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Résumé. Dans [1] Grothendieck développe la théorie des pro-objets

sur une catégorie C . La propriété fondamentale de la catégorie

Pro(C) des pro-objets est qu’il y a une immersion C
c−→ Pro(C) ,

Pro(C) est fermée par petites limites cofiltrées, et ces limites sont

libres dans le sens que pour une catégorie quelconque E fermée par

petites limites cofiltrées, la précomposition par c détermine une

équivalence des catégories Cat(Pro(C),E)+ ' Cat(C,E) (où ”+”

indique la sous-catégorie des foncteurs qui préservent les limites

cofiltrées). Dans cet article nous développons une théorie des

pro-objets en dimension 2. Étant donnée une 2-catégorie C , nous

construisons une 2-catégorie 2-Pro(C) , dont nous appelons les

objets 2-pro-objets. Nous montrons que 2-Pro(C) a toutes les

propriétés basiques attendues, correctement relativisées au contexte

2-catégorique, y compris la propriété universelle analogue à celle

mentionnée ci-dessus. Bien que nous ayons à notre disposition

les résultats de la théorie des catégories enrichies, notre théorie va

au-delà du cas des catégories enrichies sur Cat , car nous considérons

la notion non-stricte de pseudo-limite, qui est usuellement celle

d’intérêt pratique.

Abstract. In [1], Grothendieck develops the theory of pro-objects

over a category C . The fundamental property of the category

Pro(C) is that there is an embedding C
c−→ Pro(C) , the category

Pro(C) is closed under small cofiltered limits, and these limits are

free in the sense that for any category E closed under small cofiltered

limits, pre-composition with c determines an equivalence of

categories Cat(Pro(C), E)+ ' Cat(C, E) , (where the ” + ” indicates

the full subcategory of the functors preserving cofiltered limits).

In this paper we develop a 2-dimensional theory of pro-objects.

Given a 2-category C , we define the 2-category 2-Pro(C) whose
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objects we call 2-pro-objects. We prove that 2-Pro(C) has all the

expected basic properties adequately relativized to the 2-categorical

setting, including the universal property corresponding to the one

described above. We have at hand the results of Cat -enriched

category theory, but our theory goes beyond the Cat -enriched case

since we consider the non strict notion of pseudo-limit, which is

usually that of practical interest.

Key words. 2-pro-object, 2-filtered, pseudo-limit.
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Introduction. In this paper we develop a 2-dimensional theory of
pro-objects. Our motivation are intended applications in homotopy,
in particular strong shape theory. The Č ech nerve before passing
modulo homotopy determines a 2-pro-object which is not a pro-object,
leaving outside the actual theory of pro-objects. Also, the theory of
2-pro-objects reveals itself a very interest subject in its own right.

Given a 2-category C , we define the 2-category 2 -Pro(C) , whose
objects we call 2-pro-objects. A 2-pro-object is a 2-functor (or diagram)
indexed in a 2-cofiltered 2-category. Our theory goes beyond enriched
category theory because in the definition of morphisms, instead of strict
2-limits, we use the non strict notion of pseudo-limit, which is usually
that of practical interest. We prove that 2 -Pro(C) has all the expected
basic properties of the category of pro-objects, adequately relativized to
the 2-categorical setting.

Section 1 contains some background material on 2-categories.
Most of this is standard, but some results (for which we provide
proofs) do not appear to be in the literature. In particular we
prove that pseudolimits are computed pointwise in the 2-functor
2-categories Hom(C,D) and Homp(C,D) (definition 1.1.11), with
2-natural or pseudonatural transformations as arrows. This result,
although expected, needs nevertheless a proof. We recall from [8] the
construction of 2-filtered pseudocolimits of categories which is essential
for the computations in the 2-category of 2-pro-objects introduced
in section 2. Finally, we consider the notion of flexible functors
from [4] and state a useful characterization independent of the left
adjoint to the inclusion Hom(C,D) → Homp(C,D) (Proposition
1.3.2). With this characterization the pseudo Yoneda lemma just says
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that the representable 2-functors are flexible. It follows also that
the 2-functor associated to any 2-pro-object is flexible, and this has
important consequences for a Quillen model structure in the 2-category
of 2-pro-objects currently being developed by the authors in ongoing
research.

Section 2 contains the main results of this paper. In a first subsection
we define the 2-category of 2-pro-objects of a 2-category C and establish
the basic formula for the morphisms and 2-cells between 2-pro-objects in
terms of pseudo limits and pseudo colimits of the hom categories of C .
With this, inspired in the notion of an arrow representing a morphism
of pro-objects found in [3], in the next subsection we introduce the
notion of an arrow and a 2-cell in C representing an arrow and a 2- cell
in 2 -Pro(C) , and develop computational properties of 2-pro-objects
which are necessary in our proof that the 2-category 2 -Pro(C) is closed
under 2-cofiltered pseudo limits. In the third subsection we construct a
2-filtered category which serves as the index 2-category for the 2-filtered
pseudolimit of 2-pro-objects (Definition 2.3.1 and Theorem 2.3.3). This
is also inspired in a construction and proof for the same purpose found
in [3], but which in our 2-dimensional case reveals itself very complex
and difficult to manage effectively. We were forced to have recourse to
this complicated construction because the conceptual treatment of this
problem found in [1] does not apply in the 2-dimensional case. This
is so because a 2-functor is not the pseudocolimit of 2-representables
indexed by its 2-category of elements. Finally, in the last subsection we
prove the universal properties of 2 -Pro(C) (Theorem 2.4.6), in a way
which is novel even if applied to the classical theory of pro-objets.

1 Preliminaries on 2-categories

We distinguish between small and large sets. For us legitimate
categories are categories with small hom sets, also called locally small.
We freely consider without previous warning illegitimate categories with
large hom sets, for example the category of all (legitimate) categories, or
functor categories with large (legitimate) exponent. They are legitimate
as categories in some higher universe, or they can be considered as
convenient notational abbreviations for large collections of data. In
fact, questions of size play no overt role in this paper, except that
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we elect for simplicity to consider only small 2-pro-objects. We will
explicitly mention whether the categories are legitimate or small when
necessary. We reserve the notation Cat for the legitimate 2-category
of small categories, and we will denote CAT the illegitimate category
(or 2-category) of all legitimate categories in some arbitrary sufficiently
high universe.

Notation. 2-Categories will be denoted with the “mathcal” font
C, D, . . . , 2-functors with the capital “mathff” font, F , G , ... and
2-natural transformations, pseudonatural transformations and modifi-
cations with the greek alphabet. For objects in a 2-category, we will
use capital “mathff” font C, D, . . . , for arrows in a 2-category small
case letters in “mathff” font f, g, . . . , and for the 2-cells the greek
alphabet. However, when a 2-category is intended to be used as the
index 2-category of a 2-diagram, we will use small case letters i, j, . . .
to denote its objects, and small case letters u, v, . . . to denote its
arrows. Categories will be denoted with capital ”mathff” font.

We begin with some background material on 2-categories. Most of
this is standard, but some results (for which we provide proofs) do not
appear to be in the literature. We also set notation and terminology as
we will explicitly use in this paper.

1.1 Basic theory

Let Cat be the category of small categories. By a 2-category, we
mean a Cat enriched category. A 2-functor, a 2-fully-faithful 2-functor,
a 2-natural transformation and a 2-equivalence of 2-categories, are a
Cat -functor, a Cat -fully-faithful functor, a Cat -natural transformation
and a Cat -equivalence respectively.

In the sequel we will call 2-category an structure satisfying the
following descriptive definition free of the size restrictions implicit above.
Given a 2-category, as usual, we denote horizontal composition by
juxtaposition, and vertical composition by a ” ◦ ”.

1.1.1. 2-Category. A 2-category C consists on objects or 0-cells C ,
D ... , arrows or 1-cells f , g ... , and 2-cells α , β , ... .

C
f //
α⇓
g

// D
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The objects and the arrows form a category (called the underlying
category of C ), with composition (called ”horizontal”) denoted by
juxtaposition. For a fixed C and D , the arrows between them and the
2-cells between these arrows form a category C(C,D) under ”vertical”
composition, denoted by a ” ◦ ”. There is also an associative horizontal
composition between 2-cells denoted by juxtaposition, with units ididC .
The following is the basic 2-category diagram:

f // f′ //

⇓α ⇓α′

C
g // D

g′ // E

⇓β ⇓β′
h // h′ //

with the equations (β′β) ◦ (α′α) = (β′ ◦ α′)(β ◦ α), idf′idf = idf′f .

We consider juxtaposition more binding than ” ◦ ”, thus αβ ◦ γ
means (αβ)◦γ . We will abuse notation by writing f instead of idf for
morphisms f and C instead of idC for objects C .

1.1.2. Dual 2-Category. If C is a 2-category, we denote by Cop the
2-category with the same objects as C but with Cop(C,D) = C(D,C) ,
i.e. we reverse the 1-cells but not the 2-cells.

1.1.3. 2-functor. A 2-functor F : C −→ D between 2-categories is an
enriched functor over Cat . As such, sends objects to objects, arrows to
arrows and 2-cells to 2-cells, strictly preserving all the structure.

1.1.4. 2-fully-faithful. A 2-functor F : C −→ D is said to be
2-fully-faithful if ∀ C, D ∈ C , FC,D : C(C,D) −→ D(FC,FD) is an
isomorphism of categories.

1.1.5. Pseudonatural. A pseudonatural transformation C
F //
θ⇓
G

// D

between 2-functors consists in a family of morphisms {FC θC−→ GC}C∈C
and a family of invertible 2-cells {GfθC

θf=⇒ θDFf}C f−→D∈C
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FC
θC //

Ff

��

GC

Gf

��
⇓ θf

FD
θD

// GD

satisfying the following conditions:

PN0: ∀ C ∈ C , θidC = idθC
PN1: ∀ C

f−→ D
g−→ E , θgf = θgFf ◦ Gg θf .

PN2: ∀ C
f //
α⇓
g

// D , θg ◦ Gα θC = θDFα ◦ θf

1.1.6. 2-Natural. A 2-natural transformation θ between 2-functors is
a pseudonatural transformation such that θf = id ∀f ∈ C . Equivalently,
it is a Cat -enriched natural transformation, that is, a natural transfor-
mation between the functors determined by F and G , such that for each

2-cell C
f //
α⇓
g

// D , the equation GαθC = θDFα holds. �

1.1.7. Modification. Given 2-functors F and G from C to D , a

modification F
θ //
ρ⇓
η

// G between pseudonatural transformations is a

family {θC
ρC=⇒ ηC}C∈C of 2-cells of D such that:

∀ C f−→ D ∈ C, ρDFf ◦ θf = ηf ◦ GfρC.

As a particular case, we have modifications between 2-natural transfor-
mations, which are families of 2-cells as above satisfying ρDFf = GfρC .

1.1.8. 2-Equivalence. A 2-functor C F−→ D is said to be a

2-equivalence of 2-categories if there exists a 2-functor D G−→ C and

invertible 2-natural transformations FG
α

=⇒ idD and GF
β

=⇒ idC . G
is said to be a quasi-inverse of F , and it is determined up to invertible
2-natural transformations.
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1.1.9 Proposition. [11, 1.11] A 2-functor F : C −→ D is a
2-equivalence of 2-categories if and only if it is 2-fully-faithful and es-
sentially surjective on objects. �

1.1.10. It is well known that 2-categories, 2-functors and 2-natural
transformations form a 2-category (which actually underlies a
3-category) that we denote 2-CAT . Horizontal composition of
2-functors and vertical composition of 2-natural transformations are the
usual ones, and the horizontal composition of 2-natural transformations
is defined by:

Given C
F //
α⇓
G

// D
F′ //
α′⇓
G′

// E , (α′α)C = α′GC◦F′(αC) ( = G′(αC)◦α′FC ).

1.1.11 Definition. Given two 2-categories C and D , we consider two
2-categories defined as follows:

Hom(C,D) : 2-functors and 2-natural transformations.

Homp(C,D) : 2-functors and pseudonatural transformations.

In both cases the 2-cells are the modifications. To define composi-
tions we draw the basic 2-category diagram:

θ // θ′ //

⇓ρ ⇓ρ′

F
η // G

η′ // H

⇓ ε ⇓ ε′
µ // µ′ //

(θ′θ)C = θ′CθC

(ρ′ρ)C = ρ′CρC

(ε ◦ ρ)C = εC ◦ ρC

It is straightforward to check that these definitions determine a
2-category structure. �

1.1.12 Remark. [9, I,4.2.] Evaluation determines a quasifunctor

Homp(C,D)× C ev−→ D (in the sense of [9, I,4.1.], in particular, fix-
ing a variable, it is a 2-functor in the other). In the strict case Hom ,
evaluation is actually a 2-bifunctor. �

1.1.13 Remark. [9, I,4.2] Both constructions Hom and Homp

determine a bifunctor 2-CAT op × 2-CAT −→ 2-CAT . Given 2-functors

DESCOTTE & DUBUC - A THEORY OF 2-PRO-OBJECTS

- 8 -



C ′ H0−→ C and D H1−→ D′ , and F
θ //
ρ⇓
η

// G in Homε(C,D)(F,G) , the

definition Homε(H0,H1)(F
θ //
ρ⇓
η

// G) = H1FH0

H1θH0 //
H1ρH0⇓
H1ηH0

// H1GH0 deter-

mines a functor Homε(C,D)(F,G) −→ Homε(C ′,D′)(H1FH0,H1GH0) ,
and this assignation is bifunctorial in the variable (C,D) (here Homε

denotes either Hom or Homp ).

If C and D are 2-categories, the product 2-category C × D is
constructed in the usual way, and this together with the 2-category
Hom(C,D) determine a symmetric cartesian closed structure as follows
(see [11, chapter 2] or [9, I,2.3.]):

1.1.14 Proposition. The usual definitions determine an isomorphism
of 2-categories :

Hom(C, Hom(D, A))
∼=−→ Hom(C × D, A).

Composing with the symmetry C×D
∼=−→ D×C yields an isomorphism:

Hom(C, Hom(D, A))
∼=−→ Hom(D, Hom(C, A)). �

We use the following notation:

Notation: Let C be a 2-category, C ∈ C and D
f //
α⇓
g
// E ∈ C .

1. f∗ : C(C,D)
f∗−→ C(C,E) , f∗(h

β−→ h′) = (fh
fβ−→ fh′) .

2. f∗ : C(E,C)
f∗−→ C(D,C) , f∗(h

β−→ h′) = (hf
βf−→ h′f) .

3. α∗ : f∗
α∗=⇒ g∗ , (α∗)h = αh .

4. α∗ : f∗
α∗

=⇒ g∗ (α∗)h = hα .

5. C C(C,−)−→ Cat : C(C,−)(D
f //
α⇓
g
// E) = (C(C,D)

f∗ //
α∗⇓
g∗
// C(C,E)) .
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6. Cop C(−,C)−→ Cat : C(−,C)(D
f //
α⇓
g
// E) = (C(D,C)

f∗ //
α∗⇓
g∗
// C(E,C)) .

7. We will also denote by f∗ the 2-natural transformation from
C(E,−) to C(D,−) defined by (f∗)C = f∗ .

8. We will also denote by f∗ the 2-natural transformation from
C(−,D) to C(−,E) defined by (f∗)C = f∗ .

9. We will also denote by α∗ the modification from f∗ to g∗ defined
by (α∗)C = α∗ .

10. We will also denote by α∗ the modification from f∗ to g∗ defined
by (α∗)C = α∗ . �

1.1.15. Given a locally small 2-category C , the Yoneda 2-functors are
the following (note that each one is the other for the dual 2-category):

a. C y(−)

−→ Hom(C, Cat)op , yC = C(C,−) , yf = f∗ yα = α∗ .

b. C
y(−)−→ Hom(Cop, Cat) , yC = C(−,C) , yf = f∗ yα = α∗ .

Recall the Yoneda Lemma for enriched categories over Cat . We
consider explicitly only the case a. in 1.1.15.

1.1.16 Proposition (Yoneda lemma). Given a locally small
2-category C , a 2-functor F : C −→ Cat and an object C ∈ C , there is
an isomorphism of categories, natural in F .

Hom(C, Cat)(C(C,−),F)X h // XXXXXFCXXXXX

XXXXθ
ρ // ηXXXX � // XθC(idC)

(ρC)idC // ηC(idC)

Proof. The application h has an inverse

FCX, , ` // XHom(C, Cat)(C(C,−),F)

C
f // D � // XX`C

`f // `DXX

where (`C)D(f
α

=⇒ g) = Ff(C)
(Fα)C−→ Fg(C) and ((`f)D)f = Ff(f) .
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1.1.17 Corollary. The Yoneda 2-functors in 1.1.15 are 2-fully-faithful.
�

Beyond the theory of Cat -enriched categories, the lemma also holds
for pseudonatural transformations in the following way:

1.1.18 Proposition (Pseudo Yoneda lemma). Given a locally small
2-category C , a 2-functor F : C −→ Cat and an object C ∈ C , there is
an equivalence of categories, natural in F .

Homp(C, Cat)(C(C,−),F)X h̃ // XXXXXFCXXXXX

XXXθ
ρ // ηXXXXX � // XθC(idC)

(ρC)idC // ηC(idC)

Furthermore, the quasi-inverse ˜̀ is a section of h̃ , h̃ ˜̀= id .

Proof. h̃ and ˜̀ are defined as in 1.1.16, but now ˜̀ is only a section
quasi-inverse of h̃ . The details can be checked by the reader. One can
found a guide in [13] for the case of lax functors and bicategories. We
refer to the arguing and the notation there: In our case, the unit η is the
equality because F is a 2-functor, and the counit ε is an isomorphism
because α is pseudonatural and the unitor r is the equality.

1.1.19 Corollary. For any locally small 2-category C , and C ∈ C , the

inclusion Hom(C, Cat)(C(C,−),F)
i−→ Homp(C, Cat)(C(C,−),F) has a

retraction α , natural in F , α i = id , i α ∼= id , which determines an
equivalence of categories.

Proof. Note that i = ˜̀h , then define α = ` h̃ .

1.1.20 Corollary. The Yoneda 2-functors in 1.1.15 can be considered
as 2-functors landing in the Homp 2-functor categories. In this case,
they are pseudo-fully faithful (meaning that they determine equivalences
and not isomorphisms between the hom categories). �
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1.2 Weak limits and colimits

By weak we understand any of the several ways universal properties can
be relaxed in 2-categories. Note that pseudolimits and pseudocolimits
(already considered in [2]) require isomorphisms, and have many ad-
vantages over bilimits and bicolimits, which only require equivalences.
Their universal properties are both stronger and more convenient to use,
and they play the principal role in this paper. The defining universal
properties characterize bilimits up to equivalence and pseudolimits up
to isomorphism.

Notation We consider pseudocolimits Lim−→
i∈I

Fi , and bicolimits

biLim−−−→
i∈I

Fi , of covariant 2-functors, and its dual concepts, pseudolimits

Lim←−
i∈I

Fi , and bilimits biLim←−−−
i∈I

Fi , of contravariant 2-functors.

