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Résumé. Nous donnons une caractérisation de la condition « Smith is Huq »
pour une catégorie de Mal’tsev pointée C au moyen d’une propriété de la
fibration des points J¢c: Pt(C)— C, a savoir : tout foncteur changement de
base h*: Pty(C)— Ptx(C) reflete la commutation des sous-objets normaux.
Abstract. We give a characterisation of the “Smith is Huq” condition for a
pointed Mal’tsev category C by means of a property of the fibration of points
Jc: Pt(C)— C, namely: any change of base functor 4*: Pty(C)— Ptx(C)
reflects commuting of normal subobjects.

Keywords. Fibration of points, Mal’tsev and protomodular category, com-
mutation of subobjects, centralisation of equivalence relations, commutator
theory, topological Mal’tsev model
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Introduction

It is well known that, given a group G and two subgroups H and K, they
commute inside G (i.e., we have h -k = k- h,V(h,k)e H x K) if and only if
the function H x K — G: (h,k)— h-kis a group homomorphism. When H
and K are normal subgroups of G, and if Ry and Rk denote their associated

The second author was supported by IPLeiria/ESTG-CDRSP and Fundagdo para a
Ciéncia e a Tecnologia (under grant number PTDC/MAT/120222/2010). The third author
works as chargé de recherches for Fonds de la Recherche Scientifique—-FNRS.
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equivalence relations on G, this is the case if and only if the equivalence
relations Ry and Rg centralise each other (see [22, 21, 11]), namely if and
only if the function Ry xg Rx — G: (xRyyRgz)— x-y~!.zis a group
homomorphism, where Ry X Rk is defined by the following pullback:

Ry xg Rk =——=Rg

df 7

h———
dy’

The commutation condition on subobjects is said to be a la Hug from [17],
while the commutation condition on equivalence relations is said to be a
la Smith from [22]. In the category Gp of groups, we just recalled that, in
the case of normal subobjects, the two types of commutation are equivalent.
This is the meaning of the “Smith is Huq” condition, which is far from being
true in general.

It turns out that the right environment for the conceptual notion of cent-
ralisation of equivalence relations is the context of Mal’tsev categories [13,
14]. It was first shown in [11, Proposition 3.2] that, in a pointed Mal’tsev
category, “Smith implies Huq”, namely that if two equivalence relations R
and S centralise each other (which we denote by [R,S]|= 0), then neces-
sarily their associated normal subobjects commute. But the converse is not
true, as shown in [6, Proposition 6.1], from an example introduced by G. Ja-
nelidze in the pointed Mal’tsev category of digroups, namely sets endowed
with two group structures only coinciding on the unit element.

The first conceptual setting where the “Smith is Huq” condition (SH)
holds was pointed out in [11]: it is the context of of pointed strongly pro-
tomodular categories, of which the category Gp is an example. These are
pointed categories C such that any change of base functor with respect to
the fibration of points ¢ : Pt(C)— C is normal, i.e., conservative and re-
flecting normal subobjects. Further observations on the condition (SH) have
been given in [19, 15, 16, 20].

So it is quite natural to ask for a characterisation of the (SH) condition,
and more precisely to ask it in terms of a property of the change of base
functors of the fibration §¢. Here we give an answer in the pointed Mal’tsev
context: the property of reflection of commutation of normal subobjects. We
show moreover that when a variety Set" of algebras over a Mal’tsev theory T
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satisfies this last condition, so does the category Top' of topological models
of this theory, which implies that the category Gp(Top) of topological groups
satisfies (SH).

We then extend some results already known for strongly protomodular
categories [4] to the (SH) context. In particular, we show that, when they are
defined, the Huq commutator and the Smith commutator coincide.

1 Unital categories and Mal’tsev categories

1.1 Unital categories and Huq commutation

In this section, C will be a pointed category, i.e., a category with a zero
object 0. Let us recall from [3]:

Definition 1.1. Let C be a pointed category with finite products. Given two
objects A and B in C, consider the diagram

A<"=A x B—>B.
{14,0) <0,1g)

The category C is said to be unital if, for every pair of objects A, B € C, the
morphisms {14,0) and {0, 1) are jointly strongly epimorphic.

In any finitely complete category this is equivalent to saying that the
object A x B is the supremum of the two subobjects (14,0 and {0, 15);
namely, any monomorphism j: J > A X B containing the two previous
ones:

J .

B

A”:A A X B—~B.
{14,0) <0.15)

is an isomorphism. From this last remark, it is clear that the category Mon
of monoids is unital. Unital categories give a setting where it is possible to
express a categorical notion of commutation a la Huq [5]:

Definition 1.2 (Commutation a la Huq). Let C be a unital category. Two
morphisms with the same codomain, f: X — Zand g: Y — Z, are said to
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cooperate (or to commute) if there exists a morphism ¢: X x ¥ — Z such
that both triangles in the following diagram commute:

x 0 y &y

The morphism ¢ is necessarily unique, because {1y, 0) and {0, 1y) are jointly
epimorphic, and it is called the cooperator of f and g.

The uniqueness of the cooperator makes commutation a property, rather
than an additional structure on the category C.

1.2 Mal’tsev categories and Smith commutation

A Mal’tsev category is a category in which every reflexive relation is an
equivalence relation [13, 14]. The category Gp of groups is Mal’tsev. It is
shown in [3] that a finitely complete category C is Mal’tsev if and only if any
(necessarily pointed) fibre Pty(C) of the fibration of points {c: Pt(C)— C
is unital. Here Pt(C) is the category whose objects are the split epimorph-
isms in C and whose arrows are the commuting squares between such split
epimorphisms, and {c: Pt(C)— C is the functor associating its codomain
with any split epimorphism.

In this context, an equivalence relation R on an object X, coinciding with
areflexive relation on X, is just a subobject of the object (po, so): X x X =2 X
in the fibre Pty (C):

(di.dfy
R—>XxX

R
So
Po S0
R
dy

X

Actually it is a normal subobject in this fibre since it is the normalisation
(i.e., the class of the initial object in the pointed fibre Ptx(C)) of the follow-
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ing equivalence relation:

Xxdf
_—
XXxR<—XxX
-

Xxdf

R
<1x,sO

> po | |So
Px

X

We call this normal subobject the local representation of the equivalence
relation R. Let us recall Proposition 3.4 of [6]:

Proposition 1.1 (Commutation a la Smith). Let C be a finitely complete
Mal’tsev category, and (R, W) a pair of equivalence relations on an object X.
The equivalence relations R and W centralise each other in C if and only if
their (normal) local representations commute in the unital fibre Ptx(C).

Proof. In the unital fibre Pty (C), the subobjects
R, dfy: R X xX and {dy,d)y: W X x X

commute if there is a cooperator R xy W — X x X in the fibre; it is neces-
sarily of the form ¢(xRyWz)=£ x, p(xRyWz)), satisfying the two equations
p(xRxWy)=y and p(xRyWy)= x. The morphism p: R xy W — X which,
satisfying these equations, characterises the property that the equivalence re-
lations R and W centralise each other in C, is nothing but what is called the
connector between R and W. (See [11] and also [21, 13, 14].) O

As usual, we denote this situation by [R, W]= 0. It is worth noticing
that, by construction of the pullback R xx W:

oWV

RxXWtO)W

6YV w w
alle 7l 0
0

R=—/————=X

di

the existence of the connector p does not depend on the possibly fibered
context, namely on the fact that R and W are possibly in a fibre Pty (C).
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2 A characterisation of the ““Smith is Huq” con-
dition (SH)

2.1 Reflections of commutation
Let us introduce the following conditions:

(C) any change of base functor with respect to the fibration of points re-
flects the commutation of normal subobjects;

(C) any change of base functor with respect to the fibration of points re-
flects the centralisation of equivalence relations.

Recall that a protomodular category is such that any change of base func-
tor with respect to the fibration of points reflects isomorphisms, and that any
protomodular category is Mal’tsev. So, any protomodular category is such
that any change of base functor with respect to the fibration of points reflects
the inclusion of subobjects and, accordingly, the inclusion of equivalence
relations.

Example 2.1. 1) According to Proposition 4.1 in [12], any locally algebra-
ically cartesian closed (lacc: i.e., such that any change of base functor with
respect to the fibration of points admits a right adjoint) protomodular cat-
egory is such that any change of base functor with respect to the fibration of
points reflects the commutation of subobjects, hence satisfies condition (C).
The categories Gp of groups, gLie of Lie R-algebras, and Gp(E) of internal
groups in a cartesian closed category | are examples of lacc protomodular
categories.

2) According to Proposition 5.10 in [8], any functorially action distinct-
ive protomodular category in the sense of [8] (again defined by a property
of the change of base functors with respect to the fibration of points which
we shall not detail here) is such that any change of base functor with respect
to the fibration of points preserves the centralisers of equivalence relations,
and, accordingly, satisfies condition (C).

Proposition 2.1. Let C be a finitely complete Mal’tsev category. Condi-

tions (C) and (C) are stable by slicing and coslicing, and consequently are
still valid in any fibre Pty(C).

-168 -



BOURN, MARTINS-FERREIRA & VAN DER LINDEN - SMITH IS HUQ...

Proof. Tt is clear that given any morphism /4 in C/Y or in Y/C as below:

we have:

Pt, (C/Y) 2> Pt,(C/Y) Pt, (Y/C) 2 Pt,(Y/C)

PtXI(C) ? PtX PtXI(C) ]ﬁ PtX

So the result is a consequence, on the one hand, of the fact that, as we re-
called above, the condition [R, W|= 0 does not depend on the fibered con-
text and, on the other hand, of the fact that the normality of a subobject in
Pt;(C/Y) or Pt,(Y/C) is given by a pullback condition in C which, accord-
ingly, is still valid in Ptx(C). The same observation holds for the commuta-
tion condition. O

Unlike in the stricter context of protomodular categories, a normal sub-
object in a pointed Mal’tsev category could be the normalisation of several
equivalence relations; so the following, though it is not surprising, does de-
serve a proof:

Proposition 2.2. Let C be a finitely complete Mal'tsev category. Condi-
tion (C) implies condition (C).

Proof. Consider the following diagram in which R is an equivalence relation
on the object (f, s) in Pty(C), the kernel pair of f is denoted by R[] and any
commutative square is a pullback:

R—* SR,

N N
H [f’],W[f]
A 4

I

Y'%Y
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By Proposition 1.1, the inclusions ig: R »> R[f] and ig': R’ »> R[f'] are
normal subobjects in the fibres Pty(C) and Pty (C). In addition, since any
commutative square is a pullback, we have R’ = y*(R), and also ip = x*(ig)
in the following diagram:

R — >R

w1
|| g

X ———X

Now suppose we have another equivalence relation W on (f, s) in Pty(C)
with W' = y*(W) such that [W',R']= 0 in Pty,(C). This last property is
equivalent to the commutation of the normal monomorphisms iy = x*(iy)
and ipr = x*(ig) in the fibre Ptx/(C). Since the category C satisfies condi-
tion (C), the normal monomorphisms iy and ix commute in the fibre Pty (C)
which means that we have [W,R|= 0 in Pty(C). o

Even though the condition (C) may be weaker than (C), it is certainly not
automatically satisfied, as shows the following result.

Proposition 2.3. Let C be a finitely complete pointed regular Mal’tsev cat-
egory. Condition (C) implies that in C, all extensions with abelian kernel are
abelian extensions.

Proof. We first consider the case of split epimorphisms. Let (f,s): X 2 Y
be an object in Pty(C) such that the kernel K of f is abelian, meaning that
the discrete equivalence relation Ay on K centralises itself. Then by (C)
the kernel relation R|f] of f—the relation associated to the kernel pair—
centralises itself, which means that the extension f is abelian.

If now g: Y — Z is an extension with abelian kernel, i.e., a regular
epimorphism in C of which the kernel K is abelian, then the kernel pair
projection go: R[g]— Y is an abelian extension by the above. Hence also g
is abelian by [10, Proposition 4.1]. O

As a consequence, the counterexample from [6] in the category of di-
groups shows that a category may be semi-abelian without satisfying (C).
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2.2 The characterisation
We are now ready for the characterisation:

Theorem 2.1. Let C be a finitely complete pointed Mal’tsev category. The
condition (C) is equivalent to the “Smith is Hug” condition (SH).

