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Résumé. Si S est une monade sur Set avec une factorisation au
travers de la catégorie des ensembles ordonnés et des fonctions ad-
jointes à gauche, alors un morphisme de monades τ : S→ T induit
une factorisation similaire sur T. La catégorie de Eilenberg-Moore
de T est alors monadique sur la catégorie des monoı̈des dans la
catégorie de Kleisli de S.

Abstract. If S is an order-adjoint monad, that is, a monad on Set
that factors through the category of ordered sets with left adjoint
maps, then any monad morphism τ : S→ T makes T order-adjoint.
The Eilenberg-Moore category of T is then monadic over the cate-
gory of monoids in the Kleisli category of S.

Keywords: order-adjoint monad, Eilenberg-Moore category, Kleisli monoid,
monadic functor
AMS classification: 18C20, 18B30, 54A05

1 Introduction
A monadic functor from A to X determines a unique (up to isomorphism)
monad T on X, and such a monad yields a category of Eilenberg-Moore
algebras XT that is equivalent to A; however, A can be monadic over a range
of different categories. Illustrations of this fact that stem from distributive
laws [1] spring to mind, but other examples originate from different contexts.
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For instance, the category Cnt of continuous lattices that is strictly monadic
over Set, as well as over the category Top of topological spaces, the category
Sup of complete sup-lattices, and the category CHaus of compact Hausdorff
spaces ([4], [17]). The last two examples can be obtained as consequences
of the following result (see for example Corollary 4.5.10 in [3]):

A morphism τ : S → T between monads on Set induces a strictly
monadic functor Setτ : SetT → SetS.

Indeed, taking T to be the filter monad F, and S the powerset monad P or
the ultrafilter monad B, the principal filter monad morphism τ : P → F
yields the monadicity of Cnt ∼= SetF over Sup ∼= SetP, and the embed-
ding morphism B ↪→ F leads to the monadicity of Cnt over CHaus ∼= SetB

(see [8]). However, the presence of Top in this context remains somewhat
idiosyncratic.

The aim of the present work is to describe a setting that leads to a sys-
tematic display of monadic functors induced by monad morphisms over cat-
egories such as Top or Ord, rather than Eilenberg-Moore categories (and
turns out, contrarily to the cited result, not to require recourse to the Ax-
iom of Choice). The main ingredient is an order-adjoint monad, that is, a
monad on Set whose extension operation factorizes through the category of
ordered sets and left adjoint maps (see 2.3). Another ingredient is inspired
by the description of an object in Top as a monoid in the ordered hom-set
Set(X,FX) (where FX is the set of all filters on X , ordered by reverse in-
clusion): a topological space can be defined as a set X with a neighborhood
map α : X → FX such that

ηX ≤ α and µX · Fα · α = α ,

where η and µ are respectively the unit and multiplication of F (see [5]). The
second identity—idempotency of α in the hom-set of the Kleisli category of
F—is central to our construction of a monad T′ from T. In fact, the category
Set(S) of Kleisli monoids associated to an order-adjoint monad S plays the
same role as SetS previously and leads to an isomorphism

SetT ∼= Set(S)T′

(Theorem 4.8). After illustrating this result with a number of scattered—and
previously unrelated—results occurring in the literature, we show how the
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intrinsic order-adjoint nature of algebra structures contributes to the study of
relevant Eilenberg-Moore categories.

2 Order-adjoint monads
In this section, we recall basic facts and terminology pertaining to order-
adjoint monads, and settle a number of notations. Further details can be
found in [15].

2.1 Monads. A monad T on a category X is a triple (T, η, µ) formed by a
functor T : X → X, and two natural transformations: the unit η : Id → T
and multiplication µ : TT → T of the monad that must satisfy

µ · Tη = 1 = µ · ηT and µ · Tµ = µ · µT .

We say that a pair (R, σ) : S → T is a monad morphism from a monad
S = (S, δ, ν) on A to a monad T = (T, η, µ) on X, if R : X→ A is a functor
and σ : SR→ RT a natural transformation such that

Rη = σ · δR and Rµ · σT · Sσ = σ · νR .

In the case where A = X and R is the identity, we write σ : S → T instead
of (1X, σ) : S→ T.

A monad can also be described by way of a Kleisli triple (T, η, (−)T) on
X (Exercise 1.3.12 in [9]), that is,

(i) a function T : ob X→ ob X,

(ii) for every X-object X , an X-morphism ηX : X → TX ,

(iii) an extension operation (−)T that sends an X-morphism f : X → TY
to an X-morphism fT : TX → TY ,

subject to the conditions

ηT
X = 1TX , fT · ηX = f and gT · fT = (gT · f)T . (∗)

Every Kleisli triple (T, η, (−)T) yields a monad T = (T, η, µ) via

Tf := (ηY · f)T and µX := (1TX)T ,
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and every monad T = (T, η, µ) defines a Kleisli triple thanks to

fT := µY · Tf .

These processes are inverse of one another, and we freely switch between the
two descriptions: not only is the extension operation (−)T ubiquitous in our
context, but the three Kleisli triple conditions are very economical to verify.

In the case where two Kleisli triples (S, δ, (−)S) and (T, η, (−)T) are
defined on the same category X, a family (σX : SX → TX)X∈ob X defines a
monad morphism σ : S→ T if and only if the equalities

ηX = σX · δX and (σY · f)T · σX = σY · fS

hold for all X-objects X and X-morphisms f : X → SY .

2.2 Eilenberg-Moore and Kleisli categories. Given a monad T = (T, η, µ)
on a category X, an Eilenberg-Moore algebra (or a T-algebra) is a pair
(X, a), with X an object of X, and a : TX → X a structure morphism
that satisfies

1X = a · ηX and a · Ta = a · µX .

In particular, the pair (TX, µX) forms an Eilenberg-Moore algebra, the free
T-algebra on X . A morphism of Eilenberg-Moore algebras f : (X, a) →
(Y, b) is an X-morphism f : X → Y such that

f · a = b · Tf .

Thus, a T-algebra structure a is itself such a morphism a : (TX, µX) →
(X, a). The category of Eilenberg-Moore algebras and their morphisms is
denoted by XT and is also called the Eilenberg-Moore category of T. If T is
given by a Kleisli triple, the conditions for an X-morphism a : TX → X to
form an Eilenberg-Moore structure can be expressed as

1X = a·ηX and ∀f, g ∈ X(Y, TX) (a·f = a·g =⇒ a·fT = a·gT) .

If S = (S, δ, ν) is a monad on A and T a monad on X, then a functor R :
XT → AS is said to be algebraic over a functor R : X → A if it makes the
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diagram

XT R //

��

AS

��
X R // A

commute (the vertical arrows represent the respective forgetful functors).
Any monad morphism (R, σ) : S → T from a monad S on A to a monad T
on X induces such an algebraic functor; this is defined on objects by

R(X, a) = (RX,Ra · σX) ,

and necessarily sends an X-morphism f to Rf . Conversely, every functor
R : XT → AS that is algebraic over R : X → A is induced by a monad
morphism (R, σ): if µX : SRTX → RTX denotes the A-morphism given
by R(TX, µX) = (RTX,µX), then one can define the components of σ :
SR→ RT by

σX := µX · SRηX .

The objects of the Kleisli category XT associated to the monad T are the
objects of X, and morphisms f : X ⇀ Y in XT are those X-morphisms
f : X → TY . The Kleisli composition of f : X ⇀ Y and g : Y ⇀ Z in XT
is defined via the composition in X as

g ◦ f := µZ · Tg · f = gT · f .

The identity 1X : X ⇀ X in this category is just the component ηX : X →
TX of the unit.

2.3 Order-adjoint monads. Let Ord denote the category of ordered sets
(that is, sets equipped with a reflexive, transitive and antisymmetric relation)
with monotone maps, and Ord∗ the subcategory of Ord with same objects
but whose maps are left adjoint. Explicitly a map f : X → Y is a morphism
of Ord∗ if it is monotone and there exists a monotone map, denoted by f ∗ :
Y → X , satisfying

1X ≤ f ∗ · f and f · f ∗ ≤ 1Y .
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A functor T : Set → Set factors through Ord∗ if there is a functor
T̃ : Set→ Ord∗ that makes the diagram

Ord∗
|−|

""FF
FF

FF
FF

Set

T̃
<<xxxxxxxx
T // Set

commute (where | − | denotes the forgetful functor). For convenience, such
a functor T is understood to be given with a fixed T̃ that is moreover iden-
tified with T ; for example, we talk about “the right adjoint (Tf)∗ of Tf :
TX → TY ” to mean “the underlying function of the right adjoint (T̃ f)∗ of
T̃ f : T̃X → T̃ Y ”. The hom-sets Set(X,TY ) are then equipped with the
pointwise order, so that for f, f ′ ∈ Set(X,TY ), one has

f ≤ f ′ ⇐⇒ ∀x ∈ X (f(x) ≤ f ′(x)) .

A monad T = (T, η, µ) on Set is order-adjoint if the components of its
extension operation (−)T take values in Ord∗, that is, if and only if T fac-
tors through Ord∗ and every component µX of the monad multiplication is a
morphism in Ord∗.

Without any additional assumption on a monad T on Set whose extension
operation takes values in Ord∗, composition in the Kleisli category SetT is
only monotone in the second variable:

f ≤ f ′ =⇒ h ◦ f ≤ h ◦ f ′

for all f, f ′ ∈ SetT(X, Y ), h ∈ SetT(Y, Z). We say that an order-adjoint
monad T is enhanced if moreover (−)T preserves the order on the hom-sets
SetT(X, Y ):

f ≤ f ′ =⇒ fT ≤ (f ′)T

for all f, f ′ ∈ SetT(X, Y ). This condition is equivalent to requiring that
composition in SetT is monotone in the first variable, so an enhanced order-
adjoint monad makes the Kleisli category SetT into an ordered category.
Note that even if an order-adjoint monad is enhanced, its functor needs not
preserve adjoint situations, that is, T (Tf)∗ = (TTf)∗ does not hold in gen-
eral.
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2.4 Lemma. An Ord∗-morphism f : X → Y is split epic in Set if and only
if f · f ∗ = 1Y .

Proof. If f · f ∗ = 1Y , then f is split epic by definition. If there is a map
g : Y → X with f · g = 1Y , then g ≤ f ∗. Therefore, 1Y ≤ f · f ∗ ≤ 1Y and
equality holds.

2.5 Proposition. A monad T on Set is order-adjoint if and only if the forget-
ful functor from SetT to Set factors through Ord∗.

Hence, if T is order-adjoint, then all T-algebras (X, a) are ordered
sets, and all T-algebra morphisms f : (X, a) → (Y, b), in particular a :
(TX, µX)→ (X, a), are left adjoint maps.

Proof. We give a brief outline of the proof, while details can be found in
[15]. If T is order-adjoint, the order on the underlying set of a T-algebra
(X, a) is inherited from TX via the map a◦ := µX · (Ta)∗ · ηX :

x ≤ y ⇐⇒ a◦(x) ≤ a◦(y)

for all x, y ∈ X; this order makes a◦ into the right adjoint a∗ of a (and
returns the original order on TX via µ◦X). For a T-algebra morphism f :
(X, a) → (Y, b), one defines the map f ◦ := a · (Tf)∗ · b∗, which turns out
to be the right adjoint f ∗ of f (relatively to the orders on X and Y induced
by a and b respectively, as described above). Conversely, if SetT → Set
factors through Ord∗, one observes that T is order-adjoint by exploiting that
all Tf : (TX, µX) → (TY, µY ) and µX : (TTX, µTX) → (TX, µX) are
SetT-morphisms.

2.6 Proposition. Let τ : S → T be a monad morphism from an order-
adjoint monad S = (S, δ, ν) to a monad T = (T, η, µ) on Set. Then T is
order-adjoint, and the components τX : SX → TX are left adjoints (with
respect to the induced order on TX).

Proof. As in the proof of Proposition 2.5, the S-algebra structure µX · τTX :
STX → TX defines an order on TX via

x ≤ y ⇐⇒ (µX · τTX)◦(x ) ≤ (µX · τTX)◦(y) ,
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where (µX ·τTX)◦ := νX ·(S(µX ·τTX))∗·δTX , and one then has (µX ·τTX)◦ =
(µX · τTX)∗. For monotonicity of Tf , we use Lemma 2.4 in

Tf = Tf · (µX · τTX) · (µX · τTX)∗ = (µY · τTY ) · STf · (µX · τTX)∗

to observe that Tf is a composite of monotone maps. Monotonicity of µX
and τX are proved similarly. The respective right adjoints are easily seen to
be given by

(Tf)∗ := µX · τTX · (STf)∗ · (µY · τTY )∗ ,

µ∗X := µTX · τTTX · (SµX)∗ · (µX · τTX)∗ ,

τ ∗X := νX · (SτX)∗ · (µX · τTX)∗ .

For the explicit description of the monads mentioned in the following
examples, we refer to [15] or [14]. Further references are given in 4.10.

2.7 Examples. The Eilenberg-Moore algebras of the powerset monad P on
Set are complete lattices, with their morphisms sup-maps:

SetP ∼= Sup .