1.2.1 Definition. Let F : I −→ A be a 2-functor and A an object of
A . A pseudocone for F with vertex A is a pseudonatural transforma-
tion from F to the 2-functor which is constant at A , i.e. it consists in

a family of morphisms of A {Fi θi−→ A}i∈I and a family of invertible

2-cells of A {θi
θu=⇒ θjFu}i u−→j∈I satisfying the following equations:

PC0: θidi = idθi .

PC1: ∀ i u−→ j
v−→ k ∈ I , θvFu ◦ θu = θvu

PC2: ∀ i
u //
α⇓
v

// j ∈ I , θi = θjFα ◦ θu
A morphism of pseudocones between θ and η with the same vertex

is a modification, i.e. a family of 2-cells of A {θi
ρi

=⇒ ηi}i∈I satisfying
the following equation:

PCM: ηu ◦ ρi = ρjFu ◦ θu .

Pseudocones form a category PCA(F,A) = Homp(I,A)(F,A) fur-
nished with a pseudocone PCA(F,A) −→ A(Fi, A) , {θi}i∈I 7→ θi , for

the 2-functor Iop A(F(−),A)−→ CAT .

1.2.2 Remark.
Since Homp(I,A) is a 2-category, it follows:
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a. Pseudocones determine a 2-bifunctor Hom(I,A)op ×A PCA−→ CAT .

From Remark 1.1.13 it follows in particular:

b. A 2-functor A H−→ B induces a functor between the categories of

pseudocones PCA(F,A)
PCH−→ PCB(HF,HA) . �

1.2.3 Definition. The pseudocolimit in A of the 2-functor F is

the universal pseudocone, denoted {Fi λi−→ Lim−→
i∈I

Fi}i∈I , in the sense

that ∀ A ∈ A , pre-composition with the λi is an isomorphism of cate-

gories A(Lim−→
i∈I

Fi,A)
λ∗−→ PCA(F,A). Equivalently, there is an isomor-

phism of categories A(Lim−→
i∈I

Fi,A)
∼=−→ Lim←−

i∈Iop
A(Fi,A) commuting with the

pseudocones. Remark that there is also an isomorphism of categories

PCA(F,A)
∼=−→ Lim←−

i∈Iop
A(Fi,A)

Requiring λ∗ to be an equivalence (which implies that also the
other two isomorphisms above are equivalences) defines the notion of
bicolimit. Clearly, pseudocolimits are bicolimits.

We omit the explicit consideration of the dual concepts. �

It is well known that in the strict 2-functor 2-categories the strict lim-
its and colimits are performed pointwise (if they exists in the codomain
category). Here we establish this fact for the pseudo limits and pseudo-
colimits in both the strict and the pseudo 2-functor 2-categories. Abus-
ing notation we can say that the formula (Lim−→

i∈I
Fi)(C) = Lim−→

i∈I
Fi(C)

holds in both 2-categories. The verification of this is straightforward
but requires some care.

1.2.4 Proposition. Let I F−→ A , i 7→ Fi be a 2-functor where A is

either Hom(C,D) or Homp(C,D) . For each C ∈ C let FiC
λCi−→ LC be

a pseudocolimit pseudocone in D for the 2 functor I F−→ A ev(−,C)−→ D
(where ev is evaluation, see 1.1.12). Then LC is 2-functorial in C in

such a way that λCi becomes 2-natural and Fi
λi−→ L is a pseudocolimit

pseudocone in A in both cases. By duality the same assertion holds for
pseudolimits.
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Proof. Given C
f //
α⇓
g

// D in C , evaluation determines a 2-cell in

Hom(I,D) FC
Ff //

Fα⇓
Fg

// FD = ev(F( - ),C
f //
α⇓
g

// D) . (note that

(FC)i = FiC , and similarly for f , g and α ). Then, for each X ∈ D ,
it follows (from Remark 1.2.2 a.) that precomposing with this 2-cell de-
termines a 2-cell (clearly 2-natural in the variable X ) in the right leg of
the diagram below. Since the rows are isomorphisms, there is a unique
2-cell (also natural in the variable X ) in the left leg which makes the
diagram commutative.

D(LD,X)
(λD)∗

∼=
//

⇒
�� ��

PCD(FD,X)

⇒
�� ��

D(LC,X)
(λC)∗

∼=
// PCD(FC,X)

Then, by the Yoneda lemma 1.1.17, the left leg is given by precomposing

with a unique 2-cell in D , that we denote LC
Lf //

Lα⇓
Lg

// LD . It is clear

by uniqueness that this determines a 2-functor C L−→ D .
Putting X = LD in the upper left corner and tracing the identity

down the diagram yields the following commutative diagram of pseudo-
cones in D :

FiC
λCi //

Fif

��

Fiα
⇒

��

Fig

��

LC

Lf

��

Lα
⇒

��

Lg

��
FiD

λDi // LD

This shows that L is furnished with a pseudocone for F and that the
λi are 2-natural. It only remains to check the universal property:

Let C G−→ D be a 2-functor, consider the 2-functor A ev(−,C)−→ D .
We have the following diagram, where the right leg is given by
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Remark 1.2.2 b.:

A(L,G) λ∗ //

ev(−,C)
��

PCA(F,G)

PCev(−,C)

��
D(LC,GC)

(λC)∗

∼=
// PCD(FC,GC)

We prove now that the upper row is an isomorphism. Given Fi

θi //
ρi⇓
ηi
// G

in PCA(F,G) , it follows there exists a unique LC
θ̃C //
ρ̃C⇓
η̃C

// GC in

D(LC,GC) such that ρ̃CλCi = ρiC . It is necessary to show that this 2-

cell actually lives in A . This has to be checked for any C
f //
α⇓
g
// D

in C . In both cases it can be done considering the isomorphism

D(LC,GD)
(λC)∗

∼=
// PCD(FC,GD).

We precise now what we do consider as preservation properties of a
2-functor. We do it in the case of pseudolimits and bilimits, but the same

clearly applies to pseudocolimits and bicolimits. Let Iop X−→ C H−→ A
be any 2-functors.

1.2.5 Definition. We say that H preserves a pseudolimit (resp.

bilimit) pseudocone L
πi−→ Xi in C , if HL

Hπi−→ HXi is a pseudolimit
(resp. bilimit) pseudocone in A . Equivalently, if the (usual) compari-
son arrow is an isomorphism (resp. an equivalence) in A .

Note that by the very definition, the 2-representable 2-functors pre-
serve pseudolimits and bilimits. Also, from proposition 1.2.4 it follows:

1.2.6 Proposition. The Yoneda 2-functors in 1.1.15 preserve
pseudolimits. �

Recall that small pseudolimits and pseudocolimits of locally small
categories exist and are locally small, as well that the 2-category
Cat of small categories has all small pseudolimits and pseudocolimits
(see for example [4], [12]).
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1.2.7. We refer to the explicit construction of pseudolimits of category
valued 2-functors, which is similar to the construction of pseudolimits
of category-valued functors in [2, Exposé VI 6.], see full details in [5].

It is also key to our work the explicit construction of 2-filtered
pseudocolimits of category valued 2-functors developed in [8]. We recall
this now.

1.2.8 Definition (Kennison, [10]). Let C be a 2-category. C is said
to be 2-filtered if the following axioms are satisfied:

F0. Given two objects C , D ∈ C , there exists an object E ∈ C and
arrows C→ E , D→ E .

F1. Given two arrows C
f //

g
// D , there exists an arrow D

h−→ E

and an invertible 2-cell α : hf ∼= hg .

F2. Given two 2-cells C
//

α⇓ β⇓ // D there exists an arrow D
h−→ E

such that hα = hβ .

The dual notion of 2-cofiltered 2-category is given by the duals of axioms
F0, F1 and F2.

1.2.9. Construction LL (Dubuc-Street [8]) Let I be a 2-filtered
2-category and F : I → Cat a 2-functor. We define a category L(F) in
two steps as follows:

First step ([8, Definition 1.5]):
Objects: (C, i) with C ∈ Fi
Premorphisms: A premorphism between (C, i) and (D, j) is a triple

(u, f, v) where i
u−→ k , j

v−→ k in I and F(u)(C)
f−→ F(v)(D) in

Fk .
Homotopies: An homotopy between two premorphisms (u1, f1, v1)

and (u2, f2, v2) is a quadruple (w1, w2, α, β) where k1
w1−→ k , k2

w2−→ k

are 1-cells of I and w1v1
α−→ w2v2 , w1u1

β−→ w2u2 are invertible
2-cells of I such that the following diagram commutes in Fk :

F(w1)F(u1)(C) = F(w1u1)(C)
F(β)C //

F(w1)(f1)
��

F(w2u2)(C) = F(w2)F(u2)(C)

F(w2)(f2)
��

F(w1)F(v1)(D) = F(w1v1)(D)
F(α)D

// F(w2v2)(D) = F(w2)F(v2)(D)
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We say that two premorphisms f1, f2 are equivalent if there is an
homotopy between them. In that case, we write f1 ∼ f2 .

Equivalence is indeed an equivalence relation, and premorphisms can
be (non uniquely) composed. Up to equivalence, composition is inde-
pendent of the choice of representatives and of the choice of the compo-
sition between them. Since associativity holds and identities exist, the
following actually does define a category:

Second step ([8, Definition 1.13]):
Objects: (C, i) with C ∈ Fi .
Morphisms: equivalence classes of premorphisms.
Composition: defined by composing representative premorphisms.

1.2.10 Proposition. [8, Theorem 1.19] Let I be a 2-filtered 2-category,

F : I → Cat a 2-functor, i
u−→ j in I and C

f−→ D ∈ Fi . The

following formulas define a pseudocone F
λ

=⇒ L(F) :

λi(C) = (C, i) λi(f) = [i, f, i] (λu)C = [u,Fu(C), j]

which is a pseudocolimit for the 2-functor F . �

1.3 Further results.

A. Joyal pointed to us the notion of flexible functors, related with
some of our results on pseudo colimits of representable 2-functors. We
recall now this notion since it bears some significance for the concept
of 2-pro-object developed in this paper. Any 2-pro-object determines a
2-functor which is flexible, and some of our results find their right place
stated in the context of flexible 2-functors.

Warning: In this subsection 2-categories are assumed to be locally
small, except the illegitimate constructions Hom and Homp .

The inclusion Hom(C, Cat) i−→ Homp(C, Cat) has a left adjoint
(−)′ a i , we refer the reader to [4]. The 2-natural counit of this ad-

junction F′
εF=⇒ F is an equivalence in Homp(C, Cat) , with a section

given by the pseudonatural unit F
ηF=⇒ F′ , εFηF = idF , ηFεF ∼= idF′ ,

[4, Proposition 4.1.]
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1.3.1 Definition. [4, Proposition 4.2] A 2-functor C F−→ Cat is flexible

if the counit F′
εF=⇒ F has a 2-natural section F

λ
=⇒ F′ , εFλ = idF ,

λεF ∼= idF′ , which determines an equivalence in Hom(C, Cat) .

We state now a useful characterization of flexible 2-functors F in-
dependent of the left adjoint (−)′ , the proof will appear elsewhere [6].

1.3.2 Proposition. A 2-functor C F−→ Cat is flexible ⇐⇒ for all

2-functors G , the inclusion Hom(C, Cat)(F,G)
iG−→ Homp(C, Cat)(F,G)

has a retraction αG natural in G , αGiG = id , iGαG
∼= id , which deter-

mines an equivalence of categories. �

Let Hom(C, Cat)f and Homp(C, Cat)f be the subcategories whose
objects are the flexible 2-functors. We have the following corollaries:

1.3.3 Corollary. The 2-categories Hom(C, Cat)f and Homp(C, Cat)f
are pseudoequivalent in the sense they have the same objects and retract
equivalent hom categories. �

We mention that following the usual lines (based in the axiom of
choice) in the proof of 1.1.9, it can be seen that the inclusion 2-functor
Hom(C, Cat)f −→ Homp(C, Cat)f has the identity (on objects) as a re-
traction quasi-inverse pseudofunctor, with the equality as the invertible
pseudonatural transformation F

=−→ F in Homp(C, Cat)f .
An important property of flexible 2-functors, false in general, is the

following:

1.3.4 Corollary. Let θ : G ⇒ F ∈ Hom(C, Cat)f be such that θC :
GC → FC is an equivalence of categories for each C ∈ C . Then, θ is
an equivalence in Hom(C, Cat)f .

Proof. It is easy to check that there is a pseudonatural transforma-
tion η′ : F⇒ G such that θη′ ∼= F and η′θ ∼= G in Homp(F,F) and
Homp(G,G) respectively. Now, by 1.3.2, there is a 2-natural transfor-
mation η : F ⇒ G such that η ∼= η′ in Homp(F,G) . Then, θη ∼= F
and ηθ ∼= G in Hom(F,F) and Hom(G,G) respectively and so θ is an
equivalence in Hom(C, Cat) .

1.3.5 Proposition. Small pseudocolimits of flexible 2-functors are
flexible.
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Proof. Let F = Lim−→
j∈I

Fj , where each Fj is flexible, and let G be any

other 2-functor. Set A = Hom(C, Cat) and Ap = Homp(C, Cat) . Then:

A(F,G) ∼= Lim←−
j∈I
A(Fj, G)

i−→ Lim←−
j∈I
Ap(Fj, G) ∼= Ap(F,G).

The two isomorphisms are given by definition 1.2.3. The arrow i is
the pseudolimit of the equivalences with retraction quasi-inverses corre-
sponding to each Fj . It is not difficult to check that i is also such an
equivalence.

It follows also from 1.3.2 that the pseudo-Yoneda lemma (1.1.18,
1.1.19) says that the representable 2-functors are flexible, so we have:

1.3.6 Corollary. Small pseudocolimits of representable 2-functors are
flexible. �

Note that 1.3.5 and 1.3.6 hold for any pseudocolimit that may exist.

2 2-Pro-objects

Warning: In this section 2-categories are assumed to be locally small,
except illegitimate constructions as Hom , Homp or 2-CAT .

The main results of this paper are in this section. In the first sub-
section we define the 2-category of 2-pro-objects of a 2-category C
and establish the basic formula for the morphisms and 2-cells of this
2-category. Then in the next subsection we develop the notion of a 2-cell
in C representing a 2-cell in 2-Pro(C) , inspired in the 1-dimensional
notion of an arrow representing a morphism of pro-objects found in [3].
We use this in the third subsection to construct the 2 -filtered category
which serves as the index 2-category for the 2-filtered pseudolimit of
2-pro-objects. This is also inspired in a construction for the same pur-
pose found in [3]. We were forced to have recourse to this complicated
construction because the conceptual treatment of this problem found in
[1] does not apply in the 2-category case. This is so because a 2-functor
is not the pseudocolimit of 2-representables indexed by its 2-category of
elements. Finally, in the last subsection we prove the universal proper-
ties of 2-Pro(C) .
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2.1 Definition of the 2-category of 2-pro-objects

In this subsection we define the 2-category of 2-pro-objects of a fixed
2-category and prove its basic properties. A 2-pro-object over a
2-category C will be a small 2-cofiltered diagram in C and it will be
the pseudolimit of it’s own diagram in the 2-category 2-Pro(C) .

2.1.1 Definition. Let C be a 2-category. We define the 2-category of
2-pro-objects of C , which we denote by 2 -Pro(C) , as follows:

1. Its objects are the 2-functors Iop X−→ C , X = (Xi, Xu, Xα)i, u, α∈I ,
with I a small 2-filtered 2-category. Often we are going to abuse
the notation by saying X = (Xi)i∈I .

2. If X = (Xi)i∈I and Y = (Yj)j∈J are two 2-pro-objects,

2-Pro(C)(X,Y) = Hom(C, Cat)op(Lim←−
i∈Iop

C(Xi,−), Lim←−
j∈J op

C(Yj,−))

= Hom(C, Cat)(Lim−→
j∈J
C(Yj,−), Lim−→

i∈I
C(Xi,−))

The compositions are given by the corresponding compositions in
the 2-category Hom(C, Cat)op so it is easy to check that 2 -Pro(C) is
indeed a 2-category.

2.1.2 Proposition. By definition there is a 2-fully-faithful 2-functor

2-Pro(C) L−→ Hom(C, Cat)op . Thus, there is a contravariant

2-equivalence of 2-categories 2 -Pro(C) L−→ Hom(C, Cat)opfc , where
Hom(C, Cat)fc stands for the full subcategory of Hom(C, Cat) whose
objects are those 2-functors which are small 2-filtered pseudocolimits
of representable 2-functors. However, it is important to note that this
equivalence is not injective on objects. �

From Corollary 1.3.6 it follows:

2.1.3 Proposition. For any 2-pro-object X , the corresponding
2-functor LX is flexible. �
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2.1.4 Remark. If we use pseudonatural transformations to define mor-
phisms of 2-pro-objects we obtain a 2-category 2 -Prop(C) , which any-
way, by 2.1.3, results pseudoequivalent (see 1.3.3) to 2 -Pro(C) , with
the same objects and retract equivalent hom categories. We think our
choice of morphisms, which is much more convenient to use, will prove
to be the good one for the applications.

Next we establish the basic formula which is essential in many
computations in the 2 -category 2 -Pro(C) :

2.1.5 Proposition. There is an isomorphism of categories:

(2.1.5) 2-Pro(C)(X,Y) ∼= Lim←−
j∈J op

Lim−→
i∈I
C(Xi,Yj)

Proof.

2-Pro(C)(X,Y) = Hom(C, Cat)(Lim−→
j∈J
C(Yj,−), Lim−→

i∈I
C(Xi,−)) ∼=

Lim←−
j∈J op

Hom(C, Cat)(C(Yj,−), Lim−→
i∈I
C(Xi,−)) ∼= Lim←−

j∈J op

Lim−→
i∈I
C(Xi,Yj)

The first isomorphism is due to 1.2.3 and the second one to 1.1.16.

2.1.6 Corollary. The 2-category 2-Pro(C) is locally small.

2.1.7 Corollary. There is a canonical 2-fully-faithful 2-functor
C c−→ 2 -Pro(C) which sends an object of C into the corresponding
2-pro-object with index 2-category {∗} . Since this 2-functor is also
injective on objects, we can identify C with a 2-full subcategory of
2-Pro(C) . �

Where there is no risk of confusion, we will omit to indicate notation-
ally this identification. By the very definition of 2-Pro(C) it follows:

2.1.8 Proposition. If X = (Xi)i∈I is any 2-pro-object of C , then
X = Lim←−

i∈Iop
Xi in 2 -Pro(C) . X is equipped with projections, for each

i ∈ I , X
πi−→ Xi , and a pseudocone structure, for each i

u−→ j ∈ I ,
invertible 2 -cells πi

πu=⇒ Xu πj .
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Under the isomorphism 2-Pro(C)(X, Xi) ∼= Lim−→
k∈I
C(Xk, Xi) (2.1.5),

the projections X
πi−→ Xi correspond to the object (idXi

, i) in construc-
tion 1.2.9. �

Note that from this proposition it follows:

2.1.9 Remark. Given any two pro-objects X, Z ∈ 2-Pro(C) , there

is an isomorphism of categories 2-Pro(C)(Z, X)
∼=−→ PC2-Pro(C)(Z, cX) ,

where PC2-Pro(C) is the category of pseudocones for the 2-functor cX
with vertex Z .

