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Abstract

Nous démontrons par contre-exemple que la catégorie des 3-
computads (ou “3-polygraphes”) n’est pas cartésienne fermée;
ce résultat était démontré premièrement par Makkai et Zawad-
owski. Nous donnons un 3-computad B et nous démontrons que
le foncteur ×B n’a pas d’adjoint à droit, de la façon suivante:
nous donnons un conoyau qui n’est pas respecté par ce foncteur.

We prove by counterexample that the category of 3-computads
is not cartesian closed, a result originally proved by Makkai and
Zawadowski. We give a 3-computad B and show that the functor
×B does not have a right adjoint, by giving a coequaliser that

is not preserved by it.

Keywords: computad, cartesian closed, presheaf.

MSC2000: 18D05

Introduction

Makkai and Zawadowski proved in [7] that the category of (strict) 3-
computads is not cartesian closed and hence is not a presheaf category.
The result can be considered surprising—for example, the opposite was
erroneously claimed in [3] (and corrected after Makkai and Zawadowski,
in [4]).

The reason is related to the Eckmann-Hilton argument, but the proof
given in [7], while having this reason at its heart, uses some sophisticated
technology to bring this “reason” to fruition—some technical results of
[3] for Artin glueing, which in turn rely on some technical results of Day
[6].
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In this paper we give a direct counterexample, that is, we give a
3-computad B and a coequaliser

E A C

that is not preserved by the functor × B, hence × B does not have
a right adjoint.

The idea behind this counterexample is the same as the idea behind
the proof in [7], and the result is, evidently, not new. However, we
believe it is of value to provide this direct argument.

The root of the problem is that 2-cells having 1-cell identities as
source and target do not behave “geometrically”—by an Eckmann-
Hilton argument, horizontal and vertical composition for such cells must
be the same and commutative. Intuitively, this means that cells do not
have well-defined “shape”; a little more precisely, this means for exam-
ple that if we have 2-cells a and b with identity source and target, then a
3-cell with source ab (= ba) cannot have well-defined faces, as we cannot
put the putative faces a and b in any order.

This argument obviously does not constitute a proof, but it is the
idea at the root of the argument in [7] and at the root of the argument
we give here. We begin in Section 1 by recalling the basic definitions;
in Section 2 we give the counterexample, and in Section 3 we give the
justification. Experts will only need to read Section 2.

Note that unless otherwise stated, all n-categories are strict.
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1 Basic definitions

We begin by recalling the definition of the category of 3-computads.
However, we will only need a small fragment of it for our counterexam-
ple, so we will focus on that part. 2-computads are defined by Street in
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[8]; the higher-dimensional generalisation is given by Burroni under the
name “polygraphs” in [2] (see also [1]).

The idea is that a 3-computad is a 3-category that is “level-wise
free”. From another point of view it is the underlying data for a 3-
category in which k-cells are allowed to have source and target that are
pasting diagrams of (k−1)-cells, rather than the single (k−1)-cells that
are the only allowed source and target for globular sets. Crucially for us,
this means in particular that the source and target can be degenerate,
that is, identities.

The definition proceeds inductively. At each dimension we must
specify the k-cells and then generate pasting diagrams freely in order
to specify the boundaries of cells at the next dimension. This is done
using a free 3-category functor and is the technically tricky part of the
definition. However, we will not actually need the full construction of
this functor.

Definition 1.1. A 3-computad A is given by, for each 0 ≤ k ≤ 3� a set Ak of k-cells, and� a boundary map Ak PAk−1.

Here PAk−1 denotes the set of parallel pairs of formal composites of
(k− 1)-cells of A. A morphism of 3-computads A B is given by,
for each 0 ≤ k ≤ 3 a morphism

fk : Ak Bk

making the obvious squares commute. We write 3Comp for the cate-
gory of 3-computads and their morphisms.

In general it is quite complicated to make P precise, but each of the
computads involved in our counterexample will have only one 0-cell and
no 1-cells. In this case, the free 2-category on the 2-dimensional data
is simply the free commutative monoid on A2 (regarded as a doubly
degenerate 2-category). We use the following terminology.

Definition 1.2. A 3-computad A is called 2-degenerate if A0 is termi-
nal and A1 is empty. Thus by the Eckmann-Hilton argument it consists
of
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� sets A2 and A3, equipped with� source and target maps
A3 A∗

2

s

t

where A∗

2 denotes the free commutative monoid on A2.

A morphism A B of such 3-computads is given by morphisms

A2
f2

B2

A3
f3

B3

such that the following diagram commutes serially.

A∗

2

B∗

2

f∗

2

B3

A3

f3

s

s

t

t

2 The counterexample

All the 3-computads involved here will be 2-degenerate. When we check
universal properties we will of course need to check them against all
computads a priori, but we quickly see that the diagrams will ensure
2-degeneracy of any 3-computads involved.

We will write 2-cells as a, b, . . . and the commutative composition as

a.b = b.a.

In all that follows, every 3-cell will have a single 2-cell as target, but
this is largely to ease the notation; a “smaller” counterexample would
be possible with empty targets, eliminating the need for the 2-cells a3
and y.

To show that 3Comp is not cartesian closed we need to show that
there exists B ∈ 3Comp such that ×B does not have a right adjoint,
so it suffices for × B not to preserve all colimits. So we exhibit a
coequaliser

E A C
α1

α2

β

and a computad B such that the functor ×B does not preserve it.
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Step 1: the coequaliser

1. Let A be the 2-degenerate 3-computad with 2-cells a1, a2, a3 and
a single 3-cell

a1.a2
f

a3.

2. Let E be the 2-degenerate 3-computad with 2-cells x, y and no
3-cells.

3. Define the morphism α1 by

x a1

y a3

and define α2 by

x a2

y a3

4. Thus the coequaliser C simply identifies a1 and a2; it has 2-cells
ā, a3 and a single 3-cell

ā.ā
f̄

a3.

Step 2: the functor × B

5. Let B be the 2-degenerate 3-computad (isomorphic to A) with
2-cells b1, b2, b3 and a single 3-cell

b1.b2
g

b3.

6. E×B has 2-cells (x, bj) and (y, bj) for j = 1, 2, 3. It has no 3-cells.

7. A × B is the key structure. It has 2-cells (ai, bj) for i, j = 1, 2, 3
and two 3-cells

(a1, b1).(a2, b2)
(f,g)1 (a3, b3)

(a2, b1).(a1, b2)
(f,g)2 (a3, b3)

This is probably the most interesting part of the argument; we
give the full proof later.
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8. C × B has 2-cells (ā, bj) and (a3, bj) for j = 1, 2, 3 and a single
3-cell

(ā, b1).(ā, b2)
(f̄ ,g)

(a3, b3).

Step 3: non-preservation

9. We now examine the coequaliser

E × B A× B P
α1 × 1

α2 × 1

and show that it is not isomorphic to C ×B.

Now the morphism α1 × 1 is given by

(x, bj) (a1, bj)

(y, bj) (a3, bj)

and α2 × 1 by

(x, bj) (a2, bj)

(y, bj) (a3, bj)

Thus the coequaliser P simply identifies (a1, bj) with (a2, bj) for
each j. So it has 2-cells which we may call (ā, bj) and (a3, bj)
(which is to be expected as the coequaliser is preserved up to 2
dimensions).

P has two distinct 3-cells

(ā, b1).(ā, b2)
(f,g)1 (a3, b3)

(ā, b1).(ā, b2)
(f,g)2 (a3, b3).

Since C × B has only one 3-cell it is clear that C × B is not
isomorphic to this coequaliser P , that is, ×B does not preserve
the original coequaliser.

Note that the canonical factorisation

P C ×B

identifies the 3-cells (f, g)1 and (f, g)2.
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3 Universal properties

In this section we check all the universal properties required for the
counterexample. In principle we only need to check the 3-cells, as
2-computads form a presheaf category so we know that the lower di-
mensions behave pointwise. However we include the full argument for
completeness, and because it is straightforward.

Lemma 3.1. The product A × B is as given in the previous section,

with the obvious projections.

Proof. We exhibit its universal property. Consider a 3-computad Y

and morphisms

A

A× B

Y

B

p q

u v

k

We seek to exhibit a unique factorisation k as shown. On 0-, 1- and
2-cells, A× B is just a product, so we define the factorisation at these
dimensions as for products ie

k(t) = (u(t), v(t)).

Note in particular that A and B have no 1-cells, so for the morphisms u
and/or v to exist, Y cannot have any 1-cells either. So this map respects
boundaries trivially.

We now discuss the factorisation on 3-cells. Let e be a 3-cell in Y .
Now A and B have only one 3-cell each, f and g respectively. So we
must have

u(e) = f

v(e) = g

thus e must have boundary as follows

y1.y2
e

y3
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for some 2-cells y1, y2, y3 ∈ Y . Then since the action of u and v respect
the boundary of e we know y3 must be sent to a3 and b3 respectively.
However considering the source there is some ambiguity as the product
is commutative, so for each of u and v there are two possibilities—
either the subscripts are left the same, or they are switched. That is,
on ordered pairs the action of u is

either (y1, y2) (a1, a2)

or (y1, y2) (a2, a1)

and similarly the action of v is

either (y1, y2) (b1, b2)

or (y1, y2) (b2, b1).

There are thus 4 cases, but in each case k(e) is uniquely determined to
be either (f, g)1 or (f, g)2 by the condition that k preserves boundary.
Explicitly, k(e) is specified by examining the action of u and v as shown
by the following table.

v

(y1, y2) (b1, b2) (y1, y2) (b2, b1)

(y1, y2) (a1, a2) (f, g)1 (f, g)2
u

(y1, y2) (a2, a1) (f, g)2 (f, g)1

2

The other products follow similarly, but more easily. It remains to
check the universal properties of the two coequalisers in question, which
is much more straightforward.

Consider a diagram
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E A C
α1

α2

q

Y

u k

with uα1 = uα2. We seek a unique factorisation k as shown.� On 0-cells: A and C only have one 0-cell each; writing each as ∗
we must have k(∗) = u(∗) ∈ Y .� On 1-cells: A and C have no 1-cells, so as before Y cannot have
any either.� On 2-cells: To make the triangle commute we must put

k(ā) = u(a1) [= u(a2)]

k(a3) = u(a3).

This respects boundaries as all 2-cells involved are degenerate.� On 3-cells: To make the triangle commute, we must have k(f̄) =
u(f). This respects boundaries, by our definition of k on 2-cells.

The other coequaliser proceeds in the same way, but with two 3-cells.

Remark 3.2. Note that this sort of counterexample cannot arise for
2-computads, as 2 is the lowest dimension of cell for which the Eckmann-
Hilton argument can be used. Note also that this problem does not arise
for weak 3-computads as weak identity 1-cells impede the Eckmann-
Hilton argument on degenerate 2-cells. This difference between the
commutativity of degenerate 3-cells in weak and strict structures also
arises in [5].
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Résumé. Dans cet article sont introduites les trijonctions, qui sont aux con-
nexions galoisiennes triadiques ce que les adjonctions sont aux connexions
galoisiennes. Nous décrivons le tripode trifibré associé à une trijonction, la
trijonction entre topos de préfaisceaux associée a une trifibration discrète, et
l’engendrement de toute trijonction par un bi-adjoint. À côté des exemples
associés aux connexions galoisiennes triadiques, aux relations ternaires,
d’autres le sont à des tenseurs symétriques, aux topos et univers algébriques.

Abstract. In this paper we introduce the notion of a trijunction, which is
related to a triadic Galois connection just as an adjunction is to a Galois con-
nection. We construct the trifibered tripod associated to a trijunction, the
trijunction between toposes of presheaves associated to a discrete trifibration,
and the generation of any trijunction by a bi-adjoint functor. While some ex-
amples are related to triadic Galois connections, to ternary relations, others
are associated to some symmetric tensors, to toposes and algebraic universes.
Keywords. Galois connection, adjunction, bi-adjunction, trijunction, trifi-
bration, topos, algebraic universes.
Mathematics Subject Classification (2010). 06A15, 18A40, 18B10,
18D30.

1. Introduction

A trijunction (definition 2.1) was introduced in [7] as a categorification of a
triadic Galois connection [1], just as an adjunction [9] could be understood
as a categorification of a Galois connection [13]: triadic Galois connections
and Galois connections are trijunctions and adjunctions reduced to the case
of posets (section 3). Any trijunction is generated by a bi-adjoint and deter-
mines a trifibration (section 2.1), and conversely a discrete trifibration de-
termines a trijunction between toposes of presheaves. We give examples of

               CAHIERS DE TOPOLOGIE ET                                                       Vol. LIV-1 (2013)

GEOMETRIE DIFFERENTIELLE CATEGORIQUES

TRIJUNCTIONS AND TRIADIC GALOIS CONNECTIONS

by René GUITART

- 13 -



trijunctions associated to adjunctions with parameters related to a symmetric
tensor, and the constitutive auto-trijunctions of toposes or algebraic universes
(section 4), which allow to reproduce internally triadic Galois connections.

2. Trijunctions, bi-adjunctions, discrete trifibrations

2.1 Trijunctions

Definition 2.1. A trijunction between 3 categories A, B, C, is the datum
(γ, β, α) of 3 contravariant functors between any product of two of these
categories and the third, i.e. 3 covariant functors as:

γ : A× B → Cop, β : C × A → Bop, α : B × C → Aop

and 3 natural equivalences with a circular condition

(−)α,γ(−)γ,β = (−)α,β :

(−)α,γ : HomC(C, γ(A,B)) ' HomA(A,α(B,C)) : (−)γ,α = ((−)α,γ)−1,
(−)γ,β : HomB(B, β(C,A)) ' HomC(C, γ(A,B)) : (−)β,γ = ((−)γ,α)−1,
(−)β,α : HomA(A,α(B,C)) ' HomB(B, β(C,A)) : (−)α,β = ((−)β,α)−1.

Proposition 2.2. Given a trijunction (γ, β, α) as in definition 2.1 and an
object (A,B,C) of A × B × C we get 12 functors of one variable, in the
bi-hexagon < A,B,C >, in which an exterior dotted line indicates a right
adjoint to the corresponding internal unbroken line:

A

Bop mm
β(C,−)

αop(−,C)

`
**

~
v

n g a \ V

γop(A,−) `

  

�
�

6

ZZ

β(−,A)

Cop11
γ(−,B)

αop(B,−)
a

tt

@
H

PW]bh

DD

γ(A,−) βop(−,A)a

~~

6
�

�
< A,B,C >

C B

Aop
##

α(B,−)

γop(−,B)

`

^^

hb]WP
H

@
{{

α(−,C)

βop(C,−)
a

@@

\ a g n
v

~

Proof. Using known facts on adjunctions (recalled in section 2.5) the equiv-
alences in definition 2.1 provide equivalences of adjunction when one argu-
ment is fixed, hence the adjunctions in the hexagon.