Proof. The normalisation in C of an equivalence relation R on X is the image
by the change of base along the initial morphism ayx: 1 > X of the normal
local representation in Pty (C):

dR
R< >X X

R
So
Po l/]\ S0
R
dy

X

So when C satisfies condition (C), we have [R, W|= 0, i.e., the local rep-
resentations of R and W commute in Pty (C) as soon as their normalisations
commute in C.

Conversely, suppose that the condition (SH) holds. Let (f,s): X 2 Y be
an object in Pty(C) and (R, W) a pair of equivalence relations on it. Denote
by jr and jy their normalisations in Pty (C):

IRHXH[W

NJZ

Supposing that their images by some change of base functor y* commute
implies that their images jr and jy by aj—that is to say, the respective
kernels in the diagram below—commute in C:

K[me] =2 K[f] <2< K[mw]

Accordingly the two monomorphisms kojx and kfo]W do commute in C.
But kfojR and kfojW are the normalisations of R and W in C. Now, since C
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satisfies (SH), then we get [R, W]= 0in C and thus in Pty (C), which implies
that their normalisations jz and jy in Pty(C) commute. O

Corollary 2.1. If C is a finitely complete Mal’tsev category which satis-
fies (C), then any fibre Pty(C) satisfies (SH). When, in addition, C is pointed,
if it satisfies (SH), then so does any fibre Pty(C).

Proof. This is a straightforward consequence of the previous theorem and of
Proposition 2.1. O

2.3 Topological Mal’tsev models

Let T be a (finitary) Mal’tsev theory, Set' the corresponding variety of T-
algebras and Top' the category of topological T-algebras. Recall that Top' is
then a regular Mal’tsev category, see [18], whose regular epimorphisms are
the open surjective morphisms. It is clearly finitely complete and cocom-
plete. In this section we shall show that when the variety Set" satisfies con-
dition (C), so does Top". In particular, this will imply the well-known fact
that the category Gp(Top) of topological groups (= Top" for T the theory of
groups) satisfies (SH).

To see this, let us first recall that the functor U: Top' — Set' forgetting
the topological data is topological [23] and, consequently, left exact. Hence
it is cotopological [2, Proposition 7.3.6] and, consequently, right exact. This
implies that the functor U is faithful.

Lemma 2.1. Let T be a Mal’tsev theory and the following diagram a pull-
back of split epimorphisms in Top' :

PiX’

ol * Tl
X ; Y

then P is endowed with the final topology with respect to the pair

ur)L2ux,

U(o-’)/]\

U(X)
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namely, P is the T-algebra U(P) endowed with the finest topology making
U(P) a topological algebra and the pair (U (o), U(0”)) a pair of continuous
homomorphisms.

Proof. Since the functor U is cotopological, we can endow the T-algebra
U (P) with the final topology with respect to the pair in question. This defines
the object P and the following lower diagram in Top' above the given pair:

By the universal property of the final topology, there exists a factorisation
t: P — P making the diagram above commute. In other words, the topo-
logy P on U(P) is finer than the topology P and ¢ = 1y(p): P — P is con-
tinuous. This morphism is clearly a monomorphism in Top’. Now Top' is a
Mal’tsev category, the fibre Pty (Top") is unital, and the pair (o, o) is jointly
strongly epic, which implies that the monomorphism ¢ is an isomorphism,
and means that the topologies P and P on U(P) coincide. o

Proposition 2.4. Let T be a Mal’tsev theory such that the variety Set' sat-
isfies condition (C). Then so does the category Top'.

Proof. Let us consider the following pair of normal monomorphisms in the
fibre Pty (Top"):

IR>LX¢<IS

ok o
flls

Y
and the following pullback in Top":

X 1sX

A

Y —Y
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Suppose that y*(jz) and y*(js) commute in the fibre Pty (Top"); then this is
the case for their images by the functor U. Since Set" satisfies condition (C),
the images U(jz) and U(js) commute in Set’. This means that there is a
T-homomorphism ¢ such that ¢oU(sg)= U(jr) and ¢-U(ss)= U(js) in
the following diagram, where the whole quadrangle is the image by U of a
pullback of split epimorphisms in Top':

U IR XyI )
U(pr) U(ps)
U(sr) | U(ss)
[

U(I) ELICVEN U(X) PRGNS U(Is)
U((TR) U(G’S)
\f)l u(s)/
U(ng) Ulns)

u(y)

This means that the “restrictions” ¢oU(sg) and ¢oU(ss) of the T-homo-
morphism ¢ to the “subobjects” U(Ig) and U(Is) are the continuous T-
homomorphisms jr and js. By the previous lemma, I xy Iy is endowed
with the final topology with respect to the pair U(sg) and U(ss ), which im-
plies that the T-homomorphism ¢ is itself continuous: Iz xy Iy — X and
actually lies in Top'. This means precisely that j and js commute in the
fibre Pty (Top"). O

3 Applications of the condition (SH)

In this section we shall extend some results known for strongly protomodular
categories to a context merely satisfying the condition (SH).

3.1 Discrete fibrations of reflexive graphs

First observe that in a finitely complete category |, any split epimorphism
(f,s): X 2 Y is actually the domain of the kernel of a split epimorphism in
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the pointed fibre Pty (EE):

Y><f
x>y XT2Y x

Nz

and thus it produces the normal monomorphism (f, 1) in Pty (E).

On the other hand, it is known from [14] that, in a Mal’tsev category C,
a reflexive graph is endowed with at most one structure of internal category,
and that any internal category is a groupoid. Let us recall (from [9]) another
proof of this result which sheds a new light on the nature of the uniqueness
of the groupoid structure. From any reflexive graph

%%x

do
—_— >
Yl <-S0— YO
d
1

in C, we get two normal subobjects in Pty, (C):

<d0’1Y1> <d1’lY1>
| ——>Yy x ¥V <—=<Y

S0 S0

pYQl/T(IYO,S(»

do i
Yy

We can now assert the following:

Proposition 3.1. Let C be a finitely complete Mal’tsev category. The reflex-
ive graph in question is a groupoid if and only if these two normal subobjects
commute in Pty (C).

Proof. The two subobjects commute in Pty,(C) if and only if they have a co-
operator ¢: Y} xy, ¥ — Y x Yy, i.e. a morphism satisfying ¢osy < dj, ly,)
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and ¢OS] % do, 1y1>1

dp,1 dp,1
Y, {do,1y,» Yo x ¥, {di 1y, Y,

S0 S0
Py <ly0,So>
do dy
Yy

where the whole quadrangle is a pullback in C. Hence the morphism ¢ is
a pair (dyody,d, ), where d,: Y, xy, Y| — Y| is such that djosy = 1y, and
dios; = ly,. Since the morphism d; satisfies these two identities, it makes
the reflexive graph in question multiplicative in the sense of [14]. And,
according to Theorem 2.2 in [14], in a Mal’tsev category, any multiplicat-
ive reflexive graph is a groupoid. Conversely, the composition morphism
dy: Y, xy, Yy — Y, of an internal category satisfies the previous two identit-
ies and produces the cooperator ¢ < dyods, d; ). O

Now let us consider a morphism of reflexive graphs

X1$Y1

alfls alf]s

Xo——>Y)
fo

and recall the following result from [3, Proposition 14]:

Proposition 3.2. When C is a finitely complete Mal’tsev category, then,
given any morphism of reflexive graphs as above, the square indexed by 0
is a pullback if and only if the square indexed by 1 is a pullback. In such
a situation this morphism is said to be a discrete fibration between reflexive
graphs.

We can now extend a result already known in strongly protomodular cat-
egories, see [4, Consequence B, p. 216]:
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Proposition 3.3. Let C be a finitely complete Mal’tsev category satisfying
condition (C). Given any discrete fibration of reflexive graphs, the codo-
main reflexive graph Y, is a groupoid as soon as so is the domain reflexive
graph X;.

Proof. Since C satisfies condition (C), it is enough to show that the images
under the change of base functor along f; of the two normal monomorphisms
associated with the codomain reflexive graph Y; do commute in the fibre
Pty,(C). The two images in question are the following ones:

X, {do.f1) o X Y {dv.fi) X,
50
d

X
0 pxol/]klxo,floﬂﬂ
do
Xo

since the morphism of reflexive graphs is a discrete fibration. They do com-
mute in Pty (C), being given by the following composition in this fibre,
where the horizontal part commutes since the reflexive graph X;

dp,1 dp,1
S0y X, Sy

Xox fi
{do.f1> {dv.fiy
X() X Yl

is a groupoid. O

3.2 The condition (SH) and commutators

In this section we shall prove that, as expected, in the Mal’tsev context, un-
der (SH) the Smith and the Huq commutators in the sense of [6] do coincide.
3.2.1 The Huq commutator in a unital category

We shall suppose here that C is a unital category which is moreover fi-
nitely cocomplete. In this context, in [6] there was given a construction,
for any pair f: X — Z, g: Y — Z of morphisms with the same codomain, of
a morphism which universally makes them cooperate. Indeed consider the
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following diagram, where Q[ f, g is the colimit of the diagram made of the
plain arrows:

Clearly the morphisms ¢y and ¢y are completely determined by the pair
(¢, 1), and clearly the morphism ¢ is the cooperator of the pair (¥of, fog).
On the other hand, the strong epimorphism ¢y measures how far the pair (£, g)
is from cooperating, and we have [6]:

Proposition 3.4. Suppose C finitely cocomplete and unital. Then s is the
universal morphism which, by composition, makes the pair (f, g) cooperate.
The morphism  is an isomorphism if and only if the pair (f, g) cooperates.

Since the morphism ¢ is a strong epimorphism, its distance from being
an isomorphism is its distance from being a monomorphism, which is exactly
measured by its kernel relation R[¢/], whence the following definition:

Definition 3.1 (Huq commutator). Given any pair (f, g) of morphisms with
the same codomain in a finitely cocomplete unital category C, their Hug
commutator [ f, g] is the kernel relation R[y].

When the category C is moreover regular [1], i.e., such that the strong
epimorphisms are stable by pullback and any effective equivalence relation
(= kernel pair) admits a quotient, we can add some piece of information.
First, any morphism f: X — Z has a canonical regular epi/mono factorisa-
tion X » f(X) »> Z, and the morphism f(X) > Z is then called the image
of the morphism f. Secondly, two morphisms f and g cooperate if and only
if their images f(X) »» Z and g(Y) » Z do.

3.2.2 The Smith commutator in a Mal’tsev category

We shall suppose here that C is finitely complete and cocomplete, regular
Mal’tsev category. In a regular Mal’tsev category, given a regular epimorph-
ism f: X —» Y, any equivalence relation R on X has a direct image f(R)
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along f on Y. It is given by the regular epi/mono factorisation of the morph-
ism
(fody, fody): R - f(R) = Y X Y

Clearly in any regular category C, the relation f(R) is reflexive and symmet-
ric; when moreover C is Mal’tsev, f(R) is an equivalence relation.

Now let us recall the following results and definition from [6]: first con-
sider the following diagram, in which Q[R, S| is the colimit of the plain
arrows:

R
& ¢R§ dOR
v
R XXS ........... > Q[R’S]< ........... X
N
re ¢s i
S

Notice that, here, in consideration of the pullback defining R xx S (diagram
(#)), the roles of the projections d and d; have been interchanged. As in the
section above, the morphisms ¢ and ¢s are completely determined by the
pair (¢, ) and the morphism ¢ is a strong epimorphism (and thus a regular
epimorphism in our regular context). This morphism ¢y measures how far the
equivalence relations R and S are from centralising each other:

Proposition 3.5. Let C be a finitely complete and cocomplete, regular Mal’-
tsev category. The morphism  is the universal regular epimorphism which
makes the direct images y(R) and y(S) centralise each other (i.e. [R,S|=
0). The equivalence relations R and S centralise each other if and only if
is an isomorphism.