It is important to note that when Lim←−
i∈Iop

Xi exists in C , this pseu-

dolimit would not be isomorphic to X in 2 -Pro(C) . In general, the
functor c does not preserve 2-cofiltered pseudolimits, in fact, it will
preserve them only when C is already a category of 2 -pro-objects, in
which case c is an equivalence.

2.2 Lemmas to compute with 2-pro-objects.

2.2.1 Definition.
1. Let X

f−→ Y be an arrow in 2 -Pro(C) . We say that a pair

(r, ϕ) represents f , if ϕ is an invertible 2 -cell πj f
ϕ

=⇒ r πi . That is,
if we have the following diagram in 2 -Pro(C) :

X f //

πi

��

Y

πj

��
⇓∼= ϕ

Xi r
// Yj

2. Let X
f //
α⇓
g

// Y and Xi

r //
θ⇓
s
// Yj be 2-cells in 2 -Pro(C)
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and C as in the following diagram:

X
f //
α⇓
g

//

πi

��

Y

πj

��
Xi

r //
θ⇓
s

// Yj

We say that (θ, r, ϕ, s, ψ) represents α if (r, ϕ) represents f , (s, ψ)
represents g , and the following diagram commutes in 2 -Pro(C) :

πjf
ϕ

∼=
+3

πjα

��

rπi

θπi

��
πjg ∼=

ψ +3 sπi

i.e. θπi ◦ ϕ = ψ ◦ πjα

That is, θπi = πjα ”modulo” a pair of invertible 2-cells ϕ, ψ .

Clearly, if α is invertible, then so is θ .

2.2.2 Proposition. Let X = (Xi)i∈I and Y = (Yj)j∈J be any two
objects in 2 -Pro(C) :

1. Let X
f−→ Y , then, for any j ∈ J there is an i ∈ I and

Xi
r−→ Yj in C , such that (r, id) represents f .

2. Let X
f //
α⇓
g

// Y , then, for any j ∈ J there is an i ∈ I ,

Xi

r //
θ⇓
s
// Yj in C , and appropriate invertible 2-cells ϕ and ψ such

that (θ, r, ϕ, s, ψ) represents α .

Proof. Consider X

πj f //
πjα⇓
πjg

// Yj and use formula 2.1.5 plus the construc-

tions of pseudolimits and 2-filtered pseudocolimits, 1.2.7, 1.2.9.
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2.2.3 Lemma. Let X = (Xi)i∈I ∈ 2-Pro(C) , let Xi
r−→ C ,

Xj
s−→ C ∈ C , and let X

rπi //
α⇓
sπj

// C ∈ 2 -Pro(C) . Then, ∃ i
u ** k

j v
55 and

Xk

rXu //
θ⇓
sXv

// C such that:

X
πi //

πk ��

Xi

r

��

Xk
Xu

66
πu⇓

Xv ��
⇓ θ

Xj s
// C

=

X
πk

{{

πi //

πj

��

Xi

r

��

Xk

Xv ##

⇐
πv ⇓ α

Xj s
// C

r πi
rπu
∼=
+3

α

��

r Xuπk

θπk
��

sπj
sπv
∼=
+3 sXvπk

i.e. θπk ◦ rπu = sπv ◦ α

Clearly, if α is invertible, then so is θ .

Proof. By formula 2.1.5 and the construction of 2-filtered pseudocol-

imits (1.2.9), α corresponds to a (r, i)
[u,θ,v]−→ (s, j) ∈ Lim−→

i∈I
C(Xi,C) . So,

∃ i
u ** k

j v
55 and Xk

rXu //
θ⇓
sXv

// C such that θπk ◦ rπu = sπv ◦α , as we wanted

to prove.

The following is an immediate consequence of [8, Lemma 2.2.]

2.2.4 Remark. If i = j , then one can choose u = v . �

2.2.5 Lemma. Let X = (Xi)i∈I ∈ 2 -Pro(C) and Xi

f //
θ⇓ θ′⇓

g
// C ∈ C

be such that θπi = θ′πi in 2 -Pro(C) . Then ∃ i u−→ i′ such that
θXu = θ′Xu .

Proof. It follows from 2.1.5 and [8, Lemma 1.20.]
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2.2.6 Lemma. Let X
f //
α⇓
g

// Y in 2 -Pro(C) and Xi

r //
θ⇓ θ′⇓

s
// Yj in

C such that (θ, r, ϕ, s, ψ) and (θ′, r, ϕ, s, ψ) both represents α . Then,

there exists i
u−→ i′ ∈ I such that θXu = θ′Xu .

Proof. Since both (θ, r, ϕ, s, ψ) and (θ′, r, ϕ, s, ψ) represents α , and
ϕ, ψ are invertible, it follows that θπi = θ′πi . Then, by 2.2.5, there
exists i

u−→ i′ ∈ I such that θXu = θ′Xu .

2.2.7 Lemma. Let X
f //
α⇓
g

// Y ∈ 2 -Pro(C) , (r, ϕ) representing f ,

Xi
r−→ Yj and (s, ψ) representing g , Xi′

s−→ Yj . Then, ∃ i
u ** k

i′ v
44 and

Xk

rXu //
θ⇓
sXv

// Yj such that (θ, rXu, rπu ◦ ϕ, sXv, sπv ◦ ψ) represents α .

Clearly, if α is invertible, then so is θ .

Proof. In lemma 2.2.3 , take C = Yj , and α = ψ ◦ πjα ◦ ϕ−1 . Then,

∃ i
u ** k

i′ v
44 and Xk

rXu //
θ⇓
sXv

// Yj such that θπk ◦ rπu ◦ ϕ = sπv ◦ ψ ◦ πjα ,
rπi

rπu +3 rXuπk θπk
%-

πjf

ϕ 3;

πjα

$,
sXvπk

πjg
ψ +3 sπi′

sπv 19

It is not difficult to check that (θ, rXu, rπu ◦ ϕ, sXv, sπv ◦ ψ)
represents α .

From remark 2.2.4 we have:

2.2.8 Remark. If i = i′ , then one can choose u = v . �

2.3 2-cofiltered pseudolimits in 2-Pro(C) .

Let J be a small 2-filtered 2-category and J op X−→ 2-Pro(C) a

2-functor, Xj = (Xji )i∈Ij , Iopj
Xj

−→ C . Recall (2.1.8) that for each
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j in J , Xj is equipped with a pseudolimit pseudocone {πji }i∈Ij ,
{πju}i u−→i′∈Ij for the 2-functor Xj .

We are going to construct a 2-pro-object which is going to be the
pseudolimit of X in 2-Pro(C) . First we construct its index category

2.3.1 Definition. Let KX be the 2-category consisting on:

1. 0-cells of KX : (i, j) , where j ∈ J , i ∈ Ij .

2. 1-cells of KX : (i, j)
(a,r,ϕ)−→ (i′, j′) , where j

a→ j′ ∈ J , Xj
′

i′
r→ Xji

are such that (r, ϕ) represents Xa .

3. 2-cells of KX : (a, r, ϕ)
(α,θ)
=⇒ (b, s, ψ) , where a

α
=⇒ b ∈ J and

(θ, r, ϕ, s, ψ) represents Xα .

The 2-category structure is given as follows:

(i, j)

(a,r,ϕ) //
⇓(α,θ)
(b,s,ψ) //
⇓(β,η)
(c,t,φ) //

(i′, j′)

(a′,r′,ϕ′) //
⇓(α′,θ′)
(b′,s′,ψ′) //
⇓(β′,η′)
(c′,t′,φ′) //

(i′′, j′′)

1. (a′, r′, ϕ′)(a, r, ϕ) = (a′a, rr′, rϕ′ ◦ ϕXa′)

2. (α′, θ′)(α, θ) = (α′α, θθ′)

3. (β, η) ◦ (α, θ) = (β ◦ α, η ◦ θ)

One can easily check that the structure so defined is indeed a 2-category,
which is clearly small.

2.3.2 Proposition. The 2-category KX is 2-filtered.

Proof. F0. Let (i, j) , (i′, j′) ∈ KX . Since J is 2-filtered, ∃
j a))

j′′
j′ b

55 .

By 2.2.2, ∃ Xj
′′

i1

r1−→ Xji and Xj
′′

i2

r2−→ Xj
′

i′ such that (r1, id) represents
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Xa and (r2, id) represents Xb . Since Ij′′ is 2-filtered, ∃ i1
u ** i′′

i2 v
44 . Then,

we have the following situation in KX which proves F0 .:

(i, j) (a, r1X
j′′
u , r1π

j′′
u )
,,

(i′′, j′′)

(i′, j′) (b, r2X
j′′
v , r2π

j′′
v )

22

F1. Let (i, j)
(a,r,ϕ)//

(b,s,ψ)
// (i
′, j′) ∈ KX . Since J is 2-filtered,

∃ j′
c−→ j′′ and an invertible 2-cell ca

α
=⇒ cb . By 2.2.2,

∃ Xj
′′

k

t−→ Xj
′

i′ such that (t, id) represents Xc . Then (rt, ϕXc) rep-
resents Xca and (st, ψXc) represents Xcb , so, by 2.2.7, there ex-

ists k
w−→ i′′ ∈ Ij′′ and an invertible 2-cell rtXj

′′
w

θ
=⇒ stXj

′′
w such

that (θ, rtXj
′′
w , rtπw ◦ ϕXc, stXj

′′
w , stπw ◦ ψXc) represents Xα . Then

we have an invertible 2-cell in KX (i, j)

(c,tXj′′
w ,tπw)(a,r,ϕ) //

(c,tXj′′
w ,tπw)(b,s,ψ)

//⇓ (α, θ) (i′′, j′′)

which proves F1 .

F2. Let (i, j)

(a,r,ϕ) //

(b,s,ψ)
//⇓ (α, θ) ⇓ (α′, θ′) (i′, j′) ∈ KX . Since J is

2-filtered, ∃ j′
c−→ j′′ ∈ J such that cα = cα′ . Also, by

2.2.2, ∃ Xj
′′

k

t−→ Xj
′

i′ such that (t, id) represents Xc . Then, it is
easy to check that (t, t, id, t, id) represents Xc and therefore we have
that (θt, rt, ϕXc, st, ψXc) and (θ′t, rt, ϕXc, st, ψXc) both represent Xcα .

Then, by 2.2.6, ∃ k w−→ i′′ ∈ Ij′′ such that θtXj
′′
w = θ′tXj

′′
w , so

(c, tXj
′′
w , tπw)(α, θ) = (c, tXj

′′
w , tπw)(α′, θ′) , which proves F2 .

2.3.3 Theorem. Let X̃ be the 2-pro-object KopX
X̃−→ C defined by

X̃(i,j) = Xji , X̃(a,r,ϕ) = r , and X̃(α,θ) = θ . Then the following equation
holds in 2 -Pro(C) :

X̃ = Lim←−
j∈J op

Xj
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Proof. Let Z ∈ 2-Pro(C) , and {Z hj−→ Xj}j∈J , {hj
ha=⇒ Xahj′}j a−→j′∈J

be a pseudocone for X with vertex Z (1.2.1). Given

(i, j)
(a,r,ϕ)−→ (i′, j′) ∈ KX , check that the definitions h(i,j) = πji hj and

h(a,r,ϕ) = ϕhj′ ◦ πji ha determine a pseudocone for cX̃ with vertex Z .
It is straightforward to check that this extends to a functor, that we
denote p (for the isomorphism below see 2.1.9):

PC2-Pro(C)(Z,X)
p−→ PC2-Pro(C)(Z, cX̃) ∼= 2-Pro(C)(Z, X̃)

The theorem follows if p is an isomorphism. In the sequel we prove
that, in fact, p is an isomorphism. Let Z ∈ 2-Pro(C) , and

{h(i,j)
h(a,r,ϕ)
=⇒ X̃(a,r,ϕ)h(i′,j′) = r h(i,j)}

(i,j)
(a,r,ϕ)−→ (i′,j′)∈KX

, {Z
h(i,j)−→ Xji}(i,j)∈KX

be a pseudocone for cX̃ with vertex Z (1.2.1).

1. p is bijective on objects :

Check that for each j ∈ J , {Z
h(i,j)−→ Xji}i∈Ij together with

{hu = h(j,Xj
u,π

j
u)

: h(i,j) =⇒ Xjuh(i′,j′)}i u−→i′∈Ij is a pseudocone for Xj .

Then, since Xj
πj
i−→ Xji is a pseudolimit pseudocone, it follows that

there exists a unique Z
hj−→ Xj such that

(2.3.4) ∀i ∈ Ij πji hj = h(i,j) and ∀ i
u−→ i′ ∈ Ij πjuhj = hu.

It only remains to define the 2-cells of the pseudocone structure. That

is, for each j
a−→ j′ ∈ J , we need invertible 2-cells hj

ha=⇒ hj′X
a , such

that {hj}j∈J together with {ha}j a−→j′∈J form a pseudocone for X with
vertex Z .

Consider the pseudocone {Xj
πj
i−→ Xji}i∈Ij . Then the composites

πji hj , πjiX
ahj′ , determine two pseudocones {Z

πj
i hj //

πj
iX

ahj′

// X
j
i}i∈Ij for Xj

with vertex Z .
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Claim 1 Let (r, ϕ) and (s, ψ) be two pairs representing Xa as
follows:

Xj
′ Xa

//

πj′
i′ ��

Xj

πj
i

��
⇓∼= ϕ

Xj
′

i′ r
// Xji

Xj
′ Xa

//

πj′
i′′ ��

Xj

πj
i

��
⇓∼= ψ

Xj
′

i′′ s
// Xji

Then, ϕ−1hj′ ◦ h(a,r,ϕ) = ψ−1hj′ ◦ h(a,s,ψ) (proof below).

Claim 2 For each i ∈ Ij , let (r, ϕ) be a pair representing Xa , and
set ρi = ϕ−1hj′ ◦ h(a,r,ϕ) . Then, {ρi}i∈Ij determines an isomorphism of

pseudocones {Z
πj
i hj //
ρi⇓

πj
iX

ahj′

// X
j
i}i∈Ij (proof below).

Since Xj
πj
i−→ Xji is a pseudolimit pseudocone, the functor

2 -Pro(C)(Z,Xj) (πj)∗−→ PC2-Pro(C)(Z,X
j) is an isomorphism of categories.

Then, from Claim 2 it follows that there are invertible 2-cells

Z

hj //
ha⇓
Xahj′

// X
j ∈ 2 -Pro(C) such that ρi = πji ha ∀ i ∈ Ij . It can be

checked that in fact {Z hj−→ Xj}j∈J with {hj
ha=⇒ hj′X

a}
j

a−→j′∈J is a
pseudocone over X .

2. p is full and faithful :

Let {Z
πj
i hj //

ρ(i,j)⇓

πj
imj

// X
j
i}(i,j)∈KX

be a morphism of pseudocones for X̃ . It

is easy to check that for each j ∈ J , {Z
πj
i hj //

ρ(i,j)⇓

πj
imj

// X
j
i}i∈Ij is a morphism

of pseudocones for Xj . Then arguing as above, there exists a unique

morphism Z

hj //
ρj⇓
mj

// X
j ∈ 2 -Pro(C) such that ∀ i ∈ Ij , πji ρj = ρ(i,j) .

It can be checked that {ρj}j∈J is a morphism of pseudocones. This
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proves the assertion.

Proof of Claim 1. First assume that i′ = i′′ and (r, ϕ) , (s, ψ) are

related by a 2-cell (i, j)

(a,r,ϕ) //
(a,θ)⇓
(a,s,ψ)

// (i
′, j′) in KX . Then:

(ψ−1hj′) ◦ (h(a,s,ψ)) = (ψ−1hj′) ◦ (θh(i′,j′)) ◦ h(a,rϕ) = (ϕ−1hj′) ◦ (h(a,r,ϕ)),

the first equality by the pseudocone axiom PC2 (Definition 1.2.1), and
the second because θ represents id (the identity of Xa ).

The general case reduces to this one as follows:

We have

(i′, j′)

(i, j)

(a,r,ϕ) 44

(a,s,ψ)
**
(i′′, j′)

. Take
i′ u

)) k
i′′ v

55 in Ij . This yields a

particular instance of lemma 2.2.7:

Xj
′

Xa
//

id⇓
Xa

//

πk

��

Xj

πi

��

Xj
′

k

rXj′
u //

sXj′
v

// X
j
i

with (rXj
′
u , (rπ

j′
u ) ◦ ϕ) and (sXj

′
v , (sπ

j′
v ) ◦ ψ) both representing Xa .

It follows there exists k
w→ k′ and Xj

′

k′

rXj′
u Xj′

w //
θ⇓

sXj′
v Xj′

w

// X
j
i such that

(θ, rXj
′
uX

j′
w , rXj

′
u π

j′
w ◦ rπj

′
u ◦ ϕ, sXj

′
v X

j′
w , sXj

′
v π

j′
w ◦ sπj

′
v ◦ ψ) represents

id (the identity of Xa ).
Considering (rXj

′
uX

j′
w , rX

j′
u π

j′
w ◦ rπj

′
u ◦ϕ) and (sXj

′
v X

j′
w , sX

j′
v π

j′
w ◦ sπj

′
v ◦ ψ)

both representing Xa , we have a situation that corresponds to the pre-
vious case. Thus:

(ϕ−1h−1j′ ◦ r(πj
′
u )−1 ◦ rXj′u (πj

′
w )−1)hj′ ◦ rh(j′,Xj′

u Xj′
w ,X

j′
u π

j′
w )
◦ h(a,r,ϕ) =

= (ψ−1h−1j′ ◦ s(πj
′
v )−1 ◦ sXj′v (πj

′
w )−1)hj′ ◦ sh(j′,Xj′

v Xj′
w ,X

j′
v π

j′
w )
◦ h(a,s,ψ) .
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From 2.3.4, it follows that (r(πj
′
u )−1 ◦ rXj′u (πj

′
w )−1)hj′ ◦ rh(j′,Xj′

u Xj′
w ,X

j′
u π

j′
w )

and (s(πj
′
v )−1 ◦ sXj

′
v (πj

′
w )−1)hj′ ◦ sh

(j′,Xj′
v Xj′

w ,X
j′
v π

j′
w )

are identities. So

ϕ−1hj′ ◦ h(a,r,ϕ) = ψ−1hj′ ◦ h(a,s,ψ) as we wanted to prove.