Since P is order-adjoint, any monad morphism τ : P → T makes T order-
adjoint (Proposition 2.6). Thus, the filter monad F on Set becomes order-
adjoint via the principal-filter monad morphism τ : P → F; the same state-
ment holds for up-set monad U, and the double-dualization monad D, since
there is a chain of monad morphisms

P→ F→ U→ D

(the last two simply given by the inclusions FX ↪→ UX ↪→ DX for all sets
X). There is also a monad morphism from P into the monad Ufin of finitely
generated up-sets (obtained by sending an element A ∈ PX to {B ∈ PX |
B ∩ A 6= ∅}) that leads to another chain of monad morphisms

P→ Ufin → U→ D .
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In this case, the order induced by P on UfinX , UX , or DX , is given by set-
inclusion—rather than its opposite as in the previous filter case. There is
also a monad morphism

P→ PP+

of the powerset monad, into the P+-based powerset monad, where P+ de-
notes the extended real half-line [0,∞] equipped with its quantale structure,
in which the tensor is given by extended addition, and the order is oppo-
site to the natural order (the components of the morphism are given by the
maps χ(−) : PX → PP+X that send A ⊆ X to its characteristic function
χA : X → P+ given by χA(x) = 0 if x ∈ A and χA(x) = ∞ other-
wise). With the sets PP+X ordered pointwise, PP+ becomes order-adjoint.
For future reference, note that the monad morphism from P to PP+ has a left
inverse

PP+ → P
(whose component at X is left adjoint to χ(−) : PX → PP+X , and sends a
map φ : X → P+ to the set {x ∈ X | φ(x) <∞}).

One readily checks that all of these order-adjoint monads—with the no-
table exception of the double-dualization monad D—are enhanced.

3 Kleisli monoids

3.1 The category of Kleisli monoids. The definition of a Kleisli monoid is
given by way of a category X that is not quite an ordered category, as our
main goal is to study the case of order-adjoint monads T on X = Set (see
also Proposition 5.3).

Let T = (T, e,m) be a monad on a category X whose hom-sets X(X,TY )
are equipped with an order that is preserved by composition on the right:

f ≤ f ′ =⇒ f · g ≤ f ′ · g

for all f, f ′ : X → TY , g : Z → X . A Kleisli monoid (or T-monoid) in
X is a pair (X,α) made up of an X-object X and a structure X-morphism
α : X → TX that is extensive and idempotent:

eX ≤ α , α ◦ α ≤ α
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(composition is taken in the Kleisli category XT). In the presence of exten-
sivity, idempotency may be legitimately expressed as an equality α ◦α = α;
furthermore, αT : TX → TX is also idempotent:

αT · αT = (αT · α)T = (α ◦ α)T = αT .

A Kleisli morphism (that is, a morphism of T-monoids) f : (X,α)→ (Y, β)
is an X-morphism f : X → Y such that

Tf · α ≤ β · f

and that composes with a Kleisli morphism g : (Y, β)→ (Z, γ) as in X. The
category of Kleisli monoids in X with their morphisms is denoted by X(T).

In the case where X = Set, the underlying set of a Kleisli monoid (X,α)
can be equipped with the initial preorder induced by α : X → TX: for
x, y ∈ X

x ≤ y ⇐⇒ α(x) ≤ α(y) .

This preorder becomes an order exactly when α : X → TX is a monomor-
phism; in this case, the Kleisli monoid (X,α) is said to be separated. The
full subcategory of Set(T) whose objects are separated Kleisli monoids is
denoted by Set(T)0.

3.2 Examples. The categories of Kleisli monoids of the monads given in 2.7
are the following (see [15] or [14]).

Set(P) ∼= PrOrd: category of preordered sets with monotone maps.

Set(P)0
∼= Ord: category of ordered sets with monotone maps.

Set(F) ∼= Top: category of topological spaces with continuous maps [5].

Set(F)0
∼= Top0: category of T0 topological spaces with continuous maps.

Set(U) ∼= Cls: category of closure spaces with continuous maps.

Set(D) ∼= Cls†: category “non-monotone” closure spaces with continuous
maps.

Set(Ufin) ∼= Clsfin: category of finitary closure spaces with continuous maps.

Set(PP+) ∼= Met: category of generalized metric spaces with contractions.
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3.3 T-algebras and T-monoids. If T is an order-adjoint monad, a T-monoid
structure α onX is in particular a Kleisli morphism α : (X,α)→ (TX, µ∗X).
Moreover, for a T-algebra (X, a), the pair (X, a∗) defines a Kleisli monoid.
Indeed, the structure a has a right adjoint a∗ by Proposition 2.5, so a · ηX ≤
1X and a · µX ≤ a · Ta imply

ηX ≤ a∗ and µX · T (a∗) · a∗ ≤ (a∗ · a · Ta) · T (a∗) · a∗ = a∗ .

Similarly, a morphism f : (X, a)→ (Y, b) of T-algebras yields a morphism
f : (X, a∗) → (Y, b∗). The right adjoint operation on structures therefore
defines a functor L : SetT → Set(T). In fact, since a ·a∗ = 1X (Lemma 2.4),
the structure a∗ is a monomorphism, so L factors through the category of
separated Kleisli monoids, and can be seen as having Set(T)0 as codomain.
This functor is both faithful and injective on objects (by unicity of the right
adjoint of a structure a), so that SetT can be considered as a subcategory of
Set(T)0 or of Set(T).

3.4 Proposition. Let S be an order-adjoint monad. A monad morphism τ :
S → T yields a faithful functor Set(τ) : Set(S) → Set(T) obtained by
sending an S-monoid (X,α) to (X, τX · α) and leaving maps untouched.

Proof. Proposition 2.6 shows that in the given situation, T factors through
Ord, so that Set(T) can be defined. The claim then follows by straightfor-
ward verifications using that τX is monotone.

3.5 Proposition. Let S be an order-adjoint monad, and τ : S→ T a monad
morphism. There is a functor Q : SetT → Set(S) that sends a T-algebra
(X, a) to (X, (a · τX)∗) and commutes with the underlying-set functors.

Proof. A T-algebra (X, a) yields an S-algebra (X, a · τX) via the functor
Setτ : SetT → SetS, and therefore an S-monoid (X, (a · τX)∗) thanks to the
functor SetS → Set(S) of 3.3. These operation therefore describe a functor
Q : SetT → Set(S) that commutes with the underlying-set functors.
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4 Monads on Set(S)

4.1 The equalizer construction. Consider a morphism τ : S → T between
monads on Set with S order-adjoint. We proceed to describe the components
T ′, η′, and (−)T′ of a Kleisli triple on Set(S) (Proposition 4.4).

(i) For an object (X,α) of Set(S), one sets β := τX · α and defines T ′X ,
the set of βT-invariants, as the equalizer in Set of the pair (βT, 1TX):

T ′X
sX // TX

βT
//

1TX

// TX .

The universal property of sX yields the existence of a map rX : TX →
T ′X such that

sX · rX = βT and rX · sX = 1T ′X .

The set T ′X can be equipped with the S-monoid structure ωX : T ′X →
ST ′X given by

ωX := SrX · (µX · τTX)∗ · sX .

Lemma 4.3 below shows that sX : (T ′X,ωX) → (TX, (µX · τTX)∗)
is also an equalizer in Set(S). This implies that the maps η′X and fT′

defined in the following points are morphisms of S-monoids.

(ii) Since βT · β = β (Proposition 3.4), there exists a map η′X : X → T ′X
with sX · η′X = β:

X
η′X

��

β

##GGGGGGGG

T ′X sX

// TX
βT

//
1TX

// TX .

This yields a morphism of S-monoids η′X : (X,α) → (T ′X,ωX). Let
us point out that since sX · η′X = β and rX · sX = 1T ′X , one can
equivalently obtain η′X as either

η′X = rX · β or η′X = rX · ηX
because rX · β = rX · βT · ηX = rX · ηX .
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(iii) If (Y, αY ) is another S-monoid, and f : (Y, αY ) → (T ′X,ωX) is a
Set(S)-morphism, then one observes

βT · (sX · f)T = (βT · sX · f)T = (sX · f)T .

Thus, there exists a unique map fT′ : T ′Y → T ′X making the follow-
ing diagram commute:

T ′Y

fT′

��

(sX ·f)T·sY

##FF
FF

FF
FF

F

T ′X sX

// TX
βT

//
1TX

// TX .

This yields a morphism of S-monoids fT′ : (T ′Y, ωY ) → (T ′X,ωX)
that can also be described directly as

fT′ = rX · (sX · f)T · sY .

4.2 Remark. The monad morphism τ : S → T does not need to make
T enhanced (Proposition 2.6), so it is not clear in general whether rX :
(TX, (µX · τTX)∗)→ (T ′X,ωX) is a Kleisli morphism or not.

4.3 Lemma. For a monad morphism τ : S → T with S an order-adjoint
monad, the map

sX : (T ′X,ωX)→ (TX, (µX · τTX)∗)

(defined in the previous construction) is an equalizer in Set(S). As a conse-
quence,

η′X : (X,α)→ (T ′X,ωX) and fT′ : (T ′Y, ωY )→ (T ′X,ωX)

are Set(S)-morphisms.

Proof. To verify that ωX : T ′X → ST ′X is an S-monoid structure, observe
that

δT ′X = δT ′X · rX · sX = SrX · δTX · sX ≤ SrX · (µX · τTX)∗ · sX
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by Lemma 2.4, adjunction, and the fact that τ is a monad morphism,

ωS
X · ωX = SrX · νTX · S(µX · τTX)∗ · SβT · (µX · τTX)∗ · sX

≤ SrX · νTX · (S(µX · τTX))∗ · SβT · (µX · τTX)∗ · sX
≤ SrX · νTX · (SµX · SτTX)∗ · (µX · τTX)∗ · βT · sX
= SrX · νTX · (µX · τTX · νTX)∗ · βT · sX
= SrX · (µX · τTX)∗ · sX
= ωX .

One can reason similarly to obtain

SsX ·ωX = SβT ·(µX ·τTX)∗ ·sX ≤ (µX ·τTX)∗ ·βT ·sX = (µX ·τTX)∗ ·sX ,

so that sX : (T ′X,ωX)→ (TX, (µX ·τTX)∗) is a Set(S)-morphism. Suppose
now that g : (Y, αY )→ (TX, (µX · τTX)∗) is a Set(S)-morphism satisfying
βT · g = g. Since sX : T ′X → TX is an equalizer of (βT, 1TX) in Set, there
exists a unique map h : Y → T ′X with g = sX · h; moreover,

Sh · αY = SrX · Sg · αY ≤ SrX · (µX · τTX)∗ · g = ωX · h ,

which shows that h : (Y, αY ) → (T ′X,ωX) is a Set(S)-morphism. As a
consequence, sX is an equalizer in Set(S), and η′X , fT′ are the underlying
maps of the corresponding unique Set(S)-morphisms into (T ′X,ωX).

4.4 Proposition. If τX : S → T is a monad morphism and S an order-
adjoint monad, then the construction detailed in (i)–(iii) above defines a
Kleisli triple (T ′, η′, (−)T′) on Set(S).

Proof. Lemma 4.3 insures that the construction yields components T ′, η′,
and (−)T′ of a Kleisli triple on Set(S). The conditions (∗) of 2.1 follow from
a straightforward verification, as in [15].

4.5 Proposition. Let (X,α) be an S-monoid. The initial preorder induced by
ωX : T ′X → ST ′X on T ′X is an order that moreover makes sX : T ′X →
TX into an order-embedding, and rX : TX → T ′X into a monotone map.
If T is enhanced, then rX : (TX, (µX · τTX)∗) → (T ′X,ωX) is a Kleisli
morphism and the pair (rX , sX) forms an adjoint situation rX a sX .
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Proof. The cited results follow from straightforward verifications using the
fact that

µX · τTX · SsX · ωX = sX .

See [15] for further details.

4.6 Examples. If S = T = P, then a P-monoid is a pair (X,α), where
α = ↓X : X → PX is the down-set map of X; that is, X is a preordered
set (as mentioned in 3.2). An element A ∈ PX is an αP-invariant precisely
when αP(A) = A, that is, when A is down-closed:⋃

x∈A ↓Xx = A .

Hence, the monad P′ yields the down-set monad P↓ = (P↓, ↓,
⋃

) on PrOrd.
If S = T = F is the filter monad, then an F-monoid is a topological

space (X, ν), where ν : X → FX is the neighborhood filter map. A filter
f ∈ FX is νF-invariant if and only if f is spanned by open sets of X:

A ∈ νF( f ) ⇐⇒ ν−1(AF) ∈ f ⇐⇒ {x ∈ X | A ∈ ν(x)} ∈ f

for all A ∈ PX (and where AF = {x ∈ FX | A ∈ x }), so νF( f ) = f
means that if A ∈ f then its interior must also be in f . The monad F′ is the
open-filter monad on Top, obtained by considering the neighborhood maps
ν = e′X : X → F ′X to form its unit, and the restriction of the filtered sum
of F for its multiplication.

