’tsev operation in the sense
that ppx, y, yq “ x and ppx, x, yq “ y (the conditions (G)). Furthermore,
dppx, y, zq “ dz and cppx, y, zq “ cx by (H).

In the following sections we shall also consider the forgetful functor

V : PreGrpdpC q Ñ SpanpC q

from the category of pregroupoids to the category of spans in C .
The definition of pregroupoid also contains the associativity axiom, ask-

ing that ppppx, y, zq, u, vq “ ppx, y, ppz, u, vqq whenever both sides of the
equation make sense. We shall not assume this, but rather deduce the prop-
erty in the naturally Mal’tsev and (weakly) Mal’tsev contexts.
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1.4 Relations
The notions of reflexive relation, preorder (or reflexive and transitive rela-
tion), equivalence relation, and difunctional relation, may all be obtained,
respectively, from the notions of reflexive graph, internal category (or mul-
tiplicative graph), internal groupoid, and pregroupoid, simply by imposing
the extra condition that the pair of morphisms pd, cq is jointly monomorphic.
We will also consider strong relations: here the pair of morphisms pd, cq is
jointly strongly monomorphic.

2 Mal’tsev conditions
In this section we study some established and some less known character-
isations of Mal’tsev and naturally Mal’tsev categories in terms of internal
categorical structures. We extend these characterisations, which are usually
considered in a context with finite limits, to a more general setting: cate-
gories with kernel pairs and split pullbacks. In particular we shall never
assume that binary products exist. This allows for a treatment of weakly
Mal’tsev categories in a manner completely parallel to the treatment of the
two stronger notions.

2.1 Naturally Mal’tsev categories
We first consider the notion of naturally Mal’tsev category [10] in a context
where binary products are not assumed to exist. This may seem strange, as
the original definition takes place in a category with binary products (and
no other limits). We can do this because the main characterisation of natu-
rally Mal’tsev categories—as those categories for which the forgetful functor
from internal groupoids to reflexive graphs is an isomorphism—is generally
stated in a finitely complete context. This context may be even further re-
duced: we shall show that the existence of kernel pairs and split pullbacks is
sufficient.

Theorem 2.2. Let C be a category with kernel pairs and split pullbacks.
The following are equivalent:

(i) the functor U123 : GrpdpC q Ñ RGpC q is an isomorphism;
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(ii) the functor U12 : CatpC q Ñ RGpC q has a section;

(iii) the functor U1 : MGpC q Ñ RGpC q has a section;

(iv) the functor V : PreGrpdpC q Ñ SpanpC q has a section;

(v) for every diagram such as (B) in C , given any span

D
d

z�

c

�$
D0 D10

such that dα “ dβ f and cγ “ cβg, there is a unique ϕ : AˆB C Ñ D
such that

ϕe1 “ α, ϕe2 “ γ and dϕ “ dγπ2, cϕ “ cαπ1. (J)

If the above equivalent conditions hold, then the functors U12, U1 and V are
also isomorphisms. Furthermore, any pregroupoid is associative.

Proof. (i) ñ (ii) follows by composing the inverse of U123 from (i) with
the functor U3 : GrpdpC q Ñ CatpC q. For (ii) ñ (iii) we compose with
U2 : CatpC q Ñ MGpC q. Let us prove (iii) ñ (iv).

Suppose that the functor U1 has a section. Then any reflexive graph
admits a canonical morphism m

C2
m ,2 C1

d ,2

c
,2 C0elr

such that me1 “ 1C1 “ me2, dm “ dπ2 and cm “ cπ1 as in the definition of
a multiplicative graph. Furthermore, this morphism is natural, in the sense
that, for any morphism f “ p f1, f0q of reflexive graphs, the diagram

C2
m ,2

f2

��

C1

f1

��

d ,2

c
,2 C0elr

f0

��
C12 m1

,2 C11
d1
,2

c1
,2 C10e1lr

(K)
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with f2 “ f1 ˆ f0 f1 commutes.
To prove that the functor V has a section, we have to construct a pre-

groupoid structure for any given span

D
d

z�
c

�$
D0 D10.

Let us consider the reflexive graph

DˆD0 DˆD1
0

D
c2 p2 ,2

d1 p1

,2 D∆lr (L)

(see diagram (F)) where an “element” of DˆD0 DˆD1
0

D

¨ ¨
xlr y ,2 ¨ ¨

zlr

is viewed as an arrow y having domain x and codomain z. It is clearly reflex-
ive, with ∆pxq “ px, x, xq being the identity on x. It is a multiplicative graph
because the functor U1 has a section. The desired pregroupoid structure p
for pD, d, cq is obtained by the following procedure: given

¨ ¨
xlr y ,2 ¨ ¨

zlr

in DˆD0 DˆD1
0

D, consider the pair of composable arrows

p¨
x ,2 ¨ ¨

xlr y ,2 ¨ , ¨
y ,2 ¨ ¨

zlr z ,2 ¨q

in the reflexive graph (L). Since this reflexive graph is multiplicative, mul-
tiply in order to obtain

¨
x ,2 ¨ ¨

ppx,y,zqlr z ,2 ¨

and project to the middle component.
The equalities ppx, y, yq “ x and ppx, x, yq “ y simply follow from the

multiplicative identities me1 “ 1C1 “ me2 of the multiplicative graph. Like-
wise, dppx, y, zq “ dz and cppx, y, zq “ cx. This construction is functorial
because the multiplication is natural.
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Next we prove that, if V has a section, then the category C satisfies
Condition (v). Consider a diagram such as (C) above and a suitable span
pd, cq. We have to construct a morphism ϕ : AˆB C Ñ D which satisfies the
needed conditions, and prove that this ϕ is unique. To do so, we use the
natural pregroupoid structure p : D ˆD0 D ˆD1

0
D Ñ D. Since dα “ dβ f ,

cγ “ cβg and αr “ β “ γs, there is an induced morphism

xαπ1, β fπ1, γπ2y : AˆB C Ñ DˆD0 DˆD1
0

D.

It assigns to any pa, cq with f paq “ b “ gpcq in AˆB C a triple

¨ ¨
αpaqlr βpbq ,2 ¨ ¨

γpcqlr

in DˆD0 DˆD1
0
D. The desired morphism ϕ : AˆBC Ñ D is then obtained by

taking its composition in the pregroupoid, i.e., ϕpa, cq “ ppαpaq, βpbq, γpcqq
or

ϕ “ pxαπ1, β fπ1, γπ2y.

This proves existence; the equalities ϕpa, b, spbqq “ αpaq and ϕprpbq, b, cq “
γpcq follow from the properties of p, as do dϕ “ dγπ2 and cϕ “ cαπ1.

Now we show that the equalities (J) determine ϕ uniquely. Let us con-
sider the span

AˆB C
π2

z�

π1

�$
C A

with its induced pregroupoid structure

p : pAˆB Cq ˆC pAˆB Cq ˆA pAˆB Cq Ñ AˆB C;

if the morphisms in this pregroupoid are viewed as arrows

a c
pa,cqlr

then the operation p takes a composable triple

a c
pa,cqlr pa1,cq ,2a1 c1

pa1,c1qlr
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and sends it to

a c1
pa,c1qlr

in AˆB C. Note that this pregroupoid structure is unique, because the given
span is a relation; in fact, its existence expresses the relation’s difunctional-
ity. Further note that it is a strong relation (cf. Theorem 2.8 below).

The morphism ϕ now gives rise to a morphism of pregroupoids, deter-
mined by the morphism of spans

C

dγ

��

AˆB C

ϕ

��

π1 ,2π2lr A

cα

��
D0 D c

,2
d

lr D10.

We write

ϕ1 : pAˆB Cq ˆC pAˆB Cq ˆA pAˆB Cq Ñ DˆD0 DˆD1
0

D

for the induced morphism to see that

ϕpa, cq “ ϕppa s f paqlr ,2rgpcq clr q

“ pϕ1pa s f paqlr ,2rgpcq clr q

“ pp¨ ¨
ϕe1paqlr ϕe1rpbq ,2 ¨ ¨

ϕe2pcqlr q

“ pp¨ ¨
αpaqlr βpbq ,2 ¨ ¨

γpcqlr q

“ ppαpaq, βpbq, γpcqq

and ϕ is uniquely determined.
Next we prove that (v) implies Condition (i) in our theorem. Given a

reflexive graph (D), a unique multiplication m satisfying (J), so

me1 “ 1C1 , me2 “ 1C1 and dm “ dπ2, cm “ cπ1,

is induced by the diagram

C1
d ,2 C0e

lr
e
,2

e

��

C1
clr

C1
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together with the span pd, cq.
The naturality of m (see diagram (K)) follows from the uniqueness of the

morphism induced by the diagram

C1
d ,2

f1
�$

C0e
lr

e
,2

e1 f0

��

C1
clr

f1
z�

C11

and the span pd1, c1q: indeed, both f1m and m1 f2 qualify. This already gives
us Condition (iii) in its strong form where U1 is an isomorphism.

The associativity condition (needed for (ii)) follows from the uniqueness
of the morphism induced by the diagram

C2
π2 ,2

m
�$

C1e2
lr

e1
,2 C2 :

π1lr

m
z�

C1

indeed, both mp1C1 ˆmq and mpmˆ 1C1q satisfy the required conditions (J),
so they coincide.

The existence of inverses (needed for (i)) follows from the diagram

C2
m ,2

π2
�$

C1e2
lr

e1
,2 C2

mlr

π1
z�

C1

as explained in [14].
To show that the functor V is an isomorphism, given a span pd, cq, we

use the diagram

Dd,c

c2 p2 ,2 D
∆

lr
∆
,2

∆

��

Dd,c

d1 p1lr

Dd,c
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where Dd,c “ D ˆD0 D ˆD1
0

D and ∆ “ x1D, 1D, 1Dy to prove uniqueness of
its pregroupoid structure.

Finally, given a pregroupoid (I), its associativity follows by using (v) on
the diagram

Dd,c

c2 p2 ,2

p
�$

D
∆

lr
∆
,2 Dd,c

d1 p1lr

p
z�

D,

because the morphisms
Dd,c ˆD Dd,c Ñ D

defined by sending px, y, z, u, vq to ppppx, y, zq, u, vq or to ppx, y, ppz, u, vqq
both meet the requirements, so they must agree by the uniqueness in (v). �

Observe that, in the case of finite limits, any one of the equivalent condi-
tions of Theorem 2.2 is a characterisation for the notion of naturally Mal’tsev
category introduced in [10]. Indeed, the Mal’tsev operation on an object X
is determined by the diagram

X ˆ X
π2 ,2

π1

�$

X
x1X ,1Xy

lr
x1X ,1Xy

,2 X ˆ X
π1lr

π2

z�
X

together with the span 1 Ð X Ñ 1.
In the presence of coequalisers, when every span in C is naturally en-

dowed with a unique pregroupoid structure, there is an interchange law for
composable strings valid in any pregroupoid in C .

Proposition 2.3. Let C be a category with kernel pairs, split pullbacks and
coequalisers satisfying the conditions (i)–(v). Consider a pregroupoid (I)
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in C . Then for any configuration of the shape

¨ ¨

¨
x1

Zd

x2

z�

y1

:D

y2

�$

¨
z1

Zd

z2

z�
¨ ¨

¨
x3

Zd

y3

:D

¨
z3

Zd

(M)

in this pregroupoid, the equality

ppppx1, x2, x3q, ppy1, y2, y3q, ppz1, z2, z3qq

“ ppppx1, y1, z1q, ppx2, y2, z2q, ppx3, y3, z3qq (N)

holds.

Proof. It suffices to consider the pregroupoid in C in which the configura-
tions (M) are the composable triples, and then the equality will follow by
naturality of the pregroupoid structures. This pregroupoid

D10

DˆD0
DˆD1

0
D

p ,2 D

d“xdp,dπy
!)

c“xcp,cπy

5>

D0

is determined by the span pxdp, dπy, xcp, cπyq where D “ DˆD0 DˆD1
0

D,

D0 “ D0 ˆQ D0 D0
Coeqpdp,dπq ,2Q

D10 “ D10 ˆQ1 D10 D10
Coeqpcp,cπq ,2Q1

and the middle projection π “ d2 p1 “ c1 p2 : DˆD0 DˆD1
0

D Ñ D (dia-
gram (F)) maps a composable triple px1, x2, x3q to x2. It is easily checked
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¨ ¨

¨ ¨

¨ ¨

¨

ppx1,x2,x3q

QX

ppy1,y2,y3q

FM

¨

ppz1,z2,z3q

QX ¨ ¨

¨ ¨

ppx1,y1,z1q

fm

ppx2,y2,z2q

qx¨ ¨

¨ ¨

ppx1,y1,z1q

fm

Figure 1: Vertical and horizontal composition

that the morphism p which sends (M) to its horizontal composite—the com-
posable triple

pppx1, y1, z1q, ppx2, y2, z2q, ppx3, y3, z3qq

in D, see Figure 1—determines a pregroupoid structure (hence, the unique
one) on this span.

Furthermore, by naturality of pregroupoid structures, the morphism of
spans

D0

��

D

p

��

xcp,cπy ,2xdp,dπylr D10

��
D0 D c

,2
d

lr D10

induces a morphism p1 : DˆD0
DˆD1

0
D Ñ D such that pp1 “ pp, which

gives us the required equality (N). Indeed, the induced morphism p1 takes
(M) and sends it to its vertical composite—the composable triple

pppx1, x2, x3q, ppy1, y2, y3q, ppz1, z2, z3qq

in D, see again Figure 1. �

Note that the equality (N) is a partial version of the Mal’tsev operation p
being autonomous, see [10].

2.4 Mal’tsev categories
Restricting Theorem 2.2 to the case where the morphisms d and c are jointly
monomorphic we obtain the well known characterisation [3] for Mal’tsev
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categories.

Theorem 2.5. Let C be a category with kernel pairs and split pullbacks.
The following are equivalent:

(i’) every reflexive relation is an equivalence relation;

(ii’) every reflexive relation is a preorder;

(iii’) every reflexive relation is transitive;

(iv’) every relation is difunctional;

(v’) for every diagram such as (B) in C , given any relation

D
d

z�

c

�$
D0 D10

such that dα “ dβ f and cγ “ cβg, there is a unique ϕ : AˆB C Ñ D
such that

ϕe1 “ α, ϕe2 “ γ and dϕ “ dγπ2, cϕ “ cαπ1.

