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Résumé. Nous montrons l’existence des bilimites de diagrammes

2-cofiltrées de topos, généralisant la construction de bilimites

cofiltrées développée dans [2]. Nous montrons qu’un tel diagramme

peut être représenté par un diagramme 2-cofiltré de petits sites avec

limites finies, and nous construisons un petit site pour le topos

bilimite. Nous faisons ceci en considérant le 2-filtré bicolimite des

catégories sous-jacentes et leurs foncteurs image inverse. Nous ap-

pliquons la construction de cette bicolimite, développée dans [4], où

il est montré que si les catégories dans un diagramme ont des lim-

ites finies et les foncteurs de transition sont exacts, alors la catégorie

bicolimite a aussi des limites finies et les foncteurs du pseudocone

sont exacts. Une application de notre résultat est que tout topos de

Galois a des points [3].

Abstract. We show the existence of bilimits of 2-cofiltered dia-

grams of topoi, generalizing the construction of cofiltered bilimits

developed in [2]. For any given such diagram represented by any

2-cofiltered diagram of small sites with finite limits, we construct a

small site for the bilimit topos (there is no loss of generality since

we also prove that any such diagram can be so represented). This is

done by taking the 2-filtered bicolimit of the underlying categories

and inverse image functors. We use the construction of this bicol-

imit developed in [4], where it is proved that if the categories in the

diagram have finite limits and the transition functors are exact, then

the bicolimit category has finite limits and the pseudocone functors

are exact. An application of our result here is the fact that every

Galois topos has points [3].
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1 Background, terminology and notation

In this section we recall some 2 -category and topos theory that we shall
explicitly need, and in this way fix notation and terminology. We also
include some in-edit proofs when it seems necessary. We distinguish
between small and large sets. Categories are supposed to have small
hom-sets. A category with large hom-sets is called illegitimate.

Bicolimits
By a 2-category we mean a Cat enriched category, and 2-functors

are Cat functors, where Cat is the category of small categories. Given
a 2-category, as usual, we denote horizontal composition by juxtaposi-
tion, and vertical composition by a ′′◦′′ . We consider juxtaposition more
binding than ′′◦′′ (thus xy◦z means (xy)◦z ). If A, B are 2 -categories
(A small), we will denote by [[A,B]] the 2 -category which has as ob-
jects the 2 -functors, as arrows the pseudonatural transformations, and
as 2 -cells the modifications (see [5] I,2.4.). Given F, G, H : A −→ B ,
there is a functor:

(1.1) [[A, B]](G, H)× [[A, B]](F, G) −→ [[A, B]](F, H)

To have a handy reference we will explicitly describe these data in the
particular cases we use.

A pseudocone of a diagram given by a 2-functor A F−→ B to

an object X ∈ B is a pseudonatural transformation F
h−→ X from

F to the 2-functor which is constant at X . It consists of a fam-
ily of arrows (hA : FA→ X)A∈A , and a family of invertible 2 -cells

(hu : hA → hB ◦ Fu)
(A

u−→B)∈A . A morphism g
ϕ

=⇒ h of pseudocones

(with same vertex) is a modification, as such, it consists of a family of

2 -cells (gA
ϕA=⇒ hA)A∈A . These data is subject to the following:

1.2 (Pseudocone and morphism of pseudocone equations).

pc0. hidA = idhA , for each object A

pc1. hvFu ◦ hu = hvu , for each pair of arrows A
u−→ B

v−→ C

pc2. hBFγ ◦ hv = hu , for each 2-cell A
u //
γ⇓
v

// B

pcM. hu ◦ ϕA = ϕBFu ◦ gu , for each arrow A
u−→ B
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We state and prove now a lemma which, although expected, needs
nevertheless a proof, and for which we do not have a reference in the
literature. As the reader will realize, the statement concerns general
pseudonatural transformations, but we treat here the particular case of
pseudocones.

1.3 Lemma. Let A F−→ B be a 2-functor and F
g−→ X a pseudocone.

Let FA
hA−→ X be a family of morphisms together with invertible 2 -cells

gA
ϕA=⇒ hA . Then, conjugating by ϕ determines a pseudocone structure

for h , unique such that ϕ becomes an isomorphism of pseudocones.

Proof. If ϕ is to become a pseudocone morphism, the equation pcM.
ϕBFu ◦ gu = hu ◦ ϕA must hold. Thus, hu = ϕBFu ◦ gu ◦ ϕ−1A deter-
mines and defines h . The pseudocone equations 1.2 for h follow from
the respective equations for g :

pc0. hidA = ϕA ◦ gidA ◦ ϕ−1A = ϕA ◦ idgA ◦ ϕ−1A = idhA

pc1. A
u−→ B

v−→ C :
hvFu ◦hu = (ϕCFv ◦ gv ◦ϕ−1B )Fu ◦ϕBFu ◦ gu ◦ϕ−1A =

ϕCF (vu) ◦ gvFu ◦ ϕ−1B Fu ◦ ϕBFu ◦ gu ◦ ϕ−1A =
ϕCF (vu) ◦ gvFu ◦ gu ◦ ϕ−1A =

ϕCF (vu) ◦ gvu ◦ ϕ−1A = hvu

pc2. For A
u //
⇑γ
v
// B we must see hBFγ ◦hv = hu . This is the same

as hBFγ ◦ ϕBFv ◦ gv ◦ ϕ−1A = ϕBFu ◦ gu ◦ ϕ−1A . Canceling ϕ−1A and
composing with (ϕBFu)−1 yields (1) (ϕBFu)−1◦hBFγ◦ϕBFv◦gv = gu .
From the compatibility between vertical and horizontal composition it
follows (ϕBFu)−1 ◦ hBFγ ◦ ϕBFv = (ϕ−1B ◦hB ◦ϕB)(Fu ◦Fγ ◦Fv) =
gBFγ . Thus, after replacing, (1) becomes gBFγ ◦ gv = gu .

Given a small 2-diagram A F−→ B , the category of pseudocones
and its morphisms is, by definition, pcB(F,X) = [[A, B]](F, X) . Given

a pseudocone F
f−→ Z and a 2 -cell Z

s //
ξ⇓
t
// X , it is clear and

straightforward how to define a morphism of pseudocones F

sf //
ξf⇓
tf

// X
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which is the composite F
f−→ Z

s //
ξ⇓
t
// X . This is a particular

case of 1.1, thus composing with f determines a functor (denoted ρf )

B(Z, X)
ρf−→ pcB(F, X) .

1.4 Definition. A pseudocone F
λ−→ L is a bicolimit of F if for every

object X ∈ B , the functor B(L, X)
ρλ−→ pcB(F, X) is an equivalence

of categories. This amounts to the following:

bl) Given any pseudocone F
h−→ X , there exists an arrow L

`−→ X

and an invertible morphism of pseudocones h
θ

=⇒ `λ . Furthermore,

given any other L
t−→ X and h

ϕ
=⇒ tλ , there exists a unique 2 -cell

`
ξ

=⇒ t such that ϕ = (ξλ) ◦ θ (if ϕ is invertible, then so it is ξ ).

1.5 Definition. When the functor B(L, X)
ρλ−→ pcB(F, X) is an iso-

morphism of categories, the bicolimit is said to be a pseudocolimit.

It is known that the 2 -category Cat of small categories has all small
pseudocolimits, then a “fortiori” all small bicolimits (see for example

[7]). Given a 2-functor A F−→ Cat we denote by Lim−−→ F the vertex of

a bicolimit cone.
In [4] a special construction of the pseudocolimit of a 2-filtered dia-

gram of categories (not necessarily small) is made, and using this con-
struction it is proved a result (theorem 1.6 below) which is the key to
our construction of small 2 -filtered bilimits of topoi. Notice that even
if the categories of the system are large, condition bl) in definition 1.4
makes sense and it defines the bicolimit of large categories.

We denote by CAT fl the illegitimate (in the sense that its hom-sets
are large) 2-category of finitely complete categories and exact (that is,
finite limit preserving) functors.

1.6 Theorem ([4] Theorem 2.5). CAT fl ⊂ CAT is closed un-
der 2-filtered pseudocolimits. Namely, given any 2-filtered diagram

A F−→ CAT fl , the pseudocolimit pseudocone FA
λA−→ Lim−−→ F taken in

CAT is a pseudocolimit cone in CAT fl . If the index 2-category A
as well as all the categories FA are small, then Lim−−→ F is a small
category. �
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Topoi
By a site we mean a category furnished with a (Grothendieck) topol-

ogy, and a small set of objects capable of covering any object (called
topological generators in [1]). To simplify we will consider only sites

with finite limits. A morphism of sites with finite limits D f−→ C is
a continous (that is, cover preserving) and exact functor in the other

direction C f∗−→ D . A 2 -cell D
f //
γ⇓
g

// C is a natural transformation

C
g∗ //
γ⇓
f∗

// D 1. Under the presence of topological generators it can be

easily seen there is only a small set of natural transformations between
any two continous functors. We denote by Sit the resulting 2-category
of sites with finite limits. We denote by Sit∗ the 2 -category whose ob-
jects are the sites, but taking as arrows and 2 -cells the functors f ∗ and
natural transformations respectively. Thus Sit is obtained by formally
inverting the arrows and the 2 -cells of Sit∗ . We have by definition
Sit(D, C) = Sit∗(C,D)op .

A topos (also “Grothendieck topos”) is a category equivalent to the
category of sheaves on a site. Topoi are considered as sites furnishing
them with the canonical topology. This determines a full subcategory
T op∗ ⊂ Sit∗ , T op∗(F , E) = Sit∗(F , E) .

A morphism of topoi (also “geometric morphism”) E f−→ F is
a pair of adjoint functors f ∗ a f∗ (called inverse and direct image

respectively) E
f∗ // F
f∗
oo together with an adjunction isomorphism

[f ∗C,D]
∼=−→ [C, f∗D] . Furthermore, f ∗ is required to preserve finite

limits. Let T op be the 2-category of topos with geometric morphisms.
2-arrows are pairs of natural transformations (f ∗ ⇒ g∗ , g∗ ⇒ f∗) com-
patible with the adjunction (one of the natural transformations com-
pletely determines the other). The inverse image f ∗ of a mor-
phism is an arrow in T op∗ ⊂ Sit∗ . This determines a forget-
ful 2-functor (identity on the objects) T op −→ Sit which establish

1Notice that 2 -cells are also taken in the opposite direction. This is Grothendieck
original convention, later changed by some authors.
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an equivalence of categories T op(E , F) ∼= Sit(E , F) . Notice that
T op(E ,F) ∼= T op∗(F , E)op , not an equality.

We recall a basic result in the theory of morphisms of Grothendieck
topoi [1] expose IV, 4.9.4. (see for example [6] Chapter VII, section 7).

1.7 Lemma. Let C be a site with finite limits, and C ε∗−→ C̃ the canon-

ical morphism of sites to the topos of sheaves C̃ . Then for any topos

F , composing with ε∗ determines a functor T op∗(C̃, F)
∼=−→ Sit∗(C, F)

which is an equivalence of categories. Thus, T op(F , C̃)
∼=−→ Sit(F , C) .

By the comparison lemma [1] Ex. III 4.1 we can state it in the
following form, to be used in the proof of lemma 2.3.

1.8 Lemma. Let E be any topos and C any small set of genera-
tors closed under finite limits (considered as a site with the canonical
topology). Then, for any topos F , the inclusion C ⊂ E induce a re-

striction functor T op∗(E ,F)
ρ−→ Sit∗(C,F) which is an equivalence of

categories.

2 2-cofiltered bilimits of topoi

Our work with sites is auxiliary to prove our results for topoi, and for
this all we need are sites with finite limits. The 2-category Sit has
all small 2-cofiltered pseudolimits, which are obtained by furnishing the
2-filtered pseudocolimit in CAT fl (1.6) of the underlying categories
with the coarsest topology making the cone injections site morphisms.
Explicitly:

2.1 Theorem. Let A be a small 2-filtered 2-category, and

Aop F−→ Sit (A F−→ Sit∗ ) a 2-functor. Then, the category Lim−−→ F

is furnished with a topology such that the pseudocone functors

FA
λ∗A−→ Lim−−→ F become continuous and induce an isomorphism of cat-

egories Sit∗[Lim−−→ F , X ]
ρλ−→ PCSit∗[F, X ] . The corresponding site is

then a pseudocolimit of F in the 2-category Sit∗ . If each FA is a
small category, then so it is Lim−−→ F .
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Proof. Let FA
λA−→ Lim−−→ F be the colimit pseudocone in CAT fl . We

give Lim−−→ F the topology generated by the families λAcα −→ λAc ,

where cα −→ c is a covering in some FA , A ∈ A . With this topology,
the functors λA become continuous, thus they correspond to site mor-
phisms. This determines the upper horizontal arrow in the following
diagram (where the vertical arrows are full subcategories and the lower
horizontal arrow is an isomorphism):

Sit[Lim−−→ F , X ] //

��

pcSit[F, X ]

��
Catfl[Lim−−→ F , X ]

∼= // pcCatfl[F, X ]

To show that the upper horizontal arrow is an isomorphism we have
to check that given a pseudocone h ∈ pcSit[F, X ] , the unique func-
tor f ∈ Catfl[Lim−−→ F , X ] , corresponding to h under the lower arrow, is

continuous. But this is clear since from the equation fλ = h it follows
that it preserves the generating covers, and thus all covers as well. Fi-
nally, by the construction of Lim−−→ F in [4] we know that every object in

Lim−−→ F is of the form λAc for some A ∈ A , c ∈ FA . It follows then

that the collection of objects of the form λAc , with c varying on the set
of topological generators of each FA , is a set of topological generators
for Lim−−→ F .

In the next proposition we show that any 2-diagram of topoi restricts
to a 2-diagram of small sites with finite limits by means of a 2-natural
(thus a fortiori pseudonatural) transformation.

2.2 Proposition. Given a 2-functor Aop E−→ T op there exists a

2-functor Aop C−→ Sit such that:
i) For any A ∈ A , CA is a small full generating subcategory of

EA closed under finite limits, considered as a site with the canonical
topology.

ii) The arrows and the 2 -cells in the C diagram are the restrictions

of those in the E diagram: For any 2 cell A
u //
γ⇓
v

// B in A , the
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following diagram commutes (where we omit notation for the action of
the 2 functors on arrows and 2 -cells):

EA
u∗ //

v∗

γ ⇓ // EB

CA
u∗ //

v∗

γ ⇓ //

?�

iA

OO

CB
?�

iB

OO

Proof. It is well known that any small set C of generators in a topos can
be enlarged so as to determine a (non canonical) small full subcategory
C ⊃ C closed under finite limits: Choose a limit cone for each finite
diagram, and repeat this in a denumarable process. On the other hand,
for the validity of condition ii) it is enough that for each transition

functor EA
u∗−→ EB and object c ∈ CA , we have u∗(c) ∈ CB (with this,

natural transformations restrict automatically).
Let’s start with any set of generators RA ⊂ EA for all A ∈ A .

We will naively add objects to these sets to remedy the failure of each
condition alternatively. In this way we achieve simultaneously the two
conditions:

Define C0A = RA ⊃ RA . Define Rn+1
A =

⋃
X

u−→A

u∗(CnX) . Rn+1
A is

small because A is small. CnX ⊂ Rn+1
A due to idA . Suppose now

c ∈ Rn+1
A , c = u∗(d) with d ∈ CnX , and let A

v−→ B in A . We
have v∗(c) = v∗u∗(d) = (vu)∗(d) , thus v∗(c) ∈ Rn+1

B . Define Cn+1
A =

Rn+1
A ⊃ Rn+1

A . Then, it is straightforward to check that CA =
⋃
n∈N
CnA

satisfy the two conditions.

A generalization of lemma 1.8 to pseudocones holds.

2.3 Lemma. Given any 2-diagram of topoi Aop E−→ T op , a restric-

tion Aop C−→ Sit as before, and any topos F , the inclusions CA ⊂ EA
induce a restriction functor pcT op∗(E ,F)

ρ−→ pcSit∗(C,F) which is an
equivalence of categories.