GUITART - TRIJUNCTIONS AND TRIADIC GALOIS CONNECTIONS

- 14 -



Proposition 2.3. Associated to adjunctions in the hexagon of proposition
2.2, there are 6 unit transformations which are natural in lower arguments
and dinatural in upper arguments:

1. β(C,−) a αop(−C) and γ(−, B) a αop(B,−) give on A:

αβCAC A
αC
Aoo

αB
A // αBγAB

2. (α(−, C) a βop(C,−) and γ(A,−) a βop(−, A) give on B:

βCαBC B
βC
Boo

βA
B // βγABA

3. β(−, A) a γop(A,−) and α(B,−) a γop(−, B) give on C:

γAβCA C
γACoo

γBC // γαBCB

We recover the equivalences (−)α,β etc., by:

a : A→ α(B,C) = bα,β = α(b, C)αCA = cα,γ = α(B, c)αBA ,

b : B → β(C,A) = cβ,γ = β(c, A)βAB = aβ,α = β(C, a)βCB ,

c : C → γ(A,B) = aγ,α = γ(a,B)γBC = bγ,β = γ(A, b)γAC .

Proof. For β(C,−) a αop(−C) the unit is

αCA = (1β(C,A))
α,β : A→ αβCAC := α(β(C,A), C)

This αCA is natural in A, i.e. such that, for any u : A→ A′,

αCA′u = α(β(C, u), C)αCA,

and is dinatural in C, i.e. such that, for any w : C → C ′, we have:

α(β(w,A), C)αCA = α(β(C ′, A), w)αC
′

A .

The situation here is an “adjunction with a parameter” (see [11, p. 100]) in
C between α and β, and the naturality and dinaturality are proved in [11,
p. 216]; in fact the converse holds: if αCA is natural in A and dinatural in
C, then (−)β,α (or its inverse (−)α,β) is natural in its three arguments. This
is indicated in [11] (exercise 2 p. 100 and exercise 1 p. 218): the unit
ηBA : A→ R(B,L(A,B)) of an adjunction with parameter is dinatural in B,
and this is equivalent to the naturality of the adjunction τ itself in B.

GUITART - TRIJUNCTIONS AND TRIADIC GALOIS CONNECTIONS
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Proposition 2.4. With the hypothesis and notations of propositions 2.2 and
2.3 we have 6 equations of adjunction:

α(B, γBC )α
B
α(B,C) = 1α(B,C) = α(βCB , C)α

C
α(B,C),

β(C, αCA)β
C
β(C,A) = 1β(C,A) = β(γAC , A)β

A
β(C,A),

γ(A, βAB)γ
A
γ(A,B) = 1γ(A,B) = γ(αBA , B)γBγ(A,B);

and we have the condition of circularity, expressible in 6 equivalent ways:

αBA = α(βAB , γ(A,B))α
γ(A,B)
A , αCA = α(β(C,A), γAC )α

β(C,A)
A ,

βCB = β(γBC , α(B,C))β
α(B,C)
B , βAB = β(γ(A,B), αBA)β

γ(A,B)
B ,

γAC = γ(αCA, β(C,A))γ
β(C,A)
C , γBC = γ(α(B,C), βCB )γ

α(B,C)
C .

Proof. For example, between the unit αCA and the corresponding co-unit βCB
we have the known equations of adjunctions recalled in proposition 2.11.
For example, as β(C,A) is a functor in each variable, and as βCB is dinatural
inC (proposition 2.3), the fourth circularity condition, expressing βAB , allows
to deduce for any c : C → γ(A,B) that

β(c, A)βAB = β(C, α(B, c)αBA)β
C
B ,

which (cf. proposition 2.3) is equivalent to (−)β,γ = (−)β,α(−)α,γ. This
implies conversely the fourth condition.
By the equations of adjunction, the six natural transformations (−)α,β etc.
are invertible (equivalence), and from the last equation we get the five analogs,
and then any equation of circularity.

2.2 Bi-adjunction

Definition 2.5. A bi-functor γ : A × B → Cop is a left bi-adjunction if for
every A in A the functor γ(A,−) : B → Cop is a left adjoint, and for every
B in B the functor γ(−, B) : A → Cop is a left adjoint.

Proposition 2.6. 1 — A bi-functor γ : A × B → Cop is a left bi-adjunction
if and only if there is a trijunction (γ, β, α), in the sense of definition 2.1. In
this case, β and γ are unique up to natural isomorphisms.
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2 — A trijunction is completely determined up to isomorphisms by a functor
γ : A×B → Cop with the datum for each object C of two objects αBC and
βCA, with two morphisms

γAβCA C
γACoo

γBC // γαBCB ,

such that for any c : C → γAB there are two unique maps a : A → αBC
and b : B → βCA such that

c = γ(a,B)γBC , c = γ(A, b)γAC .

Proof. 1 — The proposition is an application of known results (recalled in
proposition 2.13 later). So we introduce β and α by γ(A,−) a βop(−, A)
and γ(−, B) a αop(B,−). With the formula (?) in the proof of proposition
2.13 we get bi-functors β and γ, with natural equivalences (−)γ,β and (−)α,γ ,
and we define (−)α,β as the composition (−)α,γ(−)γ,β .
2 — This results from the determination of adjoints by free objects.
So, all the data and equations in a trijunction (cf. propositions 2.2, 2.3 and
2.4) are consequences of these two “free object” properties.

2.3 Discrete trifibration associated to a trijunction

A triadic Galois connection is known to be a generalization of a ternary
relation (recalled in proposition 3.5 later); a similar understanding for a tri-
junction is in terms of trifibrations.

Definition 2.7. Given a trijunction (γ, β, α) we construct its “trigraph”, the
category G = G(γ, β, α)with objects G = (a, b, c) as in

a : A→ α(B,C)XXXXXXXXXXXXXXXXXXX

fffffffffffffffffff

c : C → γ(A,B) b : B → β(C,A)

with
b = aβ,α, c = bγ,β, a = cα,γ,

as in proposition 2.3; a morphism from (a, b, c) to (a′, b′, c′) is a g = (u, v, w) :
(A,B,C)→ (A′, B′, C ′) with one of the equivalent conditions:

α(v, w)a′u = a, β(w, u)b′v = b, γ(u, v)c′w = c.
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Proposition 2.8. We have a discrete fibration given by:

π = πγ,β,α : G(γ, β, α)→ A×B × C : (a, b, c) 7→ (A,B,C)

G

π

��

A

G
πCzzuuuu πB

$$JJJJ

πA
OO

A× B × C C B
Proof. In fact G(γ, β, α) = G is isomorphic to the discrete fibration

∫
α

associated to HomA(IdAop ×αop) : (A×B×C)op → Ens, as well as the one∫
β associated to HomB(IdBop ×βop) : (B×C×A)op → Ens or the one

∫
γ

associated to HomC(IdCop ×γop) : (C ×A×B)op → Ens. So in the category
of fibrations over A× B × C we have three isomorphisms∫

α
'
��

πγ,β,α∫
γ

' 77ooo ∫
β'

ggOOO

In fact the isomorphisms between these fibrations exactly correspond to
equivalences in the definition (2.1) of the trijunction.

2.4 From discrete trifibrations to trijunctions between presheaves

Proposition 2.9. Given a functorR : (A×B×C)op → Ens withA, B, C any
small categories, or the associated discrete fibration πR : G → A × B × C
(called a discrete trifibration), there is an associated trijunction (γR, βR, αR)
between toposes of presheaves Â := EnsA

op

, B̂ := EnsB
op

, and Ĉ := EnsC
op

.
Especially any bi-functor A× B → Cop determines such a trijunction.

Proof. WithRC(C)(A,B) = RB(B)(C,A) = RA(A)(B,C) = R(A,B,C),
RC : Cop → Ens(A×B)

op

, RB : Bop → Ens(C×A)
op

, RA : Aop → Ens(B×C)
op

.
For F , G and H in Â, B̂, and Ĉ we define F � G(A,B) = F (A) × G(B),
H � F (C,A) = H(C)× F (A) and G�H(B,C) = G(B)×H(C). Then

γR(F,G)(C) = HomEnsA
op×Bop (F �G,RC(C)),

βR(H,F )(B) = HomEnsC
op×Aop (H � F,RB(B)),

αR(G,H)(A) = HomEnsB
op×Cop (G�H,RA(A)).

Then for example we associate to θ : F �G�H → R a ν : H → γ(F,G)
by (νC(z))(A,B)(x, y) = θ(A,B,C)(x, y, z).
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2.5 Annex 1: Classical facts on adjunctions

In 1958, Daniel Kan [9] introduced the notion of adjoint functors; then Pe-
ter Freyd (Princeton thesis, 1960) and William Lawvere (Columbia thesis,
1963) “emphasized the dominant position of adjunctions” [11, p. 103]:

Definition 2.10. Let A and C be categories. Then a covariant functor L :
A → C is called left adjoint to a covariant functor R : C → A (notation
τ : L a R) if there exists a natural equivalence

τ : HomC(L(A), C) ' HomA(A,R(C)).

Proposition 2.11. τ : L a R is equivalent to L a R(ε, η), with 2 natural
transformations ε := τ−1(1R) : LR → IdC and η := τ(1L) : IdA → RL
with the equations:

(εL)(Lη) = IdL, (Rε)(ηR) = IdR . Furthermore we get τ
and τ−1 by:

τ(c : LA→ C) = R(c)ηA, τ−1(a : A→ RC) = εCL(a).

Proof. This is coming from lemmas 6.2 p.306 and 6.2∗ p.307 in [9]. See
also [11, chap. IV, p. 80-81].

Definition 2.12. Let A, B and C be categories. Then a covariant functor
L : A×B → C is called left adjoint — with a parameter in B— to a functor
R : Bop × C → A contravariant in B and covariant in C if there exists a
natural equivalence

τ : HomC(L(A,B), C) ' HomA(A,R(B,C)).

Proposition 2.13. Given L : A × B → C and for each object B in B a
right adjoint RB to L(−, B), with τB : L(−, B) a RB, then these functors
determine a unique functor R : Bop × C → A with an equivalence τ as
in definition 2.12, with for every c : C → C ′, R(B, c) = RB(c), and with
τ(A,B,C) = τB(A,C).

Proof. This is proved as theorem 4.1 p. 300 in [9]. See also [11, p. 100].
With εB = τ−1B (1RB

) and ηB′ = τB′(1L(−,B′)), an explicit formula forR(b, c)
with b : B′ → B and c : C → C ′ is

R(b, c) = RB′(c)RB′(εB(C))RB′(L(RB(C), b))ηB′(RB(C)) (?)
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Kan was especially motivated by the case of ⊗:

Proposition 2.14. The functor ⊗ : Ab×Ab → Ab is left adjoint to Hom :
Abop×Ab→ Ab, in the sense of definition 2.12.

3. Triadic Galois Connections and ternary relations

3.1 Triadic Galois connections and residuations

In relation with the calculus of ternary relations between sets and the “triadic
concept analysis” as introduced in [10] and [14], and the notion of “trilat-
tice”, the notion of a triadic Galois connection has been introduced in 1997
by Klaus Biedermann [1], [2], [3]. We adapt his definition, without refer-
ences to trilattices, and with a slightly different system of notations, in order
to show that this notion is a particular case of a trijunction.
NB: In this section 3.1 we use and extend the classical properties of Galois
connections (see 3.3) to triadic Galois connections. So we get a mini-model
of the theory of trijunctions, namely its reduction to the case of posets.

Definition 3.1. A triadic Galois connection between 3 posets A = (A,≤),
B = (B,≤) and C = (C,≤) is the datum (γ, β, α) of 3 decreasing functions
γ : A×B → C, β : C×A→ B, α : B×C → A, such that for all a ∈ A,
b ∈ B, c ∈ C:

c ≤ γ(α(b, c), b), c ≤ γ(a, β(c, a)),

b ≤ β(γ(a, b), a), b ≤ β(c, α(b, c)),

a ≤ α(β(c, a), c), a ≤ α(b, γ(a, b)).

Proposition 3.2. A triadic Galois connection is equivalent to the datum
(γ, β, α) of 3 decreasing functions γ : A × B → C, β : C × A → B,
α : B × C → A, such that

∀a ∈ A ∀b ∈ B ∀c ∈ C
[
c ≤ γ(a, b)⇔ b ≤ β(c, a)⇔ a ≤ α(b, c)

]
.

Proposition 3.3. A triadic Galois connection is exactly the special case of a
trijunction according to definition 2.1 in which A, B and C are posets.
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Proposition 3.4. 1 — Let (M,≤) be a sup-lattice and let⊗ :M ×M →M
a binary law compatible with sup. Then with A = (M,≤), B = (M,≤),
C = (M,≥), and with γ(a, b) = a ⊗ b, we get a triadic Galois connection
(γ, β, α) in the sense of (def. 3.1).
2 — Let (M,≤) a sup-lattice and a triadic Galois connection (γ, β, α) be-
tween A = (M,≤), B = (M,≤), C = (M,≥). Then γ is a binary law
compatible with sup.

Proof. 1 — We take β(c, a) = ac := supa⊗b≤c b, α(b, c) = cb := supa⊗b≤c a,
i.e. (see [4, p. 325]) the right and left residuals c/a of c by a, c\b of c by b.
2 — γ(a,−) is a left adjoint, and γ(−, b) is a left adjoint too.

3.2 Functional counterpart of a ternary relation

Proposition 3.5. A triadic Galois connection (γ, β, α) between the posets
(P(A),⊆), (P(B),⊆) and (P(C),⊆) is equivalent to the datum of a ternary
relation R ⊂ A×B × C, according to the association:

R = Rγ := {(a, b, c); c ∈ γ({a}, {b})},

R = Rβ := {(a, b, c); b ∈ β({c}, {a})},

R = Rα := {(a, b, c); a ∈ α({b}, {c})},

γ(A′, B′) = γR(A
′, B′) := {c; ∀a′ ∈ A′ ∀b′ ∈ B′ (a′, b′, c) ∈ R},

β(C ′, A′) = βR(C
′, A′) := {b;∀c′ ∈ C ′ ∀a′ ∈ A′ (a′, b, c′) ∈ R},

α(B′, C ′) = αR(B
′, C ′) := {a;∀b′ ∈ B′ ∀c′ ∈ C ′ (a, b′, c′) ∈ R}.

Furthermore

C ′ ≤ γ(A′, B′)⇔ B′ ≤ β(C ′, A′)⇔ A′ ≤ α(B′, C ′)⇔ A′×B′×C ′ ⊆ R.

Proof. It is an immediate reformulation of Biedermann [1], [2], [3].

Proposition 3.6. Given a ternary relation R ⊆ A × B × C , and subsets
A′ ⊆ A, B′ ⊆ B, C ′ ⊆ C, we get, with the notations of 3.1 and with

R∗C(C
′) = {(a, b);∀c′ ∈ C ′ (a, b, c′) ∈ R},

R∗B(B
′) = {(c, a);∀b′ ∈ B′ (a, b′, c) ∈ R},
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R∗A(A
′) = {(b, c);∀a′ ∈ A′ (a′, b, c) ∈ R},

an hexagonal picture of seven equivalent conditions:

A′ ⊆ αR(B
′, C ′)

C ′ × A′ ⊆ R∗B(B
′)

22eee

��

A′ ×B′ ⊆ R∗C(C
′)

llYYY

��
A′ ×B′ × C ′ ⊆ R

C ′ ⊆ γR(A
′, B′) B′ ⊆ βR(C

′, A′)

B′ × C ′ ⊆ R∗A(A
′)

llYYYY 22eeee

Furthermore each of the six operators αR, R∗A, βR, R∗B, γR, R∗C , determines
the five others, and the relation R itself.

