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Abstract: In this paper we describe two ways on which (co)fibred
categories give rise to bisimplicial sets. The fibred nerve is a natural
extension of Segal’s classical nerve of a category, and it constitutes
an alternative simplicial description of the homotopy type of the
total category. If the fibration is splitting, then one can construct
the cleaved nerve, a smaller variant which emerges from a closed
cleavage. We interpret some classical theorems by Thomason and
Quillen in terms of our constructions, and use the fibred and cleaved
nerve to establish new results on homotopy and homology of small
categories.

Résumé: Dans cet article on décrit deux façons par lesquelles des
catégories (co)fibrées donnent lieu à des ensembles bisimpliciaux. Le
nerf fibré est une extension naturelle de la notion du nerf de Segal
d’une catégorie. Si la fibration est scindée, alors on peut construire
le nerf clivé, une petite variante qui émerge d’un clivage fermé. On
interprète quelques théorèmes classiques de Thomason et Quillen
en termes de cette construction, et on utilise le nerf fibré et clivé
pour établir de nouveaux résultats en théorie de l’homotopie et de
l’homologie de petites catégories.

2000 MSC: 18D30; 18G30; 55U35.
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Introduction

The classifying space functor associates to every small category C a
topological space BC, namely the geometric realization of its nerve
[15]. The classical homotopy theory of categories is lifted from spaces
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by using this functor. For instance, a weak equivalence between small
categories is a map f : C → C ′ such that Bf is a homotopy equivalence.

A fundamental fact concerning this construction is that for every
space X there is a small category C such that X and BC have the
same weak homotopy type (cf. [11, VI,3.3.1], see also [6]). This way
small categories constitute models for homotopy types, and one seeks
to characterize the discrete invariants of X in terms of its underlying
category C.

It is natural to expect that a small category C endowed with extra
structure would give rise to a space BC equipped with some additional
data. That is our motivation for introducing the fibred nerve and the
cleaved nerve. These are bisimplicial sets with the homotopy type of the
total category of a Grothendieck fibration, and constitute combinatorial
descriptions that preserve in some sense the fibred structure.

By a Grothendieck fibration, or just a fibration, we mean what is
usually called a cofibred category. We adopt this terminology for sim-
plicity, and to emphasize the analogy with the topological case. Other
notions of fibrations between small categories have been studied, for
instance, in [13, 7].

Grothendieck fibrations have played an important role in homotopy
theory. Among others, they were used by Thomason to describe homo-
topy colimits of small categories [16], and Quillen’s Theorems A and B
– that lead to long exact sequences of higher K-theory groups – may
be stated in terms of Grothendieck fibrations [14]. We believe that the
nerve constructions studied here will help in further applications, such
as explicit constructions of K(G, n) categories and Postnikov towers in
Cat.

Organization

Section 1 deals with preliminaries. We fix some notations and recall
some results about the classifying space functor and a key proposition
on simplicial sets (1.2.1). The reader is referred to [14] for an intro-
duction to homotopy of small categories, and to [8] for a comprehensive
treatment of bisimplical objects.

The principal reference on Grothendieck fibrations is [9, VI]. A more
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recent one is [3]. In section 2 we set the definitions, recall some facts
about fibrations and develop some others which will be needed later,
such as the correspondence 2.2.3.

In section 3 we introduce both the fiber and the cleaved nerve, in the
same fashion as the classical nerve is defined. We establish some fun-
damental facts (cf. 3.1.2, 3.2.2) and prove that for a splitting fibration
the two constructions yield the same homotopy type (cf. 3.2.3).

We prove that the fibred nerve is homotopy equivalent to the classic
nerve in section 4 (cf. 4.1.3). From these we derive the original and
the relative versions of Quillen’s theorem A. In addition, we show how
to recover the classic nerve of a splitting fibration using the codiagonal
construction over a bisimplicial set (cf. 4.3.3).

The last section summarizes applications and relations between the
fibred nerve and some other constructions.

• The cleaved nerve and Bousfield-Kan construction for homotopy
colimits are related in 5.1.1. We derive Thomason’s theorem on
homotopy colimits of small categories as a consequence.

• We develop a Leray-Serre style spectral sequence (cf. 5.2.1) re-
lating the homology groups of the base, the fibers and the total
category. We deduce as a corollary a homology version of Quillen’s
Theorem A (cf. 5.2.3).

• We introduce Quillen fibrations, which are families of categories
with the same homotopy type, and show that Quillen’s Theorem
B might be interpreted as the following conceptual fact: the fibred
classifying space functor maps Quillen fibrations into quasifibra-
tions (5.3.1).

• Finally, we associate to a category endowed with a group action
a splitting fibration, and prove that its cleaved nerve is a twisted
cartesian product as defined in [12].
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1 Preliminaries

We denote by Cat, SSet and Top the categories of small categories, sim-
plicial sets and topological spaces, respectively. If C is a small category,
then we denote by ob(C) its set of objects and by fl(C) its set of ar-
rows. As usual we denote the category of (non-empty) finite ordinals
by ∆ and by n = {0, . . . , n}, the ordinal with n+ 1 elements. We write
I for the simplicial set represented by 1. Sometimes n will be regarded
as a category in the usual way.

1.1 About homotopy of small categories

Given C a small category, its nerve NC is the simplicial set whose
n-simplices are the chains

c = (c0 → c1 → ...→ cn)

of n composable arrows in C, and its classifying space BC is the geo-
metric realization of its nerve, namely BC = |NC|. It is a CW-complex
with one n-cell for each chain of n composable arrows in C which does
not involve an identity [15].

A functor f : C → C ′ in Cat is a weak equivalence if Bf is a
homotopy equivalence in Top, and a small category C is contractible if
BC is so. From the homeomorphism B(C × I) ∼= BC × BI it follows
that a functor C×I → C ′ induces a continuous map BC× [0, 1]→ BC ′

and therefore a natural transformation h : f ⇒ g : C → C ′ yields a
homotopy Bh : Bf ⇒ Bg : BC → BC ′. This leads to the following
results [14].

1.1.1 Lemma. If a functor admits an adjoint, then it is a weak equiv-
alence.

1.1.2 Lemma. A category having an initial or final object is con-
tractible.
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It is well known that given a commutative triangle in Top, if two
of the three arrows involved are weak homotopy equivalences, then so
does the third. It follows immediately that the same statement holds
for weak equivalences in SSet and weak equivalences in Cat. We will
refer to this fact as the 3-for-2-property.

1.2 About bisimplicial sets

The nerve of a category is a simplicial set. We shall extend this concept
by constructing the fibred nerve of a fibration, which is a bisimplicial
set. A bisimplicial set is a functor K : ∆◦×∆◦ → Set, where ∆◦ denotes
the opposite category of ∆. A bisimplicial set K can be regarded as a
family of sets {Km,n}m,n≥0 equipped with horizontal and vertical faces
and degeneracies operators satisfying the simplicial identities, and such
that the horizontal and vertical operators commute [8]. We denote by
bSSet the category of bisimplicial sets and morphisms between them.

A bisimplicial set is the same as a simplicial object in SSet. Given
K a bisimplicial set, let {m 7→ Km,n} be the n-th vertical simplicial set,
which is obtained from K by setting the second coordinate equal to n.
The m-th horizontal simplicial set {n 7→ Km,n} is defined analogously.
We denote by d(K) the diagonal of K, namely the simplicial set which
is the composition of K with the diagonal functor ∆◦ → ∆◦ ×∆◦.

We define the geometric realization of K as the space |d(K)|, which
is naturally homeomorphic to the spaces obtained by first realizing on
one direction and then on the other [14, p.10].

|n 7→ |m 7→ Km,n|| ∼= |d(K)| ∼= |m 7→ |n 7→ Km,n||

If f : K → L is a map of bisimplicial sets, then we say that it is
a weak equivalence if its geometric realization f∗ : |d(K)| → |d(L)| is
a homotopy equivalence. The following is a very useful criterion to
establish when a map is a weak equivalence (see e.g. [4, XII,2.3] or [8,
IV,1.9]).

1.2.1 Proposition. Let f : X → Y be a map in bSSet such that for
all n the induced map f∗ : {m 7→ Xm,n} → {m 7→ Ym,n} is a weak
equivalence in SSet. Then f is a weak equivalence.

Del HOYO - ON THE HOMOTOPY TYPE OF A (CO)FIBRED CATEGORY

- 86 -



2 Fibrations

If u : A→ B is a map between small categories, we say that f ∈ fl(A) is
over φ ∈ fl(B) if u(f) = φ, and we say that f ∈ fl(A) is over b ∈ ob(B)
if u(f) = idb. Given b ∈ ob(B), the fiber ub is the subcategory of A of
arrows over b, and the homotopy fiber u/b is the category whose objects
are pairs (a, φ), a ∈ ob(A) and φ : u(a)→ b ∈ fl(B), and whose arrows
f : (a, φ)→ (a′, φ′) are maps f : a→ a′ in A such that φ′u(f) = φ. By
an abuse of notation we shall write Ab and A/b instead of ub and u/b.
Note that there is a canonical fully faithful inclusion Ab → A/b, defined
by a 7→ (a, idu(a)).

2.1 Basic definitions and examples

Let p : E → B a map between small categories. An arrow f : e→ e′ in
E is said to be cartesian if it satisfies the following universal property:
for all g : e→ e′′ over p(f) there is a unique h : e′ → e′′ over p(e′) such
that hf = g.

e

∀g &&MMMMMMMMM
f // e′

∃!h���
�

e′′

p(e)
p(f) // p(e′)

A map p : E → B is a prefibration if for any e object of E and
any φ : p(e) → b arrow of B there is a cartesian arrow f : e → e′ over
φ. It is not hard to see that p : E → B is a prefibration if and only
if the inclusion Eb → E/b of the actual fiber into the homotopy fiber
admits a left adjoint for all objects b in B. Therefore, if p : E → B is a
prefibration then the inclusion Eb → E/b is a weak equivalence for all
b (cf. 1.1.1).

A prefibration p : E → B is called a fibration if cartesian arrows are
closed under composition. We say that B is the base category and that
E is the total category of the fibration.

Examples.
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• The projection π : F × B → B is a fibration, since the arrows
(id, φ) ∈ fl(F ×B) are cartesian.

• Given B a small category and F : B → Cat a functor, the pro-
jection F o B → B is a fibration, whose fibers are the values of
F . Here F oB denotes the Grothendieck construction over F (see
e.g. section 5.1).

• We denote by BI the category of functors I → B. Its objects are
the arrows of B and its maps (u, v) : f → g are the commutative
squares vf = gu in B. The functor cod : BI → B which assigns
to each arrow its codomain is a fibration. The fibers of cod are
the slice categories B/b.

• If A ⊂ B is a coideal (cf. [10]), then the inclusion A → B is a
fibration, whose fibers are either ∅ or pt, the final object of Cat.

• Given p : E → B, an isomorphism f ∈ fl(E) is always cartesian.
Thus, a functor between groupoids that is onto on arrows is a
fibration.

The cartesian arrows in a fibration satisfy the following stronger
universal property (cf. [3]).

2.1.1 Lemma. Let p : E → B be a fibration and f : e→ e′ a cartesian
arrow in E. Given g : e → e′′ such that p(g) = φp(f) for some φ :
p(e′)→ p(e′′), there exists a unique arrow h : e′ → e′′ over φ satisfying
hf = g.

e

∀g ++XXXXXXXXXXXXXXXXXXX
f // e′ ∃!h

((PPPPP

e′′

p(e)
p(f) // p(e′)

φ // p(e′′)

Moreover, h is cartesian if and only if g is so.

Given a prefibration p : E → B, a cleavage Σ is a choice of cartesian
arrows. More precisely, a cleavage is a subset Σ ⊂ fl(E) whose elements
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are cartesian arrows and such that for all e ∈ ob(E) and φ : p(e)→ b ∈
fl(B) there exists a unique arrow Σe,φ : e→ e′ in Σ over φ.

The cleavage Σ is said to be normal if it contains the identities, and
is said to be closed if it is closed under composition. Every prefibration
admits a normal cleavage, but not every prefibration admits a closed
one. A fibration which admits a closed cleavage is called a splitting
fibration.

Example. Let E,B be groups, regarded as categories with a single ob-
ject, and let p : E → B be a map between them. Then every map of
E is cartesian as it is an isomorphism. It follows that p is a fibration if
and only if p is an epimorphism of groups. A cleavage Σ for p is a set-
theoretic section for p. The cleavage is normal if Σ preserves the neutral
element, and the cleavage is closed if it is a morphism of groups. This
example shows in particular that “only a few” fibrations are splitting.

From here on we will assume that all the cleavages are normal. The
following lemma, whose proof is straight-forward, gives an alternative
description of closed cleavages.

2.1.2 Lemma. A cleavage Σ is closed if and only if f ∈ Σ and f ′f ∈ Σ
imply that f ′ ∈ Σ for all pair f, f ′ of composable arrows of E.

Next we discuss two notions of morphism between fibrations, and
describe the corresponding categories.

Given ξ = (p : E → B) and ξ′ = (p′ : E ′ → B′) fibrations, a fibred
map (f, g) : ξ → ξ′ is a pair f : E → E ′, g : B → B′ of maps in Cat such
that f preserves cartesian arrows and p′f = gp. We denote by Fib(ξ, ξ′)
the set of fibred maps ξ → ξ′, and by Fib the category of fibrations and
fibred maps between them.

Now suppose that cleavages Σ and Σ′ of ξ and ξ′ are given. A cleaved
map (f, g) : (ξ,Σ) → (ξ′,Σ′) is a fibred map (f, g) : ξ → ξ′ such that
f(Σ) ⊂ Σ′. By Cliv((ξ,Σ), (ξ′,Σ′)) we mean the set of cleaved maps
(ξ,Σ) → (ξ′,Σ′), and by Cliv the category of pairs (ξ,Σ) and cleaved
maps.

Finally, we denote by Esc the full subcategory of Cliv whose objects
are the pairs (ξ,Σ) with Σ a closed cleavage of ξ.
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We have the following diagram, where the first is a full inclusion and
the arrow Cliv→ Fib is the forgetful functor (ξ,Σ) 7→ ξ.

Esc ⊂ Cliv→ Fib ⊂ CatI

With the notations of above, we will say that f : E → E ′ is a fibred
map over B if B = B′ and (f, idB) : ξ → ξ′ is a fibred map. A cleaved
map over B is defined similarly.

2.2 Fibration associated to a map

Given u : A→ B a map between small categories, we define the mapping
category Eu as the fiber product A ×B BI over u and dom : BI → B
in Cat. The objects of Eu are pairs (a, u(a) → b), with a an object of
A and u(a) → b an arrow of B, and the arrows are pairs (f, g) which
induce a commutative square in B.

The functor u factors through Eu as πi, where i is the inclusion
a 7→ (a, idu(a)), and π is the projection (a, u(a)→ b) 7→ b.

A
i //

u

66Eu π // B

The functor i is fully faithful and admits a right adjoint, the retraction
r : Eu → A, which maps (a, u(a)→ b) into a. This implies the following
(cf. 1.1.1).

2.2.1 Lemma. The map i : A→ Eu is a weak equivalence.

The functor π is a fibration. The set Σu ⊂ fl(Eu) of arrows whose
first coordinate is an identity

Σu = {(ida, φ) : (a, u(a)→ b)→ (a, u(a)→ b′)},

is a closed cleavage for π, so it is a splitting fibration. We say that
π : Eu → B is the fibration associated to u, and we endow it with the
cleavage Σu. Note that if b is an object of B, then the fiber Eu

b of π is
isomorphic to the homotopy fiber A/b of u.

Except in very special situations, the retraction r : Eu → A does
not commute with the projections, namely (r, idB) is not a map in CatI .
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We shall describe how to replace r by others well-behaved retractions
when the map u is already a fibration.

Let p : E → B be a fibration, and let π : Ep → B be its associated
fibration. We say that a map s : Ep → E is good if si = idE, ps = π
and s preserves cartesian arrows.

E
i //

p ��;;;; Ep

s
jj

π�������

B

If s is good, then s is a fibred map over B.

2.2.2 Lemma. A good map s is a weak equivalence, and it induces a
weak equivalence s : Ep

b → Eb for all object b in B.

Proof. The first statement holds by 2.2.1 since s is left inverse to i.
About the second, note that under the isomorphism Ep

b
∼= E/b the

induced map Ep
b → Eb identifies with a left inverse to the inclusion

Eb → E/b, which is a weak equivalence indeed.