Proof of Claim 2. Given any i
u−→ k ∈ Ij , we have to check the

PCM equation in 1.2.1. Given the pair (s, ψ) used to define ρk , it
is possible to choose a pair (r, ϕ) to define ρi in such a way that the
equation holds. This arguing is justified by Claim 1.

2.3.5 Corollary. 2 -Pro(C) is closed under small 2-cofiltered
pseudolimits. Considering the equivalence in 2.1.2, it follows that the in-
clusion Hom(C, Cat)fc ⊂ Hom(C, Cat) is closed under small 2-filtered
pseudocolimits �

2.4 Universal property of 2-Pro(C)
In this subsection we prove for 2-pro-objects the universal property
established for pro-objects in [1, Ex. I, Prop. 8.7.3.]. Consider

the 2-functor C c−→ 2 -Pro(C) of Corollary 2.1.7 and a 2-pro-object

X = (Xi)i∈I . Given a 2-functor C F−→ E into a 2-category closed
under small 2-cofiltered pseudolimits, we can naively extend F into a

2-cofiltered pseudolimit preserving 2-functor 2-Pro(C) F̂−→ E by defin-

ing F̂X = Lim←−
i∈I

FXi . This is just part of a 2-equivalence of 2-categories

that we develop with the necessary precision in this subsection. First
the universal property should be wholly established for E = Cat , and
only afterwards can be lifted to any 2-category E closed under small
2-cofiltered pseudolimits.

2.4.1 Lemma. Let C be a 2-category and F : C −→ Cat a 2-functor.

Then, there exists a 2-functor F̂ : 2-Pro(C) −→ Cat that preserves

small 2-cofiltered pseudolimits, and an isomorphism F̂c
∼=−→ F in

Hom(C, Cat) .

Proof. Let X = (Xi)i∈I ∈ 2-Pro(C) be a 2-pro-object. Define:
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F̂X = (Hom(C, Cat)(−,F) ◦L)X = Hom(C, Cat)(Lim−→
i∈I
C(Xi,−),F)

∼=−→
∼=−→ Lim←−

i∈I
Hom(C, Cat)(C(Xi,−),F)

∼=−→ Lim←−
i∈I

FXi.

Where L is the 2-functor of 2.1.2, the first isomorphism is by def-
inition of pseudocolimit 1.2.3, and the second is the Yoneda isomor-
phism 1.1.16. Since it is a 2-equivalence, the 2-functor L preserves any
pseudocolimit. Then by Corollary 2.3.5 it follows that the composite
Hom(C, Cat)(−,F) ◦ L preserves small 2-cofiltered pseudolimits

2.4.2 Theorem. Let C be any 2-category. Then, pre-composition with
C c−→ 2-Pro(C) is a 2-equivalence of 2-categories:

Hom(2-Pro(C), Cat)+ c∗ // XXHom(C, Cat)XX

(where Hom(2-Pro(C), Cat)+ stands for the full subcategory whose ob-
jects are those 2-functors that preserve small 2-cofiltered pseudolimits).

Proof. We check that the 2-functor c∗ is essentially surjective on objects
and 2-fully-faithful:

Essentially surjective on objects : It follows from lemma 2.4.1.
2-fully-faithful : We check that if F and G are 2-functors from

2-Pro(C) to Cat that preserve small 2-cofiltered pseudolimits, then

(2.4.3) Hom(2-Pro(C), Cat)+(F,G)
c∗−→ Hom(C, Cat)(Fc,Gc)

is an isomorphism of categories.

Let Fc
θc //
µ⇓
ηc

// Gc ∈ Hom(C, Cat)(Fc,Gc) . It can be easily checked

that the composites {FX Fπi−→ FXi

θXi //
µXi⇓
ηXi

// GXi}i∈I determine two pseu-

docones for GX together with a morphism of pseudocones. Since G pre-

serves small 2-cofiltered pseudolimits, post-composing with GX
Gπi−→ GXi

is an isomorphism of categories Cat(FX,GX)
(Gπ)∗−→ PCCat(FX,GX) . It

follows there exists a unique 2-cell in Cat , FX

θ′X //
µ′X⇓

η′X

// GX , such that
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Gπiθ
′
X = θXi

Fπi , Gπiη
′
X = ηXi

Fπi , and Gπiµ
′
X = µXi

Fπi , ∀i ∈ I . It is
not difficult to check that θ′X , η′X are in fact 2-natural on X , and that
µ′X is a modification. Clearly θ′c = θ , η′c = η , and µ′c = µ . Thus
2.4.3 is an isomorphism of categories.

2.4.4 Lemma. Let C be a 2-category, E a 2-category closed under
small 2-cofiltered pseudolimits and F : C −→ E a 2-functor. Then, there

exists a 2-functor F̂ : 2-Pro(C) −→ E that preserves small 2-cofiltered

pseudolimits, and an isomorphism F̂c
∼=−→ F in Hom(C, E) .

Proof. If X = (Xi)i∈I ∈ 2-Pro(C) , define F̂X = Lim←−
i∈Iop

FXi . We will

prove that this is the object function part of a 2-functor, and that this
2-functor has the rest of the properties asserted in the proposition.

Consider the composition y(−) F : C F−→ E
y(−)−→ Hom(Eop, Cat) ,

where y(−) is the Yoneda 2-functor (1.1.15). Under the isomorphism
1.1.14 this corresponds to a 2-functor Eop −→ Hom(C, Cat) . Compos-

ing this 2-functor with a quasi-inverse (̂−) for the 2-equivalence in 2.4.2,
we obtain a 2-functor Eop −→ Hom(2-Pro(C), Cat)+ , which in turn cor-

responds to a 2-functor 2-Pro(C) F̃−→ Hom(Eop, Cat) . The 2-functor

F̃ preserves small 2-cofiltered pseudolimits because they are computed
pointwise in Hom(Eop, Cat) (1.2.4). Chasing the isomorphisms shows
that we have the following diagram:

(2.4.5)

F̃c
∼=−→ y(−)F,

C c //

F

��

2-Pro(C)

F̃

��
⇓∼=

E y(−)

//Hom(Eop, Cat)

Consider the following chain of isomorphisms (the first and the third

because F̃ and y(−) preserve pseudolimits (1.2.6), and the middle one
given by 2.4.5):

F̃X = F̃Lim←−
i∈I

Xi
∼=−→ Lim←−

i∈I
F̃cXi

∼=−→ Lim←−
i∈I

y(−)FXi
∼=←− y(−)Lim←−

i∈I
FXi.

This shows that F̃X is in the essential image of y(−) . Since y(−) is

2-fully faithful (1.1.17), it follows there is a factorization y(−)F̂
∼=−→ F̃ ,
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given by a 2-functor 2-Pro(C) F̂−→ E . Clearly F̂ preserves small

2-cofiltered pseudolimits. We have y(−)F̂c
∼=−→ F̃c

∼=−→ y(−)F̂. Finally,

the fully faithfulness of y(−) provides an isomorphism y(−)F̂
∼=−→ F .

This finishes the proof.

Exactly the same proof of theorem 2.4.2 applies with an arbitrary
2-category E in place of Cat , and we have:

2.4.6 Theorem. Let C be any 2-category, and E a 2-category closed
under small 2-cofiltered pseudolimits. Then, pre-composition with
C c−→ 2-Pro(C) is a 2-equivalence of 2-categories:

Hom(2-Pro(C), E)+
c∗ // XXHom(C, E)XX

Where Hom(2-Pro(C), E)+ stands for the full subcategory whose objects
are those 2-functors that preserve small 2-cofiltered pseudolimits. �

From theorem 2.4.6 it follows automatically the pseudo-functoriality
of the assignment of the 2-category 2-Pro(C) to each 2-category C , and
in such a way that c becomes a pseudonatural transformation. But we
can do better:

If we put E = 2-Pro(D) in 2.4.6 it follows there is a 2-functor
(post-composing with c followed by a quasi-inverse in 2.4.6)

(2.4.7) Hom(C,D)
(̂−) // XXHom(2-Pro(C), 2-Pro(D))+XX,

and for each 2-functor C F−→ D , a diagram:

(2.4.8) 2-Pro(C) F̂ // 2-Pro(D)

⇓∼=

C
F

//

c

OO

D

c

OO

Given any 2-pro-object X ∈ 2-Pro(C) , set 2-Pro(F)(X) = F̂X . It is
straightforward to check that this determines a 2-functor

2-Pro(C) 2-Pro(F) // 2-Pro(D)
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making diagram 2.4.8 commutative. It follows we have an isomorphism

F̂X
∼=−→ 2-Pro(F)(X) 2-natural in X . This shows that the 2-functor

2-Pro(F) preserves small 2-cofiltered pseudolimits because F̂ does.
Also, it follows that 2-Pro(F) determines a 2-functor as in 2.4.7. In
conclusion, denoting now by 2-CAT the 2-category of locally small
2-categories (see 1.1.10) we have:

2.4.9 Theorem. The definition 2-Pro(F)(X) = F̂X determines a
2-functor

2-Pro(-) : 2-CAT −→ 2-CAT+
in such a way that c becomes a 2-natural transformation (where
2-CAT+ is the full sub 2-category of locally small 2-categories closed
under small 2-cofiltered pseudo limits and small pseudolimit preserving
2-functors). �
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Maŕıa Emilia Descotte
Departamento de Matemática,
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Résumé. Nous proposons une nouvelle description des compactifications
stables de Smyth des espaces T0 comme plongements dans des espaces
compacts stables qui sont denses pour la “patch topology”, et nous relions
ces compactifications stables au cas des espaces ordonnés. Dans ce cadre
“sans point”, nous introduisons une notion de compactification stable d’un
frame qui étend la compactification stable de Smyth d’un espace T0, ainsi
que la compactification de Banaschewski d’un frame. Nous caractérisons
l’ensemble ordonné des compactifications stables d’un frame en termes of
proximités sur le frame, et en termes de sous-frames stablement compacts du
frame de ses idéaux. Ces résultats sont alors appliqués aux compactifications
cohérentes de frames, et reliés à la compactification spectrale d’un espace T0
considérée par Smyth.
Abstract. In a classic paper, Smirnov [25] characterized the poset of com-
pactifications of a completely regular space in terms of the proximities on
the space. Banaschewski [1] formulated Smirnov’s results in the pointfree
setting, defining a compactification of a completely regular frame, and char-
acterizing these in terms of the strong inclusions on the frame. Smyth [26]
generalized the concept of a compactification of a completely regular space
to that of a stable compactification of a T0-space and described them in terms
of quasi-proximities on the space.
We provide an alternate description of stable compactifications of T0-spaces
as embeddings into stably compact spaces that are dense with respect to the
patch topology, and relate such stable compactifications to ordered spaces.
Each stable compactification of a T0-space induces a companion topology on
the space, and we show the companion topology induced by the largest stable
compactification is the topology τ∗ studied by Salbani [21, 22].
In the pointfree setting, we introduce a notion of a stable compactification
of a frame that extends Smyth’s stable compactification of a T0-space, and
Banaschewski’s compactification of a frame. We characterize the poset of
stable compactifications of a frame in terms of proximities on the frame, and
in terms of stably compact subframes of its ideal frame. These results are then
specialized to coherent compactifications of frames, and related to Smyth’s
spectral compactifications of a T0-space.
Keywords. Pointfree topology, proximity, compactification, stable compact-
ness.
Mathematics Subject Classification (2010). 06D22; 54D35; 54E05;
54D30; 54D45; 18B30.

               CAHIERS DE TOPOLOGIE ET                                                        Vol. LV-1 (2014)

GEOMETRIE DIFFERENTIELLE CATEGORIQUES

by Guram Bezhanishvili and John Harding

STABLE COMPACTIFICATIONS OF FRAMES

- 37 -



1. Introduction

A classic result of Smirnov [25] shows that the poset of compactifications of
a completely regular space X is isomorphic to the poset of proximities on X
that are compatible with the topology on X . Banaschewski [1] generalized
Smirnov’s theorem to the pointfree setting by introducing the concept of a
compactification of a frame. He also generalized the concept of a proximity
on a space to that of a strong inclusion on a frame, and proved that the
poset of compactifications of a frame L is isomorphic to the poset of strong
inclusions on L. In particular, if L is the frame of open sets of a completely
regular space, then Smirnov’s theorem follows.

Smyth [26] generalized the theory of compactifications of completely
regular spaces to that of stable compactifications of T0-spaces. He also gen-
eralized the concept of proximity to that of quasi-proximity and proved that
the poset of stable compactifications of a T0-space X is isomorphic to the
poset of quasi-proximities on X that are compatible with the topology on
X . Restricting to completely regular spaces and proximities then yields
Smirnov’s theorem.

In this paper, we provide an alternate description of Smyth’s stable com-
pactification of a T0-space X as an embedding of X into a stably compact
space Y whose image is dense in the patch topology of Y . We then relate
such stable compactifications to ordered spaces. Each stable compactifica-
tion of a T0-space X induces an ordered space structure on X whose open
upsets are the given topology on X , and under which the stable compacti-
fication can be naturally viewed as an order-compactification. So each sta-
ble compactification of X yields a companion topology to the original, the
topology of open downsets of the associated ordered space. We show the
companion topology associated with the largest stable compactification of
X is the topology τ∗ studied by Salbani [21, 22].

We then extend Smyth’s theory of stable compactifications to the point-
free setting. We introduce the concept of a stable compactification of a
frame, and prove a generalization of Banaschewski’s theorem, showing that
the poset of stable compactifications of a frame L is isomorphic to the poset
of proximities on the frame in the sense of [5], and to the poset of certain
stably compact subframes of the ideal frame of L. The spatial case of this
result yields Smyth’s theorem.
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The paper is organized as follows. The second section provides prelimi-
naries. In the third, we discuss stable compactifications of T0-spaces, giving
a characterization of such compactifications in terms of the patch topology,
and relating such compactifications to ordered spaces. In the fourth section
we define stable compactifications of frames, and provide characterizations
of such stable compactifications in terms of proximities, and in terms of cer-
tain subframes of the ideal frame. The fifth section specializes the results of
the fourth to coherent and spectral compactifications.

2. Preliminaries

Recall the classical notion of a compactification of a topological space X is
an embedding e ∶ X → Y into a compact Hausdorff space Y whose image
is dense in Y . Here, embedding is used to mean that e is a homeomorphism
from X to its image considered with the subspace topology from Y . Clas-
sical results characterize those spaces X having a compactification as the
completely regular ones. It is standard to form a poset from the compactifi-
cations of a completely regular space, as in the following definition.

Definition 2.1. For compactifications e ∶X → Y and e′ ∶X → Y ′ of X write
e′ ⊑ e if there is a continuous map f ∶ Y → Y ′ with e′ = f ○ e.

It is well known that ⊑ is a quasi-order. This induces an equivalence
relation on the class of compactifications, and the associated partially or-
dered set of equivalence classes is called the poset of compactifications of
X . Smirnov described this poset in terms of proximities on X . Standard re-
sults show that the Stone-Čech compactification of X is the largest member
of this poset, and that this poset has a least element iff X is locally compact,
and in this case the least element is the one-point compactification ofX (see,
e.g., [10, Sec. 3.5 and 3.6]). Also standard to the theory of compactifications
is the following result.

Theorem 2.2. A compact Hausdorff space X has up to homeomorphism
only itself as a compactification.

The notion of a compactification e ∶ X → Y can be extended in an ob-
vious way simply by dropping the requirement that the compact space Y be
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Hausdorff. However, this is a very poorly behaved notion, with a space X
having such general compactifications of arbitrary cardinality. Smyth [26]
introduced a notion of a stable compactification of a T0-space, that although
still pathological in some ways, is much better behaved. We describe these
stable compactifications in detail in the following section, but remark they
are certain dense embeddings into the stably compact spaces we describe
next. A few basic definitions are required first.

A topological space X is locally compact if for each x ∈ X and open
neighborhood U of x, there is an open neighborhood V of x and a compact
set K with V ⊆ K ⊆ U . A subset A of X is irreducible if A ⊆ B ∪ C
with B,C closed implies A ⊆ B or A ⊆ C; and X is sober if each closed
irreducible set is the closure of a unique singleton. Finally, a subset of X is
saturated if it is an intersection of open sets.

Definition 2.3. A spaceX is stably compact if it is compact, locally compact,
sober, and the intersection of two compact saturated sets is compact.

The theory of stably compact spaces is developed in detail in [12], where
it is shown that there is a close connection between stably compact spaces
and certain ordered topological spaces. To recall this connection, we need to
describe two additional topologies associated to any stably compact space.

Definition 2.4. For a stably compact space X with topology τ , the com-
pact saturated sets are the closed sets of a topology τ k on X called the
co-compact topology. The join of the topologies τ and τ k is called the patch
topology π.

An ordered topological space is a triple (X,≤, π) consisting of a set X
with partial ordering ≤ and topology π. A subset U of X is an upset if x ∈ U
and x ≤ y imply y ∈ U , and it is a downset if x ∈ U and y ≤ x imply y ∈ U . An
ordered topological space (X,≤, π) is order-Hausdorff if x /≤ y implies that
there exist an upset neighborhood U of x and a downset neighborhood V of y
such that U ∩V = ∅. It is well known (see, e.g., [14]) that (X,≤, π) is order-
Hausdorff iff ≤ is a closed subset of X2. Ordered topological spaces were
introduced by Nachbin, who showed that compact order-Hausdorff spaces
provide a natural generalization of compact Hausdorff spaces [15]. In honor
of Nachbin, we make the following definition.

Definition 2.5. A Nachbin space is a compact order-Hausdorff space.
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We recall that in a topological space, the specialization order ≤ is defined
by x ≤ y iff the closure of y contains x. The following results are well known
[12, Sec. VI-6].

Theorem 2.6. If (X,τ) is a stably compact space with specialization order
≤ and patch topology π, then (X,≤, π) is a Nachbin space whose open upsets
are the τ -open sets, and whose open downsets are the τ k-open sets. We call
this the Nachbin space associated to (X,τ). Conversely, if (X,≤, π) is a
Nachbin space, then the open upsets form a topology τ on X . The space
(X,τ) is stably compact, and its associated Nachbin space is (X,≤, π).

Following [12], we call a continuous map f between stably compact
spaces proper if the inverse image of each compact saturated set is compact.
This is equivalent to f being continuous with respect to both the given and
co-compact topologies. Let StKSp be the category of stably compact spaces
and proper maps. Let Nach be the category of Nachbin spaces and the con-
tinuous order-preserving maps between them. The above result extends as
follows [12, Sec. VI-6].

Theorem 2.7. There is an isomorphism between the categories StKSp and
Nach taking a stably compact space to its associated Nachbin space.

We next turn our attention to frames.

Definition 2.8. A frame is a complete lattice L that satisfies a∧⋁S = ⋁{a∧
s ∶ s ∈ S}. A frame homomorphism is a map f ∶ L →M that preserves finite
meets (including 1) and arbitrary joins (including 0).