Proof. It is a direct complement to proposition 3.5, in the style of [8]. For
the last point starting for example from the datum of αR, we get R∗A by
R∗A(A

′) = ∪A′⊆αR(B′,C′)B
′ × C ′, etc.

Proposition 3.7. A triadic Galois connection betweenA = (P(E),⊆), B =
(P(E),⊆), C = (P(E),⊇) is equivalent to the datum of a ternary relation
R ⊂ E3.

Proof. A sup-compatible binary law γ : P(E)2 → P(E) is equivalent to a
map r : E2 → P(E), i.e. a ternary relation R ⊂ E3.

3.3 Annex 2: Classical facts on Galois connections

Clearly a posteriori an adjunction could be understood as a categorification
of a Galois connection in the following sense of definition 3.8.

In his talk at the Summer Meeting of AMS at Chicago in 1941, Oystein
Ore introduced — as a tool for the calculus of binary relations — the no-
tion of a Galois connexion [13] (see also Garrett Birkhoff [4, p.124]) — or
equivalently Galois connection (also named Galois correspondence) —, as
follows.

Definition 3.8. A [dyadic] Galois connection between 2 posets A = (A,≤)
and B = (B,≤) is the datum (β, α) of two decreasing functions β : A→ B
and α : B → A such that

∀a ∈ A
[
a ≤ α(β(a))

]
, ∀b ∈ B

[
b ≤ β(α(b))

]
.
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Proposition 3.9. It is equivalent for a Galois connection to assume that α
and β are ordinary functions such that

∀a ∈ A ∀b ∈ B
[
b ≤ β(a)⇔ a ≤ α(b)

]
.

Proposition 3.10. A decreasing function β : A → B between two posets A
andB determines two increasing functions βl : A → Bop and βr : Aop → B,
with βl = βrop and βr = βl

op; a Galois connection as (β, α) in 3.8 is exactly
an adjunction in the sense of 2.10, namely αl a βr, or, equivalently, βl a αr.

Proposition 3.11. A Galois connection (β, α) between the posets (P(A),⊆)
and (P(B),⊆) is equivalent to the datum of a binary relation R ⊂ A × B,
according to the association:

R = {(a, b); b ∈ β({a})} = {(a, b); a ∈ α({b}),

β(A′) = {b;∀a′ ∈ A′ (a′, b) ∈ R}, α(B′) = {a; ∀b′ ∈ B′ (a, b′) ∈ R}.

Furthermore

A′ ⊆ α(B′)⇔ B′ ⊆ β(A′)⇔ A′ ×B′ ⊆ R.

Proof. See Ore [13, thm.10, p.503].

4. The auto-trijunction on a topos or an algebraic universe

4.1 Algebraic universe

We recall the definition of an algebraic universe, a notion we have developed
in the 70’s (see [5], [6]).
An algebraic universe is a categoryX with finite limits and colimits equipped
with a contravariant functor P : X → X op such that P a P op, this ad-
junction being monadic (analogous to Stone duality); we assume also that
for any X in X , the map ηX : X → PPX is factorized as ψXaX with
ψX : PX → PPX (meeting map) and aX : X → PX (atom map), and
there are also πX : PX → PPX (inclusion map), νX : PX → PX (nega-
tion map) and cX : X2 → PX (pairing map); among these data a precise
system of equations is assumed.
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In any algebraic universe the construction P on objects is extended in two
ways in a covariant functor: for f : X → Y we take:

∃f = P (Pf.aY )ψX , ∀f = P (Pf.aY )πX ,⋃
X

= PηXψPX ,
⋂
X

= PηXPπPXψPX .

Given a relation ρ = (p, e) : R → A × B we introduce its “characteristic
map”:

r = p ? e = (∃e)(Pp)aA : A→ PB.

Proposition 4.1. (See [5]) Given a complete lattice equipped with a sup-
compatible abelian monoid law L = (L ≤,⊗) there is a structure of alge-
braic universe on Ens in which PX = LX , and this generates the calculus
of L-fuzzy relations.

4.2 Topos as an algebraic universe

An elementary topos (in the sense of Lawvere-Tierney, see [12]) is a category
E with finite limits and colimits, with exponentials and subobject classifier.
This is reducible to the conditions that E is with finite limits and colimits,
and is such that for all object Y in E there is (PY

pY←− AY
eY−→ Y ) such that

for every (X
p←− R

e−→ Y ) there is a unique r = p ? e : X −→ PY and a
unique r′ : R −→ AY with a pullback (p, r′; r, pY ) with e = eY .r

′ :

R

p

||xxxxxxxxxxxxxxxxx

e

��
>>>>>>>>>>>>>>

r′

��

AY
pY
{{vvvvv eY

((QQQQQQQQQQ

X r=p?e
// PY Y

Proposition 4.2. In a topos E the construction P is a contravariant functor
which is its own adjoint:

(P : E → Eop) a (P op : Eop → E),

and in fact with this P we get a structure of an algebraic universe.
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Proof. It is well known. Given a morphism f : Y → X , we get P (f) :
PX → PY by aX := 1X ? 1X and Pf = ((aXf) ? 1Y . Starting with
r : X → PY , r = p?e, we get its “converse” s : Y → PX with p = r∗(pY ),
r′ = p∗(r), e = eY r

′, and s = e?p. Then a structure of an algebraic universe
is given by this P , with ψ and π in the internal language:

ψX(A) = {B;∃x(x ∈ A&x ∈ B)}, πX(A) = {B;∀x(x ∈ B ⇒ x ∈ A)}.

4.3 Symmetric tensors with right adjoints

Proposition 4.3. With A = Ab, B = Ab, C = Abop, we get a trijunc-
tion (def. 2.1) with γ(A,B) = A ⊗ B, β(C,A) = Hom(A,C), and with
α(B,C) = Hom(B,C).

Proof. This proposition results of proposition 2.14 , by imitation of propo-
sition 3.4. Details of the proof arise also from proposition 2.6.

Proposition 4.4. In a symmetric monoidal closed category E , there is a tri-
junction between E , E and Eop with

γ(A,B) = A⊗B, β(C,A) = CA, α(B,C) = CB.

Proof. Analogous to the case in proposition 4.3. In a monoidal closed cat-
egory, for any object B the functor (−) ⊗ B has a right adjoint (−)B, and
for any A the functor A ⊗ (−) has a right adjoint (−)A. We conclude by
proposition 2.6.

Proposition 4.5. In a symmetric monoidal closed category E , with any ob-
ject L, there is an associated (auto-)trijunction between E , E and E with

γ(A,B) = LA⊗B, β(C,A) = LC⊗A, α(B,C) = LB⊗C .

Proof. HomE(X,L
Y ) ' homE(X ⊗ Y, L) ' HomE(Y, L

X), so the functor
L(−) : E → Eop is left adjoint to Lop. One of the equivalences in a trijunction
(definition 2.1) is given by: HomE(A,LB⊗C) ' HomE(A⊗ (B ⊗ C), L) '
HomE(B ⊗ (A⊗ C), L) ' HomE(B,L

A⊗C).
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4.4 Canonical auto-trijunction on an algebraic universe

Proposition 4.6. Given an algebraic universe X — for example a topos or
a category of fuzzy sets (cf. propositions 4.1 and 4.2) — we get an auto-
trijunction (γ, β, α) between A = X , B = X ,C = X , with

γ(A,B) = P (A×B), β(C,A) = P (C × A), α(B,C) = P (B × C).

Proof. An algebraic universe is a cartesian closed category, and we have
PX = P (1)X . So we have just to apply proposition 4.5.

4.5 Toward a calculus of triadic Galois connections in a topos

In fact the auto-trijunction in proposition 4.6 does not depend on ψ, π, etc.,
but only on the composition ψ.a = η, the cartesian closed structure on the
topos or the algebraic universe, and the object P (1). Nevertheless:

Proposition 4.7. In a topos E , using the canonical auto-trijunction (proposi-
tion 4.6) and the data ψ, π, etc., we can internally recover a theory of Galois
connections and triadic Galois connections.

Proof. We indicate only the starting point. From a ternary relation (p, q, r) :
R→ A×B×C, we can construct the different terms in the hexagon pictured
in proposition 3.6 in the case of the category Ens.
We consider c = r ? (p, q) : C → P (A × B), we know how to construct
∃c : PC → PP (A × B),

⋂
A×B : PP (A × B) → P (A × B), and the

composition R∗C =
⋂
A×B ∃c : PC → P (A×B).

We consider also a′ = (r, q) ? p : C ×B → PA, αR =
⋂
A ∃(a′).

A calculus of ternary relations in terms of internal triadic Galois connections
is available in any topos; this works also in any category of fuzzy sets.
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Résumé. Dans cet article, nous étendons la construction de l’algèbre de Hall
dérivée de Toen, dans laquelle il obtient des algèbres associatives avec unité
à partir de certaines categories de modèles stables, au cas où ces algèbres
sont obtenues à partir de théories homotopique stables plus génèrales, en
particulier espaces de Segal complets stables satisfaisant des hypothèses de
finitude appropriées.

Abstract. In this paper we extend Toën’s derived Hall algebra construction,
in which he obtains unital associative algebras from certain stable model
categories, to one in which such algebras are obtained from more general
stable homotopy theories, in particular stable complete Segal spaces satisfy-
ing appropriate finiteness assumptions.

Keywords. derived Hall algebras, homotopy theories, complete Segal spaces,
(∞, 1)-categories
Mathematics Subject Classification (2010). 55U35, 55U40, 18G55, 18E30,
16S99

1 Introduction
Hall algebras associated to abelian categories play an important role in rep-
resentation theory. In particular, when the abelian category in question is
the category of Fq-representations of a quiver associated to a simply-laced
Dynkin diagram, there is a close relationship between the Hall algebra and
the quantum enveloping algebra of the Lie algebra associated to the same
Dynkin diagram. Recent attempts to strengthen this relationship have led to
the problem of associating some kind of Hall algebra to categories which are
triangulated rather than abelian. In particular, it is conjectured that one could
recover the quantum enveloping algebra from an appropriate Hall-type alge-
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bra associated to Peng and Xiao’s root category, which is, roughly speaking,
the derived category of the category of this abelian category of representa-
tions, modulo a double shift relation [15].

In [22], Toën constructs “derived Hall algebras” associated to triangu-
lated categories arising as homotopy categories of model categories whose
objects are modules over a sufficiently finitary differential graded category
over Fq. In doing so, he develops a formula for the multiplication in this al-
gebra in such a way that it can be regarded as a generalization of the formula
for the multiplication in an ordinary Hall algebra. This formula was verified
for more general triangulated categories, still satisfying certain finiteness
conditions, by Xiao and Xu [24]. However, none of these methods can yet
be applied to the root category, as it does not satisfy these finiteness assump-
tions.

In this paper, we seek to generalize Toën’s development of derived Hall
algebras. Specifically, we modify his proof to establish derived Hall algebras
corresponding to triangulated categories arising as homotopy categories for
more general stable homotopy theories. Most triangulated categories can be
realized as homotopy categories of such stable homotopy theories. Although
such triangulated categories are covered by Xiao and Xu’s work, our objec-
tive is rather to broaden the context in which we can make use of homotopy-
theoretic methods. We expect that these ideas will shed light on the question
of how to find a similar algebra arising from a triangulated category which
is not finitary. Also, it seems that this more flexible setting should be more
amenable than the model category world for finding a coalgebra or even a
Hopf algebra structure on derived Hall algebras, extending these structures
which are significant in the study of ordinary Hall algebras. This idea will
be the subject of future work in collaboration with Robertson.

We expect that the methods of this paper will be applicable to other set-
tings, enabling one to use more general stable homotopy theories in settings
in which the additional structure of stable model categories is too restrictive.
For example, not all derived categories arise from actual model categories,
but they do always come from a stable homotopy theory. It is expected that
the ability to work with such homotopy theories, which contain more infor-
mation than their associated derived categories, will facilitate progress in the
many areas in which derived categories appear.

In this paper, we use the complete Segal space model for homotopy the-
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ories. If we regard a homotopy theory as a category with weak equivalences,
then there are several equivalent models for homotopy theories as mathe-
matical objects, in particular objects of model categories with appropriate
weak equivalences. Complete Segal spaces were developed by Rezk [17];
they are simplicial spaces satisfying conditions enabling one to regard them
as something like a simplicial category up to homotopy. Their associated
model category is in fact equivalent to the model structure on the category
of simplicial categories [3], as well as to the model structures for Segal cat-
egories [3] and quasi-categories [10]. While any one of these models could
be used, we prefer the complete Segal space model here because it is partic-
ularly well-suited for understanding fiber products of model categories [2],
one of the key tools used by Toën in his proof of the associativity of de-
rived Hall algebras. Specifically, we are able to use homotopy pullbacks of
complete Segal spaces where he used the homotopy fiber product of model
categories.

There is, in fact, another perspective on complete Segal spaces (and
equivalent objects); they are also models for (∞, 1)-categories, or∞-categories
with n-morphisms invertible for n > 1. While the motivation for using com-
plete Segal spaces in this paper arises from the viewpoint that they are gen-
eralizations of model categories, it is also useful, in particular when we need
to define categorical notions such as colimits within them, to remember that
they can be thought of as generalizations of ordinary categories in this way.

In Section 2, we give a review of stable model categories. These ideas
are generalized in Section 3, where we explain how Lurie’s methods for sta-
ble quasi-categories can be translated to stable complete Segal spaces. We
review our main tool of interest, homotopy fiber products of model cate-
gories and homotopy pullbacks of complete Segal spaces, in Section 4, then
introduce Toën’s derived Hall algebras in Section 5. The main results of the
paper can be found in Section 6, where we establish derived Hall algebras
for stable complete Segal spaces.

Acknowledgments. The ideas in this paper have benefitted enormously from
conversations with many people over the last few years. These people in-
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2 Stable model categories
Recall that a model categoryM is a category with three distinguished classes
of morphisms: weak equivalences, fibrations, and cofibrations, satisfying
five axioms [5, 3.3]. Given a model category structure, one can pass to the
homotopy category Ho(M), which is a localization ofM with respect to the
class of weak equivalences [8, 1.2.1]. In particular, the weak equivalences,
as the morphisms that we wish to invert, make up the most important part of
a model category. An object x in a model categoryM is fibrant if the unique
map x → ∗ to the terminal object is a fibration. Dually, an object x in M is
cofibrant if the unique map φ → x from the initial object is a cofibration.

The standard notion of equivalence of model categories is given by the
following definitions. First, recall that an adjoint pair of functors F : C ¿
D : G satisfies the property that, for any objects X of C and Y of D, there is
a natural isomorphism

ϕ : HomD(FX, Y ) → HomC(X,GY ).