Proof. The restriction functor ρ is just a particular case of 1.1, so it
is well defined. We will check that it is essentially surjective and fully-
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faithful. The following diagram illustrates the situation:

CA �
� iA //

u∗

��

g∗A

��
EA
u∗

��

h∗A

**VVVV
VVVV

VVVV
∼=ϕA

⇓hu F

CB �
� iB //

≡

g∗B

II

EB h∗B

44hhhhhhhhhhhh
∼=ϕB

essentially surjective: Let g ∈ pcSit∗(C,F) . For each A ∈ A , take

by lemma 1.8 EA
h∗A−→ F , ϕA , h∗AiA

ϕA' g∗A . By lemma 1.3, h∗i inherits a
pseudocone structure such that ϕ becomes a pseudocone isomorphism.

For each arrow A
u−→ B we have (h∗i)A

(h∗i)u⇒ (h∗i)Bu
∗ . Since ρA is

fully-faithful, there exists a unique h∗A
hu⇒ h∗Bu

∗ extending (h∗i)u . In
this way we obtain data h∗ = (h∗A, hu) that restricts to a pseudocone.
Again from the fully-faithfulness of each ρA it is straightforward to
check that it satisfies the pseudocone equations 1.2.

fully-faithful: Let h∗, l∗ ∈ pcT op∗(E ,F) be two pseudocones, and
let η̃ be a morphism between the pseudocones h∗i and l∗i . We have

natural transformations h∗AiA
η̃A +3 l∗AiA . Since the inclusions iA are

dense, we can extend η̃A uniquely to h∗A
ηA +3 l∗A such that η̃ = η i .

As before, from the fully-faithfulness of each ρA it is straightforward
to check that η = (ηA) satisfies the morphism of pseudocone equation
1.2.

2.4 Theorem. Let Aop be a small 2-filtered 2-category, and

Aop E−→ T op be a 2-functor. Let Aop C−→ Sit be a restriction to small

sites as in 2.2. Then, the topos of sheaves L̃im−−→ C on the site Lim−−→ C of

2.1 is a bilimit of E in T op , or, equivalently, a bicolimit in T op∗ .

Proof. Let λ∗ be the pseudocolimit pseudocone CA
λ∗A−→ Lim−−→ C

in the 2-category Sit∗ (2.1). Consider the composite pseudocone

CA
λ∗A−→ Lim−−→ C

ε−→ L̃im−−→ C and let l∗ be a pseudocone from E to L̃im−−→ C
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such that l∗i ' ε∗λ∗ given by lemma 2.3. We have the following dia-
grams commuting up to an isomorphism:

F L̃im−−→ C
oo

∼=

Lim−−→ C
ε∗oo

E

l∗
OO

C

λ∗
OO

ioo

T op∗(L̃im−−→ C, F)

ρl

��

ρε //

∼=

Sit∗(Lim−−→ C, F)

ρλ

��
pcT op∗(E , F)

ρ // pcSit∗(C, F)

In the diagram on the right the arrows ρε , ρλ and ρ are equivalences
of categories (1.7, 2.1 and 2.3 respectively), so it follows that ρl is an
equivalence. This finishes the proof.

This theorem shows the existence of small 2-cofiltered bilimits in
the 2-category of topoi and geometric morphisms. But, it shows more,
namely, that given any small 2-filtered diagram of topoi represented
by a 2-cofiltered diagram of small sites with finite limits, a small site
with finite limits for the bilimit topos can be constructed by taking the
2-cofiltered bicolimit of the underlying categories of the small sites. If
the 2-filtered diagram of topoi does not arise represented in this way, the
existence of the bilimit seems to depend on the axiom of choice (needed
for Proposition 2.2). We notice for the interested reader that if we allow
large sites (as in Theorem 2.1), we can take the topoi themselves as sites,
and the proof of theorem 2.4 with C = E is independent of Proposition
2.2. Thus, without the use of choice we have:

2.5 Theorem. Let Aop be a small 2-filtered 2-category, and

Aop E−→ T op be a 2-functor. Then, the topos of sheaves L̃im−−→ E on the

site Lim−−→ E of 2.1 is a bilimit of E in T op , or, equivalently, a bicolimit

in T op∗ .
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Résumé. Dans cet article, on établit une relation entre la notion de catégorie
codifférentielle et la théorie, plus classique, des différentielles de Kähler,
qui appartient à l’algèbre commutative. Une catégorie codifférentielle est
une catégorie monoı̈dale additive, ayant une monade T qui est en outre une
modalité d’algèbre, c.à.d. une attribution naturelle d’une structure d’algèbre
associative à chaque object de la forme T (C). Enfin, une catégorie cod-
ifférentielle est équipée d’une transformation dérivante, qui satisfait quelques
axiomes typiques de différentiation, exprimés algèbriquement.
La notion classique de différentielle de Kähler définit celle d’un module des
formes A-différentielles par rapport à A, où A est une k-algèbre commuta-
tive. Ce module est équipé d’une A-dérivation universelle. Une catégorie
Kähler est une catégorie monoı̈dale additive, ayant une modalité d’algèbre et
un objet des formes différentielles associé à chaque objet. Suivant l’hypothèse
que la monade algèbre libre existe et que l’application canonique vers T est
epimorphique, les catégories codifférentielles sont Kähler.
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Abstract. This paper establishes a relation between the notion of a codiffer-
ential category and the more classic theory of Kähler differentials in commu-
tative algebra. A codifferential category is an additive symmetric monoidal
category with a monad T , which is furthermore an algebra modality, i.e. a
natural assignment of an associative algebra structure to each object of the
form T (C). Finally, a codifferential category comes equipped with a deriv-
ing transformation satisfying typical differentiation axioms, expressed alge-
braically.
The traditional notion of Kähler differentials defines the notion of a module of
A-differential forms with respect to A, where A is a commutative k-algebra.
This module is equipped with a universal A-derivation. A Kähler category
is an additive monoidal category with an algebra modality and an object of
differential forms associated to every object. Under the assumption that the
free algebra monad exists and that the canonical map to T is epimorphic,
codifferential categories are Kähler.

Keywords. Differential categories, Kähler differential, Kähler category
Mathematics Subject Classification (2010). 13N05, 18D10

1. Introduction

Differential categories were introduced in [3] in part to categorify work
of Ehrhard and Regnier on differential linear logic and the differential λ-
calculus [10, 11]. In the present paper, we shall work with the dual notion
of a codifferential category. The notion was also introduced with an eye to-
wards capturing the interaction in certain monoidal categories between an
abstract differentiation operator and a (possibly monoidal) monad or co-
monad. We require our monads to be equipped with algebra modalities, i.e.
each object naturally obtains the structure of an algebra with respect to the
monoidal structure. The primary examples of differential and codifferential
categories were the categories of vector spaces, relations and sup-lattices,
each with some variation of the symmetric algebra monad. Differentiation is
formal differentiation of polynomials. The notion of algebra modality is also
fundamental in the categorical formulation of linear logic [4]. Thus both the
work of Ehrhard and Regnier as well as our work can be seen as an attempt
to extend linear logic to include differential structure.
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The logical and semantic consequences of this sort of extension of linear
logic look to be very promising, likely establishing connections to such areas
as functional analysis, as in the Köthe spaces or finiteness spaces introduced
by Ehrhard, [8, 9]. Recent work [5] shows that the category of convenient
vector spaces [12] is also a differential category. This category is of great
interest as it provides underlying linear structure for the category of smooth
spaces [12], a cartesian closed category in which one can consider infinite-
dimensional manifolds.

Two significant areas in which there is a well-established notion of ab-
stract differentiation is algebraic geometry and commutative algebra, where
Kähler differentials are of great significance. There the Kähler module of
differential forms is introduced, for instance see [13, 14]. This is similar in
concept to various aspects of the definition of differential category; in par-
ticular, the notion of differentiation must satisfy the usual Leibniz rule. But,
in addition, Kähler differentials have a universal property that the notion of
differential category seems to be lacking. Roughly, given a commutative al-
gebra A, the Kähler A-module of differential forms is a module equipped
with a derivation satisfying Leibniz, which is universal in the sense that to
any other A-module equipped with a derivation, there is a unique A-module
map commuting with this differential structure. There is no such (explicit)
universal structure in the definition of differential category.

With this in mind, we introduce the new notion of a Kähler category. A
Kähler category is an additive symmetric monoidal category equipped with
a monad T and an algebra modality. We further require that each object
be assigned an object of differential forms, i.e. an object equipped with a
derivation and satisfying a universal property analogous to that arising from
the Kähler theory in commutative algebra.

Our main result is that every codifferential category, satisfying a minor
structural property, is Kähler. In retrospect, this perhaps should not have
been surprising. In any symmetric monoidal category, one can define both
the notions of associative algebra and module over an associative algebra.
Furthermore if A is any associative algebra in a symmetric monoidal cat-
egory and C is an arbitrary object, then one can form the free A-module
generated by C, as A⊗C. This satisfies the usual universal property of free
A-modules. So in a codifferential category, TC is automatically an associa-
tive algebra, and thus TC ⊗ C is the free TC-module generated by C. This
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is what we will take to be our object of differential forms.
The difficulty in the proof is in demonstrating that the map of TC-

modules arising from the freeness of TC⊗C also commutes with the differ-
ential structure. This is where an additional property, which we call Property
K, becomes necessary. We assume that our category has sufficient coprod-
ucts to construct free associative algebras. As such, there is a canonical
morphism of monads between this free algebra monad and the monad giv-
ing the differential structure. Property K requires that this morphism be an
epimorphism. In many codifferential categories, this is indeed the case. The
proof that this condition suffices reveals additional structure in the definition
of codifferential category.

A different approach to capturing the universality of Kähler differentials
is contained in [7]. There the work is grounded in the notion of Lawvere
algebraic theory, as opposed to linear logic in the present framework. A
comparison of the two approaches would be interesting.

Acknowledgments Thanks to the University of Ottawa for providing the
third author with a Distinguished Visiting Professorship. We also want to
thank Anders Kock for asking the right question, and the anonymous referee
for insightful comments.

2. Codifferential categories

We here review the basic definition in the paper [3]. The emphasis there was
on differential categories. We here need the dual definition of codifferential
category. We refer the reader to [3] for more details and motivations.

2.1 Basic definitions

Definition 2.1. 1. A symmetric monoidal category C is additive if it is en-
riched over commutative monoids1. Note that in an additive symmetric
monoidal category, the tensor distributes over the sum.

2. An additive symmetric monoidal category has an algebra modality if
it is equipped with a monad (T, µ, η) such that for every object C in

1In particular, we only need addition on Hom-sets, rather than abelian group structure.
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C, the object, T (C), has a commutative associative algebra structure

m:T (C)⊗ T (C) −→ T (C), e: I −→ T (C)

and this family of associative algebra structures satisfies evident nat-
urality conditions.

3. An additive symmetric monoidal category with an algebra modality is
a codifferential category if it is also equipped with a deriving transfor-
mation2, i.e. a natural transformation

d:T (C) −→ T (C)⊗ C
satisfying the following four equations3:

(d1) e; d = 0 (Derivative of a constant is 0.)
(d2) m; d = (id⊗ d); (m⊗ id) + (d⊗ id); c; (m⊗ id) (where c is the

appropriate symmetry) (Leibniz Rule)
(d3) η; d = e⊗ id (Derivative of a linear function is constant.)
(d4) µ; d = d;µ⊗ d;m⊗ id (Chain Rule)

For a diagrammatic presentation of (the duals of) these equations, see
[3].

We will need an iterated version of the Leibniz rule, which we state now.
(The proof is straightforward.)

Lemma 2.2. In any codifferential category, the composite:

TC⊗n
m−−→ TC

d−−→ TC ⊗ C
is equal to the sum over i of the composites:

TC⊗n
id⊗ id · · · d · · · ⊗ id−−−−−−−−−−−−→ TC ⊗ · · ·TC ⊗ C ⊗ · · ·TC

c−→ TC ⊗ · · ·TC ⊗ · · ·TC ⊗ C
m⊗ id−−−−−→ TC ⊗ C

In this composite the d occurs in the i-th position. The c is the appropri-
ate symmetry to move the C to the final position without changing the order
of the TC terms.

2We use the terminology of a deriving transformation in both differential and codiffer-
ential categories.

3For simplicity, we assume the monoidal structure is strict
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2.2 The polynomial example

We review the canonical example of a codifferential category, as this con-
struction will be generalized in a number of different ways. Let k be a field,
and Vec the category of k-vector spaces. It is well-established that Vec is an
additive, symmetric monoidal category, and further that the free symmetric
algebra construction determines an algebra modality. Specifically, if V is a
vector space, set

T (V ) = k + V + (V ⊗s V ) + (V ⊗s V ⊗s V ) . . . ,

where ⊗s denotes the usual symmetrized tensor product.
An equivalent, basis-dependent description is obtained as follows. Let J

be a basis for V , then
T (V ) ∼= k[xj | j ∈ J ],

in other words, T (V ) is the polynomial ring generated by the basis J . We
have that T (V ) provides the free commutative k-algebra generated by the
vector space V , and as such provides an adjoint to the forgetful functor from
the category of commutative k-algebras to Vec. The adjunction determines
a monad on Vec, and the usual polynomial multiplication makes T (V ) an
associative commutative algebra, and endows T with an algebra modality.

Furthermore Vec is a codifferential category [3]. It is probably easiest to
see using the basis-dependent definition. Noting that, even if V is infinite-
dimensional, any polynomial only has finitely many variables appearing, the
coderiving transformation is defined by

f(xj1 , xj2 , . . . , xjn) 7→
n∑
i=1

∂f

∂xji
(xj1 , xj2 , . . . , xjn)⊗ ji

where ∂f
∂xji

is defined in the usual way for polynomial functions.

Theorem 2.3. (See [3]) The above construction makes Vec a codifferential
category.

By similar arguments, we can state:
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Theorem 2.4.

1. The category Rel of sets and relations is a differential and codifferen-
tial category4.

2. The category Sup of sup-semi lattices and homomorphisms is a codif-
ferential category.

Further details can be found in [3].

3. Review of Kähler differentials

To see the origins of our theory of Kähler categories and introduce our main
example, we now consider the classical case of Kähler differentials; see [13,
14] and many other sources, for details.

Let k be a field, A a commutative k-algebra, and M an A-module5.

Definition 3.1. An A-derivation from A to M is a k-linear map ∂:A −→ M
such that ∂(aa′) = a∂(a′) + a′∂(a).

One can readily verify under this definition that ∂(1) = 0 and hence
∂(r) = 0 for any r ∈ k.

Definition 3.2. LetA be a k-algebra. A module ofA-differential forms is an
A-module ΩA together with an A-derivation ∂:A −→ ΩA which is universal
in the following sense: for any A-module M , for any A-derivation ∂′:A
−→ M , there exists a unique A-module homomorphism f : ΩA −→ M such
that ∂′ = ∂f .

Lemma 3.3. For any commutative k-algebra A, a module of A-differential
forms exists.

There are several well-known constructions. The most straightforward,
although the resulting description is not that useful, is obtained by construct-
ing the free A-module generated by the symbols {∂a | a ∈ A} divided out
by the evident relations, most significantly ∂(aa′) = a∂(a′) + a′∂(a). Of
more value is the following description, found, for instance, as Proposition
8.2A of [13].

4Noting the self-duality which commutes with the monoidal structure.
5All modules throughout the paper will be left modules.
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Lemma 3.4. Let A be an k-algebra. Consider the multiplication of A:

µ:A⊗ A −→ A.

Let I be the kernel of µ and set ΩA = I/I2. Define a map ∂:A −→ ΩA by

∂b = [1⊗ b− b⊗ 1]

where we use square brackets to represent the equivalence class. The pair
(ΩA, ∂) acts as a module of differential forms. 2

Example 3.5. For the key example, let A = k[x1, x2, . . . , xn], then ΩA is
the free A-module generated by the symbols dx1, dx2, . . . , dxn, so a typical
element of ΩA looks like

f1(x1, x2, . . . , xn)dx1 + f2(x1, x2, . . . , xn)dx2 + fn(x1, x2, . . . , xn)dxn.

Note how this compares to our polynomial example of a codifferential cate-
gory. If V is an n-dimensional space, then there is a canonical isomorphism:

ΩT (V )
∼= T (V )⊗ V.