Since the morphism ¢ is a regular epi, its distance from being an iso-
morphism is its distance from being a monomorphism, which is exactly
measured by its kernel relation R[y]. Accordingly, it is meaningful to in-
troduce the following definition:

Definition 3.2 (Smith commutator). Let C be a finitely complete and cocom-
plete, regular Mal’tsev category. Consider in C two equivalence relations
(df,df): R =3 X and (d},d}): S = X on the same object X. The kernel
relation R[] of the morphism ¢ is called the Smith commutator of R and S .
We shall use the classical notation [R, S| for this commutator.
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Example 3.1. If we suppose moreover that the category C is Barr exact [1]—
namely such that any equivalence relation is effective, i.e., the kernel relation
of some morphism—then, thanks to Theorem 3.9 in [21], the previous defi-
nition is equivalent to the definition of [21], and accordingly to the definition
of Smith [22] in the Mal’tsev-varietal context. On the other hand, one of the
advantages of this definition is that it extends the meaning and existence of
commutator from the exact Mal’tsev context to the regular Mal’tsev context,
enlarging the range of examples to the Mal’tsev quasi-varieties and to the
topological Mal’tsev models, as the category Gp(Top) of topological groups
for instance.

The example Gp(Top) is also interesting for the following reason. In
a Mal’tsev category C, given any pair (R, S) of equivalence relations on an
object X, we obtain [R, S |= 0 as soon as the intersection RN is the discrete
equivalence relation Ay. When the Mal’tsev C is not only regular, but also
exact (which means that any equivalence relation is effective, i.e., the kernel
relation of some morphism), this implies that we necessarily have [R, S |<
R n S. Indeed, since C is exact, we may take the quotient g: X - Q of the
equivalence relation R n §; then we see that g(R)n ¢(S)= Ap as in any
regular category. Accordingly, [¢(R),q(S)E 0. When, in addition, C is
finitely cocomplete Mal’tsev, we have a factorisation £: Q[R, S| -» Q and
the inclusion [R,S]|< R n §. The regular (but not exact) Mal’tsev category
Gp(Top) provides a setting in which this inclusion does not hold: see [7,
Proposition 5.3].

3.3 Commutators in the pointed Mal’tsev setting

From now on C will be a regular pointed Mal’tsev category. Recall from [6]
that, on the one hand, if f: X - Y is aregular epimorphism and R an equiva-
lence relation on X, then the normal subobject j( f(R)) associated with f(R)
is the direct image f(j(R)) along f of the normal subobject j(R) associated
with R. On the other hand, we get:

Proposition 3.6. Let C be a finitely complete and cocomplete, regular, poin-
ted Mal’tsev category. Then, given any pair (R, S) of equivalence relations
on an object X, there is a natural comparison {: Q[j(R), j(SH> O[R,S],
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and consequently we have [j(R), j(S)k R,S], namely an inclusion of the
Huq commutator into the Smith commutator.

Proof. Consider the morphism ¢ : X -» Q[R,S]. Wehave [¢/(R),y(S ) O,

so that
[w(i(R),w(i(S)H  J(Ww(R), j((S)H O.

Hence the two morphisms oj(R) and o j(S) commute. Now thanks to
the universal property of the morphism ¢: X - Q[j(R), j(S)], there is a
unique factorisation ¢: Q[j(R), j(S)l>  O[R,S] such that {oy = ¢, and
thus an inclusion [j(R), j(S)[ R.S] of the Huq commutator into the
Smith commutator. O

Exactly in the same way as for strongly protomodular categories [6], we
can now assert:

Theorem 3.1. Let C be a finitely complete and cocomplete, pointed and reg-
ular Mal’tsev category satisfying (SH). Then, given any pair (R, S) of equiv-
alence relations on an object X, the natural comparison {: Q[j(R), j(S )}
O[R, S| is an isomorphism, and consequently we have [j(R), j(S)E R, S],
namely the Smith and the Hug commutators coincide.

Proof. Consider the morphism ¢: X - Q[j(R), j(S)]. Then we get:

i@ (R), j(e (S v(i(R).¥(i(S)F O

Now thanks to condition (SH), we have that [(R),(S)E 0. Then the
universal property of the morphism y: X —-» Q|R, S| produces a unique
factorisation 6: Q[R,S|— Q[j(R), j(S)] which is necessarily an inverse
of ¢ (see Proposition 3.6), and thus an isomorphism [R, S| j(R), j(S)].
Hence the two notions of commutator coincide. O
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1 Introduction

The main aim of this paper is to prove that the fundamental group from
categorical Galois theory [20] may be computed as a Kan extension:

N EXtr ((5)
Cod 5/‘ Ker (A)

G e -
7'(1(—,1)
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This makes it a satellite in the sense of Janelidze [17], Guitart—Van den
Bril [13, 12] and two authors of the present paper [10]. Here I is a Galois
structure, consisting of an adjunction I 4 H: ¢ — £ and certain classes
of morphisms, NExtr(%’) is the category of normal extensions, which are
defined via the Galois structure I', Ker is the kernel functor and Cod is the
codomain functor.

In fact, we will see this in two steps. First we show that the following is
a Kan extension:

NEXtr(Cg)
o Galr(—,0)
Ty (B)
@ e >Gp(2)

Here Galr(—,0) gives the Galois group of a normal extension, as defined in
the context of categorical Galois theory by Janelidze [20]. This step uses
that the Galois group functor is a Baer invariant with respect to the codo-
main functor, in the following sense: any two morphisms between objects
in NExtr(%) which agree on the codomain of the objects are sent to the
same morphism between the Galois groups. This makes it possible to define
71 (B, I) by taking a weakly universal normal extension u: U — B of B, and
then applying the Galois group functor to it. The above property ensures
that this assignment is well defined, i.e. independent of the choice of u, and
functorial in B.

To attain the first-mentioned Kan extension from this one, we use the
fact that the underlying object of the Galois group of a normal extension
p: E — Bcanbe computed as the intersection of the kernel of p with the ker-
nel of the unit nz: E — HI(E). This makes it a subobject of Ker(p), and so
gives a component-wise monic natural transformation ¢: Galp(—,0) = Ker.
We then show that, for any given functor F': 4 — 2, any natural transform-
ation Fo Cod = Ker lifts over this ¢. This implies that the universal property
of the Kan extension (B) carries over to (A).

Our arguments go through under fairly weak assumptions on the Galois
structure I', and can moreover be adapted to situations where the funda-
mental group functor is not everywhere defined. In the latter case, we obtain
a Kan extension similar to (A) and (B), by replacing € with its full sub-
category of objects B for which 7y (B, I) is defined, and restrict NExtr (%)
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accordingly.
When % is pointed, exact and Mal’tsev, and 2" is a Birkhoff subcategory
of &, we show that (A) induces a Kan extension

EXtr (%)
Cod wl
7
B et >
1 (=,1)

where Extr (%) is the category of regular epimorphisms (=extensions) in %,
and I; is left adjoint to the inclusion functor NExtr(¢) — Extr(%). In
the case of a semi-abelian %, this Kan extension was first obtained in [10],
where it was also shown that, for a given extension p, the p-component of the
universal natural transformation defining it is a connecting homomorphism
in the long exact homology sequence induced by p.

The latter result, we will see, has a topological counterpart: for a certain
Galois structure, the components of the universal natural transformation ¢
defining the Kan extension (A) (or, actually, the “restricted” version, since
here the fundamental group functor is not everywhere defined) are connect-
ing maps in an exact homotopy sequence.

Note that we have used the same notation 7;(—, /) for functors 4 —
Gp(Z) and ¥ — 2 and have called both “fundamental group functor”,
while the image of an object B € || under the latter is actually the underly-
ing object of the fundamental group 71(B, ). A similar remark can be made
regarding the Galois group functor Galr(—,0). This does not pose any prob-
lems when 2" is Mal’tsev, since then any internal group is determined, up to
isomorphism, by its underlying object. However, the latter is of course not
true in general, and it is in particular false for the topological example just
referred to.

2 Galois structures

To define the ingredients of the Kan extensions considered in this paper, we
need a Galois structure and the concept of normal extension arising from it,
as introduced by Janelidze [18, 19].
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Definition 2.1. A Galois structure I' = (¢, 2", H,1,n,¢,&,.%) on a cat-
egory % consists of an adjunction

with unit 7: 14 = HI and counit e: IH = 14, as well as classes of morph-
isms & in ¢ and .% in 2" such that

(i) & and .# contain all isomorphisms;

(i) & and .# are pullback-stable, meaning here that the pullback of a
morphism in & (resp. .%) along any morphism exists and is in & (resp.
F);

(iii) & and . are closed under composition;
(iv) H(F) c &;
W) (&)< 7.
We will use the terminology of [19] and call the morphisms in & fibrations.

Given such a Galois structure, some fibrations have some additional use-
ful and interesting properties. We write (& | B) for the full subcategory of
the slice category (¢ | B) determined by morphisms in &'.

Definition 2.2. A trivial covering is a morphism f: A — B in & such that

A 1A
fl lHl (f)
B 1B

is a pullback. A monadic extension is a fibration p: E — B such that the
pullback functor p*: (& | B) — (& | E) is monadic. A covering (some-
times called central extension) is a fibration f: A — B whose pullback
p*(f) along some monadic extension p is trivial. A normal extension is
a monadic extension p such that p*(p) is a trivial covering, i.e. a monadic
extension with trivial kernel pair projections.
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The trivial coverings are exactly those fibrations which are cartesian with
respect to the functor I: € — 2.

For many uses of such Galois structures, we need I to satisfy an extra
property called admissibility. For this we consider the induced adjunction

IB

(61 B) ZZ(F L 1(B)

for any object B € €; here I?: (£ | B) — (% | I(B)) is the restriction of /,
and H® sends a fibration g: X — I(B) to the pullback of H(g) along np:

A _IL H(X)

HB(g)l

B——>HI(B)
Definition 2.3. A Galois structure I' = (¢, 27, H, 1,1, €, &, F) is admissi-
ble when all functors H? are full and faithful.

An important consequence of admissibility is

Lemma 2.4. [22, Proposition 2.4] If T is admissible, then . € — 2  pre-
serves pullbacks along trivial coverings. In particular, the trivial coverings
are pullback-stable. |

So if the Galois structure is admissible, we can view the class of all trivial
coverings as the pullback-closure of H(.% ), while the coverings are locally
trivial. In certain situations the coverings are also pullback-stable:

Lemma 2.5. IfT is admissible and monadic extensions are pullback-stable,
then normal extensions and coverings are pullback-stable.

Proof. The proof of [21, Proposition 4.3] remains valid under our assump-
tions. O

Examples 2.6. There are many different kinds of categorical Galois struc-
tures; we list a few which are relevant for the present article.
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Take ¢ = Gp and 2" = Ab, the subcategory of abelian groups in the
category of groups, and let I be the abelianisation functor sending a
group G to the quotient G/|G, G|, which is left adjoint to the inclusion
H. Then choosing & and .% to be the classes of surjective group ho-
momorphisms defines an admissible Galois structure I" as above. Here
every map in & is a monadic extension, the trivial coverings are those
surjective homomorphisms A — B whose restriction to the commuta-
tor subgroups [A,A] — [B, B] is an isomorphism, and the coverings
are the central extensions in the usual sense: surjective homomorph-
isms whose kernel lies in the centre of the domain. Normal extensions
and coverings coincide. (See [18].)

More generally, taking for ¢ an exact Mal’tsev (or Goursat) category
and for 2  a Birkhoff subcategory (= a full reflective subcategory
closed under subobjects and regular quotients), and all regular epi-
morphisms for & and .%, defines an admissible Galois structure I,
whose coverings are studied in [21]. Normal extensions and coverings
still coincide, and every regular epimorphism is a monadic extension.
In particular, € could be a Mal’tsev variety and 2" its subvariety of
abelian algebras, in which case the coverings are the central extensions
arising from commutator theory in universal algebra: those surjective
homomorphisms f: A — B for which the commutator [Eq(f),A x A]
of the kernel congruence Eq(f) of f with the largest congruence A x A
on A is trivial (see [23, 11]). Or, ¥ could be a variety of Q-groups [15]
and 2" an arbitrary subvariety of 4. Now the coverings are the (relat-
ive) central extensions studied by Frohlich and others (see [21]).

Consider ¥ = LoCo to be the category of locally connected topo-
logical spaces and 2 = Set the category of sets. Take I = 1, the
connected components functor, H = Dis the discrete topology functor,
& the class of étale maps (= local homeomorphisms), and .% the class
of all maps in Set. This gives another admissible Galois structure.
Here the monadic extensions are exactly the surjective local homeo-
morphisms, the trivial coverings and the coverings are, respectively,
the disjoint unions of trivial covering maps, and the covering maps,
in the usual topological sense. For connected A and B, a normal ex-
tension f: A — B is the same as a regular covering map: a covering
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map f: A — B such that for every pair of elements x, y € A which
are in the same fibre of f there is a unique continuous mapa: A — A
(actually, a covering) such that f = foa and a(x) = y. See [1, Chapter
6] for more details.