Consider now the principal filter natural transformation τ : P → F. The
previous examples show that the construction of F′ associates to a preordered
set (X, ↓X) the topological space (X, ν) whose neighborhood map is given
at each x ∈ X by the principal filter of ↓Xx ∈ PX:

ν(x) = ↑PX(↓Xx) ,

that is, (X, ν) is the Alexandroff space associated to a preordered set X ,
and open sets are down-closed sets. The set of νF-invariant filters can be
identified with the set of filters on P↓X , and one obtains the down-set-filter
monad F↓ on PrOrd.

4.7 Lemma. If R : Set(S)→ Set denotes the functor that forgets the struc-
ture of objects, then the maps rX form the components of a natural trans-
formation r : TR → RT ′, and the pair (R, r) : T → T′ defines a monad
morphism.
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Proof. An S-monoid morphism f : (Y, αY ) → (X,α) yields a T-monoid
morphism f : (Y, βY )→ (TX, β) (where βY = τY · αY and β = τX · α), so
that

β · f = (β · f)T · ηY ≤ (β · f)T · βY = βT · Tf · βY ≤ βT · β · f = β · f .

Therefore, one has (β · f)T · βY = β · f , and using that T ′f = (η′X · f)T′ one
obtains

T ′f · rY = rX · (β · f)T · βT
Y = rX · ((β · f)T · βY )T

= rX · (β · f)T = rX · βT · Tf = rX · Tf ,

which proves that r : TR→ RT ′ is a natural transformation. Moreover, for
µ′X = (1T ′X)T′ = rX · (sX)T · sT ′X , one has

µ′X · rT ′X · TrX = rX · (sX)T · (τT ′X · ωX)T · TrX
= rX · (µTX · TβT · τTX · (µX · τTX)∗ · sX)T · TrX
= rX · (βT · µX · τTX · (µX · τTX)∗ · sX)T · TrX
= rX · (βT · sX)T · TrX
= rX · (sX)T · TrX
= rX · βT · µX
= rX · µX .

Since η′X = rX ·ηX , the pair (R, r) : T→ T′ forms a monad morphism.

4.8 Theorem. If τX : S → T is a monad morphism from an order-adjoint
monad S, then there is an isomorphism of Eilenberg-Moore categories that
is identical on morphisms:

SetT ∼= Set(S)T′ .

Proof. Suppose first that (X, a) is a T-algebra. One obtains an S-monoid
(X,α), with α = (a · τX)∗, that can be equipped with the structure a′ :
(T ′X,ωX)→ (X,α) defined by

a′ := a · sX .
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By Proposition 3.5, a′ is indeed a morphism of S-monoids. To see that a′

satisfies the algebra conditions for the monad T′, we first use the definition
of η′X and Lemma 2.4 to obtain

a′ · η′X = a · sX · η′X = a · β = a · τX · (a · τX)∗ = 1X .

Suppose now that f, g : (Y, β)→ (T ′X,ωX) are Set(S)-morphisms satisfy-
ing a′ ·f = a′ ·g, or equivalently, a ·sX ·f = a ·sX ·g; since a is a T-algebra
structure, one has a · (sX · f)T = a · (sX · g)T (see 2.2), so that

a′ ·fT′ = a·sX ·fT′ = a·(sX ·f)T ·sY = a·(sX ·g)T ·sY = a·sX ·gT′ = a′ ·gT′ .

Therefore, ((X,α), a′) is a T′-algebra. A morphism f : (X, aX) → (Y, aY )
of T-algebras yields a Set(S)-morphism f : (X, (aX · τX)∗) → (Y, (aY ·
τY )∗). Since aY is a T-algebra structure, one has

aY · (τY · (aY · τY )∗ · f)T = aY · µX · T (τY · (aY · τY )∗) · Tf
= aY · TaY · T (τY · (aY · τY )∗) · Tf
= aY · Tf

by Lemma 2.4. To verify that a′Y · (η′Y · f)T′ = f · a′X , we use the previous
observation in

a′Y · (η′Y · f)T′ = aY · (sY · η′Y · f)T · sX
= aY · (τY · (aY · τY )∗ · f)T · sX
= f · aX · sX
= f · a′X ,

which proves that f : ((X,αX), a′X) → ((Y, αY ), a′Y ) is a morphism of
T′-algebras. Thus, the assignment of ((X, (a · τX)∗), a · sX) to a T-algebra
(X, a) yields a functor Q : SetT → Set(S)T′ that leaves maps untouched.

The monad morphism (R, r) : T → T′ (Lemma 4.7) yields a functor
R : Set(S)T′ → SetT by the discussion in 2.2. This functor sends a T′-
algebra ((X,α), a′) to (X, a), where a : TX → X is defined by

a := a′ · rX ,

and is invariant on maps.

SEAL - ON THE MONADIC NATURE OF CATEGORIES  OF ORDERED SETS

- 179 -



Given a T-algebra (X, a), the structure of RQ(X, a) is described by

a · sX · rX = a · µX · T (τX · (a · τX)∗) = a · T (a · τX) · T (a · τX)∗ = a .

To study the image of a T′-algebra ((X,α), a′) via QR, note first that a′ :
(T ′X,ωX) → (X,α) is a Set(S)-morphism. Thus, after setting β = τX · α
and observing that (µX · τTX) · S(τX · α) = βT · τX , one obtains

1SX = S(a′ · rX) · S(τX · α)

≤ S(a′ · rX) · (µX · τTX)∗ · βT · τX
= Sa′ · ωX · rX · τX
≤ α · (a′ · rX · τX) .

This inequality, combined with (a′ · rX · τX) · α = 1X and the fact that both
α and (a′ · rX · τX) are monotone, yields

α = (a′ · rX · τX)∗ .

Hence, the image via Q R of the T′-algebra ((X,α), a′) returns the T′-
algebra whose underlying S-monoid is (X, (a′ · rX · τX)∗) = (X,α); its
structure is therefore given by

a′ · rX · sX = a′ ,

so that Q and R are inverse of one another, and SetT ∼= Set(S)T′ .

4.9 Corollary. Given a morphism τ : S→ T with S an order-adjoint monad,
the monad T′ restricts to Set(S)0, and the isomorphism of Theorem 4.8 be-
comes

SetT ∼= Set(S)T′
0 .

Proof. The functor R restricts to Set(S)T
0 , and Q factors through Set(S)T′

0

since the functor Q : SetS → Set(S) of 3.1 factors through Set(S)0.

4.10 Examples. The Eilenberg-Moore algebras of the monads mentioned in
2.7 have been described as follows (although most results are classical, we
try to give the original printed source in each case and refer to [9] and [6] for
further details).
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SetF ∼= Cnt: category of continuous lattices with continuous sup-maps [4];
see also 5.4 below.

SetU ∼= Ccd: category of constructive completely distributive lattices with
maps that preserve all suprema and infima [12].

SetD ∼= CaBool: category of complete atomistic Boolean algebras with ring
homomorphisms that preserve all suprema and infima [9].

SetUfin ∼= Frm: category of frames with sup-maps that preserve finite infima,
see [2] (in fact, Bénabou describes free frames over meet-semilattices;
in conjunction with the free meet-semilattice construction over sets,
one obtains monadicity over Set as in [6]).

SetPP+ ∼= P+-Mod: category of left P+-modules with sup-maps that com-
mute with the action of P+ on Sup, see [11].

Hence, one obtains the following table of strict monadicities (of the cate-
gories in the entry line over categories displayed in the entry column) using
Theorems 4.8 and Corollary 4.9. Previous explicit references are mentioned
to the best of our knowledge, though we make absolutely no originality claim
in their absence. For example, monadicity of Cnt over Ord can hardly be
considered novel, but we were not able to find this particular instance in
the literature; similarly, the column for CaBool is not surprising in view of
[16], even though the results presented therein refer to not-necessarily-strict
monadicity.

Sup Cnt Frm Ccd CaBool P+-Mod

Set [7] [4] [6] [12] [9] [11]
PrOrd 4.8 [13] 4.8 [13] 4.8 4.8
Ord 4.9 4.9 Linton ([10]) [10] 4.9 4.9
Top [17] 4.8 4.8
Top0 [4] 4.9 4.9
Clsfin 4.8 4.8 4.8
Cls 4.8 4.8
Cls† 4.8
Met 4.8 4.8 4.8 4.8 4.8 [11]
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5 Algebras of enhanced order-adjoint monads
A morphism τX : S → T between monads on Set induces a functor Setτ :
SetT → SetS, so that a T-algebra (X, a) is an S-algebra (X, a · τX). The-
orem 4.8 can be used in the same way to identify categories of T-algebras.
We illustrate this further on by giving an original proof of the isomorphism
SetF ∼= Cnt.

5.1 Lemma. Let S = (S, δ, ν) be an order-adjoint monad and τ : S →
T a monad morphism that makes T = (T, η, µ) enhanced (via the order
described in Proposition 2.6). Given an S-monoid (X,α) and a map λ :
X → T ′X , one has that ((X,α), λ) is a T′-monoid if and only if (X, sX · λ)
is a T-monoid (using the notations of Section 4).

Proof. Let us first verify that a T′-monoid structure λ on (X,α) yields a T-
monoid structure sX · λ. From rX · ηX = η′X ≤ λ, one obtains extensivity of
sX · λ:

ηX = τX · δX ≤ τX · α = (τX · α)T · ηX = sX · rX · ηX ≤ sX · λ .

Idempotency is then a consequence of

(sX · λ)T · sX · λ = sX · λT′ · λ ≤ sX · λ .

Suppose now that sX · λ is a T-monoid structure with τX · α ≤ sX · λ.
As T is enhanced, one immediately obtains η′X ≤ λ and λT′ · λ ≤ λ from
extensivity and idempotency of sX · λ. We are therefore left to verify that
λ : (X,α) → (T ′X,ω) is an S-monoid morphism; by composing each side
of the extensivity condition with (τX · α)T = sX · rX on the left, we obtain
τX · α = (τX · α)T · ηX ≤ sX · λ, so that

µX · τTX · S(sX · λ) · α = (sX · λ)T · τX · α ≤ (sX · λ)T · sX · λ ≤ sX · λ .

After composing these expressions with SrX · (µX · τTX)∗ on the left, we
obtain the desired inequality.

5.2 Lemma. Given an enhanced order-adjoint monad T, a T-monoid (X,α)
is of the form (X, a∗) for a T-algebra structure a : TX → X if and only if
α has a left adjoint α∗ with α∗ · α = 1X .
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Proof. See Corollary 4.11 in [15].

5.3 Proposition. Given an order-adjoint monad S and a monad morphism
τ : S → T that makes T enhanced, a morphism a′ : (T ′X,ωX) → (X,α)
of S-monoids is a T′-algebra structure if and only if a′ : T ′X → X has a
right adjoint (a′)∗ with a′ · (a′)∗ = 1X that moreover makes (X, (a′)∗) into a
T′-monoid.

Proof. Let (X,α) be an S-monoid. If a′ : (T ′X,ω) → (X,α) is a T′-
algebra structure, then a = a′ · rX : TX → X is a T-algebra structure by
the correspondence between algebras described in the proof of Theorem 4.8.
Proposition 2.5 states that a has a right adjoint a∗ : X → TX , and one
observes that

1T ′X ≤ rX · a∗ · a · sX = (rX · a∗) · a′ , a′ · (rX · a∗) = a · a∗ = 1X ,

so (a′)∗ = rX · (a′ · rX)∗ is the required right adjoint of a′. The proof of
Theorem 4.8 shows that (a · τX)∗ is the S-monoid structure α; since T is
enhanced, one has a∗ ≤ (τX · α)T · a∗ ≤ a∗, so sX · (a′)∗ is also a T-monoid
structure:

sX · (a′)∗ = sX · rX · a∗ = (τX · α)T · a∗ = a∗ .

It then follows from Lemma 5.1 that (a′)∗ is a T′-monoid structure on (X,α).
Suppose now that a′ : T ′X → X has a right adjoint T′-monoid structure

(a′)∗ : X → T ′X with a′ · (a′)∗ = 1X . Lemma 5.1 yields that (X, sX · (a′)∗)
is a T-monoid, and setting a := a′ · rX , one has

1TX ≤ sX ·(a′)∗ ·a′ ·rX = (sX ·(a′)∗) ·a , a ·(sX ·(a′)∗) = a′ ·(a′)∗ = 1X .

Hence, we can apply Lemma 5.2 to the right adjoint T-monoid structure
sX · (a′)∗ to conclude.

5.4 Continuous lattices. The monad F↓ on PrOrd can equivalently described
using both the down-set monad P↓ = (P↓, ↓,

⋃
) (see Examples 4.6), and the

ordered-filter monad P⇑ = (P⇑, ↑,
⋃

) on PrOrd, whose functor P⇑ is the
restriction of P↑ to filters in X (that is, to up-closed down-directed sets in
X). For the up-set map ↑X : X → P⇑X to be monotone, the set P⇑X
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is ordered by reverse inclusion. It will be convenient to use the following
notations for the units and multiplications of the respective monads:

dX(x) = ↓Xx , supP↓X(A) =
⋃
A ,

uX(x) = ↑Xx , infP⇑X(B) =
⋃
B ,

for all x ∈ X , A ∈ P↓P↓X , and B ∈ P⇑P⇑X . One observes that the down-
set-filter monad can be written as

F↓ = (F↓, η
′, µ′) = (P⇑P↓, uP↓ · d, infP⇑P↓ ·P⇑ supP⇑P↓) .