This provides the basis for our main theorem on Kähler categories below.

4. Kähler categories

In all of the following, the category C will be symmetric, monoidal and ad-
ditive. Unless otherwise stated, all algebras will be assumed to be both as-
sociative and commutative for the remainder of the paper.

Definition 4.1. Let A be an algebra, and M = 〈M, ·M :A ⊗M −→ M〉 an
A-module. Then an A-derivation to M is an arrow ∂:A −→M such that

µ; ∂ = c; id⊗ ∂; ·M + id⊗ ∂; ·M and ∂(1) = 0

Note that if we are enriched over abelian groups, the second condition may
be dropped.
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Definition 4.2. A Kähler category is an additive symmetric monoidal cate-
gory with

• a monad T ,

• a (commutative) algebra modality for T ,

• for all objects C, a module of T (C)-differential forms ∂C :T (C) −→
ΩC , viz a T (C)-module ΩC , and a T (C)-derivation, ∂C :T (C) −→
ΩC , which is universal in the following sense: for every T (C)-module
M, and for every T (C)-derivation ∂′:T (C) −→ M , there exists a
unique T (C)-module map h: ΩC −→M such that ∂;h = ∂′.

T (C) ∂ //

∂′ ""F
FF

FF
FF

F
ΩC

h
��
M

Remark 4.3. We remark that Ω is functorial, indeed, is left adjoint to a
forgetful functor, in the following sense. Consider the category Der(T ) of
“T -derivations”: its objects are tuples (C,M, ∂), for C an object of C, M
a T (C)-module, and ∂:T (C) −→ M a derivation. A morphism (C,M, ∂)
−→ (C ′,M ′, ∂′) is a pair (f :C −→ C ′, g:M −→M ′), where f is a morphism
in C and g is a T (C)-module morphism, satisfying ∂; g = T (f); ∂′:T (C)
−→ M ′. The universal property of Ω allows us to regard it as a functor C
−→ Der(T ), since given f :C −→ C ′, T (f); ∂′:T (C) −→ ΩC′ is a derivation
if ∂′ is, and hence f induces Ωf : ΩC −→ ΩC′ . Moreover Ω is easily seen
to be left adjoint to the forgetful functor Der(T ) −→ C given by the first
projection.

Theorem 4.4. The category of vector spaces over an arbitrary field is a
Kähler category, with structure as described in the previous section.

We would like to show that codifferential categories are Kähler, but are
not in a position to do so at the moment, although we do not have a coun-
terexample. The difficulty in getting a general result lies in the fact that in
the definition of differential or codifferential category, there is no a priori
universal property; evidently universality is fundamental in Kähler theory.
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However there is a universal property at our disposal: since our monad is
equipped with an algebra modality, we can use the fact that T (C)⊗C is the
free T (C) module generated by C.

Now suppose that C is a Kähler category. For each object C, we wish to
construct an object ΩC , with a universal derivation. As already suggested,
we will define ΩC = T (C)⊗ C.

So suppose we have a T (C)-derivation ∂:T (C) −→ M . We must con-
struct the unique T (C)-module map h : T (C) ⊗ C −→ M with the re-
quired property. But because of the universal property of the free left T (C)-
module generated by C, we already know there is a unique T (C)-module
map h:T (C)⊗ C −→M .

It remains to verify that d;h = ∂, which is the focus of the remainder
of the paper. The key to our approach is that there must be an interaction
between the T -algebra structure and the associative algebra structure.

4.1 Free associative algebras vs. algebra modalities

We assume we have a symmetric monoidal additive category with an algebra
modality and with finite biproducts and countable coproducts. We will also
need to consider the tensor algebra, i.e.

F (C) = I + C + C ⊗ C + C ⊗ C ⊗ C . . .

As always, this is the free (not-necessarily-commutative) associative al-
gebra generated by C. As such, the functor induces a monad (F, µ̄, η̄) on our
category, and that monad has its own (noncommutative) algebra modality.

Because of the existence of biproducts, we are able to establish close
connections between the tensor algebra monad and the associative algebras
arising from our algebra modality. These are expressed as a collection of
natural transformations.

By the universality of F , we have the following natural transformations:
α:FT −→ T (given by the lifting of the identity T −→ T ), and ϕ:F −→ T
(given by the lifting of the unit η: I −→ T ). More explicitly, these are given
by the following constructions.

For any object C, αC :FT (C) −→ T (C) can be built out of each com-
ponent (since its domain is a coproduct). So we want a map αn:T (C)⊗n

−→ T (C), but this is just the n-fold multiplication on T (C). In the case
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where n = 0, there is the canonical map η: I −→ T (C). The map αC is the
usual quotient of the free associative algebra generated by (the underlying
object of) T (C) onto T (C).

Also we observe that ϕC :FC −→ TC is simply FηC ;αC :FC −→ FTC
−→ TC.

Lemma 4.5. ϕ is a morphism of monads

Proof. This follows immediately from Proposition 6.1, Chapter 3 of [1]
(where the reader can also find the definition of a morphism of monads).
That proposition states that ϕ will be a morphism of monads if the following
diagrams commute:

T (C)
η //

1 $$I
II

II
II

II
FT (C)

α

��
T (C)

FFT (C)
µ //

Fα
��

FT (C)

α

��

FTT (C)

α

��

Fµoo

FT (C) α
// T (C) TT (C)µ

oo

These are straightforward, and in fact are an immediate consequence of
the universal property of F , since the individual morphisms in these dia-
grams are all associative algebra maps (and so each composite is the unique
lifting of the obvious map). More concretely, since objects of the form F (C)
are all coproducts, it suffices to check the equations componentwise, which
is a simple exercise. 2

Definition 4.6. The monad T satisfies Property K if the natural transforma-
tion ϕ:F −→ T is a componentwise epimorphism.

If we are working in a category in which there is an evident monad, we
will say that the category satisfies Property K, rather than the monad.

Proposition 4.7. The categories of vector spaces, relations and sup-lattices,
as described in Theorems 2.3, 2.4, satisfy Property K.

Proof. (Sketch) For vector spaces, for example, this is the usual quotient by
symmetrizing. The other two examples are similar. 2
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4.2 Codifferential categories satisfying K are Kähler

We now present the main result of the paper. In fact, we offer two proofs to
illustrate different aspects of the notions involved.

Theorem 4.8. If C is a codifferential category, whose monad satisfies Prop-
erty K, then C is a Kähler category, with ΩC = T (C)⊗ C.

Proof. We consider the “inclusion” map η; d:C −→ T (C)⊗C. By equation
1 in the definition of codifferential category, we have η; d = u; e⊗ idC .

Hence by the freeness of T (C) ⊗ C, for any T (C)-module M and for
any morphism h:C −→ M , there exists a unique map of T (C)-modules,
ĥ:T (C) ⊗ C −→ M such that η; d; ĥ = u; e ⊗ idC ; ĥ = h. Suppose as
in the definition of Kähler category that we have a T (C)-module M and a
T (C)-derivation ∂:T (C) −→ M . Taking h = η; ∂, we thus have a unique
T (C)-module map ĥ:T (C)⊗ C −→M such that η; d; ĥ = h = η; ∂

So our goal is to show that we can cancel the η’s in the previous equation.

Proof #1 The first proof is a straight calculation. We consider the mor-
phisms:

Φ = Fη;α; d; ĥ and Ψ = Fη;α; ∂

If we can show these two maps are equal, we are done given that Property K
gives that Fη;α is surjective and thus d; ĥ = ∂.

Since the domain of Φ and Ψ is a coproduct, it suffices to show that the
maps are equal on each component.

For the I component, both composites are 0, by definition.
For the C component, we have η; d; ĥ = η; ∂, which has already been

shown.
We next argue the binary C ⊗ C component, to demonstrate the tech-

niques for the n-ary case. We wish to show that the composite

Φ2 = C ⊗ C η⊗η−→ TC ⊗ TC m−→ TC
d−→ TC ⊗ C ĥ−→M

is equal to:

Ψ2 = C ⊗ C η⊗η−→ TC ⊗ TC m−→ TC
d′−→M
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Proceed as follows. Throughout the proof, we assume strict associativity.
Any unit isomorphism is denoted by u and c always denotes a symmetry. It
will always be clear from the context what the relevant symmetry is.

Φ2 = η ⊗ η; id⊗ d;m⊗ id; ĥ+ η ⊗ η; d⊗ id; c;m⊗ id; ĥ

= η ⊗ u; id⊗ e⊗ id;m⊗ id; ĥ+ u⊗ η; id⊗ e⊗ id; c;m⊗ id; ĥ

= η ⊗ id; ĥ+ id⊗ η; c; ĥ

Now note that

Ψ2 = η ⊗ η; id⊗ ∂; ·M + η ⊗ η; ∂ ⊗ id; ·M
= η ⊗ h; ·M + h⊗ η; c; ·M

The result then follows from the universal property of ˆ(−). In particular,
idTC ⊗ h; ·M = ĥ.

This calculation shows the structure for the general n-ary case, which
requires the n-ary Leibniz rule of Section 2. The n-ary versions of Φ and Ψ
are

Φn = η⊗n;m⊗n−1; d; ĥ Ψn = η⊗n;m⊗n−1; ∂

Expanding, we obtain

Φn =
n∑
i=1

η⊗i−1 ⊗ id⊗ η⊗n−i; c;m⊗n−2; ĥ

and

Ψn =
n∑
i=1

η⊗i−1 ⊗ h⊗ η⊗n−i; c;m⊗n−2; ·M

The result again follows from the definition of ĥ. 2

We now give a more conceptual proof, using the universality of F (as the
free associative algebra functor), rather than its explicit construction.

Suppose that A is a (commutative) algebra, and M an A-module. Then
in fact A+M has the structure of an algebra, in the following way. The unit

is I
〈e, 0〉−−−−→ A+M , and the multiplication (A+M)⊗ (A+M) −→ A+M
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is induced by the following three maps:

A⊗ A m−−→ A −→ A+M

A⊗M ·−−→ M −→ A+M

M ⊗M 0−→ M −→ A+M

Moreover, this construction is functorial in M , so given a module morphism
M −→ N , the map A+M −→ A+N is an algebra morphism.

The following well-known observation [6] was used in the early work of
Beck [2].

Lemma 4.9. If A is a (commutative) algebra, M an A-module, then A ∂−−→
M is a derivation iff A

〈1, ∂〉−−−−→ A+M is an algebra morphism.

Proof #2 We note that d; ĥ = ∂ if and only if

T (C)
〈1,d〉 //

〈1,∂〉 ((PP
PPP

PPP
PPP

P T (C) + T (C)⊗ C

1+ĥ
��

T (C) +M

(∗)

Now, given property K, this previous diagram commutes if and only if

F (C)

rreeeeee
eeeeee

eeeeee
eeeeee

eeeeee
eeeeee

uujjjj
jjjj

jjjj
jjjj

j

zzuu
uu
uu
uu
uu
uu
uu
uu
uu
uu
uu
u

T (C)
〈1,d〉

//

〈1,∂〉 ((PP
PPP

PPP
PPP

P T (C) + T (C)⊗ C

1+ĥ
��

T (C) +M

Note that a T (C)-derivation followed by a T (C)-module map is a deriva-
tion. So in the diagram above, every morphism is a morphism of algebras.
Since F (C) is the free algebra generated by C, this diagram commutes if
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and only if it commuteson the imageof C.

F (C)

rreeee
eeee

eeee
eeee

eeee
eeee

eeee
eeee

eeee

uujjj
jj
jj
jj
jj
jj
jj
jj

zzuu
uu
uu
uu
uu
uu
uu
uu
uu
uu
uu
u

C
η

oo

T (C)
〈1,d〉

//

〈1,∂〉 ((P
PP

PP
PP

PP
PP

P
T (C) + T (C)⊗ C

1+ĥ
��

T (C) +M

But thisamounts to theequation η; d; ĥ = η; ∂, which isalready established.
2
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Résumé

Dans [16] nous avons étendu le travail de Jacques Penon sur les
ω-catégories non-strictes en définissant leurs ω-foncteurs non-stricts,
leurs ω-transformations naturelles non-strictes, etc. tout ceci en util-
isant des extensions de ces "étirements catégoriques" que l’on a appelés
"n-étirements catégoriques" (n ∈ N∗). Dans cet article nous poursuiv-
ons le travail de Michael Batanin sur les ω-catégories non-strictes [2]
en définissant leurs ω-foncteurs non-stricts, leurs ω-transformations na-
turelles non-strictes, etc. en utilisant des extensions de son ω-opérade
contractile universelle K, i.e en construisant des ω-opérades colorées
contractiles universelles Bn (n ∈ N∗) adaptés.

Abstract

In [16] we pursue Penon’s work in higher dimensional categories
by defining weak ω-functors, weak natural ω-transformations, and
so on, all that with Penon’s frameworks i.e with the "étirements caté-
goriques", where we have used an extension of this object, namely the
"n-étirements catégoriques" (n ∈ N∗). In this article we are pursuing
Batanin’s work in higher dimensional categories [2] by defining weak
ω-functors, weak natural ω-transformations, and so on, using Batanin’s
frameworks i.e by extending his universal contractible ω-operad K,
by building the adapted globular colored contractible ω-operads Bn

(n ∈ N∗).
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One of the fundamental but still conjectural properties of any theory
of higher categories has to be the statement that n-categories as a totality
have a structure of an (n+ 1)-category. Or taking the limit : there must
exist an ∞-category of ∞-categories. This means that we should be able to
define functors between ∞-categories, transformations between such functors,
transformations between transformations etc..

A difficulty here is that these functors and transformations must be as
weak as possible, meaning that they are functors, transformations etc. only
up to all higher cells. There are approaches to this problem which attempt
to avoid the direct construction of higher transformations using methods of
homotopy theory ([8, 12, 19, 22, 23]).
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Even though there are some serious advantages to such approaches
I believe it is of fundamental importance to have a precise notion of n-
transformation, especially for the so called algebraic model of higher category
theory (see [2, 20, 21]) where an ∞-category is defined as an algebra of a
special monad or algebraic theory. The very spirit of these approaches, which
I believe, coincides with Grothendieck’s original vision of higher category
theory, requires a similar definition of higher transformations.

The first step in this direction was undertaken in [16], where I have
introduced the globular complex of higher transformations for Penon ∞-
categories. In this paper I construct such a complex for Batanin ∞-categories.
As it was shown by Batanin [3], Penon’s ∞-categories are a special case of
Batanin, so this work can be considered as a generalization of my previous
work. The methods of this work, apply also to Leinster’s ∞-categories which
is a slight variation of Batanin’s original definition. I leave as an exercise
for a reader interested in Leinster’s n-transformations to make the necessary
changes in definitions.

In my paper I use the language of the theory of T -categories invented by
A.Burroni [7] and rediscovered later by Leinster and Hermida [10, 18]. I refer
the reader to the book of Leinster for the main definitions. I also use the fol-
lowing terminology: weak ∞-Functors are called 1-Transformations, weak ∞-
natural transformations are called 2-Transformations, weak ∞-modifications
are called 3-Transformations, etc.

A new technique is the use of 2-colored operads. This is reminiscent to
the use of 2-colored operads in the classical operad theory to define coherent
maps between operadic algebras. For this purpose I develop a necessary
generalisation of Batanin’s techniques [2] to handle colored operads.

Batanin built his weak ∞-categories with a contractible operad equipped
with a composition system. I adopt the same point of view and construct
a sequence of contractible globular operads with "bicolored composition
systems" (called operation systems). Like in [2], these operads are initial in
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an appropriate sense. This property happens to be crucial for constructing the
sources and targets of the underlying graphs of the probable Weak Omega
Category of Weak Omega Categories.

In more detail the construction proceeds in 4 stages: one first constructs
a co-∞-graph of operation systems, followed by a co-∞-graph of globular
colored operads, which will successively lead to an ∞-graph in the category of
categories equipped with a monad, and finally to the ∞-graph of their algebras.
These algebras will contain all Batanin’s n-Transformations (n ∈ N∗). This
work was exposed in Calais in June 2008 in the International Category Theory
Conference [15].

