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Abstract

For an additive symmetric closed monoidal categoryCwith equal-
izers, supposeM is a monoid defined with respect to the monoidal
structure. In this setting we can define aLie algebrawith respect to
M and the monoidal structure. For the categoryLie(M,C) of Lie al-
gebras we show that the functor SplExt(−, X) : Lie(M,C) → Set is
representable by constructing a representation.

Pour une cat́egorie additive syḿetrique monöıdale ferḿeeC avec
égalisateurs, soitM un monöıde d́efini par rapportà la structure
monöıdale. Dans ce contexte nous pouvons définir une algèbre
de Lie par rapport à M et à la structure monoı̈dale. Pour la
cat́egorieLie(M,C) d’algèbres de Lie nous montrons que le foncteur
SplExt(−, X) : Lie(M,C) → Set est repŕesentable en construisant
une repŕesentation.

Introduction

We recall that for a Lie algebraX over a commutative ringR, a mapf :
X → X is called a derivation ofX if f is linear and, for allx andy in X,
f(xy) = f(x)y + xf(y). The set Der(X) of all derivations onX can be
made into a Lie algebra with Lie multiplicationfg = f ◦ g − g ◦ f and all
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other operations defined pointwise. A diagram

X
k // A

p //
G

s
oo

wherek is the kernel ofp andps = 1G is called a split extension ofG with
kernelX. Any morphism between split extensions, that is, a diagram

X
k // A

p //

f
²²

G
s

oo

X
k′ // A′

p′ //
G

s′
oo

where the top and bottom rows are split extensions, andfk = k′, p = p′f
andfs = s′, is invertible since the split short five lemma holds for Lie al-
gebras. We define an equivalence relation on the set of split extensions of
G with kernelX, by requiring that extensions are equivalent if and only if
there is a morphism between them. The functor SplExt(−, X) : LieR → Set
is defined on an objectG as the set of equivalence classes of split extensions
of G with kernelX and on a morphismg : G′ → G by pulling back. A
well-known classical result can be stated as: the functor SplExt(−, X) is
representable with Der(X) the object of the representation, that is, there is
a natural isomorphism SplExt(−, X) ∼= LieR(−, Der(X)). This result can
be extended to any category of internal Lie algebras defined in a cartesian
closed category (see Theorem 5.2 in [1]). We will generalize this result in a
different direction, namely to suitably define Lie algebras over a monoidM
in an additive symmetric monoidal closed category. Introducing this concept
requires some auxiliary observations:

Recall that a commutative monoid in a symmetric monoidal category(C,⊗,
I, α, ρ, λ, σ) is an objectM together with two morphisms

µ : M ⊗M → M, η : Z→ M
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such that the diagrams

M ⊗ (M ⊗M) α //

1⊗µ

²²

(M ⊗M)⊗M

µ⊗1

²²
M ⊗M

µ //

σ

²²

M M ⊗M
µoo

M ⊗M

µ

77pppppppppppp

I ⊗M
η⊗1 //

λ &&LLLLLLLLLLL M ⊗M

µ

²²

M ⊗ I
1⊗µoo

ρ
xxrrrrrrrrrrr

M

are commutative. Let us recall that when(C,⊗, I, α, ρ, λ, σ) = (Ab,⊗,Z, α,
ρ, λ, σ) is the usual symmetric monoidal category of abelian groups, a com-
mutative monoid in it is the same as a commutative ring. In this case the
morphismµ : M ⊗ M → M corresponds, via the universal property of
the tensor product, to a mapM ×M → M , call it multiplication, which is
bilinear (distributive with respect to the addition of the abelian groupM ).
The morphismη : Z → M is determined by picking an elementu in M ,
the image of 1. Furthermore, the commutativity of the first diagram means
that multiplication is associative and commutative, while the commutativity
of the second means thatη makesu the identity element ofM .

For an ordinary Lie algebraX over a commutative ringM , the scalar multi-
plicationM ×X → X and the Lie multiplicationX ×X → X are bilinear
maps, and so by the universal property of the tensor product inAb they can
be described as morphismsa : M ⊗X → X andb : X ⊗X → X respec-
tively. The commutativity of the diagrams

M ⊗ (M ⊗X) α //

1⊗a

²²

(M ⊗M)⊗X

µ⊗1

²²
M ⊗X

a

))SSSSSSSSSSSSSSSSS M ⊗X

a

²²
X
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(M ⊗X)⊗X

a⊗1

²²

M ⊗ (X ⊗X)αoo σα(1⊗σ) //

1⊗b

²²

X ⊗ (M ⊗X)

1⊗a

²²
X ⊗X

b

**UUUUUUUUUUUUUUUUUUUUU M ⊗X

a

²²

X ⊗X
b

ttiiiiiiiiiiiiiiiiiiiii

X

X ⊗X
σ //

b

²²

X ⊗X

−b
xxqqqqqqqqqqqq

X ⊗ (X ⊗X)
1+σα+σασα //

0

²²

X ⊗ (X ⊗X)

1⊗b

²²
X X X ⊗X

boo

state that

(mn)x = m(nx), (mx)y = m(xy) = x(my), xy = −yx,

x(yz) + z(xy) + y(zx) = 0

for all m,n ∈ M and for allx, y, z ∈ X. These identities correspond to
the axioms of a Lie algebra except that we have replaced the axiomxx = 0
(x ∈ X), with the axiomxy = −yx (x, y ∈ X). Assuming the axiom
xx = 0, the well known argument

xy = xx + xy + yx + yy − yx = (x + y)(x + y)− yx = −yx

shows that we have actually replaced an axiom with a formally weaker one.
Assuming the axiomxy = −yx, the argument

2xx = xx + xx = xx− xx = 0

shows that when 2 has a multiplicative inverse inM , the two axioms are
equivalent. WhenM is a field this corresponds to saying thatM is not of
characteristic 2. Since the axiomxx = 0 has a repeated variable in it, it is
not possible to express it as the commutativity of a diagram involving tensor
products. Therefore, in order to define a Lie algebra in an abstract symmetric
monoidal category(C,⊗, I, α, ρ, λ, σ) we introduce an additional structure
onC. The structure we choose in this paper consists of a categoryD, functors
U, V : C→ D, and a natural transformationδ : U → V (−⊗−), satisfying
suitable conditions (see Section 1). In Section 1 we define a generalized Lie
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algebra following the above as motivation. In Section 2 we define in this
new setting the generalized Lie algebra of derivations and show, in Section
3, that the functor of split extensions from the category of these generalized
Lie algebras to the category of sets is representable. We conclude Section 3
by remarking that the functor of split extensions of crossed modules of these
generalized Lie algebras is representable.

1 Algebraic structures in monoidal categories

In this section we introduce the needed algebraic structures to define a gen-
eralized Lie algebra and construct in this context the functor which in the
classical case takes associative algebras to Lie algebras. Throughout this
paper we will assume that:

1. C = (C,⊗, I, α, λ, ρ, σ) is an additive symmetric monoidal category
with all finite limits; in addition we assume it to be monoidal closed,
although in this section we only use the fact that the tensor is distribu-
tive with respect to finite products;

2. (M, µ : M ⊗M → M, η : I → M) is a commutative monoid inC;

3. D is a category in which hom-sets are abelian groups;

4. Composition of morphisms inD is distributive on the right with re-
spect to addition of morphisms, that is, for any morphismsf, g : B →
C andh : A → B we have(f + g)h = fh + gh;

5. U andV are functors fromC to D andV restricted to hom-sets is an
abelian group homomorphism;

6. δ is a natural transformation fromU to V (−⊗−) such that:

Condition 1.1. For anyC ∈ C the diagram

UC
δC //

δC %%JJJJJJJJJJ V (C ⊗ C)

V σ
²²

V (C ⊗ C)

commutes.
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Example 1.2. (C,⊗, I, α, λ, ρ, σ) = (Ab,⊗,Z, α, ρ, λ, σ) is the the usual
symmetric monoidal category of abelian groups,D = ab is the category with
objects all abelian groups and morphisms all maps between their underlying
sets,U = V : Ab → ab is the inclusion functor, andδ is defined byδC(c) =
c⊗ c for all C in Ab andc in C. This example explains the main purpose of
introducingD, U , V , andδ: the axiomxx = 0 mentioned in the Introduction
can now be expressed categorically asV (b)δX = 0, whereb : X ⊗X → X
is a multiplication morphism on an objectX (as in the Introduction).