Proof. By restricting to relations one easily adapts the proof of Theorem 2.2
to the present situation. �

An important result on Mal’tsev categories is the following one, usually
stated for finite limits [3]; it follows, for instance, from Theorem 3.1.

Theorem 2.6. Let C be a category with kernel pairs, split pullbacks and
equalisers, satisfying the equivalent conditions of Theorem 2.5. Then the
forgetful functor

U3 : GrpdpC q Ñ CatpC q

is an isomorphism. �
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2.7 Weakly Mal’tsev categories
A category is said to be weakly Mal’tsev when it has split pullbacks and
every induced pair of morphisms into the pullback pe1, e2q as in Diagram (A)
above is jointly epimorphic [14].

Further restricting the conditions of Theorem 2.2 to the case where the
morphisms d and c are jointly strongly monomorphic—and calling such a
span a strong relation [8]—we obtain a characterisation of weakly Mal’tsev
categories.

Theorem 2.8. Let C be a category with kernel pairs and split pullbacks.
The following are equivalent:

(i”) every reflexive strong relation is an equivalence relation;

(ii”) every reflexive strong relation is a preorder;

(iii”) every reflexive strong relation is transitive;

(iv”) every strong relation is difunctional;

(v”) for every diagram such as (B) in C , given any strong relation

D
d

z�

c

�$
D0 D10

such that dα “ dβ f and cγ “ cβg, there is a unique ϕ : AˆB C Ñ D
such that

ϕe1 “ α, ϕe2 “ γ and dϕ “ dγπ2, cϕ “ cαπ1.

Proof. By restricting to strong relations one easily adapts the proof of The-
orem 2.2 to the present situation. �

Theorem 2.9. Let C be a category with kernel pairs, split pullbacks and
equalisers. The following are equivalent:

1. C is a weakly Mal’tsev category;
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2. C satisfies the equivalent conditions of Theorem 2.8.

Proof. In the presence of equalisers, the weak Mal’tsev axiom is equivalent
to Condition (iv”)—see [8]. �

Mimicking the argument at the end of the proof of Theorem 2.2, it is
easily seen that in a weakly Mal’tsev category, any internal pregroupoid is
associative. The corresponding result for internal multiplicative graphs is
treated in the following section.

3 Internal categories vs. internal groupoids
We prove that, in a weakly Mal’tsev category with kernel pairs and equal-
isers, internal categories are internal groupoids if and only if every preorder
is an equivalence relation.

Theorem 3.1. Let C be a weakly Mal’tsev category with kernel pairs and
equalisers. Then:

1. the forgetful functor

U2 : CatpC q Ñ MGpC q

is an isomorphism;

2. the forgetful functor

U3 : GrpdpC q Ñ CatpC q

is an isomorphism if and only if every internal preorder in C is an
equivalence relation.

Part (1) of this result was already obtained in [14] where the definition
of multiplicative graph does not include the conditions dm “ dπ2 and cm “

cπ1. Indeed, in this context they automatically hold. The proof of Part (2)
depends on the following lemma.
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Lemma 3.2. Let C be a weakly Mal’tsev category with equalisers. Given a
category (E) in C , the morphisms

xπ1,my : C2 Ñ C1 ˆc C1 and xm, π2y : C2 Ñ C1 ˆd C1

are monomorphisms; this means that the multiplication is cancellable on
both sides.

Proof. We shall prove xπ1,my is a monomorphism. A similar argument
shows the same for xm, π2y.

First observe that the kernel pairs C1ˆc C1, C1ˆd C1, C2ˆm C2, C2ˆπ1 C2

and C2 ˆπ2 C2 exist because c, d, m, π1 and π2 are split epimorphisms. To
prove that xπ1,my is a monomorphism is the same as proving for every x,
y : Z Ñ C2 that

π1x “ π1y
mx “ my

+

ñ π2x “ π2y.

Assuming that π1x “ π1y we have induced morphisms

xx, yy and xe2π2x, e2π2yy : Z Ñ C2 ˆπ1 C2.

Indeed, π1e2π2x “ π1e2π2y as π1e2π2 “ ecπ2 “ edπ1. Considering the
equaliser pS , xs1, s2yq of the pair of morphisms

C2 ˆπ1 C2
,2 ,2 C2

m ,2 C1,

and identifying C2ˆπ1 C2 with C1ˆC0 pC1ˆc C1q we obtain a strong relation

S
s1

z�

s2

�$
C1 C1 ˆc C1

which may be pictured as
¨ ¨

x1lr ¨
x2lr

¨ ¨y1
lr ¨y2

lr

with x1 “ y1 and px1 “ y1qS px2, y2q if and only if x1x2 “ y1y2.
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By Theorem 2.8, this relation, being a strong relation, is also difunctional
and the argument used on page 103 of [3] also applies here to show that

xe2π2x, e2π2yy “ xs1, s2ypixx, yy,

where p : S S´1S Ñ S is obtained by difunctionality, xx, yy : Z Ñ S is the
factorisation of xx, yy through the equaliser (we are assuming that mx “ my),
and the morphism i : S Ñ S S´1S , which sends px1 “ y1qS px2, y2q to

p1 “ 1qS p1, 1qS´1
px1 “ y1qS px2, y2q,

may be pictured as follows.

¨
1

z�

1

�$

¨
x2

z�
¨ ¨

1lr ¨ y1

x1 ,2 ¨ ¨
x1

y1
lr

¨

1

Yd

1

:E

¨

y2

Yd

This proves that xe2π2x, e2π2yy factors through the equaliser S , so we may
conclude that

me2π2x “ me2π2y,

or π2x “ π2y as desired. �

Proof of Theorem 3.1. If the functor U3 is an isomorphism then in particular
any preorder is an equivalence relation. For the converse, assume that every
preorder is an equivalence relation (and every strong relation is difunctional).
Given any category (E) we shall prove that it is a groupoid. For this to
happen it suffices that there is a morphism t : C1 Ñ C1 with ct “ d and
mx1C1 , ty “ ec (see, for instance, [14]).

By Lemma 3.2 we already know that the morphisms xm, π2y and xπ1,my
are monomorphisms. This means that the reflexive graph

C2

m ,2

π1
,2 C1e1lr
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is a reflexive relation, and since it is transitive—by assumption it is a multi-
plicative graph—it is an equivalence relation. Hence there is a morphism

τ “ xm, qy : C2 Ñ C2

such that mτ “ π1. Now t “ qe2 is the needed morphism C1 Ñ C1. Indeed
dm “ cq, because xm, qy is a morphism into the pullback C2, so that

ct “ cqe2 “ dme2 “ d;

furthermore,

mx1C1 , ty “ mxme2, qe2y “ mxm, qye2 “ π1e2 “ ec,

which completes the proof. �

Remark 3.3. In general, a category can be weakly Mal’tsev without Con-
dition (2) of Theorem 3.1 holding. For instance, in the category of commu-
tative monoids with cancellation, the relation ď on the monoid of natural
numbers N is a preorder which is not an equivalence relation.

Remark 3.4. It is possible for a category to satisfy both Condition (1) and
Condition (2) of Theorem 3.1 without being Mal’tsev: see the following
section.

4 The varietal case
When we restrict to varieties, the condition “every internal preorder is an
equivalence relation” singled out in part (2) of Theorem 3.1 is known to be
equivalent to the variety being n-permutable for some n. We explain how
to prove this when passing via a characterisation of n-permutability due to
Hagemann.

4.1 Finitary quasivarieties
Just like a variety of algebras is determined by certain identities between
terms, a quasivariety also admits quasi-identities in its definition, i.e., ex-
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pressions of the form

v1px1, . . . , xkq “ w1px1, . . . , xkq

...

vnpx1, . . . , xkq “ wnpx1, . . . , xkq

,

/

/

.

/

/

-

ñ vn`1px1, . . . , xkq “ wn`1px1, . . . , xkq

—see, for instance, [13] for more details. It is well known that any quasivari-
ety may be obtained as a regular epi-reflective subcategory of a variety, and
more generally the sub-quasivarieties of a quasivariety correspond to its reg-
ular epi-reflective subcategories. In particular, sub-quasivarieties are closed
under subobjects.

4.2 n-Permutable varieties
The following equivalent conditions due to Hagemann [6] describe what it
means for a variety to be n-permutable. (Recall that 2-permutability is just
the Mal’tsev property and a regular category which is 3-permutable is called
Goursat [2].)

Proposition 4.3. For a finitary quasivariety V and a natural number n ě 2,
the following are equivalent:

1. for any two equivalence relations R and S on an object A, we have
pR, S qn “ pS ,Rqn;

2. there exist n´ 1 terms w1, . . . , wn´1 in V such that
$

’

&

’

%

w1px, z, zq “ x
wipx, x, zq “ wi`1px, z, zq
wn´1px, x, zq “ z;

3. for any reflexive relation R, we have R´1 Ă Rn´1.

In fact, this result is valid in regular categories, as shown in [9]. Also the
following result is known [5]:

Proposition 4.4. For a finitary quasivariety V , the following are equivalent:
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1. in V , every internal preorder is an equivalence relation;

2. V is n-permutable for some n.

Proof. By Proposition 4.3, if Condition (2) holds then for every reflexive re-
lation R in V we have that R´1 Ă Rn´1. Now if R is transitive then Rn´1 Ă R,
so that R´1 Ă R, which means that R is symmetric.

To prove the converse, suppose that every internal preorder in V is an
equivalence relation. Let A be the free algebra on the set tx, zu and let R be
the reflexive relation on A consisting of all pairs

pwpx, x, zq,wpx, z, zqq

for w a ternary term. Then the pair px, zq is in R. By assumption, the transitive
closure R of R is also symmetric, hence contains the pair pz, xq. This means
that pz, xq may be expressed through a chain of finite length in R. More
precisely, there exists a natural number n and ternary terms w1, . . . , wn´1

such that

z “ wn´1px, x, zqRwn´1px, z, zq “ wn´2px, x, zqRwn´2pz, z, xq “
¨ ¨ ¨ “ w1px, x, zqRw1px, z, zq “ x.

By Proposition 4.3 this means that V is n-permutable. �

Remark 4.5. This of course raises the question whether a similar result
would hold in a purely categorical context. It seems difficult to obtain the
number n which occurs in Condition (2) of Proposition 4.4 without using free
algebra structures, which are not available in general. And indeed, a counter-
example exists [15]. On the other hand, the implication (2) ñ (1) admits a
proof which is almost categorical—but depends on a characterisation of n-
permutability for regular categories as in Condition (3) of Proposition 4.3.
This is the subject of the articles [18] and [9].

Remark 4.6. Through Theorem 3.1, this result implies that in an n-permu-
table weakly Mal’tsev variety, every internal category is an internal group-
oid. On the other hand, using different techniques, and without assuming the
weak Mal’tsev condition, Rodelo recently proved that in any n-permutable
variety, internal categories and internal groupoids coincide [17]. Whence
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the question: how different are n-permutable varieties from weakly Mal’tsev
ones? The only thing we know about this so far is that the two conditions
together are not strong enough to imply that the variety is Mal’tsev (see Ex-
ample 4.9). Further note that the conditions (IC1) and (IC2) considered in
the paper [17], that is, dm “ dπ2 and cm “ cπ1 in (E), come for free in
a weakly Mal’tsev category. Outside this context, however, it is no longer
clear whether or not they will always hold.

4.7 Constructing weakly Mal’tsev quasivarieties
A 3-permutable (quasi)variety always contains a canonical subvariety which
is also weakly Mal’tsev. This allows us to construct examples of weakly
Mal’tsev categories which are 3-permutable but not 2-permutable—thus we
see, in particular, that in a weakly Mal’tsev category C , categories and
groupoids may coincide, even without C being Mal’tsev.

Proposition 4.8. Let V be a Goursat finitary quasivariety with w1, w2 the
terms obtained using Proposition 4.3. Then the sub-quasivariety W of V
defined by the quasi-identity

w1px, a, bq “ w2pa, b, cq “ w1px1, a, bq
w2pb, c, xq “ w1pa, b, cq “ w2pb, c, x1q

+

ñ x “ x1

is weakly Mal’tsev.

Proof. For any split pullback

AˆB C
p2 ,2

p1

��

C
e2
lr

g

��
A

f ,2

e1

LR

B
r

lr

s

LR

we have to show that e1 and e2 are jointly epic: any two ϕ, ϕ1 : AˆB C Ñ D
such that

ϕe1 “ α “ ϕ1e1 and ϕe2 “ γ “ ϕ1e2
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must coincide. We use the notations from Diagram (C) and consider a P A
and c P C with f paq “ b “ gpcq. Then

w1pϕpa, cq, αpaq, βpbqq “ w1pϕpa, cq, ϕpa, spbqq, ϕprpbq, spbqqq
“ ϕpw1pa, a, rpbqq,w1pc, spbq, spbqqq
“ ϕpw2pa, rpbq, rpbqq, cq
“ ϕpw2pa, rpbq, rpbqq,w2pspbq, spbq, cqq
“ w2pϕpa, spbqq, ϕprpbq, spbqq, ϕprpbq, cqq
“ w2pαpaq, βpbq, γpcqq

and

w2pβpbq, γpcq, ϕpa, cqq “ w2pϕprpbq, spbqq, ϕprpbq, cq, ϕpa, cqq
“ ϕpw2prpbq, rpbq, aq,w2pspbq, c, cqq
“ ϕpa,w1pspbq, spbq, cqqq
“ ϕpw1pa, rpbq, rpbqq,w1pspbq, spbq, cqq
“ w1pϕpa, spbqq, ϕprpbq, spbqq, ϕprpbq, cqq
“ w1pαpaq, βpbq, γpcqq,

which proves that

w1pϕpa, cq, αpaq, βpbqq “ w2pαpaq, βpbq, γpcqq “ w1pϕ
1
pa, cq, αpaq, βpbqq

and

w2pβpbq, γpcq, ϕpa, cqq “ w1pαpaq, βpbq, γpcqq “ w2pβpbq, γpcq, ϕ1pa, cqq,

since both expressions only depend on αpaq, βpbq and γpcq. Hence by defi-
nition of W we have that ϕpa, cq “ ϕ1pa, cq for all pa, cq P AˆB C. �

We could actually leave out the middle equalities (the ones not involving
x and x1) in the quasi-identity and still obtain a weakly Mal’tsev quasivariety,
but the result of this procedure would be to small to include the following
example, so we are not sure that it wouldn’t force the quasivariety to become
Mal’tsev.
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a 1 2 1 2 1 2 1 2
b 1 1 2 2 1 1 2 2
c 1 1 1 1 2 2 2 2
x 1 2 2 - 1 1 1 2

Table 1: x is uniquely determined by a, b and c in A

a 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
b 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3
c 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
x 1 2 3 2 - - 3 - - 1 1 3 1 2 3 3 3 - 1 2 1 2 - 2 1 2 3

Table 2: x is uniquely determined by a, b and c in B

Example 4.9. The example due to Mitschke [16] of a category which is
Goursat but not Mal’tsev may be modified using Proposition 4.8 to yield
an example of a category which is Goursat and weakly Mal’tsev but not
Mal’tsev. In fact, Proposition 4.8 makes it possible to construct such ex-
amples ad libitum.