The functor F is called the left adjoint and G the right adjoint [14, IV.1].

Definition 2.1. [8, 1.3.1] An adjoint pair of functors F : M ¿ N : G be-
tween model categories is a Quillen pair if F preserves cofibrations and G
preserves fibrations. The left adjoint F is called a left Quillen functor, and
the right adjoint G is called the right Quillen functor.

Definition 2.2. [8, 1.3.12] A Quillen pair of model categories is a Quillen
equivalence if for all cofibrant X inM and fibrant Y inN , a map f : FX →
Y is a weak equivalence inD if and only if the map ϕf : X → GY is a weak
equivalence in M.

We also consider model categories with the additional data that their ho-
motopy categories are triangulated. Recall that a triangulated category T is
an additive category, together with an equivalence Σ: T → T called a shift
functor, and a collection of distinguished triangles

x α // z
γ //y β // Σx
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satisfying four axioms [11, §2.1].
For a model category to have a triangulated homotopy category, it must

first be pointed, in that its initial and terminal objects coincide. Such an
object is called a zero object.

Definition 2.3. [8, 7.1.1] A pointed model categoryM is stable if its homo-
topy category Ho(M) is triangulated.

Example 2.4. Let R be a ring and Ch(R) the category of chain complexes
of R-modules. Then the model category structure on Ch(R) is triangulated.
In fact, its homotopy category is equivalent to the derived category D(R),
formed by taking Ch(R) modulo the equivalence relation given by chain
homotopies of maps, and formally inverting the quasi-isomorphisms [11,
§1.2].

3 Stable complete Segal spaces

3.1 Simplicial spaces and complete Segal spaces
Recall that the simplicial indexing category ∆op is defined to be the category
with objects finite ordered sets [n] = {0 → 1 → · · · → n} and morphisms
the opposites of the order-preserving maps between them. A simplicial set
is then a functor

K : ∆op → Sets.

We denote by SSets the category of simplicial sets, and this category has a
natural model category structure equivalent to the standard model structure
on topological spaces [6, I.10].

One can consider more general simplicial objects; in this paper we work
with simplicial spaces (also called bisimplicial sets), or functors

X : ∆op → SSets.

Given a simplicial set K, we also denote by K the simplicial space which
has the simplicial set K at every level. We denote by Kt, or “K-transposed”,
the constant simplicial space in the other direction, where (Kt)n = Kn,
where on the right-hand side Kn is regarded as a discrete simplicial set. The
category of simplicial spaces has a model category structure called the Reedy
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structure in which weak equivalences are given levelwise and all objects are
cofibrant [16].

Specifically, we consider simplicial spaces satisfying additional condi-
tions, namely, those inducing a notion of composition up to homotopy. These
Segal spaces and complete Segal spaces were first introduced by Rezk [17],
and the name is meant to be suggestive of similar ideas first presented by
Segal [21].

Definition 3.1. [17, 4.1] A Segal space is a Reedy fibrant simplicial space
W such that the Segal maps

ϕn : Wn → W1 ×W0 · · · ×W0 W1︸ ︷︷ ︸
n

are weak equivalences of simplicial sets for all n ≥ 2.

Given a Segal space W , we can consider its objects ob(W ) = W0,0, and,
between any two objects x and y, the mapping space mapW (x, y), given by
the homotopy fiber of the map W1 → W0 ×W0 given by the two face maps
W1 → W0. The Segal condition stated above guarantees that a Segal space
has a notion of n-fold composition of mapping spaces, up to homotopy.

The homotopy category of W , denoted Ho(W ), has as objects the ele-
ments of the set W0,0, and

HomHo(W )(x, y) = π0mapW (x, y).

A homotopy equivalence in W is a 0-simplex of W1 whose image in Ho(W )
is an isomorphism. We consider the subspace of W1 whose components
contain homotopy equivalences, denoted Whoequiv. Notice that the degener-
acy map s0 : W0 → W1 factors through Whoequiv; hence we may make the
following definition.

Definition 3.2. [17, §6] A complete Segal space is a Segal space W such
that the map W0 → Whoequiv is a weak equivalence of simplicial sets.

Given this definition, we can describe the complete Segal space model
structure on the category of simplicial spaces.
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Theorem 3.3. [17, 7.2] There is a model structure CSS on the category of
simplicial spaces such that the fibrant and cofibrant objects are precisely the
complete Segal spaces. Furthermore, CSS has the additional structure of a
cartesian closed model category.

The fact that CSS is cartesian closed allows us to consider, for any com-
plete Segal space W and simplicial space X , the complete Segal space WX .
In particular, using the simplicial structure, the simplicial set at level n is
given by

(WX)n = Map(X ×∆[n]t,W ).

3.2 Stable quasi-categories and stable complete Segal spaces
As with model categories, we need to consider complete Segal spaces which
are stable, in the sense that their homotopy categories are triangulated. It
should be noted that, although we have given this simple definition of a
stable complete Segal space, one could define it in a more technical way
which permits a better understanding of the structure of a stable complete
Segal space; Lurie has explained these ideas extensively for stable quasi-
categories in [12], and they can fairly easily be translated into the equivalent
setting of complete Segal spaces.

Although we do not go into this level of detail on this point in this paper,
there are other notions that have been developed for quasi-categories which
are useful here for complete Segal spaces. Thus, we give a very brief sum-
mary of quasi-categories and their relationship with complete Segal spaces.

Recall that a quasi-category X is a simplicial set satisfying the inner Kan
condition, so that for any n ≥ 1 and 0 < k < n, a dotted arrow lift exists in
any diagram of the form

V [n, k] //

² ²

X

∆[n].

<<y
y

y
y

y

The notion of quasi-category goes back to Boardman and Vogt [4], but is has
received extensive attention more recently, especially by Joyal [9] and Lurie
[13]. In particular, Joyal proves that there is a model structure on the cate-
gory of simplicial sets such that the fibrant and cofibrant objects are precisely
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the quasi-categories. We denote this model category QCat. Furthermore,
Joyal and Tierney have proved that the model category QCat is Quillen
equivalent to Rezk’s model category CSS [10]. Remarkably, they prove
that there are actually two different Quillen equivalences between these two
model categories. Here, we make use of the one that is particularly easy to
describe, the right adjoint CSS → QCat given by W 7→ W∗,0.

Using this relationship we return to the matter of explaining some neces-
sary structures on complete Segal spaces. For a complete Segal space to be
stable, we need it to be pointed, or to have a zero object, denoted 0. As we
have seen, in an ordinary category, a zero object is one which is both initial
and terminal, so for any object x, there are unique morphisms x → 0 and
0 → x. As a complete Segal space is a homotopical generalization of a cat-
egory, we require a homotopical notion of initial and terminal objects. The
following definitions, given by Joyal [9] and Lurie [13, 1.2.12.1, 1.2.12.6]
for quasi-categories, are easy to reformulate for complete Segal spaces.

Definition 3.4. An object x ∈ W0,0 of a complete Segal space is initial if it is
initial as an object of Ho(W ), i.e., if mapW (x, y) is weakly contractible for
any y ∈ W0,0. Dually, x is terminal if it is terminal as an object of Ho(W ),
i.e., if mapW (y, x) is weakly contractible for any y. An object is a zero object
of W if it is both initial and terminal.

In addition to having a zero object, we need to have a notion of “pushout”
within a complete Segal space, another analogue of a standard categorical
idea within this generalized setting. Fortunately, formal definitions of lim-
its and colimits within quasi-categories have been established by Lurie [13,
1.2.13.4]. We give a brief exposition here, enough to translate his definition
into the world of complete Segal spaces; see [13, 1.2.8, 1.2.13] for a detailed
treatment.

Let X and Y be simplicial sets. We can define their join X ? Y by

(X ? Y )n = Xn q Yn q
∐

i+j=n−1

Xi × Yj.

Note that the operation defines a monoidal product on SSets with unit the
empty simplicial set φ. Then, for a fixed simplicial set X , we can define a
functor

X ? (−) : SSets → SSets
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by
Y 7→ X ? Y

and notice that the map φ → Y is sent to the map X?φ = X → X?Y . Thus,
the simplicial set X ? Y comes equipped with a canonical map X → X ? Y ,
and so we can regard X ? Y as an object of the undercategory or category of
simplicial sets under X [14, II.6], denoted X ↓ SSets. In doing so, we can
think of our functor as

X ? (−) : SSets → X ↓ SSets.

This functor has a right adjoint given by

(p : X → Y ) 7→ Y.

To remember that Y has come from some map p : X → Y , Lurie denotes
the image of this functor Yp/. We can think of Yp/ as the simplicial set Y
with a specified X-shaped diagram inside it.

Such an object can be used to define colimits in a quasi-category. If Y is
a quasi-category and p : X → Y is a map of simplicial sets, then a colimit
for p is an initial object of Yp/. Dually, one could use the functor (−)?X , its
right adjoint, and the resulting definition of Y/p to define a limit in a quasi-
category Y .

Now, we translate this definition into CSS.

Definition 3.5. Let W be a complete Segal space and X a simplicial set,
together with a map p : X t → W . A colimit for p in W is an initial object of
(W∗,0)p/, regarded as an object of W .

In this paper, we consider the case where the simplicial set X is ∆[1]q∆[0]

∆[1], forming the diagram ·←·→·, so that the colimit is a “pushout” in
the complete Segal space W . One can show that if W is stable, the fact
that Ho(W ) is triangulated guarantees that colimits must always exist in W .
Again, we refer the reader to Lurie’s manuscript on stable quasi-categories
[12] for greater depth on this point.

3.3 Model categories and complete Segal spaces
We conclude this section with a brief exposition on the relationship between
model categories and complete Segal spaces. Since we are translating a
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construction on model categories to one on complete Segal spaces, we need
to understand how to regard a model category as a specific kind of complete
Segal space.

As described by Rezk [17], any category with weak equivalences gives
rise to a complete Segal space via the functor we denote LC ; given such a
category C, LCC is given by

(LCC)n = nerve(we(C [n]))

where we(C[n]) denotes the category of weak equivalences of chains of n
composable morphisms in C.

If M is a model category, then we can apply this construction, but, as
explained in [2], it is only a functor when the morphisms between model
categories preserve weak equivalences. Since we want a construction which
is functorial on the category of model categories with left Quillen functors
between them, we can modify the construction by restricting to the full sub-
category of M whose objects are cofibrant.

The main result of [1] is that this construction is well-behaved with re-
spect to other natural ways of getting a complete Segal space from a model
category; in particular, the resulting complete Segal space is weakly equiv-
alent to the one obtained from taking the simplicial localization and then
applying any one of several functors from simplicial categories to complete
Segal spaces. There is an up-to-homotopy characterization of the resulting
complete Segal space as well. While we do not make use of this description
explicitly in this paper, it is key to the proof of Theorem 4.1 below.

4 Fiber products of model categories and homo-
topy pullbacks of complete Segal spaces

A key tool in Toën’s proof that his derived Hall algebras are associative is
the fiber product of model categories. We begin with his definition as given
in [22]. First, suppose that

M1
F1 //M3 M2

F2oo

is a diagram of left Quillen functors of model categories. Define their fiber
product to be the model category M = M1 ×h

M3
M2 whose objects are
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given by 5-tuples (x1, x2, x3; u, v) such that each xi is an object ofMi fitting
into a diagram

F1(x1)
u //x3 F2(x2).

voo

A morphism of M, say f : (x1, x2, x3; u, v) → (y1, y2, y3; z, w), is given by
maps fi : xi → yi such that the following diagram commutes:

F1(x1)
u //

F1(f1)
² ²

x3

f3

²²

F2(x2)
voo

y3 F2(y2).
woo

F2(f2)
² ²

F1(y1)
z //

This category M can be given the structure of a model category, where
the weak equivalences and cofibrations are given levelwise. In other words,
f is a weak equivalence (or cofibration) if each map fi is a weak equivalence
(or cofibration) in Mi.

A more restricted definition of this construction requires that the maps
u and v be weak equivalences in M3. Unfortunately, if we impose this ad-
ditional condition, the resulting category cannot be given the structure of a
model category because it does not have sufficient limits and colimits. How-
ever, it is still a perfectly good category with weak equivalences, and in some
cases we can localizeM so that the fibrant-cofibrant objects of the localized
model category have u and v weak equivalences [2]. Although Toën uses
the model structure given above, at the point where he really makes use of
the fiber product he restricts to the case where the maps u and v are weak
equivalences. Thus, we assume here this extra structure.

Consider the functor LC , described in the previous section, which takes
a model category (or category with weak equivalences) to a complete Se-
gal space. Given a fiber square of model categories where we require the
maps u and v to be weak equivalences, we can apply this functor to obtain a
commutative square

LCM //

² ²

LCM2

² ²
LCM1

// LCM3.

Alternatively, we could apply the functor LC only to the original dia-
gram and take the homotopy pullback, which we denote P , and obtain the
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following diagram:
P //

² ²

LCM2

² ²
LCM1

// LCM3.

Theorem 4.1. [2] The complete Segal spaces LCM and P = LCM1×h
LCM3

ŁCM2 are weakly equivalent.

This theorem allows us to use the homotopy pullback of complete Segal
spaces to generalize the situations in which Toën uses the fiber product of
model categories. In particular, we generalize a scenario given by Toën [22,
4.2] as follows.

Let
W

H1 //

H2

² ²

X

F1

² ²
Y

F2 // Z

be diagram of complete Segal spaces equipped with an isomorphism α : F1 ◦
H1 ⇒ F2 ◦H2, and define a map

F : W → V = X ×h
Z Y

by
w 7→ (H1(w), H2(w); αw).

Lemma 4.2. If Ho(W ) → Ho(V ) is an equivalence of categories, then the
diagram

nerve(Ho(wW )) //

² ²

nerve(Ho(wX))

² ²
nerve(Ho(wY )) // nerve(Ho(wY ))

is homotopy cartesian.

Proof. We want to show that the map

nerve(Ho(wW )) → nerve(Ho(wX))×h
nerve(Ho(wZ)) nerve(Ho(wY ))
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is a weak equivalence of simplicial sets. By our assumption, we know that
the map

Ho(W ) → Ho(X ×h
Z Y )

is an equivalence of categories. Notice that the homotopy category Ho(wW )
is the maximal subgroupoid of Ho(W ) and analogously for the other com-
plete Segal spaces in the diagram. Hence, we have an equivalence of cate-
gories

Ho(wW ) → Ho(w(X ×h
Z Y )) ' Ho(wX ×h

wZ wY )

' Ho(wX)×h
Ho(wZ) Ho(wY ).

Since nerves of equivalent categories are weakly equivalent simplicial sets,
the lemma follows.

5 Hall algebras and derived Hall algebras

5.1 Classical Hall algebras
Let A be an abelian category. Throughout this section, we assume that A
is finitary, in that, for any objects x and y of A, the groups Hom(x, y) and
Ext1(x, y) are finite.