2.2.3 Proposition. Given p : E → B a fibration, there is a 1-1 corre-
spondence between (normal) cleavages of E and good maps s : Ep → E.

Proof. Let s : Ep → E be a good map. For each e ∈ ob(E) and
φ : p(e) → b ∈ fl(B) the arrow (ide, φ) : (e, id : p(e) → p(e)) → (e, φ :
p(e) → b) is cartesian in Ep. Therefore, s(ide, φ) is a cartesian arrow
of E over φ with domain s(i(e)) = e. It follows that the family Σ =
{s(ide, φ)}e,φ is a cleavage of E, and it is normal because s(ide, idp(e)) =
s(i(ide)) = ide.

Conversely, if Σ is a normal cleavage of E, then we shall construct
a good map s = s(Σ) : Ep → E as follows. An object (e, φ : p(e) → b)
in Ep is mapped by s into the codomain of Σe,φ ∈ ob(E). An arrow
(α, β) : (e, φ : p(e) → b) → (e′, φ′ : p(e′) → b′) of Ep is mapped
by s into the unique arrow over β which makes the following diagram
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commutative.
e α //

Σe,φ
%%KKKKKK e′ Σe′,φ′

%%LLLLLL

s(e)
s(α,β)

//______ s(e′)

p(e)
p(α) //

φ %%KKKKKK
p(e′)

φ′

%%LLLLLL

b
β

// b′

The uniqueness of s(α, β) follows from 2.1.1. It also follows from 2.1.1
that s preserves cartesian arrows. As it respects identities and compo-
sitions, s is indeed a functor, and ps = π by construction. The map s
defined this way is a retraction for i : E → Ep because Σ is normal.

It is straightforward to check that these procedures are mutually
inverse.

If E is endowed with a cleavage Σ and s : Ep → E is a good map
such that s(Σu) ⊂ Σ, then we say that s is very good. If s is very good,
then s is a cleaved map over B.

2.2.4 Corollary. If s and Σ are related as in 2.2.3, then Σ is closed if
and only if the map s is very good.

Proof. Let Σ be a closed cleavage and s its induced good map. If (ide, β)
is an arrow in Σu, then the diagram of above gives s(ide, β)Σe,φ = Σe,βφ.
It follows from 2.1.2 that s(ide, β) ∈ Σ and hence the map s is very
good.

On the other hand, given Σ a cleavage which is not closed, by 2.1.2
one can find f and f ′ cartesian arrows of E such that f ′ = gf with
g /∈ Σ. Since g = s(id, p(g)) it follows that s is not very good.

3 Bisimplicial sets from fibrations

3.1 Fibred nerve

For m,n > 0 let �m,n denotes the fibration pr2 : m × n → n. These
are the fibrations which play the role of simplices in Fib. They define a
covariant functor � : ∆×∆→ Fib.
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Given ξ = (p : E → B) a fibration, we define the fibred nerve of ξ
as the bisimplicial set Nfξ whose m,n-simplices are given by

Nfξm,n = Fib(�m,n, ξ).

We define the fibred classifying space Bfξ as the geometric realization
|d(Nfξ)| of the fibred nerve. These constructions are functorial. For
short, we shall write NfE and BfE instead of Nfξ and Bfξ.

The fibred nerve extends the classical nerve in the sense that there
exists a natural isomorphism

d(Nf (idB)) = d(NfB) ∼= NB.

A m,n-simplex of NfE consists of a pair s = (s0, s1), where s0 :
m×n→ E and s1 : n→ B are such that the induced square commutes.
We say that s1 ∈ NBn is the base of the simplex s, and that s0|pr−1

2 (0) ∈
(NEb0)m is the mast of s. Of course, s0 completely determines s.

We visualize s as an array of arrows of E going down and right.
The horizontal arrows are cartesian and the vertical arrows are over
identities.

e0,0 //

��

e0,1 //

��

. . . // e0,n

��
e1,0 //

��

e1,1 //

��

. . . // e1,n

��. . .
��

. . .
��

. . . . . .
��

em,0 // em,1 // . . . // em,n

b0
// b1

// . . . // bn

Sometimes we will write esi,j to denote s0((i, j)), and esi,j → esi′,j′ to
denote s0((i, j)→ (i′, j′)).

The next technical result plays a key role hereafter. Fix b ∈ NBn,
and let NfEb be the simplicial set whose simplices are those of NfE
with base b, with faces and degeneracies in the vertical direction.

3.1.1 Lemma. The map µ : NfEb → NEb0 which assigns to each
simplex s its mast is a weak equivalence of simplicial sets.
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Proof. We choose a cleavage Σ and construct a homotopy inverse ν :
NEb0 → NfEb for µ as follows. The map ν associates to a simplex
a the unique simplex s = ν(a) with mast a and base b and such that
esi,j → esi,j+1 ∈ Σ for all i, j. It is clear that µν = id. We shall describe
a simplicial homotopy h : NfEb × I → NfEb between νµ and id, which
induces a continuous homotopy |h| and completes the proof.

We have that (NfEb × I)m = (NfEb)m × Im, and that Im = {t :
m → 1}. Given (s, t) ∈ (NfEb × I)m we define h(s, t) as the unique
m-simplex of NfEb with the same mast as s and such that

e
h(s,t)
i,j → e

h(s,t)
i,j+1 =

{
esi,j → esi,j+1 if t(i) = 0

e
νµ(s)
i,j → e

νµ(s)
i,j+1 if t(i) = 1

It is easy to see that h defined as above is a simplicial map, that h(s, 0) =
s and that h(s, 1) = νµ(s).

The main feature of the fibred nerve is that it satisfies the following
homotopy preserving property.

3.1.2 Proposition. Let ξ = (p : E → B) and ξ′ = (p′ : E ′ → B) be
fibrations, and let f : E → E ′ be a fibred map over B. If f : Eb → E ′b
is a weak equivalence for all objects b of B, then f∗ : NfE → NfE

′ is a
weak equivalence.

Proof. By proposition 1.2.1 it suffices to prove that the map f∗ : {m 7→
NfEm,n} → {m 7→ NfE

′
m,n} is a weak equivalence for each n. Faces

and degeneracies in direction m preserve the base of a simplex, thus we
have decompositions

{m 7→ NfEm,n} =
∐

b=(b0→···→bn)

NfEb

and
{m 7→ NfE

′
m,n} =

∐
b=(b0→···→bn)

NfE
′
b.

Moreover, f∗ also preserves the base of a simplex, and therefore it can be
written as the coproduct of the maps f∗ : NfEb → NfE

′
b. Now consider
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the following commutative square.

NfEb
f∗ //

µ

��

NfE
′
b

µ

��
NEb0

f∗ // NE ′b0

The vertical maps are weak equivalences by 3.1.1, and the bottom one
is so by hypothesis. It follows from the 3-for-2 property that the upper
one is also a weak equivalence and thus the proposition follows.

3.2 Cleaved nerve

The fibration �m,n is splitting, since its unique cleavage Σ = {(id, α)} is
closed. We consider �m,n as equipped with this cleavage, and we obtain
a covariant functor � : ∆×∆→ Esc ⊂ Cliv.

Given ξ = (p : E → B) a fibration endowed with a cleavage Σ, we
define the cleaved nerve of (ξ,Σ) as the bisimplicial set Nc(ξ,Σ) whose
m,n-simplices are given by

Nc(ξ,Σ)m,n = Cliv(�m,n, (ξ,Σ))

We define the cleaved classifying space of Bc(ξ,Σ) as the geometric re-
alization |d(Nc(ξ,Σ))| of the cleaved nerve. These constructions are
functorial. As before, we shall write NcE and BcE instead of Nc(ξ,Σ)
and Bc(ξ,Σ) when there is no place to confusion.

The cleaved nerve extends the classical nerve in the sense that there
is a natural isomorphism

d(Nc(idB)) = d(NcB) ∼= NB,

where id : B → B is equipped with the cleavage Σ = fl(B).
Note that, if we forget the cleavage Σ, then we can form the fibred

nerve NfE and there is a natural inclusion in bSSet

i : NcE → NfE.
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3.2.1 Lemma. Let ξ = (p : E → B) be a fibration with cleavage Σ. If
s and s′ are simplices in NcE with the same base and the same mast,
then s = s′. If Σ is closed, then for all b ∈ NBn and a ∈ (NEb0)m there
exists a unique m,n-simplex s ∈ NcE with base b and mast a.

Proof. Note that (esi,0 → esi,1) = (es
′
i,0 → es

′
i,1) since they are arrows in

Σ over b0 → b1 with the same domain. We see that (esi,j → esi,j+1) =

(es
′
i,j → es

′
i,j+1) by iterating this argument. Finally, (esi,j → esi+1,j) =

(es
′
i,j → es

′
i+1,j) by the universal property of cartesian arrows. This proves

the first assertion.
It is not hard to see that there exists a unique simplex s ∈ NfE with

base b, mast a, and such that esi,j → esi,j+1 ∈ Σ for all i, j. If Σ is closed
then esi,j → esi,k ∈ Σ for all i, j, k and thus s is in NcE and the second
statement holds.

If the fibration is splitting, then NcE satisfies a homotopy preserving
property analogous to 3.1.2.

3.2.2 Proposition. Let ξ = (p : E → B) and ξ′ = (p′ : E ′ → B) be
splitting fibrations with closed cleavages Σ and Σ′, and let f : E → E ′

be a cleaved map over B. If f : Eb → E ′b is a weak equivalence for all
object b of B then f∗ : NcE → NcE

′ is a weak equivalence.

Proof. This is analogous to that of 3.1.2, using the restriction µ :
NcEb → NEb0 , which is also a weak equivalence by 3.2.1 – actually,
it is an isomorphism.

The following result asserts that the cleaved nerve suffices to describe
the homotopy type of the fibred nerve when the cleavage is closed.

3.2.3 Theorem. If ξ = (p : E → B) is a splitting fibration with closed
cleavage Σ, then the inclusion i : NcE → NfE is a weak equivalence.

Proof. Again by proposition 1.2.1, we only must show that for each n
the inclusion induces a weak equivalence i∗ : {m 7→ NcEm,n} → {m 7→
NfEm,n}. For fixed n, the map i∗ can be written as the coproduct of

i∗ : NcEb → NfEb
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where b runs over all n-simplices of NB. The composition µi∗ : NcEb →
NEb0 is an isomorphism by 3.2.1. It follows by 3.1.1 and the 3-for-2-
property that i∗ is a weak equivalence and thus the proposition.

If the cleavage Σ is not closed, then NcE and NfE do not necessarily
have the same homotopy type. Let us illustrate this with an example.

Example. Let E be the category obtained from the ordinal 3 by formally
inverting the arrow 2→ 3. Note that E has an initial element and hence
BE is contractible (cf. 1.1.2). We shall see E as the total category of
a fibration endowed with a cleavage Σ in such a way that NcE is not
contractible. Since d(NfE) and NE have the same homotopy type (see
4.1.3), we conclude that in this example the inclusion i : NcE → NfE
is not a weak equivalence.

Let B = 2 and let p : E → B be the surjection which twice takes the
value 2. Clearly it is a fibration. Let Σ be the normal cleavage which
contains the arrow 0→ 3.

0
∈Σ //

∈Σ --

1
∈Σ // 2

��
3

OO

If a simplex s ∈ NcE is not contained in the fiber E2, then its mast
must be trivial. Since a simplex in NcE is determined by its mast and
its base (cf. 3.2.1), it follows that the non-degenerate simplices of NcE
are 0→ 1, 0→ 3, 1→ 2 ∈ NcE0,1 and some others included in the fiber
E2. Thus, the loop 0 → 1 → 2 → 3 ← 0 gives a non-trivial element of
π1(BcE, 0) and therefore BcE is not contractible.

4 Relation with the classic nerve

4.1 The main result

Let ξ = (p : E → B) be a fibration, and let s = (s0, s1) be an element
of NfEn,n. The composition s0 ◦diag : n→ E gives a n-simplex of NE,
which we denote by

k(s) = (es0,0 → es1,1 → · · · → esn,n).
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This way we get a natural map of simplicial sets k : d(NfE) → NE
and its geometric realization k∗ : BfE → BE. We shall see that it is a
weak equivalence, so the fibred nerve becomes an alternative model for
the homotopy type of E.

We prove that k is a weak equivalence first for splitting fibrations
and then for any fibration.

4.1.1 Proposition. Let ξ = (p : E → B) be a splitting fibration, with
closed cleavage Σ. Then the map k|d(NcE) = ki : d(NcE) → NE is a
weak equivalence.

Proof. (Compare with [16, 1.2]) From 2.2.4 we know that the cleavage Σ
induces a very good map s : Ep → E and hence a commutative square

d(Nc(E
p))

s∗
��

ki // N(Ep)

s∗

��
d(NcE) ki // NE

by the naturality of k. In this square the vertical arrows are weak
equivalences (cf. 2.2.2, 3.2.2), so in order to prove that the bottom
arrow is a weak equivalence, by the 3-for-2-property it only remains to
show that the upper arrow is one as well. To do that, we define a map
l : d(NcE

p) → NEp, prove that there is a simplicial homotopy ki ∼= l,
and prove that l is a weak equivalence.

A simplex s = (s0, s1) of NcE
p
m,n is uniquely determined by its mast

and its base (cf. 3.2.1), so it essentially consists of the following data

s = (e0 → e1 → · · · → em, p(em)→ b0 → b1 → · · · → bn).

For i = 0, . . . ,m, j = 0, . . . , n, we have esi,j = (ei, p(ei) → bj), with
all the arrows induced by the sequence of above. Given i = 0, . . . ,m
we define esi,−1 as the object (ei, p(ei) → p(em)) of Ep induced by s.
These new objects lay at the mast of the following simplex of NcE

p
m,n+1

induced by s.

s̃ = (e0 → e1 → · · · → em, p(em)
id−→ p(em)→ b0 → b1 → · · · → bn)
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Using s̃ we define l : d(NcE
p)→ NEp by

l(s) = (es0,−1 → es1,−1 → · · · → esn,−1).

In the same fashion, the homotopy h : d(NcE
p)× I → NEp is given by

h(s, t) = (es0,−1 → · · · → esi−1,−1 → esi,i → · · · → esn,n)

where s ∈ NcE
p
n,n, t ∈ In, h(s, t)j = esj,−1 if t(j) = 0 and h(s, t)j = esj,j

if t(j) = 1. One verifies that h is a map, that h(s, 0) = l(s) and that
h(s, 1) = ki(s).

Finally, let us prove that l is a weak equivalence. We regard NEp as
a bisimplicial set constant in direction n, so NEp

m,n = NEp
m. The map

l is the diagonalization of a bisimplicial map L : NcE
p → NEp, defined

with the same formula than l. The m-th component Lm,− of L can be
identified with the coproduct∐

e0→···→em

N(p(em)/B)→
∐

e0→···→em

pt

which is a weak equivalence because p(em)/B has an initial element and
therefore is contractible (1.1.2). The map L is a weak equivalence by
1.2.1 and thus the result.

4.1.2 Corollary. If ξ = (p : E → B) is a splitting fibration, then
k : d(NfE)→ NE is a weak equivalence.

Proof. Fix a closed cleavage Σ and then use 3.2.3 and 4.1.1.

Now we extend 4.1.2 to a non-necessarily splitting fibration.

4.1.3 Theorem. If ξ = (p : E → B) is a fibration, then the map
k : d(NfE)→ NE is a weak equivalence.

Proof. Let Σ be a cleavage of ξ. The good map s : Ep → E induced by
Σ (cf. 2.2.3) gives a commutative square

d(NfE
p)

k
//

s

��

NEp

s

��
d(NfE)

k
// NE
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Since the fibration Ep → B is always splitting, it follows from 4.1.2
that the upper arrow is a weak equivalence. The vertical arrows are
also weak equivalences (cf. 2.2.2, 3.1.2) and then the result follows from
the 3-for-2-property.

Example. The surjection s : 2 → 1 which takes the value 1 twice is a
fibration. Down below we show the spaces BfE and BE. The map k
is in this case the obvious inclusion.

�
�

�
�
�
�

-

BE
k

BfE

0 1

2

0 1

2

Even when this example is quite simple, it is useful to understand some
of the differences between the two constructions. Many of the diagonal
arrows in the total category do not provide relevant homotopy informa-
tion, and the fibred nerve omits them.

The cleaved nerve is smaller than the fibred nerve, and therefore a
more effective codification of the homotopy type of the total category.
On the other hand, it only works when the fibration is splitting, while
the fibred nerve is useful for any fibration.