Let the variety V consist of implication algebras, i.e., pI, ¨q which sat-
isfy

$

’

&

’

%

pxyqx “ x
pxyqy “ pyxqx
xpyzq “ ypxzq

where we write x ¨y “ xy. It is proved in [6, 16] that V is Goursat, and this is
easily checked using Proposition 4.3 as witnessed by the terms w1px, y, zq “
pzyqx and w2px, y, zq “ pxyqz. The further quasi-identity

pbaqx “ pabqc “ pbaqx1

pbcqx “ pcbqa “ pbcqx1

+

ñ x “ x1

determines a weakly Mal’tsev sub-quasivariety W of V by Proposition 4.8.
This quasivariety certainly stays Goursat, and the counterexample given in
the paper [16] still works to prove that W is not Mal’tsev.

Indeed, the implication algebras A “ t1, 2u and B “ t1, 2, 3u with re-
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spective multiplication tables

ˆ

1 2
1 1

˙

and

¨

˝

1 2 3
1 1 3
1 2 1

˛

‚

also belong to the quasivariety W : given any choice of a, b and c, the system
of equations

#

pbaqx “ pabqc
pbcqx “ pcbqa

either has no solution or just one, as pictured in Table 1 for the algebra A and
in Table 2 for B.

To see that the quasivariety W is not Mal’tsev, it now suffices to consider
the homomorphisms f , g : B Ñ A defined respectively by

f p1q “ f p2q “ 1, f p3q “ 2

and
gp1q “ gp3q “ 1, gp2q “ 2.

It is easy to check that the respective kernel relations R and S of f and g do
not commute: RS contains the element p3, 2q, but not p2, 3q, which is in S R.
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Résumé. Soit (D, Jat) un site atomique et j : Sh(D, Jat)→ D̂ le topos
des faisceaux associé. Tout foncteur φ : C → D induit un morphisme
géométrique Ĉ → D̂ et, en prenant le produit fibré le long de j, un mor-
phisme géométrique q : F → Sh(D, Jat). Nous donnons une condition
suffisante sur φ pour que q satisfasse le Nullstellensatz et la Cohésion
Suffisante au sens de la Cohésion Axiomatique. Ceci est motivé par les
exemples où Dop est une catégorie d’extensions finies d’un corps.

Abstract. Let (D, Jat) be an atomic site and j : Sh(D, Jat)→ D̂ be
the associated sheaf topos. Any functor φ : C → D induces a geometric
morphism Ĉ → D̂ and, by pulling-back along j, a geometric morphism
q : F → Sh(D, Jat). We give a sufficient condition on φ for q to satisfy the
Nullstellensatz and Sufficient Cohesion in the sense of Axiomatic Cohesion.
This is motivated by the examples where Dop is a category of finite field
extensions.

Keywords. Axiomatic Cohesion, topos, algebraic geometry.

Mathematics Subject Classification (2010). 18F10, 18F20.

1. Introduction and outline

The first paragraph of Section II in [13] explains that the contrast of cohesion
with non-cohesion (expressed by a geometric morphism p : E → S with cer-
tain special properties) can be made relative, so that S may be an ‘arbitrary’
topos. The inverted commas should be taken seriously because reasonable
hypotheses on the geometric morphism p imply strong restrictions on the
base S. Having said this, the base is not forced to be the category Set of
sets and functions. As an example, it is proposed loc. cit. that in the case
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of algebraic geometry the base topos S may be usefully taken as the Ga-
lois topos of Barr-atomic sheaves on finite extensions of the ground field.
What does ‘usefully’ mean here? To give a concrete idea let E be the (Gros)
Zariski topos of a field k. If k is algebraically closed, the canonical geomet-
ric morphism E → Set satisfies certain simple intuitive axioms (formalized
in Definitions 1.1 and 1.3 below). These axioms do not hold if k is not
algebraically closed, but may be restored by changing the base as suggested.

The purpose of the present paper is to give a detailed construction of
sufficiently cohesive pre-cohesive toposes over Galois bases. We recall some
of the basic definitions and results but the reader is assumed to be familiar
with [13]. (See also [12, 9].) For general background on topos theory see
[16, 7] and for atomic toposes in particular see also [3].

Let E and S be cartesian closed extensive categories.

Definition 1.1. The category E is called pre-cohesive (relative to S) if it is
equipped with a string of adjoint functors

E
p!
��

p∗
��

S

p∗

OO

p!

OO

with p! a p∗ a p∗ a p! and such that:

1. p∗ : S → E is full and faithful.

2. p! : E → S preserves finite products.

3. (Nullstellensatz) The canonical natural transformation θ : p∗ → p! is
(pointwise) epi.

For brevity we will say that p : E → S is pre-cohesive. The notation is
devised to be consistent with that for geometric morphisms. Indeed, if E
and S are toposes then the functors above determine a geometric morphism
p : E → S with direct image p∗. On the other hand, if p : E → S is a geomet-
ric morphism between toposes then we call p pre-cohesive if the adjunction
p∗ a p∗ extends to one p! a p∗ a p∗ a p! making E pre-cohesive over S.

Definition 1.2. A pre-cohesive p : E → S is called cohesive if the canonical
natural p!(X

p∗W )→ (p!X)W is an iso for all X in E and W in S. (This is
the ‘continuity’ property in Definition 2 in [13].)
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We still do not fully understand the Continuity property defining cohe-
sive categories and for this reason we introduce and concentrate on pre-
cohesive ones. It is relevant to stress that most of the results in [13] hold
for pre-cohesive p; Theorem 1 loc. cit. being the most important exception.

Let p : E → S be pre-cohesive. An object X in E is called connected if
p!X = 1. An object Y in E is called contractible if Y A is connected for all
A.

Definition 1.3. The pre-cohesive p : E → S is called sufficiently cohesive if
for every X in E there exists a monic X → Y with Y contractible. (We may
also say that p satisfies Sufficient Cohesion.)

Useful intuition about sufficiently cohesive categories is gained by con-
trasting them with an opposing class of pre-cohesive categories.

Definition 1.4. The pre-cohesive p is a quality type if θ : p∗ → p! is an iso.
(See Definition 1 in [13].)

In other words, p is a quality type if the (full) reflective subcategory
p∗ : S → E is a quintessential localization in the sense of [6]. Quality types
and sufficiently cohesive categories are contrasting in the precise sense given
by Proposition 3 in [13]: if p : E → S is both sufficiently cohesive and a
quality type, then S is inconsistent. (Although stated for cohesive categories,
it is clear from the proof that it also holds for pre-cohesive ones.) Loosely
speaking, Sufficient Cohesion positively ensures that E and S are decidedly
different. In particular, assuming that 0→ 1 is not an iso in S , Sufficient
Cohesion implies that p∗ : E → S cannot be an equivalence.

There are many examples of sufficiently cohesive pre-cohesive toposes
over Set, including the topos of simplicial sets and the Zariski toposes deter-
mined by algebraically closed fields. As already mentioned in the first para-
graph, the main contribution of the present paper is the detailed construction
of a class of sufficiently cohesive pre-cohesive p : E → S over toposes S
different from Set, namely the Galois toposes of (non algebraically closed)
perfect fields. The construction will make evident what is the connection
between the Nullstellensatz condition in Definition 1.1 and Hilbert’s clas-
sical result. The reader will see that each of these geometric morphisms
p : E → S is induced by the inclusion of the category of finite extensions
of a given field into a category of finitely presented algebras over the same
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field. It is then reasonable to expect that the same examples can be more
directly constructed using a characterization of the morphisms of sites that
induce sufficiently cohesive pre-cohesive geometric morphisms; but since
we do not have such a characterization at present, we take a more indirect
route using some results from [8] which studies the Nullstellensatz in the
context of connected and locally connected geometric morphisms.

Notice that any string of adjoint functors p! a p∗ a p∗ : E → S with fully
faithful p∗ : E → S determines a canonical natural θ : p∗ → p! and then it
is fair to say that the string of adjoints satisfies the Nullstellensatz if θ is
epi. We will need to use this generality for such a string of adjoints given
by a connected essential geometric morphism p : E → S. (Recall that p is
connected if p∗ is full and faithful and it is essential if p∗ has a left adjoint,
typically denoted by p! : E → S.)

It is also relevant to briefly explain the relation with local connected-
ness. Recall that a geometric morphism p : E → S is locally connected if p∗

has an S-indexed left adjoint p! : E → S. Such geometric morphisms are,
of course, essential. Theorem 3.4 and Proposition 3.5 in [8] imply that if
S has a natural number object (nno) and p : E → S is bounded, connected,
locally connected and satisfies the Nullstellensatz then p is pre-cohesive.
(Connected locally connected geometric morphisms satisfying the Nullstel-
lensatz are called ‘punctually locally connected’ in [8] but we will stick to
the terminology of [13].) Reorganizing the hypotheses of these results we
obtain the following fact.

Corollary 1.5. If S has a nno and p : E → S is bounded, connected and
locally connected, then p is pre-cohesive if and only if p satisfies the Null-
stellensatz.

In the case that S = Set there is of course a stronger result because p! is
automatically indexed. Recall that a site (C, J) is locally connected if every
covering sieve is connected (as a subcategory of the corresponding slice).
Such a site is called connected if C has a terminal object.

Proposition 1.6. If p : E → Set is bounded then the following are equiva-
lent:

1. p is pre-cohesive,
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2. p is connected, essential and satisfies the Nullstellensatz,

3. E has a connected and locally connected site of definition (C, J) such
that every object of C has a point.

Proof. By Corollary 1.5 above and Proposition 1.4 in [8].

We now outline the main results in the paper. In Section 2.2 we prove
the following characterization of sufficiently cohesive pre-cohesive toposes
over Set.

Corollary 1.7. Let (C, J) be a connected and locally connected site such
that every object has a point and let p : Sh(C, J)→ Set be the induced pre-
cohesive geometric morphism. Then p is sufficiently cohesive if and only if
there is an object in C with (at least) two distinct points.

There is a precedent to both results above. In the last paragraph of p. 421
of [11] Lawvere states that it follows from a remark in Grothendieck’s 1983
Pursuing Stacks that product preservation of p! and Sufficient Cohesion “will
be satisfied by a topos of M -actions if the generic individual I (= M acting
on itself) has at least two distinct points”.

A little trick will allow us to apply Corollary 1.7 to prove Sufficient Co-
hesion over other bases; so it remains to explain how to build pre-cohesive
toposes over bases that are not Set. In order to sketch the main ideas fix
a geometric morphism p : E → S, a Lawvere-Tierney topology j in S and
consider the following pullback

F
q

��

i // E
p

��

Sj j
// S

of toposes. We are interested in conditions on p and j implying that q is pre-
cohesive. Assume for simplicity that all toposes involved are Grothendieck
and that p is connected and locally connected. Then q is also connected
and locally connected by Theorem C3.3.15 in [7]. Corollary 1.5 leads us to
consider conditions on p and j implying that q satisfies the Nullstellensatz.

The pullback stability result for locally connected geometric morphisms
also shows that the (Beck-Chevalley) natural transformation p∗j∗ → i∗q

∗ is
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an iso. Taking left adjoints we obtain an iso j∗p! → q!i
∗; pre-composing with

i∗ we get another iso j∗p!i∗ → q!i
∗i∗ and we can use the counit of i∗ a i∗ to

get the canonical iso j∗p!i∗ → q!i
∗i∗ → q! that appears in the next result.

Lemma 1.8. Given the pullback diagram above, the following diagram

j∗p∗i∗

j∗θi∗
��

= // j∗j∗q∗
counit // q∗

θ′

��
j∗p!i∗ ∼=

// q!i
∗i∗ ∼=

// q!

commutes, where θ′ : q∗ → q! is the natural transformation associated to the
connected essential q.

This result is probably folklore but we give a detailed proof in Sec-
tion 3.1.

As suggested in [15], we denote the image of the map θX : p∗X → p!X
by HX → p!X . This is an “invariant of objects in the bigger category,
recorded in the smaller”.

Definition 1.9. Let us say that p satisfies the Nullstellensatz relative to j if
for every X in E , the mono HX → p!X is j-dense.

Combining the above we obtain the following fact.

Lemma 1.10. If, in the pullback diagram above, p : E → S satisfies the
Nullstellensatz relative to j then q : F → Sj is pre-cohesive.

Proof. By hypothesis, the image H(i∗X)→ p!(i∗X) of the canonical map
θi∗X : p∗(i∗X)→ p!(i∗X) is j-dense; so the canonical θ′ : q∗X → q!X is epi
by Lemma 1.8.

In the examples that motivate this work, S is the topos D̂ of presheaves
on a category D that can be equipped with the atomic topology (inducing a
Lawvere-Tierney topology j in D̂) and p is induced by a functor φ : C → D
that has a fully faithful right adjoint ι. Also, the fact that p satisfies the
Nullstellensatz relative to j naturally follows from a more concrete related
condition that holds for the adjunction φ a ι.
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Definition 1.11. A full reflective subcategory ι : D → C is said to satisfy the
primitive Nullstellensatz if for every C in C there exists a map ιD → C for
some D in D.

For example, if C has a terminal object then the inclusion ι : 1→ C of
the terminal object is reflective and it satisfies the primitive Nullstellensatz
if and only if every object of C has a point. In contrast notice that if C
has initial object then the inclusion ι : 1→ C of the initial object trivially
satisfies that for every C in C there exists a map ιD → C for some D in D,
but the subcategory is not reflexive (unless D is trivial). In other words, the
requirement of a left adjoint to ι excludes the situation just described from
the examples of the primitive Nullstellensatz.