We say that a complete latticeX is continuous if the infimum map infX :
P⇑X → X has a right adjoint ⇑X : X → P⇑X sending x to a filter ⇑Xx =
⇑x; since P⇑ is monotone, we have

X
⇑X

//⊥ P⇑X
infXoo

P⇑dX

//⊥ P⇑P↓X = F↓X
P⇑ supXoo

. (∗)

A sup-map f : X → Y is continuous if it preserves infima of down-directed
sets. Recall from 4.10 that the category of continuous lattices and continuous
sup-maps is denoted by Cnt.

The diagram (∗) suggests that infX ·P⇑ supX is the structure of a F↓-
algebra on X , and this is confirmed in the following result. Proposition 5.3
and Lemma 5.1 therefore state that the left adjoint P⇑dX · ⇑X : X → F↓X
is the neighborhood map P⇑dX · ⇑X : X → FX of a topology on the set X:
the Scott topology on a continuous lattice.

5.5 Proposition. There is an isomorphism

Cnt ∼= PrOrdF↓

that commutes with the underlying-functors to PrOrd.

Proof. Let us first check that for a continuous lattice X , the map a′ :=
infX ·P⇑ supX defines the structure morphism of a P⇑P↓-algebra. We al-
ready have a′ · η′X = a′ · P⇑dX · uX = 1X , so we only need to verify that

SEAL - ON THE MONADIC NATURE OF CATEGORIES  OF ORDERED SETS

- 184 -



a′ · P⇑P↓a′ = a′ · µ′X . This follows from

a′ · P⇑P↓a′ = infX ·P⇑(supX ·P↓a′)
= infX ·P⇑(a′ · supP⇑P↓X)

= infX · infP⇑X ·P⇑P⇑ supX ·P⇑ supP⇑P↓X

= infX ·P⇑ supX · infP⇑P↓X ·P⇑ supP⇑P↓X

= a′ · µ′X

because a′ is left adjoint (see (∗)) and therefore preserves suprema, infX
preserves infima, and infP⇑ : P⇑P⇑ → P⇑ is a natural transformation.

Consider now an F↓-algebra (X, a′ : P⇑P↓X → X). There is a monad
morphism uP↓ : P↓ → F↓, so the preordered set X is a P↓-algebra, that is,
a complete lattice with supremum given by supX = a′ · uP↓X . Proposition
5.3 yields that a′ has a right adjoint (a′)∗ : X → P⇑P↓X , so we are in the
presence of the following adjunctions:

X
(a′)∗

//⊥ P⇑P↓X
P⇑(a′·uP↓X)

//>
a′oo

P⇑X
P⇑dXoo

.

Since the components of the up-set monad’s multiplication are infP⇑X , we
have in particular infP⇑P↓X ·P⇑uP↓X = 1P⇑P↓X . Consequently, by using that
a′ · P⇑P↓a′ = a′ · µ′X we may write

a′ · P⇑dX · P⇑(a′ · uP↓X) = a′ · µ′X · P⇑dP⇑P↓X · P⇑uP↓X
= a′ · infP⇑P↓X ·P⇑ supP⇑P↓X ·P⇑dP⇑P↓X · P⇑uP↓X = a′ .

This shows that a′ · P⇑dX admits P⇑(a′ · uP↓X) · (a′)∗ as a right adjoint (and
also proves that a′ = infX ·P⇑ supX). But the infimum operation (obtained
via the monad morphism P⇑d : P⇑ → F↓) is precisely infX = a′ · P⇑dX , so
X is a continuous lattice.

Finally, a continuous lattice morphism f : X → Y is also an F↓-algebra
morphism, and a morphism f : (X, a′) → (Y, b′) of F↓-algebras naturally
preserves both suprema and down-directed infima because it is both a P↓-
algebra and a P⇑-algebra morphism.
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5.6 Corollary. There is an isomorphism

Cnt ∼= SetF

that commutes with the underlying-functors to Set.

Proof. Since the monad F′ obtained from F is the down-set-filter monad
F↓ (Examples 4.6), the results follows from Proposition 5.5 combined with
Theorem 4.8.

References
[1] J. Beck. Distributive laws. Repr. Theory Appl. Categ., 18:95–112 (elec-

tronic), 2008. Reprint of the original [Lect. Notes Math. 80, 119–140
(1969)].

[2] J. Bénabou. Treillis locaux et paratopologies. Séminaire Ehresmann
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Faculté des sciences de base
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Résumé
Le but de cet article est de démontrer les théorèmes mentionnés dans
le titre, ainsi que le corollaire disant que le produit tensoriel de deux
résolutions croisées libres, en groupes ou en groupoı̈des, est aussi une
résolution croisée libre, en groupes ou en groupoı̈des. Ce corollaire est
obtenu en utilisant l’équivalence entre la catégorie des complexes croisés
et celle des omega-groupoı̈des cubiques, avec connexion, dans laquelle on
donne la définition initiale du produit tensoriel. D’autre part, c’est dans
cette deuxième catégorie qu’on peut appliquer les techniques de sous-
catégories denses pour reconnaitre qu’un produit tensoriel de revêtements
est un revêtement.

Abstract
The aim is the proof of the theorems of the title and the corollary that
the tensor product of two free crossed resolutions of groups or groupoids
is also a free crossed resolution of the product group or groupoid. The
route to this corollary is through the equivalence of the category of crossed
complexes with that of cubical ω-groupoids with connections where the
initial definition of the tensor product lies. It is also in the latter category
that we are able to apply techniques of dense subcategories to identify the
tensor product of covering morphisms as a covering morphism.

Mots-clés / Keywords: crossed complexes, cubical omega-groupoids,
monoidal closed, density, covering morphisms.
Classification MSC 2010: 18B40, 18D05, 18D10, 18G40, 55U40
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Introduction

A series of papers by R. Brown and P.J. Higgins, surveyed in [Bro99, Bro09],
has shown how the category Crs of crossed complexes is a useful tool for
certain nonabelian higher dimensional local-to-global problems in algebraic
topology, for example the calculation of homotopy 2-types of unions of
spaces; and also that crossed complexes are suitable coefficients for non-
abelian cohomology, generalising an earlier use of crossed modules as coeff-
icients. While crossed complexes have a long history in algebraic topology,
particularly in the reduced case, i.e. when C0 is a singleton, the extended use
in these papers made them a tool whose properties could be developed in-
dependently of classical tools in algebraic topology such as simplicial appr-
oximation. A key new tool for this approach was cubical, using the notion
of cubical ω–groupoids with connections. A book is in press on these topics,
[BHS11].

One aspect of this work is that it leads to specific calculations of homo-
topical and group theoretical invariants; as an example, the notion of iden-
tities among relations for a presentation of groups combines both of these
fields, since it also concerns the second homotopy group π2(K(P)) of the
2-complex determined by a presentation P of a group. Calculations of this
module were obtained in [BRS99] not through ‘killing homotopy groups’,
or its homological equivalent, finding generators of a kernel, but through the
notion of ‘constructing a home for a contracting homotopy’. To this end
we had to work by constructing a free crossed resolution F̃ of the univer-
sal covering crossed complex of a group or groupoid. Any construction of
a contracting homotopy of F̃ breaks the symmetry of the situation, as is
necessary, and also may rely on rewriting methods, such as determining a
maximal tree in the Cayley graph. Thus we see covering crossed complexes
as a basic tool in the application of crossed complex methods, in analogy to
the application of covering spaces in algebraic topology.

A major tool for dealing with homotopies is the construction of a
monoidal closed structure on the category Crs of crossed complexes giving
an exponential law of the form

Crs(A⊗B,C) ∼= Crs(A,CRS(B,C))
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for all crossed complexes A,B,C, [BH87].

This monoidal closed structure and the notion of classifying spaceBC of
a crossed complexC is applied in [BH91] to give the homotopy classification
result

[X,BC] ∼= [ΠX∗, C]

where on the left hand side with X a CW-complex, we have topology, and
on the right hand side, with ΠX∗ the fundamental crossed complex of the
skeletal filtration of X , we have the algebra of crossed complexes.

Tonks proved in [Ton94, Theorem 3.1.5] that the tensor product of free
crossed resolutions of a group is a free crossed resolution: his proof used the
crossed complex Eilenberg-Zilber Theorem, [Ton94, Theorem 2.3.1], which
was published in [Ton03]. The result on resolutions is applied in for exam-
ple [BP96] to construct some small free crossed resolutions of a product of
groups. We give here an alternative approach to this result.

The PhD thesis [Day70] of Brian Day addressed the problem of ex-
tending a promonoidal structure on a category A along a dense functor
J : A → X into a suitably complete category X to obtain a closed monoidal
structure on X . The two published papers [Day70a, Day72] are only part of
the thesis and represent components towards the density result. The formu-
las in, and the spirit of, Day’s work suggested our approach to the present
paper. However, here the category A is actually small (consisting of cubes)
and monoidal, and so is an easy case of Day’s general setting. The same sim-
plification occurs in the approach to the Gray tensor product of 2-categories
in [Str88], and of globular∞-categories in [Cra99, Proposition 4.1].

One advantage of cubical methods is the standard formula

Im∗ ⊗ In∗ ∼= Im+n
∗ (1)

where Im∗ is the standard topological m-cube with its standard skeletal filtra-
tion. This equation is modelled in the category ω-Gpd by the formula

Im ⊗ In ∼= Im+n (2)

where for m > 0 Im is the free ω-Gpd on one generator cm of dimension
m. We apply (2) by proving in Theorem 5.1 that the full subcategory of ω-
Gpd on these objects Im,m > 0, is dense in ω-Gpd. The proof requires a
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further property of ω-groupoids, that they are T -complexes [BH81, BH81c].
We then use the methods of Brian Day [Day72] to characterise the tensor
product on ω-Gpd as determined by the formula (2).

We use freely the notions and properties of ends and coends, for which
see [ML71].

The final ingredient we need is the fact that if p : C̃ → C is a covering
morphism of crossed complexes then p∗ : Crs/C → Crs/C̃ preserves colim-
its, since it has a right adjoint. This result is due to Howie [How79], in fact
for the case of a fibration rather than just a covering morphism. Because of
the equivalence of categories, this applies also to the case of the category
ω-Gpd. However we need to characterise fibrations and coverings in the
category ω-Gpd. This is done in Section 4. It is possible that the covering
morphisms are part of a factorization system as are the discrete fibrations in
the contexts of [Bou87] and [SV10].

The use of crossed complexes continues work of J.H.C. Whitehead,
[Whi49, Whi50], and of J. Huebschmann, [Hue80], all for the single ver-
tex case.

1 Crossed complexes

For the purposes of algebraic topology the most important feature of the cat-
egory Crs of crossed complexes is the fundamental crossed complex functor,
[BH81a],

Π: FTop→ Crs

from the category of filtered spaces

X∗ : X0 ⊆ X1 ⊆ · · · ⊆ Xn ⊆ · · · ⊆ X∞.

An extra assumption is commonly made that X∞ is the union of all the
Xn, but we do not use that condition. For such a filtered space X∗, various
relative homotopy groups

(ΠX∗)n(x) = πn(Xn, Xn−1, x)
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for x ∈ X0 and n > 2, may be combined with the fundamental groupoid
(ΠX∗)1 = π1(X1, X0) on the set X0 to give a crossed complex ΠX∗.
There are boundary operations δn : (ΠX∗)n → (ΠX∗)n−1 and operations
of (ΠX∗)1 on (ΠX∗)n, n > 2, satisfying axioms which are characteristic for
crossed complexes. This last fact follows because for every crossed complex
C there is a filtered space X∗ such that C ∼= ΠX∗ [BH81a, Corollary 9.3].

2 Fibrations and covering morphisms of crossed
complexes

The definition of fibration of crossed complexes we are using is due to
Howie in [How79]; it requires the definition of fibration of groupoids given
in [Bro70, Bro06], generalising the definition of covering morphism of
groupoids given in [Hig71]. The notion of fibration of crossed complexes
given in this Section leads to a Quillen model structure on the category Crs,
as shown by Brown and Golasiński in [BG89], and compared with model
structures on related categories in [ArMe10].

First recall that for a groupoid G and object x of G we write CostG x for
the union of the G(u, x) for all objects u of G. A morphism of groupoids
p : H → G is called a fibration (covering morphism), [Bro70], if the induced
map CostH y → CostG py is a surjection (bijection) for all objects y of H .
(Here we use the conventions of [BHS11] rather than of [Bro06].)

Definition 2.1 A morphism p : D → C of crossed complexes is a fibration
(covering morphism) if

(i) the morphism p1 : D1 → C1 is a fibration (covering morphism) of
groupoids;

(ii) for each n > 2 and y ∈ D0, the morphism of groups pn : Dn(y) →
Cn(py) is surjective (bijective).