For a topological space X , its open sets Ω(X) form a frame, and for any
continuous map f ∶ X → Y , the map Ω(f) = f−1 ∶ Ω(Y ) → Ω(X) is a
frame homomorphism. This gives a contravariant functor Ω ∶ Top → Frm
from the category of topological spaces and continuous maps to the category
of frames and frame homomorphisms. A point of a frame L is a frame
homomorphism p ∶ L → 2 into the two-element frame. The points pt(L)
of L are topologized by taking for all a ∈ L the sets ϕ(a) = {p ∶ p(a) = 1}
as open sets. For a frame homomorphism f ∶ L → M , the map pt(f) ∶
pt(M) → pt(L) defined by pt(f)(p) = p ○ f is continuous. This gives a
contravariant functor pt ∶ Frm → Top. The following results are well known
[13, 18].
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Theorem 2.9. The functors Ω and pt give a dual adjunction between Top
and Frm. For each frame L, the dual adjunction provides a frame homomor-
phism h ∶ L → Ω(pt(L)), which is always onto. A frame is called spatial
if h is an isomorphism. For each space X , the dual adjunction provides a
continuous map s ∶ X → pt(Ω(X)) called the sobrification of the space,
which is a topological embedding iff the space is T0. A space is sober iff s is
a homeomorphism. The functors Ω and pt restrict to give a dual equivalence
between the categories of spatial frames and sober spaces.

For the convenience of the reader, we isolate two consequences of this
result used later.

Corollary 2.10. If X,Y are spaces with Y sober, then Ω gives a bijection
between the homsets Top(X,Y ) and Frm(Ω(Y ),Ω(X)). If X is T0, then
a continuous map e ∶ X → Y is an embedding iff the frame homomorphism
Ω(e) ∶ Ω(Y ) → Ω(X) is onto.

We turn now to finer properties of frames, see [13, 18] for further details.

Definition 2.11. For a, b elements of a frame L, we say a is way below b,
and write a≪ b, if for any T with b ≤ ⋁T , there is a finite subset S ⊆ T with
a ≤ ⋁S. We say a is well inside b, and write a ≺ b, if ¬a ∨ b = 1, where ¬a is
the pseudocomplement of a in L.

An element a of a frame L is compact if a≪ a, and a frame L is compact
if its top element 1 is compact. We next use the way below and well inside
relations to define the particular classes of frames of primary interest here.

Definition 2.12. We say a frame L is

1. locally compact if a = ⋁{x ∶ x≪ a} for each a ∈ L.

2. regular if a = ⋁{x ∶ x ≺ a} for each a ∈ L.

3. stable if a≪ b, c implies a≪ b ∧ c for all a, b, c ∈ L.

We say L is compact regular if it is compact and regular, and stably compact
if it is locally compact, compact, and stable.
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Let KRFrm be the category of compact regular frames and frame ho-
momorphisms between them. A frame homomorphism f is called proper
if a ≪ b implies fa ≪ fb. Let StKFrm be the category of stably com-
pact frames and proper frame homomorphisms between them. Let KHaus
be the category of compact Hausdorff spaces. The following are well known
[12, 13].

Theorem 2.13. A space X is stably compact iff the frame Ω(X) is stably
compact, and a frame L is stably compact iff it is isomorphic to Ω(X) for
some stably compact space X . Further, a continuous map f between stably
compact spaces X and Y is proper iff the corresponding frame homomor-
phism between Ω(Y ) and Ω(X) is proper. Thus, the functors Ω and pt
restrict to give a dual equivalence between StKSp and StKFrm.

Each compact Hausdorff space is stably compact, and every continuous
map between compact Hausdorff spaces is proper. So KHaus is a full sub-
category of StKSp, KRFrm is a full subcategory of StKFrm, and Ω and pt
restrict to give a dual equivalence between KHaus and KRFrm.

A frame is coherent if each element is the join of compact elements, and
the meet of two compact elements is compact. A frame homomorphism h
between two coherent frames L and M is coherent if a compact in L im-
plies that h(a) is compact in M . Let CohFrm be the category of coherent
frames and the coherent frame homomorphisms between them. A spaceX is
a spectral space if it is sober, compact, and the compact open sets are closed
under finite intersections and form a basis. A continuous map between spec-
tral spaces is a spectral map if the inverse image of each compact open set is
compact open. Let Spec be the category of spectral spaces and the spectral
maps between them. We conclude the preliminaries with the following well
known result [13].

Theorem 2.14. The category Spec is a full subcategory of StKSp, the cate-
gory CohFrm is a full subcategory of StKFrm, and the functors Ω,pt restrict
to a dual equivalence between Spec and CohFrm.

3. Stable compactifications of spaces

In this section we recall Smyth’s definition of a stable compactification of a
T0-space X , and Smyth’s ordering of the stable compactifications of X . We
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provide an alternate description of such stable compactifications in terms of
the patch topology of a stably compact space, and remark on the connections
between stable compactifications and ordered spaces.

Definition 3.1. [26] Let X be a T0-space, Y be a stably compact space, and
e ∶X → Y be a homeomorphism from X to a subspace of Y . For U ∈ Ω(Y ),
let U be the largest open set of Y whose intersection with the image of X
is contained in U . We say the pair (Y, e) is a stable compactification of X
if U ≪ V ⇒ U << V for all U,V ∈ Ω(Y ), where U ≪ V means U is way
below V in the frame Ω(Y ).

If (Y, e) is a stable compactification of X , using ∅ ≪ ∅ it follows that
∅ = ∅, hence the image e[X] is dense in Y . We next recall Smyth’s ordering
of the stable compactifications of a T0-space X .

Definition 3.2. For two stable compactifications e ∶X → Y and e′ ∶X → Y ′,
define e′ ⊑ e if there is a proper map f ∶ Y → Y ′ with e′ = f ○ e. We let
COMP X be the poset of equivalence classes of stable compactifications of
X under the partial order associated with the quasi-order ⊑ and denote the
equivalence class of a compactification e ∶X → Y by [e].

Smyth characterized the poset COMP X in terms of his “quasi-proximi-
ties” on X , and showed it has a largest element given by the space of prime
filters of the frame Ω(X) of open sets of X .

Remark 3.3. Stable compactifications of T0-spaces lack some of the famil-
iar properties of classical compactifications of completely regular spaces.
Smyth’s result [26, Prop. 16] that the space of prime filters of Ω(X) gives
the largest stable compactification of X yields an example showing that a
compact Hausdorff space can have a stable compactification that is not Haus-
dorff. One can further show that for stable compactifications e ∶ X → Y and
k ∶ Y → Z, the composite k ○ e ∶ X → Z need not be a stable compactifica-
tion. For an example of this let X be the negative integers with the obvious
order and the upset topology. Let e ∶ X → Y be the largest stable compacti-
fication of X and let k ∶ Y → Z be the largest stable compactification of Y .
Then k ○ e ∶X → Z is not a stable compactification of X .

The condition U ≪ V ⇒ U << V in Smyth’s definition of a stable com-
pactification has a strongly frame-theoretic nature. We provide a description
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of stable compactifications in more purely topological terms, namely as em-
beddings into stably compact spaces that are dense in the patch topology.
We note that this is somewhat the inverse of the usual sequence of things
in pointfree topology, when standard topological notions are given pointfree
meaning. We begin with several standard facts from the theory of ordered
spaces whose proofs can be found in [12, 15].

Proposition 3.4. Let (Y,≤, π) be a Nachbin space, and let clπ be the closure
operator with respect to the topology π.

1. A≪ B in the frame of open upsets of Y iff clπ(A) ⊆ B.

2. If B is an open downset, B = ⋃{A ∶ A is an open downset and
clπ(A) ⊆ B}.

3. If A is closed, then its downset ↓A is closed.

Theorem 3.5. For a T0-space X , an embedding e ∶ X → Y into a stably
compact space Y is a stable compactification of X iff the image of X is
dense in the patch topology of Y .

Proof. By identifying X with its image e[X] in Y , we assume that X is a
subspace of Y and Y is a stably compact space with topology τ and patch
topology π. Let (Y,≤, π) be the Nachbin space associated to Y .

“⇐” Assume X is patch-dense in Y . To show the identical embedding
of X into Y is a stable compactification, we must show that for U,V τ -open
subsets of Y , that U ≪ V implies U ≪ V . If U ≪ V , then by Proposi-
tion 3.4.1, clπ(U) ⊆ V . As X is patch-dense in Y , for each patch-open sub-
set W of Y , we have clπ(W ) = clπ(W ∩X). Therefore, from the definition
of U as the largest τ -open set whose intersection with X is contained in U ,
we have clπ (U) = clπ (U ∩X) = clπ (U ∩X) = clπ (U). Thus, clπ (U) ⊆ V ,
so U ≪ V .

“⇒” AssumeX is not patch-dense in Y. We show that there exist τ -open
sets U,V such that U ≪ V and U /≪ V . We recall (see Theorem 2.6) that
the open upsets of the Nachbin space (Y,≤, π) are the topology τ , the open
downsets are the co-compact topology τ k, and the join of these topologies is
the patch topology π. We also use −T for the set-theoretic complement of
T .
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Claim 3.6.

1. There exist an open upset S and an open downset T with S ∩ T ≠ ∅
and X ∩ S ∩ T = ∅.

2. For each open upset A, if −T ⊆ A, then S ⊆ A.

Proof of Claim: (1) This is a consequence of the fact that the patch topology
is the join of the topologies of the open upsets and open downsets and that
X is not patch-dense. (2) As X ∩ S ∩ T = ∅, we have X ∩ S ⊆ −T ⊆ A. So
S ⊆ A.

Claim 3.7. Let z ∈ S ∩ T . There are open downsets P,Q with

1. z ∈ Q and clπ(Q) ⊆ T .

2. z ∈ P and clπ(P ) ⊆ Q.

Further, both U = −↓clπ(Q) and V = −↓clπ(P ) are open upsets.

Proof of Claim: (1) As z ∈ T and T is an open downset, Proposition 3.4.2
gives an open downset Q with z ∈ Q and clπ(Q) ⊆ T . (2) As z ∈ Q and Q
is an open downset, another application of Proposition 3.4.2 gives an open
downset P with z ∈ P and clπ(P ) ⊆ Q. For the further comment, by Propo-
sition 3.4.3, both ↓clπ(Q) and ↓clπ(P ) are closed, and are clearly downsets.
Thus, their complements are open upsets.

We show the open upsets U,V satisfy U ≪ V and U /≪ V . As Q ⊆
↓clπ(Q), we have U = −↓clπ(Q) ⊆ −Q, and as clπ(P ) ⊆ Q and Q is a
downset, ↓clπ(P ) ⊆ Q, giving −Q ⊆ −↓clπ(P ) = V . Thus, U ⊆ −Q ⊆ V ,
and as Q is open, clπ(U) ⊆ V . So by Proposition 3.4.1, U ≪ V. To see that
U /≪ V, note z ∈ P ⊆ ↓clπ(P ), so z /∈ −↓clπ(P ) = V . As clπ(Q) ⊆ T and T is
a downset, we have ↓clπ(Q) ⊆ T , hence −T ⊆ −↓clπ(Q) = U . Since U is an
open upset and −T ⊆ U , by Claim 3.6.2, S ⊆ U . But z ∈ S, hence z ∈ U , and
z /∈ V, so U /⊆ V . Thus, U /≪ V.

Corollary 3.8. The stable compactifications of a T0-spaceX determine, and
are determined by, mappings of X into Nachbin spaces (Y,≤, π) that are
embeddings with respect to the topology of open upsets of Y , and are dense
with respect to π.
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We next use this result to relate the poset of stable compactifications
of a completely regular space X to its poset of classical compactifications.
Since a compact Hausdorff space is stably compact and its patch topology
coincides with the original topology, Theorem 3.5 shows that any compacti-
fication of X is a stable compactification. It also follows from Theorem 3.5
that any stable compactification into a compact Hausdorff space is a com-
pactification. We use k ∶ X → βX for the Stone-Čech compactification of
X , and recall this is the largest compactification of X .

Proposition 3.9. The poset of classical compactifications of a completely
regular space X is a retract of the downset of COMP X generated by k ∶
X → βX . This retraction is realized by sending a stable compactification e ∶
X → (Y, τ) that lies beneath k ∶ X → βX to the classical compactification
e ∶X → (Y,π), where π is the patch topology of τ .

Proof. Suppose e ∶X → Y is a stable compactification ofX that lies beneath
k ∶ X → βX in the poset of stable compactifications. Then there is a proper
continuous map f ∶ βX → Y with e = f ○ k. Let σ be the topology on
βX and τ be the topology on Y . As βX is compact Hausdorff, its patch
topology is σ. Let π be the patch topology on Y . Since f is proper with
respect to σ and τ , it is continuous with respect to the patch topologies σ
and π. Let U ∈ π. Then f−1(U) ∈ σ, so k−1f−1(U) is open in X , hence
e−1(U) is open in X . Thus, e ∶ X → (Y,π) is continuous. By Theorem 3.5,
e[X] is dense in (Y,π), and as (Y,π) is a compact Hausdorff space, this is a
compactification of X . It is then routine to show that the map sending such
a stable compactification e ∶ X → (Y, τ) to the compactification e ∶ X →
(Y,π) is the required retraction.

We recall the classical result that a completely regular space has a least
compactification iff it is locally compact, and in this case, its least com-
pactification is the one-point compactification. As the construction of the
one-point compactification of a locally compact Hausdorff space general-
izes to any T0-space (see, e.g., [6, Sec. 3]), every T0-space X has a (possibly
non-Hausdorff) one-point compactification. This one-point compactification
does not have to be a stable compactification of X . In fact, as the next corol-
lary shows, not every T0-space has a least stable compactification.

Corollary 3.10. The space of rationals Q with the usual topology has no
least stable compactification.
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Proof. If there were a least element in the poset of stable compactifications
of Q, then by Proposition 3.9, there would be a least element in the poset of
classical compactifications of Q. This is not the case since Q is not locally
compact.

There are further connections between stable compactifications and or-
dered spaces. We describe some of these connections below. We start by
recalling Nachbin’s generalization of the concept of compactification to that
of order-compactification.

Definition 3.11. An order-compactification of an ordered space X is a pair
(Y, e) such that Y is a Nachbin space, e ∶ X → Y is both a topological
embedding and an order-embedding, and the image e[X] is topologically
dense in Y .

Proposition 3.12. Let e ∶ X → Y be a stable compactification. Then the
associated Nachbin space (Y,≤, π) induces an ordered space structure on
X whose open upsets are the original topology of X , and whose partial
ordering is the specialization order of this topology. Further, the embedding
e of this ordered structure into (Y,≤, π) is an order-compactification.

Proof. Let (X,τ) and (Y, δ) be our original T0 and stably compact spaces.
By Theorem 3.5, the image e[X] is dense in the patch topology π of Y , so
is a topologically dense subspace of the Nachbin space (Y,≤, π). The re-
striction of this Nachbin space to e[X] makes e[X] into an ordered space
having (Y,≤, π) as an order-compactification. So this induces an ordered
space structure on X having (Y,≤, π) as an order-compactification. It re-
mains only to show the open upsets of this ordered space structure on X are
the original topology τ , and that the partial ordering on X is the specializa-
tion order.

The open upsets of e[X] are the restrictions of the open upsets of (Y,
≤, π), hence are the restrictions of members of δ to e[X]. So the open upsets
of the induced structure on X are the inverse images under e of members
of δ, and as e is an embedding with respect to τ and δ, these are exactly
the members of τ . As the partial ordering of (Y,≤, π) is the specialization
order of δ, the partial ordering of e[X] is the specialization order of the open
upsets of e[X], hence the partial ordering on X is the specialization order of
τ .
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Proposition 3.12 shows that every stable compactification can be viewed
as an order-compactification. The following example shows the converse
of this does not hold. The difficulty, roughly speaking, is in the fact that
an order-compactification must be an embedding with respect to the patch
topology, while a stable compactification must be an embedding with respect
to the topology of open upsets.

Example 3.13. Let (X,≤, π) be the natural numbers N with discrete topol-
ogy, ordered as an antichain, and let (Y,≤, π) be the one-point compacti-
fication N ∪ {∞} ordered as an antichain on N and with n ≤ ∞ for each
n ∈ N. The identical embedding is an order-compactification of (X,≤, π)
into (Y,≤, π). But the open upsets of Y are the cofinite ones containing ∞,
while all subsets of X are open upsets. So the identical embedding is not a
stable compactification with respect to the topologies of open upsets.

Proposition 3.12 can be viewed in another light. Each stable compactifi-
cation of a T0-space (X,τ) induces an ordered space structure on X having
τ as its open upsets, and giving a companion topology τ ′ of open downsets,
so that the join of the topologies π = τ ∨ τ ′ is a completely regular topology.
Based on the work of [4, 24, 17], Salbani [21, 22] has considered a method
to associate with any T0 topology τ on X a companion topology he calls τ∗,
where τ∗ has the members of τ as a basis for the closed sets.

Proposition 3.14. For a T0-space (X,τ), Salbani’s topology τ∗ is the com-
panion topology to τ arising from the largest stable compactification of X .

Proof. Smyth [26, Prop. 16] showed that the largest stable compactification
of (X,τ) is the space Y of prime filters of Ω(X), i.e. the spectral space of
the distributive lattice Ω(X). Here Y has as a basis for its topology all sets
ϕ(U) = {F ∈ Y ∶ U ∈ F}, where U ∈ Ω(X), and the embedding e ∶ X → Y
is given by e(x) = {U ∶ x ∈ U}. Note e−1ϕ(U) = U for each U ∈ Ω(X).
The Nachbin space associated to Y is the Priestley space [20] of Ω(X). The
closed sets of the topology of open downsets of Y are the closed upsets of
the Priestley space. These are the intersections of the clopen upsets, hence of
the sets ϕ(U), where U ∈ Ω(X). So the companion topology on X induced
by this stable compactification has the sets U = e−1ϕ(U) for U ∈ Ω(X) as a
basis for its closed sets. Thus, this companion topology is Salbani’s topology
τ∗.
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Remark 3.15. We may consider these results in one further context. We
recall that a bitopological space is a set X equipped with two topologies
τ1 and τ2. For a bispace (X,τ1, τ2), let π = τ1 ∨ τ2 be the patch topology.
Following [21], we call a bispace (X,τ1, τ2) compact if (X,π) is compact,
T0 if (X,π) is T0, and regular if it is T0 and for each U ∈ τi, we have
U = ⋃{V ∈ τi ∶ clk(V ) ⊆ U} (i ≠ k, i, k = 1,2). The correspondence of The-
orem 2.6 between stably compact spaces and Nachbin spaces extends to also
include compact regular bispaces. Indeed, if (X,≤, π) is a Nachbin space,
then the open upsets and open downsets form a compact regular bispace, and
each compact regular bispace arises this way (see, e.g., [12]).