We now discuss how the primitive Nullstellensatz relates to Hilbert’s
classical result. Lawvere suggests that the relation is better explained by
the conjunction of two facts: “traditionally, the heart of Hilbert’s result is
the existence of points, and that is merely a consequence of Zorn’s Lemma”;
the other fact is that that fields k have, as rings, the property that finitely-
generated k-algebras that happen to be fields are in fact finitely-generated
k-modules. (See also Tholen’s analysis in [17], which is particularly well
suited for our puroposes.)

Fix a field k. A classical commutative algebra textbook may formulate
the two facts above as follows.

Lemma 1.12. Let A be a k-algebra.

1. If A is not trivial then it has at least one maximal ideal.

2. IfA is finitely generated as a k-algebra andM ⊆ A is a maximal ideal
then k → A→ A/M is a finite algebraic extension.

Proof. The first item is proved in Theorem 1.3 in [2] as a “standard appli-
cation of Zorn’s lemma”. The second item is Corollary 7.10 in [2] and it is
referred to as the ‘weak’ version of Hilbert’s Nullstellensatz.

A k-algebra is called connected if it has exactly two idempotents. Let
Con be the category of finitely presented and connected k-algebras. Denote
the full subcategory of separable extensions of k by Ext→ Con.

Lemma 1.13. The full inclusion Ext→ Con has a right adjoint.
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Proof. This does not seem to be very well-known so we recall the proof
taken from Proposition I, §4, 6.5 in [5]. Let A in Con and choose a maximal
ideal M ⊆ A. Since A is connected every separable sub(k-)algebra K → A
is a field and [K : k] ≤ [A/M : k]. That is, the degrees of all possible such
K are bounded; so the filtered system of suchK ⊆ Amust have a maximum.

We recall this, of course, because the primitive Nullstellensatz holds as
explained below.

Example 1.14. Assume that k is perfect to avoid complications with separa-
ble extensions. Lemma 1.12 implies that for anyA in Con there exists a map
A→ A/M with A/M in the subcategory Ext→ Con. This means that the
full reflective Extop → Conop satisfies the primitive Nullstellensatz. If k is
algebraically closed then this says that every object of Conop has a point.

Fix a small category C and a full reflective subcategory ι : D → C with
reflector φ : C → D. The geometric morphism φ : Ĉ → D̂ induced by the
reflector is essential, connected and local and so induces a string of functors

Ĉ
φ!
��

φ∗
��

D̂

φ∗

OO

φ!

OO

with φ! a φ∗ a φ∗ a φ! and φ∗ : D̂ → Ĉ fully faithful. That is, a structure
analogous to that in Definition 1.1 except that φ! need not preserve products
and the Nullstellensatz may not hold.

Assume now that D satisfies the (right) Ore condition so that it can
be equipped with the atomic topology Jat. Denote the resulting Lawvere-
Tierney topology on D̂ by jat. In Section 3.2 we prove the following.

Lemma 1.15. If φ a ι : D → C satisfies the primitive Nullstellensatz then
the geometric morphism φ : Ĉ → D̂ satisfies the Nullstellensatz relative to
jat.

Lemmas 1.10 and 1.15 imply the first part of the next result. The second
part will be proved in Section 3.2.
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Proposition 1.16. Let the following diagram be a pullback

F
q

��

i // Ĉ
φ

��

Sh(D, Jat) j
// D̂

of toposes. If φ : Ĉ → D̂ is locally connected and φ a ι : D → C satisfies
the primitive Nullstellensatz then q : F → Sh(D, Jat) is pre-cohesive. If,
moreover, C has a terminal object and some object with two distinct points
then q is sufficiently cohesive.

In Section 4 we discuss how to apply Proposition 1.16 to Example 1.14
and we also give a presentation of the theory classified by F in the case of
k = R.

2. Sufficient Cohesion

Here we characterize sufficiently cohesive pre-cohesive toposes E → Set.
The strategy to analyse Sufficient Cohesion is suggested by the following
result.

Proposition 2.1. Let p : E → S be a pre-cohesive topos. Then p is suffi-
ciently cohesive if and only if the subobject classifier of E is connected (i.e.
p!Ω = 1).

Proof. Simply observe that the proof of Proposition 4 in [13] does not need
the Continuity condition.

Let p : E → S be an essential geometric morphism. As usual we denote
the left adjoint to p∗ by p! : E → S, the subobject classifier of E by Ω and the
top and bottom elements of its canonical lattice structure by >,⊥ : 1→ Ω.

Lemma 2.2. If p! : E → S preserves finite products then p!Ω = 1 if and only
if the maps p!>, p!⊥ : p!1→ p!Ω are equal.

Proof. One direction is trivial (and does not require that p! preserves finite
products). On the other hand, if p! preserves products then p!Ω is equipped
with a lattice structure with p!> and p! ⊥ as top and bottom elements respec-
tively. Since they are equal, p!Ω = 1.
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So the consideration of Sufficient Cohesion naturally leads to essential
geometric morphisms whose leftmost adjoint preserves finite products. For
example, recall that a small category D is sifted if and only if the colimit
functor SetD → Set preserves finite products [1] and that this holds if and
only if D is nonempty and the diagonal D → D ×D is final. So, if we let
p : Ĉ → Set be the (essential) canonical geometric morphism then p! pre-
serves finite products if and only if C is cosifted. To characterize those such
p that satisfy p!Ω = 1 the following terminology will be useful.

Definition 2.3. A cospan A→ B ← C in a category is said to be disjoint if
it cannot be completed to a commutative square.

The next source of examples will also be relevant. (See the proof of
Proposition 1.6(iii) in [8] for details.)

Lemma 2.4. If C has a terminal object and every object of C has a point
then C is cosifted.

2.1 The case of presheaf toposes

Let C be a small category and p : Ĉ → Set the canonical (essential) geomet-
ric morphism. Let us recall a description of p! : E → Set.

Fix a presheaf P in Ĉ. A cospan C
σl // U C ′

σroo is said to connect
the elements x ∈ PC and x′ ∈ PC ′ if there is a y ∈ PU such that x = y · σl
and x′ = y · σr. In this case we may denote the situation by the following
diagram

x y�oo � // x′

C σl
// U C ′σr
oo

or simply write xσx′.
A path from C to C ′ is a sequence of cospans σ1, σ2, . . . , σn as below

C0 σ1,l
// U1 C1σ1,r
oo

σ2,l
// U2 C2σ2,r
oo Cn−1 σn,l

// Un Cnσn,r
oo

with C0 = C and Cn = C ′. Such a path connects elements x ∈ PC and
x′ ∈ PC ′ if there exists a sequence (xi ∈ PCi | 0 ≤ i ≤ n) of elements such
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that x0 = x ∈ PC, xn = x′ ∈ PC ′ and for every 1 ≤ i ≤ n, xi−1σixi. We
say that x ∈ PC and x′ ∈ PC ′ are connectable if there is a path from C to
C ′ that connects x and x′. An element in p!P is given by a ‘tensor’ x⊗ C
with x ∈ PC. Two such tensors x⊗ C and x′ ⊗ C ′ are equal if and only if
they are connectable.

We now concentrate on the set p!Ω whose elements are of the form S ⊗ C
with S a sieve onC. LetMC be the maximal sieve onC and ZC be the empty
sieve on C. We will sometimes writeM instead ofMC and similarly for ZC .

Lemma 2.5. A cospan C
σl // U C ′

σroo is disjoint if and only if it con-
nects M ∈ ΩC and Z ∈ ΩC ′.

Proof. If the cospan is disjoint, the sieve on U generated by σl witnesses the
fact that the cospan connects MC and ZC′ . Conversely, if S is a sieve on
U such that S · σl = MC and S · σr = ZC′ then σl ∈ S and there is no map
h : D → C ′ such that σrh is in S. In particular, there is no h such that σrh
factors through σl. So the cospan in the statement is disjoint.

A path σ1, . . . , σn as above is called singular at i (for some 1 ≤ i ≤ n)
if the cospan

Ci−1

σi,l
// Ui Ci

σi,r
oo

is disjoint. We say that the path is singular if it is singular at some i.

Lemma 2.6. If the cospan C
σl // U C ′

σroo connects a non-empty sieve
S ∈ ΩC and the empty sieve ZC′ ∈ ΩC ′ then there exists a singular path
from C to C ′.

Proof. By hypothesis there is a sieve T on U as in the diagram below

S T�oo � // Z

C σl
// U C ′σr
oo

and, since S is non-empty, T is also non-empty. Let τ : D → U a map in T .
Since, T · σr = Z, the cospan (τ, σr) is disjoint and so, the path below

C σl
// U Dτ
oo

τ
// U C ′σr
oo

from C to C ′ is singular.
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The main technical fact of the section is the following.

Lemma 2.7. For any C and C ′, MC is connectable with ZC′ if and only if
there exists a singular path from C to C ′.

Proof. Consider a path σ1, . . . , σn from C to C ′. Assume first that this path
is singular at i. By Lemma 2.5, the cospan σi connects the maximal sieve on
Ci−1 with the empty sieve on Ci. Now observe that any path connects the
maximal sieves on its ‘extremes’, and it also connects the empty sieves on its
extremes. In particular, the path σ1, . . . , σi−1 connects MC with MCi−1

and
the path σi+1, . . . , σn connects ZCi

with ZC′ . So the whole path σ1, . . . , σn
connects MC and ZC′ .

For the converse assume that the path σ1, . . . , σn connects MC and ZC′ .
Then there exist sieves S0, . . . , Sn such that S0 = M , Sn = Z and for every
1 ≤ i ≤ n, Si−1σiSi. So there exists a k such Sk = Z and Sk−1 is non-empty.
By Lemma 2.6 there exists a singular path from Ck−1 to Ck. Of course, this
path can be extended to (a singular) one from C to C ′.

If C is an object of C and we let the terminal object 1 in Ĉ be such that
1C = {∗} then the morphisms p!>, p! ⊥: p!1→ p!Ω map ∗ ⊗ C to MC ⊗ C
and ZC ⊗ C respectively.

Proposition 2.8. If C is connected then the maps p!>, p! ⊥: p!1→ p!Ω are
equal if and only if C contains a disjoint cospan.

Proof. As C is connected, there is an object C in C and also: C has a dis-
joint cospan if and only if there is a singular path from C to C. Now, the
maps p!>, p! ⊥: 1→ p!Ω are equal if and only if MC ⊗ C = ZC ⊗ C. By
Lemma 2.7, this holds if and only if there exists a singular path from C to
C.

Since cosifted categories are connected the next result follows.

Corollary 2.9. Let C be cosifted and p : Ĉ → Set the canonical geometric
morphism. Then p!Ω = 1 if and only if C contains a disjoint cospan.

We can now characterize the sufficiently cohesive pre-cohesive presheaf
toposes. For this it is convenient to state the presheaf version of Proposi-
tion 1.6 and, in fact, it is worth sketching a direct proof.

MENNI - SUFFICIENT COHESION OVER ATOMIC TOPOSES

- 124 -



Proposition 2.10. Let C be a small category whose idempotents split. The
canonical p : Ĉ → Set is pre-cohesive if and only if C has a terminal object
and every object of C has a point.

Proof. The canonical p : Ĉ → Set is essential and p!C = 1 for every repre-
sentable C in Ĉ. Example C3.6.3(b) in [7] shows that p is local if and only
is C has a terminal object. In this case, of course, p is connected. So we
can assume that C has a point and then p∗X = Ĉ(1, X) = X1 for every X in
Ĉ. If the Nullstellensatz holds then C(1, C) = p∗C → p!C = 1 is epi and so
every object of C has a point. For the converse assume that every object of C
has a point and let P in Ĉ. Recall that an element of p!P may be described as
a ‘tensor’ x⊗ C with x ∈ PC. The natural transformation θ : p∗P → p!P
sends each y ∈ P1 to the tensor y ⊗ 1. Since every C in C has a point, any
tensor x⊗ C is equal to one of the form y ⊗ 1. Finally, p! preserves finite
products by Lemma 2.4.

If C has a terminal object and every object has a point then the exis-
tence of a disjoint cospan is equivalent to the existence of an object with two
distinct points, so the next result follows from Corollary 2.9 and Proposi-
tion 2.10.

Corollary 2.11. Let C be a small category whose idempotents split and let
p : Ĉ → Set be pre-cohesive. Then p is sufficiently cohesive if and only if
there is an object in C with two distinct points.

2.2 The case of sheaves

Proposition 1.3 in [8] proves a characterization of the bounded locally con-
nected p : E → Set such that p! preserves finite products. In this section we
characterize, among these, those which satisfy p!Ω = 1. Some key ingredi-
ents may be isolated as basic facts about dense subtoposes and we treat them
first.

Recall that a subtopos i : F → E is dense if i∗ : F → E preserves the
initial object 0 (see A4.5.20 in [7]). For any subtopos i : F → E consider the
split mono i∗ΩF → ΩE presenting the subobject classifier of F as a retract
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of that of E . The diagram on the left below

i∗1

∼=
��

i∗> // i∗ΩF

��

i∗1

∼=
��

i∗⊥ // i∗ΩF

��

1
>

// ΩE 1
⊥

// ΩE

always commutes. On the other hand, the square on the right above com-
mutes if and only if the subtopos is dense.

Lemma 2.12. Let p : E → S be an essential geometric morphism. If the
geometric i : F → E is a dense subtopos then the maps on the left below

p!i∗1
p!(i∗>)

//

p!(i∗⊥)
// p!(i∗ΩF) p!1

p!> //

p!⊥
// p!ΩE

are equal if and only if the ones on the right above are.

Proof. Since i : F → E is dense, the map ⊥: 1→ ΩE factors through the
retract i∗ΩF → ΩE . Then the diagram below

p!1

p!>

$$

p!⊥

::

p!(i∗>)
//

p!(i∗⊥)
// p!(i∗ΩF) // p!ΩE

commutes and the result follows because p!(i∗ΩF)→ p!ΩE is (split) mono.

This is applied in the next result where the subtopos is dense as a result
of a stronger condition.

Lemma 2.13. Consider a diagram

F

q
��

i // E
p

��

S
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with i an inclusion. If p∗ factors through i∗ (in the sense that the canonical
p∗ → i∗i

∗p∗ = i∗q
∗ is an iso) then i is a dense subtopos and q is essential.