The morphism p is a trivial fibration if it is a fibration, and also a weak equiv-
alence, by which is meant that p induces a bijection on π0 and isomorphisms
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π1(D, y) → π1(C, py), Hn(D, y) → Hn(C, py) for all y ∈ D0 and n > 2.
2

Remark 2.2 It is worth remarking that the notion of covering morphism
of groupoids appears in the paper [Smi51, (7.1)] under the name ‘regular
morphism’. Strong applications of covering morphisms to combinatorial
group theory are given in [Hig71], and a full exposition is also given in
[Bro06, Chapter 10].

A fibration of groupoids gives rise to a family of exact sequences,
[Bro70, Bro06], which are extended in [How79] to a family of exact se-
quences arising from a fibration of crossed complexes. These latter exact
sequences have been applied to the classification of nonabelian extensions
of groups in [BM94], and to the homotopy classification of maps of spaces
in [Bro08a]. 2

In Section 4 we will need the following result, which is an analogue for
crossed complexes of known results for groupoids [Bro06, 10.3.3] and for
spaces.

Proposition 2.3 Let p : C̃ → C be a covering morphism of crossed com-
plexes, and let y ∈ C̃0. Let F be a connected crossed complex, let
x ∈ F0, and let f : F → C be a morphism of crossed complexes such that
f(x) = p(y). Then the following are equivalent:

(i) f lifts to a morphism f̃ : F → C̃ such that f̃(x) = y and pf̃ = f ;

(ii) f(F1(x)) ⊆ p(C̃1(y));

(iii) f∗(π1(F, x)) ⊆ p∗(π1(C̃, y)).

Further, if the lifted morphism as above exists, then it is unique.

Proof That (i)⇒ (ii)⇒ (iii) is clear.

So we assume (iii) and prove (i).

We first assume F0 consists only of x. Then the value of f̃ on x is by
assumption defined to be y.
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Next let a ∈ F1(x). By the assumption (iii) there is c ∈ C2(py) and
b ∈ C̃(y) such that f(a) = p(b) + δ2(c). Since p is a covering morphism
there is a unique d ∈ C̃2(y) such that p(d) = c. Thus f(a) = p(b + δ2(d)).
So we define f̃(a) = b + δ2(d) ∈ C̃2(y). It is easy to prove from the
definition of covering morphism of groupoids that this makes f̃ a morphism
F1(x)→ C̃1(y) such that pf̃ = f .

For n > 2 we define f̃ : Fn(x) → C̃n(y) to be the composition of f in
dimension n and the inverse of the bijection p : C̃n(y)→ Cn(py).

It is now straightforward to check that this defines a morphism f̃ : F, x→
C̃, y of crossed complexes as required.

If F0 has more than one point, then we choose for each u in F0 an element
τu ∈ F1(u, x) with τx = 1x. Then f(τu) lifts uniquely to τ̄u ∈ CostC̃ y :
any lift f̃ : F, x → C̃, y of f must satisfy f̃(τu) = τ̄u so we take this as a
definition of f̃ on these elements.

If a ∈ F1(u, v) then a = τu + a′− τv where a′ ∈ F1(x) and so we define
f̃(a) = τ̄u + f̃(a′) − τ̄v. If n > 2 and α ∈ Fn(u) then ατu ∈ Fn(x) and we
define f̃(α) = f̃(ατu)−τ̄u .

It is straightforward to check that these definitions give a morphism f̃ :
F, x→ C̃, y of crossed complexes lifting f , and the uniqueness of such a lift
is also easy to prove. 2

We will use the above result in the following form.

Corollary 2.4 Let p : C̃ → C be a covering morphism of crossed com-
plexes, and let F be a connected and simply connected crossed complex.
Then the following diagram, in which each ε is an evaluation morphism, is
a pullback in the category of crossed complexes:

Crs(F, C̃)× F ε //

p∗ × 1
��

C̃

p
��

Crs(F,C)× F ε
// C,

where the sets of morphisms of crossed complexes have the discrete crossed
complex structure.
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Proof This is simply a restatement of a special case of the existence and
uniqueness of liftings of morphisms established in the Proposition. 2

Remark 2.5 Because the category Crs is equivalent to that of strict globular
ω-groupoids, as shown in [BH81b], the methods of this paper are also rele-
vant to that category; see also [Bro08b]. However we are not able to make
use of the globular case, nor even the 2-groupoid case. 2

LetC be a crossed complex. We write CrsCov/C for the full subcategory
of the slice category Crs/C whose objects are the covering morphisms of
C. The following Theorem, which is proved in [BRS99], shows that the
classification of covering morphisms of crossed complexes, reduces to that
of covering morphisms of groupoids.

Theorem 2.6 If C is a crossed complex, then the functor π1 : Crs → Gpd
induces an equivalence of categories

π′1 : CrsCov/C → GpdCov/(π1C).

An alternative descriptions of the category GpdCov/G for a groupoid G
in terms of actions of G on sets is well known and of course gives the clas-
sical theory of covering maps of spaces, see [Bro06, Chapter 10]. Conse-
quently, if the crossed complex C is connected, and x ∈ C0, then connected
covering morphisms of C are determined up to isomorphism by conjugacy
classes of subgroups of π1(C, x). In particular, a universal cover C̃ → C of
a connected crossed complex is constructed up to isomorphism from a base
point x ∈ C0 and the trivial subgroup of π1(C, x).

The monoidal closed structure and many other major properties of
crossed complexes are obtained by working through another algebraic cate-
gory, that of cubical ω-groupoids with connections which we abbreviate here
to ω-groupoids. The category of these, which we write ω-Gpd, is a natural
home for these deeper properties. The equivalence with crossed complexes
proved in [BH81] is a foundation for this whole project. Indeed the defini-
tion of tensor product for ω-groupoids is much easier to deal with than that
for crossed complexes, and we find it easier to give a dense subcategory for
ω-groupoids than for crossed complexes.

BROWN & STREET - COVERING MORPHISMS OF CROSSED COMPLEXES...

- 195 -



3 Cubical omega-groupoids with connection

We recall from [BH81] that a cubical ω-groupoid with connection is in
the first instance a cubical set {Kn | n > 0}, so that it has face maps
{∂±i : Kn → Kn−1 | i = 1, . . . , n;n > 1} and degeneracy maps
{εi : Kn → Kn+1 | i = 1, . . . , n;n > 0} satisfying the usual rules. Fur-
ther there are connections {Γ±i : Kn → Kn+1 | i = 1, . . . , n;n > 1} which
amount to an additional family of ‘degeneracies’ and which in the case of
the singular cubical complex of a space derive from the monoid structures
max,min on the unit interval [0, 1]. Finally there are n groupoid structures
{◦i | i = 1, . . . , n}, defined on Kn with initial, final and identity maps
∂−i , ∂

+
i , εi maps respectively.

The laws satisfied by all these structures are given in several places, such
as [AABS02, GM03], and we do not repeat them here. Note that because
we are dealing with groupoid operations ◦i we can set Γi = Γ−i so that
Γ+
i = −i −i+1 Γi. In this case the laws were first given in [BH81].

A major example of this structure is constructed from a filtered space X∗
as follows. One first forms the cubical set with connections RX∗ which in
dimension n is the set of filtered maps In∗ → X∗ where In∗ is the standard
n-cube with its skeletal filtration. Then ρX∗ is the quotient of RX∗ by the
relation of homotopy through filtered maps and relative to the vertices of In.
It is easy to see that ρX∗ inherits the structure of cubical set with connection,
and it is proved in [BH81a, Theorem A] that the obvious compositions on
RX∗ are also inherited by ρX∗ to make it what is called the fundamental
ω-groupoid ρX∗ of the filtered space X∗.

The main result of [BH81] is that the category ω-Gpd is equivalent to
the category Crs of crossed complexes, and in [BH81a, Theorem 5.1] it is
proved that this equivalence takes ρX∗ to ΠX∗.

As said in the Introduction, the free ω-groupoid on a generator cn of
dimension n is written In. More generally, the free ω-groupoid on a cubical
set K is written ρ′K: this is a purely algebraic definition. A major result
is that ρ′K is equivalent to ρ|K|∗ where |K|∗ is the skeletal filtration of the
geometric realisation of K and ρ is defined above; so we write both as ρK.
This equivalence is proved in [BH81a, Proposition 9.5] for the case K = In,
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and the general case follows by similar methods.

We shall also need the properties of thin elements in an ω–groupoid G.
An element t of Gn is called thin if it has a decomposition as a multiple
composition of elements εix,Γjy, or their repeated negatives in various di-
rections. Clearly a morphism of ω–groupoids preserves thin elements.

A family B of elements of In is called an (n− 1)-box in In if they form
all faces ∂±i cn but one of cn. An element x is called a filler of the box if these
all-but-one faces ∂±i x are exactly the elements of B.

Then B generates a sub-ω-groupoid B̄ of In. The image family b̂(B) of
this by a morphism of ω–groupoids b̂ : B̄ → G is called an (n − 1)-box in
G. Again we have the notion of a filler of a box in G. A basic result on
ω–groupoids [BH81, Proposition 7.2] is:

Proposition 3.1 (Uniqueness of thin fillers) A box in an ω–groupoid has a
unique thin filler.

The thin elements in an ω-groupoid satisfy Keith Dakin’s axioms, [Dak77]:

D1) a degenerate element is thin;

D2) every box has a unique thin filler;

D3) if all faces but one of a thin element are thin, then so is the remaining
face.

These axioms for a thin structure in fact give a structure equivalent to that
of an ω–groupoid, as shown in [BH81c]. That is, the connections and the
compositions are determined by the thin structure: we will use this fact in
the proof of Theorem 5.1. The following Lemma is also used there.

Lemma 3.2 If t ∈ Gn is a thin element of an ω–groupoid G , then there is a
thin element bt ∈ In such that t̂(bt) = t̂(cn).

Proof Let t̂ : In → G be the morphism such that t̂(cn) = t. We can find
a box B in In and such that t is a filler of t̂ | : B̄ → G. This box B in In
also has a unique thin filler bt in In. Since t̂ is a morphism of ω-groupoids,
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it preserves thin elements and so t̂(bt) is thin and also a filler of the box B in
G. By uniqueness of thin fillers t̂(bt) = t = t̂(cn). 2

Remark 3.3 Thin elements in higher categorical rather than groupoid situ-
ations are also used in [Str87, Hig05, Ste06, Ver08]. 2

4 Fibrations and coverings of omega-groupoids

We now transfer to cubical ω–groupoids the definition in Section 2 of fibra-
tion and covering morphism of crossed complex.

Theorem 4.1 Let p : G → H be a morphism of ω-Gpds. Then the corres-
ponding morphism of crossed complexes γ(p) : γ(G) → γ(H) is a fibration
(covering morphism) if and only if p : G → H is a Kan fibration (covering
map) of cubical sets.

Proof Let Jnε,i for ε = ±, i = 1, . . . , n, be the subcubical set of the cubical
set In generated by all faces of In except ∂εi .

We consider the following diagrams:

ΠJnε,i

��

// γG

γ(p)
��

ΠIn

<<

// γH

(i)

ρJnε,i

��

// G

p
��

ρIn

==

// H

(ii)

Jnε,i

��

// UG

Up
��

In

<<

// UH

(iii)

By a simple modification of the simplicial argument in [BH91], we find
that the condition that diagrams of the first type have the completion shown
by the dotted arrow is necessary and sufficient for γp to be a fibration of
crossed complexes (with uniqueness for a covering morphism). In the sec-
ond diagram, ρ(K) is the free cubical ω-groupoid on the cubical set K, and
the equivalence of the first and the second diagram is one of the results of
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[BH81a, Section 9]. Finally, the equivalence with the third diagram, in which
U gives the underlying cubical set, follows from freeness of ρ. 2

Corollary 4.2 Let p : K → L be a morphism of ω-Gpds such that the un-
derlying map of cubical sets is a Kan fibration. Then the pullback functor

f ∗ : ω-Gpd/L→ ω-Gpd/K

has a right adjoint and so preserves colimits.

Proof This is immediate from Theorem 4.1 and the main result of Howie
[How79]. 2

Corollary 4.3 A covering crossed complex of a free crossed complex is also
free.

Proof A free crossed complex is given by a sequence of pushouts, analo-
gously to the definition of CW-complexes, see [BH91, BHS11]. 2

5 Dense subcategories

Our aim in this section is to explain and prove the theorem:

Theorem 5.1 The full subcategory I of ω-Gpd on the objects In is dense in
ω-Gpd.

We recall from [ML71] the definition of a dense subcategory. First, in
any category C, a morphism f : C → D induces a natural transformation
f∗ : C(−, C) ⇒ C(−, D) of functors Cop → Set. Conversely, any such
natural transformation is induced by a (unique) morphism C → D.

If I is a subcategory of C, then each object C of C gives a functor

C|I(−, C) : Iop → Set
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and a morphism f : C → D of C induces a natural transformation of functors
f∗ : C

|I(−, C) ⇒ C|I(−, D). The subcategory I is dense in C if every such
natural transformation arises from a morphism. More precisely, there is a
functor η : C → CAT(Iop, Set) defined in the above way, and I is dense in
C if η is full and faithful.