Salbany [21] generalized the notion of compactification to that of bi-
compactification. A bicompactification of a bispace (X,τ1, τ2) is a bis-
pace embedding e ∶ (X,τ1, τ2) → (Y, δ1, δ2) into a compact regular bispace
(Y, δ1, δ2) such that e[X] is dense in the patch topology π = δ1 ∨ δ2. For any
stable compactification e ∶ (X,τ1) → (Y, δ1) of a T0-space, letting δ2 be the
co-compact topology of δ1, produces a compact regular bispace (Y, δ1, δ2).
This induces a completely regular bispace structure (X,τ1, τ2) on X with
e ∶ (X,τ1, τ2) → (Y, δ1, δ2) a bispace compactification. (Note that τ2 is not
determined by τ1, but is dependent on the specific stable compactification of
(X,τ1).) This is the bispace analogue of Proposition 3.12, and indicates that
every stable compactification can be viewed as a bicompactification. Con-
versely, it is easily seen from Theorem 3.5 that if e ∶ (X,τ1, τ2) → (Y, δ1, δ2)
is a bicompactification, then e ∶ (X,τ1) → (Y, δ1) is a stable compactifica-
tion.

4. Stable compactifications of frames

In this section we extend the notion of stable compactifications to the setting
of frames, and describe the poset of stable compactifications of a frame in
several ways. To begin, we recall Banaschewski’s definition of a compacti-
fication of a frame [1].

Definition 4.1. A compactification of a frame L is a dense frame homomor-
phism f ∶ M → L from a compact regular frame M onto L. Here, a frame
homomorphism is dense if for all x ∈M we have f(x) = 0 implies x = 0.

Banaschewski showed that a frame L has a compactification iff it is a
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completely regular frame, and that for a completely regular space X , the
compactifications of the frame Ω(X) correspond to the compactifications of
the space X . So compactifications of spatial frames amount to a translation
of the notion of compactification to the frame language. However, while ev-
ery compact regular frame M is spatial, there are completely regular frames
L that are not spatial, and for these the notion of compactification is new.
We now extend these ideas to stable compactifications of frames.

Definition 4.2. For a frame homomorphism f ∶ M → L we let rf ∶ L → M
be the right adjoint of f , namely the map rf(a) = ⋁{x ∶ f(x) ≤ a}.

The map rf preserves finite meets, but need not preserve finite joins.
When the map f is clear from the context, we often use r in place of rf .

Definition 4.3. A stable compactification of a frame L is a pair (M,f)
where M is a stably compact frame and f ∶ M → L is an onto frame ho-
momorphism that satisfies

x << y⇒ r(f(x)) << y. (∗)

The reader may notice that as with stable compactifications of spaces,
density is not specifically required in the definition. As with spaces, it is a
consequence of the definition.

Lemma 4.4. If f ∶M → L is a stable compactification of L, then f is dense.

Proof. As 0 << 0, we have r(0) << 0, giving r(0) = 0.

Proposition 4.5. Every compactification of L is a stable compactification of
L.

Proof. Suppose f ∶ M → L is a compactification. Then f is a dense onto
frame homomorphism. Since M is compact regular, M is stably compact.
So to show f ∶ M → L is a stable compactification it remains to verify
condition (∗) of Definition 4.3. The way below relation ≪ and well inside
relation ≺ agree in any compact regular frame, so it is sufficient to show that
if x, y, z ∈ M with x ≺ y and f(z) ≤ f(x), then z ≺ y. From f(z) ≤ f(x)
it follows that f(z) ∧ ¬f(x) = 0, so f(z) ∧ f(¬x) = 0, and the density of
f yields z ∧ ¬x = 0, hence ¬x ≤ ¬z. But x ≺ y means ¬x ∨ y = 1, hence
¬z ∨ y = 1, giving z ≺ y.
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We next show that the stable compactifications of the frame of open sets
of a T0-space X correspond to Smyth’s stable compactifications of the space
X . We recall (see Theorem 2.13) that the stably compact frames are, up
to isomorphism, exactly the frames Ω(Y ) for a stably compact space Y .
Also, by Corollary 2.10, if Y is a stably compact space, hence a sober
space, then Ω provides a bijection between the homsets Top(X,Y ) and
Frm(Ω(Y ),Ω(X)).

Proposition 4.6. For X a T0-space, Y a stably compact space, and e ∶X →
Y continuous, e is a stable compactification of X iff Ω(e) is a stable com-
pactification of Ω(X).

Proof. Corollary 2.10 states that e is an embedding iff Ω(e) is onto. For U
and V open subsets of Y we have Ω(e)(V ) ⊆ Ω(e)(U) iff e−1(V ) ⊆ e−1(U)
iff V ∩e[X] ⊆ U ∩e[X]. It follows that U = r(Ω(e))(U) for all open U ⊆ Y .
Thus, e is a stable compactification iff Ω(e) is a stable compactification.

We turn next to providing internal ways to describe stable compactifica-
tions of a frame. This is similar in spirit to Smirnov’s result [25] providing
an internal characterization of the compactifications of a completely regu-
lar space, Banaschewski’s result [1] characterizing compactifications of a
frame, and generalizes Smyth’s result [26] to the pointfree setting.

Our key notion is that of proximities. The idea of a proximity has a long
history, see [16] for details, and occurs in the literature with related but dif-
ferent meanings. Proximities were originally considered as various types of
relations on the powerset of a set [9, 25, 8, 16]. They were later extended
to the pointfree setting [7, 1, 11, 26, 19]. Here we follow the path we began
in [5] that views a proximity as a relation on a frame that generalizes Ba-
naschewski’s notion of a strong inclusion and is closely related to Smyth’s
approximating auxiliary relation. As in [5] we use ≺ for a proximity on a
frame. The symbol ≺ is also used to denote the well inside relation on a
frame; when it is used with this meaning in the sequel, we will specifically
say so.

Definition 4.7. [5] Let L be a frame. A proximity on L is a binary relation
≺ on L satisfying:

1. 0 ≺ 0 and 1 ≺ 1.
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2. a ≺ b implies a ≤ b.

3. a ≤ b ≺ c ≤ d implies a ≺ d.

4. a, b ≺ c implies a ∨ b ≺ c.

5. a ≺ b, c implies a ≺ b ∧ c.

6. a ≺ b implies there exists c ∈ L with a ≺ c ≺ b.

7. a = ⋁{b ∈ L ∶ b ≺ a}.

Example 4.8. Some examples of proximity frames are the following. (1)
The partial ordering of any frame is a proximity. (2) A strong inclusion on
a frame [1] is a proximity that is contained in the well inside relation and
satisfies a ≺ b implies ¬b ≺ ¬a. (3) The way below relation on a stably
compact frame is a proximity. (4) The well inside relation on a compact
regular frame is a proximity. (5) The really inside relation on any completely
regular frame [13, Sec. IV.1] is a proximity. See [5] for further details.

Definition 4.9. For f ∶ M → L a stable compactification of L, define a
relation ≺f on L by setting a ≺f b⇔ rf(a) << rf(b).

To make notation nicer, we often use ≺ in place of ≺f and r in place of
rf .

Lemma 4.10. a ≺ b iff x << y for some x, y with f(x) = a and f(y) = b.

Proof. ⇒: This is trivial as f(r(a)) = a and f(r(b)) = b since f is onto.
⇐: Suppose x << y, where f(x) = a and f(y) = b. Then as y ≤ r(b), we

have x << r(b). But part of the definition of a stable compactification says
p << q ⇒ r(f(p)) << q. Thus, as r(f(x)) = r(a), we have r(a) << r(b), so
a ≺ b.

Proposition 4.11. If f ∶ M → L is a stable compactification, then ≺ is a
proximity on L.

Proof. For (1) note 0 << 0 always holds, and as M is compact 1 << 1. By
Lemma 4.10, f(0) ≺ f(0) and f(1) ≺ f(1), giving 0 ≺ 0 and 1 ≺ 1. For
(2) suppose a ≺ b. Then r(a) << r(b), hence r(a) ≤ r(b), giving a = fr(a) ≤
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fr(b) = b. For (3) suppose a ≤ b ≺ c ≤ d. Then r(a) ≤ r(b) << r(c) ≤ r(d), so
r(a) << r(d), hence a ≺ d. For (4) suppose a, b ≺ c. Then r(a), r(b) << r(c),
hence by general properties of the way below relation, r(a) ∨ r(b) << r(c).
Then as f(r(a) ∨ r(b)) = a∨ b and f(r(c)) = c, Lemma 4.10 gives a∨ b ≺ c.
For (5) suppose a ≺ b, c. Then r(a) << r(b), r(c) and as M is stable, r(a) <
< r(b) ∧ r(c), giving r(a) << r(b ∧ c), hence a ≺ b ∧ c. For (6) suppose
a ≺ b. Then r(a) << r(b). As M is stably compact, we may interpolate to
find z with r(a) << z << r(b). Then letting f(z) = c, Lemma 4.10 shows
a ≺ c ≺ b. For (7) as M is stably compact, r(a) = ⋁{x ∶ x << r(a)},
so f(r(a)) = ⋁{f(x) ∶ x << r(a)}. By Lemma 4.10, if x << r(a) then
f(x) ≺ a. It follows that a = ⋁{b ∶ b ≺ a}.

Definition 4.12. For a proximity ≺ on L, we say an ideal I of L is ≺-round
if for each a ∈ I there is b ∈ I with a ≺ b. We let I≺L be the collection of all
≺-round ideals of L.

Definition 4.13. For a stably compact frame M , we say N ⊆ M is a stably
compact subframe of M if

1. N is a subframe of M .

2. N is a stably compact frame.

3. The identical embedding of N in M is proper, so a <<N b⇒ a <<M b.

A stably compact subframe M of the ideal frame IL is called dense if ⋁ ⋅ ∶
M → L is onto.

We note that ifN is a stably compact subframe ofM , then a << b inN iff
a << b in M . One direction is provided by the definition of stably compact
subframe, the other as a ≪ b in a frame implies a ≪ b in any subframe
containing a, b. We also point the reader to [5, Sec. 4], where a number of
results were established for the frame of round ideals of a proximity frame.
In [5], this frame was called RIL rather than I≺L as above because there
was no need to consider more than one proximity on a given frame, as there
will be here.

Proposition 4.14. For a proximity ≺ on L, the set I≺L of ≺-round ideals is a
dense stably compact subframe of the frame IL of ideals of L. Further, the
join map ⋁ ⋅ ∶ I≺L→ L is a stable compactification of L.
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Proof. For a ∈ L let ↡a = {b ∈ L ∶ b ≺ a}. In [5, Prop. 4.6] it is shown that
I≺L is a subframe of IL, and I ≪ J in I≺L iff I ⊆ ↡a for some a ∈ J . This
second condition shows I ≪ J in I≺L implies I ≪ J in IL. That I≺L is a
stably compact frame is given in [5, Prop. 4.8]. Together, these show I≺L is
a stably compact subframe of IL.

The map ⋁ ⋅ ∶ IL → L is known to be a frame homomorphism. So its
restriction to I≺L is a frame homomorphism. To see it is onto, if a ∈ L, then
↡a is a ≺-round ideal and by properties of a proximity, ⋁↡a = a. Thus, I≺L is
dense. Finally, we show ⋁ ⋅ satisfies condition (∗). Suppose I, J are ≺-round
ideals with I << J . Then there is a ∈ J with I ⊆ ↡a. Suppose ⋁ I = b. Then
the largest ≺-round ideal mapped by ⋁ ⋅ to b is ↡b, so r (⋁ I) = ↡b. As I ⊆ ↓a
and b = ⋁ I , we have b ≤ a. Then ↡b ⊆ ↓a and a ∈ J imply ↡b << J . This
shows ⋁ ⋅ satisfies condition (∗), so is a stable compactification.

Proposition 4.15. If f ∶M → L is a stable compactification, then there are
mutually inverse frame isomorphisms g ∶ M → I≺fL and h ∶ I≺fL → M
defined by g(m) = {f(n) ∶ n <<m} and h(I) = ⋁ rf [I]. Further, (⋁ ⋅) ○ g =
f and f ○ h = ⋁ ⋅.

Proof. For m ∈M we first show I = g(m) is a ≺f -round ideal of L. Suppose
n << m and a ≤ f(n). As before, using r for rf , we have r(a) ≤ rf(n).
By condition (∗) on f we have n << m ⇒ rf(n) << m, so r(a) << m, thus
a = fr(a) ∈ I . So I is a downset. If n1 <<m and n2 <<m, then n1∨n2 <<m,
and as f is a frame homomorphism, it follows that I is closed under finite
joins, so I is an ideal of L. Say n << m. Then there is p with n << p << m.
Therefore, by Lemma 4.10, f(n) ≺f f(p) and f(p) ∈ I . So I is ≺f -round.

We have shown g is well-defined. Clearly h is also well-defined, and
it is obvious that both g and h are order-preserving. For m ∈ M we have
hg(m) = ⋁{rf(n) ∶ n <<m}. Condition (∗) on f shows n <<m⇒ rf(n) <
< m, hence n << m⇒ n ≤ rf(n) ≤ m. As M is stably compact, m = ⋁{n ∶
n << m}, and it follows that m = ⋁{rf(n) ∶ n << m}. Thus, h ○ g is the
identity map on M .

Suppose I is a ≺f -round ideal of L. If a ∈ I , then there is b ∈ I with
a ≺f b. By the definition of ≺f we have r(a) << r(b), hence r(a) << r(b) ≤
⋁ r[I] = h(I). As gh(I) = {f(n) ∶ n << h(I)} we have a = fr(a) ∈ gh(I).
Thus, I ⊆ gh(I). Conversely, suppose a ∈ gh(I). Then a = f(n) for some
n << h(I). As h(I) = ⋁ r[I], the definition of way below and the fact that

BEZHANISHVILI & HARDING - STABLE COMPACTIFICATIONS OF FRAMES

- 55 -



r[I] is up-directed gives n ≤ r(b) for some b ∈ I . Therefore, a = f(n) ≤
fr(b) = b, and as I is an ideal, we have a ∈ I . Thus, I = gh(I), showing
g ○ h is the identity map on I≺fL. So we have shown g and h are mutually
inverse frame isomorphisms between M and I≺fL.

For the further comment, suppose m ∈ M . As M is stably compact,
m = ⋁{n ∶ n << m}, and as f is a frame homomorphism, f(m) = ⋁{f(n) ∶
n << m}. Thus, (⋁ ⋅) ○ g = f . Then f ○ h = (⋁ ⋅) ○ g ○ h = ⋁ ⋅ as g and h are
mutually inverse isomorphisms.

Proposition 4.16. If L is a frame andM is a dense stably compact subframe
of IL, then ⋁ ⋅ ∶M → L is a stable compactification of L, and M is equal to
I≺⋁ ⋅L.

Proof. By the definition of a stably compact subframe, we haveM is a stably
compact frame. Also, this definition implies M is a subframe of IL, and as
the join map from IL to L is a frame homomorphism, its restriction to M
is also a frame homomorphism. We have assumed the join map from M to
L is an onto mapping, so to show ⋁ ⋅ ∶ M → L is a stable compactification
we need only show this map satisfies condition (∗). Suppose I, J ∈M with
I << J in M , hence by the definition of a stably compact subframe, I << J
in IL. Let r(I) be the largest element of M mapped by ⋁ ⋅ to ⋁ I , and let
r̂(I) be the largest element of IL mapped by ⋁ ⋅ to ⋁ I . As ⋁ ⋅ ∶ IL → L is
a stable compactification, we have r̂(I) << J in IL, so r(I) ≤ r̂(I) << J in
IL, giving r(I) << J in IL, hence r(I) << J in M . Thus, ⋁ ⋅ ∶M → L is a
stable compactification.

We now show M = I≺⋁ ⋅L. Suppose I is an element of M . Surely I is an
ideal of L, we must show it is ≺⋁ ⋅-round. Let a ∈ I . Then as ⋁ ⋅ ∶ M → L
is assumed to be onto, there is some J ∈ M with ⋁J = a. So J ⊆ ↓a and
a ∈ I give J << I . As M is stably compact, << is interpolating, so we can
find K in M with J << K << I . Setting b = ⋁K, the definition of ≺⋁ ⋅ gives
a ≺⋁ ⋅ b since J << K and both a = ⋁J and b = ⋁K. Now K << I gives
K ⊆ ↓c for some c ∈ I , so b ≤ c, giving b ∈ I . So I is indeed ≺⋁ ⋅-round.
Conversely, suppose I is a ≺⋁ ⋅-round ideal of L. As ⋁ ⋅ ∶M → L is an onto
frame homomorphism, for each a ∈ I there is a largest ideal Ja in M with
a = ⋁Ja. Let J be the join in the ideal frame of {Ja ∶ a ∈ I}. Then as M is
a subframe of IL, we have J ∈M . For each a ∈ I we have Ja ⊆ ↓a, so each
Ja is contained in I , hence J ⊆ I . Suppose a ∈ I . As I is ≺⋁ ⋅-round, there is
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b ∈ I with a ≺⋁ ⋅ b. This means there are ideals P << Q in M with a = ⋁P
and b = ⋁Q. As P << Q, there is c ∈ Q with P ⊆ ↓c. Clearly a ≤ c, and
c ∈ Q ⊆ Jb. Thus, a ≤ c ∈ J , so a ∈ J . This yields J = I , showing I belongs
to M .

Definition 4.17. For stable compactifications f ∶ M → L and f ′ ∶ M ′ → L
of a frame L, define f ⊑ f ′ if there is a proper frame homomorphism g ∶
M → M ′ with f = f ′ ○ g. Then ⊑ is reflexive and transitive, so is a quasi-
order on the class of stable compactifications of L. Let COMP L be the poset
of equivalence classes of stable compactifications under the partial order
associated with ⊑, and denote the equivalence class of f ∶M → L by [f].

Remark 4.18. Proposition 4.15 shows every equivalence class of COMP L
contains a member of the form ⋁ ⋅ ∶ M → L for some stably compact sub-
frame M of IL. So COMP L is a set with a partial ordering even though
there is a proper class of compactifications.

Definition 4.19. For a frame L, let PROX L be the poset of proximities on
L, partially ordered by set inclusion, and SUB IL be the poset of dense
stably compact subframes M of the ideal frame IL, partially ordered by set
inclusion.

We next show that the posets COMP L, PROX L, and SUB IL are iso-
morphic.

Theorem 4.20. For a frame L there are isomorphisms

Φ ∶ COMP L→ PROX L where Φ([f]) =≺f

Ψ ∶ PROX L→ SUB IL where Ψ(≺) = I≺L

Π ∶ SUB IL → COMP L where Π(M) is the equivalence class of
⋁ ⋅ ∶M → L.

Further, Φ−1 = Π ○Ψ, Ψ−1 = Φ ○Π, and Π−1 = Ψ ○Φ.