4.2 Quillen’s Theorem A and its relative version

Quillen’s Theorem A states sufficient conditions for a functor to be a
weak equivalence. It was proved to be very useful not only in the work
of Quillen but also in many other situations. We derive it here from our
framework.

The good behaviour of fibred nerve with respect to homotopy (cf.
3.1.2) together with theorem 4.1.3 gives the following result.

4.2.1 Proposition. If f : E → E ′ is a fibred map over B such that
f : Eb → E ′b is a weak equivalence for all object b of B, then f is a weak
equivalence.

We deduce both Theorem A and its relative version from this propo-
sition.
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4.2.2 Corollary (Relative Quillen’s Theorem A). Let u : A → B and
u′ : A′ → B be small categories over B. If f : A → A′ is a map over
B such that the induced map A/b → A′/b is a weak equivalence for all
b ∈ ob(B), then f is a weak equivalence.

Proof. Consider the following commutative square of categories over B,
where Eu and Eu′ are the associated fibrations for u and u′, and the
bottom arrow is induced by f in a natural way.

A
f //

i

��

A′

i
��

Eu
f∗ // Eu′

Since the actual fiber Eu
b identifies with the homotopy fiber A/b, the

last proposition asserts that the bottom arrow is a weak equivalence,
and the vertical ones are also weak equivalences by 2.2.1. The result
follows from this and the 3-for-2-property.

4.2.3 Corollary (Quillen’s Theorem A). A map u : A → B between
small categories whose homotopy fibers A/b are contractible is a weak
equivalence.

Proof. Take u′ = idB in the relative version.

4.3 Fibred nerve, cleaved nerve and the codiagonal
construction

In [2] the following construction is introduced. Given K a bisimplicial
set, its codiagonal (or bar construction) is the simplicial set ∇(K) whose
n-simplices are

∇(K)n =
{

(x0, x1, . . . , xn) : xi ∈ Ki,n−i, d
h
0xi = dvi+1xi+1 for 0 6 i < n

}
and whose faces and degeneracies are

di(x0, . . . , xn) = (dhi x0, d
h
i−1x1, . . . , d

h
1xi−1, d

v
i xi+1, . . . , d

v
i xn)
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and

sj(x0, . . . , xn) = (shjx0, s
h
j−1x1, . . . , s

h
0xj, s

v
jxj, . . . , s

v
jxn).

There is a natural weak equivalence θ : d(K)→ ∇(K) defined as follows,

θ(x) = ((dv1)nx, (dv2)n−1dh0x, . . . , (d
v
i+1)n−i(dh0)ix, . . . , (dh0)nx)

where x is a n-simplex of d(K) (cf. [5]).
In the case of the fibred nerve, both the codiagonal ∇NfE and the

map θ can be described in terms of singular functors of fibrations. We
shall give these description, and prove that for a splitting fibration there
is an isomorphism between the codiagonal of the cleaved nerve and the
classic nerve of the total category.

Let Tn be the full subcategory of n× n whose objects are the pairs
(i, j) satisfying i 6 j. The restriction pr2|Tn : Tn → n is a fibration as
one can easily check. This way we get a covariant functor T : ∆→ Fib,
n 7→ Tn, as the restriction of � ◦ diag.

4.3.1 Proposition. Let ξ = (p : E → B) be a fibration. Then there is
a canonical isomorphism of simplicial sets

(∇NfE)n ∼= Fib(Tn, ξ)

where the right hand side is the singular functor induced by T : ∆→ Fib.
Under this isomorphisms, the map θ is identified with the restriction
s 7→ s|Tn.

Proof. Let S be the simplicial set n 7→ Fib(Tn, ξ). For k = 0, . . . , n let
αk = (αk0, α

k
1) : �k,n−k → Tn be the fibred map satisfying αk0(i, j) =

(i, j + k) for all (i, j) ∈ ob(�k,n−k). We define λ : S → ∇NfE by
mapping an n-simplex x : Tn → ξ to λ(x) = (xα0, xα1, . . . , xαn). It is
straightforward to check that λ is well defined, i.e. the coordinates of
λ(x) satisfy the compatibility conditions of the codiagonal, and that λ
respects the faces and degeneracies.

To see that λ is actually an isomorphism, we remark that a simplex
s ∈ NfEm,n can be presented as an array of m × n commutative little
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squares of E
esi,j //

��

esi,j+1

��
esi+1,j

// esi+1,j+1

on which the vertical arrows are over identities and the horizontal ones
are cartesian arrows. If yk ∈ NfEk,n−k, k = 0, . . . , n, the equation
dh0yk = dvi+1yk+1 says that the array of k × (n − k − 1) little squares
obtained from yk by deleting the first column equals the array obtained
from yk+1 by deleting the last row.

It is clear from these descriptions that a simplex x ∈ Sn identifies
with a sequence (y0, . . . , yn), yk ∈ NfEk,n−k, under the compatibility
conditions that impose the codiagonal.

A similar statement holds for the cleaved nerve. Its proof is essen-
tially that of 4.3.1. Note that Tn inherits the closed cleavage from �n,n
and hence T can be considered as a functor ∆→ Esc ⊂ Cliv.

4.3.2 Proposition. Let ξ = (p : E → B) be a fibration with cleavage
Σ. Then there is a canonical isomorphism of simplicial sets

(∇NcE)n ∼= Cliv(Tn, (ξ,Σ))

where the right hand side is the singular functor induced by T : ∆ →
Esc ⊂ Cliv. Under this isomorphisms, the map θ identifies with the
restriction s 7→ s|Tn.

Given ξ = (p : E → B) a fibration endowed with a cleavage Σ, we
have the following diagram of simplicial sets, where k̄ is defined below.

dNcE
i //

θ

��

dNfE k
))SSSSSS

θ
��

NE

∇NcE
i //∇NfE

k̄ 55kkkkkk

If x = (x0, x1) ∈ Fib(Tn, E), then the composition x0 ◦ diag : n → E
defines a simplex in NEn. Under the identification of 4.3.1 this gives
the map k̄ : ∇NfE → NE, k̄(x) = x0 ◦ diag.

The following shows how to recover the classic nerve of the total
category of a splitting fibration from the cleaved nerve.
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4.3.3 Theorem. If the cleavage Σ is closed, then the map k̄i : ∇NcE →
NE is an isomorphism.

Proof. The proof is similar to that of lemma 3.2.1. To see that k̄i is
injective, consider a simplex x ∈ NEn, view x : n→ E as defined over
the diagonal of �n,n and note that an extension s : Tn → E of x is
necessarily unique: The horizontal arrows must belong to the cleavage,
and the vertical ones are uniquely determined by the universal property
of cartesian arrows.

If Σ is closed, then the unique functor s : Tn → E such that s◦diag =
x and esi,j → esi,j+1 ∈ Σ determines a cleaved map Tn → E and hence a
simplex s ∈ (∇NcE)n satisfying k̄i(s) = x. Thus the surjectivity.

5 Other examples and applications

5.1 Homotopy colimits

Bousfield and Kan [4] give a construction of a representing object for the
homotopy colimit of a diagram of simplicial sets. Given Z : I → SSet,
let hc(Z) be the bisimplicial set whose m,n-simplices are

hc(Z)m,n =
∐

i0→···→in

Z(i0)m

where the coproduct runs over all simplices of dimension n of NI, and
faces and degeneracies are defined in the obvious way. Then hc(Z)
satisfies the homotopy universal property of homotopy colimits (cf. [4]).

In [16] Thomason uses the Bousfield-Kan construction to describe
homotopy colimits in Cat in terms of the Grothendieck construction for
a functor. We recall Grothendieck construction over a functor F : B →
Cat, compare the Bousfield-Kan construction with the cleaved nerve
and derive Thomason’s theorem from this.

Given F : B → Cat a diagram of small categories, its Grothendieck
construction is a splitting fibration F o B → B whose fibers are the
values of F . The objects of the total category FoB are pairs (x, b) with
b an object of B and x and object of F (b). An arrow (f, φ) : (x, b) →
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(x′, b′) in F o B is a pair φ : b → b′, f : F (φ)(e) → e′. Composition is
given by (ψ, g) ◦ (φ, f) = (ψφ, gF (ψ)(f)). The map F o B → B is the
projection, and the arrows (id, φ) form a distinguished closed cleavage.

5.1.1 Theorem. Given F : B → Cat, there is an isomorphism Nc(F o
B)

∼−→ hc(NF ) between the cleaved nerve of the Grothendieck construc-
tion of F and the Bousfield-Kan construction for homotopy colimits.

Proof. The isomorphism Nc(F oB)→ hc(NF ) maps a m,n-simplex s
of Nc(F o B) to the element a in the summand indexed by b, where a
is the mast of s and b is the base of s. This is indeed a morphism of
bisimplicial sets, and it is invertible because of 3.2.1.

If E is any fibration, then one can define a function NfE → hc(NF )
in a similar fashion. However, this function is not a morphism in general,
as it does not respect the 0-th face operator.

5.1.2 Corollary (Thomason’s theorem). The Grothendieck construc-
tion F oB over a functor F : B → Cat is a representing object for the
homotopy colimit of F .

Proof. This is a consequence of 4.1.1 and 5.1.1.

5.2 Spectral sequence of a fibration

A bisimplicial set gives rise to a bisimplicial abelian group and hence to
a bicomplex. In this section we study the spectral sequence associated to
the bicomplex coming from the fibred nerve. We recall some definitions
on homology of categories from [14]. Then we describe how a fibration
gives rise to a pseudofunctor, and define the modules Hm(F ). Finally we
state and prove theorem 5.2.1 and derive a homology version of Quillen’s
Theorem A as a corollary.

Given a small category C, a module over C is a functor A : C → Ab,
where Ab denotes the category of abelian groups. The m-th homology
group of C with coefficients in a module A is defined as the m-th left
derived functor of colim : AbC → Ab.

Hm(C,A) = colimm
CA
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The groups Hm(C,A) can be computed as the homology of the following
simplicial abelian group

Cm(C,A) =
⊕

c0→···→cm

A(c0)

and, in the case that A is morphism inverting, they agree with the
homology of the classifying space BC with local coefficients induced by
A. We write Hm(C) instead of Hm(C,A) when A is the constant functor
Z. It follows that

Hm(C) = Hm(BC)

where the right side denotes the singular homology of the space BC.

Let ξ = (p : E → B) be a fibration, and let Σ be a cleavage of ξ.
For each arrow φ : b → b′ in B a base-change functor φ∗ : Eb → Eb′ is
defined as follows: If e is an object of Eb, then φ∗(e) is the codomain of
Σe,φ, and if f : e→ e′ is an arrow of Eb, then φ∗(f) is the unique arrow
in Eb′ such that φ∗(f) ◦ Σe,φ = Σe′,φ ◦ f .

Of course, φ∗ depends on the cleavage, but different cleavages give
rise to naturally isomorphic base-change functors, as follows from the
universal property of cartesian arrows. In the same fashion, given φ, ψ
composable arrows of B, there is a natural isomorphism ψ∗φ∗ ⇒ (ψφ)∗.
The set of data

b 7→ Eb φ 7→ φ∗ ψ∗φ∗ ⇒ (ψφ)∗

defines a pseudofunctor B 99K Cat (cf. [9]). Note that if Σ is closed
then the isomorphisms ψ∗φ∗ ⇒ (ψφ)∗ are identities and one has a true
functor B → Cat.

Given m ≥ 0, let Hm(F ) : B → Ab be the functor which assigns
to each b ∈ B the group Hm(Eb), and to each arrow φ : b → b′ the
map induced by φ∗. Since isomorphic functors yields homotopic maps
between the classifying spaces, the module Hm(F ) is well defined (i.e.
is a functor) and does not depend on the cleavage Σ.

5.2.1 Theorem. There is a spectral sequence {Xr
m,n} which converges

to the homology of the total category E and whose second sheet consists
of the homology of the base with coefficients in the homology of the fibers.

X2
m,n = Hn(B,Hm(F ))⇒ Hm+n(E)

Del HOYO - ON THE HOMOTOPY TYPE OF A (CO)FIBRED CATEGORY

- 106 -



Proof. From the bisimplicial set NfE we construct the free bisimplicial
abelian group ZNfE, and the bicomplex CfE, whose m,n-th group
equals that of ZNfE and whose horizontal and vertical differential maps
are the alternate sum of the horizontal and vertical faces, respectively.
We have that

CfEm,n =
⊕

b=(b0→···→bn)

Z[(NfEb)m]

where (NfEb)m is the set of m,n-simplices of NfE with base b. Filtering
the bicomplex CfE in the horizontal direction gives a spectral sequence

Hn(Hm(CfE))⇒ Hm+n(Tot(CfE)).

The first sheet of this spectral sequence is obtained by computing the
vertical homology (m-direction) of CfE. In degree m,n this is equal to

Hm(CfE)m,n =
⊕
b

Hm(NfEb) ∼=
⊕
b

Hm(Eb0),

where the isomorphism ∼= is that induced by µ (cf. 3.1.1). The second
sheet of this spectral sequence is obtained by computing the horizontal
homology (n-direction). In degree m,n this is equal to HnHm(CfE) =
Hn(B,Hm(F )). Finally, by the generalized Eilenberg-Zilber theorem
(cf. [8, IV,2.5]) the homology of the total complex Hm+n(Tot(CfE))
is isomorphic to the homology of the diagonal Hm+n(d(ZNfE)), which
equals Hm+n(E) since d(NfE) and NE are homotopic (cf. 4.1.3). This
completes the proof.

Suppose now that ξ = (p : E → B) is a fibration whose fibers are
homologically trivial, namely Hm(Eb) = 0 if m > 0 and H0(Eb) = Z for
all objects b of B. If m > 0 then the functors Hm(F ) are constant and
equal to 0, so the second sheet of the spectral sequence X of 5.2.1 is

X2
m,n =

{
0 if m > 0

Hn(B) if m = 0

It follows that X∞ = X2 and thus the homology of E is that of B. It is
not hard to see that p∗ : Hn(E)→ Hn(B) is actually the isomorphism.
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5.2.2 Corollary. If a fibration ξ = (p : E → B) is such that the
fibers Eb are homologically trivial, then p∗ : Hn(E)

∼−→ Hn(B) is an
isomorphism for all n ≥ 0.

5.2.3 Corollary (Homology version of Quillen’s Theorem A). Let u :
A → B be a map between small categories whose homotopy fibers A/b
are homologically trivial. Then u∗ : Hn(A)

∼−→ Hn(B) is an isomorphism
for all n ≥ 0.

Proof. If π : Eu → B is the fibration associated to u, then its fibers are
isomorphic to the homotopy fibers of u and thus π induces isomorphisms
in homology by 5.2.2. Since u = π ◦ i and i : A → Eu is a weak
equivalence (cf. 2.2.1) the result follows.

5.3 Quillen fibrations and Theorem B

We have seen in many examples that different fibers of a Grothendieck
fibration need not have the same homotopy type. This remark shows
that in general the map BfE → BfB is not a fibration, nor a quasi-
fibration. It is remarkable that this is the only obstruction. In this
section we define Quillen fibrations, discuss the monodromy action and
reformulate Quillen’s Theorem B in terms of the fibred nerve.

We say that a fibration ξ = (p : E → B) is a Quillen fibration if for
each arrow φ : b → b′ in B the base-change functor φ∗ : Eb → Eb′ is
a weak equivalence. Note that this definition does not depend on the
cleavage, for two base-change functors over φ must be homotopic.

In a Quillen fibration the induced functor B → [Top], b 7→ BEb is
morphism inverting, therefore it induces a map

π1(B)→ [Top].

Here π1(B) denotes the fundamental groupoid ofB, namely the groupoid
obtained by formally inverting all the arrows of B, and [Top] denotes
the category of topological spaces and homotopy classes of continuous
maps. We call π1(B) → [Top] the monodromy action of the fibration.
The monodromy action is a first tool to classify Quillen fibrations. In
very special situations, it suffices to recover the whole fibration, as we
can see in the following example.
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Example. (cf. [14]) If p : E → B is a Quillen fibration with discrete
fibers (the only arrows in the fibers are identities), then the base-change
functors Eb → Eb′ must be bijections. It follows that a Quillen fibration
with discrete fibers is essentially the same as a functor B → Set ⊂ Cat
which is morphism inverting, or what is the same, a functor π1(B) →
Set.