Definition 5.1. [20] Given an abelian category A, its Hall algebra H(A) is
defined as

1. the vector space with basis isomorphism classes of objects in A, with

2. multiplication given by

[x]· [y] =
∑

[z]

gz
x,y[z]

where the Hall numbers gz
x,y are given by

gz
x,y =

|{0 → x → z → y → 0 exact}|
|Aut(x)|· |Aut(y)| .
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Notice that our assumptions on A guarantee that each Hall number re-
ally is a finite number. It can be shown that this definition gives H(A) the
structure of a unital associative algebra [18].

Although Hall algebras have been investigated for a number of purposes,
recent interest in them has arisen from the close relationship between Hall
algebras and quantum groups in the following situation. Suppose that g is
a Lie algebra of type A, D, or E. Then g has an associated simply-laced
Dynkin diagram, which is just an unoriented graph with no cycles. Assign-
ing an orientation to each of the edges in this graph gives a quiver, or oriented
graph, which we denote Q. Given a finite field Fq, let A be the category of
Fq-representations of this quiver Q. It can be shown that A is in fact an
abelian category satisfying our finiteness assumptions, and hence we have
an associated Hall algebra H(A) [18]. The Hall algebra as we have defined
it is not independent of the chosen orientation on the quiver, but a slight mod-
ification by Ringel makes it so; this algebra is often called the Ringel-Hall
algebra [19].

However, another algebra can be obtained from g, namely the quantum
enveloping algebra Uq(g). This algebra can be given its triangular decompo-
sition

Uq(g) = Uq(n
+)⊗ Uq(h)⊗ Uq(n

−).

Work of Ringel, further developed by Green, has shown that there is a close
relationship between the Hall algebraH(A) and the positive part of the quan-
tum enveloping algebra,

Uq(b
+) = Uq(n

+)⊗ Uq(h)

[7], [18].
A natural question to ask is whether there is some kind of enlarged ver-

sion of the Hall algebra from which one could recover not just Uq(b
+), but all

of Uq(g). Work of Peng and Xiao [15] has led to the conjecture that such an
algebra should be obtained from the following category. Using the abelian
category A of quiver representations as above, consider its bounded derived
categoryD[(A), which is no longer abelian, but is instead a triangulated cat-
egory. As such, it has a shift functor Σ: D[(A) → D[(A). We then define
the root category of A to be D[(A)/Σ2, the triangulated category obtained
from D[(A) by identifying an object with its double shift.
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It is still an open question how to find a “Hall algebra” associated to this
root category. To begin with, the usual definition does not apply because the
root category is not abelian. It is, however, triangulated, and recent efforts in
this area have focused on finding Hall algebras for triangulated categories.
In the rest of this section, we describe derived Hall algebras, defined by
Toën, which can be obtained from certain triangulated categories. Thus far
the necessary restrictions on these triangulated categories prohibit us from
being able to define a derived Hall algebra for the root category.

5.2 Derived Hall algebras
Recall that a differential graded category or dg category, is a category en-
riched over Ch(R), the category of cochain complexes of modules over a
ring R. Thus, given any objects x and y in a dg category T , we have a
cochain complex T (x, y). Here, we assume that R = Fq, the finite field with
q elements. Toën defines a dg category T to be locally finite if for any objects
x and y in T , the cochain complex T (x, y) is cohomologically bounded and
has all cohomology groups finite dimensional [22, 3.1].

Given a locally finite dg category T , we considerM(T ), the category of
dg T op-modules, or functors T → Ch(Fq). This category has the structure
of a stable model category, with levelwise weak equivalences and fibrations
[23, §3]. We have made finiteness assumptions about the dg category T ,
but in taking the module category, we may have cochain complexes in the
image which do not satisfy these kinds of conditions. If we restrict to func-
tors which are appropriately finitary, we no longer have a model structure,
since this subcategory does not possess enough limits and colimits. So, we
work with the model category M(T ) of all modules but consider also the
full subcategory P(T ) of perfect objects. A module in M(T ) is perfect if
it belongs to the smallest subcategory of Ho(M(T )) containing the quasi-
representable modules (see [23, 3.6] for a definition) and which is stable by
retracts, homotopy pushouts, and homotopy pullbacks [22]. Perfect objects
coincide with the compact objects in the triangulated category Ho(M(T )).
(Recall that if T is a triangulated category with arbitrary coproducts, then
an object x of T is compact if any map x → qiyi factors through a finite
coproduct [11, 6.5].)

Since HoM(T ) is a triangulated category, it has a shift functor; we de-
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note maps from x to the ith shift of y in this category by [x, y[i]] or by
Exti(x, y). Notice that for perfect modules, these Ext groups are all finite.

Theorem 5.2. [22, 1.1, 5.1] Let T be a locally finite dg category over a finite
field Fq. Define DH(T ) to be the Q-vector space with basis the characteris-
tic functions χx, where x runs through the set of weak equivalence classes of
perfect objects inM(T ). Then there exists an associative and unital product

µ : DH(T )⊗DH(T ) → DH(T )

such that
µ(χx, χy) =

∑
z

gz
x,yχz

and these derived Hall numbers gz
x,y are given by the formula

gz
x,y =

|[x, z]y|·
∏

i>0 |Ext−i(x, z)|(−1)i

|Aut(x)|·∏i>0 |Ext−i(x, x)|(−1)i ,

where [x, z]y denotes the subset of [x, z] of morphisms f : x → z whose cone
is isomorphic to y in Ho(M(T )).

6 More general derived Hall algebras
In this section, we establish the existence of derived Hall algebras for suf-
ficiently finitary stable complete Segal spaces. Our strategy follows that of
Toën, and some proofs of his continue to hold without change. However,
without the restrictions of a model structure, some of the proofs are greatly
simplified.

Throughout this section, suppose that W is a pointed stable complete
Segal space, so that Ho(W ) is a triangulated category with a zero object. As
in the previous section, we define for any objects x, y in W

Exti(x, y) = [x, y[i]]

where the outside brackets denote maps in Ho(W ) and the inside brackets
denote the shift functor giving the triangulated structure of Ho(W ).
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Definition 6.1. A stable complete Segal space W is finitary if in Ho(W ) we
have that Exti(x, y) is finite for all pairs of objects (x, y) and all values of i,
and zero for sufficiently large values of i.

We assume for the rest of the paper that all our stable complete Segal
spaces are finitary.

Since the model category CSS is cartesian closed, the simplicial space
W∆[1] is also a complete Segal space. Notice that W itself is isomorphic to
the mapping object W∆[0], and so we can use the two maps ∆[0] → ∆[1]
to define “source” and “target” maps s, t : W∆[1] → W . Since an object of
W∆[1] is a 0-simplex u ∈ mapW (x, y) for some x and y objects of W , these
two maps can be defined by s(u) = x and t(u) = y. We also have a “cone”
map c : W∆[1] → W given by c(u) = yqx 0, where such a cone object exists
because we have required that W be stable; in the homotopy category, it is
just the completion of u : x → y to a distingushed triangle.

Using these maps, we can put together the diagram

W∆[1] t //

s×c

² ²

W

W ×W

analogous to Toën’s diagram of model categories [22, §4].
Because we are no longer working with model categories, a number of

aspects of this diagram have been simplified, compared to the analogous
one in Toën’s paper. Because the objects are complete Segal spaces, rather
than model categories, we no longer have to be concerned with whether
these maps are left Quillen functors. Furthermore, we are able to impose
conditions on W from the beginning so that its objects are already “perfect”
in that all the necessary finiteness conditions are already satisfied.

A word on this point would perhaps be helpful here. It is likely that a
stable complete Segal space that would arise in nature would not have all
pairs of objects x and y satisfying the necessary finiteness conditions on
Exti(x, y). However, we can show that restricting to the sub-complete Segal
space with objects satisfying such conditions is still a complete Segal space.
Explicitly, given a complete Segal space W , consider the doubly constant
simplicial space W0,0, and the sub-simplicial space Z0,0 given by the perfect
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objects of W . Then define Z to be the simplicial spaces given by the pullback

Z //

² ²

W

²²
Z0,0

// W0,0.

Since W0,0 is discrete, the map W → W0,0 is a fibration in CSS, from which
it follows that the map Z → Z0,0 is a fibration also. Thus, Z is a fibrant
simplicial space in CSS, or a complete Segal space. Furthermore, since
compact objects of a triangulated category form a triangulated subcategory
[11, 6.5], Ho(Z) is triangulated and Z is stable. Thus, we can restrict to
the appropriate setting without losing the structure that we need, and so we
always assume that, given an arbitrary stable complete Segal space W , we
have implicitly restricted to Z.

Now, as Toën does, we restrict to the sub-complete Segal spaces of W
and W∆[1], whose mapping spaces are sent to isomorphisms in the homotopy
category; we call these spaces wW and wW∆[1], respectively. Taking the
nerve of the homotopy categories, we obtain a diagram

nerve(Ho(wW∆[1]))
t //

s×c

² ²

nerve(Ho(wW ))

nerve(Ho(wW ))× nerve(Ho(wW )).

For simplicity of notation, we write this diagram

X(1) t //

s×c
² ²

X(0)

X(0) ×X(0).

To get an algebra with a well-defined multiplication, we need to show
that this diagram of spaces satisfies some properties.

Definition 6.2. [22, 2.1] An object X in the homotopy category of spaces is
locally finite if it satisfies the conditions

1. for any base point x ∈ X and i > 0, the group πi(X, x) is finite, and
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2. for any base point x ∈ X , there is some n, depending on x, such that
πi(X, x) = 0 for all i > n.

Lemma 6.3. The spaces X(0) and X(1) are locally finite.

Proof. For any x ∈ π0(X
(0)), we use the facts that

π1(X
(0)) ⊆ Ext0(x, x) = [x, x]

and
πi(X

(0)) = Ext1−i(x, x)

for i > 1 [22, 3.2]. Our assumption on W guarantees that these groups are
all finite, and that they are zero for sufficiently large i. Thus, X(0) is locally
finite.

To show that X(1) = nerve(Ho(wW∆[1])) is locally finite, notice that this
space is weakly equivalent to

nerve(Ho(wW ))×∆[1] = X(0) ×∆[1]

which is also locally finite.

Definition 6.4. [22, 2.5] A morphism f : X → Y of locally finite homotopy
types is proper if, for any y ∈ π0(Y ), there are only finitely many x ∈ π0(X)
with f(x) = y.

Notice that f is proper if and only if, for any y ∈ π0(Y ), the set π0(Fy)
is finite. The proof of the following lemma follows just as it does in Toën’s
paper [22, 3.2].

Lemma 6.5. The map s× c is proper.

With these properties established for our diagram, we can use it to define
an algebra analogous to that of Toën [22, §4].

Definition 6.6. [22, 2.2] Let X be a space. The Q-vector space of rational
functions with finite support on X is the Q-vector space of functions on the
set π0(X) with values in Q and finite support, and is denoted by Qc(X).

Definition 6.7. As a vector space, the derived Hall algebra DH(W ) of W
is given by Qc(X

(0)).
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Given a morphism f : X → Y of locally finite spaces, we define a push-
forward morphism f! : Qc(X) → Qc(Y ) as follows. Given y ∈ π0(Y ), let
Fy denote the homotopy fiber of f over y, and let i : Fy → X be the natural
map. Using the long exact sequences of homotopy groups, one can see that
for any z ∈ π0(Fy), the group πi(Fy, z) is finite for all i > 0 and zero for
sufficiently large i. Furthermore, the fibers of the map π0(Fy) → π0(X) are
all finite. Then, for any α ∈ Qc(X) and y ∈ π0(Y ), define the function f! by

f!(α)(y) =
∑

z∈π0(Fy)

α(i(z))·
∏
i>0

|πi(Fy, z)|(−1)i

.

The assumption that α have finite support guarantees that f! is well-defined.
If f : X → Y is a proper map of locally finite spaces, then we have

a well-defined pullback f ∗ : Qc(Y ) → Qc(X) defined in the usual way as
f ∗(α)(x) = α(f(x)) for any α ∈ Qc(Y ) and x ∈ π0(X). The requirement
that f be proper guarantees that f ∗(α) has finite support, so that f ∗ is in fact
well-defined.

The following lemma is key for establishing associativity.

Lemma 6.8. [22, 2.6] Consider a homotopy pullback diagram of locally
finite spaces

X ′ v //

g

² ²

X

f

²²
Y ′ u // Y

with u proper. Then the map v is also proper, and

u∗ ◦ f! = g! ◦ v∗ : Qc(X) → Qc(Y
′).

To define the multiplication on DH(W ), first notice that we have an
isomorphism

DH(W )⊗DH(W ) → Qc(X
(0) ×X(0))

given by
(f, g) 7→ ((x, y) 7→ f(x)· g(x)).

Then we can consider the map

µ = t! ◦ (s× c)∗ : DH(W )⊗DH(W ) → DH(W ).
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The algebra structure on DH(W ) is then given by

x· y =
∑

z

gz
x,yz

where
gz

x,y = µ(χx, χy)(z)

where χx denotes the characteristic function of x.

Proposition 6.9. With this multiplication, DH(W ) is a unital algebra.

Our proof essentially follows the one given by Toën [22, 4.1], with the
necessary changes being made as we translate to the complete Segal space
setting.

Proof. Given any object x in W , let χx denote its characteristic function; in
particular, consider χ0, the characteristic function of the zero object of W .

Notice that the set π0(X
(1)) is isomorphic to the set of isomorphism

classes of objects in Ho(wW∆[1]). Thus, fix some 0-simplex u : x → y
of mapW (x, y), regarded as an object of Ho(wW∆[1]). Then

(s× c)∗(u) =

{
1 if y ∼= 0 and x ∼= z in Ho(wW )

0 otherwise.

In other words, (s × c)∗(χ0, χx) is the characteristic function of the subset
of π0(X

(1)) consisting of maps 0 → z with z ∼= x in Ho(wW ).
Define X to be the simplicial set contained in X(1) consisting of all the

support of (s × c)∗(χ0, χx), and notice that X is a connected simplicial set.
Then using the definition of the product map µ, we get

µ(χ0, χx)(x) =
∏
i>0

(
|πi(X)|(−1)i· |πi(X

(0), x)|(−1)i+1
)

.

Notice in particular that whenever y 6= x,

µ(χ0, χx)(y) = 0.

Restricting the target map t : W∆[1] → W to the maps y → z such
that y ∼= 0 in Ho(wW ), we see that on such objects t is fully faithful, up
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to homotopy. Thus, the induced map t : X → X(0) induces isomorphisms
t∗ : πi(X) → πi(X

(0)) for all i > 0, and the simplicial set X can be identified
with a connected component of X(0). Hence, µ(χ0, χx)(x) = 1, so that
µ(χ0, χx) = χx.

Changing the order and following the same argument, one can see that
we also have µ(χx, χ0) = χx, thus proving that χ0 is a unit element for
DH(W ).

Theorem 6.10. With this multiplication, DH(W ) is an associative algebra.