In "pursuing stacks" [9] Alexander Grothendieck gave his own definition
of weak omega groupoids in which he saw them as models of some specific
theories called "cohérateurs", and a slight modification of this definition led
to a notion of weak omega category [20]. Thus in the spirit of Grothendieck,
weak and higher structures should be seen as models of certain kinds of theo-
ries. Section 7 is devoted to showing, thanks to the Abstract Nerve Theorem
of Mark Weber ([25]), that our approach of weak omega transformations can
be seen also from the point of view of theories and their models. According
to [1], our approach and that of Grothendieck seem to be very similar.

In a forthcoming paper I will show that this globular complex of higher
transformations has a natural action of a globular operad. The contractibility
of this operad will be studied in the third paper of this series. This will
complete the proof of the hypothesis of the existence of an algebraic model
of the Weak ∞-Category of the Weak ∞-Categories.
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1 Pointed and Contractibles T -Graphs

From here T= (T,µ,η) refers to the cartesian monad of strict ∞-categories.
Its cartesian feature permits us to build the bigategory Span(T ) of spans.
The various concepts in this article are defined in this bicategory, which is
described in Leinster [18, 4.2.1 page 138]. In all this paper if C is a category
then C(0) is the class of its objects (but we often omit "0" when there is no
confusion) and C(1) is the class of its morphisms. The symbol := means "by
definition is".

1.1 T -Graphs

A T -graph (C,d,c) is a datum of a diagram of ∞-Gr such as

T (G) Cdoo c // G

T -graphs are endomorphisms of Span(T ) and they form a category T -Gr
(described in Leinster [18, definition 4.2.4 page 140]). If we choose G ∈
∞-Gr(0), the endomorphisms on G (in Span(T ) ) forms a subcategory of
T -Gr which will be noted T -GrG, and it is well-known that T -GrG is a
monoidal category such as the definition of its tensor:

(C,d,c)
⊗

(C′,d′,c′) := (T (C)×T (G)C′,µ(G)T (d)π0,cπ1),

and its unity object I(G) = (G,η(G),1G). We can remember that I(G) is
also an identity morphism of Span(T ). The ∞-graph G is called the graph of
globular arities.
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1.2 Pointed T -Graphs

A T -graph (C,d,c) equipped with a morphism I(G)
p−→ (C,d,c) is called a

pointed T -graph. Also we note (C,d,c; p) for a pointed T -graph. That also
means that one has a 2-cell I(G)

p−→ (C,d,c) of Span(T ) such as d p = η(G)

and cp = 1G. We define in a natural way the category T -Grp of pointed
T -graphs and the category T -Grp,G of G-pointed T -graphs: Their morphisms
keep pointing in an obvious direction.

1.3 Contractible T -Graphs

Let (C,d,c) be a T -graph. For any k ∈ N we consider

Dk = {(α,β ) ∈C(k)×C(k)/s(α) = s(β ), t(α) = t(β ) and d(α) = d(β )}

A contraction on that T -graph, is the datum, for all k ∈ N, of a map

Dk
[,]k−→C(k+1)

such that

• s([α,β ]k) = α, t([α,β ]k) = β ,

• d([α,β ]k) = 1d(α)=d(β ).

This maps [, ]k form the bracket law (as the terminology in [16]). A T -graph
which is equipped with a contraction will be called contractible and we note
(C,d,c;([, ]k)k∈N) for a contractible T -graph. Nothing prevents a contractible
T -graph from being equipped with several contractions. So here CT -Gr is a
category of contractible T -graphs equipped with a specific contraction. The
morphisms of this category preserves the contractions and one can also refer
to the category CT -GrG where contractible T -graphs are only taken on a
specific ∞-graph of globular arities G.
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Remark 1 If (α,β ) ∈ Dk then this does not lead to c(α) = c(β ), but this
equality will be verified for constant ∞-graphs (see below) and in particular
for collections with two colours (These are the most important T -graphs in
this article). We should also bear in mind CT -Grp, the category of pointed
and contractible T -graphs resulting from the previous definitions. A pointed
and contractible T -graph will be noted (C,d,c;([, ]k)k∈N, p). 2

1.4 Constant ∞-Graphs

A constant ∞-graph is a ∞-graph G such as ∀n,m ∈ N we have G(n) =
G(m) and such as source and target maps are identity. We note ∞-Grc the
corresponding category of constant ∞-graphs. Constant ∞-graph are important
because it is in this context that we have an adjunction result (theorem 1) that
we used to produce free colored contractibles operads of n-Transformations
(n ∈N∗). We write T -Grc for the subcategory of T -Gr consisting of T -graphs
with underlying ∞-graphs of globular arity which are constant ∞-graphs,
T -Grc,p for the subcategory of T -Grp consisting of pointed T -graphs with
underlying ∞-graphs of globular arity which are constant ∞-graphs, and we
write T -Grc,p,G for the fiber subcategory in T -Grc,p (for a given G in ∞-Grc).

2 Contractible T -Categories

2.1 T -Categories

A T -category is a monad of the bigategory Span(T ) or in a equivalent way a
monoid of the monoidal category T -GrG (for a specific G). The definition of
T -categories are in Leinster [18, definition 4.2.2 page 140], and their category
will be noted T -Cat and that of T -categories of the same ∞-graph of globular
arities G will be noted T -CatG. A T -category (B,d,c;γ,u) ∈ T -Cat is specifi-
cally given by the morphism of (operadic) composition (B,d,c)

⊗
(B,d,c)

γ−→

KACHOUR - OPERADIC DEFINITION OF NON STRICT CELLS

- 276 -



(B,d,c) and the (operadic) unit I(G)
u−→ (B,d,c) fitting axioms of associa-

tivity and unity [see 18]. Note that (B,d,c;γ,u) has (B,d,c;u) as natural
underlying pointed T -graph.

2.2 Contractibles T -Categories and the Theorem of Initial
Objects

A T -category (B,d,c;γ,u) will be said to be contractible if its underlying
T -graph is contractible. To specify the underlying contraction of contractible
T -categories we eventually noted it (B,d,c;γ,u,([, ]k)k∈N). The category
of contractible T -categories will be noted CT -Cat, that of contractible T -
categories of the same ∞-graph of globular arities G will be noted CT -CatG.
We also write CT -Catc for the subcategory of CT -Cat whose objects are
contractible T -categories whose underlying ∞-graph of globular arities is a
constant ∞-graph. Besides there is an obvious forgetful functor

CT -Catc,G
O−→ T -Grc,p,G

and there is the

Theorem 1 (Theorem of Initial Objects) O has a left adjoint F: F a O. 2

PROOF The first monad (L,m, l), resulting from the adjunction

T -Catc,G
U //

T -Grc,p,G
M
>oo

and the second monad (C,m,c), resulting from the adjunction

CT -Grc,p,G
V //

T -Grc,p,G
H
>oo

are built as in [2];
The hypotheses of the section 6 are satisfied because the forgetful functors

U and V are monadic, T -Catc,G and CT -Grc,p,G have coequalizers and ~N-
colimits and it is easy to notice that the forgetful functors U and V are faithfull

KACHOUR - OPERADIC DEFINITION OF NON STRICT CELLS

- 277 -



and preserve ~N-colimits as well. Thus this two adjunctions are fusionable
which permits, through theorem 2, to make the fusion

T -Catc,G
U //

T -Grc,p,G
M
>oo

H //

F`

��

CT -Grc,p,G
V
⊥oo

CT -Catc,G

O

OO

p1

ggNNNNNNNNNNNNNNNNNNNNNNNN

p2

77oooooooooooooooooooooooo

where trivially

CT -Catc,G ' T -Catc,G×T -Grc,p,G CT -Grc,p,G �

The monad of this adjunction F a O is noted B= (B,ρ,b).

Remark 2 We can also prove that the forgetful functor

CT -Catc
O−→ T -Grc,p

has a left adjoint. A way to prove it is to extend the work of [6] on "Surcaté-
gories", and it is done in [13]. But it seems that this result is too much strong
for this article where we use no more than 2 colours. However we will use
this adjunction for a future paper, after the talk [17] where we need to use
more than two colors. 2

2.3 T -Categories equipped with a System of Operations

Consider (B,d,c;γ,u) ∈ T -CatG and (C,d,c) ∈ T -GrG. If there exists a
diagram of T -GrG

(I(G),ηG, id)
p // (C,d,c) k // (B,d,c)

such as k ◦ p = u, then (C,d,c) is qualified system of operations, and one can
say that (B,d,c;γ,u) is equipped with the system of operations (C,d,c). With
this definition and the previous theorem it is clear that all pointed T -graphs
(C,d,c; p) induces a free contractible T -category F(C), which has (C,d,c)
as a system of operations. See also section 3.
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3 Systems of Operations of the n-Transformations
(n ∈ N∗)

3.1 Preliminaries

The 2-coloured collection of the n-Transformations (n∈N∗) are just noted Cn

without specified its underlying structure, and we do the same simplification
for its free contractible 2-coloured operads Bn.

From here on only the contractible 2-coloured operads of n-Transformations
will be studied. All these operads are obtained applying the free functor of
the theorem 1 to specific 2-coloured collections. These 2-coloured collections
will be those of the n-Transformations and they count an infinite countable
number of elements. Thus for each n ∈N there is the 2-coloured collection of
n-Transformations, Cn, which freely produces the free contractible 2-coloured
operad Bn of n-Transformations. The pointed collection C0 is the system
of composition of Batanin’s operad of weak ∞-categories, i.e. the collec-
tion gathering all the symbols of atomic operations necessary for the weak
∞-categories, plus the symbols of operadic units (the latter are given by point-
ing). The pointed 2-coloured collection C1 is adapted to weak ∞-functors,
i.e. it gathers all the symbols of operations of the source and target weak ∞-
categories (which will be composed of different colours whether they concern
the source or the target). It also brings together the unary symbols of functors
as well as the symbols of operadic units. Thus as we will see, the unary
symbols of functors have a domain with the same colour as the domains and
codomains of the symbols of operations of source weak ∞-categories and they
have a codomain with the same colour as the domains and codomains of the
symbols of operations of target weak ∞-categories. However these symbols
of functors have domains and codomains with different colours. The pointed
2-coloured collection C2 is adapted to weak natural ∞-transformations, etc.
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3.2 Pointed 2-Coloured Collections Cn(n ∈ N)

In order to clearly see the bicolour feature of these symbols of operations,
we write (1+1)(n) := {1(n),2(n)}, which enables to identify T (1)tT (1)
with T (1)∪T (2) and 1t1 with 1∪2. So the colour 1 and the colour 2 will
be referred to. Let us move to the definition of Cn(n ∈ N). In the diagram

T (1)∪T (2) Cndoo c // 1∪2

Cn is a ∞-graph so that it contains both source and target maps which will be

noted Cn(m+1)
sm+1

m //

tm+1
m

// Cn(m) ,(m ∈ N).

3.2.1 Definition of C0

C0 is Batanin’s system of composition, i.e. there is the following collection

T (1) d0
←−C0 c0

−→ 1 such as C0 precisely contains the symbols of the composi-
tions of weak ∞-categories µm

p ∈C0(m)(0≤ p < m), plus the operadic unary
symbols um ∈C0(m). More specifically:

∀m ∈ N, C0 contains the m-cell um such as: sm
m−1(um) = tm

m−1(um) = um−1

(if m≥ 1); d0(um) = 1(m)(= η(1∪2)(1(m))), c0(um) = 1(m).

∀m ∈ N−{0,1}, ∀p ∈ N, such that m > p, C0 contains the m-cell µm
p such

as: If p = m−1, sm
m−1(µ

m
m−1) = tm

m−1(µ
m
m−1) = um−1. If 0≤ p < m−1,

sm
m−1(µ

m
p ) = tm

m−1(µ
m
p ) = µm−1

p . Also d0(µm
p ) = 1(m) ?m

p 1(m), and
inevitably c0(µm

p ) = 1(m).

Furthemore C0 contains the 1-cell µ1
0 such as s1

0(µ
1
0 )= t1

0(µ
1
0 )= u0, d0(µ1

0 )=

1(1)?1
0 1(1), also inevitably c0(µ1

0 ) = 1(1).

The system of composition C0 has got a well-known pointing λ 0 which is
defined as ∀m ∈ N, λ 0(1(m)) = um.
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3.2.2 Definition of C

Firstly we will define a collection (C,d,c) which will be useful to build the
collections of n-Transformations (n ∈ N∗). C contains two copies of the
symbols of C0, each having a distinct colour: The symbols formed with the
letters µ and u are those of the colour 1, and those formed with the letters ν

and v are those of the colour 2. Let us be more precise:

∀m ∈N, C contains the m-cell um such as: sm
m−1(um) = tm

m−1(um) = um−1 (if
m≥ 1) and d(um) = 1(m), c(um) = 1(m).

∀m ∈ N−{0,1}, ∀p ∈ N, such as m > p, C contains the m-cell µm
p such as:

If p = m− 1, sm
m−1(µ

m
m−1) = tm

m−1(µ
m
m−1) = um−1. If 0 ≤ p < m− 1,

sm
m−1(µ

m
p ) = tm

m−1(µ
m
p ) = µm−1

p . Also d(µm
p ) = 1(m)?m

p 1(m), c(µm
p ) =

1(m).

Furthemore C contains the 1-cell µ1
0 such as s1

0(µ
1
0 ) = t1

0(µ
1
0 ) = u0 and

d(µ1
0 ) = 1(1)?1

0 1(1), c(µ1
0 ) = 1(1).

Besides, ∀m ∈ N, C contains the m-cellule vm such that: sm
m−1(vm) =

tm
m−1(vm) = vm−1 (if m≥ 1) and d(vm) = 2(m), c(vm) = 2(m).

∀m ∈ N−{0,1}, ∀p ∈ N, such that m > p, C contains the m-cell νm
p such

as: If p = m−1, sm
m−1(ν

m
m−1) = tm

m−1(ν
m
m−1) = vm−1. If 0≤ p < m−1,

sm
m−1(ν

m
p ) = tm

m−1(ν
m
p ) = νm−1

p . Also d(νm
p ) = 2(m)?m

p 2(m), c(νm
p ) =

2(m).

Furthemore C contains the 1-cell ν1
0 such as s1

0(ν
1
0 ) = t1

0(ν
1
0 ) = v0 and

d(ν1
0 ) = 2(1)?1

0 2(1), c(ν1
0 ) = 2(1).

3.2.3 Definition of Ci(i = 1,2)

C1 is the system of operations of weak ∞-functors. It is built on the basis of
C adding to it a single symbol of functor (for each cell level):∀m ∈ N the Fm

KACHOUR - OPERADIC DEFINITION OF NON STRICT CELLS

- 281 -



m-cell is added, which is such as: If m≥ 1, sm
m−1(F

m) = tm
m−1(F

m) = Fm−1.
Also d1(Fm) = 1(m) and c1(Fm) = 2(m).

C2 is the system of operations of weak natural ∞-transformations. C2 is
built on C, adding to it two symbols of functor (for each cell level) and a
symbol of natural transformation. More precisely

∀m ∈ N we add the m-cell Fm such as: If m≥ 1, sm
m−1(F

m) = tm
m−1(F

m) =

Fm−1. Also d2(Fm) = 1(m) and c2(Fm) = 2(m).

Then ∀m ∈ N we add the m-cell Hm such as: If m ≥ 1, sm
m−1(H

m) =

tm
m−1(H

m) = Hm−1. Also d2(Hm) = 1(m) and c2(Hm) = 2(m).

And finally we add 1-cell τ such as: s1
0(τ) = F0 and t1

0(τ) = H0. Also
d2(τ) = 11(0) and c2(τ) = 2(1).

We can point out that the 2-coloured collections Ci (i = 1,2) are naturally
equipped with a pointing λ i defined by λ i(1(m)) = um and λ i(2(m)) = vm.