Example 5.2 Consider the Yoneda embedding

Υ: C→ Cop-Set = CAT(Cop, Set)

where C is a small category. Then each object K ∈ Cop-Set is a colimit
of objects in the image of Υ and this is conveniently expressed in terms of
coends as that the natural morphism∫ c

(Cop-Set(Υc,K)×Υc) → K

is an isomorphism. Thus the Yoneda image of C is dense in Cop-Set. For
more on the relation between density and the Yoneda Lemma, see [Pra09].
2

Example 5.3 Let Z be the cyclic group of integers. Then {Z} is a generating
set for the category Ab of abelian groups, but the full subcategory of Ab on
this set is not dense in Ab. In order for a natural transformation to specify
not just a function f : A→ B but a morphism in Ab, we have to enlarge this
to a full subcategory including Z⊕ Z. 2

Proof of Theorem 5.1 We will use the main result of [BH81c], that the
compositions in a cubical ω-groupoid are determined by its thin elements.

Let G,H be ω–groupoids and let f : ω-GpdI(−, G) → ω-GpdI(−, H)
be a natural transformation. We define f : G→ H as follows.

Let x ∈ Gn. Then x defines x̂ : In → G. We set f(x) = f(x̂)(cn) ∈ Hn.
We have to prove f preserves all the structure.

For example, we prove that f(∂±i x) = ∂±i f(x). Let ∂̄±i : In−1 → In
be given by having value ∂±i cn on cn−1. The natural transformation con-
dition implies that f(∂̄±i )∗ = (∂̄±i )∗f. On evaluating this on x̂ we obtain
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f(∂±i x) = ∂±i f(x) as required. In a similar way, we prove that f preserves
the operations εi,Γi.

Now suppose that t ∈ Gn is thin in G. We prove that f(t) is thin in
H . By Lemma 3.2, there is a thin element bt ∈ In such that t̂(bt) = t. Let
b̄ : In → In be the unique morphism such that b̄(cn) = bt. Then the natural
transformation condition implies f(t) = f(t̂)(cn) = f(t̂)(bt). Since bt is thin,
it follows that f(t) is thin. Thus f preserves the thin structure.

The main result of [BH81c] now implies that the operations ◦i are pre-
served by f . 2

We can also conveniently represent each ω–groupoid as a coend.

Corollary 5.4 The subcategory I of ω-Gpd is dense and for each object G
of ω-Gpd the natural morphism∫ n

ω-Gpd(In, G)× In → G

is an isomorphism.

Proof This is a standard consequence of the property of I being dense. 2

Corollary 5.5 The full subcategory of Crs generated by the objects ΠIn∗ is
dense in Crs.

Proof This follows from the fact that the equivalence γ : ω-Gpd→ Crs takes
In to ΠIn∗ , [BH81a, Theorem 5.1]. 2

Remark 5.6 The paper [BH81b] gives an equivalence between the cate-
gory Crs of crossed complexes and the category there called ∞-groupoids
and now commonly called globular ω-groupoids. Thus the above Corollary
yields also a dense subcategory, based on models of cubes, in the latter cat-
egory. 2

Remark 5.7 It is easy to find a generating set of objects for the category
Crs, namely the free crossed complexes on single elements, given in fact by
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ΠEn
∗ , whereEn

∗ is the usual cell decomposition of the unit ball, with one cell
for n = 0 and otherwise three cells. It is not so obvious how to construct
directly from this generating set a dense subcategory closed under tensor
products. 2

6 The tensor product of covering morphisms

Our aim is to prove the following:

Theorem 6.1 The tensor product of two covering morphisms of crossed
complexes is a covering morphism.

Remark 6.2 The reason why we have to give an indirect proof of this re-
sult is that the definition of covering morphism involves elements of crossed
complexes; but it is difficult to specify exactly the elements of a tensor prod-
uct whose definition is perforce by generators and relations. 2

It is sufficient to assume that all the crossed complexes involved are con-
nected. We will also work in the category of ω–groupoids, and prove the
following:

Theorem 6.3 Let G,H be connected ω–groupoids with base points x, y
respectively, and let p : G̃ → G be the covering morphism determined by
the subgroup M of π1(G, x). Let φ : C → G⊗H be the covering morphism
determined by the subgroup M × π1(H, y) of

π1(G⊗H, (x, y)) ∼= π1(G, x)× π1(H, y).

Then there is an isomorphism ψ : C → G̃ ⊗ H such that (p ⊗ 1H)ψ = φ,
and, consequently,

p⊗ 1H : G̃⊗H → G⊗H
is a covering morphism.

Proof Here we were inspired by the formulae of Brian Day [Day70].

First we know from [BH87] that the tensor product of ω-Gpds satisfies
Im ⊗ In ∼= Im+n, showing that I is a full monoidal subcategory of ω-Gpds.
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Since also from [BH87] the tensor preserves colimits in each variable, it
follows from Corollary 5.4 that the tensor product G⊗H of ω-groupoids G
and H satisfies

G⊗H ∼=
∫ m,n

ω-Gpd(Im, G)× ω-Gpd(In, H)× (Im ⊗ In). (3)

Let p : G̃ → G be the covering morphism determined by the subgroup
M and let φ : C → G ⊗ H be the covering morphism determined by the
subgroup M × π1(H, y) of

π1(G, x)× π1(H, y) ∼= π1(G⊗H, (x, y)).

By Corollary 4.2, pullback φ∗ by φ preserves colimits. Hence

C ∼= φ∗
(∫ m,n

ω-Gpd(Im, G)× ω-Gpd(In, H)× (Im ⊗ In)

)
∼=
∫ m,n

φ∗(ω-Gpd(Im, G)× ω-Gpd(In, H))× (Im ⊗ In)

and so because of the construction of C by the specified subgroup:

∼=
∫ m,n

ω-Gpd(Im, G̃)× ω-Gpd(Im, H)× (Im ⊗ In)

∼= G̃⊗H. 2

Corollary 6.4 The tensor product of covering morphisms of ω-groupoids is
again a covering morphism.

Proof Because tensor product commutes with disjoint union, it is sufficient
to restrict to the connected case. Since the composition of covering mor-
phisms is again a covering morphism, it is sufficient to restrict to the case of
p⊗ 1H , and that is proved in Theorem 6.3. 2

The proof of Theorem 6.1 follows immediately.

Corollary 6.5 If F, F ′ are free and aspherical crossed complexes, then so
also is F ⊗ F ′.
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Proof It is sufficient to assume F, F ′ are connected. Since F, F ′ are aspher-
ical, their universal covers F̃ , F̃ ′ are acyclic. Since they are also free, they
are contractible, by a Whitehead type theorem, [BG89, Theorem 3.2]. But
the tensor product of free crossed complexes is free, by [BH91, Cor. 5.2].
Therefore F̃ ⊗ F̃ ′ is contractible, and hence acyclic. Therefore F ⊗ F ′ is
aspherical. 2
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Résumé. Nous étudions les représentations de petites catégories comme les
monoı̈des dans trois bicatégoies monoı̈dales, étroitement liées. Les catégories
peuvent être exprimées comme certains types de monoı̈des dans la catégorie
Span. En fait, ces monoı̈des sont aussi dans Rel. Il y a une équivalence bien
connue, entre Rel et une sous-catégorie pleine de la catégorie des treillis
complets et des morphismes qui préservent les sups. Cela nous permet de
représenter une catégorie comme un monoı̈de dans Sup. Les monoı̈des dans
Sup s’appellent des quantales, et sont intéressants dans plusieurs domaines.
Nous étudions aussi dans ce contexte la représentation d’autres structures
catégoriques, par exemple, les foncteurs, les transformations naturelles, et les
profoncteurs.

Abstract. We study the representation of small categories as monoids in three
closely related monoidal bicategories. Categories can be expressed as special
types of monoids in the category Span. In fact, these monoids also live in
Rel. There is a well-known equivalence between Rel, and a full subcategory
of the categorySup, of complete lattices and sup-preserving morphisms. This
allows us to represent categories as a special kind of monoid in Sup. Monoids
in Sup are called quantales, and are of interest in a number of different areas.
We will also study the appropriate ways to express other categorical
structures such as functors, natural transformations and profunctors in these
categories.

Keywords. Category, Monoid, Span, Quantale
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1. Introduction

This research was originally conceived as an attempt to understand the
following natural construction:

From a category C, we can form a quantale QC as follows:
– Elements of QC are sets of morphisms in C.
– The product of elements A and B in QC is the set tab|a P A, b P Bu of

composites.
– Join is union.

Examples 1.1.
1. When C is the indiscrete category on a set X, this is the quantale of all

relations on X.

2. When C is a group, G, viewed as a 1-element category, this quantale
is the quantale of all subsets of G.

These two examples are of interest because they give a deeper under-
standing of the well-known connection between equivalence relations on a
set, and subgroups of a group. In both cases, these can be viewed as sym-
metric idempotent elements above 1 in their respective quantales.

This construction has also been studied in more detail in the case of étale
groupoids by Resende [6]. In this case, instead of all sets of morphisms, he
takes only open sets. Because he is considering only groupoids, the quantale
is in addition involutive.

The question arises: which quantales occur in this way? We will answer
this question indirectly by firstly producing a correspondance between cat-
egories and certain monoids in Rel. Using this, we will be able to describe
which quantales correspond to categories, using a well-known equivalence:

Proposition 1.2. The category of sets and relations is equivalent to the cat-
egory of complete atomic Boolean algebras and sup-morphisms.

Proof. On objects, there is a well-known correspondance between power
sets and complete atomic Boolean algebras. We need to show that the direct
image of a relation is a sup-morphism, and that every sup-morphism is the
direct image of a relation. This is straightforward to check �
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The correspondance with certain monoids in Rel, or in Span, has the
additional advantage of holding for internal categories in other categories.
However, there is not such a correspondence between internal relations in a
category and quantales in that category, so for example, describing topolog-
ical categories as quantales would need a different approach.

2. Monoids in Span and Rel

We begin by listing some basic properties of general monoids in Span
and in Rel, and the relation between the two. These properties will be of
interest later when we are studying the particular monoids in Span and Rel
that correspond to categories.

2.1 Preliminaries

To start with, we will clarify exactly what we mean by monoids in Span,
since this could be interpreted in several different ways. Firstly, we will view
Span as a bicategory in the following way:

Objects Sets X

Morphisms Spans X Y
f

oo
g

//Z in Set.
2-cells Commutative diagrams:

Y1
f1

��~~
~~

~~
~

α

��

g1

��?
??

??
??

X Z

Y2

f2

__@@@@@@@ g2

??�������

in Set.

This is furthermore, a monoidal bicategory, with tensor product b given
by cartesian product of sets, and the obvious tensor products of morphisms.

Of course, we can extend all of this to spans in an arbitrary category C,
with pullbacks and products, and all the results we present are equally valid
for this context. However, the equivalence between Rel and CABAsup is
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specific to Set, so the results about quantales cannot be applied to internal
categories in a category C.

Now, by a monoid in Span, we really mean a pseudomonoid with respect
to the tensor product (rather than the categorical product, which is disjoint
union in Span) – i.e. a diagram C b C M //C 1Ioo of morphisms in Span,
with the associativity and unit laws for a monoid commuting only up to iso-
morphism, with these isomorphisms satisfying the usual coherence axioms.
The first reference for a monoid with respect to the tensor product of a tensor
category appears to be [1].

Besides being the natural choice for the definition of monoid in Span,
this definition also makes sense when we pass to the category of relations,
because when we view relations as jointly monic spans, if two relations are
isomorphic as spans, then the isomorphism is unique – indeed if two spans
are isomorphic, and one is a relation, then the other is also a relation, and the
isomorphism is unique. It will therefore be clear for the monoids which cor-
respond to categories, that the isomorphisms present in the monoid axioms
are unique, and therefore satisfy coherence conditions.

To save rewriting the same thing many times, we will begin by fixing our
usual notation for monoids, in Span, Rel, or CABAsup. We will then use this
notation without restating it each time.

We will denote monoids in these categories by C b C M //C 1Ioo and

D b D N //D 1Joo . In the case of Span, we will furthermore use the name
of a span to denote the set that is the domain of both morphisms of the span.

For instance the span C b C M //C will denote the span C � C Mmoo m1

//C .

2.2 Monoids in Span

Proposition 2.1. In any monoid in Span, the opposite of the unit is a partial
function.

Proof. By the unit laws, we get that there are pullbacks:

C
f1 //

p1,dq
��

M

��

C � I // C � C

and
C

f2 //

pc,1q
��

M

��

I � C // C � C
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for some choices of functions, C d // I, C
f1 // M, C c // I and C

f2 // M

satisfying C
fi // M // C is the identity for i � 1, 2. From this, in the

following diagram, where the back square is a pullback, and the morphism
f is the unique factorisation through the front pullback:

P
f

""

//

��

C
p1,dq

##G
GGGGGGGG

f1

��

I � I //

��

C � I

��

C

pc,1q ""E
EE

EE
EE

EE
f2 // M

##G
GG

GG
GG

GG

I � C // C � C

The front is clearly a pullback and the right and bottom squares are pullbacks
by the unit laws. Therefore, by a standard argument, the top and left-hand
squares are also pullbacks. We start by showing that P is isomorphic to I. In
the following diagram:

P
f

//

��

I � I

��

π1 // I

��

C // C � I π1
// C

where the left-hand square is a pullback, we know that the right-hand square
is a pullback, and the bottom composite is the identity, so the whole rectangle
is a pullback, and the top composite is an isomorphism, and so P � I. Thus,
for the morphism f in the above cube, π1 f must be an isomorphism.