We recall: (i) anM -action is a pair(X, a), whereX is an object inC
anda : M ⊗X → X is a morphism inC, such that the diagrams

M ⊗ (M ⊗X)

1⊗a
²²

α // (M ⊗M)⊗X

a⊗1
²²

I ⊗X
η⊗1 //

λ
%%KKKKKKKKKKK M ⊗X

a

²²
M ⊗X

a // X M ⊗X
aoo X

commute; (ii) a magma defined with respect to the monoidal structure inC is
a pair(X, b), whereX is an object inC andb : X ⊗X → X is a morphism
in C.

Definition 1.3. A triple (X, a : M ⊗X → X, b : X⊗X → X) is said to be
an M -magma if(X, a) is anM -action for the monoidM . For M -magmas
(X, a, b) and (X ′, a′, b′), a morphismf : X → X ′ in C is an M -magma
morphism if the diagrams

M ⊗X
1⊗f //

a

²²

M ⊗X ′

a′
²²

X ⊗X
f⊗f //

b
²²

X ′ ⊗X ′

b′
²²

X
f // X ′ X

f // X ′

commute; that is,f must be a morphism of magmas and a morphism of
M -actions at the same time. The category ofM -magmas will be denoted
M -Mag0.

For anM -magma(X, a, b) consider the following condition:
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Condition 1.4. (a) The diagram

M ⊗ (X ⊗X) α //

1⊗b

²²

(M ⊗X)⊗X

a⊗1

²²
M ⊗X

a // X X ⊗X
boo

commutes;

(b) The diagram

M ⊗ (X ⊗X)
σα(1⊗σ) //

1⊗b

²²

X⊗(M ⊗X)

1⊗a

²²
M ⊗X

a // X X ⊗X
boo

commutes.

Let M -Mag1 be the full subcategory ofM -Mag0 with objects allM -
magmas satisfying Conditions 1.4(a) and 1.4(b). LetM -Mag2 be the full
subcategory ofM -Mag1 with objects all(X, a, b), in which the pair(X, b)
is a semigroup, that is, the diagram

X ⊗ (X ⊗X) α //

1⊗b

²²

(X ⊗X)⊗X

b⊗1

²²
X ⊗X

b // X X ⊗X
boo

commutes. In the situation of Example 1.2 the categoriesM -Mag1 andM -
Mag2 are the categories of non-associative and associativeM -algebras re-
spectively.

For a magma(X, b) we are also going to use the following conditions:

Condition 1.5. V (b)δX = 0.

Condition 1.6. (a) b(1 + σ) = 0 (anticommutativity);

(b) b(1⊗ b)(1 + σα + σασα) = 0 (Jacobi identity).

GRAY - REPRESENTABILITY OF THE SPLIT EXTENSION FUNCTOR;;;

- 168 -



Remark 1.7. WhenC = D, V = 1, U = (−⊗−) andδ = 1+σ, Condition
1.6(a) becomes an instance of Condition 1.5.

LetLie(M, δ) be the full subcategory ofM -Mag1 with objects all(X, a, b),
in which the magma(X, b) satisfies Conditions 1.5, 1.6(a) and 1.6(b). In the
situation of Example 1.2, as in fact mentioned in the Introduction, Condi-
tions 1.5, 1.6(a) and 1.6(b) correspond to the identities

xx = 0, xy + yx = 0, x(yz) + z(xy) + y(zx) = 0

respectively, and recalling that the categoryM -Mag1 is the category of non-
associative algebras we see that the categoryLie(M, δ) is the category of Lie
algebras over the commutative ringM .

Remark 1.8. If D = C, U = V = 1C and δC is the zero morphism, then
Condition 1.5 is trivially satisfied by any magma(X, b). If in addition, as in
Example 1.2,(C,⊗, I, α, λ, ρ, σ) = (Ab,⊗,Z, α, λ, ρ, σ) is the usual sym-
metric monoidal category of abelian groups, the categoryLie(M, δ) has as
objects Lie algebras, except that the axiomxx = 0 has been replaced by the
axiomxy = −yx.

If (X, a : R ×X → X, b : X ×X → X) is an associative algebra over
a ringR and if we definẽb : X ×X → X as

b̃(x, y) = b(x, y)− b(y, x)

for all x, y ∈ X, then the triple(X, a, b̃) is a Lie algebra defined with respect
to the ringR. This correspondence of associative algebras and Lie algebras
is functorial and can been extended to our setting.

Theorem 1.9. If (X, a, b) ∈ M -Mag2, then(X, a, b(1 − σ)) ∈ Lie(M, δ)
and the assignment(X, a, b) Â // (X, a, b(1 − σ)) defines a functorL :
M -Mag2 → Lie(M, δ) which is identity on morphisms.

Proof. Let b̃ = b(1−σ). It is clear that(X, a, b̃) is anM -magma. Condition
1.4(a) holds for(X, a, b̃) since

a(1⊗ b̃) = a(1⊗ (b(1− σ))) = a(1⊗ b)− a(1⊗ b)(1⊗ σ)

= b(a⊗ 1)α− b(1⊗ a)σα(1⊗ σ)(1⊗ σ)

= b(1− σ)(a⊗ 1)α = b̃(a⊗ 1)α,
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where the third equality follows by Conditions 1.4(a) and 1.4(b) for(X, a, b).
Similarly, it can easily be seen that Condition 1.4(b) holds for(X, a, b̃). To
show that the Jacobi identity, Condition 1.6(b), holds for(X, a, b̃), consider
the equation:

b̃(1⊗ b̃)(1 + σα + σασα)

= b(1− σ)(1⊗ b)(1− 1⊗ σ)(1 + σα + σασα)

= b((1⊗ b)(1− 1⊗ σ)− σ(1⊗ b)(1− 1⊗ σ))(1 + σα + σασα)

= b(1⊗ b)(1) + b(1⊗ b)σα(2) + b(1⊗ b)σασα(3)

−b(1⊗ b)(1⊗ σ)(4) − b(1⊗ b)(1⊗ σ)σα(5) − b(1⊗ b)(1⊗ σ)σασα(6)

−b(b⊗ 1)σ(3) − b(b⊗ 1)α(1) − b(b⊗ 1)ασα(2)

+b(b⊗ 1)(σ ⊗ 1)σ(5) + b(b⊗ 1)(σ ⊗ 1)α(6) + b(b⊗ 1)(σ ⊗ 1)ασα(4)

= 0,

where composites labelled with the same superscript are equal. For, we only
need to observe thatb(1⊗b) = b(b⊗1)α since(X, b) is a semigroup, and use
that directly for (1) and (2), or together withασασα = σ for (3), or together
with α(1⊗σ) = (σ⊗1)ασα for (4), or together withα(1⊗σ)σα = (σ⊗1)σ
for (5), or together withα(1⊗ σ)σασα = (σ⊗ 1)σ for (6). From Condition
1.1 and the definition of̃b it follows that Conditions 1.5 and 1.6(a) hold for
(X, b̃). For a morphism

(X, a, b)
f // (X ′, a′, b′)

let b̃′ = b′(1− σ). By calculating

b̃′(f ⊗ f) = b′(1− σ)(f ⊗ f)

= b′(f ⊗ f − σ(f ⊗ f))

= b′(f ⊗ f − (f ⊗ f)σ)

= b′(f ⊗ f)(1− σ)

= fb(1− σ)

= f b̃,

we see thatf is a morphism inLie(M, δ).
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2 Construction of derivations

In this section we construct, for an object(X, a, b) in Lie(M, δ), the object
Der(X), which will be shown in Section 3 to be the representing object for
the functor SplExt(−, X) : Lie(M, δ) → Set.