3.2.4 Definition of Cn for n≥ 3

In order to define the general theory of n-Transformations (n∈N∗), it is neces-
sary to define the systems of operations Cn for the superior n-Transformations
(n≥ 3). This paragraph can be left out in the first reading. Each collection Cn

is built on C, adding to it the required cells. They contain four large groups
of cells: The symbols of source and target weak ∞-categories, the symbols of
operadic units (obtained on the basis of C), the symbols of functors (sources
and targets), and the symbols of n-Transformations (natural transformations,
modification, etc). More precisely, on the basis of C:

Symbols of Functors ∀m ∈ N, Cn contains the m-cells αm
0 and β m

0 such as:
If m≥ 1, sm

m−1(α
m
0 ) = tm

m−1(α
m
0 ) = α

m−1
0 and sm

m−1(β
m
0 ) = tm

m−1(β
m
0 ) =

β
m−1
0 . Furthermore dn(αm

0 ) = dn(β m
0 ) = 1(m) and cn(αm

0 ) = cn(β m
0 ) =

2(m).
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Symbols of the Higher n-Transformations ∀p, with 1≤ p≤ n−1, Cn con-
tains the p-cells αp and βp which are such as: ∀p, with 2≤ p≤ n−1,
sp

p−1(αp) = sp
p−1(βp) = αp−1 and t p

p−1(αp) = t p
p−1(βp) = βp−1. If

p = 1, s1
0(α1) = s1

0(β1) = α0
0 and t1

0(α1) = t1
0(β1) = β 0

0 . What’s more,
∀p, with 1 ≤ p ≤ n− 1, dn(αp) = dn(βp) = 10

p(1(0)) and cn(αp) =

cn(βp) = 2(p). Finally Cn contains the n-cell ξn such as sn
n−1(ξn) =

αn−1, bn
n−1(ξn) = βn−1 and dn(ξn) = 10

n(1(0)) and cn(ξn) = 2(n) (Here
10

n is the map resulting from the reflexive structure of T (1∪ 2). See
[16]).

We can see that ∀n ∈ N∗, the 2-colored collection Cn is naturally equipped
with the pointing 1∪2 λ n

−→ (Cn,d,c) defined as ∀m ∈ N,λ n(1(m)) = um and
λ n(2(m)) = vm.

3.3 The Co-∞-Graph of Coloured Operads of the
n-Transformations (n ∈ N∗)

In order not to make heavy notations we can write with the same notation
δ n

n+1 and κn
n+1, sources and targets of the co-∞-graph of coloured collections,

the co-∞-graph of coloured operads, and the ∞-graph inMnd below. There
is no risk of confusion. The set {Cn/n ∈ N} has got a natural structure of
co-∞-graph. This co-∞-graph is generated by diagrams

Cn
δ n

n+1 //
κn

n+1

// Cn+1

of pointed 2-coloured collections. For n ≥ 2, these diagrams are defined
as follows: First the (n+ 1)-colored collection contains the same symbols
of operations as Cn for the j-cells, 0 ≤ j ≤ n− 1 or n+ 2 ≤ j < ∞. For
the n-cells and the (n+1)-cells the symbols of operations will change: Cn

contains the n-cell ξn whereas Cn+1 contains the n-cells αn and βn, in addition
contains the (n+1)-cell ξn+1. If one notes Cn−ξn the n-coloured collection
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obtained on the basis of Cn by taking from it the n-cell ξn, then δ n
n+1 is

defined as follows: δ n
n+1|Cn−ξn (i.e the restriction of δ n

n+1 to Cn−ξn) is the
canonical injection Cn− ξn ↪→ Cn+1 and δ n

n+1(ξn) = αn. In a similar way
κn

n+1 is defined as follows: κn
n+1|Cn−ξn = δ n

n+1|Cn−ξn and κn
n+1(ξn) = βn. We

can notice that δ n
n+1 and κn

n+1 keeps pointing, i.e we have for all n ≥ 1 the
equalities δ n

n+1λ n = λ n+1 and κn
n+1λ n = λ n+1.

The morphisms of 2-colored pointing collections of the diagram

CO
δ 0

1 //

κ0
1

// C1
δ 1

2 //

κ1
2

// C2
δ 2

3 //

κ2
3

// C3

have a similar definition:
By considering notation of section 3.2, we have for all integer 0≤ p < n

and for all ∀m ∈ N:

δ 0
1 (µ

n
p) = µn

p; δ 0
1 (um) = um; κ0

1 (µ
n
p) = νn

p; κ0
1 (um) = vm.

Also: δ 1
2 (µ

n
p) = µn

p; δ 1
2 (um) = um; δ 1

2 (ν
n
p) = νn

p; δ 1
2 (vm) = vm; δ 1

2 (F
m) =

Fm. And κ1
2 (µ

n
p) = µn

p; κ1
2 (um) = um; κ1

2 (ν
n
p) = νn

p; κ1
2 (vm) = vm;

κ1
2 (F

m) = Hm.

Finally: δ 2
3 (µ

n
p) = µn

p; δ 2
3 (um) = um; δ 2

3 (ν
n
p) = νn

p; δ 2
3 (vm) = vm; δ 2

3 (F
m) =

αm
0 ; δ 2

3 (H
m) = β m

0 ; δ 2
3 (τ) = α1. And κ2

3 (µ
n
p) = µn

p; κ2
3 (um) = um;

κ2
3 (ν

n
p) = νn

p; κ2
3 (vm) = vm; κ2

3 (F
m) = αm

0 ; κ2
3 (H

m) = β m
0 ; κ2

3 (τ) = β1.

The pointed 2-coloured collections Cn (n ∈ N∗) are the sytems of operations
of the n-Transformations. Each of them freely produces the contractible 2-
colored operads Bn (n ∈ N∗). Each of these contractible operads is equipped
with a system of operations given by the pointed 2-coloured collection Cn.
These operads Bn are the operads of the n-Transformations (n ∈ N∗) and are
the most important objects in this article. They produce the monads Bn whose
algebras are the sought-after n-Transformations (see section 4 below). Due to
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the universal property of the unit b of the monad B, Cn b(Cn)−−−→ Bn = B(Cn), one
obtains the co-∞-graph B• of the coloured operads of the n-Transformations.

B0
δ 0

1 //

κ0
1

// B1
δ 1

2 //

κ1
2

// B2 //// Bn−1
δ n−1

n //

κn−1
n

// Bn

C0

b(C0)

OO

δ 0
1 //

κ0
1

// C1

b(C1)

OO

δ 1
2 //

κ1
2

// C2

b(C2)

OO

//// Cn−1

b(Cn−1)

OO

δ n−1
n //

κn−1
n

// Cn

b(Cn)

OO

The commutativity property of these diagrams is important for the consis-
tence of algebras (see section 4.5). In particular morphisms

B0
δ 0

1 //

κ0
1

// B1

are obtain with the following way:
First we consider "morphisms of colors" (in the category of ω-graphs)

1
i1 //
i2

// 1∪2

such as ∀n ∈ N, i1(1(n)) = 1(n) and i2(1(n)) = 2(n)
Then we build for each j ∈ {1,2} the following diagram

B0
u j //

(d0,c0) ))RRRRRRRRRRRRRRRRR (T (i j)× i j)
∗(B1)

v j //

��

B1

(d1,c1)
��

T (1)×1
T (i j)×i j

// T (1∪2)× (1∪2)

where the right square is cartesian (we change the color of the operad B1

by pullback) and where the new operads (T (i j)× i j)
∗(B1) has a composition

system and is contractible as well. So by universality, for each j ∈ {1,2}, we
get the unique morphism u j and we write v1 ◦u1 = δ 0

1 and v2 ◦u2 = κ0
1 . Also

it is not difficult to see the co-globularity property of the diagram

B0
δ 0

1 //

κ0
1

// B1
δ 1

2 //

κ1
2

// B2
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4 Monads and Algebras of the n-Transformations
(n ∈ N∗)

Mnd is the category of the categories equipped with a monad, and Ad j is the
category of the adjunction pairs. These categories are defined in [16].

4.1 Monads Bn of the n-Transformations (n ∈ N∗).

If C is a topos we shall note C�B
f ∗−→ C�A the pullback functor associated

with an arrow A
f−→ B of C , and C�A

Σ f−→ C�B the composition functor. We
have the usual adjunctions: Σ f a f ∗ a π f , where π f is the internal product
functor.

Each T -category produces a monad which is described in [18, 4.3 page 150].
Hence ∀n ∈ N∗, the operad Bn of the n-Transformations produce a monad Bn

on ∞-Gr/1∪2. More precisely, if we note (Bn,dn,cn) its underlying T -graph
we have: Bn := Σcn(dn)∗T̂ (where we put T̂ (C,d,c) := (T (C),T (d),T (c))).
A bicolour ∞-graph G

g−→ 1∪2 is often noted G because there is no risk of
confounding. We can therefore write Bn(G) instead of Bn(g), and it will be
the same for the natural transformations δ n−1

n and κn−1
n (see below) and we

write Bn(G) := T (G)×T (1∪2) Bn (implied Bn(g) = cn ◦π1) and the definition
of Bn on morphisms is as easy. Projection on T (G)×T (1∪2) Bn are noted π0

and π1. The definition of B0 is similar.

4.2 The ∞-graph of Mnd of Monads of n-Transformations
(n ∈ N∗)

Considering G
g−→ 1∪2 , a bicolour ∞-graph. If we apply to it the monads Bn

and Bn−1 we obtain the equalities dnπ1 = T (g)π0, dn−1π1 = T (g)π0. We also
have dn−1 = dnδ n−1

n (To remove any confusion on our abuses of notations,
the reader is encouraged to draw corresponding diagram). Thus we have
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dn ◦δ n−1
n ◦π1 = 1T (1∪2) ◦dn−1 ◦π1 = 1T (1∪2) ◦T (g)◦π0 = T (g)◦1T (G) ◦π0.

Hence the existence of a single morphism of ∞-graph

T (G)×T (1∪2) Bn−1 δ n−1
n (G) // T (G)×T (1∪2) Bn

such as δ n−1
n π1 = π1δ n−1

n (G) and π0 = π0δ n−1
n (G). In particular we obtain

the equality cnπ1δ n−1
n (G) = cn−1π1. It is then easy to see that to each bicolour

∞-graph is associated the morphism (of ∞-G/1∪2): Bn−1(G)
δ n−1

n (G)−−−−−→ Bn(G)

(these morphisms are still simply called δ n−1
n (G)). It is very easy to see that

the set of these morphisms produce a natural transformation Bn−1 δ n−1
n−−−→ Bn.

It is shown that δ n−1
n fits the axiomsMnd1 andMnd2 of the morphisms of

monads (these axioms are in [16]; particularly because Bn−1 δ n−1
n−−−→ Bn is a

morphism of operads). Hence we get the morphism ofMnd

(∞-Gr/1∪2,Bn)
δ n−1

n // (∞-Gr/1∪2,Bn−1)

Thus the morphisms of coloured operads Bn−1
δ

n1
n //

κ
n1
n

// Bn (n≥ 2), create nat-

ural transformations Bn−1
δ n−1

n //

κ
n1
n

// Bn which fits into the axioms Mnd1 and

Mnd2 of morphisms of monads. So we get the diagrams ofMnd(n≥ 2)

(∞-Gr/1∪2,Bn)
δ n−1

n //

κn−1
n

// (∞-Gr/1∪2,Bn−1)

Similarly the morphisms B0
δ 0

1 //

κ0
1

// B1 produce two natural transformations

B0 ◦ i∗1
δ 0

1−→ i∗1 ◦B1, B0 ◦ i∗2
κ0

1−→ i∗2 ◦B1 (i∗1 and i∗2 are the colour functors) which
also fitsMnd1 andMnd2, which leads to the diagram ofMnd

(∞-Gr/1∪2,B1)
δ 0

1 //

κ0
1

// (∞-Gr/1∪2,B0)
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It is generally appeared that the building of the monad associated to a T -
category is functorial, so the diagram ofMnd

// // (∞-Gr/1∪2,Bn) //// (∞-Gr/1∪2,B1) //// (∞-Gr/1∪2,B0)

is a ∞-graph: The ∞-graph B• inMnd of the monads of the n-Transformations
(n ∈ N∗).

4.3 The ∞-Graph of CAT of Batanin’s Algebras of
n-Transformations (n ∈ N∗)

As in [16, § 4.3] we know that we have the functors

Mnd A // Ad j D // CAT

where A is the functor, which is linked with any monad, its pair of adjunction
functors and where D is the projection functor which associates X with

any adjunction X
G //

Y
F
>oo . So it is easy to see that D ◦ A associates its

category of Eilenberg-Moore algebras to any monads. Particularly the functor
Mnd D◦A−−→ CAT produces the following ∞-graph of CAT

//// Alg(Bn)
σn

n−1 //

β n
n−1

// Alg(Bn−1) //// Alg(B1)
σ1

0 //

β 1
0

// Alg(B0)

which is the ∞-graph Alg(B•) of algebras of n-Transformations (n ∈ N). It
is the most important ∞-graph of this article since it contains all Batanin’s
n-Transformations (n ∈ N).

4.4 Domains and Codomains of Algebras

Let us remember the morphisms ofMnd: (C,T )
(Q,t)−−−→ (C′,T ′) are given by

functors C
Q−→C′ and natural transformations T ′ ◦Q t−→Q◦T whose fitsMnd1

andMnd2. If we apply the functorMnd D◦A−−→ CAT to these morphisms, one
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can get the functor, Alg(T )−→ Alg(T ′), defined on the objects as (G,v) 7−→
(Q(G),Q(v)◦t(G)). We can now describe the functors σn

n−1 and β n
n−1 (n≥ 1):

• If n ≥ 2 then Alg(Bn)
σn

n−1−−−→ Alg(Bn−1), (G,v) 7−→ (G,v ◦ δ n−1
n (G))

and Alg(Bn)
β n

n−1−−→ Alg(Bn−1), (G,v) 7−→ (G,v◦κn−1
n (G)).

• If n = 1 then Alg(B1)
σ1

0−→ Alg(B0), (G,v) 7−→ (i∗1(G), i∗1(v) ◦ δ 0
1 (G))

and Alg(B1)
β 1

0−→ Alg(B0), (G,v) 7−→ (i∗2(G), i∗2(v)◦κ0
1 (G)).

4.5 Consistence of Algebras

As Penon’s [16], Batanin’s n-Transformations (n ∈ N∗) are particular in that
they describe the hole semantics of their domain and codomain algebras as
follows: If we have an algebra (G,v) of n-Transformations, then a symbol
of operation of the operad Bn which has its counterpart in the operad Bp

(0≤ p < n) will be semantically interpreted similarly via this algebra (G,v)
or via the algebra σn

p(G,v) or the algebra β n
p(G,v).

Remark 3 This terminology is taken from measure theory where different
coverings of a measurable subset are measured with the same value by a
determined measure, which makes sense to that measure. 2

This is the simple consequence of the commutative property of diagrams in
section 3.3 applied to a bicolour ∞-graph.

So as to illustrate this property of consistence, let us take for example
the symbol of operation Hm of the operad B2 (identified with b(C2)(Hm)).
It will be semantically interpreted by an algebra (G,v) ∈ Alg(B2) on a m-
cell a ∈ G(m) (of colour 1), similarly to how the Fm symbol of the B1

operad is interpreted by the target algebra β 2
1 (G,v) ∈ Alg(B1). Indeed

the equalities κ1
2 π1 = π1κ1

2 (G) and κ1
2 b(C1) = b(C2)κ1

2 immediately sug-

gests that: (a,Fm) � κ
1
2 (G)

// (a,Hm) , then v(a,Hm) = (v ◦ κ1
2 (G))(a,Fm) =
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β 2
1 (G,v)(a,Fm), which expresses consistence. In short, we will say that

Batanin’s algebras (as Penon’s algebras) are consistent.

5 Dimension 2

5.1 Dimension of Algebras

The dimension of Penon’s algebras is defined in [21] and in [16]. The
dimension of Batanin’s algebras is totally similar, but we must precisely
define the structures of the underlying ∞-magmas of these algebras so as
to have a reflexive structure. So we can note Bn×T (1∪2) T (G)

v−→ G a Bn-
algebra i.e a weak n-transformation (n ≥ 1). The two ∞-magmas ([16])
of this algebra are defined as follows: α ◦n

p β := v(µn
p;η(α) ?n

p η(β )) and
1α := v([un,un];1η(α)), if α,β ∈ G(n) and are with colour 1. Furthemore
α ◦n

p β := v(νn
p;η(α) ?n

p η(β )) and 1α := v([vn,vn];1η(α)), if α,β ∈ G(n)
and are with colour 2. Then (G,v) has dimension 2 if its two underlying
∞-magmas has dimension 2. We have the same definition for B0-algebras (i.e
weak ∞-categories).