This means that the induced morphism C d // I is a splitting (up to iso-
morphism) of the morphism I // C, which is therefore monic. �

If pC,M, Iq is a monoid in Span, then we have functions M m // C � C

and M m1

// C. Using these three functions from M to C, we partition M as
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Proof. Consider the pullback squares:

M //

&&MMMMMMMMMMMM

��

M1 //

''NNNNNNNNNNNN

��

M

&&NNNNNNNNNNNN

C � C
��

��

// M � C //

��

C � C

C � C //

&&MMMMMMMMMMM C � M

''NNNNNNNNNNN

C � I � C // C � C � C

The front and bottom squares are pullbacks by the unit laws. The right square
in the cube is the pullback in the definition of a categorical monoid. The top
right square is the pullback in the definition of M1. Also by the unit law, the
top front composite C � C // M � C // C � C is the identity, so we
know that the top left arrow is isomorphic to the morphism M // C � C.
However, the front left morphism is monic, since it is split by the projection.
Therefore M // C � C is also monic. �

Proposition 2.3. If M is a partial function, then the following are equivalent:

1. The monoid is categorical

2. There is a (necessarily unique) 2-cell:

C b C M //

pMbCqop

��

t

C

Mop

��

C b C b C CbM
// C � C

in Span.

Proof. Firstly suppose the monoid is categorical. Now in the diagram in Set:
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C � C � C C � Moo // C � C

M � C

OO

��

M1

OO

//

��

oo M

OO

��

C � C M //oo C

all except the lower right square are pullbacks. Because the lower right
square commutes, it must factor through the pullback:

N //

��

M

��

M // C

This factorisation is exactly the 2-cell we require.
Conversely, suppose that the 2-cell exists. Now in the diagram:

C � C � C C � Moo // C � C

M � C

OO

��

M1

a

OO

b //

c
��

d
oo M

OO

��

C � C M //oo C

The top right and bottom left squares are pullbacks by associativity, and the
top left square must factor through the pullback:

N w //

z
��

C � M

��

M � C // C � C � C

We will denote this factorisation M1 f
// N.

On the other hand, because of the 2-cell, we get a commutative diagram:

KENNEY & PARE - CATEGORIES AS MONOIDS IN Span, Rel AND Sup

- 216 -



C � C � C C � Moo // C � C

M � C

OO

��

N

w

OO

x //

y
��

z
oo M

OO

��

C � C M //oo C

The top right and bottom left squares of this diagram have M1 as the pullback.
We will denote the factorisation of the bottom left square through the pull-
back by N

g
// M1. Now we have that dg f � z f � d. Since M // C � C

is monic, the pullback d is also monic, so we have that g f � 1M1 . On
the other hand, we also have that z f g � dg � z, and z is a pullback of
C�M // C�C�C, which is monic. Therefore, z is also monic, showing
that f and g are inverses, yielding an isomorphism between N and M1. It
is straightforward to check that this extends to an isomorphism between the
labelled morphisms in the diagrams. �

2.3 Premonoidal Structures

The study of monoids in Span is of some interest as they correspond
to Day’s premonoidal structures on discrete categories [2]. As such, they
correspond to monoidal closed structures on products of the category of sets

¹
C

Set � SetC � Set{C

If C is a set, then a premonoidal structure on C, considered as a discrete
category with values in Set, consists of:
(1) a triplely indexed family of sets xMab

c ya,b,cPC;
(2) a singlely indexed family of sets xIayaPC;
(3) isomorphisms αabc

d :
°

xPC Mab
x � Mxc

d Ñ
°

xPC Mbc
x � Max

d ;

(4) isomorphisms λa
b :
°

xPC Ix � Mxa
b �

"
1 if a � b
0 otherwise

(5) isomorphisms ρa
b :
°

xPC Ix � Max
b �

"
1 if a � b
0 otherwise

satisfying the well-known coherence conditions.
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Remark 2.10. Note that we have determined all the monoid structures on
2 in Span, as far as the identity and multiplication. However, we have not
shown that the isomorphisms are unique. If there are any non obvious ways
of defining the α, they will give a non-symmetric tensor product on Set�Set.

For our treatment of categories as monoids in Span, the choice of iso-
morphism for the pseudomonoids will be unique, because the multiplication
and unit of monoids corresponding to categories are relations, so there will
be a unique isomorphism, and so it will obviously satisfy the coherence con-
ditions. Therefore, we will not have to worry about coherence conditions in
that section.

Remark 2.11. In the introduction, we said that we are most interested in the
monoids in Span that come from categories, using the construction we will
give in Section 3. There are three categories with exactly two morphisms –
the discrete two-object category, and two monoid structures. We already said
that the discrete category corresponds to the discrete monoid structure on 2.
The two monoids correspond to the cases A � 0, B � 1, and A � 1, B �
0, above. This is not surprising, because in these cases, we see that the
multiplication for the monoid in Span actually becomes a function, and the
unit is already a function, because I is a one-element set, so these monoids
in Span actually live in the subcategory Set.

2.5 Monoids in Rel

There is a morphism of monoidal bicategories from Span to Rel, sending
sets to themselves, and sending a span A S r //loo B to it’s underlying
relation – i.e. the relation that relates an element a of A to an element b of B
if and only if there is at least one element sa,b of S satisfying lpsa,bq� a and
rpsa,bq� b. This functor preserves monoids, so from a monoid in Span, we
get a monoid in Rel.

In the other direction, we can view a relation as a jointly monic span.
However, this is merely an oplax morphism, because the composite of two
jointly monic spans need not necessarily be jointly monic. Therefore, not
all monoids in Rel are monoids in Span. Being a monoid in Span imposes
additional equations on a monoid in Rel. We will call a monoid in Rel which
can be viewed as a monoid in Span, by sending the multiplication and unit
to the corresponding jointly monic spans, spanish.
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Example 2.12. There is a monoid in Rel, on the 4-element set te, x, y, zu,
where e is the unique identity, and multiplication is given by the following
table. (The sets in the table are the collection of all elements related to the
pair given by the row and the column.)

e x y z
e teu t xu t yu t zu
x txu t y, zu t x, zu t x, yu
y tyu t x, zu t x, yu t y, zu
z tzu t x, yu t y, zu t x, y, zu

It is straightforward to check that this is indeed associative in Rel, and so a
monoid. However, it is not a monoid in Span, since for example,

Mpxyqz
y �

¸
wPte,x,y,zu

Mxy
w � Mwz

y � 2

by taking the values w � x and w � z. However, on the other hand,

Mxpyzq
y �

¸
vPte,x,y,zu

Mxv
y � Myz

v � 1

with the only non-zero value when v � z.

In this section, we will show that monoids in Rel that satisfy that the
multiplication is a partial morphism are spanish.

Lemma 2.13. If 1 I //C C b CMoo is a monoid in Rel, then

I b I // //

∆op

��

C b C

M
��

I // // C

commutes in Rel, where I represents the subset of all elements in C that are

related to the unique element of 1, and I ∆ // I � I is the diagonal function,
viewed as a relation.
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Proof. From the unit law:

C

1C
))TTTTTTTTTTTTTTTTTTTT C b Ioo // C b C

M
��

C

we see that the relational composite C b I // C b C M // C is less than

or equal to the first projection C b I
π1 // C. Similarly, from the other unit

law, we see that the composite IbC // CbC M // C is less than or equal

to the second projection I b C
π2 // C. Restricting to the subset I b I, we

get that the composite I b I // C b C M // C is less than or equal to both

projections I b I
π1 // I // C and I b I

π2 // I // C. The intersection

of these projections is I b I ∆op
// I // C, so one inclusion in the square is

proved.
Since I // C is a function, the inequality we have proved means that

we have a commutative square

I b I //

f
��

C b C

M
��

I // C

for some relation f 6 ∆op. We want to show that f � ∆op. By the unit

law, the composite I
π1

op
// I b I // C bC M // C is the inclusion I // C.

Therefore, we know that

I
π1

op
// I b I

f
// I // C � I

π1
op

// I b I ∆op
// I // C

Since I // C is monic, this gives that fπ1
op � 1I , and f 6 ∆op. It is

easy to see that the only solution to this is f � ∆op, giving the required
commutativity. �

In the case where the multiplication M is a partial function, the commu-
tative diagram in the above proposition lives entirely within the bicategory
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similar argument will show the same for the other unit law, giving that the
monoid is spanish. We consider the diagram of pullbacks:

P3 $$
p j,k, f q

$$JJJJJJJJJ
// //

��

��

P1 //
��

��

P
��

pi, f q
��

P2 // //

��

I � I � C //

��

I � C

��

P
pi, f q

// I � C // C

We see that we can describe P3 entirely by the morphisms j, k, and f . We
will show that j � k. However, j � ia and k � ib. Furthermore, we already
know that f a � f b, and that pi, f q is a monomorphism. Thus, we can deduce
that a � b, and so f is a monomorphism.

To show that j � k, we consider the commutative diagram in Rel:

I � I � C // //

∆op�1C
��

C � C � C
1�M //

M�1
��

C � C

M
��

I � C // // C � C M
// C

The right-hand square is associativity, while the left hand square is from
Lemma 2.13. Since all morphisms are partial functions, the diagram lifts to
Span. In Span, the top-right composite is

I � I � C P3
p j,k, f q
oo // P // M // C

Since the diagram commutes in Span, the left-hand leg of this span must

factor through the diagonal I ∆ // I � I, and so j � k as required.
Using the other unit law in a similar way, we can deduce that it also lifts

to a commutative diagram in Span, so that the monoid is spanish. �
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3. Categories, Functors, Profunctors and Natural Transfor-
mations in Span

3.1 Categories

In this section, we will establish a bijective correspondence between cat-
egories and certain types of monoid in Span, or equivalently in Rel. We
will fix some notation. For a category C, the corresponding monoid will be
C b C M //C 1Ioo . For a category D, the corresponding monoid will be

D b D N //D 1Joo .
Given a small category C, we can form a monoid inSpan as follows: The

underlying set is the set C of morphisms of C. Composition gives a partial
function from C�C to C, defined on composable pairs, i.e. pairs p f , gq such
that dom f � cod g. The identity is the opposite to the partial function from
C to 1 that is defined only on identity morphisms. It is easy to check that
this is indeed a monoid in Span. This also works for internal categories in
any category with all finite limits, and the following theorems also all apply
in this case, with the exception of Proposition 3.2.

Theorem 3.1. A monoid in Span can be expressed as the result of the above
construction for a category if and only if the multiplication is a partial
morphism and there is a (necessarily unique) 2-cell

C b C M //

pMbCqop

��

t

C

Mop

��

C b C b C CbM
// C b C

in Span.

Proof. It is easy to see that the monoid we obtain from a category using the
above construction, has a partial function for its multiplication, and also has
the unique 2-cell in the above theorem.

Conversely, given a monoid C b C M //C 1Ioo in Span, where M is
a partial function and Iop is also a partial function, C will be the object of
morphisms. The domain of Iop will be the object I of objects. The left
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identity law for the monoid:

C
Ib1C // C b C M // C � 1C

says that for every element f of C, there is exactly one element j of I such
that the composite j f � f , and no other composites are possible. We will
call this unique j the codomain of f . Similarly, there is exactly one element
j of I such that f j � f . We will call this the domain of f . These give the

functions C dom // I and C cod // I, needed for a category. Also, M must be
the object of composable pairs in the category. We need to show that it is
the object of pairs p f , gq such that domp f q� codpgq, as is required for a
category.

The 2-cell shows that if the composites f g and gh both exist, then the
composite p f gqh also exists. Associativity then gives us that f pghq also ex-
ists, and is equal to p f gqh. Also, associativity gives us that if either f pghq or
p f gqh exists, then the other also exists, and they are equal. This means that
in this case, both f g and gh must exist.

Finally, from the case where g is an identity, we know that the composite
f h exists if and only if the domain of f is equal to the codomain of h. This
is exactly what we need for a category. �

We note that since the multiplication is a partial morphism, and the
unit is the opposite of a partial morphism, they are both relations. From
Lemma 2.14, we see that a monoid in Rel comes from a category if and only
if the multiplication is a partial morphism, and the same 2-cell exists.

In the particular case of Set, it is possible to write the third condition in
a different way. This will be useful when we discuss categories as quantales.

Proposition 3.2. A monoid in Rel can be expressed as the result of the
above construction for a category if and only if the multiplication is a partial
morphism and whenever the products xy and yz are both defined, then so is
xyz.

Proof. We need to show that for a monoid in Rel, whose multiplication is a
partial morphism, the condition about products being defined is equivalent
to the condition in Theorem 3.1.

We know that if the products xy and yz both exist, then the composite
pC � MqpM � Cqop relates pxy, zq to px, yzq. Therefore, by the condition in
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Theorem 3.1, the composite MopM must also relate them. For this to happen,
Mpxy, zq�p xyqz must be defined.