A Quillen fibration p : E → B with discrete fibers should be thought
of as a covering of categories. Indeed, they yield coverings after applying
the classifying space functor.

One is interest in understand how fibrations behave with respect to
the classifying space functor. The next example shows that BfE →
BfB need not be a fibration, so we shall look for a notion weaker than
that.

Example. Let E be the full subcategory of I×I with objects (1, 0), (0, 1)
and (1, 1). Then the second projection E → I is a fibration. Since the
fibers are contractible it is, in fact, a Quillen fibration. Despite this, the
induced map of topological spaces is not a fibration, as one can easily
check.

Recall that a quasifibration of topological spaces f : X → Y is a map
such that the inclusions of the actual fibers into the homotopy fibers are
weak homotopy equivalences. They extend the notion of fibration, and
their most important feature is that they yield long exact sequences
relating the homotopy groups of the fibre, the total space and the base
space.

5.3.1 Theorem. If p : E → B is a Quillen fibration, then the induced
map p∗ : BfE → BfB is a quasifibration of topological spaces.

Proof. It is essentially that of [14, lemma p.14]. We endow BfB = BB
with the canonical cellular structure. We prove that the restriction of p∗
to the n-th skeleton skn(BB) is a quasifibration by induction on n, from
which the result follows. To prove the inductive step we write skn(BB)
as the union U ∪V , where U is obtained by removing the barycenters of
the n-cells and V is the union of the interiors of the n-cells, and prove
that p∗ is a quasifibration when restricted to U , V and U ∩ V .

We denote |NfEb| by BfEb (see 3.1). Realizing first in the m-
direction, the restriction of p∗ to the interior of the n-cell indexed
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by b ∈ NBn can be identified with the restriction of the projection
BfEb × ∆n → ∆n to the interior of the topological n-simplex ∆n. It
follows from this that p∗|V and p∗|U∩V are quasifibrations.

We deform p−1
∗ (U) into p−1

∗ (skn−1(BfB)) by using the radial defor-
mation of ∆n minus its barycenter into ∂∆n, and use the inductive as-
sumption to conclude that p∗|U is a quasifibration. We must verify that
if this deformation carries x into x′, then the map g : p−1

∗ (x)→ p−1
∗ (x′)

induced by the deformation is a weak homotopy equivalence. Let x
be a point in the interior of the n-cell indexed by b ∈ NBn. If the
radial deformation push x into the open cell indexed by the face b′ of
b, then p−1

∗ (x) = BfEb and p−1
∗ (x′) = BfEb′ . Fixed a cleavage Σ, the

composition (cf. 3.1.1)

BEb0
ν−→ BfEb

g−→ BfEb′
µ−→ BEb′0 ,

(with ν = ν(b) and µ = µ(b′)) equals a base-change functor over the
arrow b0 → b′0 of b (more precisely, it is the composition of the base-
changes given by Σ over the arrows bi → bi+1). Since p is a Quillen
fibration, and ν and µ are weak equivalences, it follows from the 3-for-
2-property that g is a homotopy equivalence and thus the result.

The last theorem shows an interesting feature of the fibred nerve: it
carries Quillen fibrations into quasifibrations. The question of whether
or not BE → BB is a quasifibration is rather unclear, and this can
be understood as a disadvantage of the classic nerve when dealing with
fibrations.

5.3.2 Corollary (Quillen’s Theorem B). If u : A→ B is a map between
small categories such that A/b → A/b′ is a weak equivalence for all
b→ b′ ∈ fl(B), then there is a long exact sequence

. . .
∂−→ πk(A/b, a)→ πk(A, a)

u∗−→ πk(B, b)
∂−→ πk−1(A/b, a)→ . . .

where a ∈ ob(A), b = u(a) and a = (a, idb).

Proof. Let i : A → Eu be the canonical map into the associated fibra-
tion, r its right adjoint and w : A/b→ A be the map (a, u(a)→ b) 7→ a.
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In the diagram

A/b w // A
u // B

Eu
b

� � // Eu π //

r

OO

B

the left square commutes, and since πi = u and r is a homotopy inverse
to i the right square commutes up to homotopy. We conclude that the
homotopy groups of A/b, A and B can be identified naturally with that
of the base, the fiber and the total category of the associated fibration
Eu → B. It is a Quillen fibration, and thus the result follows from
5.3.1.

5.4 Group actions and TCP

Regarding small categories as combinatorial models for homotopy types,
it is natural to investigate how they behave under the action of a group.
In this section we derive a splitting fibration from a small category en-
dowed with a group action, and relate its cleaved nerve with a twisted
cartesian product in the sense of [12]. We also study the spectral se-
quence 5.2.1 in this particular case.

A simplicial group G operates on a simplicial set K (from the left)
if there is a simplicial map G × K → K, (g, k) 7→ g · k satisfying
1n · k = k for all k ∈ Kn and g1 · (g2 · k) = (g1g2) · k for all k ∈ Fn
and g1, g2 ∈ Gn. Here 1n denotes the unit of Gn. Given A,B simplicial
sets and G a simplicial group which operates on A, a twisted cartesian
product (TCP) with fibre A, base B and group G is a simplicial set
A×τ B with simplices (A×τ B)n = An×Bn and faces and degeneracies
given by

di(a, b) =

{
(dia, dib) i > 0

(τ(b) · d0a, d0b) i = 0
si(a, b) = (sia, sib), i ≥ 0.

Here τ : Bn → Gn−1 is a function which must satisfy some standard
identities in order to make A×τ B a simplicial set. This τ is called the
twisting function.
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Let G be a group, and let A be a small category on which G acts.
This action can be seen as a group morphism G→ Aut(A), g 7→ ug, or
equivalently, as a functor G → Cat that maps the unique object of G
to A ∈ ob(Cat). The Grothendieck construction over this functor is a
splitting fibration p : Go A→ G over G.

The constant simplicial group G (in which every face and degeneracy
operator is the identity) operates on NA from the left via the formula

g · (a0 → · · · → an) = (ug(a0)→ · · · → ug(an)).

5.4.1 Proposition. The diagonal of the cleaved nerve dNc(GoA) can
be regarded as a TCP between the nerves of A and G, namely NA×τNG.

Proof. Let τ : NGn → Gn−1 = G be the projection τ(∗ g1−→ ∗ g2−→ . . .
gn−→

∗) = g1, and let NA×τ NG be the TCP with twisting function τ . We
define a simplicial map ϕ : dNc(G o A) → NA ×τ NG by giving to
each simplex s ∈ Nc(Go A)n,n the pair (a, b), where a is the mast of s
and b is its base. One checks easily that ϕ is actually a simplicial map,
and it is an isomorphism because GoA→ G is splitting, together with
3.2.1.

Given G acting on A, the fibration G o A → G has a unique fiber,
which is isomorphic to A. Thus the modules Hm(F ) of the spectral se-
quence 5.2.1 are just the homology groups of A endowed with the action
of G. Writing A//G = G o A for the homotopy theoretic quotient (cf.
5.1.2) we obtain the following version of the Eilenberg-Moore spectral
sequence (cf. [1, p.775]) as an application of 5.2.1.

5.4.2 Proposition. There is a spectral sequence {Xr
m,n} which con-

verges to the homology of the homotopy theoretic quotient A//G and
whose second sheet consists of the group homology of G with coeficients
in the homology of A.

X2
m,n = Hn(G,Hm(A))⇒ Hm+n(A//G)
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Résumé.  Le domaine récent de la topologie algébrique dirigée étudie les
"espaces dirigés", où chemins et homotopies peuvent être non réversibles.
Les applications principales concernent la programmation parallèle.

On introduit ici, pour un espace dirigé, une catégorie fondamentale de
dimension infinie, de type cubique lax: les cubes singuliers de l'espace ont
une structure cubique, où les concatenations sont associatives à une re-
paramétrisation invertible près, mais les dégénérescences sont seulement
lax-unitaires. En outre cette structure est symétrique, par permutation des
variables des cubes singuliers, ce qui simplifie les propriétés de cohérence.

Les "cubes de Moore" de l'espace donnent une catégorie cubique stricte,
moyennant une construction similaire.

Abstract. The recent domain of directed algebraic topology studies
'directed spaces', where paths and homotopies need not be reversible. The
main applications are concerned with concurrency.

We introduce here, for a directed space, an infinite dimensional funda-
mental category, of a lax cubical type: the singular cubes of the space have
a cubical structure, where concatenations are associative up to invertible
reparametrisation while degeneracies are only lax-unital. Moreover, this
structure is symmetric, by permuting the variables of singular cubes; this
simplifies the coherence properties.

By a similar construction, the 'Moore cubes' of the space give a strict
symmetric cubical category.

Mathematics Subject Classifications: 55P99, 55Q99, 18D05, 55U10.
Key words: directed algebraic topology, space with distinguished paths,
higher fundamental category, cubical category cubical set.
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Introduction

Directed algebraic topology studies structures with privileged directions, like
'directed spaces' in some sense: for instance, ordered or locally ordered topological
spaces, 'spaces with distinguished paths' (examined below), simplicial and cubical
sets, etc. Such objects have directed paths and homotopies, which need not be
reversible. The present applications deal mostly with the analysis of concurrent
processes, see [FGR1, FGR2, FRGH, Ga1, Ga2, GG, GH, Go, R1, R2], but the
theory aims to model non-reversible phenomena in any domain. Directed algebraic
topology is the subject of a recent issue of the journal 'Applied Categorical
Structures', guest-edited by the present author (vol. 15, no. 4, 2007), and of a recent
book [G10]. The ideas at the basis of the present paper have been exposed at the
conference 'Applied Topological Methods in Computer Sciences III', Paris 2008.

Directed spaces can be studied with homology and homotopy theories, modified
to keep an account of privileged directions: namely, preordered homology groups
[G3] and fundamental higher categories (in some sense) instead of the classical
homology groups and fundamental higher groupoids of algebraic topology. Thus,
directed algebraic topology is more clearly linked with higher dimensional category
theory, and can also yield some geometric intuition to the latter.

Here, we want to study an infinite dimensional version of the fundamental
category of a d-space, or space with distinguished paths (1.1), our main notion of
directed space, which was introduced in [G2] and also studied in various works by
various authors [G4-G6, G10, FhR, FjR, R2, Bu, Ga3]. While there is no problem in
defining the fundamental category  !"1(X)  of a d-space [G2], the construction of
higher versions is complicated, even in dimension 2: see [G4] for a strict 2-
categorical version and [G5, G6] for lax ones.

The present approach is cubical, rather than globular, and follows a study of
weak cubical categories begun by the author in [G7-G9, G11]. We start from the
standard n-dimensional cube  In = [0, 1]n  and its directed version  !In  (1.2). The
singular cubes of a d-space  X,  i.e. the maps  !In  X  of d-spaces, form a 'basic
symmetric pre-cubical category' ! X (Section 1), i.e. a symmetric cubical set
equipped with concatenation laws in all directions, satisfying various geometrical
properties and linked by transposition symmetries; the term 'basic' means that these
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operations are not (yet) required to satisfy associativity, interchange and unitarity, in
any sense - even weak or lax.

To take these aspects into account, we formalise in Section 2 the notion of a u-lax
symmetric cubical category. The previous framework (a basic symmetric pre-cubical
category) is enriched with transversal maps between n-dimensional objects; these
maps include comparisons for associativity, interchange and unitarity, which are
only assumed to be invertible in the first two cases. The new structure is thus a
generalisation of a weak symmetric cubical category introduced in [G7, G9]; it is
very similar to the 'quasi cubical' case considered in [G8] for higher cospans
composed with homotopy pushouts, in relation with higher dimensional cobordism.

Then, in Sections 3 and 4, we make the previous structure  ! X   into the
singular u-lax symmetric cubical category  !Sng(X)  of the d-space  X,  by adding
transversal maps and comparisons. Here, a transversal map  f: x  y  between two
singular cubes  x, y: !In  X  is given by a reparametrisation mapping  f: !In 
!In  such that  x = yf;  the obvious transversal composition of such maps is strictly
categorical. The operations of concatenation of the singular cubes become thus
weakly associative (up to invertible reparametrisations) and lax unital (up to non-
invertible reparametrisations), while interchange - here - works strictly. The non-
directed structure  Sng(X)  associated to a topological space  X  is briefly described
in 4.6.

In Section 5 we outline a strict version of the previous framework. It is based on
the Moore directed cubes of a d-space, defined on products of directed intervals of
variable length  ah # 0

(1) I(a1,..., an)  =  "h=1,...,n ![0, ah].

These have operations of concatenation that are strictly associative and unital,
also because we allow these intervals to be degenerate. Transversal maps are given
by 'Moore reparametrisations', but their role is less evident here, since no
comparisons are needed: we get a strict symmetric cubical category  !MSng(X).

We end, in Section 6, with a few hints to a family  T(A)  of u-lax symmetric
cubical categories, depending on a topological space  A,  and related to higher
categories of tangles, as considered in [BL, Ch]. This family is constructed starting
from  T = Sng(S0),  the u-lax symmetric cubical category associated to the discrete
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space on two points  S0,  where a singular n-cube  x: In  S0  can be identified to a
subset of  In.

As a general principle of higher category theory, weak structures seem to be
more important than the strict ones; this is why the strict structure of Moore cubes
has here a marginal position. Let us also recall that interest is arising in category
theory and algebraic topology for categorical structures (possibly higher
dimensional) with lax units or 'no units' (see [MBB, Ko1, Ko2, JK, G8, G12]).

References to the rich literature on higher categories can be found in two recent
books, by T. Leinster [Le] and E. Cheng, A. Lauda [CL]; but these works are mostly
developed in the globular approach, rather than the cubical one. Strict cubical
categories with connections (and no transversal maps) are studied in [ABS], and
proved to be equivalent to the ordinary (globular) $-categories. Weak symmetric
cubical categories have been studied by the present author [G7-G9, G11]; pseudo
double categories are a truncated version of the latter, studied in [GP] and three
subsequent papers by the same authors.

Cubical sets have been extensively studied by R. Brown and P.J. Higgins, which
introduced their connections in [BH1, BH2]. The present author began a systematic
use of their symmetries in [G1]. There is a recent preprint on symmetric cubical sets,
by S.B. Isaacson [Is], which investigates their non-directed homotopy theory.

For a (non-directed) topological space  X,  a recent preprint by R. Brown [Br]
deals with a cubical structure  M*(X)  based on 'Moore hyperrectangles', equivalent
to our Moore cubes (see a note at the end of Section 5.3). With respect to the
present structure  !MSng(X),  the 'strict cubical category'  M*(X)  has connections
and no transpositions nor transversal maps; it might be called a 'basic cubical
category with connections', in the present terminology - where a 'cubical category' is
always assumed to have transversal maps.

One dimensional reparametrisation mappings  f: !I  !I,  in the same sense as
here, have been studied in [G5, G6, FhR, R3].

As a matter of notation, the indices  %, &  take the values  0, 1,  that are more often
written as  –, +.  I  denotes the standard interval  [0, 1]  with euclidean topology.
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1. The singular cubes of a d-space and their concatenations

We briefly recall the notion of d-space, introduced in [G2]. Then we show that
the singular (directed) cubes of a d-space  X,  with obvious concatenations in all
directions, form a 'basic symmetric pre-cubical category'  ! X.  These operations
satisfy a strict middle-four interchange; their weak associativity and lax unitarity
properties will be studied in Section 4, after developing adequate structures.

1.1. Spaces with distinguished paths. A d-space  X,  or space with distinguished
paths, is a topological space equipped with a set  dX  of (continuous) maps  a: I 
X,  called distinguished paths or directed paths or d-paths, satisfying three axioms:

(i) (constant paths)  every constant map  I  X  is distinguished,

(ii) (partial reparametrisation)  dX  is closed under composition with every
(weakly) increasing map  I  I,

(iii) (concatenation)  dX  is closed under path-concatenation: if the d-paths  a, b  are
consecutive in  X  (i.e.  a(1) = b(0)),  then their ordinary concatenation  a + b  is also
a d-path.

A directed map  f: X  Y  (or d-map, or map of d-spaces) is a continuous
mapping between d-spaces which preserves the directed paths: if  a ' dX,  then  fa '
dY.

The category of d-spaces is written as  dTop.  It has all limits and colimits,
constructed as in  Top  and equipped with the initial or final d-structure for the
structural maps; for instance a path  I  "Xj  with values in a product is directed if
and only if all its components  I  Xj  are so. The forgetful functor  U: dTop 
Top  preserves thus all limits and colimits; a topological space is generally viewed as
a d-space by its natural structure, where all paths are directed (via the right adjoint to
U).