5.2 The B1-Algebras of dimension 2 are Pseudo-2-Functors

Let (G,v) be a B1-algebra of dimension 2. The B0-algebra’s source of (G,v):
σ1

0 (G,v) = (i∗1(G), i∗1(v)◦δ 0
1 (G)) put on i∗1(G) a bicategory structure which

coincides with the one produced by (G,v) on i∗1(G). In the same way, the
B0-algebra target of (G,v): β 1

0 (G,v) = (i∗2(G), i∗2(v)◦κ0
1 (G)) put on i∗2(G) a

bicategory structure which coincides with that one produced by (G,v) on
i∗2(G). All these coincidences come from the consistence of algebras, and
so we can therefore make all our calculations merely with the B1-algebra
(G,v) to show the given below axiom of associativity-distributivity (that we
call AD-axiom) of pseudo-2-functors. For other axioms of the pseudo-2-
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functors, which are easier, we proceed in the same way. Let Fm(m ∈ N) be
the unary operations symbols of functors of the operad B1. The B1-algebra
of dimension 2 interprets these symbols into pseudo-2-functors. Indeed if
B1×T (1∪2) T (G)

v−→ G is a B1-algebra of dimension 2 then we get: ∀m ∈
N, F(a) := v(Fm;η(a)) if a ∈ G(m) (a has the colour 1), which defines a
morphism of ∞-graphs i∗1(G)

F−→ i∗2(G) where i∗1(G) and i∗2(G) are bicategories.
So we will show that this morphism F fits the AD-axiom of pseudo-2-functors.
Let x a−→ y b−→ z c−→ t be a 1-cellules diagram of i∗1(G), we are going to check
that we get the following commutativity

F(a)◦1
0 (F(b)◦1

0 F(c))

2

1F(a)◦2
0d(b,c)

+3 F(a)◦1
0 F(b◦1

0 c)

d(a,b◦1
0c)

��
(F(a)◦1

0 F(b))◦1
0 F(c)

a(F(a),F(b),F(c))

KS

d(a,b)◦2
01F(c)

��

F(a◦1
0 (b◦1

0 c))

F(a◦1
0 b)◦1

0 F(c)
d(a◦1

0b,c)
+3 F((a◦1

0 b)◦1
0 c)

F(a(a,b,c))

KS

where a◦1
0 (b◦1

0 c)
a(a,b,c)+3 (a◦1

0 b)◦1
0 c is an associativity coherence cell and

F(a)◦1
0 F(b)

d(a,b) +3 F(a◦1
0 b) is a distributivity coherence cell (particular to

pseudo-2-functors). The strategy to demonstrate the AD-axiom is simple: We
build a diagram of 3-cells of B1 which will be semantically interpreted by
the B1-algebras of dimension 2 as the AD-axiom. To be clearer, the operadic
multiplication of the coloured operad B1

B1×T (1∪2) T (B1)
γ // B1

will be noted γi for each i-cellular level. Let the following 2-cells in B1:

d := [γ1(ν
1
0 ;η(F1)?1

0 η(F1));γ1(F1;η(µ1
0 ))];

a1 := [γ1(µ
1
0 ;η(µ1

0 )?
1
0 η(u1));γ1(µ

1
0 ; η(u1)?

1
0 η(µ1

0 ))];
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a2 := [γ1(ν
1
0 ;η(ν1

0 )?
1
0 η(v1)); γ1(ν

1
0 ;η(v1)?

1
0 η(ν1

0 ))].

Remark 4 The operation symbol d is interpreted by the algebra as the dis-
tributivity coherence cells of the pseudo-2-functors. The symbols a1 and a2

are interpreted as the associativity coherence cells, the first one for the weak
∞-category source the second one for the weak ∞-category target. 2

Then we can consider the following 2-cells of B1:

ρ1 = γ2(ν
2
0 ;η([F1;F1])?2

0 η(d));

ρ2 = γ2(d;1η(u1) ?
2
0 1

η(µ1
0 )
);

ρ3 = γ2(F2;η(a1));

ρ4 = γ2(d;1
η(µ1

0 )
?2

0 1η(u1));

ρ5 = γ2(ν
2
0 ;η(d)?2

0 η([F1;F1]))

ρ6 = γ2(a2;1η(F1) ?
2
0 1η(F1) ?

2
0 1η(F1)).

This 2-cells are the conglomerations of operation symbols that are interpreted
by algebras as the coherence 2-cells of the diagram of the AD-axiom of
pseudo-2-functors

•

2

ρ1 +3 •
ρ2

��
•

ρ6

KS

ρ5
��

•

• ρ4 +3 •
ρ3

KS

Then we consider the following 2-cells of B1

Λ1 = γ2(ν
2
1 ;η(γ2(ν

2
1 ;η(ρ2)?

2
1 η(ρ1)))?

2
1 η(ρ6));

Λ′1 = γ2(ν
2
1 ;η(ρ2)?

2
1 η(γ2(ν

2
1 ;η(ρ1)?

2
1 η(ρ6))));
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Λ2 = γ2(ν
2
1 ;η(γ2(ν

2
1 ;η(ρ3)?

2
1 η(ρ4)))?

2
1 η(ρ5));

Λ′2 = γ2(ν
2
1 ;η(ρ3)?

2
1 η(γ2(ν

2
1 ;η(ρ4)?

2
1 η(ρ5)))).

We can show that these 2-cells are parallels and with the same domain, so
they are connected with coherences 3-cells

Θ1 = [Λ1,Λ
′
1], Θ2 = [Λ′1,Λ2], Θ3 = [Λ2,Λ

′
2],

and the interpretation by B1-algebras of dimension 2 of this 3-cells gives
the AD-axiom of pseudo-2-functors.

5.3 The B2-Algebras of dimensions 2 are Natural Pseudo-
2-Transformations

Let (G,v) be a B2-algebra of dimension 2. The B0-algebra source of (G,v):
σ2

1 (σ
1
0 (G,v)) = (i∗1(G), i∗1(v◦δ 1

2 (G))◦δ 0
1 (G)) put in i∗1(G) a bicategory struc-

ture which coincides with the one produced by (G,v) on i∗1(G). In the
same way, the B0-algebra target of (G,v): β 2

1 (β
1
0 (G,v)) = (i∗2(G), i∗2(v ◦

κ1
2 (G)) ◦ κ0

1 (G)) put in i∗2(G) a bicategory structure which coincides with
the one produced by (G,v) on i∗2(G). And the B1-algebra source of (G,v):
σ2

1 (G,v) = (G,v◦δ 1
2 (G)) produces a pseudo-2-functor F1 (see above) which

coincides with the one produced by (G,v) i.e the one built with the ∞-graph
morphism i∗1(G)

F1−→ i∗2(G) defined as: F1(a) := v(Fm;η(a)) if a ∈ i∗1(G)(m).
Besides the B1-algebra target of (G,v): β 2

1 (G,v) = (G,v◦κ1
2 (G)) produces

a pseudo-2-functor H1 which coincides with the one produced by (G,v)
i.e the one built with the ∞-graph morphism i∗1(G)

H1−→ i∗2(G) defined as:
H1(a) := v(Hm;η(a)) if a ∈ i∗1(G)(m). All these coincidences come from
the consistence of algebras, and we can therefore make all our calculations
merely with the B2-algebra (G,v) (without using its source algebra or its
target algebra) to show the axiom below of compatibility with associativity-
distributivity of natural pseudo-2-transformations (that we call CAD-axiom).
Then let τ be the unary operation symbol of natural transformation of the
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operad B2. This symbol is interpreted by the B2-algebras of dimension 2
as natural pseudo-2-transformations. Indeed if B2×T (1∪2) T (G)

v−→ G is an
B2-algebra of dimension 2 then we write

τ1(a) := v(τ;1η(a)), if a ∈ G(0)(a has colour1),

We can see that it defines a 1-cells family τ1 in i∗2(G) indexed by i∗1(G)(0)

i∗1(G)
F1 ++

H1
33

�� ��
�� τ1 i∗2(G)

We are going to show that the previous family τ1 fits the CAD-axiom of
natural pseudo-2-transformations. For other axioms of natural pseudo-2-
transformations, which are easier, we proceed in the same way. Let x a−→ y b−→ z
be an 1-cells diagram of i∗1(G), we are going to prove that we have the
following commutativity

H1(b)◦1
0 (H1(a)◦1

0 τ1(x))

2

1H1(b)
◦2

0ω(a)
+3

a(H1(b),H1(a),τ1(x))
��

H1(b)◦1
0 (τ1(y)◦1

0 F1(a))

a(H1(b),τ1(y),F1(a))
��

(H1(b)◦1
0 H1(a))◦1

0 τ1(x)

d1(a,b)◦2
01τ1(x)

��

(H1(b)◦1
0 τ1(y))◦1

0 F1(a)

ω(b)◦2
01F1(a)

��
H1(b◦1

0 a)◦1
0 τ1(x)

ω(b◦1
0a)

��

(τ1(z)◦1
0 F1(b))◦1

0 F1(a)

a(τ1(z),F1(b),F1(a))
��

τ1(z)◦1
0 F1(b◦1

0 a) τ1(z)◦1
0 (F1(b)◦1

0 F1(a)).
1τ1(z)

◦2
0d0(b,a)

ks

where in particular H1(a) ◦1
0 τ1(x)

ω(a)−−−→ τ1(y) ◦1
0 F1(a) is a coherence cell

specific to natural pseudo-2-transformations. The strategy to demonstrate
the CAD-axiom is similar to the previous demonstration (for the AD-axiom
of pseudo-2-functors): We build a diagram of 3-cells of B2 that will be
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semantically interpreted by the B2-algebras of dimension 2 as the CAD-axiom.
Like before operadic composition is

B2×T (1∪2) T (B2)
γ // B2

will be noted γi for each i-cellular level. So we can consider the following
2-cells of B2

ω := [γ1(ν
1
0 ;η(H1)?1

0 η(τ));γ1(ν
1
0 ;η(τ)?1

0 η(F1))];

dF := [γ1(ν
1
0 ;η(F1)?1

0 η(F1));γ1(F1;η(µ1
0 ))];

dH := [γ1(ν
1
0 ;η(H1)?1

0 η(H1));γ1(H1;η(µ1
0 ))];

a := [γ1(ν
1
0 ;η(v1)?

1
0 η(ν1

0 ));γ1(ν
1
0 ;η(ν1

0 )?
1
0 η(v1))];

b := [γ1(ν
1
0 ;η(ν1

0 )?
1
0 η(v1));γ1(ν

1
0 ;η(v1)?

1
0 η(ν1

0 ))].

Then we consider the following 2-cells

ρ1 = γ2(ν
2
0 ;η([H1;H1])?2

0 η(ω));

ρ2 = γ2(a;1η(H1) ?
2
0 1η(τ) ?

2
0 1η(F1));

ρ3 = γ2(ν
2
0 ;η(ω)?2

0 η([F1;F1]));

ρ4 = γ2(b;1η(τ) ?
2
0 1η(F1) ?

2
0 1η(F1));

ρ5 = γ2(ν
2
0 ;η([τ;τ])?2

0 η(dF));

ρ6 = γ2(ω;1
η(µ1

0 )
);

ρ7 = γ2(ν
2
0 ;η(d)?2

0 η([τ;τ]));

ρ8 = γ2(a;1η(H1) ?
2
0 1η(H1) ?

2
0 1η(τ)).
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We also consider one 2-cell ρ ′5 built as follows:

δ
F := [γ1(F1;η(µ1

0 ));γ1(ν
1
0 ;η(F1)?1

0 η(F1))].

In that case we define

ρ
′
5 = γ2(ν

2
0 ;η([τ;τ])?2

0 η(δ F)).

These 2-cells are the conglomeration of operation symbols that are interpreted
by algebras as the coherence 2-cells of the diagram of the CAD-axiom of
natural pseudo-2-transformations

•

2

ρ1 +3

ρ8
��

•
ρ2

��
•

ρ7
��

•
ρ3

��
•

ρ6
��

•
ρ4

��
• •

ρ5
ks

To built the ten coherence 2-cells Λi (1 ≤ i ≤ 10) below, which enables to
conclude, we need the following additional 2-cells

Θ1 = γ2(ν
2
1 ;η(γ2(ν

2
1 ;η(ν2

1 )?
2
1 η(v2)))?

2
1 η(v2));

Θ2 = γ2(ν
2
1 ;η(γ2(µ

2
1 ;η(v2)?

2
1 η(ν2

1 )))?
2
1 η(v2));

Θ3 = γ2(ν
2
1 ;η(v2)?

2
1 η(γ2(ν

2
1 ;η(ν2

1 )?
2
1 η(v2))));

Θ4 = γ2(ν
2
1 ;η(v2)?

2
1 η(γ2(ν

2
1 ;η(v2)?

2
1 η(ν2

1 ))));

Θ5 = γ2(ν
2
1 ;η(ν2

1 )?
2
1 η(ν2

1 )).

The 2-cells Λi(1≤ i≤ 10) are then defined in the following way

Λ1 = γ2(Θ1;η(ρ4)?
2
1 η(ρ3)?

2
1 η(ρ2)?

2
1 η(ρ1));
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Λ2 = γ2(Θ2;η(ρ4)?
2
1 η(ρ3)?

2
1 η(ρ2)?

2
1 η(ρ1));

Λ3 = γ2(Θ3;η(ρ4)?
2
1 η(ρ3)?

2
1 η(ρ2)?

2
1 η(ρ1));

Λ4 = γ2(Θ4;η(ρ4)?
2
1 η(ρ3)?

2
1 η(ρ2)?

2
1 η(ρ1));

Λ5 = γ2(Θ5;η(ρ4)?
2
1 η(ρ3)?

2
1 η(ρ2)?

2
1 η(ρ1)).

We can note as well λ = η(ρ ′5) ?
2
1 η(ρ6) ?

2
1 η(ρ7) ?

2
1 η(ρ8). And consider

Λ6 = γ2(Θ1;λ ), Λ7 = γ2(Θ2;λ ); Λ8 = γ2(Θ3;λ ); Λ9 = γ2(Θ4;λ ); Λ10 =

γ2(Θ5;λ ).
We can prove that these 2-cells are parallels and with the same domain,

so they are connected with coherences 3-cells: ζi := [Λi;Λi+1] (1 ≤ i ≤ 9).
And the interpretation by B2-algebras of dimension 2 of these 3-cells gives
the CAD-axiom of natural pseudo-2-transformations.

6 Fusion of Adjunctions

As we saw in theorem 1 we need to do the "fusion" of two monads to obtain a
new monad, which inherits at the same time properties of these two monads.
This monad is the contractible monoids monad B= (B,ρ,b) of the theorem 1
which permits us to build the operads of n-Transformations (n ∈ N). The
fusion between adjunctions require some hypotheses (see below) and naturally
we shall see that our two adjunctions fill these hypotheses.

The following "fusion theorem" is a generalization of techniques used
by Batanin in [2]. This theorem is going to be shown especially powerful
because the required hypotheses are so simple. As a result the fusion product
of two adjunctions is possible under conditions that we can often run into.