Recall that, for a Lie algebraX over a commutative ringM , the Lie algebra
of derivations, Der(X), can be constructed as follows. For abelian groupsA
andB, let Hom(A,B) be the abelian group of homomorphisms fromA to
B. Defining multiplication by composition and scalar multiplication point-
wise, it is easily seen that Hom(X, X) satisfies the axioms of a ring as well
as those of anM -module and, moreover has scalar multiplication with the
property

m(h1 ◦ h2) = (mh1) ◦ h2

for all m ∈ M andh1, h2 ∈ Hom(X, X). The abelian groupE(X) of M -
module morphisms fromX to X can be constructed as the equalizer of the
diagram

Hom(X,X)
f1 //

f2

// Hom(M ×X,X)

wheref1 andf2 are defined by

f1(h)(m,x) = mh(x), f2(h)(m, x) = h(mx)

for all h ∈ Hom(X,X), m ∈ M andx ∈ X. It is easily seen thatE(X) is
closed under the operations defined for Hom(X,X) and has the property

m(h1 ◦ h2) = h1 ◦ (mh2)

for all m ∈ M andh1, h2 ∈ E(X), i.e.E(X) is an associativeM -algebra.
As described before, any associativeM -algebraE(X) becomes a Lie alge-
bra with Lie multiplication defined by

h1h2 = h1 ◦ h2 − h2 ◦ h1

for all h1, h2 ∈ E(L). Finally, the Lie algebra of derivations Der(X), can be
constructed as the equalizer of the diagram

E(X)
g1e //
g2e

// Hom(X ×X,X)
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wheree : E(X) → Hom(X,X) is the equalizer off1 andf2, andg1 andg2

are defined by

g1(h)(x1, x2) = h(x1x2), g2(h)(x1, x2) = h(x1)x2 + x1h(x2)

for all h ∈ Hom(X,X) andx1, x2 ∈ L. Der(X) can be seen to be closed
under the operations defined forE(X) and hence is a Lie algebra.

We show that this construction extends to our general context. We begin
by showing that for(X, a, b) ∈ Lie(M, δ) the internal hom-objectXX can
be given a semigroup structure as well as anM -magma structure that satis-
fies Condition 1.4(a). We then construct the semigroupE(X) as a regular
sub-M -magma of the internal hom-objectXX and show that it satisfies Con-
dition 1.4(b). We then apply the functorL : M -Mag2 → Lie(M, δ) toE(X)
and construct Der(X) as a regular subobject ofL(E(X)).

For each objectB in C, we will denote the chosen right adjoint to the func-
tor−⊗ B by−B and denote the chosen counit of the associated adjunction
by εB. For functorsF : X → A andG : A → X, whereG is the right
adjoint ofF , given a morphismh : FX → A, the corresponding morphism
X → GA will be called the right adjunct ofh (as in [6]). Similarly, given
a morphismg : X → GA, the corresponding morphismFX → A will be
called the left adjunct ofg. That is, forg : A → CB, the left adjunct ofg is
εB
C(g ⊗ 1) : A⊗B → C.

For a pair(X, aX : M ⊗X → X) whereM = (M, µ, η) is a monoid inC
as above, consider the following condition, which is part of the definition of
an action for a monoid:

Condition 2.1. The diagram

I⊗X
η⊗1 //

λ
½½5

55
55

5 M⊗X

aX
¤¤§§

§§
§§

§

X

commutes.

Proposition 2.2. If (X, aX) satisfies Condition 2.1 and ifaXX : M⊗XX →
XX is the right adjunct ofaX(1 ⊗ εX

X)α−1 : (M ⊗ XX) ⊗ X → X then
(XX , aXX ) satisfies Condition 2.1.

GRAY - REPRESENTABILITY OF THE SPLIT EXTENSION FUNCTOR;;;

- 172 -



Proof. In the diagram

(I⊗XX)⊗X
(η⊗1)⊗1 //

α−1 ''PPPPPPPPPPPP

λ⊗1

ÀÀ

1

2

(M⊗XX)⊗X

α−1vvmmmmmmmmmmmm

a
XX⊗1

vv

I⊗(XX⊗X)
η⊗1 //

1⊗εX
X

²²
λ

½½

3

4

M⊗(XX⊗X)

1⊗εX
X

²²

5

I⊗X
η⊗1 //

λ
²²

6
M⊗X

aX

vvlllllllllllllll

X

XX⊗X

εX
X

OO

1 commutes sinceα is a natural transformation;2 commutes as an immedi-
ate consequence of the axioms of a monoidal category;3 commutes since⊗
is a bifunctor;4 commutes sinceλ is a natural transformation;5 commutes
by definition ofaXX : M ⊗ XX → XX ; 6 commutes by assumption on
(X, aX). That is,λ⊗1 = (aXX ⊗1)((η⊗1)⊗1) = (aXX (η⊗1))⊗1, which
tells us that the left adjuncts of the morphimsλ, aXX (η⊗1) : I⊗XX → XX

are equal to each other. Therefore these two morphisms are equal to each
other themselves, as desired.

For a sextuple(P, Q,X, u : P ⊗Q → Q, p : P ⊗X → X, q : Q⊗X →
X) we consider the following condition:

Condition 2.3. The diagram

P ⊗ (Q⊗X) α //

1⊗q

²²

(P ⊗Q)⊗X

u⊗1

²²
P ⊗X

p // X Q⊗X
qoo

commutes.

Lemma 2.4. Suppose(P,Q, X, u : P ⊗ Q → Q, p : P ⊗ X → X, q :
Q⊗X → X) satisfies Condition 2.3,p′ : P⊗XX → XX is the right adjunct
of p(1⊗ εX

X)α−1 : (P ⊗XX)⊗X → X andq′ : Q⊗XX → XX is the right
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adjunct ofq(1 ⊗ εX
X)α−1 : (Q ⊗ XX) ⊗ X → X then(P, Q, XX , u, p′, q′)

satisfies Condition 2.3.

Proof. In the diagram

(P⊗(Q⊗XX))⊗X
α⊗1 //

(1⊗q′)⊗1

ºº

α−1

²²
1

2

((P⊗Q)⊗XX)⊗X

(u⊗1)⊗1

¨¨

α−1

²²

3

P⊗((Q⊗XX)⊗X)
1⊗α−1

//

1⊗(q′⊗1)

²²

4

P⊗(Q⊗(XX⊗X))

1⊗(1⊗εX
X)

²²

α
//

5

(P⊗Q)⊗(XX⊗X)

u⊗1

²²

1⊗εX
Xwwooooooooooo

P⊗(Q⊗X)

1⊗q

²²

α //

6

(P⊗Q)⊗X

u⊗1

²²

7P⊗(XX⊗X)
1⊗εX

X //

8

P⊗X

p

²²
X

9

Q⊗Xq
oo Q⊗(XX⊗X)

1⊗εX
Xoo

(P⊗XX)⊗X
p′⊗1 //

α−1

OO

XX⊗X

εX
X

OO

(Q⊗XX)⊗X
q′⊗1oo

α−1

OO

1 commutes by the axioms of a monoidal category;2 , 3 and 5 commute
sinceα is natural transformation;4 and 9 commute from the definition of
q′; 8 commutes by the definition ofp′; 7 commutes since⊗ is a bifunctor;
6 commutes by assumption onu, p andq (Condition 2.3). That is,(q′ ⊗
1)((u ⊗ 1) ⊗ 1)(α ⊗ 1) = (p′ ⊗ 1)((1 ⊗ q′) ⊗ 1), or, equivalently,(q′(u ⊗
1)α) ⊗ 1 = (p′(1 ⊗ q′)) ⊗ 1 – which means that the left adjuncts of the
morphismsp′(1⊗ q′), q′(u⊗ 1)α : P ⊗ (Q⊗XX) → XX are equal to each
other. Therefore these two morphisms are equal to each other themselves, as
desired.

Proposition 2.5. Let (X, aX) be anM -action and, letaXX : M ⊗ XX →
XX andbXX : XX ⊗ XX → XX be the right adjuncts ofa(1 ⊗ εX

X)α−1 :
(M ⊗ XX) ⊗ X → X and εX

X(1 ⊗ εX
X)α−1 : (XX ⊗ XX) ⊗ X → X

respectively. Then(XX , aXX ) is anM -action, (XX , bXX ) is a semigroup,
and Condition 1.4(a) is satisfied.
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Proof. It is clear that since(X, aX) is anM -action, the sextuple(M,M,X,
µ, aX , aX) satisfies Condition 2.3. From Lemma 2.4 it follows that(M, M,
XX , µ, aXX , aXX ) satisfies Condition 2.3. This together with Proposition
2.2 applied to(X, aX) shows that(XX , aXX ) is an M -action. From the
definition ofbXX we see that(XX , XX , X, bXX , εX

X , εX
X) satisfies Condition

2.3 and by Lemma 2.4(XX , XX , XX , bXX , bXX , bXX ) satisfies Condition
2.3 and therefore(XX , bXX ) is a semigroup. From the definition ofaXX the
sextuple(M, XX , X, aXX , aX , εX

X) satisfies Condition 2.3 and by Lemma
2.4 the sextuple(M, XX , XX , aXX , aXX , bXX ) satisfies Condition 2.3 and
therefore(XX , aXX , bXX ) satisfies Condition 1.4(a).