Conversely, suppose we have that whenever xy and yz are both defined,
so is xyz. Now suppose that pC � MqpM � Cqop relates pa, bq to pc, dq. This
means that there is a triple pc, x, bqwhich is related to pa, bq by M�C, and to
pc, dq by C � M. Thus, cx � a and xb � d are both defined, so the products
pcxqb and cpxbq are both defined (and equal by associativity). Now M relates
both pa, bq and pc, dq to cxb, so the composite MopM relates pa, bq to pc, dq.
Since pa, bq and pc, dq were an arbitrary pair related by pC � MqpM � Cqop,
this means that pC � MqpM � Cqop 6 MopM in Rel. �

To make the description from Theorem 3.1 internal in Span, or Rel, we
need to give a way of identifying which spans are partial functions.

Proposition 3.3. A span is a relation if and only if it is a subterminal object
in its hom-category in the bicategory Span.

Proposition 3.4. A relation X R // Y is a partial function if and only if there
is a 2-cell RRop +3 1Y in Rel, or equivalently in Span.

Proof. If R is a partial function, then in Span, the composite RRop is given
by the pullback:

R
1

����
��

��
�

1

��?
??

??
??

R

����
��

��
� ��

��?
??

??
??

R
��

����
��

��
�

��?
??

??
??

Y X Y

The function from R to Y then gives the required 2-cell in Span, and in Rel.
Conversely, suppose R has the required 2-cell, then the composite RRop

is a span in which both functions are the same. Because the composite is the
pullback square, and the morphisms from R to X and to Y are jointly monic,
this means that the two functions f and g of the pullback square:
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P
f

//

g
��

R

��

R // X

are equal. This can only happen if R // X is a monomorphism, so R is a
partial function. �

3.2 Functors

Proposition 3.5. If C and D are categories, corresponding to the monoids
pC,M, Iq and pD,N, Jq in Span, then functors C F //D correspond biject-
ively to lax monoid homomorphisms from C to D in Span, which are also
functions.

Proof. Given a lax monoid homomorphism C
f

// D in Span, where f is a
function, one lax monoid homomorphism condition says that f m1 admits a
2-cell to n1p f � f q. The composite n1p f � f q is the pullback:

P //
��

��

N n1 //
��

��

D

C � C
f� f

// D � D

The 2-cell therefore says that there is a morphism M // // P. This means
that any morphisms that compose in C are sent to morphisms that compose
inD. We get a commutative square in Set:

M

m1

��

f� f
// N

n1
��

C f
// D

This is exactly the functoriality condition involving composition. Similarly,
the other lax monoid homomorphism condition for f gives the square

KENNEY & PARE - CATEGORIES AS MONOIDS IN Span, Rel AND Sup

- 229 -



1 //

tI
��

1
J
��

C f
// D

in Span, with a 2-cell from f I to J. This gives a morphism from I to J,
sending an identity 1X to Fp1Xq, which this 2-cell shows is an identity. Since
f preserves composition, this must be 1FX.

Conversely, supposeC F //D is a functor. Then its action on morphisms

is a function C
f

// D such that the following diagram commutes:

M
f� f

��

m1

// C
f

��

Iioo

��

N
n1

// D Jj
oo

This induces a morphism from M to the pullback of N // // D � D along
f � f , and a morphism from I to the pullback of J along f . These give the
2-cells required to make f into a lax monoid homomorphism in Span. �

Composition of functors is the obvious composition of functions. We can
identify morphisms as the spans with right adjoints. The situation is identical
in Rel – lax monoid homomorphisms in Rel remain lax homomorphisms in
Span, and functions are relations with a right adjoint.

Remark 3.6. The reader may find it strange that categories correspond to
pseudomonoids, and yet functors only correspond to lax monoid homo-
morphisms. This leads us to consider what lax monoids correspond to. There
is a correspondance between certain kinds of protocategories [3], and certain
lax monoids (unbiassed in Leinster’s [4] terminology). Given a protocate-
gory C, with at most one composite for each pair of protomorphisms, we
form a lax monoid in Span as follows: C is the set of protomorphisms; M is
the set of composable pairs of protomorphisms; I is the set of objects.

It turns out that this is a lax monoid. However, we can view a category
as a protocategory in which every morphism has exactly one source and tar-
get. From this point of view, any function between categories that preserves
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the protocategory structure (i.e. preserves identities and composition) is a
functor. These are lax monoid homomorphisms.

Strict monoid homomorphisms are functors that are injective on objects,
since for the 2-cell to be an isomorphism would require that any pair of
morphisms whose images are composable inD must also be composable in
C.

3.3 Natural Transformations

Proposition 3.7. Given functors C F //D and C G //D, corresponding to

lax monoid morphisms C
f

// D and C
g

// D in Span, respectively, nat-
ural transformations correspond to functions C a // D such that we have
(necessarily unique) 2-cells:

C b C
pabgq

//

M
��

t

D b D

N
��

C a
// D

and
C b C

p fbaq
//

M
��

t

D b D

N
��

C a
// D

Proof. Given a natural transformation α, the function C a // D sends the

morphism X h // Y in C, to the morphism FX
αX // GX Gh // GY , or equiv-

alently FX Fh // FY
αY // GY . It is straightforward to check that the 2-cells

above do indeed exist.
Conversely, given a morphism a such that the above 2-cells exist, in

Span, we can form a natural transformation α by αX � ap1Xq. If we ap-
ply the left-hand 2-cell to pcodphq, hq, the lower-left way around sends it
to aphq, while the upper-right way sends it to apcodphqqFphq. We deduce
that these are equal. On the other hand, if we apply the right-hand 2-cell to
ph, domphqq, we get that aphq� Gphqapdomphqq. The equality of these two
is exactly the commutativity of the naturality square. �

Again, the existence of these 2-cells does not depend whether we are in
Span or Rel.

For composition of natural transformations, there are two types to con-
sider. The easier type is horizontal composition. It is easy to see that this

KENNEY & PARE - CATEGORIES AS MONOIDS IN Span, Rel AND Sup

- 231 -



KENNEY & PARE - CATEGORIES AS MONOIDS IN Span, Rel AND Sup

- 232 -



and 2-cells are just 2-cells between the top morphisms in these triangles,
subject to the obvious compatibility conditions with the 2-cells in the trian-
gles. It is straightforward to see that the same argument as above makes this
into a monoidal bicategory. In this monoidal bicategory, for another monoid

D in C, a lax monoid homomorphism D
f

// C becomes a monoid in this
slice category C�C.

We see that when we view a category C as a monoid, C, in Span, we can
view a functor with codomain C as a certain monoid in the slice Span �C.
Now for two functors from D to C, we have the corresponding monoids
in the slice category Span �C. Now a natural transformation is a kind of
bimodule between these monoids, in this slice category.

3.4 Profunctors

In this context, the best way to view a profunctor P : Cop �D // Set,
is through the collection of elements, i.e.

°
APobpCq,BPobpDq PpA, Bq. This

collection admits a sort of left action by C, and a right action by D. When
we look at the corresponding monoids C and D in Span, these actions are
partial functions. We therefore see that a profunctor is a special kind of
bimodule.

Proposition 3.9. Given categories C and D, and corresponding monoids C
and D in Span, a bimodule E (a left C, right D module with the obvious
coherence conditions between the actions) comes from a profunctor from C
toD if and only if it satisfies the following conditions:

1. The actions C b E a // E and E b D b // E are partial functions.

2. There are (necessarily unique) 2-cells:

C b E
Cbaop

//

a
��

w

C b C b E

MbE
��

E aop
// C b E

and
E b D

bopbD //

b
��

w

E b D b D

EbN
��

E bop
// E b D

Proof. We will denote the actions ap f , eq by f .e and bpe, gq by e � g. It is
obvious that for a profunctor, the actions a and b are partial functions. Now
we consider the first 2-cell in condition 2: The top-right composite is a span
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that above any pairs of elements ph, eq and p f , e1q of C b E, has the set of
triples p f , g, eqP C b C b E, such that f g � h and g.e � e1. Therefore, the
2-cell in question sends all triples p f , g, eq such that f g and g.e both exist,
to an element e2 of E, satisfying both f .pg.eq� e2 and p f gq.e � e2. Thus,
the existence of this 2-cell simply indicates that if p f gq and g.e both exist,
then p f gq.e also exists (the fact that it is equal to f .pg.eq is automatic by the
associativity conditions required for a bimodule). Also, by the associativity
conditions, we know that if p f gq.e exists, then both p f gq and g.e must also
exist.

Furthermore, by the unit laws for a bimodule, for any e P E, there is a
unique identity i P C such that i.e exists, and for this i, we have that i.e � e.
We will call this i, the codomain of e. Now if we substitute this codomain of
e for g in the above observation, we see that f .e exists if and only if f codpeq
exists, or equivalently, if and only if codpeq� domp f q.

By a similar argument, we see that e � d exists if and only if dompeq�
codpdq. From these conditions, it is clear that E comes from a profunctor.

�

For composition of profunctors, let C, D and E be categories, and let

C
P //D and D

Q
//E be profunctors. Let the corresponding sets in Span

be C, D, E, P and Q respectively. We know that the composite profunctor
has as elements, equivalence classes of “composable” pairs pp P P, q P Qq
under the equivalence relation that relates two pairs pp, qq and pp1, q1q if there
is f P D such that p � f p1 and q1 � q f . This is the product of P and Q over
D, as bimodules in Span, or Rel.

4. Quantales

Just as monoids in Span corresponded to premonoidal structures on dis-
crete categories and consequently monoidal closed structures on powers of
Set, monoids in Rel correspond to 2-enriched premonoidal structures on dis-
crete sets and thus monoidal closed structures on powers of 2. These are
quantale structures on power sets, ordered by inclusion. In this way a small
category gives a quantale. In this section, we study the interplay between
categorical constructions and quantale ones. Niefield considers the closely
related questions of the quantale of subsets of a monoid and quantales of
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subobjects of the unit object in certain closed categories (see [5] and the
references cited there).

4.1 The Quantale of a Category

To determine which quantales occur as the quantale from a category, we
just need to translate our characterisation of categories as monoids in Rel
through the equivalence between categories Rel and CABAsup. Rosenthal
[7] calls a quantale whose underlying lattice is a power set, a power quantale.

The most direct translation is just in terms of atoms (or equivalently join-
irreducible elements). A morphism of powersets corresponding to a relation,
corresponds to a partial morphism if and only if it sends atoms to either
atoms or the empty set. The final condition for a monoid in Rel to be cat-
egorical says that if the composites f g and gh both exist, then so does the
triple composite f gh. (By associativity, it doesn’t matter which way we ex-
press the triple composite.) We can express this for a quantale by using the
contrapositive – if the triple composite f gh of three atoms is 0 (i.e. unde-
fined) then either f g � 0 or gh � 0.

However, conditions involving atoms are not natural conditions on quan-
tales, except in the case where the lattices are CABAs. We therefore seek to
rephrase these conditions in a way that looks more natural for all quantales.
We hope that these conditions might give a better guide for how we might
be able to generalise our results to internal categories, for example in Ord or
Loc. However, such a generalisation would still require significant further
work, and we would expect further conditions to be necessary. In such cases,
we may find that we no longer get a strict quantale, but a lax quantale.

Lemma 4.1. A sup-morphism between CABAs corresponds to a partial func-
tion if and only if its right adjoint preserves all non-empty sups.

Proof. Let f be a relation. The right adjoint to its direct image is just its
inverse image – i.e. it sends a subset A to the set tx| f pxq� Au, where f pxq
represents the set of things to which x is related. To say that this preserves
non-empty sups says that if the image of a point x is contained in

�
Ai, then

it is contained in one of the Ai. Since we can express any set as the union of
its points, this means that the image of x is either empty or a singleton, i.e. f
is a partial function. �
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Proof. This is automatic from the equivalence between Rel and CABAsup.
�

4.2 Retrieving the Category

We have shown that categories correspond to certain types of quantale.
We now consider the inverse part of this bijection – given one of these quan-
tales, how can we recover the category we started with?

This can actually be done fairly easily – we know that a category can be
described by the collection of functors from the cocategory object

1
//
// 2oo ////// 3

in Cat. More explicitly, objects of the category correspond bijectively with
functors from 1 to the category. Morphisms correspond to functors from 2
to the category, and the composite of a composeable pair is calculated by
looking at the functor from 3 to the category. We can describe these functors
explicitly for quantales. The quantale corresponding to the one morphism
category is the two-element quantale. A functor from this to another quantale
must send 0 to 0, so the only question is where it must send 1. It must send
1 to a join-irreducible element below 1, which is idempotent. The objects
of the category therefore correspond to join-irreducible idempotent elements
below 1 in the quantale. Similarly, morphisms correspond to triples px, y, f q,
where x and y are objects, and f is an irreducible element such that y f x � f .
Finally, the composite of two morphisms px, y, f q and py, z, gq is px, z, g f q.

If the quantale corresponds to a category, then this will give us the corre-
sponding category.

However, it is worth observing that while the above is a cocategory object
in Cat, it is not a cocategory object when we extend to the category of all
quantales and lax quantale homomorphisms whose right adjoint is also a sup-
morphism. This means that for a general quantale, we do not get a category
using this approach.
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