Lemma 1 Let us consider the adjunction C
U //

B
F
>oo such as C has a co-

equalizer and U is faithful. Let the diagram B
d0 //
d1

// U(C) in B, then there
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is a unique morphism C
q−→ Q of C verifying U(q)d0 =U(q)d1 and which is

universal for this property, i.e if we give ourselves another morphism C
q′−→Q′

of C such as U(q′)d0 =U(q′)d1, then there is a unique morphism Q h−→ Q′ of
C such as U(h)U(q) =U(q′). 2

PROOF Given d0, d1 the morphisms of C which are the extensions of d0 and
d1, and let us put d̂0 = U(d0) and d̂1 = U(d1). Let us note C

q−→ Q the co-
equalizer of d0 and d1. We get U(q)d0 =U(q)U(d0)ηX =U(q)U(d1)ηX =

U(q)d1. We can show that q is universal for this property. Let C
q′−→ Q′

another morphism of C verifying U(q′)d0 =U(q′)d1. So U(q′)U(d0)ηX =

U(q′)U(d1)ηX , i.e U(q′d0)ηX =U(q′d1)ηX , Therefore we have q′d0 = q′d1

with q = coker(d0,d1), which shows that there is a unique morphism Q h−→Q′

of C such as hq = q′ and also this morphism is unique such as U(h)U(q) =
U(q′), because U is faithful. �

Let the following adjunction be: (C ,A)
U //

(B,A)
F
>oo . It is fusionnable if

the following properties are verified:

• C has coequalizers and
−→
N -colimits.

• B have
−→
N -colimits.

• U is faithful and preserves
−→
N -colimits.

Remark 5 Here
−→
N -colimits is the notation used in [6] for directed colimits.2

Let us go to the fusion theorem.

Theorem 2 Let us consider the adjunction C
U //

B
M
>oo with monad (L,m, l),

and the adjunction D
V //

B
H
>oo with monad (C,m,c). We suppose that these

KACHOUR - OPERADIC DEFINITION OF NON STRICT CELLS

- 298 -



adjunctions are fusionnable. In this case, if we consider the cartesian square
of categories

C ×B D

p1
��

p2 // D

V
��

C U
// B

then the forgetful functor C ×B D
O−→B has a left adjoint: F a O. 2

PROOF • Let X ∈B(0). At first, we are going to build by induction an
object B(X) of B and secondly we shall reveal that B(X) has got the
expected universal property.

• If n = 0 we give ourselves the following diagram of B:

C0 = X
l0=l(C0)// L(C0)

φ0=1 // L0
c0=c(L0)// C(L0)

ψ0=1 // C1
l1=l(C1)// L(C1)

Thanks to the lemma, we obtain the morphism φ1 with the diagram

L(C0)
d0=l1ψ0c0φ0 //

d1=L( j0)=L(ψ0c0φ0l0)
// L(C1)

φ1 // L1

What allows to extend the previous diagram

C1
l1 // L(C1)

φ1 // L1
c1=c(L1) // C(L1)

And it allows again to obtain the morphism ψ1

C(L0)
δ0=c1φ1l1ψ0 //

δ1=C(k0)=C(φ1l1ψ0c0)
// C(L1)

ψ1 // C2

and thus to prolong once more the previous diagram

C1
l1 // L(C1)

φ1 // L1
c1 // C(L1)

ψ1 // C2
l2 // L(C2)
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We do an induction. We can suppose that up to the rank n we can build
these diagrams. In particular we give ourselves the following diagram

Cn
ln // L(Cn)

φn // Ln
cn // C(Ln)

ψn // Cn+1
ln+1 // L(Cn+1)

where we especially note jn = ψncnφnln. We are going to show that
we can prolong this type of diagram in the rank n+1. Thanks to the
Lemma, we consider the morphism φn+1

L(Cn)
d0=ln+1ψncnφn //

d1=L( jn)=L(ψncnφnln)
// L(Cn+1)

φn+1 // Ln+1

what allows to prolong the previous diagram

Cn+1
ln+1 // L(Cn+1)

φn+1 // Ln+1
cn+1=c(Ln+1) // C(Ln+1)

where we can particularly note kn = φn+1ln+1ψncn. Then we consider,
due to to the lemma, the morphism ψn+1

C(Ln)
δ0=cn+1φn+1ln+1ψn //

δ1=C(kn)=C(φn+1ln+1ψncn)
// C(Ln+1)

ψn+1 // Cn+2

and thus to prolong still the previous diagram

Cn+1
ln+1 // L(Cn+1)

φn+1 // Ln+1
cn+1// C(Ln+1)

ψn+1 // Cn+2
ln+2 // L(Cn+2)

Thus for all n ∈ N we have this construction, what brings to light the
filtered diagram built with these diagrams. This filtered diagram is
noted B∗. In particular the diagrams

L(Cn−1)
d0=lnψn−1cn−1φn−1 //

d1=L(ψn−1cn−1φn−1ln−1)
// L(Cn)

φn
��

d0=ln+1ψncnφn //

d1=L(ψncnφnln)
// L(Cn+1)

φn+1
��

Ln
λn

// Ln+1
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show that

φn+1ln+1ψncnφnlnψn−1cn−1φn−1 = φn+1ln+1ψncnφnL(ψn−1cn−1φn−1

ln−1).

Thus according to the lemma, there is a unique morphism Ln
λn−→ Ln+1,

which is the forgetting of a morphism of C , returning commutative
these diagrams. Thus we obtain the filtered diagram L∗ of B which is
the forgetting of a diagram filtered of C

L0
λ0 // L1

λ1 // // Ln
λn // Ln+1

λn+1 //

where B∗ is an expanded diagram of L∗ i.e we have

B∗︷ ︸︸ ︷
C0

l0 // L(C0)
φ0 // L∗

We also have the diagram

C(Ln−2)
δ0=cn−1φn−1ln−1ψn−2 //

δ1=C(φn−1ln−1ψn−2cn−2)
// C(Ln−1)

ψn−1
��

δ0=cnφnlnψn−1 //

δ1=C(φnlnψn−1cn−1)
// C(Ln)

ψn
��

Cn
κn // Cn+1

which shows that

ψncnφnlnψn−1cn−1φn−1ln−1ψn−2 = ψncnφnlnψn−1C(φn−1ln−1ψn−2

cn−2).

Thus according to the lemma, there is a unique morphism Cn
κn−→Cn+1

which is the forgetting of a morphism of D returning commutative
these diagrams. Therefore we obtain the filtered diagram C∗ of B

which is the forgetting of a diagram filtered of D

C1
κ1 // C2

κ2 // // Cn
κn // Cn+1

κn+1 //
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where B∗ is an expanded diagram of C∗, i.e we have

B∗︷ ︸︸ ︷
C0

c0φ0l0// C(L0)
ψ0 // C∗

Thus these diagrams B∗, L∗ and C∗ have the same colimit B(X) in B.
We put L∗ = U(M∗) and M∗ −→ ∆MX its colimit (in C ), C∗ = V (H∗)
and H∗ −→ ∆HX its colimit (in D). The functors U and V preserving

−→
N -

colimits, therefore B(X) is the forgetting of the pair (MX ,HX) which
is an object of C ×B D : B(X) = O((MX ,HX)) = U(MX) = V (HX).
We put F(X) = (MX ,HX) which gives, as we are going to see, the
desired left adjoint of the forgetful functor O, and where (B,ρ,b) is the
associated monad. B(X) inherits at the same time the structure of the
object MX (which lives in C ) and the structure of the object HX (which
lives in D). It is the reason why the monad (B,ρ,b) can be called
"fusion" of monads (L,m, l) and (C,m,c). We note bX the produced

arrow X
bX−→ B(X) The continuation consists in showing the universal

character of bX . We are going to show that if we give ourselves a

morphism X
f−→ B0 of B such as B0 is the forgetting of an object

(M0,H0) of C ×B D , then there is a unique morphism (MX ,HX)
(h,k)−−→

(M0,H0) of C ×B D such as O(h,k)bX = f . For that, we are going
to use the filtered diagram B∗ with which we are going to build by
induction a cocone B∗ −→ ∆B0, and it will display the existence of the
pair (h,k).
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– Let g0 = f and f0 which is the extension of f from L0 = L(X):

C0 = X

l0
��

f=g0 // B0

L(C0)

φ0=1
��

x0
;;wwwwwwwww

L0

f0=x0

EE

















– We can suppose that this construction is up to the rank n. Thus in
particular we have the following diagram

C0

��

f // B0

Cn

ln
��

gn

55kkkkkkkkkkkkkkkkkkkk

L(Cn)

φn
��

xn

;;vvvvvvvvvvvvvvvvvvvvvv

Ln

cn
��

fn

@@�����������������������������

C(Ln)

yn

DD																																				

Also the natural transformation 1B
c−→C applied to

C(Ln−1)
φnlnψn−1−−−−−→ Ln

gives the equality

C(φnlnψn−1)c(C(Ln−1)) = cnφnlnψn−1 = δ0

thus ynδ0 = ynC(φnlnψn−1)c(C(Ln−1)). On the other hand

ynδ0 = ynδ0m(Ln−1)c(C(Ln−1))
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(unity axiom of monads), which leads to the equality

ynC(φnlnψn−1) = ynδ0m(Ln−1)

(do not forget that ynδ0 is the forgetting of a morphism of D

because ynδ0 = yn−1). What allows to write

ynδ1 = ynC(kn−1) = ynC(φnlnψn−1cn−1)

= ynC(φnlnψn−1)C(cn−1) = ynδ0m(Ln−1)C(cn−1)

= ynδ0 (unity axiom of monads)

So the universality of ψn implies the existence of a unique mor-
phism of D that the forgetting gn+1 is such as gn+1ψn = yn. We
also have the extension xn+1 of gn+1 from L(Cn+1). Then the nat-

ural transformation 1B
l−→ L applied to L(Cn)

ψncnφn−−−−→Cn+1 gives
the equality

L(ψncnφn)l(L(Cn)) = ln+1ψncnφn = d0

thus xn+1d0 = xn+1L(ψncnφn)l(L(Cn)), and

xn+1d0 = xn+1d0m(Cn)l(L(Cn)) (unity axiom of monads)

which leads to the equality

xn+1L(ψncnφn) = xn+1d0m(Cn)

(do not forget that xn+1d0 is the forgetting of a morphism of C

because xn+1d0 = xn). What allows to write

xn+1d1 = xn+1L( jn) = xn+1L(ψncnφnln)

= xn+1L(ψncnφn)L(ln) = xn+1d0m(Cn)L(ln)

= xn+1d0 (unity axiom of monads)

Then the universality of φn+1 implies the existence of a unique
morphism of C which the forgetting fn+1 is such as fn+1φn+1 =

xn+1. We also have the extension yn+1 of fn+1 from C(Ln+1).
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– Thus we obtain a cone B∗ −→∆B0, with B0 =O(M0,H0)=U(M0)=

V (H0). We have the two cocones as well L∗ −→ ∆U(M0) and
C∗ −→ ∆V (H0). The functor U preserving the

−→
N -colimits, the

diagram of B

L∗

##GGGGGGGGG
// ∆U(M0)

∆U(MX)

results of the diagram of C

M∗

""EEEEEEEE
// ∆M0

∆MX

such as M∗ −→ ∆MX is a colimit. There is consequently a unique
morphism h of C such as the triangle commutes

M∗

""EEEEEEEE
// ∆M0

∆MX

∆h

OO .

In the same way the functor V preserves
−→
N -colimits, so the dia-

gram of B

C∗

##GGGGGGGGG
// ∆V (H0)

∆V (HX)

results of the diagram of D

H∗

""DDDDDDDD
// ∆H0

∆HX
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such as H∗ −→ ∆HX is a colimit. Therefore there is a unique
morphism k of D such as the following triangle commutes

H∗

""DDDDDDDD
// ∆H0

∆HX

∆k

OO .

It shows the existence of the unique morphism (h,k) of C ×B D

such as

B∗

""FFFFFFFFF
// ∆B0

∆B(X)

O(h,k)

OO .

In consequence we obtain the morphism (h,k) of C ×B D such as
O(h,k)bX = f . Let (h′,k′) another morphism of C ×B D making the
following triangle commute

X

bX
��

f // B0 = O(M0,H0)

B(X) = O(MX ,HX)
O(h′,k′)

55kkkkkkkkkkkkkkk

.

We are going to prove by induction that it makes commutative the
following triangle of natural transformations

B∗

""FFFFFFFFF
// ∆B0

∆B(X)

O(h′,k′)

OO .

then it will immediatly prove the unicity of (h,k).
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The cocone B∗ −→ ∆B(X) is explicitly given by the following diagram

C0

��

bX // B(X)

Cn

ln
��

gX
n

55jjjjjjjjjjjjjjjjjjjj

L(Cn)

φn
��

xX
n

::uuuuuuuuuuuuuuuuuuuuuuu

Ln

cn
��

f X
n

@@������������������������������

C(Ln)

yX
n

DD������������������������������������

We need to prove that ∀n ∈ N we have the equalities: O(h′,k′)gX
n = gn,

O(h′,k′) f X
n = fn, O(h′,k′)xX

n = xn, O(h′,k′)yX
n = yn.

– If n = 0 we have V (k′)xX
0 l0 = V (k′)bX = f = x0l0 (don’t forget

that V (k′) = U(h′) = O(h′,k′)) thus V (k′)xX
0 = x0. We trivially

have V (k′) f X
0 = f0 because f0 = x0 and f X

0 = xX
0 . Also, V (k′)yX

0 c0

= V (k′) f X
0 = f0 = y0c0, so V (k′)yX

0 = y0. And g1 is unique
such as g1ψ0 = y0. However V (k′)gX

1 ψ0 = V (k′)yX
0 = y0, thus

V (k′)gX
1 = g1.

– We can suppose that until n≥ 1, we have these equalities; gn+1

is unique such as gn+1ψn = yn. But V (k′)gX
n+1ψn = V (k′)yX

n =

yn, thus V (k′)gX
n+1 = gn+1. Also V (k′)xX

n+1ln+1 = V (k′)gX
n+1 =

gn+1 = xn+1ln+1. Thus V (k′)xX
n+1 = xn+1. And fn+1 is unique

such as fn+1φn+1 = xn+1. Nevertheless V (k′) f X
n+1φn+1 =V (k′)xn+1

= xn+1, thus V (k′) f X
n+1 = fn+1. So we have V (k′)yX

n+1cn+1 =

V (k′) f X
n+1 = fn+1 = yn+1cn+1, which proves that V (k′)yX

n+1 =

yn+1.
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Finally we obtain the following fusion diagram

C
U //

B
L
>oo

C //

F`

��

D
V
⊥oo

C ×B D

O

OO

p1

eeLLLLLLLLLLLLLLLLLLLLLL

p2

99rrrrrrrrrrrrrrrrrrrrrr

�

7 Theories of the n-Transformations (n∈N∗) and
their Models.

The goal of this section is to build, thanks to the Nerve Theorem ([25]), the
equivalence in Glob(CAT ) of 7.3 which shows that n-Transformations can
be seen as models for some very elegant theories which are colored in a
precise sense (see 7.2). We refer to the papers [14], [5] for materials that
we are going to use here. Here Ar is the category of categories with arities,
ArMnd is the category of categories with arities equipped with monads, and
MndAr is the category of monads with arities. More specifically objects

of Ar are noted (Θ0, i0,A ) where Θ0
i0 // A is a fully faithfull functor,

and objects of ArMnd and of MndAr are noted ((Θ0, i0,A ),(T,η ,µ)) or
(Θ0, i0,A ) when there is no confusion about monads T which act on A .
Strongly cartesian monads [5] are the most important example of monads
with arities for our purpose, because all monads arising from operads of the
n-transformations are strongly cartesians (see proposition 2). But before this
easy but important proposition 2, we are going to show some interesting
objects of coGlob(CAT ) (in 7.1 and 7.2), the category of coglobular objects
in CAT .
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7.1 Coglobular Complex of Kleisli of the n-Transformations
(n ∈ N∗).

Here categories Mnd and Adj are slightly different from those which were
defined in 4 (see [14, 24] for their definitions) and are adapted for build-
ing the coglobular complex of Kleisli of the n-Transformations (n ∈ N∗).
Consider the functor Mnd K // Adj which send the monad (G ,(T,η ,µ))

to the adjunction (Kl(T ),G ,LT ,UT ,ηT ,εT ) coming from the Kleisli con-

struction. Objects of Kl(T ) are objects of G and morphisms G
f // G′ of

Kl(T ) are given by morphisms G
f // T (G′) of G . Also if G

g // G′

lives in G then LT (g) = η(G′) ◦ g and if G
f // G′ lives in Kl(T ) then

UT ( f ) = µ(G′)◦T ( f ). Finally K send the morphism (Q,q) of Mnd to the

morphism (P,Q) of Adj such that if G
f // G′ is a morphism of Kl(T ) then

P( f ) = q(G′)Q( f ). Then consider the coglobular complex of CT -Catc of the
globular contractible colored operads of the n-Transformations 3.3

B0
δ 0

1 //

κ0
1

// B1
δ 1

2 //

κ1
2

// B2 //// Bn−1
δ n−1

n //

κn−1
n

// Bn

For each j ∈ N we note (B j,µ j,η j) the corresponding monads (see 4).