Proof. To see Φ is well-defined, suppose f ∶ M → L and f ′ ∶ M ′ → L
are equivalent stable compactifications, so there are proper frame homomor-
phisms g ∶ M → M ′ and g′ ∶ M ′ → M with f ′ ○ g = f and f ○ g′ = f ′.
If a ≺f b, then by Lemma 4.10, there are x << y in M with f(x) = a and
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f(y) = b. As g is proper, we have g(x) << g(y), and as f ′ ○ g = f , we
have a = f ′g(x) ≺f ′ f ′g(y) = b. So ≺f⊆≺f ′ , and by symmetry ≺f ′⊆≺f , hence
equality. So the definition of Φ does not depend on the member f of the
equivalence class [f] chosen. That Φ([f]) is indeed a member of PROX L is
given by Proposition 4.11. That Ψ is a map into SUB IL is given by Propo-
sition 4.14, and that Π is a map into COMP L is given by Proposition 4.16.

To see Φ is order-preserving, suppose [f] ≤ [f ′] where f ∶ M → L and
f ′ ∶ M ′ → L are stable compactifications. Then there is a proper frame
homomorphism g ∶ M → M ′ with f ′ ○ g = f . We have just seen that this
implies ≺f ⊆≺f ′ , so Φ([f]) ≤ Φ([f ′]). To see Ψ is order-preserving, suppose
≺⊆≺′. Then I≺L is a subset of I≺′L, so Ψ(≺) ⊆ Ψ(≺′). Finally, to show Π is
order-preserving, supposeM andM ′ are dense stably compact subframes of
IL with M ⊆M ′. Let g ∶M →M ′ be the identical embedding. As both M
and M ′ are subframes of IL, we have finite meets and arbitrary joins in M
and M ′ agree with those in IL, so g is a frame homomorphism. To see g is
proper, we note that the definition of a stably compact subframe implies that
the way below relations in M and M ′ are the restrictions of the way below
relation in IL. Finally, for I ∈ M we have (⋁ ⋅) ○ g(I) is simply the join
of I in L, which is equal to (⋁ ⋅)I . This shows ⋁ ⋅ ∶ M → L is ⊑ related
to ⋁ ⋅ ∶ M ′ → L, hence the equivalence class of the first compactification
is beneath that of the second in the partial ordering of COMP L, showing
Π(M) ≤ Π(M ′).

To show that Φ,Ψ,Π are isomorphisms and the further remarks describ-
ing their inverses, it is enough to show ΠΨΦ, ΨΦΠ, and ΦΠΨ are the iden-
tity maps on COMP L, SUB IL, and PROX L, respectively.

To see ΠΨΦ is the identity on COMP L, let f ∶ M → L be a stable
compactification. Then ΠΨΦ([f]) = ΠΨ(≺f) = Π(I≺fL), and this fi-
nal item is the equivalence class of the compactification ⋁ ⋅ ∶ I≺fL → L.
Proposition 4.15 shows f ∶ M → L and ⋁ ⋅ ∶ I≺f → L are equivalent, so
ΠΨΦ([f]) = [f].

To see ΨΦΠ is the identity map on SUB IL, suppose M belongs to
SUB IL. Proposition 4.16 shows M is equal to I≺⋁ ⋅L, hence ΨΦΠ(M) =
M .

Finally, we show ΦΠΨ is the identity on PROX L. Suppose ≺ is a prox-
imity on L and let ≺′ be the proximity ΦΠΨ(≺). Suppose a ≺ b. Then there
is c with a ≺ c ≺ b. The ideals ↡a and ↡b are ≺-round and as ≺ is a proximity,
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we have (⋁ ⋅)↡a = a and (⋁ ⋅)↡b = b. As ↡a ⊆ ↓c and c ∈ ↡b, we have ↡a << ↡b,
and it follows from Lemma 4.10 and the definition of ≺′=≺⋁ ⋅ that a ≺′ b. Con-
versely, suppose a ≺′ b. Then the definition of ≺⋁ ⋅ gives r(a) << r(b), where
r is the right adjoint of ⋁ ⋅ ∶ I≺L → L. Clearly the largest ≺-round ideal of
L mapped by ⋁ ⋅ to a is ↡a, so r(a) = ↡a, and r(b) = ↡b. So ↡a << ↡b. This
means there is c ∈ ↡b with ↡a ⊆ ↓c. As ≺ is a proximity, a = ⋁↡a, so a ≤ c,
and as c ∈ ↡b, we have c ≺ b, hence a ≺ b. So ≺=≺′, thus ≺= ΦΠΨ(≺).

We conclude this section with a discussion of matters related to the poset
of stable compactifications of a frame. We begin with a comparison to
Smyth’s poset COMP X of stable compactifications of a T0-space described
in Definition 3.2.

Proposition 4.21. For a T0-space X , the poset COMP X of stable compact-
ifications of X is isomorphic to the poset COMP Ω(X) of stable compactifi-
cations of the frame Ω(X).

Proof. Proposition 4.6, and the discussion before it, show that each equiv-
alence class of stable compactifications of the frame Ω(X) contains an el-
ement of the form Ω(e) ∶ Ω(Y ) → Ω(X) for some stable compactification
e ∶ X → Y of the space X . The result then follows as the proper frame
homomorphisms from the frame Ω(Y ) to the frame Ω(Z) of open sets of
stably compact spaces Y and Z are exactly the Ω(f) where f ∶ Z → Y is
proper.

Corollary 4.22. For a T0-space X and its sobrification s(X), the poset
COMP X is isomorphic to the poset COMP s(X).

Proof. This follows from Proposition 4.21 as the frames Ω(X) and Ω(sX)
are isomorphic.

Remark 4.23. The poset of stable compactifications of L always has a lar-
gest element. In terms of the poset of proximities on L, this corresponds to
the largest proximity, namely the partial ordering on L, and in terms of the
dense stably compact subframes of the ideal frame, this corresponds to the
largest such subframe, namely the ideal frame IL itself. As we discuss in the
next section, this largest stable compactification is coherent. We also point
to Smyth’s results on the largest stable compactification of a T0-space and its
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connection to Salbani’s companion topology discussed in Proposition 3.14.
We further note that as shown in Corollary 3.10, the poset of stable compact-
ifications of L need not have a least element, even in the case when L is a
spatial frame.

Remark 4.24. In [1] Banaschewski showed that for a completely regular
frame L, there is an isomorphism between the poset of compactifications of
L and the poset of strong inclusions on L. He also showed that each com-
pactification of L is equivalent to one of the form ⋁ ⋅ ∶M → L, where M is
a compact regular subframe of the regular coreflection RL. It follows that
the poset of compactifications of L is isomorphic to the poset of dense com-
pact regular subframes of RL. In particular, RL gives the largest element
of the poset of compactifications of L. The above results form extensions
of these to the setting of stable compactifications. Note, the largest stable
compactification of L given by IL need not be a compactification of L.

Remark 4.25. In [3] Banaschewski, Brümmer, and Hardie introduced bi-
frames as a pointfree version of bitopological spaces, much as frames are a
pointfree version of topological spaces. A biframe is a triple M = (M0,M1,
M2), where M1,M2 are subframes of the frame M0 and M0 is generated as
a frame by M1 ∪M2, and a biframe homomorphism h ∶ M → L is a frame
homomorphism h ∶M0 → L0, where h(Mi) ⊆ Li for i = 1,2.

The notions of compactness and regularity for biframes were introduced
in [3], and in [2] Banaschewski and Brümmer constructed for any stably
compact frame M1, a compact regular biframe (M0,M1,M2). Their tech-
nique involved representing M1, and the stably compact frame M2 of Scott
open filters of M1, in the congruence frame CON(M1) of M1, and then
constructing M0 from the subframe of this congruence frame generated by
the images of M1 and M2. It follows that the category of compact regular
biframes is equivalent to the category of stably compact frames, hence dually
equivalent to the category of stably compact spaces, and also to the category
of Nachbin spaces.

In [23] Schauerte studied bicompactifications of biframes. She defined a
bicompactification of a biframe L to be a pair (M,f), whereM is a compact
regular biframe and f ∶ M → L is a dense onto biframe homomorphism.
Here density is used in the usual sense with respect to M0 and L0, while
onto means that the restrictions to Mi are onto Li for i = 1,2. Schauerte [23]
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generalized Banaschewski’s theorem by proving that the poset of bicompact-
ifications of a biframe is isomorphic to the poset of “strong inclusions” on
L.

Our results on stable compactifications and ordered spaces can be placed
in the context of biframes. Suppose f ∶ M1 → L1 is a stable compactifica-
tion of a frame L1. As f is an onto frame homomorphism, there is a frame
homomorphism f ∶ CON(M1) → CON(L1) taking a congruence θ on M1

to the congruence on L associated with θ ∨ kerf . For the compact regular
biframe M = (M0,M1,M2) constructed in [2], the frames M0,M1,M2 were
realized inside the congruence frame CON(M1), and this yields a biframe
L = (L0, L1, L2) with Li determined by the image of f(Mi) for i = 0,1,2.
This gives a biframe compactification f ∶ M → L. So every stable com-
pactification naturally yields a biframe compactification. Conversely, it fol-
lows from Schauerte’s characterization of biframe compactifications that
if f ∶ (M0,M1,M2) → (L0, L1, L2) is a biframe compactification, then
f ∣M1 ∶M1 → L1 is a stable compactification. So the correspondence between
stable compactifications of frames and bicompactifications of biframes is
similar to that between stable compactifications of T0-spaces and bicom-
pactifications of bispaces discussed in Remark 3.15.

5. Coherent and spectral compactifications

Recall that a frame is coherent if its compact elements are a bounded sublat-
tice, and each element is a join of compact elements. A space is spectral if it
is the space of prime filters of a bounded distributive lattice. Every coherent
frame is stably compact, and every spectral space is stably compact. Here we
consider stable compactifications in the context of coherent frames and spec-
tral spaces. This is closely related to Smyth’s characterization [26, Prop. 20]
of spectral compactifications of a T0-space X in terms of lattice bases of the
frame of open sets Ω(X), where we call a stable compactification (Y, e) of
a T0-space X a spectral compactification if Y is a spectral space.

Definition 5.1. Let L be a frame and f ∶M → L be a stable compactification
of L. We call f a coherent compactification of L if M is a coherent frame.
Let COH L be the sub-poset of COMP L whose equivalence classes consist
of coherent compactifications of L. A proximity ≺ on L is called coherent if
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a ≺ b implies there is c with c ≺ c and a ≺ c ≺ b.

Proposition 5.2. COH L is isomorphic to the sub-poset of PROX L consist-
ing of coherent proximities on L, and to the sub-poset of SUB IL consisting
of dense stably compact subframes that are additionally coherent.

Proof. Consider the isomorphism Φ ∶ COMP L → PROX L of Theorem
4.20 and suppose that f ∶ M → L is a stable compactification of L. By
Lemma 4.10, a ≺f b iff f(x) = a and f(y) = b for some x ≪ y in M . If
M is coherent, the proximity ≪ on M is coherent, and it follows that ≺f is
coherent as well. Next, consider the isomorphism Ψ ∶ PROX L → SUB IL
and suppose that ≺ is a coherent proximity. Then the frame I≺L of ≺-round
ideals of L is coherent. Indeed, if I, J are ≺-round ideals with I ≪ J , then
there is a ∈ J with I ⊆ ↡a. As J is round, there is b ∈ J with a ≺ b. Then as
≺ is coherent, there is c ≺ c with a ≺ c ≺ b. Therefore, I ≪ ↡c ≪ ↡c ≪ J .
Finally, consider the isomorphism Π ∶ SUB IL → COMP L. Clearly if M
is a dense stably compact subframe of IL that is coherent, then the stable
compactification ⋁ ⋅ ∶M → L is by definition coherent.

In the coherent setting, there is an alternate path to a description of com-
pactifications that is convenient. We call a bounded sublattice S of a frame
L a lattice basis if S is join-dense in L, meaning each element of L is a join
of elements of S. Let LAT L be the poset of lattice bases of L, where the
ordering is set inclusion.

Proposition 5.3. COH L is isomorphic to LAT L.

Proof. By Proposition 5.2, COH L is isomorphic to the poset CSUB IL of
dense stably compact subframes of IL that are themselves coherent.

If M belongs to CSUB IL, then as ≪ in M is the restriction of ≪ in
IL, the compact elements of M are those principal ideals ↓a belonging to
M . As M is coherent, we have S = {a ∈ L ∶ ↓a ∈ M} is a sublattice of L,
and as each element of M is the join of compact elements and the join map
⋁ ⋅ ∶ M → L is onto, S is a join-dense sublattice of L, hence a lattice basis.
Setting Γ(M) = {a ∶ ↓a ∈M} gives an order-preserving map from CSUB IL
to LAT L.

If S is a lattice basis of L, set ISL to be the set of ideals of L generated
by S, and note that this is the subframe of IL generated by {↓a ∶ a ∈ S}.
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The compact elements of ISL are exactly the ↓a where a ∈ S, and it follows
that ISL is a coherent frame. If I ≪ J in ISL, then I ⊆ ↓a for some a ∈ J
with a ∈ S, hence I ≪ J in IL. So ISL is a stably compact subframe of IL
that is coherent, and it is dense as S is a join-dense sublattice of L. Setting
Λ(S) = ISL then gives an order-preserving map from LAT L to CSUB IL.

Our constructions show that ΛΓ(M) = M for each M ∈ CSUB IL and
ΓΛ(S) = S for each S ∈ LAT L, so Γ and Λ establish an isomorphism of
CSUB IL and LAT L.

Remark 5.4. Smyth [26, Prop. 20] showed that the poset of spectral com-
pactifications of X is isomorphic to the poset of lattice bases of Ω(X). The
above result is an obvious extension of this to the setting of coherent com-
pactifications of frames.
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Abstract. An autograph is an action of the free monoid with 2 generators;
it could be drawn with no use of objects, by arrows drawn between arrows.
As examples we get knot diagrams as well as 2-graphs. The notion of
an autocategory is analoguous to the notion of category, by replacing the
underlying graph by an autograph. Examples are knots or links diagrams
(unstratified case), categories, 2-categories, double categories (stratified
case), which so live in the same context, the category of autocategories.

Résumé. Un autographe est une action du monoı̈de libre à deux générateurs
d et c, et peut être représenté en dessinant des flèches entre des flèches, sans
utiliser d’objets. Par exemple nous avons les graphes et les 2-graphes. La
notion d’autocatégorie est semblable à celle de catégorie, en remplaçant le
graphe sous-jacent par un autographe. Les exemples sont les diagrammes
de nœuds ou d’entrelacs (cas non-stratifiés), les catégories, 2-catégories et
catégories doubles (cas stratifiés), qui ainsi résident dans la même catégorie
des autocatégories.

Keywords. knot, graph, 2-category
Mathematics Subject Classification (2010). 18

1. Autograph

Definition 1.1. An autograph (A, (d, c)) is a setA of elements named arrows,
equipped with two maps, domain d : A → A and codomain c : A → A, i.e.
a map ∂ = (d, c) : A→ A×A. Of course it is the same thing that an action
on A of FM(2) = {d, c}∗, the free monoı̈d on two generators d and c.
We denote by Agraph the category of autographs, with morphism maps f :
A → A′ with d′fa = fda, c′fa = fca, and U : Agraph → Set the
forgetful functor given by U((A, (d, c)) = A.

by René GUITART
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Example 1.2. For (G, (δ, γ)) a 2-generated group G (e.g. any finite simple
group), with generators δ and γ, any G-set E is an autograph, with d and c
given by the actions of δ and γ on E. In such a case d and c are invertible.

Remark 1.3. We represent the fact that the domain of an arrow a ∈ A is
the arrow v and its codomain is the arrow w, i.e. da = v and ca = w, by:
a : v → w, or v a→ w, or by the picture

a
v w

.

Definition 1.4. 1 .[path] — A (d, c)-path or a path of length k in an auto-
graph (A, (d, c)) is a finite sequence of consecutive arrows (zn)0≤n≤k−1 with

cz0 = dz1, cz1 = dz2, . . . czk−2 = dzk−1.

If there is no path of length > 1, then the autograph is U-free. The set of
paths in A is denoted Path(A, (d, c)) or shortly Path(A).
2 .[descent] — Given an autograph (A, (d, c)), a (d, c)-sequence or a down-
ward sequence or a descent in (A, (d, c)) is a sequence (xn)n≥0 — finite or
not — of elements of A with:

∀n ≥ 0 xn+1 ∈ {dxn, cxn}.

If there is no cyclic (resp. infinite) descent, then the autograph is stratifiable
(resp.foundable). The set of (d, c)-sequences or descents in A is denoted
Desc(A, (d, c)) or shortly Desc(A).

Example 1.5. A random example of a fragment of an autograph is:

©1

��

©2

��

##

?1 // ?2

$$

©3

��

?3 oo ©4
��

©5

��

// // ?4

��

oo //

OO

rr

?5

©6
oo // ?6 ©7?7

oo

==

©8

OO

::

©9?
8

44
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where the ©j are sources, and the ?i are targets, with ©9 = ?8, in such
a way that the picture looks like a kind of super-arrow from (©j)j=1,...,9

toward (?i)i=1,...,8 ; the sources and targets are ‘open’ or ‘empty’ places, in
the sense that they must be filled by new arrows, for example by auto-arrows
(cf. 2.1 and 2.2).

2. Auto-arrows and terminal autograph, self-reference

Definition 2.1. In an autograph, an ‘auto’-arrow is an auto-mapping from
itself to itself, i.e. an arrow a with domain da = a and codomain ca = a, i.e.
a data which could be written as “a : a→ a”, and be drawn as

a ,
a

,
a

, ...

Remark 2.2. Of course very often — by way of abbreviation — we denote
an ’auto’-arrow by a simple closed curve, as a circle©a, or a square �a, or
even by a bullet •a, or a star ?a, or a crossing×a, etc., and so we get a ’point’
in our picture ; but such a ’point’ is not at all considered as a static or stable
’object’, rather it is an auto-modification.

Definition 2.3. The terminal autograph, i.e. the terminal object in Agraph,
consists of one letter named ∗; it will be denoted by S∗ = {∗ : ∗ → ∗}
(referencing to the shape ‘S’ of the second picture for an auto-arrow in 2.1).
An auto-arrow a in A is equivalent to a morphism of autographs a• : S∗ →
(A, (d, c)), the constant map on a.

Remark 2.4. The visualization of self-reference as an auto-arrow, or a ‘par-
tial auto’-arrow was introduced by Jean Schneider [7, 8], in order to mod-
elize graphically the structure of time : an instant i is an operation i applied
to itself i and producing a new thing j, which itself produces k, etc. and so
the time is constructed:

i j k ...
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3. Free autographs on ℵ0 generators

Proposition 3.1. The U-free autograph on ℵ0 generators FA(3N) can be
constructed as (N, (t1, t2)), with N the set of natural numbers and d = t1,
c = t2:

t1(m) = 3m+ 1, t2(m) = 3m+ 2 (?)

Any finite or denumerable example of autograph is a quotient of this one.
Furthermore, the set R of real numbers is identified to a subset of the set of
descents in FA(3N): R ⊂ Desc((N, (t1, t2))).