Let f1 : XX → XM⊗X andf2 : XX → XM⊗X be the right adjuncts of
εX
X(1 ⊗ aX) : XX ⊗ (M ⊗ X) → X andaX(1 ⊗ εX

X)σα(1 ⊗ σ) : XX ⊗
(M ⊗X) → X respectively, and lete : E(X) → XX be the equalizer off1

andf2.

Proposition 2.6. For the object E(X) there exist unique morphismsbE(X) :
E(X) ⊗ E(X) → E(X) and aE(X) : M ⊗ E(X) → E(X) for which e
becomes anM -magma morphism and(E(X), aE(X), bE(X)) is in M -Mag2.

Proof. In the diagram

E(X)⊗ E(X)
e⊗e //

bE(X)

²²Â
Â
Â XX ⊗XX

b
XX

²²
E(X) e // XX

f1 //

f2

// XM⊗X

M ⊗ E(X)
1⊗e //

aE(X)

OOÂ
Â
Â

M ⊗XX

a
XX

OO

it can be seen, by considering the left adjuncts off1bXX (e⊗e) andf2bXX (e⊗
e) and the left adjuncts off1aXX (1 ⊗ e) andf1aXX (1 ⊗ e), that the arrows
bXX (e ⊗ e) and aXX (1 ⊗ e) equalizef1 and f2 and so, by the universal
property of the equalizere, there exist unique arrowsbE(X) andaE(X) mak-
ing the diagram commute. The left adjuncts of the morphismseaE(X)(1 ⊗
bE(X)) and ebE(X)(1 ⊗ aE(X))σα(1 ⊗ σ) can been seen to be equal and
sincee is a monomorphism this shows that(E(X), aE(X), bE(X)) satis-
fies Condition 1.4(b). On the other hand, according to our construction of
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aXX andbXX , the monomorphisme becomes anM -magma morphism from
(E(X), aE(X), bE(X)) to (XX , aXX , bXX ), which implies that(E(X), aE(X),
bE(X)) satisfies Condition 1.4(a) and that(E(X), bE(X)) is a semigroup.
This completes the proof.

By Theorem 1.9 we have thatL(E(X), bE(X), aE(X)) = (E(X), b̃E(X) =
bE(X)(1 − σ), aE(X)) is in Lie(M, δ). For (X, aX , bX) ∈ Lie(M, δ) let g1 :
XX → XX⊗X be the right adjunct ofεX

X(1 ⊗ bX) : XX ⊗ (X ⊗X) → X,
let g2 : XX → XX⊗X be the right adjunct of the sum of the morphisms
bX(εX

X ⊗ 1)α : XX ⊗ (X ⊗ X) → X andbX(1 ⊗ εX
X)σα(1 ⊗ σ) : XX ⊗

(X ⊗X) → X, and letd : D(X) → E(X) be the equalizer ofg1e andg2e.

Proposition 2.7. For the objectD(X) there exist unique morphismsbD(X) :
D(X)⊗D(X) → D(X) andaD(X) : M⊗D(X) → D(X) for whichd is an
M -magma morphism from(D(X), aD(X), bD(X)) toL(E(X), aE(X), bE(X))
and(D(X), aD(X), bD(X)) is in Lie(M, δ).

Proof. In the diagram

D(X)⊗D(X)
d⊗d //

bD(X)

²²Â
Â
Â
Â
Â
Â
Â

E(X)⊗ E(X)

(1−σ)
²²

E(X)⊗ E(X)
e⊗e //

bE(X)

²²

XX ⊗XX

b
XX

²²
D(X) d // E(X) e // XX

g1 //

g2

// XX⊗X

M ⊗D(X)

aD(X)

OOÂ
Â
Â

1⊗d // M ⊗ E(X)
1⊗e //

aE(X)

OO

M ⊗XX

a
XX

OO

it can be seen, by considering the left adjuncts ofg1bXX (e⊗e)(1−σ)(d⊗d)
andg2bXX (e⊗e)(1−σ)(d⊗d) and the left adjuncts ofg1aXX (1⊗e)(1⊗d)
andg2aXX (1⊗ e)(1⊗ d), that the morphismsbXX (e⊗ e)(1− σ)(d⊗ d) and
aXX (1⊗e)(1⊗d) equalizeg1 andg2 and so, by the universal property of the
equalizerd, there exist unique arrowsbD(X) andaD(X) making the diagram
commute. Sinced is a monomorphism we see that(D(X), aD(X), bD(X)) is
in Lie(M, δ).

We now define the object Der(X) of a derivation ofX = (X, aX , bX) as
Der(X) = D(X) = (D(X), aD(X), bD(X)).
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3 Representability of split extension functor for
the category Lie(M, δ)

In this section we show that the functor SplExt(−, X) can be defined for
the categoryLie(M, δ) and prove that it is representable by showing that
Der(X) = D(X) is the representing object.

To define the functor SplExt(−, X) it is sufficient to show that the split
short five lemma holds forLie(M, δ) and that the categoryLie(M, δ) has
pullbacks of all split epimorphisms along arbitrary morphisms.

It is easily seen that the categoryLie(M, δ) is pointed and finitely com-
plete. SinceC is additive the split short five lemma holds inC and since the
forgetful functorW : Lie(M, δ) → C preserves limits and reflects isomor-
phisms, the split short five lemma holds also inLie(M, δ).

Consider the diagram

X
k

// A

f
²²

loo p //
G

s
oo

X
k′

// A′l′oo p′ //
G

s′
oo

wheref is a morphism (hence an isomorphism) of split extensions inLie(M,
δ), andl andl′ are the uniqueM -action morphisms withkl = 1A − sp and
k′l′ = 1A′ − s′p′; we shall writeA = (A, a, b) andA′ = (A′, a′, b′). Since
k′ is a monomorphism andk′l′f = (1A′ − s′p′)f = f − s′p′f = f − fsp =
f(1A − sp) = fkl = k′l we havel′f = l; therefore

lb(s⊗ k) = l′fb(s⊗ k) = l′b′(f ⊗ f)(s⊗ k) = l′b′(s′ ⊗ k′).

Consequently, if we defineh : G → XX as the right adjunct of the compos-
ite lb(s ⊗ k), we see thath depends only on the isomorphism class of the
split extensions.
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In the diagram

G
h

))SSSSSSSSSSSSSSSSSSSS

i $$I
I

I
I

I

j

²²Â
Â
Â
Â
Â
Â
Â XR⊗X

E(X) e
// XX

f1

;;vvvvvvvvv f2

;;vvvvvvvvv

g1

##GGGGGGGGG

g2
##GGGGGGGGG

D(X)

d
::vvvvvvvvv

XX⊗X

where the solid arrows are defined as before, it can be seen, by considering
the left adjuncts off1h andf2h and the left adjuncts ofg1h andg2h, thath
equalizesf1 andf2 as well asg1 andg2, and so by the universal properties
of the equalizerse andd, there exist arrowsi and j making the diagram
commute.

Proposition 3.1. The morphismj : G → D(X) is a morphism inLie(M, δ).

Proof. Consider the diagrams

M⊗G
1⊗j

//

1⊗h

++

aG

²²

M⊗D(X)
1⊗ed

//

aD(X)

²²

M⊗XX

a
XX

²²
G

j //

h

44D(X) ed // XX

G⊗G
j⊗j

//

h⊗h

++

bG

²²

D(X)⊗D(X)
ed⊗ed

//

bD(X)

²²

XX⊗XX

1−σ

²²
XX⊗XX

b
XX

²²
G

j //

h

44D(X) ed // XX

whereG = (G, aG, bG). Considering the left adjuncts ofaXX (1⊗h) andhaG

(in the first diagram), and considering the left adjuncts ofbXX (1−σ)(h⊗h)
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andhbG (in the second diagram), the diagram formed by the outer arrows
can be seen to commute. Therefore, sincee andd are monomorphisms and
the right hand square in each diagram commutes, the left hand squares also
commute.

For eachG in Lie(M, δ), using the above construction we define the map
τG : SplExt(G,X) → Lie(M, δ)(G, Der(X)) as follows:

τG([ X
k // A

p //
G

s
oo ]) = j.

Proposition 3.2. The mapsτG form a natural transformation.

Proof. Let A = (A, a, b) andA′ = (A′, a′, b′) be objects inLie(M, δ) and
let f : G′ → G be any morphism inLie(M, δ), such that in the diagram

X

1X

²²

k′
// A′

f ′
²²

l′oo p′ //
G′

s′
oo

f

²²
X

k
// A

loo p //
G

s
oo

(A′, f ′, p′) is the pullback off andp in Lie(M, δ), l and l′ are the unique
M -action morphisms withkl = 1A − sp andk′l′ = 1′A − s′p′, and the top
and bottom rows excludingl andl′ are split extensions. Leth′ be the right
adjunct ofl′b′(s′⊗ k′) andj′ be the unique morphism withedj′ = h′, that is,

τ ′G([ X
k′ // A′

p′ //
G′

s′
oo ]) = j′.