Similarly, take € to be the category of simplicial sets and 2~ = Set
with the adjunction consisting of I = my and H giving the discrete
simplicial set on a given set. Then taking & and .# to be the classes of
all morphisms gives an admissible Galois structure. For this example,
monadic extensions are degree-wise surjective functions. The cover-
ings are precisely the coverings in the sense of Gabriel-Zisman [9]:
Kan fibrations whose “Kan liftings” are uniquely determined. See [1,
A.3.9] for more details.

For a different Galois structure I on the category % of simplicial sets,
let 2" be the category of groupoids, and / and H be the fundamental
groupoid and nerve functors, and take for & and .# the classes of Kan
fibrations, and of fibrations in the sense of Brown [2], respectively.
This particular I" is studied in [3] where its covering morphisms are
called second order covering maps. It is not admissible.

Example (iii) has an obvious “pointed” version, obtained by replacing
LoCo and Set by the categories LoCo, and Set, of pointed locally
connected spaces and of pointed sets, respectively. & and .# now con-
sist of those étale maps and maps that preserve the basepoint. Clearly,
this is still an (admissible) Galois structure; the monadic extensions,
trivial coverings, coverings and normal extensions are “the same” as
in the non-pointed case, only now they are required to be basepoint-
preserving.

Categorical Galois theory does indeed capture classical Galois theory,
as the name suggests. For this, let £ be some fixed field and take &
to be the dual of the category of finite-dimensional commutative k-
algebras with &P all algebra morphisms, 2" the category of finite sets
with .% the class of all functions, and I: € — 2 defined through
idempotent decomposition. See [1, A.2] or [18] for further details.
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For the rest of this paper, we will assume that our Galois structures are
admissible and that H is in fact an inclusion of a full reflective subcategory
Z into €. We will also assume that monadic extensions are pullback-stable.
Note that this is the case for each of the examples above, with the exception
of (v).

One of the important concepts in categorical Galois theory is the Galois
groupoid:

Definition 2.7. [18, 20] Let p: E — B be a normal extension of B. Then the
Galois groupoid Galr(p) of p is the image under 7 of the kernel pair Eq(p)
of p.

Eq(p) ——% E—"~B

”Eq(p)l NE
1(d)

I(Eq(p)) %) I(E)

Note that this image of the kernel pair is indeed a groupoid: since the
functor I preserves pullbacks along trivial coverings (by Lemma 2.4), the
image of any groupoid with trivial domain and codomain morphisms is again
a groupoid (see the definition of groupoids 3.1). And since p is normal, its
kernel pair projections are indeed trivial coverings.

3 Internal groupoids

We have already seen groupoids enter the picture above, so we recall the
definition.

Definition 3.1. An internal category in a category % is a diagram

d

LN
Ry =—=—=Ro
C

such that de = 1, = ce, together with a multiplication (or composition)

m: Ry X Ro R, — R
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making the following diagrams commute, where the pullback (1) defines the
object R; xg, R of “composable arrows”:

R, XRORIP%IR] R, XROR1$R] R, XRORILRI
le ()] \LC P \L @ ld le 3 lC
RlﬁRO RITRO RlﬁRO;

furthermore, the composition m makes the diagrams

1z, ,sc sd,1 I1xm
ngRl X Ro Rﬁ%’le Ry xg, Ry xg, Ry —= Ry xp, R
\ lm/ and mxll \Lm
R, Ry Xg, Ry ——,——> R,y

commute. An internal category R is an internal groupoid when there exists
a morphism s: Ry — R; such that ds = c and cs = d and both squares

<1R1,S> <S,1R1>

RI%RI XR0R1 RI%RI XRORI
N
ROﬁRl RoﬁRl

commute. Such an s is necessarily unique. In fact, it is well known that an
internal category R is an internal groupoid if and only if (2) and (3) are also
pullbacks.

An internal functor between two internal categories R and § is a pair of
morphisms (fy, fi) making the three squares with d, ¢ and e as on the left

h
Rl%sl Rl XR0R1MSI XRoSl

{10 S N

Ro%SO

as well as the right hand square commute.

An internal groupoid R with Ry = 1, the terminal object, is called an
internal group. We shall write Gp(%’) for the category of internal groups
and internal functors.
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Definition 3.2 (Internal natural transformations and isomorphisms). Given
two internal functors f, g: R — S between internal categories R and S, an
internal natural transformation from f to g is a morphism u: Ry — S as

in
h
R, ?; S

dl¢le w7 odale|e

= fo
Ry ? So
satisfying
1) du = fo, R g ‘s S,
(i) cu = go, <;1d,g.>l lm
(i) m{fi,uc) = mlud, g,). S1XsgS1——> 51

For fixed internal categories R and S, the internal functors R — § and the
internal natural transformations between them form a category: the compos-
ition of two natural transformations u: f — g and v: ¢ — h is given by
the morphism m{v, u); the identity on f is given by the morphism ef. In
particular, an internal natural transformation y is an internal natural iso-
morphism when there is a (unique) internal natural transformation v from g
to f such that m{u,v) = efy and m{v,u) = ego.

Remark 3.3. When R and S are internal groupoids, an internal natural trans-
formation is automatically a natural isomorphism between f and g.

Remark 3.4. If S is a relation, then d and c are jointly monic, so (iii) is
automatically satisfied.

In particular, for effective equivalence relations we have

Lemma 3.5. Given two morphisms f = (fi,fy) and g = (g1,80) from
b: By — By to c: C; — Cy satisfying fo = go, there is an internal natural
isomorphism between the induced internal functors from Eq(b) to Eq(c).
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Proof. The condition f, = go implies that cf; = fob = gob = cg,. So let
1 = {fi,&1)- Then (i) and (ii) from Definition 3.2 are satisfied by definition,
and (iii) is satisfied automatically, as Eq(c) is a kernel pair and so a relation.

O

In the special case that By = Cy = A and f, = 14, we say that f is a
morphism over A.

From now on, let ¢ be a finitely complete pointed category. Then for
any groupoid R in %, we may restrict R, to the zero object 0, and R; to
Ker(d) nKer(c), which gives us the internal group of “loops at 0” or “internal
automorphisms at 0”, which we denote by Autz(0). When we restrict to this
group of internal automorphisms, natural isomorphisms as above collapse
the two functors onto each other:

Lemma 3.6. Any two naturally isomorphic functors f, g: R — S between
internal categories induce the same morphism Autg(0) — Autg (0).

Proof. Consider the diagram

Ker(d) n Ker(c) # Ker(d) n Ker(c)

k I
h
Rl > Sl
gl .‘n,“.“.”
dl lc # dl la
’
Ry: |

80

in which k and [ are the inclusions of Ker(d) n Ker(c) into R, and S, re-
spectively. We wish to show that f = g, or equivalently, that [f = Ig, as
[ is a monomorphism. From Condition (iii) we know that m{fik, uck) =
mludk, g1k). But since dk = 0 = ck and dl = 0 = cl, we can reformulate
this as

m{fik, pcky = m{If, eclf) = m(1s,, ec)lf = If,
m{udk, gky = medIg, Ig) = m{ed, 15,)Ig = I3

giving [f = [g as required. O
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4 'The Galois group and the fundamental group

Letl' = (¢,%2 ,H,1,n,€,&, %) be an admissible Galoi ture R fi-
nitely complete pointed category ¢ with H a full inclusion, ar‘ﬁ assume that
monadic extensions are pullback stable. Note that this excludes the classical
Galois theory Example 2.6 (vii), but it includes Examples 2.6 (i) and (vi), as
well as all the Galois structures of Example 2.6 (ii) for which % is pointed.

Definition 4.1. [20] For a normal extension p: E — B, its Galois group
Galr(p,0) = Autca () (0)

is the group of automorphisms at O of the Galois groupoid:

)%ELB

Balp) ==
’7Eq(1))l

Galr(p,0) = Ker(Id) n Ker(Ic) — I(Eq(p)) %I(E)

nE

The resulting functor
Galr(—,0): NExtr (%) — Gp(Z")

has some very useful properties: it is a Baer invariant [7, 8] with respect
to the codomain functor Cod: NExtr(%) — %, in the sense that any two
maps between normal extensions which agree on the codomains also induce
the same map between the Galois groups. To show this, we will use some
properties of Section 3.

Lemma 4.2. If two internal functors f, g: R — S between internal catego-
ries with source and target morphisms d, c being trivial coverings are natur-
ally isomorphic, then the functors I(f), I(g): I(R) — I(S) are still naturally
isomorphic.

Proof. Recall that I preserves pullbacks along trivial coverings, so /(R) and
I(S) are still internal categories. In particular,

I(S1 x5y S1) = 1(S1) Xus) 1(S1)
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and I(m) is the multiplication of I(S).

Let u: Ry — S be an internal natural isomorphism between f and g.
Then functoriality of I and the preservation of the multiplication ensures
that 7(u) is still an internal natural transformation. i

Proposition 4.3. Let p: E — Band p': E' — B' be normal extensions. Any
two morphisms (f,b): p — p’ and (g,b): p — p’ in NExtr(€) with the
same codomain component induce the same morphism

Galr(p,0) — Galr(p',0)
on the Galois groups.

Proof. This follows from Lemmas 3.5, 4.2 and 3.6. m]

In particular, this means that any endomorphism (f, 13): p — p induces
the identity on the Galois group Galr(p,0). This means that we can now
sensibly introduce the following definition. Recall that a normal extension
u: U — B is called weakly universal if it is a weak initial object in the
full subcategory NExtr(B) of (¢" | B) given by all normal extensions of B,
i.e. for every normal extension p: E — B there exists a morphisme: U — E
such that poe = u.

Definition 4.4. [20] Given an object B of %, its fundamental group (with
coefficient functor /) is the Galois group

T (B, I) = Galr(u, O)

of some weakly universal normal extension u: U — B, assuming such ex-
ists.

Note that 7y (B, I) is independent of the choice of weakly universal nor-
mal extension u: U — B, by Proposition 4.3 and weak universality of u. As-
suming a weakly universal normal extension u: U — B exists for every B,
we moreover have:

Proposition 4.5. The above definition of fundamental group gives a functor

1= 1): € — Gp(Z).
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Proof. Consider f: A — Bin%,andletu: U — Bandv: V — A be weak-
ly universal normal extensions of B and A, respectively. Pulling back u
along f gives another normal extension of A by Lemma 2.5, so v factors over
it, giving a morphism v — u which need not be unique. However, Propo-
sition 4.3 ensures that any two such morphisms induce the same morphism
on ;. It is then clear that 7 (—, I) preserves identities and composition. O

Remark 4.6. Not every Galois structure has the property that every object
admits a weakly universal normal extension into it. Note, however, that even
when this is not the case, the fundamental group still defines a functor, but
its domain is restricted to the full subcategory of 4" of those B for which
71 (B, I) is defined.

Examples 4.7. (i) For the Galois structure I' of Example 2.6 (i), there is a
weakly universal normal extension for every group B: if p: P — Bis
a surjective group homomorphism with a free domain P, then the in-
duced central extension P/[Ker(p), P] — B is easily seen to be weakly
universal. The fundamental group 7, (B, I) = H,(B) in this case is the
second (integral) homology group of B. (See [20].)

(i1)) More generally, for Galois structures I of the type considered in Ex-
ample 2.6 (i), NExtr(B) is a reflective subcategory of (& | B) for
every B (see [5, 23]), and the reflection into NExtr(B) of any regular
epimorphism P — B with a projective domain P is weakly universal.
Hence, if € is pointed with enough projectives, 71 (B, ) is well defined
for every B.

When % is a semi-abelian category with a monadic forgetful functor
to Set, then m(B,I) = Hy(B,I) is the second Barr-Beck homology
group of B with coefficient functor I (see [6]).

(ii1)) For Example 2.6 (iii), not every locally connected topological space B
admits a weakly universal normal extension u: U — B. However, it
is well known that there exists a (surjective) covering map u: U — B
with a simply connected domain U for every connected, locally path-
connected and semi-locally simply connected space B (see, for in-
stance, [14, 26]). Such a u has the following property: for every co-
vering map f: A — B and every pair of elements x € U andy € A
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in corresponding fibres there is a unique continuous map a: U — A
(actually, a covering map) such that u = fa and a(x) = y. Hence such
a u is in particular a regular covering map which is clearly a weakly
universal normal extension.