If, moreover, p! preserves finite products then so does q!. Also, in this case,
p!ΩE = 1 if and only if q!ΩF = 1.

Proof. Start with the iso p∗ → i∗q
∗. Since p∗ and q∗ preserve 0 then so

does i∗. It is straightforward to check that the functor p!i∗ : F → S is left
adjoint to q∗ : S → F so q is essential and we can define q! = p!i∗ : F → S.
Clearly, if p! preserves finite products then so does q!. It remains to prove
that p!ΩE = 1 if and only if q!ΩF . By Lemma 2.2 it is enough to prove that
p!> = p!⊥ : 1→ p!ΩE if and only if q!> = q!⊥ : 1→ q!ΩF . Since q! = p!i∗
the result follows from Lemma 2.12.

One of the equivalences in Proposition 1.3 of [8] states that if the canon-
ical p : E → Set is bounded and locally connected then, p! preserves finite
products if and only if E has a locally connected site of definition (C, J) with
C cosifted.

Proposition 2.14. Let (C, J) be a locally connected site with C cosifted and
q : Sh(C, J)→ Set be the induced geometric morphism. Then q!Ω = 1 if
and only if C contains a disjoint cospan.

Proof. We have a diagram

F = Sh(C, J)

q
''

i // Ĉ = E
p

��

Set

where p and q are locally connected, p! and q! preserve finite products and
i : Sh(C, J)→ Ĉ is a subtopos. In the proof of Proposition 1.3 in [8] it is
observed that if a site (C, J) is locally connected then constant presheaves
on C are J-sheaves. That is, p∗ : Set→ Ĉ factors through the embedding
Sh(C, J)→ Ĉ, so Lemma 2.13 applies. Therefore q!ΩF = 1 if and only if
p!ΩE = 1. The result follows from Corollary 2.9.

Corollary 1.7 follows from Proposition 2.14 and Lemma 2.4.
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3. The Nullstellensatz

In Section 3.1 we prove Lemma 1.8 and then the proof of Lemma 1.10 will
be complete. In Section 3.2 we show Lemma 1.15 and complete the proof
of Proposition 1.16.

3.1 Proof of Lemma 1.8

As already mentioned in Section 1, this result is probably folklore. It should
follow from 2-categorical generalities about morphisms of adjunctions, but I
have failed to find the necessary machinery in the material I have access to,
so I give here a simple minded proof. I try to keep the notation in Section 2
of [8].

Let F a R : E → S and denote its unit and counit by η and ε respec-
tively. In parallel, consider another adjunction F ′ a R′ : E ′ → S ′ with unit
and counit denoted by η′ and ε′. Fix also a commutative diagram

E ′

R′

��

i∗ // E
R
��

S ′
j∗
// S

with i∗ and j∗ having left adjoints denoted by i∗ and j∗ respectively. We
denote the unit and counit of i∗ a i∗ by u and c, and those of j∗ a j∗ by u′

and c′.
Because left adjoints are essentially unique there exists a canonical iso-

morphism ϕ : i∗F → F ′j∗ such that the following diagram

Id

u′

��

η
// RF

RuF // Ri∗i
∗F

Ri∗ϕ
��

j∗j
∗
j∗η′j∗

// j∗R
′F ′j∗ =

// Ri∗F
′j∗

commutes. (The top map is the unit of the composite adjunction i∗F a Ri∗.)
The transposition of ϕ is the composite

Fj∗
uFj∗ // i∗i

∗Fj∗
i∗ϕj∗ // i∗F

′j∗j∗
i∗F ′c′ // i∗F

′
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and will be denoted by ζ : Fj∗ → i∗F
′. We call it the Beck-Chevalley natu-

ral transformation. Trival calculations show the following.

Lemma 3.1. The diagrams

i∗F

ϕ
**

i∗Fu′ // i∗Fj∗j
∗ i∗ζj∗

// i∗i∗F
′j∗

cF ′j∗

��

j∗

j∗η′
))

η
// RFj∗

Rζ
// Ri∗F

=

��

F ′j∗ j∗RF

commute.

Assume from now on that F has a left adjoint L : E → S and denote the
unit of L a F by α : Id→ FL.

Lemma 3.2. If i∗ is full and faithful then the following diagram

i∗i
∗i∗

i∗c

��

i∗i∗αi∗ // i∗i
∗FLi∗

i∗ϕLi∗
��

i∗ αi∗
// FLi∗

Fu′Li∗

// Fj∗j
∗Li∗ ζj∗Li∗

// i∗F
′j∗Li∗

commutes.

Proof. The transposition of the top-right map is

i∗i∗i
∗i∗

ci∗i∗ // i∗i∗
i∗αi∗ // i∗FLi∗

ϕLi∗ // F ′j∗Li∗

while that of the left-bottom one is

i∗i∗i
∗i∗

i∗i∗c // i∗i∗
i∗αi∗ // i∗FLi∗

ϕLi∗ // F ′j∗Li∗

by Lemma 3.1. But ci∗i∗ = i∗i∗c : i∗i∗i
∗i∗ → i∗i∗ because c : i∗i∗ → Id is

an iso by hypothesis.

We say that the Beck-Chevalley condition holds if ζ : Fj∗ → i∗F
′ is an

iso. (See A4.1.16 in [7].)
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Lemma 3.3. Assume the Beck-Chevalley condition holds and that i∗, j∗ and
F are full and faithful. Then F ′ is full and faithful and has a left adjoint
defined by L′ = j∗Li∗ : E → S.

Proof. First calculate:

E ′(F ′X,F ′Y ) ∼= E(i∗F
′X, i∗F

′Y ) ∼= E(Fj∗X,Fj∗Y ) ∼= S ′(X, Y )

to show that F ′ is full and faithful. To prove that L′ a F ′ notice that:

S ′(L′X,S) ∼= E(i∗X,Fj∗S) ∼= E(i∗X, i∗F
′S)

by adjointness and Beck-Chevalley. So S ′(LX, S) ∼= E ′(X,F ′S) because i∗
is full and faithful.

Assume from now on that the hypotheses of Lemma 3.3 hold and that
L′ : E ′ → S is defined as in that statement. Moreover, let α′ denote the unit
of L′ a F ′.

Lemma 3.4. The composition

Id
c−1
// i∗i∗

i∗αi∗ // i∗FLi∗
ϕLi∗ // F ′j∗Li∗ = F ′L′

equals the unit α′ : Id→ F ′L′ of L′ a F ′.

Proof. If we chase the identity L′ → L′ in the proof of Lemma 3.3 then we
obtain that the unit of L′ a F ′ is the top-right composition in the diagram
below:

Id c−1
// i∗i∗

i∗αi∗ // i∗FLi∗

ϕLi∗
++

i∗Fu′Li∗// i∗Fj∗j
∗Li∗

i∗ζj∗Li∗// i∗i∗F
′j∗Li∗

c

��

F ′j∗Li∗

and the triangle commutes by Lemma 3.1.

The units α and α′ may be related as follows.
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Lemma 3.5. The following diagram

i∗

αi∗
��

i∗α′ // i∗F
′L′

ζ−1
L′ // Fj∗L

′

=

��

FLi∗
Fu′Li∗

// Fj∗j
∗Li∗

commutes.

Proof. Post-composing with ζL′ and replacing α′ with its expression given in
Lemma 3.4 the statement is equivalent to the commutativity of the diagram

i∗

αi∗
��

i∗c−1
// i∗i
∗i∗

i∗i∗αi∗ // i∗i
∗FLi∗

i∗ϕLi∗
��

FLi∗
Fu′Li∗

// Fj∗j
∗Li∗ ζj∗Li∗

// i∗F
′j∗Li∗ = i∗F

′L′

but pre-composing with i∗c : i∗i
∗i∗ → i∗ this is equivalent to Lemma 3.2.

Following [8] define θ = (ηL)−1(Rα) : R→ L and θ′ : R′ → L′ analo-
gously.

Lemma 3.6. The diagram

j∗Ri∗

j∗θi∗
��

= // j∗j∗R
′ c′

R′ // R′

θ′

��

j∗Li∗ =
// L′

commutes.

Proof. Start from the top-right and calculate:

j∗Ri∗

j∗Ri∗α′

��

= // j∗j∗R
′

j∗j∗R′α′

��

c′
R′ // R′

R′α′

��

j∗Ri∗F
′L′

j∗R(ζL′ )
−1

��

= // j∗j∗R
′F ′L′

c′ //

j∗j∗(η′L′ )
−1

��

R′F ′L′

(η′
L′ )
−1

��

j∗RFj∗L
′
j∗(ηj∗L′ )

−1
// j∗j∗L

′
cL′

// L′
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where the bottom-left square commutes by Lemma 3.1. Now observe that,
by Lemma 3.5, the left-edge equals the composition

j∗Ri∗
j∗Rαi∗// j∗RFLi∗

j∗RFu′Li∗ // j∗RFj∗L
′

which, followed by the bottom edge, equals j∗θi∗ .

To complete the proof of Lemma 1.8 just observe that the pullback dia-
gram

F
q

��

i // E
p

��

Sj j
// S

discussed there satisfies all the hypotheses used in this section: we have al-
ready mentioned that, by Theorem C3.3.15 in [7], q is connected and locally
connected and the square is Beck-Chevalley; also, i is a subtopos by Exam-
ple A4.15.14(e) loc. cit.

3.2 Proof of Proposition 1.16

Here we prove Lemma 1.15 and Proposition 1.16. Fix small categories C
and D.

Definition 3.7. A functor ι : D → C is said to satisfy the (right) Ore condi-
tion if for every C in C and diagram as on the left below

C

f

��

ιD2

ιf ′

��

h // C

f

��

ιD1 ιg
// ιD0 ιD1 ιg

// ιD0

in C, there exists a map f ′ : D2 → D1 in D and a map h : ιD2 → C in C
such that the diagram on the right above commutes.

Clearly, a categoryD satisfies the right Ore condition in the usual sense if
and only if the identity functorD → D does so in the sense of Definition 3.7.
We now relate this condition to the one defining the primitive Nullstellensatz
(Definition 1.11).

MENNI - SUFFICIENT COHESION OVER ATOMIC TOPOSES

- 132 -



Lemma 3.8. If ι : D → C is full and satisfies that for every C in C there is a
map ιD → C for some D in D then the first item below:

1. D satisfies the Ore condition in the usual sense,

2. ι satisfies the Ore condition in the sense of Definition 3.7,

implies the second. If, moreover, ι is faithful then the converse holds.

Proof. Consider a diagram as on the left below

C

f

��

ιD

ιt
""

h // C

f

��

ιD1 ιg
// ιD0 ιD0

in D. By hypothesis there is a map h : ιD → C for some D and, because
ι is full, there is a map t : D → D0 in D such that the diagram on the right
above commutes. As D satisfies the Ore condition, there is a diagram as on
the left below

D2

t′

��

w // D

t

��

ιD2

ιt′

��

ιw // ιD

ιt
!!

h // C

f

��

D1 g
// D0 ιD1 ιg

// ιD0

inD. The diagram on the right above shows that ι satisfies the Ore condition.
For the converse consider a cospan g : D → E ← D′ : g′ in D. As ι sat-

isfies the Ore condition there is an f ′ : D2 → D in D and an h : ιD2 → ιD′

in C such that the diagram on the left below

ιD2

ιf ′

��

h // ιD′

ιg′

��

D2

f ′

��

h′ // D′

f

��

ιD ιg
// ιE D g

// E

commutes. Because ι is full there is an h′ : D2 → D′ such that ιh′ = h and,
since ι is faithful, the diagram on the right above commutes.
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We can now prove Lemma 1.15. Let D be a small category satisfying
the right Ore condition and let (D, Jat) be the resulting atomic site. Fix a
full reflective subcategory φ a ι : D → C satisfying the primitive Nullstel-
lensatz. Lemma 1.15 states that the induced (essential connected) geometric
morphism φ : Ĉ → D̂ satisfies the Nullstellensatz relative to the Lawvere-
Tierney topology in D̂ induced by Jat. Concretely this means that for any
P in Ĉ, the image HP → φ!P of θP is Jat-dense. This holds if and only
if the map θP : φ∗P → φ!P is locally surjective. (Recall that a morphism
α : F → G in D̂ is locally surjective w.r.t. Jat if for each D in D and each
y ∈ GD, there is map e : D′ → D such that y · e is in the image of αD′ . See
Corollary III.7.6 in [16].)

Proof of Lemma 1.15. For any P in Ĉ andD inD, (φ!P )Dmay be expressed
as the following coequalizer:

∑
C,C′ PC × C(C ′, C)×D(D,φC ′)

l //

r
//

∑
C PC ×D(D,φC) // (φ!P )D

where for x ∈ PC, u : C ′ → C and a′ ∈ D(D,φC ′), l(x, u, a′) = (x · u, a′)
and r(x, u, a′) = (x, (φu)a′). The equivalence class determined by a pair
(x, a) with x ∈ PC and a : D → φC will be denoted by x⊗ a ∈ (φ!P )D.
(Theorem VII.2.2 in [16].) Also, (φ∗P )D = P (ιD) for any P in Ĉ and D in
D, and θ : φ∗P → φ!P assigns to each x ∈ (φ∗P )D = P (ιD) the element
(x⊗ ε−1) ∈ (φ!P )D where ε : φ(ιD)→ D is the counit of φ a ι.

As explained above we must prove that the map θP : φ∗P → φ!P is lo-
cally surjective. So let x⊗ d ∈ (φ!P )D with d : D → φC and x ∈ PC. By
Lemma 3.8 the functor ι : D → C satisfies the right Ore condition. So there
exists a diagram in C as below

ιD′

ιe

��

h // C

η

��

ιD
ιd
// ι(φC)

where η is the unit of φ a ι. We claim that (x⊗ d) · e = x⊗ (de) in (φ!P )D
equals θ(x · h) = (x · h)⊗ ε−1 = x⊗ ((φh)ε−1). For this, it is enough to
prove that de = (φh)ε−1 in D. Since the counit is an iso, it is enough to
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prove that deε = φh. So apply φ to the square above, post-compose with ε
to obtain

φ(ιD′)

φ(ιe)

��

φh
// φC

φη

��

id

$$

φ(ιD)
φ(ιd)
// φ(ι(φC)) ε

// φC

and observe that the left-bottom composition equals deε.