Proof. 1 — The free autograph FA({f}) on one generator f starts with:

dddf

��

cddf

��

ddcf

��

cdcf

��

ddf
//

df

��

dcf
//

cf

��

f
//

dcdf

��

ccdf

��

dccf

��

cccf

��

cdf
//

ccf
//

According to a dyadic process, the beginning of FA({f}) is pictured as this
given H-binary tree. It could also be seen as a part of the Cayley graph for the
free group on two generators s, t [2, Fig. 2.3., p.40] with f 7→ 1, df 7→ s−1,
cf 7→ s, ddf 7→ ts−1, cdf 7→ t−1s−1, dcf 7→ ts, ccf 7→ t−1s, etc.
2 — With d = 1 and c = 2, and with f = ., to each element of FA{f} is
associated a triadic code with no 0 ; for example to dcccdcf is associated the
code .212221, and the associated rational number 2

3
+ 1

9
+ . . . + 1

729
= 403

729
.

At this level, the operations d and c are realized as d = T1 and c = T2:

T1

(m
n

)
=
m

n
+

1

3

1

n
, T2

(m
n

)
=
m

n
+

1

3

2

n
. (??)

Then FA({f}) appears as a sub-autograph of the one consisting in the set
[0, 1[rat= {mn ; 0 ≤ m < n} equipped with d and c given by (??).
In fact, 403 determines completely the fraction 403

729
, the sequence 12221 be-

ing obtainable by successive divisions by 3, as the successive residues. So
FA{f} appears also as a sub-autograph of the one consisting in the set N
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equipped with d = t1 and c = t2 given by (?). We recover FA({f}) as the
sub-structure < 0 > generated by 0 :

13
��

14
��

21
��

22
��

4 //

1

��

7 //

2

��

0 // < 0 >

16
��

17
��

25
��

26
��5

//
8

//

3 — We get N =
∑

n≥0 < 3n >: for any N ∈ N, successive divisions by
3 provide N = 3q1 + x1, q1 = 3q2 + x2, . . . , qk−1 = 3qk + xk, qk = 3qk+1,
with x1, . . . xk ∈ {1, 2}, q1, . . . qk+1 ∈ N, and then N ∈< 3n > for the
unique value n = qk+1. So (N, (t1, t2)), with t1 and t2 given by (?), appears
as FA(3N), the free autograph on a denumerable set of generators {gn} with
gn = 3n, 3N = {3n;n ∈ N}.
4 — Each x ∈ R is representable as x = x0 +

∑
i≥1

xi
2i

, where, for ev-
ery i ≥ 1, xi ∈ {0, 1}, and x0 ∈ N ; if for one s ≥ 0, xs+j = 1 for
all j ≥ 1, then we replace xs by xs + 1 and all the xs+j , j ≥ 1, by 0:
this new code determines the same x. After that, every x has a unique rep-
resentation, with no infinite sequence of 1; then we associate to x the in-
finite sequence of elements of < 3x0 > with codes in d and c associated
to [x]n = .x1x

′
2x
′
3 . . . x

′
n with, for all i, x′i = xi + 1. For example to the

real 5
3

is associated the sequence . . . dcdcdc(3), or to the real π, of which
the binary code is 11.001001000011111101 . . . is associated the sequence
...cdccccccddddcddcdd(3). So R appears as a completion of the autograph
FA(3N), in terms of descents (definition 1.4): R ⊂ Desc(FA(3N)).

4. Knots and links, surgery

Proposition 4.1. Any oriented knot diagram K determines an associated
autograph denoted by As(K) = (Arc(K), α, ω)).

Proof. Given an oriented ‘knot diagram’ K [1, 5], i.e. a regular plan pro-
jection of a knot, with only isolated regular double points (the crossings of
the diagram), following the orientation, from any crossing toward the next
one, we get an oriented arc a, which is seen as an arrow from v = α(a) to
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w = ω(a), if the first crossing is a crossing of v and a, and the second one
is a crossing of w and a; so, on the set Arc(K) of arcs with these two maps
d = α and c = ω we get a structure of autograph, denoted by As(K), in
which for each a we have:

a
α(a) ω(a)

a− a+

Remark 4.2. Elements of Arc(K) are not completely ‘abstract’, they are
real arcs in the plan, and so we can precise a sign for each crossing :

a

w a+

(+1)
a

w a+

(−1)

So each arc a of the oriented knot diagram is equipped with a double sign
(ε, η), where ε is the sign of its initial crossing and η is the sign of its final
crossing; the data (a, (ε, η)) is named a doubly signed arc, (a, εη = σ) is
named a signed arc, and a itself is an unsigned arc (unsigned, but oriented),
with a predecessor a− (crossing with v, sign ε) and a successor a+ (crossing
with w, sign η). Of course the values of ε and η determine the orientations
on d and c.
Now, as the set of unsigned arcs, the set of signed arcs and the set of doubly
signed arcs — in the given knot diagram K — are two other autographs
associated to K, denoted by Asσ(K) and Asε,η(K).
Of course the same constructions work for any oriented link diagram L.

Example 4.3. The simplest example is the trefoil knot, with an oriented
diagram T, in which the double sign of each arc is (+,+); the associated
autograph As(T) is pictured and listed as follows:

vu

w u : w → v,

v : u→ w,

w : v → u,

or described by : αu = v, ωu = w, αv = w, ωv = u, αw = u, ωw = v.
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Remark 4.4. In [8, p. 168-169], this diagram is commented almost as fol-
lows. With R = v

w, S = w
u, I = u

v, we write, as for fractions (or matrices
composition or tensors calculus), S ? I = w

u ?
u
v = w

v = R−1; hence
Schneider think of the trefoil as representing relations like :

S ? I = R−1, I ? R = S−1, R ? S = I−1,

and the trefoil becomes a symbol of a borromean situation betweenR, S and
I . Then the borromean schema is presented as an enrichment of the trefoil
with three new crossing points r, s and i, with

R = I ∗ i, S = R ∗ r, I = S ∗ s, r = i ∗ I, s = r ∗R, i = s ∗ S.

Here we proceed in a different way, trying to stay always at the level of
autographs (arrows), i.e. with arcs rather than with crossing points (objects).

Example 4.5. An example is the borromean link, with an oriented diagram
B, and the associated autograph As(B) is listed and pictured as follows:

u : v′ → v,
v : w′ → w,
w : u′ → u,

u′ : v → v′,
v′ : w → w′,
w′ : u→ u′.

v′

w′

u′

u

v

w

Example 4.6. Starting with B, in its ‘hexagonal center’ we can do a surgical
procedure first consisting in the introduction of a Y-cut, cutting u′ near the
end in a point α, now separated into α− and α+, and similarly for v’ and
w′, and then continued by the junctions of α+ and β−, β+ and γ−, γ+ and
α−. Finally, after three Reidemeister moves of type I (twist)[1] to eliminate
the three new loops, we get the picture of the trefoil T. The data of this
construction determine an autograph As(B)Y , pictured and listed as:
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yv′′′

w′′′

u′′′

v′′

w′′

u′′

u

v

w

u : v′′ → v,
u′′ : v → y,
u′′′ : y → v′′,

v : w′′ → w,
v′′ : w → y,
v′′′ : y → w′′,

w : u′′ → u,
c′′ : a→ y,
w′′′ : y → u′′,

y : y → y.

In As(B)Y , the Y-cut is simulated by the introduction of an auto-arrow y and
three arrows making the convenient junction: u′′′, v′′′, w′′′.

Proposition 4.7. At the level of autographs, the surgery procedure in 4.5 —
explaining how to get T from B — could be translated by the construction of
two maps between three free autocategories of paths on an autograph (see
definition 6.1, 6.3):

Path(As(B)) β̄−→ Path(As(B)Y )
τ̄←− Path(As(T)).

Proof. The reader is invited to follow the paths on the picture of A(B)Y ,
in order to understand the transformations. The left mapping is determined
by the map β : B −→ Path(As(B)Y ), and the right one is determined by
τ : T −→ Path(As(B)Y ), with

β(u) = u, β(v) = v, β(w) = w,

β(u′) = u′′′u′′, β(v′) = v′′′v′′, β(w′) = w′′′w′′,

τ(u) = uu′′′v′′, τ(v) = vv′′′w′′, τ(w) = ww′′′u′′.
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v′

w′

u′

u

v

w
yv′′′

w′′′

u′′′

v′′

w′′

u′′

u

v

w

u

v

w

5. Identifiers, autographs and flexigraphs with identifiers

In the context of graphs, diagrams and categories, the notions of vertex, ob-
ject, identity and unit, are almost identified. With the notion of autograph we
clarify a distinction between them, at first by the elimination of the notion of
object, and the introduction of the notion of auto-arrow. Secondly now we
precise the notion of an identifier. In the next section we will introduce units
and identities.

Remark 5.1. In presence of an object or a vertex X , in a category or a graph
for example, we have to be careful and not to confuse the identity mapping
1X : X → X of the object X with an auto-arrow on X ; in such a situation,
it isX itself which determines an auto-arrowX : X → X , or better we have
to consider that 1X is an auto-arrow : 1X : 1X → 1X (see 6.2). But, in the
general situation an identity mapping could exist on an arrow different from
any object, even for an arrow which is not an auto-arrow, i.e. for such an
arrow a→. In fact we could have a data ia : a → a representing a so called
’identifier’ on a, i.e. a selected endo-arrow of a, ia, such that dia = a = cia:

a

ia

.
Such a data ia determines a (by dia = a), and so is really an ‘identifier’ of
a (a ‘name’ of a), but is distinct from a, and is not an auto-arrow, and is not
necessarly unique. Later we will see if a given identifier has to be an identity.
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Definition 5.2. An autograph A in which each arrow a is equipped with the
data of a selected endo-arrow ida : da→ da named the identifier of da, and
a selected endo-arrow ica : ca → ca named the identifier of ca, is called an
autograph with identifiers. Then, with each arrow a, we have the picture

ada caida ica

.

Remark 5.3. Clearly ida (or ica) does not depend really of a, but only of
v = da (or w = ca). Of course in an autograph with identifiers, if a is
the domain (or the codomain) of something, i.e. a = db or a = cb, then
we have an identifier ia on a. And if ia itself is the domain (or codomain)
of something, then we have an identifier iia (or jia), etc. But if a is not a
domain or a codomain, then no identity on a is assumed to be specified.

Definition 5.4. A flexigraph is the data of two sets G0 and G1, and three
maps δ, γ : G1 → G0, φ : G0 → G1.
The map φ is the flex, and, as in the case of an autograph for d and c,
δ and γ are thought as ‘domain’ and ‘codomain’. The difference with an
autograph is that there are two types of elements [0 (vertex), 1 (arrow)],
and then domain and codomain look like ‘objects’ (or ‘vertices’). For any
a ∈ G1 we get the picture :

δa = X Y = γa
a

φX φY
.

There are also ‘isolated’ φZ, for any Z which is not a δa or a γa.

Example 5.5. An autograph (A, d, c) is a special case of flexigraph, with
G1 = A = G0, δ = d, γ = c, and φ = 1A. Conversely a flexigraph
(G1, G0, δ, γ, φ) determines an autograph with A = G1, d = φδ, c = φγ.
If the flexigraph is a flexigraph with ‘identities’, i.e. is equipped with a map
ι : G0 → G1 such that δι = 1G0 = γι — that is to say that (G1, G0, δ, γ, ι)
is an oriented graph (usually named today a graph), and if φ in injective —
then the associated autograph is with identifiers, with ida = ιδa, ica = ιγa.
Of course this works in the special case of an oriented graph just seen as a
flexigraph with φ := ι.
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6. Autocategories

Definition 6.1. An autocategoryA is the data of an autograph (A, d, c) with
identifiers (definitions 1.1 and 5.2), equipped with the data of a composition
law for consecutive arrows, i.e. for any consecutive arrows

f : p→ q, g : q → r (where q = dg = cf ),

we have a composed arrow denoted gf , with d(gf) = df = p and c(gf) =
cg = r, i.e.

Position: gf : p→ r,

such that identities are units for composition:

Unitarity: fidf = f = icff ;

and such that the two compositions of three consecutive arrows are equal:

Associativity: h(gf) = (hg)f, if dh = cg and dg = cf.

We denote by Acat the category of autocategories, with morphism the maps
F : A → A′ with d′Fa = Fda, c′Fa = Fca, and F (ba) = F (b)F (a) if
db = ca.
The forgetful functor V : Acat→ Agraph is given by V(A) = (A, d, c).

Proposition 6.2. A category determines an autocategory Ass(C). Further-
more, any structure of flexigraph on its underlying graph, such that the flex
φ in injective, determines another structure of autocategory Ass(C, φ), with
the “same’ arrows and the same composition law (but a very different un-
derlying autograph); such a structure is named a flexicategory or a category
with a flexion.

Proof. This definition is almost the same as the definition of a category [4],
[6], excepted that now there are no objects. As in a category, the identifier ia
on a, if it exists, is unique, because it has to be a unit: in this case it is named
an identity. This identity does exist when a is a domain or a codomain, but
not only in the case where a is the auto-arrow associated to an object.
So, starting with a category C, we get an autocategory Ass(C) by replacing
each object X ∈ Obj(C) by an auto-arrow iX : iX → iX , where iX ‘is’
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the arrow 1X : X → X , identity on X in the category. If in C we have
f : X → Y , i.e. X = dom(f) and X = cod(f), then we consider that
iX = dAss(C)f , iX = cAss(C)(f). Composition is the same as in C. Of
course in this autocategory we recover the objects as being the auto-arrows
which are units (as already it works in categories [4]).
If on C we have a flex φ : Obj(C) → Arrow(C) (see definition 5.4), we
define dφ and cφ by dφ(f) = φ(dC(f)) and cφ(f) = φ(cC(f)), then for every
object X , iX become an arrow from φ(X) to φ(X), which is the identity on
φ(X).

Proposition 6.3. To any autograph (A, (d, c)) there is associated a V-free
autocategory P(A, (d, c)) =

(
Pathι(A, (d, c)), D,C

)
, which is the free au-

tocategory on A.

Proof. We consider paths (zn)0≤n≤k−1 in A, shortly denoted by(zn)k (defi-
nition 1.4), with D((zn)k) := (dz0)0 and C((zn)k) = (czk)0, and so these
paths are between paths of length 1 consisting in a domain or a codomain in
A, i.e. an a of the form dx or cy; for any of these awe have to add an identity
element Ia to Path(A). So we get the set Pathι(A). If a is an identifier ib inA,
and possibly an identity when A is an autocategory, then we should not con-
fuse ib, (ib) = (ib)0, and Iib . In fact Ia plays the part of the empty sequence
in the usual calculus of words; but here we need several empty words, one
by domain or codomain a. Then the composition is given by concatenation
of paths, and by the equations (zn)kIz0 = (zn)K and Izk(zn)k = (zn)k.

7. Double categories and 2-categories as autocategories

Proposition 7.1. Any double category C (and especially any 2-category) is
determined by an associated autocategory Ass(C).

Proof. 1 — Let C be a double category [3], where dh, dv, ch, cv are hori-
zontal and vertical domains and codomains, where ∞ and 8 are horizontal
and vertical compositions. Let C be the set of all elements in C (2-block,
horizontal arrow, vertical arrow, or object).
The underlying set of Ass(C) will be Cv+Cu+Ch, a sum of three copies of
C, and an arbitrary element of C will have three avatars: if x is a designation
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of any of these avatars, we get designations for all the avatars: xu is the un-
oriented version, xh is the horizontally oriented version, xv is the vertically
oriented version. So (xh)h = xh, (xh)v = xv, (xh)u = xu, etc. Each avatar
determines the others. In Ass(C) we consider that xu is an arrow from xv to
xh, i.e. xu : xv → xh, and so we define:

d(xu) = xv, c(xu) = xh.

Let b be a not degenerated element of the double category, an unoriented
2-block, a 2-dim data as in picture [1]:

[1]

�1

�2

�3

�4

dhb chb

dvb

cvb

b
bh

bv

[2]

�1 �3

�2 �4
�′1

�′2

�′3

�′4

b

bv

bh

dvb

cvb

dhb chb

[3]

b

db

cb

ddb

cdb

dcb ccb

To get a determined operation (of type∞ or 8) with b = bu we need an
orientation: to operate horizontally we use of bh, and to operate vertically
we use of bv. We introduce, successively

d(b) = bv, c(b) = bh

ddb = d(bv) = (dvb)h, cdb = c(bv) = ((cvb))h,

dcb = d(bh) = (dhb)v, cdb = c(bh) = (chb)v,

�1 = dddb = (dhdvb)v, �′1 = ddcb = (dvdhb)h.

We have
(�1)h = �′1, (�′1)v = �1,

And the same facts for the three other corners.
Let us remark that, for clarity and simplicity, in picture [2] and [3] not all the
existing arrows are drawn ; for example in fact dvb is for (dvb)h, but there
are also (dvb)v, which has to be the vertical unity on (dvb)h in C, and here in
Ass(C) its identity

i(dvb)h = (dvb)v,
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and then we have also (dvb)u : (dvb)v → (dvb)h, etc.

(dvb)h

(dvb)v

(dvb)u

.
In Ass(C), if dy = cx, then x and y are both horizontal or both vertical.

So a unique composition law “.” in Ass(C) is defined as follows, if and only
if dy = cx:

y.x =

{
y∞x : if y and x are horizontal,
y 8x : if y and x are vertical.

Now, to conclude, we have to consider the axiom which relates the two
composition laws∞ and 8 in C, for a ‘square of squares’:

b b′

a a′

and to translate it in Ass(C).
This compatibility (distributivity) in C is

(a′∞a)8(b′∞b) = (a′8b′)∞(a8b),

when
dva = cvb, dva

′ = cvb
′, dha

′ = cha, dhb
′ = chb.

The translation in Ass(C) is:

[(a′h.ah)v.(b
′
h.bh)v]h = (a′v.b

′
v)h.(av.bv)h,

as well as
(a′h.ah)v.(b

′
h.bh)v = [(a′v.b

′
v)h.(av.bv)h]v.

If we introduce on Ass(C) the involutive transversal map (−)θ by

(xh)
θ = xv, (xu)

θ = xu, (xv)
θ = xh,
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such that
(xθ)θ = x, (Inv)

then we could recover the identities id and ic on domains and codomains:
idx = (dx)θ, icx = (cx)θ, in such a way that for any x we have

(cx)θx = x = x(dx)θ. (Id)

And with θ the compatibility becomes:

(a′.a)θ.(b′.b)θ = [(a′.b′)θ.(a.b)θ]θ. (Comp)
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Université Paris Diderot Paris 7. IMJ-PRG. UMR 7586
Bâtiment Sophie Germain. Case 7012
75205 Paris Cedex 13
rene.guitart@orange.fr

GUITART - AUTOCATEGORIES I. A COMMON SETTING FOR KNOTS AND 2-CATEGORIES

- 80 -