Choosing base points x € U and y € B such that u(x) = y, the
map u: (U,x) — (B,y) becomes a weakly universal normal exten-
sion with respect to the Galois structure I' of Example 2.6 (vi). In
fact, in this case it is even an initial object of NExtr(B) (rather than
merely a weakly initial one), which agrees with the usual terminology
of calling such a u a universal covering map. Now 7;((B,y),I) is the
classical Poincaré fundamental group of (B, x) (see [1, Chapter 6]).

5 The fundamental group functor as a Kan ex-

tension of the Galois group functor

Throughout this section and the next, I' = (¢, 2", H,1,n,¢€,&, %) will, as
before, be an admissible Galois structure on a finitely complete pointed cat-
egory ¢ with H a full inclusion, and such that monadic extensions are pull-
back stable. For simplicity we shall moreover assume that every object of ¢’
admits a weakly universal normal extension into it. However, our results can
easily be adapted to situations where this is not the case (see Section 8).

In the diagram

NEXtr(%)
Cod Galr(—,0)
7
L7 — ﬂl(_’]) ................. > Gp(%)

we now know all ingredients except the natural transformation

k: m(—,I)oCod = Galp(—,0).

For a normal extension p: E — B, we define the component

kp: m(B,I) — Galr(p,0)
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as Galr((h, 15),0): Galr(u,0) — Galr(p,0) for a weakly universal normal
extension #: U — B and any induced

U ........... > F
l )
=B

in NExtr(%). Again by Proposition 4.3, any such (A, 13) will induce the
same morphism Galr((h, 15),0) = «,. It is easy to check that « is natural.

To prove that the above diagram really is a Kan extension, we just have
to show that this natural transformation « is universal.

Theorem 5.1. The following is a Kan extension:

NEXtr(%)

Cod Galr(—,0)

Proof. Given another functor F: ¥ — Gp(.Z") with a natural transforma-
tion
NEXtr

.................................................. >Gp

define a: F = m(—,I) by ap = v, for some weakly universal normal ex-
tension u of B. This « is really natural: given f: A — Bin %, the morphism

ﬂ](f,l)i 7T1<A,I) —>7T1(B,I)

is defined as in Proposition 4.5 using a morphism

<

g
—_—

%
=

e <

&

R
f
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between weakly universal normal extensions of A and B. Using naturality of
v on this morphism in NExtr(%’) gives naturality of a, because

VLS| (f,]) = Galr((g,f),O): Galr(V,O) = 7T1(A,I) — Galr(u,O) =TT (B,I)

Naturality of y also implies that keaco,q = 7y: For each normal extension
p: E — B, any morphism

) FB FB
U ........... > E ‘ y l(YB Yp
17 e |
L ™1 (B 1),y Sl (- 0)

and S0 k,cap = Y.

To see that « is unique, notice that, for a weakly universal normal ex-
tension u, the component «,, is an isomorphism. So if 8: F = m;(—, 1) also
satisfies kofScog = ¥, taking a weakly universal normal extension of B imme-
diately implies ap = B, for all B. O

Remark 5.2. In fact, in the definition of ; (—, I) and the above proof of the
universality of x, we have only used the following properties of Galr(—,0)
and Cod:

Given two functors

N
SN
N3 9
such that

(i) forall f,ge A, F(f) = F(g) implies G(f) = G(g);

(ii) for all C € ¥, there exists U € .4 such that F(U) = C and, for all
N € 4, the function

Homt/y(U, N) — Homcg(C, FN)
giving the action of F is surjective.

Then it is possible to define a functor H: 4 — 2 via H(C) = G(U) and a
natural transformation x: HF = G giving a Kan extension as we have done
in our specific case above.
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6 The fundamental group functor as a Kan ex-
tension of the kernel functor

To compare this construction of the fundamental group given in the context
of categorical Galois theory with other viewpoints on semi-abelian homo-
logy or with universality properties of connecting homomorphisms in long
exact sequences, we actually need a slightly different Kan extension, namely

N EXtr ((g)

Cod Ky Ker
7

G e >

mi(=,1)
In this section we construct this Kan extension from the one we have already
obtained. We first recall that the underlying object of a Galois group can also
be calculated in another way:

Lemma 6.1. [20, Theorem 2.1] Given a normal extension p: E — B, the
underlying object of its Galois group can be computed as the intersection

Galr(p,0) = Ker(p) n Ker(ng). o

This lemma implies that there is a component-wise monic natural trans-
formation
t: UoGalr(—,0) = Ker

from the functor giving the underlying object of the Galois group to the
kernel functor.
NEXtr(%)

Cod UoGalr(—.0)

7
G e - 0

w1 (=,I)

It is clear that the big triangle in this diagram is still a Kan extension, for-
getting only the internal group structure in the Kan extension of Section 5,
since this internal group structure is not used anywhere in the proof. We
now show that, for any functor F: ¥ — 2, any natural transformation
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v: FoCod = Ker factors over . Then universality of x implies that § = tox
also defines a Kan extension. However, we need a small extra condition to
make this work: we now assume that

all morphisms of the kind IE — 0 are in the class F.

Being split epimorphisms, this implies that they are monadic extensions (see
[24]), hence normal extensions, since the kernel pair projections are clearly
trivial coverings, as they are in .2". Notice that this is indeed the case for all
of our examples.

Lemma 6.2. Let F: € — 2 be a functor and y: FoCod = Ker a nat-
ural transformation. For any normal extension p: E — B, the component
¥, factors over the inclusion Ker(p) n Ker(ng) — Ker(p).

Proof. Since the above inclusion is the kernel of Ker( p)ﬂE LIE, it

is sufficient to show that the composite

kerp . ne

FB%Ker(p)HEHIE

is zero. To do this, consider the three normal extensions

T IE
0

with the given morphisms between them. Naturality of y gives

|

=
<~
OS<—O

>~

FB—— FO0=—=F0

b

Ker(p) IE 0

neoker p

which shows that y,, does indeed factor over Ker(p) n Ker(ng) — Ker(p).
O

So, using universality of « and this lemma, we obtain
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Theorem 6.3. The diagram

is a Kan extension. O

7  When normal extensions are reflective

Assume that % is a semi-abelian category with enough regular projectives,
that 2" is a Birkhoff subcategory of %, and that & and .% consist of all
regular epimorphisms (so we are in the situation of Example 2.6 (ii)). It was
shown in [10] that there 1s a Kan extension

EXtr(%)
o Kerol;
oy \
D oo >

Here Extr (%) is the full subcategory of Arr(%’) given by all monadic exten-
sions,
I: EXtr(%) — NEXtr(%)

is left adjoint to the inclusion functor NExtr (%) — Extr(%) and, for every
monadic extension p: E — B, the morphism 0,,: Hy(B, 1) — Ker(I;(f))isa
connecting morphism in the long exact homology sequence associated with
f and I. In order to deduce this result from ours, we need a lemma.

Lemma 7.1. If the left hand triangle

N M
G o > 9 R, > 9

K K

is a Kan extension and the functor L: .# — AN admits a fully faithful right
adjoint, then the right hand triangle is a Kan extension as well.
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Proof. Write R for the fully faithful right adjoint of L, and €: LR = 1 4
for the counit. By [25, Proposition 3 in X.7], the natural transformation
Ge: GLR = G defines a Kan extension, as pictured in the top triangle of the
right hand diagram:

We want the bottom triangle in the right hand diagram to be a Kan extension
as well. Since € is a natural isomorphism, this will be the case if the outer
triangle and the natural transformation Ge-6;z: KFLR = G form a Kan ex-
tension. And indeed this is true, since the two outer triangles coincide, and
in the left hand diagram both triangles are Kan extensions: the bottom one
by assumption and the top one again by [25, Proposition 3 in X.7], because
LR: ¥ — ¥ is right adjoint to the identity functor, since R is fully faith-
ful. O

Theorem 6.3 and Lemma 7.1 imply in particular:

Corollary 7.2. Under the assumptions of Section 6, and when, moreover, the
inclusion functor NExtr(€') — Extr(%€) admits a left adjoint

I: EXtr(%) — NEXtF(%),

the diagram

EXtr(%)
y " \:
. >
i (=.1)

is a Kan extension.

Proof. 1t suffices to observe that I, leaves the codomains intact since every
identity morphism is a normal extension and NExtr(%) is a replete subcat-
egory of Extr (%) (see Corollary 5.2 in [16]). O
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The inclusion functor NExtr(%¢) — Extr(%) admits a left adjoint not
only in the semi-abelian case mentioned above, but more generally, when-
ever ¥ is an exact Mal’tsev category, 2~ is a Birkhoff subcategory and &
and .# consist of all regular epimorphisms (see [5]). Another class of ex-
amples is given in [4].

8 Exact homotopy sequence

As remarked above, the Galois structure I' of Example 2.6 (vi) satisfies all
conditions assumed in Sections 5 and 6, except one: it is admissible, the cat-
egory LoCo, is finitely complete and pointed, the discrete topology functor

Dis: Set, — LoCo.,

is fully faithful, monadic extensions are pullback stable and, for every poin-
ted set (X, x), the map (X,x) — 0 is in .F (since here .% consists of all
base-point preserving maps); yet not every pointed topological space admits
a weakly universal normal extension into it. We do know, however, that a
universal normal extension exists for every connected, locally path con

ted, semi-locally simply connected space B with base-point y € B, nar:I;}ey:I
its universal covering map in the usual topological sense: a covering map
u: (U,w) — (B,y) with U connected and simply connected. Theorems 5.1
and 6.3 and their proofs can easily be adapted to this situation. Thus we
obtain Kan extensions

NExtr LoCo,) NExtr LoCo.)

E WA}

LOCO* .................................................. LOCO* ................................................. > Set

71 (—,m0)

where LoCo, is the full subcategory of LoCo, consisting of all connected,
locally path connected, semi-locally simply connected pointed spaces, and
the full subcategory NExtr(LoCo.) of NExtr(LoCo,) is determined by those
normal extensions whose codomain is in LoCo,. Notice that Gp(Set,) ~

Gp(Set) ~ Gp.
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Now let p: (E,x) — (B,y) be a I'-normal extension of a connected,
locally path-connected, semi-locally simply connected pointed space (B, y)
with kernel (F, x) (meaning in this context of course the fibre over y). Let
u be the universal covering map (U,w) — (B,y), write e for the unique
continuous base-point preserving map (U,w) — (E, p) such that pe = u
and recall that it is a covering map. Since U is connected, the image of e
is contained in the connected component E, of x and the left hand triangle
restricts to the commutative right hand triangle

(U,w) (U,w)
RN TN
(E. x) —— (B.y) (Evsx) — (B.)

Now ¢’ is still a covering map, and it is surjective since its codomain is
connected—the image of a covering map is always both open and closed.
Moreover, since U is connected and simply connected, ¢’ is the universal
covering map of (E,, x). Taking kernels yields an exact sequence of pointed
sets

0 — Ker(¢') — Ker(u) — Ker(p') — 0

hence an exact sequence of groups
0> m(E,x) > m(B,y) > (FnE;,x)—0

where (F n E,, x) is the Galois group of the normal extension p’. As we
clearly have an exact sequence of pointed sets

0> (FNnE,x)— (F,x) > m(E,x) >0

and because (F,x) = m(F, x) since F is a discrete space, we can paste the
two sequences together to obtain an exact sequence

0 — m(E,x) —> m(B,y) — mo(F,x) = mo(E, x) > 0

and this is the low-dimensional part of the usual exact homotopy sequence
induced by the fibration

(F,x) = (E, x) = (B.y).
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Notice that 7y(B,y) = 0 as B is connected. What we would like to point out
here is that the morphism 7 (B,y) — mo(F, x) = (F, x) is the p-compo

0, of the natural transformation defining the right hand Kan extension pic-
tured above. Hence, we are in a similar situation as with the algebraic case
studied in the previous section, where the Kan extension of Corollary 7.2
expresses a universal property of the connecting morphisms in an exact ho-
mology sequence.
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BORROMEANITE DU GROUPE PULS ATIF
par Jean-Yves DEGOS

En hommage amical a René Guitart,
a l’occasion de ses 65 ans.