To complete the proof of Proposition 1.16 assume that the connected
geometric morphism φ : Ĉ → D̂ is locally connected so that if we take the
pullback

F
q

��

i // Ĉ
φ

��

Sh(D, Jat) j
// D̂

of toposes then q : F → Sh(D, Jat) is connected and locally connected.
Lemmas 1.10 and 1.15 imply that q is pre-cohesive. So it remains to show
that if C has a terminal object and has an object with two distinct points then
q is sufficiently cohesive. Denote Ĉ by E and its subobject classifier by ΩE .

Lemma 3.9. If φ!> : 1 = φ!1→ φ!ΩE is j-dense then q!ΩF = 1.

Proof. By Lemma 3.3 we can assume that q! = j∗φ!i∗ : F → Sh(D, Jat).
We know that i∗ΩF is a retract of ΩE so j∗(φ!(i∗ΩF)) = q!ΩF is a retract of
j∗(φ!ΩE). Hence, j∗(φ!ΩE) = 1 implies q!ΩF = 1.

Now recall that a mono in D̂ is dense (for the atomic topology) in D if
and only if it is locally surjective.

Lemma 3.10. Let f : D̂ → Set be the canonical geometric morphism to
Set. For any α : X → Y in D̂, if f!α : f!X → f!Y is epi in Set then α is
locally surjective in D̂.

Proof. Let y ∈ Y D. Then (y ⊗D) ∈ f!Y and, by hypothesis, there exists
an (x⊗ E) ∈ f!X such that (f!α)(x⊗ E) = (αEx)⊗ E = (y ⊗D) ∈ f!Y .
Because of the Ore condition this is equivalent to the existence of a span

E A
loo r // D
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in D such that (αEx) · l = y · r ∈ Y A. So αA(x · l) = y · r, showing that y
is locally in the image of α.

Finally let g : Ĉ → Set be the canonical geometric morphism, so that
f!φ! = g! : E = Ĉ → Set. If C is cosifted and has a disjoint cospan then
g!> = f!(φ!>) : 1→ f!(φ!ΩE) is an iso by Corollary 2.9, φ!> : 1→ φ!ΩE is
locally surjective by Lemma 3.10 and hence q!ΩF = 1 by Lemma 3.9. That
is, q is sufficiently cohesive, as we needed to prove.

4. Sufficient Cohesion over Galois toposes

Let k be a field. Let Con be the category of finitely presented connected
k-algebras and ` : Ext→ Con the full subcategory of separable extensions
of k. Lemma 1.13 shows that ` has a right adjoint ρ : Con→ Ext. It is
now relevant to mention a related fact. Let Alg be the category of finitely
presented k-algebras and ` : Sep→ Alg the full subcategory of separable
k-algebras. It is clear that ` : Ext→ Con is the restriction of ` along the
inclusion Ext→ Sep as displayed in the following diagram

Con //Alg

Ext

`

OO

// Sep

`

OO

and that ρ extends to a right adjoint ρ : Alg→ Sep to `.

Proposition 4.1. For any A in Alg and K in Ext, the canonical map
(ρA)⊗k K → ρ(A⊗k K) is an iso. In other words if the square on the
left below

A
in0 // A⊗k K ρA

ρ(in0)
// ρ(A⊗k K)

k

j

OO

b
// K

in1

OO

k

ρ(j)

OO

b
// K

ρ(in1)

OO

is a pushout in Alg then the square on the right is a pushout in Sep.

Proof. This is Proposition I, §4, 6.7 in [5].
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Assume for the moment that ρ(j) : k → ρA is an iso in the right square
above. In particular, the largest separable subalgebra of A does not have
idempotents, soA is connected. Of course, ρ(in1) : K → ρ(A⊗k K) is also
an iso and, again, this implies that A⊗k K is connected. Let us stress this
fact, if A ∈ Con, ρA = k and K ∈ Ext then the algebra A⊗k K is also in
Con and ρ(A⊗k K) = K. Moreover, this is for every k.

Lemma 4.2. The geometric morphism [Con,Set]→ [Ext,Set] induced by
ρ : Con→ Ext is connected and locally connected.

Proof. As we have already mentioned, connectedness follows from the fact
that ρ has a full and faithful left adjoint. To prove local connectedness we
use a sufficient condition proved in [7]. This condition involves a category
Xρ = X of so called ρ-extracts. In general, its objects would be 4-tuples
(U, V, r, i) with U in the domain of ρ, V in the codomain, r : ρU → V a map
and i : V → ρU a section of r; and maps (U, V, r, i)→ (U ′, V ′, r′, i′) would
be pairs (a : U → U ′, b : V → V ′) such that r′(ρa) = br and i′b = (ρa)i. In
our concrete case, every map in the codomain of ρ : Con→ Ext is mono
and ρ has a full and faithful left adjoint ` so each object (U, V, r, i) is com-
pletely determined by a map j : `V → U such that ρj : ρ(`V )→ ρU is an
iso. It is convenient to drop ` from the notation and denote objects in
Ext with decorated K’s. Then the category X of ρ-extracts may be de-
scribed as follows: its objects are triples (U,K, j : K → U) with U in Con
such that ρj : K → ρU is an iso; and a map a : (U,K, j)→ (U ′, K ′, j′) is
just a map a : U → U ′ in Con. There is an obvious functor g : X → Ext
that sends (U,K, j) to K and a : (U,K, j)→ (U ′, K ′, j′) to the unique map
ga : K → K ′ making the following square

ρU
ρa
// ρU ′

K

ρj

OO

ga
// K ′

ρj′

OO

commute. For any K in Ext write X (K) for the fibre of g over K. Now, for
each b : K → K ′ in Ext and lifting of K to an object (U,K, j) in X define
the category YU,K,j,b = Y whose objects are liftings of b to a morphism of
X with domain (U,K, j) and whose morphisms are morphisms of X (K ′)
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forming commutative triangles. Lemma C3.3.8 of [7] implies that: if for
each b and (U,K, j) as above, the associated category Y is connected then
[Con,Set]→ [Ext,Set] is locally connected. Let us first prove that Y is
nonempty. For this consider the pushout on the left below

U
in0 // U ⊗K K ′ ρU

ρ(in0)
// ρ(U ⊗K K ′)

K

j

OO

b
// K ′

in1

OO

K

ρ(j)

OO

b
// K ′

ρ(in1)

OO

calculated in the category of k-algebras. Since ρ(j) is iso by hypothe-
sis (recall that (U,K, j) is in X ) Proposition 4.1 implies that U ⊗K K ′ is
connected and that ρ(in1) : K ′ → ρ(U ⊗K K ′) is an iso. Hence, the map
in0 : (U,K, j)→ (U ⊗K K ′, K ′, in1) is an object in Y . Finally, consider
any object a : (U,K, j)→ (U ′, K ′, j′) in Y as displayed on the left below

U a // U ′ U
in0 //

a
$$

U ⊗K K ′

h
��

K ′

j′
zz

in1oo

K

j

OO

b
// K ′

j′

OO

U ′

and notice that the pushout property determines a unique h : U ⊗K K ′ → U ′

such that the triangles on the right above commute. So h is a map in Y
from in0 : (U,K, j)→ (U ⊗K K ′, K ′, in1) to a : (U,K, j)→ (U ′, K ′, j′).
It follows that Y is indeed connected.

After the proof of Lemma 4.2 we stress that we do not claim to have
found the most efficient way to present the examples. It is to be expected
that in a near future there will be simpler ways to explain how the inclusion
Ext→ Con determines a pre-cohesive topos. In any case, we have the
following result.

Proposition 4.3. If k is perfect, p : [Con,Set]→ [Ext,Set] is the geomet-
ric morphism induced by the coreflector ρ : Con→ Ext and the following
diagram

F
q

��

i // [Con,Set]

p

��

Sh(Extop, Jat) // [Ext,Set]

MENNI - SUFFICIENT COHESION OVER ATOMIC TOPOSES

- 138 -



is a pullback of toposes then q : F → Sh(Extop, Jat) is pre-cohesive and
sufficiently cohesive.

Proof. The category D = Extop satisfies the right Ore condition (see ex-
ample 7 in [3]). Let C = Conop, ι : D → C the obvious full inclusion and
φ = ρop : C → D its left adjoint. Example 1.14 shows that the reflective sub-
category ι : D → C satisfies the primitive Nullstellensatz and φ : Ĉ → D̂ is
connected and locally connected by Lemma 4.2. Finally, the category C has
a terminal object and the two maps k[x]→ k in Con that send x to 0 and 1
in k respectively show that there is an object in C with two distinct points.
So we can apply Proposition 1.16.

The construction of examples in this section naturally leads to the fol-
lowing questions. Let C be an extensive category with finite products and
let Cs → C is its full subcategory of separable/decidable/unramified objects
[10, 4]. When is this category reflective? Assuming that C is small, when is it
the case that the left adjoint φ : C → Cs induces a locally connected Ĉ → Ĉs?
To prove this for our examples we used Proposition 4.1 which highlights a
special behaviour of tensor products in the category of k-algebras for a field
k. So we are led to a more specific problem. Consider a coextensive alge-
braic category V (such as those discussed in [14]) and let K be an object in
V . The category K/V is also algebraic and coextensive. If we let C be the
opposite of the category of finitely presentable objects in K/V then it would
be interesting to understand those K that make Cs → C reflective etc.

If k = C then Ext is terminal so the horizontal maps in the pullback
in the statement of Proposition 4.3 are equivalences and (the canonical)
p : [Con,Set]→ [Ext,Set] = Set is pre-cohesive. But we stress that, in
general, the canonical geometric morphism F → Set is not pre-cohesive.
This can be seen even in the simple case of k = R as we show in the next
section.

4.1 The case of the real field

Of course, Galois groups need not be finite. Moreover, if Galois theory is
to be done in an arbitrary ambient topos, then Galois groups are not internal
groups of automorphisms in the naive sense [18]. Having said this, I believe
that it is useful to illustrate the results in the previous sections in the simplest
possible non trivial (although finite) case over sets.
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Indeed, let us consider the case of k = R in Set, so that Con is the cat-
egory of finitely presented connected R-algebras and ` : Ext→ Con is the
(finite) full subcategory determined by finite extensions of k. Of course, this
full subcategory is equivalent to that determined by the (the initial object)
R and C. The right adjoint ρ : Con→ Ext may be described as follows.
For A in Con, ρA is the R-subalgebra generated the square roots of −1.
Notice that ρA ∼= R if A does not have square roots of −1 and ρA ∼= C oth-
erwise. To check that this is well-defined observe that if i2 = −1 = j2 then
j = i or j = −i. (This follows from connectedness and the fact that ij+1

2
is

idempotent in A.)
The atomic topology Jat on D = Extop has essentially one non-trivial

sieve: that generated by the unique map R→ C in Ext. Also, since D is
essentially finite and all its idempotents are identities, Jat is rigid in the sense
C2.2.8 in [7] and Sh(D, Jat) is equivalent to the topos of presheaves on the
full subcategory of D determined by those objects which only have trivial
covers. That is, Sh(D, Jat) ∼= [C2,Set] where C2 → Ext is the full sub-
category determined by those objects iso to C. Of course, C2 is equivalent
to the cyclic group C2 of order two.

Let Con′ → Con be the full subcategory determined by those connected
R-algebras A such that ρA ∼= C or, equivalently, there is an R-algebra map
C→ A. The following diagram

Con′

��

// Con

��

C2
// Ext

is a pullback of categories an the next result shows that it is preserved when
passing to toposes of Set-valued functors.

Lemma 4.4. If we let [Con′,Set]→ [C2,Set] be the geometric morphism
induced by the full inclusion C2 → Con′ then the following diagram

[Con′,Set]

��

i // [Con,Set]

p

��

[C2,Set] // [Ext,Set]
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is a pullback of toposes. (So [Con′,Set]→ [C2,Set] is pre-cohesive and
sufficiently cohesive.)

Proof. The subtopos [C2,Set]→ [Ext,Set] is open. Indeed, the sieve in
D generated by the unique morphism R→ C in Ext determines a subobject
U → 1 in the topos [Ext,Set]. More explicitly, UR = ∅ and UC = 1; and
[C2,Set] ∼= [Ext,Set]/U → [Ext,Set]. Since open subtoposes are closed
under pullback it follows that the subtopos F → [Con,Set] in Proposi-
tion 4.3 is equivalent to [Con,Set]/p∗U → [Con,Set] and hence F must
be a presheaf topos, say, of the form [Con′,Set] for some essentially small
Con′ determined by V = p∗U in [Con,Set]. In order to describe Con′ ex-
plicitly we first apply the general construction (see e.g. Proposition A1.1.7.).
The objects of Con′ are pairs (x,C) with x ∈ V C and C ∈ Con. A map
f : (x,C)→ (x′, C ′) in Con′ is a morphism f : C → C ′ in Con such that
(V f)x = x′. But V C = (p∗U)C = U(ρC) for each connected R-algebra C.
In other words, V C = (p∗U)C is terminal or initial depending on whether
there is an R-algebra map C→ C or not.

In order to give an explicit description of the Grothendieck topology on
Conop inducing F = [Con′,Set] we first isolate the following basic fact
(clearly related to the far more general Proposition 4.1).

Lemma 4.5. If the R-algebra A is connected and without square roots of
−1 then A[i] = A⊗R C is connected.

Proof. Let a+ bi in A[i] be idempotent. Then a2 − b2 = a and 2ab = b in
A. Now calculate

b2 = 4a2b2 = 4(a+ b2)b2 = 4ab2 + 4b4 = 2b2 + 4b4

an record that b2 + 4b4 = 0. So u = b2 satisfies 4u2 = −u in A. Then
(4u)2 = 16u2 = −4u and so c = 4u satisfies the equality c2 = −c. But then
(c+ 1)2 = c2 + 2c+ 1 = −c+ 2c+ 1 = c+ 1. That is, c+ 1 is idempotent
in A which means, under our hypotheses, that either c+ 1 = 0 or c+ 1 = 1;
so c = −1 or c = 0. If −1 = c = 4u = 4b2 = (2b)2 then we reach a contra-
diction (since we are assuming that A does not have a square root of −1). If
0 = c = 4b2 then b2 = 0 so a2 = a. Since A is connected a = 0 or a = 1. If
a = 0 then b = 2ab = 0. If a = 1 then b = 2b so b = 0. Altogether, a+ bi is
either 0 or 1.
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We can now define a basis K for a Grothendieck topology on Conop

(in the sense of Exercise III.3 in [16]). We do this in terms of cocovers in
Con. First we state that the cocovering families consist of exactly one map,
so it is enough to say what maps cocover. First all isos cocover. Also, if
ρA ∼= R then a map A→ A′ also cocovers if it is iso over A to the canonical
A→ A[i]. (This makes sense by Lemma 4.5.)