Proof. Consider the complete Segal space W∆[2], and, as with W∆[1] and
W , denote by X(2) the simplicial set nerve(Ho(wW∆[2])). Notice that there
are three natural maps

f, g, h : W∆[2] → W∆[1]

induced by the three inclusion maps ∆[1] → ∆[2], where f sends x → y →
z to x → y, g sends it to y → z, and h sends it to x → z. There is also a
cone map

k : W∆[2] → W∆[1]

given by
(x → y → z) 7→ (y qx 0 → z qx 0),

with the pushouts defined as before in a stable complete Segal space, and a
map between the two given by the universal property. This map may not be
unique, but all such maps form a weakly contractible space.

Using these maps, we get two diagrams:

X(2)
g //

f×(c◦k)
² ²

s×c
² ²

X(0)

X(1) ×X(0)
t×id //

X(1) t //

(s×c)×id
²²

X(0) ×X(0)

(X(0) ×X(0))×X(0)
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and
X(2) h //

(s◦f)×k
² ²

X(1) t //

s×c
² ²

X(0) ×X(0)

X(0) × (X(0) ×X(0))

which both give the same result taking composites across the top and down
the left side:

X(2) //

X(0)

X(0) ×X(1)
id×t //

² ²

X(0)

X(0) ×X(0) ×X(0).

Thus, to prove associativity of DH(W ), it suffices by Lemma 6.8 to
prove that the square in each of these diagrams is homotopy cartesian. In
fact, it suffices to show that the diagrams

X(2)
g //

X(1) t //

k
² ²

id×(s×c)
²²

f

² ²

X(1)

s

² ²
X(0)

X(2) h // X(1)

c

² ²
X(1) t // X(0)

are homotopy cartesian. For the first diagram, this fact follows immediately
from the fact that the original diagram

W∆[2]
g //

f

² ²

W∆[1]

s

² ²
W∆[1] t // W

is a homotopy pullback diagram of complete Segal spaces. To show that the
second diagram is homotopy cartesian requires more effort.

In this second diagram, let Z denote the homotopy pullback W∆[1] ×h
W

W∆[1]. Using Lemma 4.2, it suffices to prove that Ho(W∆[2]) → Ho(Z) is
fully faithful and essentially surjective. We begin with the argument for the
latter. Suppose we have an object (x → z, w → z qx 0) in Ho(Z); we want

BERGNER - DERIVED HALL ALGEBRAS...

- 50 -



to find an object y of W such that x → y → z is an object of Ho(W∆[2]) with
yqx 0 = w. Such a y can be found by applying the axioms for a triangulated
category to the diagram

x / /___

=

² ²

y / /____

²² Â
Â
Â w //

² ²

y′ //
² ²

z

² ²
x′ //

²²

z

²²

²²

x[1]

=

² ²
x // z // z qx 0 // x[1].

To prove that the functor is fully faithful, we need to prove that, for any
objects x → y → z and x′ → y′ → z′ in Ho(W∆[2]), the map

HomHo(W∆[2])(x → y → z, x′ → y′ → z′) →
HomHo(Z)((x → z, y qx 0 → z qx 0), (x′ → z′, y′ qx′ 0 → z′ qx′ 0))

is an isomorphism. Elements of the set on the left-hand side are triples of
maps making the diagram

x // y //

x′ // z′

commute, where elements of the set on the right-hand side are 4-tuples of
maps making the pair of diagrams

x //

² ²
z′,

y qx 0 // z qx 0

²²
y′ qx′ 0 // z′ qx′ 0

commute. Given an element of the right-hand set, we can use the axioms
for a triangulated category to find a map y → y′ compatible with the maps
x → x′ and z → z′ to obtain an element of the left-hand set. Thus, the map
is surjective. A similar argument can be used to prove that it is injective.

The proof of the following formula is essentially the same as the one
given by Toën [22, 5.1]; we give it here with the necessary changes to our
situation.
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Proposition 6.11. The derived Hall numbers are given by

gz
x,y =

|[x, z]y|·
∏

i>0 |Ext−i(x, z)|(−1)i

|Aut(x)|·∏i>0 |Ext−i(x, x)|(−1)i ,

where [x, z]y denotes the subset of [x, z] of morphisms f : x → z whose cone
is isomorphic to y in Ho(W ).

Proof. Given the target map t : X(1) → X(0) and an object z of Ho(W ),
let F z denote the homotopy fiber of t over z. Using the definitions of X(1)

and X(0), notice that F z is weakly equivalent to the nerve of the category
equiv(W ↓ z) whose objects are maps from arbitrary objects of W to z,
and whose morphisms are the homotopy equivalences of W , making the
resulting triangular diagram commute.

Given two other objects x and y of W , let F z
x,y denote the nerve of the

full subcategory of equiv(W ↓ z) whose objects are the maps u : x′ → z,
where x′ ' x, and whose cofiber is equivalent to y. Notice that F z

x,y is
locally finite, since both X(1) and X(0) are; moreover, π0(F

z
x,y) is finite, and

it is isomorphic to [x, z]y/Aut(x).
Using F z

x,y, we can reformulate our definition of the derived Hall number
gz

x,y as

gz
x,y =

∑

(u : x′→y)∈π0(F z
x,y)

∏
i>0

|πi(F
z
x,y, u)|(−1)i

.

We first prove that
∏
i>0

|πi(F
z
x,y, u)|(−1)i

= |Aut(f/z)|−1·
∏
i>0

|Ext−i(x, z)|(−1)i· |Ext−i(x, x)|(−1)i+1

,

where Aut(f/z) denotes the stabilizer of a map f ∈ [x, z]y under the action
of Aut(x).

Notice that we get a homotopy cartesian square of mapping spaces

mapW↓z(x, x) //

² ²

mapW (x, x)

² ²
∗ // mapW (x, z)
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where the bottom horizontal map specifies the map u : x → z. Thus, we have
a fibration of simplicial sets, and hence a long exact sequence of homotopy
groups

· · · → π2(map(x, z)) → π1(mapW↓z(x, x)) → π1(mapW (x, x)) → π1(mapW (x, z))

→ π0(mapW↓z(x, x)) → π0(mapW (x, x)) → π0(mapW (x, z)) → 0.

Composing the last two maps between nontrivial sets, we get a surjection

π0(mapW↓z(x, x)) → Aut(f/z).

Furthermore, notice that πi(mapW (x, z)) = [x, z[−i]] = Ext−i(x, z)
and, similarly, that πi(mapW (x, x)) = Ext−i(x, x). Finally, observe that
πi(mapW↓z(x, x)) is weakly equivalent to πi+1(nerve(equiv(W ↓ z)), u),
which, as we have noted previously, is equivalent to πi+1(F

z
x,y, u). Thus, we

have a long exact sequence

· · · → Ext−2(x, z) → π2(F
z
x,y, u) → Ext−1(x, x) → Ext−1(x, z)

→ π1(F
z
z,y, u) → Aut(f/z) → 0.

Using properties of long exact sequences, we obtain the equation given
above.

To prove the statement of the proposition, we use the fact that, since
Aut(x) is a finite group and [x, z]y is a finite set, we get that

|[x, z]y|
|Aut(x)| =

∑

f∈([x,z]y/Aut(x))

|Aut(f/x)|.

The formula follows.
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Résumé. En nous inspirant du groupe de Klein GL3(F2) (voir
l’introduction), nous introduisons les nouvelles notions de groupes n-
cyclables et de groupes n-brunniens de type I et II (voir section 1). Nous
montrons ensuite que les groupes SLn(Fp) et GLn(Fp) jouissent d’une struc-
ture de groupes n-brunniens de type I pour p premier et n ≥ 3 (voir section
2). Dans la section 3, nous énonçons deux conjectures, à savoir les conjec-
tures A(n, p, P ) et B(n, p, P ) concernant les polynômes primitifs sur Fp, et
nous donnons des résultats partiels dans la section 4.
Abstract. Motivated by the case of Klein’s group GL3(F2) (see the intro-
duction), we introduce the new notions of n-cyclable groups and n-brunnian
groups of type I and II (see section 1). We then prove that the groups SLn(Fp)
and GLn(Fp) enjoy a structure of n-brunnian groups of type I for p prime and
n ≥ 3 (see section 2). In section 3, we state two conjectures, namely the con-
jectures A(n, p, P ) and B(n, p, P ) about primitive polynomials over Fp, and
we give some evidence in section 4.
Keywords. borromean groups, brunnian groups, primitive polynomials, lin-
ear groups, finite fields.
Mathematics Subject Classification (2010). 12Y05, 20H30.

Introduction

The group GL3(F2) ' PGL3(F2) is known to be the automorphism group
of Klein’s quartic ([6]):

X(7) = {[x : y : z] ∈ P2(C) , x3y + y3z + z3x = 0} .

According to the literature, this group is generated by a generator of order
2, a generator of order 3, and a generator of order 7 (see [1]). But, in 2005,
Guitart showed that it could be generated by the following three matrices

               CAHIERS DE TOPOLOGIE ET                                                       Vol. LIV-1 (2013)

GEOMETRIE DIFFERENTIELLE CATEGORIQUES

LINEAR GROUPS AND

      PRIMITIVE POLYNOMIALS OVER F p

by Jean-Yves DEGOS

- 56 -



Figure 1: Action of GL3(F2) on {1, 2, 3, 4, 5, 6, 7}

([4] and [5], 5):

r =

 1 1 1
1 0 1
0 1 1

 , s =

 1 0 1
1 1 1
1 1 0

 , and i =

 0 1 1
1 1 0
1 1 1

 ;

and that it could be viewed as a subgroup of the symmetric group S7, which
acts on {1, 2, 3, 4, 5, 6, 7} as the permutations r = (1746325), s = (5164723),
and i = (1564327) do ([5], Proposition 10), like in Figure 1.

The group GL3(F2) is thus called a borromean group.

In front of this situation, we can ask the following questions:
(i) How could we make this threefold geometrical symmetry visible in

the algebraic description of GL3(F2) as a matrix group?
(ii) Could we generalize the notion of a borromean group to dimension

n?

In the following, we are going to give partial answers to these questions.

1. A few definitions and generalizations

In knot theory, the borromean rings consist of three topological circles which
are linked and form a brunnian link, i.e., removing any ring results in two
unlinked rings. A brunnian link is a nontrivial link that becomes trivial if any
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component is removed. In other words, cutting any loop frees all the other
loops (so that no two loops can be directly linked).

Imitating these notions, we can define the notions of brunnian groups in
two ways.

1.1 The notion of an n-cyclable group

Definition 1.1. Let n ≥ 1 be an integer. A group G is n-cyclable if it can
be generated by n elements g1, g2, . . . , gn satisfying the following axiom: if
M(g1, g2, . . . , gn) = 1 (with M a word in g1, g2, . . . , gn), then

M(gγk(1), gγk(2), . . . , gγk(n)) = 1 ,

where γ is the n-cycle (1, 2, . . . , n), and 1 ≤ k ≤ n− 1 .

1.2 The notion of an n-brunnian group of type I

Definition 1.2. A group G is n-brunnian of type I if:
(i) it is n-cyclable;
(ii) for all 1 ≤ i ≤ n, if we set gi = 1, the group generated by g1, g2, . . . , gn

is trivial.

1.3 The notion of an n-brunnian group of type II

Definition 1.3. A group G is n-brunnian of type II if:
(i) it is n-cyclable;
(ii) for all 1 ≤ i ≤ n, the group generated by g1, g2, . . . , gn except gi

does not generate G.

2. The groups SLn(Fp) and GLn(Fp) as brunnian groups

To state the theorems, we need two definitions.

Definition 2.1. Let n ≥ 2 an integer. For 1 ≤ i, j ≤ n and i 6= j, we denote
by Ti,j the transvection matrix (tk,l) with tk,k = 1 for 1 ≤ k ≤ n, ti,j = 1
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and tk,l = 0 if k 6= l and (k, l) 6= (i, j), namely:

Ti,j =



1 0 . . . 0

0 1 . . .
...

...
... . . . 1i,j

. . . ...
. . . 0

0 . . . . . . 0 1


.

Definition 2.2. If n ≥ 2 is an integer, p is a prime, and

f(X) = Xn + an−1X
n−1 + · · · a1X + a0 ∈ Fp[X]

then we denote by Comp (f(X)) the matrix:

Comp (f(X)) =


0 0 . . . 0 −a0
1 0 . . . 0 −a1
0 1 . . . 0 −a2
...

... . . . ...
...

0 0 . . . 1 −an−1

 .

Theorem 2.3. Let n ≥ 3 be an integer and p be a prime number.
We set G1 = T1,2, G = Comp (Xn − 1), and
Gi+1 = GGiG

−1 for 1 ≤ i ≤ n− 1. Then

SLn(Fp) = 〈G1, G2, . . . , Gn〉 .

The group SLn(Fp) is therefore n-cyclable, and n-brunnian of type I with
respect to these generators. It is also n-brunnian of type II.

Proof. The fact that SLn(Fp) is n-cyclable (and n-brunnian of type I) is an
easy consequence of the main lemma, which is proved in section 4.

Therefore, we just have to show that SLn(Fp) is n-brunnian of type II.
However, it can be shown that the group generated by G1, G2, . . . , Gn−1 is
the group of all matrices of the following form:

1 × · · · ×
0 1

. . . ...
... . . . . . . ×
0 · · · 0 1

 ,
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where the × symbols stand for any element of Fp. This group is a Sylow
subgroup of SLn(Fp) and has order

p
n(n−1)

2 ,

and is therefore not equal to SLn(Fp).

Corollary 2.4. With the notations of Theorem 2.3, let s : SLn(Fp)→ PSLn(Fp)
be the canomial map, Hi = s(Gi) for 1 ≤ i ≤ n, and

θ : PSLn(Fp) → PSLn(Fp)
s(M) 7→ s(G)s(M)s(G)−1

.

Then:
(i) Hi+1 = θ(Hi) for 1 ≤ i ≤ n− 1;
(ii) PSLn(Fp) = 〈H1, H2, . . . , Hn〉.

The group PSLn(Fp) is therefore an n-cyclable, and n-brunnian of type I,
with respect to these generators.

Proof. The proof is the same as that of Corollary 2.6 below.

Theorem 2.5. Let n ≥ 3 be an integer, p be a prime number and d be a
generator of F×p .

We denote by G1 = (gi,j) the matrix defined by gi,i = 1 for 1 ≤ i ≤ n
and i 6= 3, g3,3 = d, g1,2 = 1 and gi,j = 0 if i 6= j and (i, j) 6= (1, 2). We set
G = Comp (Xn − 1).

We set Gi+1 = GGiG
−1 for 1 ≤ i ≤ n− 1. Then

GLn(Fp) = 〈G1, G2, . . . , Gn〉 .

The group GLn(Fp) is therefore an n-cyclable and n-brunnian group of type
I with respect to these generators. It is also and n-brunnian group of type II.

Proof. The fact that GLn(Fp) is n-cyclable (and n-brunnian of type I) is an
easy consequence of the main lemma, which is proved in section 4.