Sincelb(s ⊗ k)(f ⊗ 1) = lb(sf ⊗ k) = lb(f ′s′ ⊗ f ′k′) = lfb′(s′ ⊗ k′) =
l′b′(s′ ⊗ k′) andh andh′ are the right adjuncts oflb(s⊗ k) andl′b′(s′ ⊗ k′)
respectively, it follows thathf = h′. Therefore we haveedjf = hf = h′ =
edj′ and sinceed is monomorphism we conclude thatjf = j′ and that the
diagram

SplExt(G,X)
τG //

SplExt(f,X)
²²

Lie(M, δ)(G, Der(X))

Lie(M,δ)(f,Der(X))
²²

SplExt(G′, X)
τG′ // Lie(M, δ)(G′, Der(X))

commutes.
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Theorem 3.3.The functorSplExt(−, X) : Lie(M, δ) → Setis representable
with representation(τ, Der(X)).

Proof. We show that the natural transformationτ : SplExt(−, X) → Lie(M,
δ)(−, Der(X)) is a natural isomorphism. For an arrowz : G → Der(X)
in Lie(M, δ) let r : G ⊗ X → X be the left adjunct ofedz, and let
X oz G = (X ⊕G, a, b), where

a = ι1aX(1⊗ π1) + ι2aG(1⊗ π2)

and

b = ι1(bX(π1 ⊗ π1) + r(π2 ⊗ π1)(1− σ)) + ι2bG(π2 ⊗ π2),

in obvious notation. It can been seen thatX oz G is in Lie(M, δ) and that
the diagram

X
ι1 // X or G

π2 //
G

ι2
oo

is a split extension inLie(M, δ). Let τ̂G : Lie(M, δ)(G, Der(X)) → SplExt(G,
X) be the map defined as follows:

τ̂G(z) = [ X
ι1 // X or G

π2 //
G

ι2
oo ]

It can be seen that̂τG = τG
−1 and hence(τ, Der(X)) is a representation of

SpltExt(−, X).

Remark 3.4. Since the categoryCat(Lie(M, δ)) of internal categories in
Lie(M, δ) can be presented asLie(M ′, δ′) for suitableM ′ andδ′ (it essen-
tially follows from the results of [5]), by Theorem 3.3 the functorSplExt:
Cat(Lie(M, δ)) → Set is representable.
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We dedicate this article to Francis Borceux

Abstract
Guided by the heuristic example of the tangential Tfa of a map f diffe-

rentiable at a which can be canonically represented by the unique continuous
affine map it contains, we extend, in this article, into a specific metric context,
this property of representation of a metric jet. This yields a lot of relevant
examples of such representations.

L’application affine continue qui est tangente, en un point a fixé, ï£¡ une
application f différentiable en ce point, peut être très naturellement consi-
dérée comme un représentant de la tangentielle Tfa de f en a. Cet exemple
sera notre guide heuristique pour trouver un context métrique spécifique dans
lequel cette propriété de représentation d’un jet métrique soit possible. Au
passage, on fournit de nombreux exemples pertinents de telles représentations.

Key words : differential calculus, Gateaux differentials, fractal maps, jets, metric
spaces, categories

AMS classification : 58C25, 58C20, 28A80, 58A20, 54E35, 18D20

INTRODUCTION

This article is the sequel of a paper published in TAC [6] ; most of the
proofs of the statements given here can be found in the second chapter
of a paper published in arXiv [5].

We recall that maps f, g : M −→ M ′ (where M ,M ′ are metric
spaces) are tangent at a (not isolated in M), what we denote f �≺a g, if
f(a) = g(a) and lima6=x→a

d(f(x),g(x))
d(x,a)

= 0 ; a metric jet (in short, a jet)
is an equivalence class for this relation �≺a, restricted to the set of the
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maps which are locally lipschitzian at a (in short, LLa). We say that a
map f is tangentiable at a (in short, Tanga) if it possesses a tangent at
a which is LLa ; then the jet composed of all the LLa maps which are
tangent to f at a is called the tangential of f at a and denoted Tfa.

LL and Jet are the cartesian categories whose objects are pointed
metric spaces (for both) and morphisms (M,a) −→ (M ′, a′), the LLa
maps f verifying f(a) = a′ (for LL), and the jets ϕ whose elements are
forequoted maps which are tangent altogeter at a (for Jet). We denote
q : LL−→ Jet the canonical surjection which associates its tangential
Tfa to a LLa map f : (M,a) −→ (M ′, a′).

This paper takes up and develops two previous talks ([2] and [3]).
Here, we propose a frame in which each jet can be canonically represen-
ted by one of its elements. This frame is the algebraico-metric structure
of “Σ-contracting” metric space (equipped with a “central point” denoted
ω) ; the morphisms between such spaces, called “Σ-homogeneous” maps,
have a fundamental “Σ-uniqueness property” : two Σ-homogeneous maps
which are tangent at ω are equal.

Carrying on the analogy with the classical differential calculus, we
are interested (in the Σ-contracting metric world) in maps f which are
tangentiable at ω and whose tangential Tfω possesses a Σ-homogeneous
element which can represent it ; such a map is said “Σ-contactable” at
ω, the unique Σ-homogeneous LLω element tangent to it at ω being its
“Σ-contact” at ω. In many respects, the properties of “Σ-contactibility”
are similar to those of differentiability, as, for instance, the search of
extrema for a map taking its values in R (section 5).

We will mainly be interested in two special cases, in the normed
vector space (in short n.v.s.), which will provide many examples. The
first one with Σ = R+ (section 3), brings back the “old” interesting
notion of maps which are differentiable in the sense of Gateaux [7]. The
second one (section 4) immerses ourselves in the fractal universe. We
finally notice that the notion of contactibility does not entirely exhaust
the one of tangentiability, since there exist maps which are tangentiable
(at a central point) and not contactable (at this point).

For general definitions in category theory (for instance cartesian or
enriched categories), see [1].
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Acknowledgements : It is a talk about Ehresmann’s jets, given by Francis
Borceux at the conference organised in Amiens in 2002 in honour of
Andrée and Charles Ehresmann which has initiated our work. Since
at that epoch we where interested, in our teaching, in what could be
described uniquely with metric tools ... hence the idea of the metric
jets !

1 Valued monoids, contracting spaces

Our aim, in this section, is to define the algebraico-metric notion of
contracting spaces and prove they possess the above mentionned uni-
queness property.

Definition 1.1 a valued monoid Σ is a monoid (its law of composi-
tion is denoted here multiplicatively) equipped with a particular element
denoted 0, and with a monoid homomorphism v : Σ −→ R+ (where
R+ = [0,+∞[), called the valuation of Σ, verifying the two conditions :

(1) ∀t ∈ Σ (v(t) = 0⇐⇒ t = 0),
(2) ∃t ∈ Σ (0 < v(t) < 1).

Thanks to (1), we have that 0 is an absorbing element in Σ.

Examples 1.2
1) R and its multiplicative submonoids R+ and [0, 1] are valued

monoids, where 0 is their absorbing element (their valuation being the
absolute value).

2) If r is a real number verifying 0 < r < 1, we denote N′r the
additive monoid N′r = N∪ {∞}, where ∞ is its absorbing element, and
whose valuation vr : N′r −→ R+ is given by vr(n) = rn if n ∈ N and
vr(∞) = 0.

Definition 1.3
1) A morphism of valued monoids σ : Σ −→ Σ′ is a

monoid homomorphism verifying : ∀t ∈ Σ (v(σ(t)) = v(t)).
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2) A valued submonoid of Σ′ is a valued monoid Σ verifying Σ ⊂ Σ′

such that the canonical injection j : Σ ↪→ Σ′ is a morphism of valued
monoids.

Remark 1.4
A valuation v : Σ −→ R+ is itself a morphism of valued monoids.