Lemma 4.6. The function K that sends A in Conop to the collection of cov-
ering maps with codomain A is a basis and Sh(Conop, K) ∼= [Con′,Set]
as subtoposes of [Con,Set].

Proof. It is easy to check that K is indeed a basis. The main ingredient is
that ifA ∈ Con is such that ρA ∼= R andA→ A′ is in Con then there exists
a cocovering map A′ → B and a commutative square as below

A[i] // B

A

OO

// A′

OO

in Con. Indeed, if ρA′ ∼= C then we can take B = A′ and A′ → B to be the
identity. On the other hand, if ρA′ ∼= R then we can take B = A′[i] and the
canonical A′ → A′[i] = B.

To prove that Sh(Conop, K) = [Con′,Set] we use the notation in the
proof of Lemma 4.4. So the subobject U → 1 is the image of the map
Ext(C, )→ Ext(R, ) = 1 in [Ext,Set] and we denote the map p∗U → 1
by V → 1 in [Con,Set]. Recall that V C is terminal or initial depending
on whether there is an R-algebra map C→ C or not. For general rea-
sons, the dense subobjects for the associated open topology in [Con,Set]
are those monos X ′ → X such that the projection π0 : X × V → X factors
through X ′ → X . In particular, for any R-algebra A in Con and cosieve
S → Con(A, ), S is dense if and only if for every A′ in Con such that
V A′ = 1 (that is, ρA′ ∼= C), every A→ A′ is in the cosieve S. Notice that
if V A = 1 then the identity on A must be in S. In other words, if V A = 1
then the maximal cosieve is the only (co)covering one. On the other hand, if
V A = 0 (i.e. ρA = R) then, S is cocovering if and only if the mapA→ A[i]
is S. Altogether, a sieve on A is dense with respect to the open topology de-
termined by V → 1 if and only if it contains a cocovering map.
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Now let Alg be the category of finitely presented R-algebras. The exten-
sive Algop may be equipped with the Gaeta topology and it is well-known
(see [14]) that the resulting topos of sheaves is equivalent to [Con,Set]. It
is also well-known that the Gaeta topology is subcanonical and that the re-
stricted Yoneda embedding Algop → [Con,Set] into the Gaeta topos pre-
serves finite coproducts.

Lemma 4.7. The restricted Yoneda embedding Algop → [Con,Set] fac-
tors through the subtopos inclusion F → [Con,Set] and the factorization
Algop → F preserves finite coproducts.

Proof. Let A in Alg. It is fair to write Con(A, ) for the non-representable
associated object in the Gaeta topos [Con,Set]. It is enough to prove that
every such Con(A, ) is aK-sheaf for the basis discussed in Lemma 4.6. We
need only worry about objects that have non-trivial covers so let C in Con
be such that ρC = R and consider the cocovering C → C[i]. A compatible
family consists of a map f : A→ C[i] satisfying that for any pair of maps
g, h : C[i]→ D in Con such that the diagram on the left below commutes

C // C[i]
g
//

h
// D A

f
// C[i]

g
//

h
// D

the diagram on the right above commutes too. But C → C[i] is the equalizer
(in Alg) of the identity on C[i] and conjugation. Hence there exists a unique
map f ′ : A→ C factoring f throughC → C[i]. This implies that Con(A, )
is a sheaf. To confirm that the factorization Algop → F preserves finite
coproducts just observe that since 1 + 1 in the Gaeta topos [Con,Set] is
actually in the image of Algop → [Con,Set] then it is also in the subtopos
F → [Con,Set].

In short, the geometric morphism F = [Con′,Set]→ [C2,Set] makes
F into a sufficiently cohesive pre-cohesive topos embedding the category
of ‘affine R-schemes’ Algop in such a way that finite coproducts are pre-
served. In contrast, the canonical geometric morphism f : F → Set is not
pre-cohesive. It is certainly locally connected because F is a pre-sheaf topos
but the leftmost adjoint f! : F → Set does not preserve finite products (and
hence the Nullstellensatz must fail). The simplest way to see this may be the
following.
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Example 4.8. The object X = Con′(C, ) in F is connected in the sense
that f!X = 1 because it is representable but f!(X ×X) = 2 as the next cal-
culation shows. Since there are enough maps to C, f!(X ×X) is a quotient
of (X ×X)C = Con′(C,C)×Con′(C,C) ∼= C2 × C2. If κ : C→ C de-
notes conjugation then the pairs (id, id) and (κ, κ) induce the same element
in f!(X ×X). Similarly, (id, κ) and (κ, id) induce the same element; but
(id, id) and (id, κ) cannot be equivalent.

It seems relevant at this point to compare F with the Zariski topos. Let
Z be the basis on Algop determined by declaring that the cocovering fam-
ilies are (up to iso) those of the form (A→ A[s−1] | s ∈ S) with S ⊆ A a
finite subset not contained in any proper ideal of A in Alg. (See III.3 in
[16] or A2.1.11(f) in [7].) Denote the Zariski topos Sh(Algop, Z) by Z .
Clearly the basis Z contains the Gaeta one so the inclusion Z → [Alg,Set]
factors through the Gaeta subtopos [Con,Set]→ [Alg,Set]. The basis
Z is also subcanonical but we stress that the subtoposes Z → [Con,Set]
and F → [Con,Set] are incomparable. This is clear if we contrast the ba-
sis K of Lemma 4.6 with the Zariski basis defined above. Certainly, the
Grothendieck topology generated by K does not contain most of the sieves
generated by the ‘open’ covers of Z. On the other hand, R in Conop does
not have a non-trivial Z-cocover. Hence, the composite

Z → [Con,Set]→ [Ext,Set]

does not factor through the subtopos [C2,Set]→ [Ext,Set].
The discussion above suggests considering the intersection of F and Z

over [Con,Set]. Hopefully, the resulting topos would combine the benefits
of a pre-cohesive topos with the colimit preservation properties of the em-
bedding Algop → Z . Alternatively, one can consider in F the algebra ob-
ject R = Con(R[x], ) and the least Lawvere-Tierney topology that makes
the subobject

{a ∈ R | (∃b ∈ R)(ab = 1) ∨ (∃b ∈ R)((1− a)b = 1)} −→ R

dense. The two subtoposes of F suggested above may turn out to be the
same but, in any case, this will have to be treated elsewhere.

Still in the case that k = R; what does F = [Con′,Set] classify? As-
sume a standard presentation of the theory of R-algebras extending the usual
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presentation of the theory of rings. The theory of connected R-algebras may
be presented by adding the axioms

0 = 1 ` ⊥ and x2 = x `x (x = 0) ∨ (x = 1)

and it is well-known (see [14]) that this induces the Gaeta topology on Algop

so the resulting topos of sheaves is equivalent to [Con,Set].

Lemma 4.9. The theory classified by F can be presented by adding the
axiom

` (∃x)(x2 = −1)

to the presentation of the theory of connected R-algebras described above.

Proof. To prove this is convenient to use the presentation of F given in
Lemma 4.6 because the basis K on Conop is clearly generated by the map
R→ C in Con; and this sieve covers if and only if the theory classified by
F satisfies the evident axiom.

Alternatively, one can start with the theory presented as in the statement
and regard it as a ‘quotient’ of the presentation of the theory of R-algebras. It
is well-known (see e.g. D3.1.10 in [7]) that one can construct the classifying
topos as the topos of sheaves on a site whose underlying category is the
opposite of the category of finitely presented algebras. Following this path
(and factoring through the Gaeta site) one arrives at the site (Conop, K).

For an arbitrary field the subtopos Sh(D, Jat)→ [Ext,Set] will not be
open but the description of the theory classified by F can probably be mod-
ified by adding an appropriate sequent for each map in Ext.

Lawvere suggested to discuss the classifying role of F over its natural
base. To do this recall (Theorem VIII.2.7 in [16]) that the base [C2,Set]
classifies C2-torsors, where C2 is cyclic group of order 2. For brevity let us
define a (C2-)torsored topos as a pair (T , T ) given by a topos T an a C2-
torsor T in it. A morphism g : (T , T )→ (T ′, T ′) of torsored toposes is a
geometric morphism g : T → T ′ such that g∗T ′ ∼= T .

Definition 4.10. A torsored algebra in a torsored topos (T , T ) is an inter-
nal R-algebra A in T together with a map T → A such that the following
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diagram
T

��

// 1

−1

��

A
∆
// A× A ·

// A

is a pullback; where ∆ is the diagonal and · is the multiplication of the
algebra A.

The pre-cohesive F → [C2,Set] makes F into a torsored topos (F , F )
and the object R = Con(R[x], ) is a R-algebra in F = Sh(Conop, K).

Proposition 4.11. The R-algebra R in F may be equipped with a torsored
algebra structure in (F , F ) and it is the generic one. That is, (F , F, R)
classifies torsored algebras among torsored toposes.

Proof. The underlying object of the generic C2-torsor is the representable
C2(C, ) in [C2,Set]. The inverse image of the pre-cohesiveF → [C2,Set]
sends C2(C, ) to C2(C, ρ( )) ∼= Con(C, ) = F . The unique R-algebra
map R[x]→ C sending x to i determines a morphism F → R and since
the diagram below

x_

��

� // x2

R[x]

��

// R[x]

��

x_

��

−1 R // C i

is a pushout in Con, the map F → R in F makes R into a torsored algebra.
To prove that it is the generic one let (T , T ) be a torsored topos and let A be
a torsored algebra in T . The unique map T → 1 is epi because T is a torsor
and so, the condition defining torsor algebras implies that ` (∃x)(x2 = −1)
holds in T . By Lemma 4.9 there exists an essentially unique geometric
morphism g : T → F such that g∗R = A. Since g∗ preserves finite limits it
must be the case that g∗F ∼= T so g is a morphism of torsored toposes.
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[1] J. Adámek, J. Rosický, and E. M. Vitale. What are sifted colimits?
Theory Appl. Categ., 23:No. 13, 251–260, 2010.

[2] M. F. Atiyah and I. G. Macdonald. Introduction to commutative al-
gebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don
Mills, Ont., 1969.

[3] M. Barr and R. Diaconescu. Atomic toposes. J. Pure Appl. Algebra,
17:1–24, 1980.

[4] A. Carboni and G. Janelidze. Decidable (= separable) objects and mor-
phisms in lextensive categories. J. Pure Appl. Algebra, 110(3):219–
240, 1996.

[5] M. Demazure and P. Gabriel. Groupes algébriques. Tome I: Géométrie
algébrique, généralités, groupes commutatifs. Masson & Cie, Éditeur,
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Abstract. An autograph is a set A with an action of the free monoid with
2 generators; it could be drawn as arrows between arrows. In [5] we have
shown that knot diagrams as well as 2-graphs are examples. Of course the
category of autographs is a topos, and an autographic algebra will be the
algebra of a monad on this topos. In this paper we compare autographic alge-
bras with graphic algebras of Burroni, via graphic monoı̈ds of Lawvere. For
that we use monadicity criterions of Lair and of Coppey. The point is that
when it is possible to replace graphic algebras by autographic algebras, we
change a situation with 2 types of arities into a situation with only 1 type, the
type “object” being avoided. So graphs, basic graphic algebras, autographs
in a category of algebras of a Lawvere theory, elements of any 2-generated
graphic topos, categories, autocategories, associative autographs, are auto-
graphic algebras.
Résumé. Un autographe est un ensemble A équipé d’une action du monoı̈de
libre à deux générateurs, et peut être représenté en dessinant des flèches entre
des flèches. Dans [5] nous avons obtenu comme exemples les diagrammes
de nœuds et les 2-graphes. Evidemment la catégorie de ces autographes est
un topos, et une algèbre autographique sera une algèbre d’une monade sur
ce topos. Ici nous comparons ces algèbres avec les algèbres graphiques de
Burroni, via les monoı̈des graphiques de Lawvere, en utilisant les critères de
monadicité de Lair et de Coppey. Le point est que lorsque l’on remplace une
situation graphique par une situation autographique, on transforme une situ-
ation à 2 types d’arités en une situation à 1 type, le type “objet” étant montré
évitable. Ainsi les graphes, les algèbres graphiques basiques, les autographes
dans une catégorie d’algèbres de Lawvere, les éléments de topos graphiques
2-engendrés, les catégories, les autocatégories, et les autographes associatifs
sont des algèbres autographiques.

Keywords. graph, autograph, graphic algebras, graphic monoı̈ds.
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1. From graphs to autographs

Definition 1.1. (see [5, def. 1.1., p.66]) We denote by FM(2) = {d, c}∗ the
free monoı̈d on two generators d and c. As a category with one object υ, this
monoı̈d FM(2) is the category of paths in the graph

υ

d

��

c

DD

Especially the identity is the empty path “()”, also denoted by 1υ.
An autograph (A, (dA, cA)) is a set A of arrows, equipped with two maps
domain dA : A → A and codomain cA : A → A; that is to say an action of
FM(2) on A; if necessary this action is again denoted by A, with

A(υ) = A,A(d) = dA, A(c) = cA.

We represent a ∈ A with dAa = v and cAa = w, by: a : v → w, or
v

a→ w, or by:
a

v w

The category of autographs is Agraph = SetFM(2); in this category a mor-
phism is a map f : A → A′ satisfying d′fa = fda, c′fa = fca. We have
a forgetful functor:

U : Agraph→ Set : (A, (dA, cA)) 7→ A.

Definition 1.2. We denote by G(2) the category with two objects υ0 and υ1,
and five non-identity arrows

γ0, δ0 : υ1 → υ0, ι : υ0 → υ1, δ, γ : υ1 → υ1,

with identities on υ1 and υ0, and with equations :

δ0.ι = 1υ0 , γ0.ι = 1υ0 , γ = ι.γ0, δ = ι.δ0.