Reversing d-paths, by the involution  r(t) = 1 – t,  yields the opposite d-space  RX
= Xop,  where  a ' d(Xop)  if and only if  ar  is in  dX.  This defines the reversor
endofunctor

(1) R: dTop  dTop, RX  =  Xop.
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A d-space  X  is said to be reversible if it coincides with  Xop,  and reflexive if it
is isomorphic to the latter.

1.2. Standard objects.  The directed real line, or d-line  !R,  is the euclidean line
with directed paths given by the (weakly) increasing maps  I  R.  Its cartesian
power in  dTop,  the n-dimensional real d-space  !Rn  is similarly described (with
respect to the product order of  Rn,  x ( y  if  xi ( yi  for all  i).  The standard d-
interval  !I = ![0, 1]  has the subspace structure of the d-line; the standard d-cube
!In  is its n-th power, and a subspace of  !Rn  (with the induced structure). These d-
spaces are not reversible (for  n > 0),  but they are all reflexive.

The standard directed circle  !S1  will be the standard circle with the
anticlockwise structure, where the directed paths  a: I  S1  move this way, in the
oriented plane  R2:  a(t) = (cos)(t), sin)(t)),  with an increasing (continuous)
argument  ): I  R.

!S1  can be obtained as the coequaliser in  dTop  of the following pair of maps

(1) *–, *+: {*}               !I, *–(*)  =  0,    *+(*)  =  1.

Indeed, the ordinary construction of this coequaliser is the quotient  !I/*I,  which
identifies the endpoints; the d-structure of the quotient (generated by the projected
paths) is the desired one precisely because of the axioms on concatenation and
reparametrisation of d-paths.

The directed circle can also be described as an orbit d-space

(2) !S1  =  !R/Z,

with respect to the action of the group of integers on the directed line  !R,  by
translations; in this quotient, the distinguished paths of  !S1  are simply the
projections of the increasing paths in the line.

The directed n-dimensional sphere is defined, for  n > 0,  as the quotient of the
directed cube  !In  modulo the equivalence relation which collapses its (ordinary)
boundary  *In  to a single point, while  !S0  has the discrete topology and the natural
d-structure (obviously discrete)

(3) !Sn  =  (!In)/(*In)    (n > 0), !S0  =  S0  =  {–1, 1}.

GRANDIS - A LAX SYMMETRIC CUBICAL CATEGORY...

- 120 -



All directed spheres are reflexive.

1.3. Directed interval and paths. A (standard) path in a d-space  X  is a d-map  a:
!I  X  defined on the standard d-interval. Plainly, this is the same as a structural
map  a ' dX,  and will also be called a directed path when we want to stress the
difference from ordinary paths in the underlying space  UX.

  The basic, 'first order' structure of  !I  consists of four maps, linking its 0-th
cartesian power, the singleton  !I0 = {*},  to  !I  or to the opposite d-space  !Iop

(1) *% : {*}               !I, *–(*)  =  0,   *+(*)  =  1 (faces),

e: !I  {*}, e(t)  =  * (degeneracy),

r: !I  !Iop, r(t)  =  1 – t (reflection).

Identifying a point  x  of the space  X  with the corresponding map  x: {*}  X,
this basic structure determines:

(a) the endpoints of a path  a: !I  X,  i.e.  *–(a) = a*– = a(0),  *+(a) = a*+ = a(1),

(b) the trivial path at the point  x,  i.e.  0x = e(x) = xe,

(c) the reflected path of  a  in  Xop,  i.e.  r(a) = (Ra).r: !I  !Iop  Xop.

Two consecutive paths  a, b: !I  X  (*+(a) = *–(b),  i.e.  a(1) = b(0))  have a
concatenated path  a + b,  which is distinguished, by definition of d-structure. This
amounts to saying that, in  dTop,  the standard concatenation pushout – pasting two
copies of the d-interval, one after the other – can be realised as  !I  itself (as for
spaces: pasting two copies of  I  gives  I)

 *+

{*}  !I
(2) *–    c– c–(t)  =  t/2, c+(t)  =  (t+1)/2.

 !I  !I
c+

This pushout is preserved by cartesian product with any fixed d-space ([G2],
Lemma 1.8).

GRANDIS - A LAX SYMMETRIC CUBICAL CATEGORY...

- 121 -



Finally, there is a 'second order' structure which involves the standard directed
square  !I2 = [0, 1] × [0, 1]  and is used to construct (directed) homotopies of
(directed) paths

(3) g–: !I2  !I, g–(t, t')  =  max(t, t') (lower connection),

g+: !I2  !I, g+(t, t')  =  min(t, t') (upper connection),

s: !I2  !I2, s(t, t')  =  (t', t) (transposition).

Together with (1), these maps complete the structure of  !I  as a lattice in  Top
(isomorphic to the opposite lattice, via  r).  The choice of the superscripts of  g–, g+

comes from the fact that the unit of  g%  is  *%(*).  Within homotopy theory, the
importance of these binary operations has been highlighted by R. Brown and P.J.
Higgins [BH1, BH2], which introduced the term of connection, or higher
degeneracy (with a notation similar to the previous one for faces, degeneracy and
connections:  *%, +, ,%;  notice that for simplicial sets the letter  s  generally denotes
degeneracies).

Here, we will use the transposition symmetry  s,  but not the connections; the
article [Br] shows as the latter can be used in the context of Moore cubes (or
standard cubes, of course).

1.4. The singular symmetric cubical set of a d-space. Every d-space  X  has an
associated symmetric cubical set - a notion whose general definition will be recalled
below (see 1.5)

(1) ! X  =  ((! nX), (*%i ), (ei), (si)).

Firstly, the component of  ! X  in degree  n # 0  is the set of singular (directed)
n-cubes of  X,  which will also be called n-cubes of  X

(2) ! nX  =  dTop(!In, X).

In particular, a 0-cube  x: !I0  X  is identified with a point of  X,  and a 1-cube
x: !I  X  is a (directed) path.

Secondly, after the basic structure recalled above, the higher faces, degeneracies
and transpositions of the standard cubes are defined as follows
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(3) *%i   =  !Ii–1 × *% × !In–i:  !In–1  !In, *%i (t1,..., tn–1)  =  (t1,..., %,..., tn–i),

ei  =  !Ii–1 × e × !In–i:  !In  !In–1, ei(t1,..., tn)  =  (t1,..., t̂i,..., tn),

si  =  !Ii–1 × s × !In–i:  !In+1  !In+1, si(t1,..., tn+1)  =  (t1,..., ti+1, ti,..., tn+1),

where  % = 0, 1,  i = 1,..., n  (and, as usual,  t̂i  means to omit the coordinate  ti).

These maps produce (contravariantly, by pre-composition) the faces,
degeneracies and transpositions of our symmetric cubical set  ! X,  which will be
denoted by the same symbols

(4) *%i : ! nX  ! n–1X, *%i (x)  =  x.*%i ,

ei: ! n–1X  ! nX, ei(x)  =  x.ei,

si: ! n+1X  ! n+1X si(x)  =  x.si (% = 0, 1,  i = 1,..., n).

Every n-cube  x: !In  X  has  2n  vertices:  *%1*
&
2*

-
3(x) = *-1*

&
1*

%
1 (x),  for  n = 3.

The contravariant action of the transpositions  s1,..., sn–1  on  ! nX  can
obviously be extended to a (right) action of the group of permutations of the
coordinates of  In.  This amounts to saying that the transpositions  si  satisfy the
Moore relations, under which they generate the symmetric group  Sn

(5) si.si  =  1, si.sj.si  =  sj.si.sj    (i = j–1), si.sj  =  sj.si    (i < j–1),

(see Coxeter-Moser [CM], 6.2; or Johnson [Jo], Section 5, Thm. 3).

Notice also that we have applied the functors

(6) (–)n
i   =  !Ii–1 × – × !In–i:  dTop  dTop (i = 1,..., n),

to deduce the higher structural maps (3) from the basic ones,  *%, e, s,  introduced in
1.3. This procedure is usual in homotopy theory based on a standard interval, and
will be repeatedly used below.

1.5. Symmetric cubical sets. Let us recall some points on the classical notion of
cubical set (see  [K1, K2, BH1, BH2]) and the less known notion of symmetric
cubical set.

A cubical set  X = ((Xn), (*%i ), (ei))  is a sequence of sets  (Xn)n#0  equipped with
faces  (*%i )  and degeneracies  (ei)
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(1) *%i : Xn               Xn–1 :ei   (i = 1,..., n;  % = ±),

satisfying the cubical relations :

(2) *%i .*&j   =  *&j .*%i +1   (j ( i), ej.ei  =  ei+1.ej      (j ( i),

*%i .ej  =  ej.*%i –1     (j < i), or   id   (j = i), or    ej–1.*%i    (j > i).

A morphism  f = (fn): X  Y  is a sequence of mappings  fn: Xn  Yn
commuting with faces and degeneracies. All this forms a category  Cub,  which is a
category of presheaves: a cubical set can be viewed as a functor  X: Iop  Set,
where  I   is the subcategory of  Set  consisting of the elementary cubes  2n = {0,
1}n,  together with the maps  {0, 1}m  {0, 1}n  which delete some coordinates and
insert some 0's and 1's, without modifying the order of the remaining coordinates
[GM]. Therefore,  Cub  has all limits and colimits and is cartesian closed. However,
the important monoidal structure is the Kan tensor product, which is non-symmetric
and biclosed [BH2] (but this is not used here).

A symmetric cubical set [GM, G7] is a cubical set which is further equipped with
transpositions

(3) si: Xn  Xn (i = 1,..., n–1;  n # 2).

which satisfy the Moore relations (1.4.5) and the following coherence conditions:

j < i j = i j = i+1  j > i+1

(4) *%j .si = si–1.*%j *%i +1 *%i si.*%j ,

si.ej =  ej.si–1 ei+1 ei ej.si.

Because of the Moore relations, the symmetric group  Sn  operates on  Xn.

A morphism of symmetric cubical sets  f = (fn): X  Y  is a sequence of
mappings  fn: Xn  Yn  commuting with faces, degeneracies and transpositions.
The resulting category  sCub  is again a category of presheaves  X: Isop  Set,  for
the symmetric cubical site  Is.  The latter can be defined as the subcategory of  Set
consisting of the elementary cubes  2n = {0, 1}n  together with the maps  2m  2n

which delete some coordinates, permute the remaining ones and insert some 0's and
1's. It is a subcategory of the extended cubical site  K  of  [GM], which also contains
the connections.
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Again,  sCub  has all limits and colimits and is cartesian closed; moreover, it
inherits from  Cub  a symmetric monoidal closed structure [G9] and one internal
hom (that is not used here).

1.6. An equivalent presentation. The presence of transpositions makes all faces
and degeneracies determined by those belonging to a fixed direction, e.g. the 1-
indexed ones,  *%1   and  e1.  In fact, from  *%i +1 = *%i .si  and  ei+1 = si.ei,  we deduce
that:

(1) *%i +1  =  *%1 .s1. ... .si, ei+1  =  si. ... .s1.e1.

Thus, as proved in [G8],1.2, a symmetric cubical set can be equivalently defined
as a system

(2) X  =  ((Xn), (*%1 ), (e1), (si)),

*%1 : Xn               Xn–1 :e1, si: Xn+1  Xn+1 (n # 1),

under the Moore relations for transpositions (1.4.5) and the axioms:

(3) *%1 .*&1  =  *&1.*%1 .s1, si.*%1   =  *%1 .si+1, *%1 .e1  =  id,

e1e1  =  s1.e1e1, e1.si  =  si+1.e1.

1.7. A basic symmetric pre-cubical category. The symmetric cubical set  ! X
can be further equipped with partial operations of concatenation in direction  i,  or  i-
concatenation, or i-composition (with  i = 1,..., n  for n-dimensional cubes); globally,
we will speak of cubical compositions (as opposed to the transversal composition
that will be introduced later).

Indeed, acting on the concatenation pushout (1.3.2), the functors  (–)n
i   (1.4.6)

produce the n-dimensional i-concatenation pushout, with embeddings  c%i :  !In 
!In

*+
i

!In–1   !In c%i   =  !Ii–1 × c% × !In–i:  !In  !In,
(1) *–

i    c–
i c–(..., ti,...)  =  (..., ti/2,...),

!In  !In c+(..., ti,...)  =  (..., (ti + 1)/2,...).
  c+

i
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(We have already recalled that the basic concatenation pushout is preserved by
products with fixed d-spaces.) Now, given two i-consecutive n-cubes  x, y: !In  X
(with  *+

i x = *–
i y),  their i-concatenation  z = x +i y  is computed on the previous

pushout

(2) z: !In  X, z.c–
i   =  x,      z.c+

i   =  y.

! X  becomes thus a basic symmetric pre-cubical category, i.e. a symmetric
cubical set with 'geometrically consistent' cubical compositions. (This structure was
called a 'reduced symmetric pre-cubical category' in [G9], Section 3.5.) More
precisely, this means that  ! X  is a symmetric cubical set with the following
additional structure.

For  1 ( i ( n,  the i-concatenation  x +i y  (or i-composition) of two n-cubes  x,
y  is defined when  x, y  are i-consecutive, i.e.  *+

i (x) = *–
i (y),  and satisfies the

following 'geometric' relations with faces, degeneracies and transpositions:

(3) *–
i (x +i y)  =  *–

i (x), *+
i (x +i y)  =  *+

i (y),

*%j (x +i y)  =  *%j (x) +i–1 *%j (y) (j < i),

  =  *%j (x) +i *%j (y) (j > i),

(4) ej(x +i y)  =  ej(x) +i+1 ej(y) (j ( i ( n),

 =  ej(x) +i ej(y) (i < j ( n+1) (nullary interchange).

(5) si–1(x +i y)  =  si–1(x) +i–1 si–1(y), si(x +i y)  =  si(x) +i+1 si(y),

sj(x +i y)  =  sj(x) +i sj(y) (j . i–1, i).

There are no other conditions: in the definition of a basic symmetric pre-cubical
category we are not assuming that the i-compositions behave in a categorical way or
satisfy the binary interchange law, in any sense - strict or weak or lax.

However, for the singular structure  ! X  which we are studying, the binary
interchange law holds strictly. Indeed, for  1 ( i < j ( n,  and n-cubes  x, y, z, u,  we
obviously have

(6) (x +i y) +j (z +i u)  =  (x +j z) +i (y +j u) (middle-four interchange),

whenever these compositions make sense:
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(7) *+
i (x)  =  *–

i (y), *+
i (z)  =  *–

i (u),
   x    y

*+
j (x)  =  *–

j (z), *+
j (y)  =  *–

j (u),    i
   z    u    j

Comparisons for associativity and unitarity of singular cubes will be introduced
in Section 4.

2. Weak symmetric cubical categories with lax units

We now define a notion of cubical structure adapted to the present situation, and
called a u-lax symmetric cubical category. It is a generalisation of the weak case
introduced in [G7, G9] and is similar to the 'quasi cubical' case considered in [G8]
for higher cospans composed with homotopy pushouts (the latter is even more
relaxed, with weaker cubical relations for degeneracies).

Here we allow the comparisons for left and right unitarity to be non-invertible
and directed towards simpler expressions, while we require that the comparisons for
associativity and interchange be invertible; indeed, this is the situation that we find in
our leading examples (like singular cubes, here, or cubical cospans in [G8]). One
should also notice that - for associativity and interchange - there seems to be no
formal reason that might distinguish a particular direction, while - for unitarity - a
rewriting rule would normally point towards simplification.

2.1. Symmetric pre-cubical categories. As a first step, let us recall that a
symmetric pre-cubical category is a category object  A  within the category of basic
symmetric pre-cubical categories and their morphisms (1.7)

  *
%
0  c0

(1) A(0)               A(1)               A(2) (% = ±).
 e0

Explicitly, this means the following data and axioms.
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(wcub.1) A basic symmetric pre-cubical category  A(0) = ((An), (*%i ), (ei), (si), (+i)),
whose entries are called n-cubes, or n-dimensional objects of  A.

(wcub.2) A basic symmetric pre-cubical category  A(1) = ((Mn), (*%i ), (ei), (si), (+i)),
whose entries are called n-maps of  A,  or also (n+1)-cells.

(wcub.3) Symmetric cubical functors  *%0   and  e0,  called  0-faces and 0-degeneracy,
with  *%0 .e0 = id.