Definition 1.5 Σ being a valued monoid, a Σ-contracting metric space
(in short a Σ-contracting space) is a metric space M pointed by ω (said
to be central), equipped with an external operation Σ × M −→ M :
(t, x) 7→ t ? x which, in addition of the usual properties :

(1) ∀x ∈M (1 ? x = x),
(2) ∀t, t′ ∈ Σ ∀x ∈M (t′ ? (t ? x) = (t′.t) ? x),

verifies also the following conditions :
(3) 0 ? ω = ω,
(4) ∀t ∈ Σ ∀x, y ∈M (d(t ? x, t ? y) = v(t)d(x, y))

The central point of Σ-contracting spaces will usually be denoted ω.

Remark 1.6 A Σ-contracting space M verifies the following proper-
ties : (1) ∀t ∈ Σ (t ? ω = ω), (2) ∀x ∈M (0 ? x = ω).

Examples 1.7
1) Let E be a n.v.s. ; fixing a point a ∈ E, the pointed n.v.s. (E, a)

is denoted Ea. We make this Ea a R-contracting space (with central
point a), setting, for t ∈ R and x ∈ E, t ?x = a+ t(x−a). This external
operation on Ea is said to be “standard”.

2) When Σ is a valued monoid whose valuation v : Σ −→ R+ is
injective, then Σ becomes itself a Σ-contracting space setting ω = 0
and, for s, t ∈ Σ, t ? s = t.s and d(s, t) = |v(t)− v(s)|.

3) If M,M ′ are Σ-contacting spaces, then so is M ×M ′.
4) Let σ : Σ −→ Σ′ be a morphism of valued monoids ; then every

Σ′-contracting space can be canonically equipped with a structure of
Σ-contracting space, the new Σ-operation being : (t, x) 7→ σ(t) ? x.
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Remarks 1.8
1) If Σ is a valued monoid, every R+-contracting space M has also

a “canonical” structure of Σ-contracting space (its external operation
being : (t, x) 7→ v(t) ? x for every t ∈ Σ and x ∈ M). In particular, a
pointed n.v.s. Ea has also a canonical structure of Σ-contracting space,
its external operation being, for t ∈ Σ and x ∈ E, t?x = a+v(t)(x−a).

2) We notice that we have two structures of R-contracting space
on Ea : the standard one of 1.7, and the above canonical one, whose
external operation is t ? x = a+ |t|(x− a).

3) In a Σ-contracting space M 6= {ω}, ω is never isolated in M .

Definition 1.9
A Σ-contracting space is revertible if, for every t ∈ Σ verifying t 6= 0,

the map t ? (−) : M −→ M is bijective. In this case, we set t
−1
? x =

(t ? (−))−1(x) for x ∈M .

Remark 1.10
If σ : Σ −→ Σ′ is a morphism of valued monoids and M a rever-

tible Σ′-contracting space, then M is a revertible Σ-contracting space.

Examples and counter-examples 1.11
1) The pointed n.v.s. Ea is a revertible R+(or R)-contracting space

for the standard structure ; with t
−1
? x = t−1 ? x = a + t−1(x − a) for

every t ∈ Σ (t 6= 0) and x ∈ E. Actually, for each valued monoid Σ,
Ea is a revertible Σ-contracting space for the canonical structure ; with
t
−1
? x = t−1 ? x = a+ v(t)−1(x− a) for every t ∈ Σ (t 6= 0) and x ∈ E.

2) [0, 1] and N′r are Σ-contracting spaces with, respectively, Σ =
[0, 1], ω = 0, and Σ = N′r, ω =∞. But none of them is revertible.

Definition 1.12 Let Σ be a valued monoid.
1) A map h : M −→M ′ is Σ-homogeneous ifM,M ′ are Σ-contracting

spaces and h verifies : ∀t ∈ Σ ∀x ∈M (h(t ? x) = t ? h(x)).
2) M ′ being a Σ-contracting space and M a metric subspace of M ′,

then M is a Σ-contracting subspace of M ′ if ω ∈ M and t ? x ∈ M
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for all t ∈ Σ and x ∈ M ; then the canonical injection M ↪→ M ′ is
Σ-homogeneous.

Remarks 1.13
1) A Σ-homogeneous map h : M −→M ′ verifies h(ω) = ω.
2) Let σ : Σ −→ Σ′ be a morphism of valued monoids, M and M ′

two Σ′-contracting spaces. Then, every Σ′-homogeneous mapM −→M ′

is Σ-homogeneous ; the inverse is true when σ is surjective.

Proposition 1.14 For every Σ-homogeneous map h : M −→ M ′, we
have the equivalence : h k-lipschitzian ⇐⇒ h k-LLω

Proof : r > 0 being such that h|B(ω,r) is k-lipschitzian, we choose
t ∈ Σ such that 0 < v(t) < 1 ; then, for each x, y ∈ M , there exists
n ∈ N verifying tn ? x, tn ? y ∈ B(ω, r). �

Theorem 1.15 (of Σ-uniqueness)
Let h1, h2 : M −→M ′ be two Σ-homogeneous maps verifying h1 �≺ω h2 ;
then h1 = h2.

Proof : Let us take t ∈ Σ verifying 0 < v(t) < 1 and fix x ∈ M . We
can assume that x 6= ω. Let us set xn = tn ? x for each n ∈ N. Then, we
have xn 6= ω and limn xn = ω, so that we can write : d(h1(xn),h2(xn))

d(xn,ω)
=

d(h1(tn?x),h2(tn?x))
d(tn?x,tn?ω)

= d(tn?h1(x),tn?h2(x))
d(tn?x,tn?ω)

= v(tn)d(h1(x),h2(x))
v(tn)d(x,ω)

= d(h1(x),h2(x))
d(x,ω)

.
But, as limn xn = ω and h1 �≺ω h2, this provides 0 = limn

d(h1(xn),h2(xn))
d(xn,ω)

=
d(h1(x),h2(x))

d(x,ω)
which implies d(h1(x), h2(x)) = 0, i.e h1(x) = h2(x). �

Theorem 1.16 Let M,M ′ be Σ-contracting spaces with M ′ revertible,
V a neighborhood of ω in M , and maps f : V −→ M ′, h : M −→ M ′

such that h is Σ-homogeneous and verifies f �≺ω h|V . Then, for all
x ∈M , we have h(x) = lim06=v(t)→0 t

−1
? f(t ? x).

Proof : The above equality is clearly true for x = ω. If x 6= ω, we have
ω = limv(t)→0 t ? x (since d(t ? x, ω) = d(t ? x, t ? ω)
= v(t)d(x, ω)), which insures that there exists ε > 0 such that, for all
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t ∈ Σ verifying 0 < v(t) < ε, we have t?x ∈ V −{ω}. Thus, for all these
t, we can write : d(f(t?x),h(t?x))

d(t?x,ω)
= d(f(t?x),t?h(x))

d(t?x,t?ω)
= d(t?(t

−1
? f(t?x)),t?h(x))
v(t)d(x,ω)

=

v(t)d(t
−1
? f(t?x),h(x))

v(t)d(x,ω)
= d(t

−1
? f(t?x),h(x))
d(x,ω)

. Since f �≺ω h|V , we have

lim06=v(t)→0
d(t
−1
? f(t?x),h(x))
d(x,ω)

= lim06=v(t)→0
d(f(t?x),h(t?x))

d(t?x,ω)
= 0, which finally

means that lim06=v(t)→0 t
−1
? f(t ? x) = h(x). �

Theorem 1.17 Let M,M ′ be Σ-contracting spaces with M ′ revertible,
V a neighborhood of ω in M , g : V −→ M ′ a k-LLω map, and
h : M −→ M ′ a Σ-homogeneous map verifying g �≺ω h|V . Then,
h is k-lipschitzian.

Proof : Let W be a neighborhood of ω in V such that g|W is
k-lipschitzian, x, y ∈ M , and t ∈ Σ such that 0 < v(t) < 1 ; then,
there exists N ∈ N such that tn ? x, tn ? y ∈ W for all n ≥ N ; so
that, for all these n, we have d(g(tn ? x), g(tn ? y)) ≤ kd(tn ? x, tn ? y)

= kv(tn)d(x, y), which provides d(tn
−1
? g(tn ? x), tn

−1
? g(tn ? y)) =

(v(tn))−1d(g(tn ? x), g(tn ? y)) ≤ kd(x, y). Now, d being continuous, we
obtain (doing n→ +∞) : d(h(x), h(y)) ≤ kd(x, y). �

Corollary 1.18 M,M ′ being as in 1.17, and h : M −→ M ′ being a
Σ-homogeneous map, we have the equivalences :

h lipschitzian ⇐⇒ h LLω ⇐⇒ h Tangω

Counter-example 1.19 We give here an example of function
f : R2 −→ R which is R-homogeneous and continuous (since it is LSL :
see 1.20 below), but not lipschitzian (thus not Tang0). Consider the
function f(x, y) = x sin y

x
if x 6= 0 and f(0, y) = 0 (see Figure 1 in [5]).