Given the following functors "choice of a color" ω−Gr
i j∗ // ω−Gr/1∪2

for each j ∈ {1,2} which send the ω-graph G to the bicolored ω-graph i j◦!G

and which send a morphism f to f . It result from the morphisms of color

1
i j // 1∪2 (see 3.3). By definition of the monads B0 and B1 we have the

following natural transformations i1∗B0
δ 0

1 // B1i1∗ and i2∗B0
κ0

1 // B1i2∗
and furthemore we have for each j > 1 the following natural transformations

B j
δ

j
j+1 // B j+1 and B j

κ
j
j+1 // B j+1 and it is easy to see that these natural

transformations fit well the axioms of morphisms ofMnd (and it is similar to
the construction in [16]). The functoriality of the building a monad from a
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T-Category implied that we can build the corresponding coglobular complex
ofMnd (similar to 4.2)

B0
δ 0

1 //

κ0
1

// B1
δ 1

2 //

κ1
2

// B2 //// Bn
δ n

n+1 //
κn

n+1

// ...

If Adj P // CAT is the projection functor, then the functor

Mnd K // Adj P // CAT

brings to light the following coglobular complex of Kleisli of the
n-Transformations (n ∈ N∗)

Kl(B0)
δ 0

1 //

κ0
1

// Kl(B1)
δ 1

2 //

κ1
2

// Kl(B2) //// Kl(Bn−1)
δ n−1

n //

κn−1
n

// Kl(Bn)

7.2 Coglobular Complex of the Theories of the
n-Transformations (n ∈ N∗).

We are going to exhibit the categories of arities for the n-Transformations
where we can immediately see their colored nature. Then we construct
the theories of the n-Transformations where in particular we can see again
their bicolored features and then we describe these colored theories as full
subcategories of their Kleisli categories. Finally we exhibit the coglobular
complex of the theories of the n-Transformations.

Given Θ0 the category of graphic trees (see [2], [11], [4]). Theories build
with sums Θ0t ...tΘ0 are called n-colored if the sum use Θ0 n times.

We have the following easy proposition

Proposition 1 For all n ∈ N∗ the following canonical inclusion functors

Θ0t ...tΘ0
� � i0 // ω−Gr/1∪2∪ ...∪n

produce categories with arities. 2
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For the n-Transformations the following morphisms of Ar are important

Θ0� _

i0
��

i1∗ //
i2∗

// Θ0tΘ0� _

i0
��

ω−Gr
i1∗ //
i2∗

// ω−Gr/1∪2

where i1∗ and i2∗ are the functors "choice of a color" (see section 7.1).
Let us consider the case of the categories with arities equipped with

monads of the n-Transformations ((Θ0, i0,ω−Gr),(B0,η0,µ0)) and
((Θ0tΘ0, i0,ω−Gr/1∪2),(Bi,η i,µ i)) if i> 1

We have the following factorisation

Θ0

j ""FFFFFFFFF
i0 // ω−Gr L0

// B0−Alg

ΘB0

i

99ssssssssss

and for each i> 1 we have the following factorisations

Θ0tΘ0

j
''NNNNNNNNNNNNN

i0 // ω−Gr/1∪2 Li
// Bi−Alg

ΘBi

i

77ppppppppppppp

where the functors j are identity on the objects and the functors i are
fully faithfull (see [14, 25]). The categories ΘB0 , ΘB1 , ...,ΘBi , ...etc. are the
theories of the n-Transformations (by abuse we call ΘB0 the theory of the
0-Transformations, which is actually the theory built by Clemens Berger in
[4]). We can also give to them the following alternative definition: Each ΘBi

can be seen as the full subcategory of the Kleisli category Kl(ΘBi) (see the
paragraph section 7.1) which objects are the bicolored trees if i> 1 (i.e belong
in Θ0tΘ0), and which objects are the trees if i = 0. With this description we
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obtain the coglobular complex of the theories of the n-Transformations which
is seen as a subcomplex of the coglobular complex of the Kleisli categories
of the n-Transformations

ΘB0
� _

��

δ 0
1 //

κ0
1

// ΘB1
� _

��

δ 1
2 //

κ1
2

// ΘB2
� _

��

//// ΘBn−1
� _

��

δ n−1
n //

κn−1
n

// ΘBn
� _

��
Kl(B0)

δ 0
1 //

κ0
1

// Kl(B1)
δ 1

2 //

κ1
2

// Kl(B2) //// Kl(Bn−1)
δ n−1

n //

κn−1
n

// Kl(Bn)

7.3 An application of the Nerve Theorem.

Given A a category with a final object 1, and a functor A
F // B

We have the following factorisation:

A

F1 $$HHHHHHHHH
F // B

B/F(1)
cod

::vvvvvvvvv

where F1(a) := F(!a). In that case we have the following important
definition

Definition 1 (Street 2001) The last F is qualified as Parametric Right Ad-
joint (p.r.a for short) if F1 has a left adjoint. 2

Definition 2 A monad (G ,(T,η ,µ)) is a strongly cartesian monad if T is
p.r.a. and if its unit and multiplication are cartesian. 2

Remark 6 In 2001 Ross Street has called them p.r.a monads, Mark Weber
in [25] has called them locally right adjoint monads (l.r.a monads), but we
adopt here the terminology of the paper [5]. 2
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Monads of the n-Transformations are in fact strongly cartesian monads
(see the proposition 2 below, where the proof is left to the reader) which allow
us to exhibit the coglobular complex inMndAr of the n-Transformations and
thus, thanks to the Nerve Theorem [25] we get the globular complex of nerves
of the n-Transformations and finally the equivalence in Glob(CAT ), which
express the definition of the n-Transformations as models for theories, that is
the outcome of this section. It is well known that (ω−Gr,(B0,η0,µ0)) is a
strongly cartesian monad [25]. In fact all monads of the n-Transformations
(n ∈ N∗) have this property

Proposition 2 For all i> 1 the monad (ω−Gr/1
⋃

2,(Bi,η i,µ i)) is strongly
cartesian. Furthermore (Θ0tΘ0, i0,ω−Gr/1∪2) is their canonical arities
(see remark 2.10 in [5]).

So we obtain the coglobular complex inMndAr of the n-Transformations

(Θ0, i0,ω−Gr)
δ 0

1 //

κ0
1

// (Θ0tΘ0, i0,ω−Gr/1∪2)
δ 1

2 //

κ1
2

// ...

(Θ0tΘ0, i0,ω−Gr/1∪2)
δ i

i+1 //

κ i
i+1

// ...

which brings to light the globular complex of nerves of the n-Transformations

//// Bn−Alg

NBn

��

σn
n−1 //

β n
n−1

// Bn−1−Alg

NBn−1
��

//// B1−Alg

NB1
��

σ1
0 //

β 1
0

// B0−Alg

NB0
��

//// Θ̂Bn

σn
n−1 //

β n
n−1

// Θ̂Bn−1
//// Θ̂B1

σ1
0 //

β 1
0

// Θ̂B0

which finally achieve the goal of this section by showing the following
equivalence in Glob(CAT ) given by the nerves functors, i.e each nerve
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functor NBn of the commutative diagram below is an equivalence of categories

//// Bn−Alg

NBn

��

σn
n−1 //

β n
n−1

// Bn−1−Alg

NBn−1
��

//// B1−Alg

NB1
��

σ1
0 //

β 1
0

// B0−Alg

NB0
��

//// Mod(ΘBn)
σn

n−1 //

β n
n−1

// Mod(ΘBn−1) //// Mod(ΘB1)
σ1

0 //

β 1
0

// Mod(ΘB0)
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RESUMES DES ARTICLES PUBLIES 

dans le Volume LII (2011) 
 

 
KASANGIAN, METERE and VITALE, The Ziqqurath of exact sequences of n-

groupoids, 2-44 

Les auteurs étudient la notion de suite exacte dans la sesqui-catégorie des n-

groupoïdes. En utilisant les produits fibrés homotopiques, à partir d'un n-foncteur 

entre n-groupoïdes pointés, ils construisent une suite de six (n-1)-groupoïdes. Ils 

montrent que cette suite est exacte en un sens qui généralise les notions usuelles 

d'exactitude pour les groupes et les gr-catégories. En réitérant le processus, ils 

obtiennent une ziggourath de suites exactes de longueur croissante et dimension 

décroissante. Pour n = 1, ils retrouvent un résultat classique dû à R. Brown et, 

pour n = 2, ses généralisations dues à Hardie, Kamps et Kieboom et à Duskin, Kie- 

boom et Vitale.  

 

M. GRANDIS, Singularities and regular paths (an elementary introduction to 

smooth homotopy), 45-76. 

Cet article est une introduction élémentaire à la topologie algébrique lisse, suivant 

une approche particulière : le but est d'étudier des "espaces lisses avec singulari-

tés" par des méthodes d'homotopie adaptées à cette tâche. On explore ici des ré-

gions euclidiennes, moyennant des chemins de classe C
k
, en tenant compte du 

nombre de leurs arrêts en fonction de k. Le groupoïde fondamental de l'espace 

acquiert ainsi une séquence de poids qui dépend d'un index de classe C
k
 et qui 

peut distinguer l'ordre des singularités "linéaires". Ces méthodes pourraient s'ap-

pliquer à la théorie des réseaux. 

 

HARTL & LOISEAU, A characterization of finite cocomplete homological and 

of semi-abelian categories, 77- 80. 

Les catégories semi-abéliennes et homologiques finiment cocomplètes sont défi-

nies via quatre, respectivement trois, axiomes simples exprimés en termes de no-

tions catégoriques de base. 

 

CHENG & GURSKI, The periodic table of n-categories II: Degenerate tricate-

gories, 82-125. 

Suivant un travail précédent, les auteurs étudient les tricatégories dégénérées en 

les comparant aux structures prédites par le tableau périodique des n-catégories. 

Pour les tricatégories trois fois dégénérées, ils démontrent une tri-équivalence 

avec la tricatégorie partiellement discrète des monoïdes commutatifs. Pour les 

tricatégories deux fois dégénérées ils expliquent comment construire une catégo-
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rie monoïdale tressée à partir d'une tricatégorie deux fois dégénérée, mais cette 

construction n'induit pas une comparaison simple entre BrMonCat et Tricat. Ils 

discutent comment on peut itérer la construction des "icones" pour obtenir une 

équivalence, renvoyant à plus tard pour les détails. Finalement ils étudient les 

tricatégories dégénérées, donnant la première définition des bicatégories monoï-

dales complètement algébriques et toute la structure de tricatégorie de MonBicat. 

 

BARILE, BARONE & TULCZYJEW, The total exterior differential, 126-160. 

La définition des jets mixtes inclut les suites finies de vecteurs verticaux tangents 

à des fibrés de jets. Ceci permet de définir des opérateurs différentiels sur des 

formes verticales à un fibré de jets, en utilisant les prolongements de jets mixtes. 

La différentielle extérieure totale en est un cas particulier. 

 

G. SEAL, On the monadic nature of categories of ordered sets, 163-187. 

Si S est une monade sur Set avec une factorisation au travers de la catégorie des 

ensembles ordonnés et des fonctions adjointes à gauche, alors un morphisme de 

monades entre S et T induit une factorisation similaire sur T. La catégorie de Ei-

lenberg-Moore de T est alors monadique sur la catégorie des monoïdes dans la 

catégorie de Kleisli de S. 

 

BROWN & STREET, Covering morphisms of crossed complexes and of cubical 

omega-groupoids are closed under tensor product, 188-208. 

Le but de cet article est de démontrer les théorèmes mentionnés dans le titre, ainsi 

que le corollaire disant que le produit tensoriel de deux résolutions croisées libres, 

en groupes ou en groupoïdes, est aussi une résolution croisée libre, en groupes ou 

en groupoïdes. Ce corollaire est obtenu en utilisant l’équivalence entre la catégo-

rie des complexes croisés et celle des omega-groupoïdes des cubiques avec con-

nexion, dans laquelle on donne la définition initiale du produit tensoriel. D’autre 

part, c’est dans cette deuxième catégorie qu’on peut appliquer les techniques de 

sous-catégories denses pour reconnaitre qu’un produit tensoriel de revêtements est 

un revêtement. 

 

KENNEY & PARE, Categories as monoids in Span, Rel and Sup, 209-240. 

Les auteurs étudient les représentations de petites catégories comme les monoïdes 

dans trois bicatégories monoïdales étroitement liées. Les catégories peuvent être 

exprimées comme certains types de monoïdes dans la catégorie Span. En fait, ces 

monoïdes sont aussi dans Rel. Il y a une équivalence bien connue entre Rel et une 

sous-catégorie pleine de la catégorie des treillis complets et des morphismes qui 

préservent les sups. Cela permet de représenter une catégorie comme un monoïde 

dans Sup. Les monoïdes dans Sup s’appellent des quantales, et sont intéressants 

dans plusieurs domaines. Les auteurs étudient aussi dans ce contexte la représen-
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tation d’autres structures catégoriques, par exemple les foncteurs, les transforma-

tions naturelles et les profoncteurs. 

 

DUBUC & YUHJTMAN, A construction of 2-cofiltered bilimits of topoi, 242-

252. 

Les auteurs montrent l'existence des bilimites de diagrammes 2-cofiltrés de topos, 

généralisant la construction de bilimites cofiltrées développée précédemment. Ils 

montrent qu'un tel diagramme peut être représenté par un diagramme 2-cofiltré de 

petits sites avec limites finies, and ils construisent un petit site pour le topos bili-

mite. Pour ceci ils considèrent le 2-filtre bicolimite des catégories sous-jacentes et 

leurs foncteurs image inverse. Appliquant la construction de cette bicolimite dé-

veloppée dans un article antérieur, ils montrent que si les catégories du dia-

gramme ont des limites finies et si les foncteurs de transition sont exacts, alors la 

catégorie bicolimite a aussi des limites finies et les foncteurs du pseudo-cone sont 

exacts. Comme application ils retrouvent que tout topos de Galois a des points. 

 

BLUTE, COCKETT, PORTER & SEELY, Kähler categories, 253-268. 

Dans cet article, on établit une relation entre la notion de catégorie codifférentielle 

et la théorie, plus classique, des différentielles de Kähler en algèbre commutative. 

Une catégorie codifférentielle est une catégorie monoïdale additive, ayant une 

monade T avec une 'modalité d’algèbre', i.e. avec donnée d'une structure 

d’algèbre associative pour chaque objet de la forme T(C) ; elle est aussi équipée 

d’une transformation dérivée, avec axiomes de différentiation sous forme algé-

brique. La notion classique de différentielle de Kähler définit celle d’un module 

des formes A-différentielles par rapport à une k-algèbre commutative A, qui est 

équipé d’une A-dérivation universelle. Une catégorie de Kähler est une catégorie 

monoïdale additive, ayant une modalité d’algèbre et un objet des formes différen-

tielles associé à chaque objet. Si la monade algèbre libre existe et si l’application 

canonique vers T est épimorphique, les catégories codifférentielles sont Kähler. 

 

C. KACHOUR, Operadic definition of non-strict cells, 269-231. 

Dans un article précédent, l'auteur avait étendu le travail de J. Penon sur les ω-

catégories non-strictes en définissant leurs ω-foncteurs non-stricts, leurs ω-

transformations naturelles non-strictes, etc., en utilisant des extensions de ses 

"étirements catégoriques" appelés "n-étirements catégoriques". Ici il poursuit le 

travail de M. Batanin sur les ω-catégories non-strictes en définissant leurs ω fonc-

teurs non-stricts, leurs ω-transformations naturelles non-strictes, etc., en utilisant 

des extensions de son ω-opérade contractile universelle K, i.e en construisant des 

ω-opérades colorées contractiles universelles B
n
 adaptées. 
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