Typically, an n-map will be written as  f: x  x',  where  *–
0f = x,  *+

0f = x'  are n-
cubes. Every n-dimensional object  x  has an identity  e0(x): x  x.  Note that  *%0
and  e0  preserve cubical faces  (*%i ,  with  i > 0),  cubical degeneracies  (ei),
transpositions  (si)  and cubical concatenations  (+i).  In particular, given two i-
consecutive n-maps  f, g,  their 0-faces are also i-consecutive and we have:

(2) f +i g:  x +i y   x' +i y' (for  f: x  x',  g: y  y';  *+
i f = *–

i g).

(wcub.4) A composition law  c0  which assigns to 0-consecutive n-maps  f: x  x',
h: x'  x"  (of the same dimension), an n-map  hf: x  x"  (also written  h.f).
This composition law is (strictly) categorical, and forms a category  An = (An, Mn,
*%0 , e0, c0).  It is also consistent with the basic symmetric pre-cubical structure, in the
following sense

(3) *%i (hf)  =  (*%i h).(*%i f), ei(hf)  =  (eih)(eif), si(hf)  =  (sih)(sif),

 *–
i f  *–

i h
(h +i k).(f +i g)  =  hf +i kg

 x – f – h   x"  
0

 

 y – g – k   y"    i

 *+
i g  *+

i k

The last condition is the (strict) middle-four interchange between the strict
composition  c0  and any weak one. An n-map  f: x  x'  is said to be special if its
2n  vertices are identities

(4) *%%%%f:  *%%%%x  *%%%%x' *%%%%  =  *%1 1 *%2 2 ... *%n n (%i = ±).
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In degree 0, this just means an identity.

2.2. Comparisons. We now define a u-lax symmetric cubical category  A  as a
symmetric pre-cubical category (2.1), which is further equipped with some special
transversal maps, playing the role of comparisons for units, associativity and cubical
interchange, as follows. (We only assign the comparisons in direction 1; all the
others can be obtained with transpositions.)

(ucub.5) For every n-cube  x,  we have a special n-map  /1x,  which is natural on n-
maps and has the following faces (for  n > 0)

(1) /1x: (e1*–
1x) +1 x    x (left-unit 1-comparison),

*%1/1x  =  e0*%1 x, *%j /1x  =  /1*%j x      (1 < j ( n),

*–
1x *–

1x

 e0*–
1x      0

*+
j x    x *+

j x    j

   e1*–
1x /1*+

j x /1*–
j x    1

*–
j x    x  *–

j x  e0*+
1x  (1 < j ( n).

*+
1x *+

1x

The naturality condition means that, for every n-map  f: x  x',  the following
square of n-maps commutes

/1x
(e1*–

1x) +1 x   x
(2) (e1*–

1f) +1 f     f

(e1*–
1x') +1 x'   x'

/1x'

(ucub.6) For every n-cube  x,  we have a special n-map  01x,  which is natural on n-
maps and has the following faces (the naturality diagram, similar to diagram (2), is
not written down)
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(3) 01x: x +1 (e1*+
1x)    x, (right-unit 1-comparison),

*%101x  =  e0*%1 x, *%j 01x  =  01*%j x      (1 < j ( n),

*–
1x  *–

1x

 e0*–
1x      0

*+
j x    x *+

j x    j
   x 01*+

j x 01*–
j x    1

*–
j x    e1*+

1x  *–
j x  e0*+

1x  (1 < j ( n).

*+
1x *+

1x

(ucub.7) For three 1-consecutive n-cubes  x, y, z,  we have an invertible special n-
map  11(x, y, z),  which is natural on n-maps and has the following faces

(4) 11(x, y, z):  x +1 (y +1 z)    (x +1 y) +1 z (associativity 1-comparison),

*–
111(x, y, z)  =  e0*–

1x, *+
111(x, y, z)  =  e0*+

1z,

*%j 11(x, y, z)  =  11(*%j x, *%j y, *%j z)   (1 < j ( n),

*–
1x *–

1x

 e0*–
1x  *+

j x  *+
j x

 x +1 y

*+
j y *+

j y    0

 *–
j x    x  *–

j x    j

  11*+
j   11*–

j    1

*+
j z     z *+

j z

 *–
j y  *–

j y

 y +1 z

 *–
j z  *–

j z  e0*+
1z  (1 < j ( n).

 *+
1z  *+

1z

GRANDIS - A LAX SYMMETRIC CUBICAL CATEGORY...

- 130 -



(ucub.8) Given four n-cubes  x, y, z, u  which satisfy the boundary conditions
making the following concatenations possible, we have an invertible n-map  21
(interchange 1-comparison) which is natural on n-maps and has the following faces
(partially displayed below)

(5) 21(x, y, z, u): (x +1 y) +2 (z +1 u)    (x +2 z) +1 (y +2 u),

*–
121(x, y, z, u)  =  e0(*–

1x +2 *–
1z),  *+

121(x, y, z, u)  =  e0(*+
1y +2 *+

1u),

*–
221(x, y, z, u)  =  e0(*–

2x +1 *–
2y),  *+

222(x, y, z, u)  =  e0(*+
2z +1 *+

2u),

*%j 21(x, y, z, u)  =  21(*%j x, *%j y, *%j z, *%j u)   (2 < j ( n),

*–
2x *–

2y *–
2x *–

2y

 e0  *+
1y    x   y *+

1y    0

  +2   +2    1

 *–
1x   x +1 y  e0 *+

1u  *–
1x e0   z   u *+

1u    2

 *–
1z   z +1 u   *–

1z  e0  

 *+
2z   *+

2u  *+
2z  *+

2u

(ucub.9) Finally, these comparisons must satisfy some conditions of coherence,
listed below (2.3).

A  is a weak symmetric cubical category, as defined in [G7-G9], if the unit
comparisons  /, 0  are also invertible. (In this version, the axioms above are denoted
as (wcub.5-9).) Among the examples studied in such papers are: the weak
symmetric cubical category  $Sp(X)  (resp.  $Cosp(X))  of cubical spans (resp.
cospans) on a category  X  with pullbacks (resp. pushouts); the strict symmetric
cubical category  $Rel  of cubical relations; structures of 'collared cospans' related to
higher cobordism.

2.3. Coherence. The coherence axiom (ucub.9) means that the following diagrams
of transversal maps commute (assuming that all the cubical compositions make
sense):

GRANDIS - A LAX SYMMETRIC CUBICAL CATEGORY...

- 131 -



(i) coherence pentagon for  1 = 11:

(x +1 y)  +1  (z +1 u)
 1 1

(1) x +1 (y +1 (z +1 u)) ((x +1 y) +1 z) +1 u

1+1   1  1+1

x +1 ((y +1 z) +1 u) (x +1 (y +1 z)) +1 u

(ii) coherence conditions for  1 = 11,  / = /1  and  0 = 01

   1
e1*–

1x +1 (x +1 y) (e1*–
1x +1 x) +1 y

(2)  / /+1
  x +1 y

   1
x +1 (e1*–

1y +1 y) (x +1 e1*+
1x) +1 y

(3) 1+/ 0+1
  x +1 y

   1
x +1 (y +1 e1*+

1y) (x +1 y) +1 e1*+
1y

(4) 1+0 0

  x +1 y

(iii) coherence hexagon for  1 = 11  and  2 = 21  (writing  +  for  +1)

1+1
(x + (y + z)) +2 (x' + (y' + z'))     ((x + y) + z) +2 ((x' + y') + z')

   2    2

(5) (x +2 x') + ((y + z) +2 (y' + z'))   ((x + y) +2 (x' + y')) + (z +2 z')
   1+2    2+

(x +2 x') + ((y +2 y') + (z +2 z')) ((x +2 x') + (y +2 y')) + (z +2 z')
   1
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(iv) coherence conditions for  2 = 21,  / = /1  and  0 = 01  (writing  +  for  +1)

  /+/   0+0
 (e1*–

1x +x) +2 (e1*–
1y + y) x +2 y    (x + e1*+

1 x) +2 (y + e1*+
1 y)

   2    2

(6) (e1*–
1x +2 e1*–

1y) + (x +2 y) (x +2 y) + (e1*+
1 x +2 e1*+

1 y)

 e1*–
1(x +2 y) + (x +2 y)   x +2 y (x +2 y) + e1*+

1(x +2 y)
/   0

The equality in the left (or right) column of this diagram follows from the
'geometric relations' 1.7.4 (nullary interchange) and 1.7.3. Notice also that we do not
require the condition  /1e1x = 01e1x: e1x +1 e1x  e1x,  which is not satisfied in
our case (cf. 4.3), even though  e1x +1 e1x  does coincide with  e1x.

3. Reparametrisation mappings

We study now the reparametrisation mappings  !In  !In  and their interaction
with the singular cubes of a d-space, as a first step in the construction of the cubical
structure  !Sng(X).

3.1. Directed reparametrisation mappings. An n-dimensional (directed)
reparametrisation mapping  f: !In  !In  will be a d-map (i.e. an order-preserving
continuous mapping) which sends each face of the domain to the corresponding face
of the codomain, i.e. satisfies the following equivalent conditions (for  i = 1,..., n  and
% = 0,1)

(a) f(*%i (!In)))  3  *%i (!In),

(b)   f.*%i   =  *%i .ei.f.*%i .

As a consequence,  f  sends each vertex of its domain to the corresponding vertex
of the codomain; more generally, the 'lower' faces of any dimension are transformed

GRANDIS - A LAX SYMMETRIC CUBICAL CATEGORY...

- 133 -



into the corresponding ones. But actually, onto them, and  f  itself is surjective, as we
prove below, by an Intermediate Value Theorem on the Cube (see 3.5).

Reparametrisation mappings of dimension  n  form a monoid  Sn,  under the
usual composition.

Moreover, there are faces, transpositions and degeneracies (which will be proved
to form a symmetric cubical object  S  within monoids, in 3.2)

(1) *%i :  Sn  Sn–1, si: Sn  Sn, ei: Sn  Sn+1,

*%i (f)  =  ei.f.*%i : !In–1  !In  !In  !In–1 (f ' Sn),

si(f)  =  si.f.si: !In  !In  !In  !In (f ' Sn),

ei(f): !In  !In (f ' Sn–1),

e1(f)(t1,..., tn)  =  (t1, f(t2,..., tn)), ei+1(f)  =  si(....s2(s1(e1(f)))...).

We use underlined symbols to avoid confusing the face  *%i (f) = ei.f.*%i   of  f  as
a reparametrisation mapping with its face  *%i (f) = f.*%i : !In–1  !In  as an n-cube
of its codomain; likewise for degeneracies and transpositions.

Notice also that we have defined all degeneracies  ei  using  e1  and the
transpositions (according to the formula 1.6.1). Explicitly, if  f ' S n–1,  the
reparametrisation  ei(f)  operates by setting apart the i-th coordinate  ti,  then
applying  f ' Sn–1  to the remaining  n–1  coordinates and finally reinserting  ti  at
the original i-th place:

ei(f)(t1,..., tn)  =  (f1(t1,..., t̂i,..., tn),..., ti,..., fn–1(t1,..., t̂i,..., tn)).

In other words,  ei(f)  is determined by the following two conditions

(2) ei.ei(f)  =  f.ei, pi.ei(f)  =  pi (f ' Sn–1),

where  pi: !In  !I  denotes the i-th projection (the one omitted by  ei: !In  !In–

1).  For instance, if  f: !I  !I  is in  S1,  its two degeneracies in  S2  are computed
by the following formulas:

(3) e1(f)(t1, t2)  =  (t1, f(t2)), e2(f)(t1, t2)  =  (f(t1), t2) (t1, t2 ' I).
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Reparametrisation mappings will be used to reparametrise the singular cubes  x:
!In  X  of a d-space. The interactions of the two 'algebras' will be developed in
3.4.

Notice that the following squares commute (also because of (2))

f   f   f
 !In  !In   !In–1 !In–1  !In  !In

(4)   *%i    *%i    ei    ei     si    si

  !In–1 !In–1  !In  !In  !In  !In

*%i f  eif
 sif

3.2. Theorem (The structure of reparametrisation mappings). Reparametrisation
mappings, with the faces, degeneracies and transpositions defined above, form a
symmetric cubical object in the category of monoids.

Proof. Faces and degeneracies preserve the composition of reparametrisation
mappings (and - plainly - the identity). Indeed, applying 3.1(b) and the
characterisation 3.1.2 for  ei,  we have

*%i (gf)  =  ei.gf.*%i   =  eig.*%i ei.f*%i   =  *%i (g).*%i (f),

ei.ei(gf)  =  (gf)ei,  =  g(eiei(f))  =  ei.ei(g).ei(f),

pi.ei(gf)  =  pi  =  pi.ei(g).ei(f),

si(gf)  =  si.gf.si  =  sigsi.sifsi  =  si(g).si(f).

Finally, we verify the symmetric cubical identities, working with the simpler
presentation of 1.6.3 to reduce computations, and taking into account the fact that the
structural maps of cubes satisfy the follwing dual conditions

(1) *&1*
%
1   =  s1.*%1*&1, *%1 .si  =  si+1.*%1 , e1.*%1   =  id,

e1e1  =  e1e1.s1, si.e1  =  e1.si+1.

Now, we have:

- *%1*
&
1(f)  =  (e1e1).f.(*&1*%1 )  =  (e1e1s1).f.(s1.*%1 .*&1)  =  *&1*%1 s1(f),

- si.*%1 (f)  =  sie1.f.*%1 si  =  e1si+1.f.si+1.*%1   =  *%1 .si+1(f),
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- *%1 e1(f)  =  e1,e1(f).*%1   =  f.e1*%1   =  f,

- e1(e1si(f))  =  (si.f.si).e1  =  si.f.e1.si+1  =  si.e1.e1(f).si+1  =   e1.si+1.e1(f).si+1  =
e1(si+1e1(f)),

- p1(e1si(f))  =  p1  =  si+1.p1.si+1  =  si+1.p1.e1(f).si+1  =   p1.si+1.e1(f).si+1  =  
p1(si+1e1(f)).

The n-dimensional reparametrisation mapping

(e1e1(f))(t1,..., tn) = (t1, t2, f(t3,..., tn)),

is plainly invariant under  s1 = s1.( – ).s1.  Finally, the Moore relations for the
transpositions  si  follow trivially from those of the original  si.  For instance, for  i =
j–1:

- si.sj.si(f)  =  (si.(sj.(si.f.si).sj).si)  =  sj.si.sj(f).

3.3. Concatenating reparametrisation mappings. The cubical set  S   has the
following i-concatenation, or i-composition.

If  f, g ' Sn  are i-consecutive  (*+
i f = *–

i g),  we define:

 ui(f(t1,..., 2ti,..., tn)), if 0 ( ti ( 1/2,
(1) (f +i g)(..., ti,...)  = 

 vi(g(t1,..., 2ti – 1,..., tn)), if  1/2 ( ti ( 1,

where the map  ui: !In  !In  halves the i-th coordinate, while  vi: !In  !In

operates on this coordinate as  t  (t + 1)/2  (all the other coordinates staying
unchanged).

Finally, it is obvious that  f +i g  is again a reparametrisation mapping.

3.4. Proposition (The interaction of cubes and reparametrisation mappings). For a
d-space  X,  the reparametrisations of its singular cubes agree with faces,
degeneracies, transpositions and concatenations, in the following sense

(1) *%i (xf)  =  *%i (x).*%i (f), ei(xf)  =  ei(x).ei(f), si(xf)  =  si(x).si(f),

(2) (x +i y).(f +i g)  =  xf +i yg,
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where  x, y: !In  X  are i-consecutive singular n-cubes and  f, g  are i-
consecutive mappings in  Sn.

Proof. The formulas (1) are an easy consequence of the definitions (in 3.1)

(3) *%i (xf)  =  (xf)*%i   =  x.*%i ei.f*%i   =  *%i (x).*%i (f),

ei(xf)  =  (xf)ei,  =  xei.ei(f)  =  ei(x).ei(f),

si(xf)  =  (xf)si  =  x.sisi.fsi  =  si(x).si(f).

The first point also proves that  xf +i yg  makes sense, in (2). Then, this formula
is easily verified, with the definitions of concatenations of cubes and reparametrisa-
tions (in 1.7.2 and 3.3.1).

3.5. Theorem (Intermediate Value Theorem on the Cube). Let  f: In  In  be a
continuous mapping which sends each (n–1)-dimensional face to itself. Then  f  is
surjective and sends each 'lower' face (of any dimension) onto itself.