This f is clearly R-homogeneous R2
0 −→ R0. We also notice that f is

LSL (at every point) since it is differentiable on R∗×R ; and it is clear
at each point (0, a). Now, if x 6= 0, we have ∂f

∂x
(x, y) = sin y

x
− y

x
cos y

x
and

thus, putting xn = 1
n2 and yn = 2π

n
, we obtain limn

∂f
∂x

(xn, yn) = −∞,
where limn(xn, yn) = (0, 0). Thus, this function f cannot be lipschitzian !
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Remarks 1.20
1) For a map f : M −→ M ′ between metric spaces ;

LSL means “locally semi-lipschitzian” at every point of M ; and “semi-
lipschitzian” at a ∈ M means that, there exists a real k > 0 such that,
for all x ∈M , we have d(f(x), f(a)) ≤ kd(x, a).

2) By the way, in 1.19, we have prove that : LSLa 6=⇒ Tanga.
Thus, we cannot complete our equivalences of 1.18, adding the proper-
ties of being LSLω or continuous at ω ! Even though, for linear maps,
all these properties are equivalent.

2 Representability and Contactibility

The Σ-uniqueness property allows to choose at most one canonical
representative element in each jet between Σ-contracting spaces (poin-
ted by their central point ω) ; hence the term of “Σ-representable” jets.
The maps f which are tangentiable at ω and whose tangential Tfω is
Σ-representable are called “Σ-contactable” at ω.

Remarks 2.1
1) Let Σ be a valued monoid ; a map h : M −→ M ′ which is

Σ-homogeneous and lipschitzian will be called Σ-Lhomogeneous.
2) A Σ-Lhomogeneous map is a Σ-homogeneous which is LLω.

We denote Σ-Contr, the category whose objects are the
Σ-contracting spaces and whose morphisms are the Σ-Lhomogeneous
maps (it is a suitable world for guarantying the Σ-uniqueness property).
When σ : Σ −→ Σ′ is a morphism of valued monoids, there exists a ca-
nonical functor σ̂ : Σ′-Contr −→ Σ-Contr. For every valued monoid Σ,
we also have another canonical functor U : Σ-Contr −→ LL defined by
U(M) = (M,ω) and U(h) = h ; then we call J the following composite :
Σ-Contr U−→ LL q−→ Jet (refer to the introduction for q : LL−→ Jet).

Proposition 2.2 Σ-Contr is a cartesian category and the previous
functors U , and then J , are strict morphisms of cartesian categories.
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Now, since for each M,M ′ ∈ |Σ-Contr|, the canonical map :
Σ-Contr(M,M ′)

can−→ Jet(JM, JM ′), defined by can(h) = J(h) =Thω, is
injective (thanks to the Σ-uniqueness property), we can equip
Σ-Contr(M,M ′) with the distance d(h, h′) = d(J(h), J(h′)) (we recall
(see [6]) that the category Jet is enriched in Met, the cartesian category
whose objects are the metric spaces and morphisms, the LSL maps).

Proposition 2.3
1) The cartesian category Σ-Contr is enriched in Met.
2) For each M,M0,M1 ∈ |Σ−Contr|, the following canonical map :

Σ−Contr(M,M0 ×M1)
can−→ Σ−Contr(M,M0) × Σ−Contr(M,M1) is

an isometry.

Proposition 2.4 Let h, h′ ∈ Σ−Contr(M,M ′) ; then, we have d(h, h′) =

sup{C(x) |x ∈ B′(ω, 1)}, where C(x) = d(h(x),h′(x))
d(x,ω)

if x 6= ω, C(ω) = 0.

Proposition 2.5 Let M,M ′ be Σ-contracting spaces where M ′ is
revertible, and h : M −→ M ′ a Σ-Lhomogeneous map. Let us set
k = sup{d(h(x),h(y))

d(x,y)
|x, y ∈ B′(ω, 1);x 6= y}. Then :

1) h is k-lipschitzian,
2) ρ(Thω) = k (if ϕ is a jet, its lipschitzian ratio ρ(ϕ) = inf K(ϕ)

where K(ϕ) = {k > 0 | ∃f ∈ ϕ, f is k − LLa} ; see [6]).

Proof : Come from 1.17. �

Definition 2.6 Consider two Σ-contracting spaces M,M ′ and a jet
ϕ : (M,ω) −→ (M ′, ω). We say that : ϕ is Σ-representable if there
exists a Σ-Lhomogeneous element h : M −→ M ′ verifying J(h) = ϕ
(i.e. Thω = ϕ). Thanks to the uniqueness theorem, such a h is unique,
and may thus be called the Σ-representative element of the jet ϕ.

Remark 2.7 The Σ-representable jets are stable under composition,
and pairs (and thus products).

We now call Σ-contracting domain a pair (M,V ) where M is a
Σ-contracting space and V a neighborhood of ω in M . Besides,
f : (M,V ) −→ (M ′, V ′) is said to be a centred map if (M,V ) and
(M ′, V ′) are Σ-contracting domains, and f : V −→ V ′ verifies f(ω) = ω.
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Definition 2.8 Let f : (M,V ) −→ (M ′, V ′) be a centred map. We say
that f is Σ-contactable if f : V −→ V ′ is tangentiable at ω and if the
following composite jet is Σ-representable :

(M,ω) ∼ // (V, ω)
Tfω // (V ′, ω) ∼ // (M ′, ω)

We denote KΣf : M −→ M ′ (or merely Kf if none ambiguity about
Σ) the unique representative element of the above composite jet ; and we
call it the Σ-contact of f .

Remarks 2.9
1) In other words, f is Σ-contactable if there exists a Σ-Lhomogeneous

h : M −→ M ′ such that f �≺ω h|V (where, here, f is seen as a map
V −→M ′). In that case, h = KΣf ; and KΣf ∈ Σ-Contr(M,M ′).

2) Let σ : Σ −→ Σ′ be a morphism of valued monoids. If
f is a Σ′-contactable centred map, f is also Σ-contactable, with
KΣf = KΣ′f .

3) Let E,E ′ be n.v.s., U an open subset of E, a ∈ U , f : U −→ E ′

a map. If f is differentiable at a, then f : (Ea, U) −→ (E ′f(a), E
′) is

standard R-contactable with KRf(x) = f(a)+dfa(x−a)), its continuous
affine tangent at a ; and, for every valued monoid Σ, it is even canonically
Σ-contactable with KΣf = KRf written as above.

Proposition 2.10 Let f : (M,V ) −→ (M ′, V ′) be a centred Σ-contac-
table map. Then, for all x ∈M , Kf(x) = lim06=v(t)→0 t

−1
? f(t ? x).

Proposition 2.11 Here, for lightening, we omit the surrounding
Σ-contracting spaces of the several neigborhoods of ω.

1) Let f : V −→ V ′, g : V ′ −→ V ′′ be two centred maps. If f and g
are Σ-contactable, so is g.f , with K(g.f) = Kg.Kf .

2) Let f0 : V −→ V0, f1 : V −→ V1 be two centred maps. If f0

and f1 are Σ-contactable, so is the pair (f0, f1) : V −→ V0 × V1, with
K(f0, f1) = (Kf0,Kf1).

3) Let f0 : V0 −→ V ′0 , f1 : V1 −→ V ′1 be two centred maps. If f0 and
f1 are Σ-contactable, so is the product f0 × f1 : V0 × V1 −→ V ′0 × V ′1 ,
with K(f0 × f1) = Kf0 ×Kf1.
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In the n.v.s. frame, we can define, with the help of an isometric
translation, the analog kfa of the differential at a dfa, for the contact
Kf (this one generalizing the continuous affine tangent to f at a). More
precisely, we recall that, for every n.v.s. E and a ∈ E, the pointed
n.v.s. Ea is a Σ-contracting space for any valued monoid Σ. Now, if
f : (Ea, U) −→ (E ′f(a), U

′) is a Σ-contactable map (in the sens of
2.8 and 2.9), then we say that f is Σ-contactable at a, its Σ-contact
at a being kΣfa = Θ−1

af(a)(KfΣ), in short kfa = Θ−1
af(a)(Kf) ; where

Θaa′ : Σ-Contr(E0, E
′
0) −→ Σ-Contr(Ea, E ′a′) is the isometric transla-

tion defined by Θaa′(h)(x) = a′ + h(x − a). The Σ-Lhomogeneous map
kfa : E0 −→ E ′0 is thus the translate at 0 of the Σ-Lhomogeneous map
Kf : Ea −→ E ′f(a), the Σ-contact of f .