Therefore, we just have to show that GLn(Fp) is n-brunnian of type II.
However, it can be shown that the group generated by G1, G2, . . . , Gn−1 is
the group of all matrices which are upper triangular, with a 1 in position
(n− 1, n− 1). This group has order

p
n(n−1)

2 (p− 1)n−1 ,

and is therefore not equal to GLn(Fp).
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Corollary 2.6. With the notations of Theorem 2.5, let s : GLn(Fp) →
PGLn(Fp) be the canomial map, Hi = s(Gi) for 1 ≤ i ≤ n, and

θ : PGLn(Fp) → PGLn(Fp)
s(M) 7→ s(G)s(M)s(G)−1

.

Then:
(i) Hi+1 = θ(Hi) for 1 ≤ i ≤ n− 1;
(ii) PGLn(Fp) = 〈H1, H2, . . . , Hn〉.

The group PGLn(Fp) is therefore an n-cyclable, and n-brunnian of type I,
with respect to these generators.

Proof. First, the points (i) and (ii) are obvious. We only have to check that
the automorphism θ has order n. Let k be the order of θ in PGLn(Fp). Then
k divides n, because G has order n in GLn(Fp). Then, we have:

θk = 1PGLn(Fp) ⇒ ∀M ∈ GLn(Fp), θk(s(M)) = s(M)

⇒ ∀M ∈ GLn(Fp), s(G)ks(M)s(G)−k = s(M)

⇒ ∀M ∈ GLn(Fp),∃λ ∈ F×p , GkMG−k = λM.

But if k 6= n, this last property is false for M = Comp(Q(X)) for any
irreducible polynomial Q(X) = Xn+an−1X

n−1 + · · ·+a1X+a0. We now
are going to prove that.

Indeed, the eigenvalues of GkMG−k are the eigenvalues of M , namely
the elements of the set:

Λ := {αpi for 0 ≤ i ≤ n− 1} ,

α being a root of Q(X).
The equality GkMG−k = λM implies that x 7→ λx is a bijection of Λ.

If it is not the identity map, there are two integers i and j with i 6= j and
λαp

i
= αp

j , and we deduce from this fact that λ 6∈ F×p . Consequently, this
bijection is the identity map, and λ = 1. Thus, GkMG−k = M . However,
this is impossible, as we prove it below. Indeed, we have:

GkMG−k = (mγ−k(i),γ−k(j))i,j where M = (mi,j)i,j .

Hence, for all 1 ≤ i, j ≤ n, mγ−k(i),γ−k(j) = mi,j . Using this with i = 1 and
j = n, we obtain:

−a0 = 1 and − ai−1 = 0 for 2 ≤ i ≤ n .
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Therefore Q(X) = Xn − 1, which is a contradiction, because Q(X) is
irreducible.

We conclude that k = n.

3. Two conjectures on primitive polynomials

Definition 3.1. Let n ≥ 1 an integer, p ≥ 2 a prime number, and P (X) ∈
Fp[X] with degP = n. The polynomial P (X) is said to be primitive if it is
the minimal polynomial of a primitive element of Fpn .

Example 3.2. If n = 2 and p = 2, P (X) = X2 +X+1 is the only primitive
polynomial of degree n over Fp[X].

Example 3.3. If n = 8 and p = 2, P (X) = X8 + X4 + X3 + X + 1 is an
irreducible polynomial of degree n over Fp[X], but it is not a primitive one.

Conjecture 3.4 (A(n,p,P)). Let p be a prime number, n ≥ 2 be an in-
teger, and P (X) ∈ Fp[X] be a primitive polynomial of degree n. Let
G = Comp(Xn − 1) and C = Comp(P (X)). Then

GLn(Fp) = 〈G,C〉 .

Remark 3.5. Conjecture A(n, p, P ) results from Conjecture B(n, p, P ) that
follows.

Conjecture 3.6 (B(n,p,P)). Let p be a prime number and n ≥ 2 be an integer.
Let P (X) ∈ Fp[X] be a primitive polynomial of degree n.
Let G = Comp(Xn− 1), C = Comp(P (X)) and let us define (Gi)1≤i≤n by{

G1 = C ,
Gi+1 = GGiG

−1 for 1 ≤ i ≤ n− 1 .

Then GLn(Fp) = 〈G1, G2, . . . , Gn〉. So the group GLn(Fp) is n-cyclable
and n-brunnian of type I with respect to these generators.

DEGOS - LINEAR GROUPS AND PRIMITIVE POLYNOMIALS...

- 62 -



4. Some evidence

4.1 Three theorems

Theorem 4.1. Given P (X) = X2 + a1X + a0 a primitive polynomial of
degree 2 over Fp with p ∈ {2, 3}, we have the following results:

(i) B(2, 3, P ) is true; therefore A(2, 3, P ) is true;
(ii) A(2, 2, P ) is true, but B(2, 2, P ) is false.

The proof of Theorem 4.1 uses elementary operations.

Proof. (i) p = 3.
As a0 generates F×p , we only have to show that the following matrices:

T :=

[
1 1
0 1

]
, T ′ :=

[
1 0
1 1

]
and M :=

[
1 0
0 a0

]
are in 〈G1, G2〉.

We start from

H := G2a0
p−2G1 =

[
1
a0

a1 − a1
a0

0 a0

]
.

As p = 3, we have a02 = 1, so a0 = −1 and

H2 =

[
1 −a1
0 1

]
.

As −a1 6= 0, there is an integer k such that H2k = T . Then T ∈
〈G1, G2〉.

Starting from a0
p−1G1G2, we could show that T ′ ∈ 〈G1, G2〉.

Then 〈G1, G2〉 contains all the tranvections, and so contains SL2(Fp).
The matrices M and G1 have the same determinant: a0. Then, they are

equivalent modulo SL2(Fp).
We can conclude that M ∈ 〈G1, G2〉 and 〈G1, G2〉 = GL2(Fp).
(ii) p = 2. Then we have:

GC =

[
1 1
0 1

]
and CG =

[
1 0
1 1

]
,
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so 〈G,C〉 = SL2(F2) = GL2(F2).
But:

G1 =

[
0 1
1 1

]
and G2 =

[
1 1
1 0

]
= G1

2 ,

then 〈G1, G2〉 = 〈G1〉 6= GL2(F2).

The following lemma is the heart of this paper, and will be useful to
prove Theorem 4.3 and Theorem 4.4.

Lemma 4.2 (Main lemma). Let n ≥ 3 be an integer, p be a prime number,
and H ⊂ GLn(Fp) a subgroup satisfying the following properties:

(i) for every h ∈ H , then GhG−1 ∈ H , where G = Comp (Xn − 1);
(ii) the group H contains a matrix D the determinant of which is d and

generates F×p ;
(iii) the group H contains a tranvection matrix Ti,j with j = γ(i) or

i = γ(j).
Then H = GLn(Fp).

Proof. Let g be the isomorphism of GLn(Fp) defined by g(M) = GMG−1.
Set T1 := Ti,j and Tk := g−1(Tk−1) for 2 ≤ k ≤ n. Then Tk is a transvection
matrix, and Tk ∈ H , because it is a conjugate of T1 by G−(k−1). More
precisely, for 1 ≤ k ≤ n, we have:

Tk = Tγ−(k−1)(i),γ−(k−1)(j) .

Then, as j = γ(i) or i = γ(j), there is an n-cycle (j1, j2, . . . jn) such that
the set

{Tk | 1 ≤ k ≤ n}
can be rewritten as the set:

Tj1,j2 , Tj2,j3 , . . . , Tjn,j1 .

As n ≥ 3, we can use the well-known formula ([7], proof of Theorem
9.2, XIII, 9, page 541), and deduce that:

Tk1,k2Tk2,k3Tk1,k2
p−1Tk2,k3

p−1 = Tk1,k3 for k2 6∈ {k1, k3}

to show that H contains all the matrices Tk,l with 1 ≤ k, l ≤ n and k 6= l.
We conclude that SLn(Fp) ⊂ H .
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Now, as H contains a matrix of determinant d, which is equivalent mod-
ulo SLn(Fp) (therefore modulo H) to a dilatation matrix of determinant d,
and as H is stable by conjugation by G and d generates F×p , then H contains
all the dilatations matrices.

Therefore H = GLn(Fp).

Theorem 4.3. Let us suppose that p = 2, n is odd, and there is an i in
{1, n− 1} such that P (X) = Xn +X i + 1 is primitive.
Then B(n, p, P ) is true, therefore A(n, p, P ) is true.

Proof. To prove Theorem 4.3, we just have to check that the subgroup

H = 〈G1, . . . , Gn〉

satisfies the three points (i), (ii), (iii) of the main lemma.
(i) : the group H is stable by conjugation by G;
(ii) : the group H contains G1 = Comp(P (X)), the determinant of

which is 1, and generates F×2 ;
(iii) : we have G−1C = G−1G1 = Ti,n, which is a transvection matrix of

order 2, with γ(i) = n or γ(n) = i. Moreover, we have G2 = G2G1 ∈ H .
As n and 2 are coprime, there are integers u and v such that 2u + nv = 1.
Therefore, G = (G2)u ∈ H , and Ti,n ∈ H .

Theorem 4.4. Let us suppose that p = 2, n is even, and there is an i in
{1, n− 1} such that P (X) = Xn +X i + 1 is primitive.
Then A(n, p, P ) is true.

Proof. To prove Theorem 4.4, we just have to check that the subgroup

H = 〈G,C〉

satisfies the three points (i), (ii), (iii) of the main lemma.
(i) : the group H is stable by conjugation by G;
(ii) : the group H contains G1 = Comp(P (X)), the determinant of

which is 1, and generates F×2 ;
(iii) : we have G−1C = G−1G1 = Ti,n, which is a transvection matrix of

order 2, with γ(i) = n or γ(n) = i. Moreover, Ti,n ∈ H .

We can find in [2] the irreducible polynomials of the form xn + x + 1
over F2, up to n = 30000. There are only 33.
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4.2 The centers of 〈G,C〉 and 〈G1, G2, . . . , Gn〉

According to Conjecture A(n, p, P ), we should have GLn(Fp) = 〈G,C〉,
with the notations of Conjecture 3.4. Thus, we should have also the equality
between the centers of these groups. This is the case.

According to Conjecture B(n, p, P ), the group 〈G1, G2, . . . , Gn〉 equals
the group GLn(Fp), with the notations of Conjecture 3.6. Thus, we should
have also the equality between the centers of these groups. This is the case,
provided G ∈ 〈G1, G2, . . . , Gn〉.

To prove these results, we need a lemma.

Lemma 4.5. We have:

G1
1+p+···+pn−1

=

 (−1)na0 0 0

0
. . . 0

0 0 (−1)na0

 ,

therefore 〈G,C〉 and 〈G1, G2, . . . , Gn〉 both contain all the homotheties.

Proof. If σ : x 7→ xp is the Frobenius automorphism, there is a matrix Q
with coefficients in Fp(α) (where α is a root of P (X)) such that Q−1CQ =
D, with

D =


σ0(α) 0 . . . 0

0 σ1(α)
...

...
...

... . . . 0
0 . . . 0 σn−1

 ,

therefore: G1
1+p+···+pn−1

= QD1+p+···+pn−1
Q−1 = (−1)na0Id. But as

P (X) is a primitive polynomial, (−1)na0 generates F×p , QED.

Theorem 4.6. We have the following results (the notation Z(Γ) stands for
the center of the group Γ):

(i) Z(〈G,C〉) = {xId, x ∈ F×p };
(ii) if G ∈ 〈G1, G2, . . . , Gn〉, Z(〈G1, G2, . . . , Gn〉) = {xId, x ∈ F×p };

Proof. We know from the previous lemma that all the homotheties are con-
tained in 〈G,C〉 and 〈G1, G2, . . . , Gn〉. Now, if a matrix M is in the center
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of 〈G1, G2, . . . , Gn〉, it commutes with G−1 and G1. As it commutes with
G−1, it has the following form:

α1 α2 . . . αn
αn α1 . . . αn−1
...

... . . . ...
α2 α3 . . . α1

 ,

and as it commutes with G1, the following equations hold:

−a0αi = αi for 2 ≤ i ≤ n

and
−aiαj = 0 for 1 ≤ i ≤ n− 2 and 2 ≤ j ≤ n.

Consequently, for a given 2 ≤ j ≤ n, if αj 6= 0, we have:

a1 = a2 = · · · = an−1 = 0 and a0 = −1

hence P (X) = Xn − 1. This is a contradiction, because P (X) is supposed
to be primitive, hence irreducible. Thus, we have αj = 0 for 2 ≤ j ≤ n.
Therefore, the matrix M is that of an homothety.

4.3 Experimental checkings

We used a Sage worksheet to do computations to check the conjectures on
Langevin’s table of primitive polynomials (see [8]). In the next subsubsec-
tions, we give the functions of our worksheet, and we give the results we
obtained.

4.3.1 The Sage functions

We used the following Sage functions.

def Comp(n,p,f):
A=GL(n,p)
Fp=GF(p)
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FpX.<x>=PolynomialRing(Fp,’x’)
M=Matrix(n,n,range(n*n))
for i in range(1,n+1):

for j in range (1,n+1):
M[i-1,j-1]=0

M[i-1,n-1]=-FpX(f)[i-1]
for i in range (1,n):

M[i,i-1]=1
return M

def G(n,p):
return Comp(n,p,xˆn-1)

def C(n,p,P):
return Comp(n,p,P)

def Gi(k,n,p,P):
if k==1:

return C(n,p,P)
else:

return G(n,p)*Gi(k-1,n,p,P)*G(n,p)ˆ(-1)

def ConjA(n,p,P):
print n,p,P
gens_A=[GL(n,p)(C(n,p,P)),GL(n,p)(G(n,p))]
H_A=MatrixGroup(gens_A)
return GL(n,p).order()==H_A.order()

def ConjB(n,p,P):
print n,p,P
gens_B=[GL(n,p)(Gi(k,n,p,P)) for k in range(1,n+1)]
print n,p,P
H_B=MatrixGroup(gens_B)
return GL(n,p).order()==H_B.order()
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4.3.2 The results

The results we obtained are given below. We have tested each primitive
polynomial of Langevin’s table (see [8]) of degree n over Fp for which pn ≤
50000 with our personnal MacBook.

Primitive polynomials over F2

n p P (x) A(n, p, P ) B(n, p, P )
2 2 x2 + x+ 1 True False
3 2 x3 + x+ 1 True True
4 2 x4 + x+ 1 True True
5 2 x5 + x2 + 1 True True
6 2 x6 + x+ 1 True True
7 2 x7 + x+ 1 True True
8 2 x8 + x7 + x2 + x+ 1 True True
9 2 x9 + x4 + 1 True True
10 2 x10 + x3 + 1 True True
11 2 x11 + x2 + 1 True True
12 2 x12 + x8 + x2 + x+ 1 True True
13 2 x13 + x5 + x2 + x+ 1 True True
14 2 x14 + x12 + x2 + x+ 1 True True
15 2 x15 + x+ 1 True True
16 2 x16 + x5 + x3 + x2 + 1 ? ?