Proof. Let us begin by considering the affine homotopy  h: f  id: In  In

(1) h(t1,..., tn, t)  =  (1 – t).f(t1,..., tn) + t.(t1,..., tn),

and note that it sends each face of  In  into itself, because  f  and  id  both do, and
each face is convex. Now, let us prove that  f  is surjective, by induction on  n.  Our
thesis being trivial for  n = 0,  let us assume it holds for  n–1  and prove it for  n > 0.

Every restriction of  f  to an (n–1)-dimensional face of the cube gives a map  In–1

 In–1  which satisfies the hypothesis, and is surjective; whence, the restriction  f':
*In  *In  to the boundary of the cube is surjective.

Collapsing the boundary  *In  to a point, we get an induced endomap of the
sphere,  f": Sn  Sn,  which is still homotopic to the identity, by a homotopy
induced by  h;  therefore  f"  is also surjective, or its image would be contained in a
contractible space and  f"  would be homotopic to a constant map. Therefore, the
image of  f  also contains the interior points of  In  and  f  is surjective.

3.6. Remarks. The previous statement is trivial for  n = 0,  and amounts to the
classical Intermediate Value Theorem for  n = 1.  For  n = 2,  one might describe the
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statement as follows: in order to cover a picture with a rectangular piece of cloth, it is
sufficient to ensure that each edge of the cloth is placed on the 'corresponding' edge
of the picture (so that vertices are necessarily placed at vertices and each edge covers
an edge).

Notice also that, for  n # 2,  it is not sufficient to assume that  f  covers the
boundary of the cube, as simple examples can show. The crucial assumption is that
the restriction of  f  to the boundary is not homotopically trivial. This can be
formulated as follows.

Intermediate Value Theorem on the Ball. Let  f: Bn  Bn  be a map which sends
the boundary  Sn–1  into itself. If the restriction  f': Sn–1  Sn–1  is not homotopic
to a constant map (or, equivalently, if its homological degree is not null), then  f  is
surjective.

An equivalent formulation can be found in Agoston's text [Ag], Section 7.4. (We
thank Sibe Mardešić for this reference.)

4. Transversal maps and comparisons

Reparametrisation mappings are now used to define the transversal maps of the
singular cubes of a d-space  X.  These include comparisons for the associativity and
unitarity of the operations of concatenation, yielding the u-lax symmetric cubical
category  !Sng(X).

4.1. Transversal maps. For a d-space  X,  a transversal map  f: x  y  between
two singular n-cubes  x, y  of  X  will be a reparametrisation mapping  f: !In  !In

such that  x = yf.

More precisely, a transversal map should be defined as a triple  f̂ = (f, x, y),  and
we will use this notation when useful. Notice that  y  always determines  x,  while  x
determines  y  if  f  is bijective.

The choice of the direction of  f,  from  x  to  y,  is formal but has the advantage
of agreeing with the composition of reparametrisations. In fact, the n-cubes of  X
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and their transversal maps form a category  !Sngn(X),  with obvious faces, identities
and composition

(1) *–
0(f, x, y)  =  x, *+

0(f, x, y)  =  y, e0(x)  =  (id, x, x),

c0(f, g)  =  gf: x  z (for  g: y  z,  so that  x = yf = zgf).

!Sng0(X)  is a discrete category: the only transversal maps between 0-cubes are
the identities.

Transversal maps also form a symmetric cubical set, using the cubical structure
of reparametrisation maps (defined in 3.1) and that of singular cubes

(2) *%i (f, x, y)  =  (*%i f,  *%i x,  *%i y), ei(f, x, y)  =  (eif,  eix,  eiy),

si(f, x, y)  =  (sif,  six,  siy).

This is legitimate, since the relation  x = yf  implies

(3) *%i (x)  =  yf.*%i   =  y.*%i .ei.f.*%i   =  *%i (y).*%i (f),

ei(x)  =  yf.ei  =  y.ei.ei(f)  =  ei(y).ei(f),

si(x)  =  yf.si  =  y.si.si.f.si  =  si(y).si(f).

Finally, we define the i-concatenation of i-consecutive transversal maps as

(4) (f, x, y) +i (g, z, u)  =  (f +i g,  x +i z,  y +i u) (*+
i (f, x, y) = *–

i (g, z, u)),

where  f +i g: In  In  is the i-concatenation of reparametrisation maps (3.3.1), and
the relations  x = yf  and  z = ug  imply that

(5) (y +i u)(f +i g)  =  yf +i ug  =  x +i z.

4.2. Associativity comparison. Given three consecutive paths (1-cubes)  x, y, z: !I
 X,  the two ternary concatenations  w' = x +1 (y +1 z)  and  w" = (x +1 y) +1 z

 x(2t) (0 ( t ( 1/2),   x(4t) (0 ( t ( 1/4),
(1)  w'(t) =  y(4t – 2) (1/2 ( t ( 3/4), w"(t) =   y(4t – 1) (1/4 ( t ( 1/2),

z(4t – 3) (3/4 ( t ( 1), z(2t – 1) (1/2 ( t ( 1),

can be turned one into the other by a suitable invertible reparametrisation of the
interval. Namely, we have an invertible transversal map  1: w'  w"  (w' = w"1),
where  1: !I  !I  is the following reparametrisation function
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  1
t/2 (0 ( t ( 1/2),

(2) 1(t) = t – 1/4 (1/2 ( t ( 3/4),
  1 2t – 1 (3/4 ( t ( 1).

     1

In degree  n,  we shall use the reparametrisation maps obtained from  1  in the
usual way

(3) 1i  =  !Ii–1 × 1 × !In–i: !In  !In.

It follows that the i-concatenation of singular n-cubes is associative up to the
following family of invertible transversal maps

(4) 1i(x, y, z):  x +i (y +i z)  (x +i y) +i z.

This family is natural, with respect to transversal maps: given three n-maps

f: x'  x, g: y'  y, h: z'  z,

that are consecutive in direction  i,  we must verify that the following square
commutes

 1 i
 x' +i (y' +i z')   (x' +i y') +i z'

(5) f +i (g +i h)     (f +i g) +i h
 x +i (y +i z)   (x +i y) +i z 1i'

Plainly, it is sufficient to check this for  n = 1  (and  i = 1).  Then, both
composites transform the partition  (0, 1/2, 3/4, 1)  of  I  into the partition  (0, 1/4,
1/2, 1),  by a pasting of 'affine modifications' of  f, g, h  on domain and codomain.
The common result of both compositions is thus the transversal map defined by the
following reparametrisation function

f(2t)/4 (0 ( t ( 1/2),
k(t)  = 1/4 + g(4t – 2)/4 (1/2 ( t ( 3/4),

1/2 + h(4t – 3)/2 (3/4 ( t ( 1).
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4.3. Identity comparisons. Given a path  x: I  X  with endpoints  x0 = x(0),  x1
= x(1),  the two concatenations  x', x"  of  x  with trivial paths can be obtained from
the original path  x  by non-invertible reparametrisations of the interval, with two
piecewise affine functions  /, 0:

  1
  0 x'  =  e1(x0) +1 x  =  x/, /(t)  =  max(0, 2t – 1),

(1)
  / x"  =  x +1 e1(x1)  =  x0, 0(t)  =  min(2t, 1).

     1

In degree  n,  we shall use the reparametrisation maps

(2) /i  =  !Ii–1 × / × !In–i: !In  !In, 0i  =  !Ii–1 × 0 × !In–i: !In  !In.

We have thus two natural transversal maps

(3) /i(x):  x/i  x, 0i(x):  x0i  x,

x/i  =  ei(*–
i x) +i x, x0i  =  x +i ei(*+

i x).

We do not need other comparisons: we have already remarked, at the end of 1.7,
that  ! X  has a strict interchange of concatenations (binary and nullary).

4.4. The u-lax cubical category of a directed space. For a d-space  X,  we have
thus defined the u-lax symmetric cubical category  !Sng(X):  it consists of the basic
symmetric pre-cubical category  ! X  (1.7), with the addition of:

- transversal maps given by reparametrisations (4.1),

- invertible comparisons for pseudo associativity (4.2),

- comparisons for lax unitarity (4.3),

- identity comparisons for strict interchange.

The coherence conditions of 2.3 are satisfied. To verify this point for the
pentagon, it is sufficient to note that the five associativity comparisons of diagram
2.3.1 are produced by the mapping

(1) 11  =  1 × !In–1: !In  !In.
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Their action on the first coordinate is piecewise affine, and determined by the
following partitions of the interval  [0, 1]

(0, 1/4, 1/2, 3/4, 1)
 1 1

(2) (0, 1/2, 3/4, 7/8, 1) (0, 1/8/, 1/4, 1/2, 1)

1+1   
1  1+1

(0, 1/2, 5/8, 3/4, 1) (0, 1/4, 3/8, 1/2, 1)

Now, both composites coincide with the piecewise affine mapping which
transforms the left-hand partition into that at the right. The other axioms of
coherence are verified in the same way.

Notice also that, when  2  is the identity, the coherence hexagon 2.3.5 reduces to
a condition of consistency of the associativity comparison  1 = 11  with 2-
concatenation:

(3) 1(x, y, z) +2 1(x', y', z')  =  1(x +2 x', y +2 y', z +2 z').

4.5. Remarks. It would be interesting to quotient singular cubes up to invertible
reparametrisations, but this is not easily done because - of course - we want to have
induced concatenations. Now, if  x +i y  and  x' +i y'  are defined in  !Sngn(X),  and
there exist two invertible reparametrisations  f: x'  x,  g: y'  y,  these need not
be i-consecutive, and there are cases where there is no reparametrisation at all from
x' +i y'  to  x +i y.

We give such an example in dimension 2. Let us start from two 1-consecutive 2-
cubes  x, y  of the ordinary plane  R2,   that have constant faces  *%1   and are injective
outside of such faces, like

 x, y: !I2  R2, x(t, t')  =  (t, t'.t(1 – t)), y(t, t')  =  (t + 1, t'.t(1 – t)).

There is precisely one transversal endomap  f: x  x,  namely the identity,
because its reparametrisation  f: !I2  !I2  must be the identity on a dense subset
of the standard square.
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Let now  g = id × 4: !I2  !I2  be an invertible reparametrisation map given by
a directed homeomorphism  4: !I  !I  other than the identity (for instance,  4(t) =
t2).  There is only one transversal endomap  yg  y,  and is given by  g: !I2 
!I2.

The 2-cubes  x, y  and  y' = yg  have the same (constant) 1-indexed faces, whence
there are concatenated cubes  x +1 y  and  x +1 y',  with values in  R2.

However, there is no transversal map  x +1 y'  x +1 y:  indeed, its
reparametrisation mapping  h: !I2  !I2  should restrict to the identity on  [0, 1/2]
× I  and to  id × 4  on  [1/2, 1] × I,  which gives a contradiction on the intersection
{1/2} × I  of these rectangles.

One might think of solving this problem by considering 'piecewise
reparametrisations' on 'multi-partitions' of the singular cubes, but this leads to two
problems.

(a) If  f: *+
i (x)  *–

i (y)  is a (global) invertible transversal map, it is easy to show
that there exists a cube  y'  and an invertible transversal map  f': y'  y  such that  x
+i y'  is defined; but  y' = yf'  is constructed by extending the reparametrisation
mapping  f;  a 'piecewise reparametrisation' of our faces would not allow us to
construct a cube  y'.

(b) The relation between cubes obtained this way is not transitive.

Extending our relation by transitivity would solve the second point but still
stumble on the first. The same happens with a different approach, by partial
reparametrisation mappings defined on convenient dense open subsets.

4.6. The non-directed case. Let now  X  be a (non-directed) topological space. As
already said, we view it as a d-space by its natural (reversible) structure, where all
paths are directed.

Now, the singular symmetric cubical set  ! X  (1.4) will be written as  X  and
equipped with reversions produced, contravariantly, by the reversions of the
standard cube

(1) ri  =  Ii–1 × r × In–i:  In  In, ri(t1,..., tn+1)  =  (t1,..., 1 – ti,..., tn).

ri: nX  nX ri(x)  =  x.ri (i = 1,..., n),
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We now replace the weak symmetric cubical category  !Sng(X)  with a larger
structure  Sng(X),  where the transversal maps  (f, x, y): x  y  are given by
reparametrisation mappings  f: In  In  that need not preserve the natural ordering
(but, of course, still have to send each face onto itself).

The weak symmetric cubical category  Sng(X)  is also equipped with reversions,
extending those of its cubes: if  (f, x, y): x  y  is a transversal map between
singular n-cubes of  X,  we let

(2) ri(f)  =  ri.f.ri: In  In, ri(f, x, y)  =  (rif,  rix,  riy).

The theory of reversible symmetric cubical sets is sketched in [GM], Section 9.
(The site  !K  considered there also contains the connections, that can be discarded.)

The definition of a weak reversible symmetric cubical category is not difficult to
set up, blending the theory mentioned above with the non-reversible notion studied
above. Of course, new consistency and coherence conditions must be added, like:

(3) r1(x +1 y)  =  r1(y) +1 r1(x),

r1(/1x)  =  01(r1(x)), r1(11(x, y, z))  =  11(r1(z), r1(y), r1(x)).

5. The Moore symmetric cubical category of a d-space

In this section we briefly consider a strict version of the previous construction. It
is based on the Moore directed cubes of a d-space, defined on 'multi-intervals'. Their
cubical compositions are strictly associative and unital. Reparametrisation mappings
of multi-intervals provide transversal maps and the (extended) Moore symmetric
cubical category  !MSng(X)  of a d-space.

5.1. Multi-intervals. A (directed) multi-interval will be a product of directed
intervals, possibly degenerate, of variable length  a # 0  (or  ah # 0)

(1) I(a)  =  ![0, a], I(a1,..., an)  =  "h=1,...,n ![0, ah].

The topological dimension of this parallelepiped can be any integer between  0
and  n,  but we say that it has formal dimension  n  and span  (a1,..., an) ' [0, 5[n.
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There is precisely one directed multi-interval of formal dimension  0,  i.e. the empty
product  {*};  its span is the empty family.

The faces, degeneracies and transpositions of multi-intervals are defined as
follows

(2) *%i :  "h.i I(ah)  "h I(ah), *%i (t1,..., tn–1)  =  (t1,..., %ai,..., tn–1),

ei:  "h I(ah)  "h.i I(ah), ei(t1,..., tn)  =  (t1,..., t̂i,..., tn),

si:  "h I(a6i(h))  "h I(ah), si(t1,..., tn)  =  (t1,..., ti+1, ti,..., .., tn) (i < n).

Here,  6i: {1,..., n}  {1,..., n}  denotes the involution that interchanges  i  and
i+1.  Notice also that - as a consequence of using multi-intervals instead of standard
cubes:

- the upper face  *+
i   is determined by its codomain, or equivalently by its domain

and the number  ai,

- the degeneracy  ei  is determined by its domain, or equivalently by its codomain
and  ai,

-  *–
i   and  si  are determined by their domain, or equivalently by their codomain.

In order to reparametrise cubes, we will need degeneracies whose codomain is
known; in such a case, the degeneracy  ei  in (2) can be written as  ea

i ,  to mean that it
is determined by its codomain  "h.i I(ah)  together with  ai = a # 0.

Working with the singular cubes, in the previous sections, we have used the
standard degeneracy  e1

i ,  which preserves them. Below, working with Moore cubes,
we will use the strict degeneracy  e0

i ,  that has the advantage of giving strict identities
for i-concatenation

(3) e0
i :  "h I(ah)  "h.i I(ah) (ai = 0).

5.2. The cocubical relations. The faces and degeneracies of multi-intervals satisfy
cocubical relations analogous to those of a cocubical set. We display them on
diagrams because the symbols  *%i ,  ei,  si  are far from containing the whole
information
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  *%i
"h.i+1,j I(ah) "h.j I(ah)

(1) *&j .*%i   =  *%i +1*
&
j (j ( i),   *&j *&j

"h.i+1 I(ah)  "h I(ah)
  *%i +1

  ei
"h I(ah) "h.j I(ah)

(2) ei.ej  =  ej.ei+1 (j ( i), ei+1 ei

"h.i+1 I(ah) "h.i+1,j I(ah)
ej

(3) ei.*%i   =  id "h.i I(ah) "h I(ah) "h.i I(ah)

  *%i
"h.i I(ah) "h I(ah)

(4) ej.*%i   =  *%i –1.ej (j < i), ej ej

"h.j,i–1 I(ah)   "h.j I(ah)
  *%i –1

  *%i
"h.i I(ah) "h I(ah)

(5) ej.*%i   =  *%i . ej–1 (j > i), ej–1 ej

"h.i,j–1 I(ah)  "h.j I(ah)
   *%i

This structure is thus a sort of 'cocubical aggregate' of directed spaces, more
general than a cocubical directed space: in dimension  n  there are various objects (all
the multi-intervals of formal dimension  n),  instead of a single one. The cocubical
set of the standard cubes  !In  is a 'substructure' of the present structure.