Résumé. Dans la section 1, nous définissons le groupe pulsatif, noté Pul,
comme le groupe de symétries de la sphere entiére de rayon /5, et don-
nons une description de ce groupe. Dans la section 2, nous en donnons une
présentation borroméenne, et nous faisons le lien avec le groupe spécial
orthogonal. Dans la section 3, nous nous intéressons aux possibilités de
représenter graphiquement ce groupe, en utilisant la méthode de New-
ton. Enfin, dans la section 4, nous en proposons une interprétation et une
généralisation.

Abstract. In the section 1, we define the pulsative group, denoted by Pul,
as the group of symetries of the integral sphere of radius v/5, and we give a
description of this group. In the section 2, we give a borromean presentation
of it, and we give a link with the special orthogonal group. In the section
3, we focus on different ways of representing this group graphically, using
Newton’s method. At last, in the section 4, we give an interpretation and a
generalization of it.

Keywords. borromean groups, brunnian groups, mathematical pulsation, pul-
sative group.

Mathematics Subject Classification (2010). 12Y05, 20H30.

1. Introduction : le groupe pulsatif

Dans [6], §13, René Guitart introduit la notion de site pulsatif. Pour 1’au-
teur, “un acte mathématique réel est une facon de faire tenir ensemble (...)
24 postures”, qu’il place sur un hexagramme pulsatif, qui, selon 1’auteur “est
image dans le plan de I’octaedre régulier adouci, qui est I’'un des 13 solides
archimédiens, encore appelé polyedre de Kelvin”.
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W

Les deux figures ci-dessus représentent deux projections du polyedre de
Kelvin dans le plan d’ Argand-Cauchy :
— celle de gauche est la projection stéréographique sur le plan d’équation
z = 0, le pole nord étant le point N (0,0, 1), et le pole sud le point
S(0,0,—1);
— celle de droite est la projection stéréographique sur le plan d’équation
TH+y+z+ V15 = 0, le pole nord étant le point N <L§, V5 ﬁ) et

V3 V37 V3
le pole sud le point S (—%, —%, —%)

Proposition 1.1. Le polyédre de Kelvin est inscriptible dans une sphére de
rayon 1. Ses 24 sommets ont pour coordonnées les éléments de I’ensemble :

ry = 3 2 2 | .2

S= —,——=,— | avec (x,y,z) € Z° et x° + 1y~ + z :5}. (1)
{(\/3 V53 ) 0.2) !

Définition 1.2. On appelle groupe pulsatif le groupe de symétries de la

spheére entiére de rayon \/5, ¢ est-a-dire le groupe des isométries qui laissent

globalement invariante cette sphere. On note ce groupe Pul.

Nous allons donner une description matricielle du groupe Pul.

Définition 1.3. (i) On considere les matrices suivantes :

1 00 0 01
I=10 1 0] eteG= {1 0 O,
001 010
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1 0 0 -1 0 0 1 0 O
U=10 -1 o|,v=1]0 1 ol ,w=1]0 -1 0],
0 0 -1 0 0 -1 0 0 -1
010 100 0 01
T12: 1 0 0 ,ngz 0 0 1 ,Tglz O 1 O
0 01 010 1 00

(ii) On appelle K le groupe (isomorphe au groupe de Klein) :
K={I,LUV,W}.
(iii) On appelle S le groupe (isomorphe au groupe symétrique Ss) :
S ={1,Ts,To3,T51,G,G'}.
Ceci nous permet d’énoncer le théoreme qui suit.

Théoreme 1.4. Avec les notations de la Définition 1.3, on a les résultats
suivants :

(i) Le produit KS = {MN,M € K, N € S} est un groupe d’ordre 24.

(ii) Le groupe Pul est égal a K S.

2. Borroméanité du groupe pulsatif et lien avec le groupe
spécial orthogonal

Nous allons établir que le groupe Pul a une structure de groupe bor-
roméen ([7]), ou plus exactement de groupe 3-brunnien de type I, pour re-
prendre la terminologie de [3]. Nous commencons par une définition ; en-
suite nous montrons que Pul et SO3(IF3) sont les deux seuls sous-groupes du
groupe orthogonal sur 5 a satisfaire une certaine propriété (Théoreme 2.3).

Définition 2.1. On considere les trois matrices suivantes :

-1 0 0 0 0 -1 0 1 0
Ri=10 0 1] ,Re=1]0 -1 O | etR3=1|—-1 0 0
0 -1 0 1 0 0 0 0 -1

Nous donnons le théoreme annoncé.
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Théoreme 2.2. On a les résultats suivants :

(i) Ry = GR1G™ ', Rs = GR,G™', Ry = GRsG™.
(ll) Pul = <R1, RQ, Rg)

(iii) Pul est 3-brunnien de type L.

Démonstration. Le point (1) est évident. Pour le point (ii), on dresse la table
de multiplication de K par S, et on essaie d’écrire chaque produit, donc
chaque élément de Pul, comme un mot sur R, R, R3. La table qu’on ob-
tient, grace a I’aide un systeme de calcul formel comme Maple ou Sage, est
la suivante :

T IT 1 T | T | Ty G Gl

I I | R3R> | RiRs® | RyR2| RiRy | Ry 'Ry T
U|R’| Ry |RiR”| Ry ' |Ri 'Ry| RiR3™" |,
V | RZ| Ry ! R, RoRs* | Ry 'Ry | RoRy T
W | Rs* | RsRy2| Ry P Ry | Rs'Ry| R3Ry !

ce qu’il fallait démontrer. Pour montrer le point (iii), on remarque que (i) et
(i) entrainent que Pul est 3-cyclable (voir [3]). Il faut donc montrer que :

1. Si Ry = I (resp. Ry = I, R3 = I), le groupe Pul devient trivial.

2. Si on supprime R; (resp. Ry, R3) le groupe (Rs, R3) (resp. (Rs, R1),
(R1, Ry)) est quand méme Pul.

Cela ne pose aucune difficulté. [

Théoreme 2.3. Soit H un sous-groupe de Q3(F3) (le groupe des isométries
d’un cube régulier, c’est-a-dire formé des 48 matrices de permutations si-
gnées), vérifiant la propriété que :

VYN € O3(F3),N € Hou — N € H.
Alors H = Pul ou H = SO3(F3).

Démonstration. Le groupe H est d’indice 2, donc d’ordre 24.
1)SiRy € HetG € H, alors :

RQ = GRlGil € H, et Rg = GRQGil e H
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donc Pul = (R, Ry, R3) C H, et comme les deux groupes ont méme ordre,

ils sont égaux.
(i) Si R, € Het—G € H, alors :

RQ = (-G)Rl(—G>71 € H, et Rg = (—G)RQ(—G)il cH

donc Pul = (R, Ry, R3) C H, et comme les deux groupes ont méme ordre,

ils sont égaux.
(iii) Si Ry € H alors —R; € H;siG € H, alors :

—Ry = G(—Rl)G_l € H, et — Ry = G(_RQ)G_l € H

donc SO3(F3) = (—Ry, —Rs, —Rs) C H, et comme les deux groupes ont
méme ordre, ils sont égaux.
(iv) Si Ry € H alors —Ry € H;si —G € H, alors :

“Ry = (~G)(=R)(=G)"" € H, et — Ry = (~G)(—Ro)(~G) ' € H

donc SO3(F3) = (—Ry, —Ry, —R3) C H, et comme les deux groupes ont
méme ordre, ils sont égaux. O]

3. Représentations graphiques du groupe pulsatif

Nous nous intéressons dans cette section a la possibilité de représenter
graphiquement le groupe pulsatif, dans le plan (sous-section 3.1) ou dans
I’espace (sous-section 3.2). Enfin la sous-section 3.3 comporte un tableau
des couleurs utilisées pour produire la figure de la sous-section 3.1.

3.1 Méthode de Newton en dimension 2

Une premiere solution consiste a effectuer une projection stéréographi-
que (comme indiqué dans [5], pages 318-319) des éléments de S (voir I’éga-
lité (1) de la Proposition 1.1). Nous obtenons alors des points du plan, que
nous identifions a leurs affixes complexes. Nous formons enfin le polyndme
de degré 24 qui admet ces affixes pour racines. Nous obtenons :

P(X) — X24 _ %XQO + 5128519X16 + 1521534X12 + 5128519X8 _ %){% +1.
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Grace au tableaux de couleurs de la sous-section 3.3, nous obtenons, avec
Fractal Domains 2.0.11 (voir [4]), la figure suivante !.

Ce n’est donc pas tres satisfaisant : la représentation a plat rend mal
compte des symétries que 1’on devrait intuitivement visualiser. Il faut donc

tacher de représenter graphiquement le groupe pulsatif en dimension 3. Dans
la section suivante, nous allons étudier cette possibilité.

3.2 Méthode de Newton en dimension 3

Proposition 3.1. Les éléments de V58, la sphére entiére de rayon /5, sont
exactement les solutions réelles du systeme :

B +y?+22-5=0

(z+y+2?2=-1D)(z+y+2)?2*-9)=0
zyz =10

Preuve succinte. Le systeme d’équation est invariant par permutation circu-
lation sur z, y, z. On peut donc, en utilisant la troisieme équation, supposer
que z = 0. La deuxieéme équation permet alors d’affirmer que = + y vaut
—1,1,—3 ou 3. D’autre part, en calculant zy = 1 ((z + y)? — (2 + y?)),

I’auteur.

1. Les couleurs a I’écran ont toutefois été remplagées par des niveaux de gris pour une
meilleure qualité d’impression. Le lecteur peut obtenir la version colorisée en écrivant a
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et en utilisant la premiére équation, on obtient : xy € {—2,2}. Cela laisse
pour (x,y) les seules valeurs possibles : (—2,1); (1,—2); (—1,2); (2,—-1);

Théoreme 3.2. Considérons I’application
F: R® — RS
(x7y7z> = (fl(xay72)7f2(x7yaz)7f3($7y7z))

avec

fl(x7yaz) = 51(1573172)2_252@7%2)_5;
f2(37>y72) = 51(337,%2)4—1051(%%2)2"‘97
f3<l’,y,2) = 53(1'7%2),

o S1, S5, S5 désignent les polynomes symétriques élémentaires en les va-
riables X,Y, Z. Alors :

(i) L’application F est différentiable en tout point de R3.

(ii) Au voisinage des zéros de I, la différentielle F' est inversible.

Démonstration. Le point (i) est évident, puisque f1, fo, f3 sont des applica-
tions polynomiales. Pour vérifier le point (ii), on détermine J(F')(x,y, z),
la matrice jacobienne de F’ au point (z,y, z), et on regarde ol s’annule son
jacobien j(F)(x,y, z). Tous calculs faits on trouve :

2x 2y 2z
J(F)(x,y,2) = |45.® — 208, 4S,* —20S; 45,® — 205,
Yz ZT Yy
puis
j(F)(xv Y, Z) = —2(431(1‘,y, 2)3 - 2081(1’,:% Z))(y - Z)(Z - x)(z - y)

- _851<I7y72) (Sl(x7y7 Z)2 - 5)<y - Z)(Z - I)(Z - y) :

Il est alors clair que si F'(z,y,z) = 0, alors j(F)(z,y, z) # 0, donc F” est
inversible au voisinage des zéros de F'. 0

Il est donc possible de représenter graphiquement le groupe pulsatif en
utilisant la méthode de Newton en dimension 3 appliquée a la fonction F' sur
la sphere. Ce sera 1’objet d’un travail ultérieur.
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# | Racine | Codage # | Racine | Codage
23| (0,1,2) | (0,1,2) 20| (0,2,1) | (0,2,1)
21| (0,-1,2) | (0,5,2) 17 | (0,-2,1) | (0,4,1)

3 | (0,1,-2) | (0,1,4) 8 | (0,2,-1) | (0,2,5)

1 | (0,-1,-2) | (0,5.4) 7 | (0,-2,-1) | (0,4,5)

# | Racine | Codage # | Racine | Codage
22| (1,0,2) | (1,0,2) 13| (1,2,0) | (1,2,0)
24 | (-1,0,2) | (5,0,2) 14| (-1,2,0) | (5,2,0)

2 | (1,0,-2) | (1,0,4) 16 | (1,-2,0) | (1,4,0)

4 | (-1,0,-2) | (5,0,4) 10 | (-1,-2,0) | (5,4,0)

# | Racine | Codage # | Racine | Codage
19| (2,0,1) | (2,0,1) 12| (2,1,0) | (2,1,0)
18 | (-2,0,1) | (4,0,1) 15| (-2,1,0) | (4,1,0)

5 | (2,0,-1) | (2,0,5) 11| 2,-1,0) | (2,5,0)

6 | (-2,0,-1) | (4,0,5) 9 | (-2,-1,0) | (4,5,0)

Les tableaux ci-dessus doivent se décoder de la maniere suivante : pour
obtenir le “codage”, on prend les composantes de la “racine” et on les réduit
modulo 6. Ce codage modulo 6 est celui de la couleur associée a la racine
(de facon canonique) : les composantes de ce codage, multipli€ées chacune
par 51, donnent la composition de la couleur en Rouge, Vert, Bleu. Le “#”
est le numéro de la racine pour Fractal Domains 2.0.11 ([4]).