Primitive polynomials over F3

n p P (x) A(n, p, P ) B(n, p, P )
2 3 x2 + x+ 2 True True
3 3 x3 + 2x2 + 1 True True
4 3 x4 + x3 + 2 True True
5 3 x5 + x4 + x2 + 1 True True
6 3 x6 + x5 + 2 True True
7 3 x7 + x6 + x4 + 1 True True
8 3 x8 + x5 + 2 True True
9 3 x9 + x7 + x5 + 1 True True
10 3 x10 + x9 + x7 + 2 ? ?
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Primitive polynomials over F5

n p P (x) A(n, p, P ) B(n, p, P )
2 5 x2 + x+ 2 True True
3 5 x3 + x2 + 2 True True
4 5 x4 + x3 + x+ 3 True True
5 5 x5 + x2 + 2 True True
6 5 x6 + x5 + 2 True True
7 5 x7 + x6 + 2 ? ?

Primitive polynomials over F7

n p P (x) A(n, p, P ) B(n, p, P )
2 7 x2 + x+ 3 True True
3 7 x3 + x2 + x+ 2 True True
4 7 x4 + x3 + x2 + 3 True True
5 7 x5 + x4 + 4 True True
6 7 x6 + x5 + x4 + 3 ? ?

Primitive polynomials over F11

n p P (x) A(n, p, P ) B(n, p, P )
2 11 x2 + x+ 7 True True
3 11 x3 + x2 + 3 True True
4 11 x4 + x3 + 8 True True
5 11 x5 + x4 + x3 + 3 ? ?

Primitive polynomials over F13

n p P (x) A(n, p, P ) B(n, p, P )
2 13 x2 + x+ 2 True True
3 13 x3 + x2 + 2 True True
4 13 x4 + x3 + x2 + 6 True True
5 13 x5 + x4 + x3 + 6 ? ?

Primitive polynomials over F17

n p P (x) A(n, p, P ) B(n, p, P )
2 17 x2 + x+ 3 True True
3 17 x3 + x2 + 7 True True
4 17 x4 + x3 + 5 ? ?
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Primitive polynomials over F19

n p P (x) A(n, p, P ) B(n, p, P )
2 19 x2 + x+ 2 True True
3 19 x3 + x2 + 6 True True
4 19 x4 + x3 + 2 ? ?

Primitive polynomials over F23

n p P (x) A(n, p, P ) B(n, p, P )
2 23 x2 + x+ 7 True True
3 23 x3 + x2 + 6 True True
4 23 x4 + x3 + 20 ? ?

Primitive polynomials over F29

n p P (x) A(n, p, P ) B(n, p, P )
2 29 x2 + x+ 3 True True
3 29 x3 + x2 + 3 True True
4 29 x4 + x3 + 2 ? ?

Primitive polynomials over F31

n p P (x) A(n, p, P ) B(n, p, P )
2 31 x2 + x+ 12 True True
3 31 x3 + x2 + 9 True True
4 31 x4 + x3 + 13 ? ?

Primitive polynomials over F37

n p P (x) A(n, p, P ) B(n, p, P )
2 37 x2 + x+ 5 True True
3 37 x3 + x2 + 17 ? ?

Primitive polynomials over F41

n p P (x) A(n, p, P ) B(n, p, P )
2 41 x2 + x+ 12 True True
3 41 x3 + x2 + 11 ? ?

Primitive polynomials over F43

n p P (x) A(n, p, P ) B(n, p, P )
2 43 x2 + x+ 3 True True
3 43 x3 + x2 + 9 ? ?
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Primitive polynomials over F47

n p P (x) A(n, p, P ) B(n, p, P )
2 47 x2 + x+ 13 True True
3 47 x3 + x2 + 2 ? ?

Primitive polynomials over F53

n p P (x) A(n, p, P ) B(n, p, P )
2 53 x2 + x+ 5 True True
3 53 x3 + x2 + 2 ? ?

Primitive polynomials over F59

n p P (x) A(n, p, P ) B(n, p, P )
2 59 x2 + x+ 2 True True
3 59 x3 + x2 + 9 ? ?

Primitive polynomials over F61

n p P (x) A(n, p, P ) B(n, p, P )
2 61 x2 + x+ 2 True True
3 61 x3 + x2 + 6 ? ?

Primitive polynomials over F67

n p P (x) A(n, p, P ) B(n, p, P )
2 67 x2 + x+ 12 True True
3 67 x3 + x2 + 6 ? ?

Primitive polynomials over F71

n p P (x) A(n, p, P ) B(n, p, P )
2 71 x2 + x+ 11 True True
3 71 x3 + x2 + 8 ? ?

Primitive polynomials over F73

n p P (x) A(n, p, P ) B(n, p, P )
2 73 x2 + x+ 11 True True
3 73 x3 + x2 + 5 ? ?
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Primitive polynomials over F79

n p P (x) A(n, p, P ) B(n, p, P )
2 79 x2 + x+ 3 True True
3 79 x3 + x2 + 2 ? ?

Primitive polynomials over F83

n p P (x) A(n, p, P ) B(n, p, P )
2 83 x2 + x+ 2 True True
3 83 x3 + x2 + 11 ? ?

Primitive polynomials over F89

n p P (x) A(n, p, P ) B(n, p, P )
2 89 x2 + x+ 6 True True
3 89 x3 + x2 + 6 ? ?

Primitive polynomials over F97

n p P (x) A(n, p, P ) B(n, p, P )
2 97 x2 + x+ 5 True True
3 97 x3 + x2 + 5 ? ?

Conclusion

In this paper, we introduced the new notions of n-cyclable groups and n-
brunnian groups of type I and II (see section 1). We then proved that the
groups SLn(Fp), PSLn(Fp), GLn(Fp), and PGLn(Fp) enjoy a structure of
n-brunnian groups of type I for p prime and n ≥ 3 (see section 2). In
section 3, we state two conjectures, namely the conjectures A(n, p, P ) and
B(n, p, P ) about primitive polynomials over Fp, and we give some evidence
in section 4.

Unfortunately, the conjectures A(n, p, P ) and B(n, p, P ) do not charac-
terize primitive polynomials, because, they are both true for the polynomial
of Example 3.3.

It is altogether interesting to find some significant counterexamples, or
to find a conceptual proof of them.
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Résumé

Dans ces notes nous proposons une nouvelle approche de la con-
tractibilité pour les ω-opérades colorées telle que définis dans l’article
publié dans les Cahiers de Topologie et de Géométrie Différentielle
Catégorique (2011), volume 4. Nous proposons aussi une autre façon
de construire la monade des ω-opérades contractiles colorées libres.

Abstract

In this short notes we propose a new notion of contractibility for
coloured ω-operad defined in the paper published in Cahiers de Topolo-
gie et de Géométrie Différentielle Catégorique (2011), volume 4. Also
we propose an alternative direction to build the monad for free con-
tractible coloured ω-operads,

Keywords. ω-operads, weak higher transformations .

Mathematics Subject Classification (2010). 18B40,18C15, 18C20, 18G55,

20L99, 55U35, 55P15.

Introduction

Steve Lack has suggested to me to use the more common name weak higher
transformations instead of Non-strict cells which were defined in [2]. More
precisely, in this article we defined a coglobular complex of ω-operads

B0
δ 1

0 //

κ1
0

// B1
δ 2

1 //

κ2
1

// B2 //// Bn−1
δ n

n−1 //
κn

n−1

// Bn
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such that algebras for B0 are the weak ω-categories, algebras for B1 are the
weak ω-functors, algebras for B2 are the weak ω-natural transformations, etc.
However André Joyal has pointed out to us that there are too many coherence
cells for each Bn when n > 2, and gave us a simple example of a natural
transformation which cannot be an algebra for the 2-coloured ω-operad B2.
In this section we propose a notion of contractibilty, slightly different from
those used in [1, 2]. This new approach excludes the counterexample of
André Joyal.

Furthermore the main theorem of the section 6 in [2] is false. I am indebted
to Michael Batanin and to Mark Weber, to have shown us a counterexample
which invalid this result. However this false theorem has no impact to main
ideas of the article [2]. I am indebted to Michael Batanin who told us that the
technics of the coproduct of monads was adapted to substitute technically the
role of this false theorem, and to Steve Lack who gave us the precise result
and references that we needed for this correction.

Acknowledgement. I am grateful to André Joyal, Michael Batanin, and
to Mark Weber to have pointed out to me these imperfections.

Corrections

Here T design the monad of strict ω-categories on ω-graphs. Notions of T-
graphs, T-categories, constant ω-graphs, can be found in [2, 5]. The category
T -Grp,c of pointed T -graphs over constant ω-graphs, and the category T -Catc
of T-categories over constant ω-graphs are both defined in [2].

Definition 1 For any T-graph (C,d,c) over a constant ω-graph G, a pair of
cells (x,y) of C(n) has the the loop property if: sn

0(x) = sn
0(y) = tn

0(x) = tn
0(y)2

Remark 1 If G is a constant ω-graph (see section 1.4 of the article [2]) A
p-cell of G is denoted by g(p) and this notation has the following meaning:
The symbol g indicates the "colour", and the symbol p point out that we must
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see g(p) as a p-cell of G, because G has to be seen as an ω-graph even though
it is just a set. 2

Definition 2 For any T-graph (C,d,c) over a constant ω-graph G, we call
the root cells of (C,d,c), those cells whose arities are the reflexivity of a
0-cell g(0) of G, where here "g" indicates the colour (see section 1), or in
other words, those cells x ∈C(n) (n > 1) such that d(x) = 10

n(g(0)). 2

Here 10
n design the reflexivity operators of free strict ω-category T(G)

(see also [2]). These notions of root cells and loop condition are the keys for
our new approach to contractibility. These observations motivate us to put
the following definition of what should be a contractible T-graphs (C,d,c).
For each integers k > 1 let us note C̃(k) = {(x,y) ∈ C(k)×C(k) : x‖y and
d(x) = d(y), and if also (x,y) is a pair of root cells then they also need to
verify the loop property: sk

0(x) = tk
0(y)}. Also we denote C̃(0) = {(x,x) ∈

C(0)×C(0)}.

Definition 3 A contraction on the T-graph (C,d,c), is the datum, for all

k ∈ N, of a map C̃(k)
[,]k−→C(k+1) such that

• s([α,β ]k) = α, t([α,β ]k) = β ,

• d([α,β ]k) = 1d(α)=d(β ). 2

A T-graph which is equipped with a contraction will be called contractible and
we use the notation (C,d,c;([, ]k)k∈N) for a contractible T-graph. Nothing
prevents a contractible T-graph from being equipped with several contrac-
tions. So here CT -Grc is the category of the contractible T-graphs equipped
with a specific contraction, and morphisms of this category preserves the
contractions. One can also refer to the category CT -Grc,G, where here con-
tractible T-graphs are only taken over a specific constant ∞-graph G. A
pointed contractible T-graphs (see section 1.2 of the article [2]) is denoted
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(C,d,c; p,([, ]k)k∈N), and morphisms between two pointed contractible T-
graphs preserve contractibilities and pointings. The category of pointed con-
tractible T-graphs is denoted CT -Grp,c. The categories T -Grp,c and CT -Grp,c

are both locally finitely presentable and the forgetful functor V

H aV : CT -Grp,c // T -Grp,c

is monadic, with induced monad TC is finitary.
Also the category T -Catc is locally finitely presentable and the forgetful

functor U
M aU : T -Catc // T -Grp,c

is monadic, with induced monad TM is finitary.
A T-category is contractible if its underlying pointed T-graph lies in

CT -Grp,c. Morphisms between two contractible T-categories are morphisms
of T-categories which preserve contractibilities. Let us write CT -Catc for the
category of contractible T-categories. Also consider the pullback in CAT

CT -Grp,c ×
T -Grp,c

T -Catc
p1 //

p2

��

T -Catc

U

��
CT -Grp,c V

// T -Grp,c

We have an equivalence of categories

CT -Grp,c ×
T -Grp,c

T -Catc 'CT -Catc

Furthermore we have the general fact (which can be found in the articles
[3, 4])

Proposition 1 (Max Kelly) Let K be a locally finitely presentable category,
and Mnd f (K) the category of finitary monads on K and strict morphisms of
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monads. Then Mnd f (K) is itself locally finitely presentable. If T and S are
object of Mnd f (K), then the coproduct T qS is algebraic, which means that
KT ×

K
KS is equal to KTqS and the diagonal of the pullback square

KT ×
K

KS p1 //

p2

��

KS

U

��
KT

V
// K

is the forgetful functor KTqS −→ K. Furthermore the projections KT ×
K

KS −→ KT and KT ×
K

KS −→ KS are monadic. 2

Remark 2 According to Steve Lack this result can be easily generalise for
monads having ranks in the context of locally presentable category. 2

We apply this proposition to the diagram above which shows that CT -Catc
is a locally presentable category, and also that the forgetful functor

CT -Catc
O // T -Grp,c

is monadic. Denote by F the left adjoint of O. If we apply the functor F to
the coglobular complex of T -Grp,c build in the article [2]

C0
δ 1

0 //

κ1
0

//C1
δ 2

1 //

κ2
1

//C2 ////Cn−1
δ n

n−1 //
κn

n−1

//Cn

we obtain the coglobular complex of the coloured ω-operads of the weak
higher transformations with our corrected notion of contractibility

B0
C

δ 1
0 //

κ1
0

// B1
C

δ 2
1 //

κ2
1

// B2
C

// // Bn−1
C

δ n
n−1 //

κn
n−1

// Bn
C

Remark 3 It is evident that the ω-operad B0
C of Michael Batanin is still

initial in the category of contractible ω-operads equipped with a composition
system, where our new approach of contractibility is considered. 2

KACHOUR - CORRECTIONS TO: OPERADIC DEFINITION OF NON-STRICT CELLS

- 79 -



References

[1] Michael Batanin, Monoidal Globular Categories As a Natural Environ-
ment for the Theory of Weak-n-Categories, Advances in Mathematics
(1998), volume 136, pages 39–103.

[2] Camell Kachour, Operadic Definition of the Non-strict Cells, Cahiers
de Topologie et de Géométrie Différentielle Catégorique (2011), vol-
ume 4, pages 1–48.

[3] G.M.Kelly, A unified treatment of transfinite constructions for free
algebras, free monoids, colimits, associated sheaves, and so on, Bul-
letin of the Australian Mathematical Society (1980), volume 22, pages
1–83.

[4] Steve Lack, On the monadicity of finitary monads, Journal of Pure and
Applied Algebra (1999), volume 140, pages 65–73.

[5] Tom Leinster, Higher Operads, Higher Categories, London Mathemat-
ical Society Lecture Note Series, Cambridge University Press (2004),
volume 298.

Camell KACHOUR

Department of Mathematics, Macquarie University
North Ryde, NSW 2109 Australia.
Phone: 00 612 9850 8942
Email:camell.kachour@gmail.com

KACHOUR - CORRECTIONS TO: OPERADIC DEFINITION OF NON-STRICT CELLS

- 80 -

mailto:camell.kachour@gmail.com
camell.kachour@gmail.com