Furthermore, the transpositions  si: "h I(a6(h))  "h I(ah)  satisfy the Moore
relations (1.4.5) and the coherence conditions with faces and degeneracies already
stated above (in the contravariant form of cubical relations, see 1.5.4):
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j < i j = i j = i+1 j > i+1

(6) si.*%j = *%j .si–1 *%i +1 *%i *%j .si,

ej.si =  si–1.ej ei+1 ei si.ej.

For instance, the first two rewriting rules on  si.*%j (for  j <  i  and  j = i,
respectively) amount to the commutativity of the following diagrams:

  *%j   *%i
"h.j I(a6i(h)) "h I(a6i(h)) "h.i+1 I(a6i(h)) "h I(a6i(h))

(7) si–1 si    *%i +1 si

"h.j I(ah)  "h I(ah) "h I(ah)
  *%j

5.3. Moore cubes. We now introduce the Moore symmetric cubical set of a d-space
X

(1) M(X)  =  ((MnX), (*%i ), (ei), (si)).

A Moore (directed) n-cube of  X  will be a map with values in  X  and defined on
a multi-interval of formal dimension  n

(2) x: "h=1,...,n I(ah)  X, sp(x)  =  (a1,..., an).

Faces, degeneracies and transpositions of  M (X)  are obtained by pre-
composing with those of multi-intervals, and will be denoted by the same symbols

(3) *%i : MnX  Mn–1X, *%i (x)  =  x.*%i : "h.i I(ah)  X,

ei: Mn–1X  MnX, ei(x)  =  x.e0
i : "h<i I(ah) × {0} ×"h#i I(ah)  X,

si: MnX  MnX si(x)  =  x.si: "h I(a6i(h))  X (i ( n–1).

Notice, again, that the (strict) degeneracy  ei(x) = x.e0
i   of a singular cube  x: !In–

1  X  is not a singular cube of  X:  the standard degeneracy used in the previous
section is  x.e1

i : !In  X.  We use the same notation  ei(x),  since the context is
generally sufficient to specify whether we are working within Moore or singular
cubes of  X.
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These maps satisfy cubical relations, dual to those considered above, so that
M(X)  is indeed a symmetric cubical set, as defined in 1.5. Again, the contravariant
action of the transpositions  s1,..., sn–1  on  MnX  can be extended to a (right) action
of the symmetric group  Sn.

As we have already seen in 1.6, the presence of transpositions makes all faces
and degeneracies determined by (say) the 1-indexed ones,  *%1   and  e1:

(4) *%i +1  =  *%1 .s1. ... .si, ei+1  =  si. ... .s1.e1.

For a (non-directed) topological space  X,  R. Brown [Br] has recently given a
cubical construction  M*(X)  similar to the present  M (X).  His n-cubes, called
Moore hyperrectangles, are pairs  (x, a),  where  x: [0, 5[n  X  is a map,  a =
(a1,..., an) ' [0, 5[n,  and  x(t1,..., tn)  is independent of the coordinate  ti  for  ti # ai.
This is obviously equivalent to the present definition of n-cubes (letting all paths of
X  be distinguished), but the cubical structure considered in [Br] is different from
the present one, as already mentioned in the Introduction.

5.4. A basic symmetric cubical category. The symmetric cubical set  M(X)  can
be further equipped with partial operations, called cubical compositions, the
concatenation in direction  i,  or  i-concatenation, or i-composition.

In dimension  n,  and for  i = 1,..., n,  it is based on the following i-concatenation
pushout, with embeddings  c%i

  *+
i

"h.i I(ah)   "h I(ah) ah = bh = dh   for  h . i,
(1) *–

i    c–
i di = ai + bi,

"h I(bh)  "h I(dh)
  c+

i

c–
i (t1,..., tn)  =  (t1,..., tn), c+

i (t1,..., tn)  =  (t1,..., ai + ti,..., tn).

Now, given two i-consecutive Moore n-cubes  x: "h I(ah)  X  and  y: "h
I(bh)  X  (with  *+

i x = *–
i y),  their i-concatenation  z = x +i y  is computed on the

previous pushout

(2) z: "h I(dh)  X, z.c–
i   =  x,      z.c+

i   =  y,
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sp(z)  =  (a1,..., ai + bi,..., an)  =  (b1,..., ai + bi,..., bn),

z(t1,..., tn)  =  x(t1,..., tn)   for  ti ( ai,

z(t1,..., tn)  =  y(t1,..., ti– ai,..., tn)   for  ti # ai.

M(X)  becomes thus a basic symmetric cubical category, i.e. a symmetric cubical
set with 'geometrically consistent' cubical compositions, that satisfy a strict
interchange law, are strictly associative and have strict identities given by
degeneracies. (Again, the term 'basic' refers to the fact that transversal maps have not
yet been added.)

5.5. Moore reparametrisation mappings. An n-dimensional (directed)
reparametrisation mapping with domain-span  (a1,..., an)  and codomain-span
(b1,..., bn).

(1) f: I(a1,..., an)  I(b1,..., bn),

will be a d-map (i.e. an order-preserving continuous mapping) which sends each
face of the domain multi-interval to the corresponding face of the codomain, i.e.
satisfies the following equivalent conditions (for  i = 1,..., n  and  % = 0,1)

(a) f(*%i ("h I(ah)))  3  *%i ("h I(bh)),

(b)   f.*%i   =  *%i .ei.f.*%i ,

(in the second formula, notice that  ei  is determined by its domain, which is the
codomain of  f).

Again, the faces of any dimension are transformed onto the corresponding ones
and  f  itself is surjective (by the obvious extension of Theorem 3.5). In particular,
ah = 0  implies  bh = 0.  The topological dimension of the domain is thus greater
than or equal to that of the codomain, while the formal dimensions are the same.

Multi-intervals of formal dimension  n  and their reparametrisation mappings
form a category  Rn,  under the usual composition. There are faces, transpositions
and degeneracies:

(2) *%i :  Rn               Rn–1, si: Rn  Rn, ei: Rn  Rn+1,

*%i (f)  =  ei.f.*%i : "h.i I(ah)  "h I(ah)  "h I(bh)  "h.i I(bh),
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si(f)  =  si.f.si: "h I(a6i(h))  "h I(ah)  "h I(bh)  "h I(b6i(h)),

ei(f): "h<i I(ah) × {0} × "h>i I(ah)    "h<i I(bh) × {0} × "h>i I(bh),

e1(f)(0, t2,..., tn)  =  (0, f(t2,..., tn)), ei+1(f)  =  si(....s2(s1(e1(f)))...).

Moore reparametrisation mappings, with the faces, degeneracies and
transpositions defined above, form a symmetric cubical object in the category of
small categories. (The proof is similar to that of Theorem 3.2, for standard
reparametrisations.)

Notice that these faces and transpositions extend those of standard
reparametrisations, while degeneracies do not. Here  ei(f)  is determined by the
following condition

(3) e0
i .ei(f)  =  f.e0

i .

5.6. Concatenating reparametrisation mappings. The cubical object  R  has the
following i-directed concatenation. Take two reparametrisation mappings  f, g  that
are i-consecutive, i.e.  *+

i f = *–
i g

(1) f: "h I(ah)  "h I(bh), g: "h I(ch)  "h I(dh),
(ah = ch,  bh = dh,    for  h . i).

Their i-concatenation has spans  (a1,..., ai + ci,..., an)  and  (b1,..., bi + di,..., bn)

 f(t1,..., ti,..., tn), for  0 ( ti ( ai,
(2) (f +i g)(t1,.., tn)  = 

 (0,..., bi,..., 0) + g(t1,..., ti – ai,..., tn), for  ai ( ti ( ai + bi.

For a d-space  X,  reparametrisation of its Moore cubes agrees with faces,
degeneracies, transpositions and i-indexed compositions, in the following sense

(3) *%i (xf)  =  *%i (x).*%i (f), ei(xf)  =  ei(x).ei(f), si(xf)  =  si(x).si(f),

(4) (x +i y).(f +i g)  =  xf +i yg,

where  f, g  are i-consecutive mappings in  Rn,  as in 5.6.1, and  x, y  are i-
consecutive Moore n-cubes (such that  xf  and  yg  are defined). The proof is similar
to that of Proposition 3.4, for standard reparametrisations.
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5.7. Moore transversal maps. For a d-space  X,  a transversal map  f: x  y
between two Moore n-cubes  x, y  of  X  will be a reparametrisation mapping such
that  x = yf

(1) f: "h I(ah)  "h I(bh), y: "h I(bh)  X, x = yf: "h I(ah)  X.

Also here, a transversal map should be defined as a triple  f̂ = (f, x, y),  and we
will use this notation when useful. Again,  y  determines  x  (and conversely if  f  is
bijective).

The Moore n-cubes of  X  and their transversal maps form a category
!MSngn(X),  with obvious faces, identities and composition

(2) *–
0(f, x, y)  =  x, *+

0(f, x, y)  =  y, e0(x)  =  (id, x, x),

c0(f, g)  =  gf: x  z (for  g: y  z,  so that  x = yf = zgf).

This category is discrete in degree 0: the only transversal maps between 0-cubes
are the identities.

Transversal maps also form a symmetric cubical set, using the cubical structure
of Moore cubes (5.3) and of their reparametrisation maps (5.5)

(3) *%i (f, x, y)  =  (*%i f,  *%i x,  *%i y), ei(f, x, y)  =  (eif,  eix,  eiy),

si(f, x, y)  =  (sif,  six,  siy).

Finally, one defines the i-concatenation of i-consecutive transversal maps as

(4) (f, x, y) +i (g, z, u)  =  (f +i g,  x +i z,  y +i u) (*+
i (f, x, y) = *–

i (g, z, u)),

where  f +i g  is the i-concatenation of reparametrisation maps (5.6).

This completes the definition of the Moore symmetric cubical category
!MSng(X)  of the d-space  X.

6. Some hints to lax cubical structures of tangles

We end with a few hints to a family  T(A)  of u-lax symmetric cubical categories,
depending on a topological space  A,  and related to higher categories of tangles, as
considered in [BL, Ch].
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In this section the faces, degeneracies and transpositions of the standard cubes
In  are written as  7%i : In–1  In,  +i: In  In–1  and  6i: In  In.

6.1. A preparatory structure. Let us come back to the u-lax symmetric cubical
category  Sng(S)  associated to a topological space  S  (4.6).

It is interesting to note that, if we start from the discrete space on two points  S0

= {–1, 1},  a singular n-cube  x: In  S0  can be identified with a subset  X 3 In,
namely the counterimage  x-1{1}.  We obtain thus a particular u-lax symmetric
cubical category  T = Sng(S0),  which can be viewed as a starting point to define a u-
lax symmetric cubical category of tangles.

Concretely,  T  can be described in the following terms.

(a) An n-cube is a subset  X 3 In.

(b) Faces, degeneracies and transpositions of n-cubes are obtained as counterimages
of the corresponding maps  7%i ,  +i  and  6i  between standard cubes

(1) *%i (X)  =  (7%i )–1(X), ei(X)  =  (+i)–1(X), si(X)  =  (6i)–1(X)  =  6i(X).

(c) The i-concatenation  X +i Y  of i-consecutive n-cubes is defined by the union of
their images in two i-consecutive halves of  In:

(2) X +i Y  =  4i(X) 8 9i(Y),

4i(t1,..., tn)  =  (t1,..., ti/2,..., tn), 9i(t1,..., tn)  =  (t1,..., (ti+1)/2,..., tn).

(d) A transversal map  (f, X, Y): X  Y  is given by a reparametrisation mapping  f:
In  In  (see 4.6) such that  X = f–1(Y)  (which implies  f(X) = Y,  because  f  is
surjective).

(e) Their faces are (again) defined by the faces of reparametrisation mappings and
of n-cubes; similarly for degeneracies, transpositions and concatenations

(3) *%i (f, x, y)  =  (*%i f,  *%i x,  *%i y), ei(f, x, y)  =  (eif,  eix,  eiy),

si(f, x, y)  =  (sif,  six,  siy),

(f, x, y) +i (g, z, u)  =  (f +i g,  x +i z,  y +i u) (*+
i (f, x, y)  =  *–

i (g, z, u)).
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(f) Interchange is strict. Invertible comparisons for associativity and non-invertible
ones for unitarity are given by the reparametrisation mappings  1i,  /i,  0i: In  In

defined in 4.2. 4.3.

Replacing the discrete topology on  {–1, 1}  with the Sierpinski topology, where
the point 1 is open (resp. closed), we obtain the substructure  T'  (resp.  T")  whose
n-cubes are the open (resp. closed) subsets of  In.  Replacing  S0  with the discrete
space  Sp = {0, 1,..., p}  on  p+1  points, we obtain a u-lax symmetric cubical
category  Tp = Sng(Sp)  where an n-cube amounts to an (ordered!) family  (X1,...,
Xp)  of  p  disjoint subsets of  In.

6.2. Tangles. Finally, to approach the theory of tangles, we modify the previous
construction obtaining a u-lax symmetric cubical category  T(A),  depending on a
fixed topological space  A,  and giving back  T  when  A  is the singleton. (A
standard case would be to choose the k-dimensional cube  Ik.)

T(A)  is defined as follows.

(a) An n-cube is a subset  X 3 A × In.

(b) Faces, degeneracies and transpositions of n-cubes are obtained as counterimages

(1) *%i (X)  =  (A × 7%i )–1(X), ei(X)  =  (A × +i)–1(X),

si(X)  =  (A × 6i)–1(X)  =  (A × 6i)(X).

(c) The i-concatenation  X +i Y  of (i-consecutive) n-cubes is defined by the union
of their images in two i-consecutive halves of  A × In:

(2) X +i Y  =  (A × 4i)(X) 8 (A × 9i)(Y).

(d) A transversal map  (f, X, Y): X  Y  is given by a reparametrisation mapping  f:
In  In  (see 4.6) such that  X = (A × f)–1(Y)  (which implies  (A × f)(X) = Y).

(e) Their faces, degeneracies, transpositions and concatenations are defined as in
6.1.3. Comparisons as in 6.1(f).

More generally, the u-lax symmetric cubical category  Tp = Sng(Sp)  considered
above yields a structure  Tp(A),  of interest for p-colored tangles.

GRANDIS - A LAX SYMMETRIC CUBICAL CATEGORY...

- 153 -



References

[ABS] F.A.A. Al-Agl - R. Brown - R. Steiner, Multiple categories: the equivalence of
a globular and a cubical approach, Adv. Math. 170 (2002), 71-118.
[Ag] M.K. Agoston, Algebraic topology, Marcel Dekker Inc., New York, 1976.
[BL] J. Baez and L. Langford, Higher-dimensional algebra IV: 2-tangles. Adv. Math.
180 (2003), 705-764.
[Br] R. Brown, Moore hyperrectangles on a space form a strict cubical omega-
category, Preprint (2009). Available at: arXiv:math/0909.2212.
[BH1] R. Brown and P.J. Higgins, On the algebra of cubes, J. Pure Appl. Algebra 21
(1981), 233-260.
[BH2] R. Brown and P.J. Higgins, Tensor products and homotopies for $-groupoids
and crossed complexes, J. Pure Appl. Algebra 47 (1987), 1-33.
[Bu] P. Bubenik, Models and van Kampen theorems for directed homotopy theory,
Homology, Homotopy Appl. 11 (2009), 185-202.
[Ch] E. Cheng, An $ -category with all duals is an $ -groupoid , Appl. Categ.
Structures 15 (2007), 439–453,
[CL] E. Cheng - A. Lauda, Higher-dimensional categories: an illustrated guide book,
draft version, revised 2004.
   http://www.math.uchicago.edu/~eugenia/guidebook/index.html
[CM] H.S.M. Coxeter and W.O.J. Moser, Generators and relations for discrete groups,
Springer, Berlin 1957.
[FhR] U. Fahrenberg and M. Raussen, Reparametrizations of continuous paths, J.
Homotopy Relat. Struct. 2 (2007), 93-117.
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