υ0
ι // υ1

δ0

ww

γ0

gg

δ

��

γ

EE
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Presheaves G on G(2), i.e. objects of Graph = SetG(2) are named
graphs. Any V ∈ G(υ0) is named a vertex, and if f ∈ G(υ1), f is named an
arrow; then the fact that G(δ0)(f) = V and G(γ0)(f) = V ′ is represented
by: f : V → V ′.

Remark 1.3. When we work “over graphs” we have to consider 2 types of
arities (vertices and arrows), wheras working “over autographs” introduces
only 1 type (arrows). So our question here is to understand precisely when
the reduction of a 2 types situation to a 1 type situation is possible.

Proposition 1.4. The comparison between graphs and autographs is in-
duced by pre-composition with the functor

FM(2)
φ−→ G(2)

given by
φ(υ) = υ1, φ(d) = δ, φ(c) = γ.

Up to an isomorphism, any graph G : G(2) → Set is determined by its
associated autograph Gφ : FM(2)→ Set.

Proof. In a graph G for each vertex V ∈ G(υ0), the arrow G(ι)(V ) ∈ G(υ1)
is exactly a fixed point of δ, i.e. an x ∈ G(υ1) such that δ(x) = x, as well as
exactly a fixed point of γ. So in fact we recover the set of vertices ofG as the
splitting of the idempotent δ, or also the splitting of γ (these two splittings
are isomorphic).

Proposition 1.5. The comparison φ between graphs and autographs in Propo-
sition 1.4 admits a factorisation through the image M(2) of φ, in such a way
that G(2) is the strict karoubian envelope of M(2).

G(2) = Kar0(M(2))
j←−M(2) = Imφ

φ̄←− FM(2).

This monoı̈d M(2) is introduced by Lawvere as a graphic monoı̈d.

Proof. In G(2) we get δ2 = δ, γ2 = γ, γδ = δ, δγ = γ, and the full subcate-
gory EndG(υ1) of G(2) generated by υ1 has one unit and two idempotents, γ
and δ, which are splitted in G(2) as υ0. If we denote by M(2) = {1, c, d} the
monoı̈d with c2 = c, d2 = d, cd = d, dc = c, this monoı̈d is included in G(2)
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as EndG(υ1) via j : 1 7→ 1υ1 , c 7→ γ, d 7→ δ and is a quotient of FM(2), the
free monoı̈d on two generators c and d, via φ̄, with φ̄(1υ) = 1, φ̄(c) = c,
φ̄(d) = d. We have j.φ̄ = φ.
Our M(2) is denoted ∆1 and M(2) by Lawvere (see [9] and [10]), and a
diagram of shape ∆1 is named a cylinder. Lawvere observed that we re-
cover G(2) = Kar0(∆1) from the Cauchy completion Kar(∆1) = ∆̄1 of
the monoı̈d ∆1 = M(2) (the category obtained by splitting idempotents in
∆1, also named “karoubian envelope” of ∆1). As δγ = γ and γδ = δ,
δ : (υ1, δ) → (υ1, γ) and γ : (υ1, γ) → (υ1, δ) are morphisms between
idempotents, and furthermore, for the same reason, they are inverse one of
the other. We obtain Kar0(∆1) from Kar(∆1) by reduction of these inverse
isomorphisms to identities on one object υ0.

2. Autographic algebras

Burroni [3] defines a graphic algebra as an algebra of a monad on Graph.
Similarly we define:

Definition 2.1. An autographic algebra is an algebra of a monad on Agraph.

2.1 Graphs are autographic algebras

Proposition 2.2. In the following diagram, all the functors are monadic:

Graph = EnsG(2)

evaG(2)
v

((QQQQQQQQQQQQQQQQQQQQQ

Φ=(−).φ
--

J=(−).j
// EnsM(2)

evaM(2)
v

��

Φ̄=(−).φ̄
// EnsFM(2) = Agraph

evaFM(2)
v

vvllllllllllllllllllllll

= =

Ens

Especially, graphs are autographic algebras.

Proof. It is easy to show that J is an equivalence of categories [1, ex. 3.4,
p.107]. This comes from the fact that splitting idempotents is an absolute
limit construction. Then we use the known fact that for any monoı̈d M
the forgetful functor EnsM → Ens is monadic [1, ex. 3.5, p.109], and we
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get that the three evaluations are monadic. These facts could be proved by
the Linton characterization of monadicity over Ens, and the property for Φ̄
by its extension by Borceux and Day [2] for monadicity over a category of
presheaves.

In the next sections we will need two criterions of monadicity which
could have been used here.

Proposition 2.3. The proposition 2.2 could also be proved using Coppey or
Lair criterions of monadicity.

Proof. 1 — According to the Coppey’s criterion [4, Prop. 2, p.17], the

monadicity of a functor EnsD
EnsK−→ EnsC for K : C → D a functor bi-

jective on objects, is equivalent to the existence of a left adjoint.
This works especially for any morphism of monoı̈ds f : M ′ −→ M , and so
here for φ̄ : FM(2) −→M(2).

2 — The Lair’s criterion [7, thm.2, p.278] [8, Corollaire, p.8]. says that
the VTT condition of Beck [11, Th. 1, p147, ex. 6, p. 151] for tripleability
is satisfied for a projectively sketched functor U = EnsK : EnsS

′ → EnsS ,
sketched by a morphism of projective sketches K : S → S ′ if K is basic (or
of ‘Kleisli’), i.e. if any distinguished cone in S ′ is based in S, and any new
object in S ′ is the top of a distinguished cone in S ′.
Here this criterion can be applied to φ̄ : FM(2) → M(2) considered as a
morphism of projective sketches, with no cones, and with no new object in
M(2), or it could be applied to φ : FM(2)→ G(2), with, as a distinguished
cone, the one specifying the new object v0 as a kernel, based in M(2).

2.2 Basic graphic algebras are autographic algebras

Proposition 2.4. If W : X → Graph is algebraic, i.e. if, via W , X is a
category of graphic algebras in the sense of Burroni [3], and if, more strictly,
W is sketched by a basic morphism of small projective sketches (in the sense
of Lair) K : G(2) → S ′, with X = SetS

′
and W = SetK , then the func-

tor SetKφ : X → Agraph is algebraic, i.e., via SetKφ, X is a category of
autographic algebras. For example this works for X = Cat: categories are
autographic algebras.
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Proof. As j induces an equivalence, the question is reduced to the transfer
of monadicity from SetM(2) to SetFM(2), via Setφ̄. At first let us recall that
this functor is monadic, i.e. that the proposition is valid if W = IdGraph.
But as K : G(2) → S ′ is basic (see definition in proposition 2.3), also
Kj : M(2)→ S′ is basic, and then Kjφ̄ = Kφ : M(2)→ S ′ is basic. So X
is a category of (basic) autographic algebras.

2.3 Autographs in Lawvere algebras are autographic algebras

Proposition 2.5. Let T be the sketch of a Lawvere theory. Then the category
Agraph

(
SetT

)
of autographs in SetT is monadic over Agraph.

Proof. Let u be the object in T such that each objects is specified as a un,
and let K : FM(2)→ FM(2)× T : m 7→ (m,u). This functor is basic, and
so the functor SetK : SetFM(2)×T → SetFM(2) = Agraph is monadic. And
Agraph(SetT ) =

(
SetT

)FM(2)
= SetT×FM(2).

2.4 Quotients of FM(2) and reflexive subcategories of Agraph

Proposition 2.6. Any presentation of a 2-generated monoı̈d M , i.e. any
quotient map of monoı̈ds qM : FM(2) → M determines by composition
on the right a functor SetqM : SetM → SetFM(2) with left and right ad-
joints LanqM a (−)qM a RanqM , and the adjunction LanqM a (−)qM de-
termines the topos SetM as a reflexive subcategory of Agraph which is a
category of autographic algebras. Especially this works for M the monoı̈ds
FIM(2),FGM(2),FSM(2) = M(2) given in Prop. 2.8.

Proof. As in Prop. 2.3 it is a consequence of [4, Prop. 2, p.17]. Let us
precise that the corresponding idempotent monad TM = (−)qM LanqM is
clear; for (A, d, c) in SetFM(2) we have TM(A, d, c) = A/[qM ], with [qM ] the
smallest congruence on (A, d, c) such that

∀m,m′ ∈ FM(2)∀u ∈ A
(
qM(m) = qM(m′)⇒ mu = m′u mod [qM ]

)
;

so, for any x, y ∈ A, we have x = y mod [qM ] if and only if

∃k ≥ 1,∀j ≤ k, ∃mj,m
′
j ∈ FM(2), q(mj) = q(m′j),∃uj ∈ E,

x = m1u1, m
′
1u1 = m2u2, . . .m

′
k−1uk−1 = mkuk, m

′
kuk = y.
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An example of Prop. 2.6 is:

Proposition 2.7. With FM(1) = N (equipped with +) the free monoı̈d on
one generator, SetFM(2) is the pullback of SetFM(1) → Set with itself. The
topos SetFM(1) of “primary structures” is an algebraic category over the
topos SetFM(2) of autographs: primary structures are autographic algebras.

Proof. The objects of SetFM(1) are named primary structures by M. Lazard.
Here we have a quotient map of monoı̈ds

q1 : FM(2)→ FM(2)/(c = d) = FM(1),

and so (Prop. 2.6) Setq1 : SetFM(1) → SetFM(2) is monadic.

2.5 2-generated graphic topos

One example of Prop.2.6 is associated to the free 2-generated graphic monoı̈d.

Proposition 2.8. 1 — The monoı̈d M(2) is the free right singular monoı̈d (in
which xy = y) on 2 generators c and d, and so is denoted by FSM(2).
2 — The monoı̈d M(2) is a right graphic monoid (in which xyx = yx), but
it is not a free one.
3 — The free right graphic monoid on 2 generators c and d is denoted by
FGM(2). It has 5 elements.
4 — G(2) = Kar0(M(2)) is a quotient of Ḡ(2) = Kar0(FGM(2)).
5 — The monoı̈d FGM(2) is an idempotent monoı̈d (in which x2 = x), but
it is not a free one.
6 — The free idempotent monoı̈d on 2 generators c and d is denoted by
FIM(2). It has 7 elements. A quotient of FIM(2) is FGM(2).

Proof. FGM(2) = {1, c, d, cd, dc} is obtained by adjunction of a unit to the
free right regular semigroup on two generators c and d. Then M(2) is a
quotient of FGM(2), with cdc = dc and dcd = cd. The notion of a graphic
monoı̈d M is used by Lawvere to introduce graphic toposes EnsM

op
. A band

is a semigroup where every element is idempotent, a left regular band is a
band with xyx = xy, and so a graphic monoı̈d according to Lawvere is
exactly a left regular band with unit. Then an explicit construction of the
free left regular band on n generators is given in [6], which for n = 2 gives
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a semigroup with 4 elements, and with one more element as unit we get
FGM(2).
We have FIM(2) = {1, c, d, cd, dc, cdc, dcd}. The description of FIM(2) is
given in [12].

Proposition 2.9. Any graphic topos SetKar0(M) ' SetM withM a 2-generated
graphic monoı̈d is a category of autographic algebras.

Proof. Any such M is a quotient of FGM(2), and so of FM(2). Of course
as FIM(2) is finite, there is only a finite number of such M .

3. Autocategories, associative autographs, flexicategories

The following definitions precise the situation of autocategories between as-
sociative autographs and flexicategories. We see that associative autographs
and autocategories are examples of autographic algebras.

Definition 3.1. An associative autographA is an autograph (A, d, c) equipped
with composition gf : p → r for any f : p → q, g : q → r, such that the
two compositions of three consecutive arrows are equal:

Associativity: h(gf) = (hg)f, if f : p→ q, g : q → r, h : r → s.

An associative autograph A is unitary if the underlying autograph (A, d, c)
is with identifiers — i.e. with specified arrows idf : df → df , icf : cf →
cf for every f ∈ A — and if these identifiers are identities i.e. units for
composition:

Unitarity: fidf = f = icff.

An unitary associative autograph is shortly named an autocategory ([5, p.76]).

The category of associative autographs is denoted by AAgraph (with
morphisms the maps F : A → A′ with d′Fa = Fda, c′Fa = Fca,
F (ba) = F (b)F (a) if db = ca).
The forgetful functor W : AAgraph→ Agraph is given by W(A) = (A, d, c).
The category of autocategories is denoted by Acat: it is the full subcategory
of AAgraph with objects the autocategories. We have a forgetful functor
W′ = WI : Acat → Agraph, with I : Acat → AAgraph the inclusion
functor.
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Remark 3.2. In the definition of an autocategory, identities are unique, and
so “unitary” is a property of an associative autograph, and not a supplemen-
tary data on it. So autocategories are to associative autographs as monoı̈ds
are to semigroups.

Definition 3.3. A flexicategory is a category C equipped with a flex i.e. a
map ϕ : Obj(C) → Arrow(C). The category of flexicategories is Fcat, with
morphisms functors F : C → C ′ such that ϕ′(F (X)) = F (ϕ(X)).

We have a forgetful functor W ′′ : Fcat→ Cat given by W ′′((C, ϕ)) = C.

Proposition 3.4. An autocategory A “is” a mono-flexicategory , i.e. a cat-
egory UA = C equipped with a flex ϕ : Obj(C) → Arrow(C), with the
condition that ϕ is injective. So is defined an inclusion J : Acat → Fcat,
and we have the forgetful functor W′′′ = W ′′J : Acat→ Cat.

Proof. In [5, Prop.6.2., p.76] we saw that any mono-flexicategory deter-
mines an autocategory. But conversely, given an autocategory A we can
introduce an underlying category C with objects the Ou, with u any iden-
tifier u = idf or u = icf in A, and then sources and targets are given by
s(f) = Odf , t(f) = Ocf , and the identities on objects are IdOu = u.

Proposition 3.5. 1 — The category of autocategories is a category of auto-
graphic algebras, the associated monad is the construction of “paths with
identity” given in [5, Prop. 6.3, p. 77]

Pι(A, (d, c)) =
(
Pathι(A, (d, c)), D,C

)
.

2 — The category AAgraph of associative autographs is a category of auto-
graphic algebras, the associated monad is the construction of “paths without
adding identities” given by

P(A, (d, c)) =
(
Path(A, (d, c)), D, C

)
,

analogous to Pι(A, (d, c)) excepted that we do not add identities.
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