4. Conclusion : quelques remarques et prolongements

Remarque 4.1 (Lien Pulsation-Borroméanité). L’'intérét du groupe pulsatif
Pul est qu’il établit un lien formel entre deux soucis de René Guitart :

1. la notion de pulsation mathématique (voir [5]) ;

2. la notion de groupe borroméen (voir [7]).
Remarque 4.2 (Motivation de la section 3). Dans [2], Jean-Guy Degos se
sert de la figure ci-dessous pour illustrer la complexité des frontieres entre

les trois notions de solvabilité, flexibilité et rentabilité d’une entreprise. Il
écrit en particulier ([2], page 39) :
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Si on approfondit 1’analyse des relations “flexibilité et long ter-
me”, “solvabilité et moyen terme” et “rentabilité et court terme”,
elles ne sont pas tout a fait aussi simples que nous les avons
exposées. Comme dans beaucoup de domaines du monde réel
et comme 1’a montré M. F. Barnsley sur le plan théorique en
illustrant ses propos par la résolution d’équations a racines com-
plexes par la méthode de Newton ? il n’y a jamais de frontieres
nettes entre les causes et les résultats de plusieurs éléments ar-

bitrairement, ou pédagogiquement dissociés.

De la méme fagon, nous aimerions bien donner a voir la complexité du
va-et-vient entre les 24 postures du site pulsatif.

Remarque 4.3 (Généralisations du groupe pulsatif). On pourrait généraliser
le groupe pulsatif dans deux directions.

— La premiere direction consiste a observer que la sphere entiere de
rayon /5 se généralise en la notion de permutoédre : le permutoddre
d’ordre n est un polytope de dimension n — 1 plongé dans un espace
de dimension 7, dont les sommets sont obtenus en permutant les coor-
données du vecteur (1,2,...,n). On peut montrer que le polyedre de
Kelvin correspond au permutoedre d’ordre 4. Il serait donc 1égitime
de définir le groupe pulsatif d’ordre n comme le groupe de symétries
du permutoedre d’ordre n.

2. Voir [1], pp. 280-283.
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— La deuxieme direction consisterait a définir le groupe pulsatif d’ordre

n comme le groupe de symétries de la sphere entiere de rayon v/n + 1.

Ces deux définitions possibles n’ont pas de raison de coincider si n # 4.

Peut-on décrire ces groupes ? Sont-ils brunniens ? Peut-on déterminer une
“fonction F” (voir section 3) pour les représenter graphiquement ?

Certains résultats de cet article ont été€ utilisés dans [8].
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RESUME. Dans cet article, nous développons un argument
simple sur les bicatégories de fractions qui montre que, si ¥ est
la classe des équivalences faibles entre groupoides internes a une
catégorie réguliere A qui admet suffisamment d’objets projectifs
réguliers, alors la description de Grpd(A)[X~!] peut étre con-
sidérablement simplifiée.

RESUME. The aim of this note is to develop a simple ar-
gument on bicategories of fractions showing that, if ¥ is the
class of weak equivalences between groupoids internal to a regu-
lar category A with enough regular projective objects, then the
description of Grpd(A)[X7!] can be considerably simplified.

1. Introduction

Bicategories of fractions, the 2-dimensional analogue of Gabriel and Zis-
man’s categories of fractions [9], have been introduced by D. Pronk [14]
and used mainly to study fractions of 2-categories of internal functors
between various kinds of internal structures (internal categories, inter-
nal groupoids, internal crossed modules, etc.), see for example [16] for
recent applications. Recently, general results on bicategories of frac-
tions of internal functors with respect to internal weak equivalences
have been obtained in [1, 10, 15]. In particular, in [1] the bicategory of
fractions of crossed modules internal to a semi-abelian category A has
been described in terms of “butterflies”. This description generalizes
the case where the base category A is the category of groups, which

2000 Mathematics Subject Classification: 18D05,18A22, 18D35, 18D40, 18G05.
Key words and phrases: bicategory of fractions, weak equivalence, projective
objects, internal groupoid.
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is the case studied by B. Noohi in [11, 12] (see also [2]). It is inter-
esting to notice that bicategories of fractions do not appear explicitly
in [11, 12], where the main result is stated in terms of an equivalence
between hom-categories

B(A, B) ~ C(X, B)

where C is the 2-category of crossed modules of groups, B is the bicate-
gory of butterflies in groups, and X is a cofibrant replacement of A. In
[1, Proposition 8.1], we explain that this equivalence of hom-categories
easily follows from the fact that B is indeed the bicategory of fractions
of C and the fact that the category of groups has enough regular projec-
tive objects. Moreover, a general argument on bicategories of fractions,
subsuming the previous equivalence, is announced [1, Remark 8.2].

The aim of this note is to fully develop such an argument: we will
show that, if the class X of arrows to be inverted has a “faithful calculus
of fractions”, a condition stronger than Pronk’s right calculus of frac-
tions, and if C has enough Y-projective objects, then the description of
the bicategory of fractions C[X7!] can be drastically simplified and the
equivalence

CI=Y(A, B) ~C(X,B)

becomes almost tautological. The surprise is that, despite the fact that
the condition of having a faithful calculus of fractions is a very strong
condition (so strong that its 1-dimensional version for categories of frac-
tions is probably totally uninteresting), it is satisfied by the prominent
example where C is the 2-category of groupoids and functors internal
to a regular category, and ¥ is the class of weak equivalences. More-
over, the fact that C has enough Y-projective objects holds if the base
category has enough regular projective objects. This covers the case of
groups and of Lie algebras studied in [11, 12, 2, 17].

Notation: the composite of f: A — Band g: B — C'is written f-g.

2. Calculus of fractions

The reader can consult [4] or [6, Chapter 7] for an introduction to
Bénabou’s notion of bicategory. In this paper, bicategory means bi-
category with invertible 2-cells. Moreover, for the sake of readability,
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we write diagrams and equations as in a 2-category. Let us start with
a point of standard terminology

Definition 2.1 Let f: X — Y be a 1l-cell in a bicategory C. We say
that f is

1. full (faithful) if, for every object C' € C, the functor
C(C,f):C(C,X)—C(CY)

is full (faithful); in other words, for every 2-cell 8: h- f = k- f,
there exists at least (at most) a 2-cell a: h = k such that a- f = ;

2. an equivalence if, for every object C' € C, the functor
C(C,f):C(C,X)—=C(C)Y)
is an equivalence of categories; in other words, there exist a 1-cell
f*Y = X and two 2-cells e;: f*- f = 1y and ny: 1x = f - f*.
Remark 2.2

1. If f is full and faithful and there exists e;: f*- f = 1y, then f is
an equivalence.

2. If f is an equivalence, it is always possible to choose 7y and € so
that the usual triangular identities are satisfied:

frf frr

ny-f fex I ny er-f*
f/ . \f f*/ - \f*

3. If f,g: X — Y are equivalences, #: f = g is a 2-cell, and
(f*,np, er) and (g*,n,,€,) satisfy the triangular identities, then
there exists a unique §*: f* = ¢* making commutative the fol-
lowing diagrams:

Ix
N 2N
f‘ng'g :
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4. If f is an equivalence, for every object C the functor
C(f,C): C(Y,C) = C(X, )

is an equivalence of categories (use the triangular identities to
check that it is full).

5. If f: X - Yand g: Y — Z are full (faithful) (equivalences), then
so is the composite f-g: X — Z.

Now we recall from [14] the general definition of bicategory of frac-
tions and we introduce the notion of faithful calculus of fractions.

Definition 2.3 (Pronk) Let 3 be a class of 1-cells in a bicategory C.
The bicategory of fractions of C with respect to ¥ is a homomorphism

of bicategories
Ps:C— C[X71]

universal among all homomorphisms F: C — A such that F(s) is an
equivalence for all s € X. In other words, for every bicategory A,

Py - — : Hom(C[X '], A) = Homsx(C, A)

is a biequivalence of bicategories, where Homs(C,.A) is the bicategory of
those homomorphisms F such that F(s) is an equivalence for all s € X.

Definition 2.4 Let X be a class of 1-cells in a bicategory C. The class
) has a faithful calculus of fractions if the following conditions hold:

FF1. ¥ contains all equivalences;

FF2. Given 1-cells f: X > Y and g: Y — Z withg € ¥, then f-g € X

iff f e
FF3. For every C  there exists P NN C
geY g'ex = g
A—=B A—>B

FF4. If there exists a 2-cell f = ¢, then f € X iff g € ¥;
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FF5. ¥ is contained in the class of full and faithful 1-cells.

Remark 2.5 In (FF3), if f € 3, then ' € X. Indeed, ¢, f € %, so
that, by (FF2), ¢’ - f € ¥ and then, by (FF4), f'-g € ¥. Since g € ¥,
(FF2) implies now f’ € ¥.

It is easy to compare the conditions defining a faithful calculus of
fractions with those defining a right calculus of fractions in the sense of
[14].

Proposition 2.6 Let X be a class of 1-cells in a bicategory C. If 32 has
a faithful calculus of fractions, then it has a right calculus of fractions.
Proof. We have to check the following condition:

RF. For every a: f-w = ¢g-w with w € X, there exist v € ¥ and
B:v-f = v-gsuchthat v-a = - w, and for any other v/ €
and §': v - f = v’ - g such that v'-a = - w, there exist u, v’ and
g:u-v=u-v such that u-v € ¥ and

w-v- f up u-v-g

v
e'fi J{E'g
. . . U

commutes.

As far as the existence of (v, ) is concerned, we can take v = 1y € X
and, since w is full, there exists #: f = ¢ such that §-w = a.

Let now (v, ) and (v, 8') be as in condition (RF); by (FF3), there
exists €: u-v = u' - v with u € ¥ and then u - v € X. It remains to
show that the diagram in condition (RF) commutes. Since w is faithful,
it is enough to check the commutativity of the diagram obtained by
composing with w

u-B-w
u-v-f-w———msu-v-g-w

g.f.wi ls-g-w

/ / / /
u -v - - w u -v - - w
/ v g

and this is obvious because we can replace u-f-w by v-v-«a and v’ 5" -w
by u' -0 - . m
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3. Y-projective objects and Y-covers
Definition 3.1 Let X be a class of 1-cells in a bicategory C.

1. An object X is X-projective if, for every 1-cell s: A — B in X,
the functor

C(X,s): C(X,A) = C(X, B)

is essentially surjective; in other words, for every

X

|’

A—=B

SEY

there exists
X

f/
ol
fl‘jj>13

2. A XY-cover of an object A is a 1-cell a: X — A in ¥ with X a
Y-projective object.

3. We say that C has enough Y-projective objects if each object has
a X-cover.

Remark 3.2 Assume that X is contained in the class of full and faithful
1-cells.

1. If s: A — X isin ¥ and X is a Y-projective object, then s is an
equivalence. Indeed, use condition 3.1.1 with f = 1x to get s*
and €,, and conclude by Remark 2.2.1.

2. If a Y-cover of an object exists, then it is unique up to an essen-
tially unique equivalence.

In Example 3.5, we will state that the class of weak equivalences
between groupoids internal to a regular category has a faithful calculus
of fractions. The reader can consult [7, Chapter 2| for an introduction
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to regular categories (in the sense of M. Barr [3]), and [6, Chapter 8] for
basic facts about internal category theory. If A is a category with finite
limits, we denote by Grpd(A) the 2-category of groupoids, functors
and natural transformations internal to A. The notions of essentially
surjective and of weak equivalence for internal functors come from [8].

Definition 3.3 (Bunge-Paré) Let A be a regular category and let

A1L>B1

i

be a functor between groupoids in A. The functor (Fy, Fp) is:

1. essentially surjective (on objects) if
Ao X py.a B 2. B - B,

is a regular epimorphism, where t, is defined by the following
pullback

to
Ao Xp,.a BI — By

tll ld

Ao By

Fy

2. a weak equivalence if it is full and faithful and essentially surjec-
tive.

Remark 3.4 With the notation of Definition 3.3. A functor (F}, Fp)
1s:

1. full and faithful iff the following diagram is a limit diagram
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2. an equivalence iff it is full and faithful and
Ao XFo,d Bl i>Bl s Bo
is a split epimorphism.

Example 3.5 Let A be a regular category and Y the class of weak
equivalences in the 2-category Grpd(.A).

1. ¥ has a faithful calculus of fractions.
The proof can be reconstructed by examining the proofs of Propo-
sition 4.5 and Proposition 5.5 in [17]. For the reader’s convenience
we reproduce here some points; we refer to [17] for more details.
- Condition (FF1) immediately follows from Remark 3.4.2.
- Condition (FF2): consider two internal functors F': A — B and
G:B—~C

F G1
Al - Bl > Cl

ol o

Ay — By ——C
0~ Po—g, 7 Co

e If F and (G are essentially surjective, so is the composite F'- G:
consider the following pullbacks

Ao Xpya Bi —2> B, By Xgpa Ct —2C4
T
AO o BO BO Go C(_)

T2
Ay X pyco.a C1 — C}

l ld

Ay Co

FO‘GO

and the commutative diagram (where m is the internal composi-
tion in C)
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tox1

cx1
Ao Xpya B1 Xayca C1 B X@y.c,a C1 — By Xgy,a Ch

1><G1><1l ltz

Ao X Fyco,d C1 Xea Ch Ch

ml l

Ay X py-co.a Ch Ch Co

T c

In a regular category, regular epimorphisms are closed under com-
position and finite products; moreover, if a composite is a regular
epimorphism then the last component is a regular epimorphism.
Therefore, from the previous diagram we deduce that 7 - ¢ is a
regular epimorphism, as needed.

o If F'- (G is essentially surjective and G is full and faithful, then
F' is essentially surjective: consider one more pullback

Q By

o] lao

Ao X Fo-Go,d Gy To Ch c C’0

A2

We have that A, is a regular epimorphism because, by assumption,
Ty - ¢ is a regular epimorphism and regular epimorphisms are pull-
back stable in any regular category. Since G is full and faithful,
by Remark 3.4.1 we get \: ) — B such that A-d = \; - 7 - Fy,
A-G1 = A -1 and A - ¢ = Ag. From the first equation on A, we
get p: @ = Ao Xp,q B1 such that p-¢, = A\ -7 and p-ty = A
Finally, p1-to-c = A-c = Ay, so that t5 - c is a regular epimorphism,
as needed.

- The stability of regular epimorphisms under pullbacks gives also
that ¥ is stable under bipullbacks (in the sense of bilimits intro-
duced in [5]). This immediately implies condition (FF3).

- Condition (FF4) is a simple exercise and condition (FF5) is ob-
vious by definition of weak equivalence.

Recall that an object X, of the base category A is regular projective if
the functor A(Xy, —): A — Set preserves regular epimorphisms. The
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category A has enough regular projective objects if for every object
Ag € A there exists a regular epimorphism X, — Ag with X regular
projective. Examples of regular categories with enough regular projec-
tive objects abound: monadic categories over a power of Set and their
regular epireflective subcategories are of this kind. In particular, alge-
braic categories, varieties and quasi-varieties of universal algebras are
of this kind (see for example [13]), as well as presheaf categories and
categories of separated presheaves.

2. If A has enough regular projective objects, then Grpd(.A) has
enough Y-projective objects.
For this, start with an internal groupoid and a regular epimor-
phism S
A
)

XOT())AO

with Xy a regular projective object. Consider the limit diagram

X4
////ﬁ/////ﬂisj\\\\<i\\\x
XO Al X()
A, A,

The graph d,c: X; = X, inherits a structure of groupoid from
that of d,c: Ay = Ao, and the functor (F, Fp) is a weak equiv-
alence. Indeed, it is full and faithful by construction, and it is
essentially surjective because in

Xo Xsp.da A1 oA s A
to is a regular epimorphism (because S is a regular epimorphism)

and c is a split epimorphism. Finally, since X is regular pro-
jective, by Remark 3.4.2 every weak equivalence with codomain

- 230 -



ABBAD & VITALE - FAITHFUL CALCULUS OF FRACTIONS

X7 = Xj is an equivalence. Since weak equivalences are stable
under bipullbacks, this is enough to ensure the X-projectivity of
X1 = Xo.

4. The bicategory of fractions

4.1 Let C be a bicategory and ¥ any class of 1-cells in C. We can
construct a new bicategory

C[x
having Y-covers as objects and, as hom-categories,
CIX(a: X = Ab: Y — B)=C(X,Y)

with identities and horizontal and vertical compositions given by those
of C.

Remark 4.2
1. If C is a 2-category, then C[X*] is a 2-category as well.

2. Ifb: Y — B is full and faithful, then the functor C(X, b) is full and
faithful, and it is essentially surjective because X is Y-projective,
so that it induces an equivalence of categories

C[Z*(a: X — A,b: Y — B) ~C(X, B)

4.3 Under the assumption that the class ¥ has a right calculus of
fractions, the bicategory of fractions C[X7!] has been described in [14]:
objects are those of C, 1-cells and pre-2-cells

(w,f)
//-——\\
A U (u1,u2,01,02) B
v

(v.9)
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are depicted in the following diagram

C

7N

A al F oz B

RN

D
with w, v, uy - w >~ us - v € X. Given another pre-2-cell

(w,f)
/”—\
A | (s1,52,81,82) B
\W/

(v.9)

then the pre-2-cells (uy,us, a1, ) and (sq, s9, 81, 52) are equivalent if
there exists (r1,72,71,72) as in

E

2N

C mt F U D

DN

E/

such that ry-uy-w ~ ry-s1-w € X and such that the following diagrams
commute

V1w 7-f
7L UL W< Ty - ST W ricuy s f<——r2-51- f
Tl'ali (Z) \LTT/Bl 7’1'042i (ZZ) \L’I‘Q-ﬁg
1 Uo + U o+ So -V . . . .
1 2 4>’YQ'U 2 2 T1 Uy QWT2 SS9 g

Clearly, there is a homomorphism of bicategories £: C[X*] — C[X7!]
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defined by
f
N

X ol Y = X
| T 2N

a 9 b 1

B A a X lab B

\ll/
a gb

X

Proposition 4.4 Let X be a class of 1-cells in a bicategory C. If ¥ has
a faithful calculus of fractions and C has enough X-projective objects,
then €: C[X*] — C[X71] is a biequivalence.

More precisely, we are going to prove the following statements:

1. If ¥ has a faithful calculus of fractions, then £ is locally an equiv-
alence.

2. If C has enough Y-projective objects, then £ is surjective on ob-
jects.

Proof. 1. & is locally faithful: let

f
X_ ol g Y
\w/
=1
A B
be 2-cells in C[¥*] and let
X

PN

X mt F U X

DN

X
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be the datum attesting that £(a) = £(8) in C[X7!]. Since a,ry - a € %,
then by (FF2) ro € 3, and then it is an equivalence because X is -
projective. The first condition on (r1,72,71,72) implies that v, = 75 ',
the second condition gives then ro - - b = 79 - 8- b. Since ry is an
equivalence and b is faithful, we have a = f.

€ is locally full: consider two 1-cells f, ¢ in C[X*] and a 2-cell £(f) =
E(g) as follows

X Y X
T AN
a g b uy

A B A el F a2 B

PN

X

Since a is full and faithful, there exists a unique 5: u; = uy such that
f-a = aj. Moreover, a,u; -a € ¥, so that u; € ¥ by (FF2), and then
is an equivalence because X is Y-projective (the same argument holds
for uy). Since b also is full and faithful, there exists a unique a: f = g
such that

u1~f-bi>u2~g~b

m Tﬁ'g-b
uy-g-b

commutes. To check that £(a) = [uy, us, a1, as] we use the following
datum, where *: uj = uj corresponds to 5: u; = ug as in Remark

2.2.3:
E up
N

X 't X > X

N

X 1
Condition (i) easily follows from the definition of § and Remark 2.2.3.
As far as condition (ii) is concerned, since wu; is an equivalence, by
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Remark 2.2.4 it is enough to check it precomposing with u;. Using the
definition of «, condition (ii) reduces now to the commutativity of

e1-f-b
up-uf-ug - fob wead up - f-b

ﬁ'ﬁ*'ul‘f'bl \Lag

u.u*.u. .b%u.u*.u. .b Uo * .b
2" Uy - U f - 2 Ug U g w2 2gb 2°g

To check this last equation, past on the left side the commutative tri-
angle

- fb
wp - f b uy - f b
B*.ur-f-b

m\ lﬂﬁ wi-f

Ug - uy-uy - f-b

and use the first triangular identity on 7y, €; and on 7, €2, so that both
paths reduce to ag: uy - f-b=uy-g-g.

£ is locally essentially surjective: consider two objects a: X — A and
b:Y — B in C[X*] and a 1-cell

A<2c-L.pB
in C[X~!]. Using twice that X is X-projective, we get
X X
AN N
= Y=
B

C - A Y -

This gives a 1-cell in C[X*] and a 2-cell in C[X7]

X—tsy X
7
A B Ae U X W B
PN
w f
C

attesting that & is locally essentially surjective.
2. Obvious, just choose a Y-cover a: X — A for every object A of C. m

-235 -



ABBAD & VITALE - FAITHFUL CALCULUS OF FRACTIONS

Remark 4.5 Putting together Remark 4.2.2 and Proposition 4.4.1, we
get an equivalence of hom-categories

CIE (A, B) ~C[S*](a: X — A,b: Y — B) ~C(X, B),

as announced in the Introduction.

5. Extensions as fractions

In order to illustrate the difference between C[X '] and C[X*], we discuss
a special case of Example 3.5. We consider the bicategory Grpd(.4) and
we assume that A is semi-abelian, has split extension classifiers, and
satisfies the “Huq = Smith” condition as in [1]. The typical examples of
such an A are the category of groups (where the split extension classifier
of a group H is the group of automorphisms of H) and the category of
Lie algebras (where the split extension classifier of an algebra H is the
Lie algebra of derivations of H).

Fix two objects G and H in A. From [1, Section 7], we know that the
groupoid of extensions EXT(G, H) is isomorphic to the hom-groupoid
B(A)(D(G),[[H]]), where B(A) is the bicategory of internal butterflies
in A (since A is semi-abelian, we do not take care of the difference
between internal groupoids and internal crossed modules), D(G) is the
discrete internal groupoid on G, and [[H]] is the action groupoid, that is,
the internal groupoid having the split extension classifier [H] as object
of objects and the holomorph H x [H] as object of arrows. Since B(.A)
is biequivalent to the bicategory of fractions of Grpd(.A) with respect
to weak equivalences [1, Theorem 5.6], we have an equivalence

EXT(G, H) ~ Grpd(A)[X'[(D(G), [[H]])
and, by Remark 4.5, we also have an equivalence
EXT(G, H) ~ Grpd(A) (X, [[H]])
Accordingly, we can describe an extension

H— E—(
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as a span of internal functors (with the left leg being a weak equivalence)
or as a single internal functor. In the first case, we get the span

G <22 Rlo] —=- H x E—% H x [H]

[

G<——F

T

where 0y1,09: R[o] = E is the kernel relation of o, and Z: £ — [H]|
is the action induced by the fact that .: H — E is normal. This is a
“discrete fraction”, in the sense that the right leg is a discrete fibration.
To transform this span into a single internal functor, we fix a regular
projective cover s: Xo — G of G together with an extension o( of s
along o as in the following commutative diagram

Xo
E?G

Composing with the discrete fibration above, we get the internal functor

R[s| —Z> R|[o] H x [H]
Jof
Xo—5—F — [H]

where s1, s9: R[s] =% X is the kernel relation of s, and 7 is the canonical
factorization of R[s| through R[o].
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