The formulas of 2.11 can then be rewritten in this context for the kfa,
absolutely similar to those of dfa (the kfa are stable under composition,
pairs and products, with : k(g.f)a = kgf(a)kfa, k(f1, f2)a = (kf1a, kf2a)
and k(f1 × f2)(a1,a2) = kf1a1 × kf2a2).

Remarks 2.12
1) Let E,E ′ two n.v.s., U an open subset of E, a ∈ U ; then

f : U −→ E ′ differentiable at a =⇒ f : (Ea, U) −→ (E ′f(a), E
′)

Σ-contactable at a for any Σ ; with kΣfa = dfa. More precisely, if f is
Σ-contactable at a, then f is differentiable at a iff kΣfa is linear.

2) f : (Ra, U) −→ (E ′f(a), U
′) is standard R-contactable at a iff

f : U −→ U ′ is differentiable at a with kRfa = dfa. It is not always the
case : see 2)below.

3) We prove here that standard R-contactable at a 6=⇒
differentiable at a : consider the function f : R2 −→ R defined by
f(0, 0) = 0 and f(x, y) = xy2

x2+y2
if (x, y) 6= (0, 0). This f is differentiable

on R2 − {(0, 0)}, and, since for (x, y) 6= (0, 0), ‖df(x,y)‖ is bounded, f
is lipschitzian on R2. Besides, it is obviously R-homogeneous, so that f
is standard R-contactable at 0, with kRf0 = f . However, since f is not
linear, it cannot be differentiable at 0 (see Figure 5 in [5]) !

Proposition 2.13 If f : (Ea, U) −→ (E ′f(a), U
′) is Σ-contactable at a,

we have :
1) kfa(x) = lim06=v(t)→0

f(a+v(t)x)−f(a)
v(t)

for all x ∈ E,
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2) ρ(Tfa) = sup{‖h(x)−h(y)‖
‖x−y‖ |x, y ∈ B′(0, 1), x 6= y}, where h = kfa

is ρ(Tfa)-lipschitzian (see 2.5).

3 G-differentiability

Here Σ = R+. René Gateaux 1, defined maps (said “differentiable in
the sense of Gateaux”) which are very close to our R+-contactable maps :
the main difference being the fact that we replace his continuous maps
(see Bouligand in [7]) by lipschitzian maps. In homage to Gateaux, we
choose “G-differentiable” for “R+- contactable” 2.

E and E ′ being two n.v.s., we merely write Hom+(E,E ′) for the
n.v.s. that we should denote R+-Contr(E0, E

′
0) ; we thus recall that its

elements are the R+-Lhomogeneous maps h : E0 −→ E ′0, i.e the maps
h : E −→ E ′ which are lipschitzian and verify h(tx) = th(x) for all
t ∈ R+ and x ∈ E.

Examples 3.1
1) Standard R-Lhomogeneous implies R+-Lhomogeneous ; in parti-

cular, the continuous linear maps from E to E ′ are in Hom+(E,E ′).
2) Let E be a n.v.s. ; then every norm N on E, which is equivalent

to the given norm ‖ ‖ on E, is in Hom+(E,R).
3) The maps Max, Min : Rn −→ R are in Hom+(Rn,R), since they

are 1-lipschitzian.

Proposition 3.2
1) Let h ∈ Hom+(E,E ′), where E 6= {0} ; we have ‖h‖ =

sup{‖h(x)‖ | ‖x‖ = 1}.
2) Let h ∈ Hom+(E,E ′), then, for all ε > 0, we have

ρ(Th0) = sup{‖h(x)−h(y)‖
‖x−y‖ |x 6= y; x, y ∈ C(ε)}, where C(ε) =

{x ∈ E | 1− ε < ‖x‖ < 1 + ε}.

1. The young French René Gateaux was one of the first victims of the first world
war, he was twenty five years old when he died on the third of october 1914.

2. it is shorter than “lipschitzian Gateaux-differentiable” which would be more
convenient.
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Proof : 2) Let us set r(ε) = sup{‖h(x)−h(y)‖
‖x−y‖ |x 6= y; x, y ∈ C(ε)}.

It is clear that r(ε) ≤ ρ(Th0) since h is ρ(Th0)-lipschitzian (by 2.12).
Conversely, take a ∈ E, a 6= 0 and let us set ε′ = ‖a‖ε. Then, for every
x ∈ B(a, ε′), we have x

‖a‖ ,
a
‖a‖ ∈ C(ε). Then r(ε) ≥

‖h( x
‖a‖ )−h( a

‖a‖ )‖
‖ x
‖a‖−

a
‖a‖‖

=

‖h(x)−h(a)‖
‖x−a‖ if x 6= a ; so that h is r(ε)-LSLa. In particular, for every

a ∈ B′(0, 1)−{0}, h is r(ε)- LSLa, with B′(0, 1) convex. Thus, h|B′(0,1)

is r(ε)-lipschitzian (see section 1 in [6]), so that ρ(Th0) ≤ r(ε). �

Proposition 3.3 Let E be a n.v.s. ; then the following map is a linear
isometry : can : Hom+(R, E) −→ E × E : h 7→ (−h(−1), h(1)).

Definition 3.4 A centred map f : (Ea, U) −→ (E ′f(a), U
′) is said to be

G-differentiable at a if it is R+-contactable at a ; in this case, K+f and
k+fa will respectively merely denote KR+f and kR+fa.

Remarks 3.5 In the following cases, E and E ′ are n.v.s., f : U −→ E ′

with U an open subset of E, and a ∈ U .
1) If f is differentiable at a, then f is G-differentiable at a with

k+fa = dfa. More precisely, if f is G-differentiable at a, then f is diffe-
rentiable at a iff k+fa is linear.

2) If f is G-differentiable at a, then f is standard R-contactable at
a iff k+fa is standard R-homogeneous with k+fa = kRfa.

3) If f is G-differentiable at a, then f is Σ-contactable at a for all
valued monoid Σ, with kΣfa = k+fa.

Examples 3.6 The following examples are all G-differentiable :
1) The norm function ϑ : R −→ R : x 7→ |x|, which verifies k+ϑ0 = ϑ

and, for a 6= 0, k+ϑa =dϑa = sign(a)IdR where sign(a) = a
|a| .

2) The euclidian norm function N2 : Rn −→ R : x 7→ ‖x‖2, which
verifies k+N

2
0 = N2 and, for a 6= 0, k+N

2
a =dN2

a .
3) The functions Max, Min : Rn −→ R, which verify :

k+Maxa(x) =Maxi∈I(a)(xi) and k+Mina(x) =Mini∈I(a)(xi), where I(a) =
{i ∈ {1, . . . , n} | ai =Max(a)} and I(a) = {i ∈ {1, . . . , n} | ai =Min(a)} ;
which provides k+Max0 =Max and k+Min0 =Min.
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4) The product norm function N∞ : Rn −→ R : x 7→ ‖x‖∞, which
verifies k+N

∞
0 = N∞ and, for a 6= 0, k+N

∞
a (x) =Maxi∈I(|a|)(sign(ai)xi),

where |a| = (|a1|, . . . , |an|).
5) The norm function N1 : Rn −→ R : x 7→ ‖x‖1, which veri-

fies k+N
1
a (x) =

∑
i∈I0(a) |xi| +

∑
i 6∈I0(a) sign(ai)xi, where I0(a) =

{i ∈ {1, . . . , n} | ai = 0}.

Proof : First, all the above functions h being R+-Lhomogeneous,
they are all G-differentiable at 0 with k+h0 = h.

3) It comes from the equality Max(a + x) =Max(a)+Maxi∈I(a)xi,
which is true for all a, locally in a neighborhood of 0. Indeed :
- If I(a) = {1, · · · , n} (i.e, if a is a constant n-uplet), then, for all x ∈ Rn,
we have Max(a+ x) =Max(a)+Max(x) =Max(a)+ Maxi∈I(a)xi.

- If I(a) 6= {1, · · · , n}. Let j ∈ I(a) such that Maxi∈I(a)(xi) = xj ; we
can write : Max(a)+ Maxi∈I(a)(xi) = aj + xj ≤Max(a+ x). Conversely,
we set r = 1

2
Mini/∈I(a)(Max(a)− ai) ; then r > 0. Let V be the open ball

B∞(0, r) (for the product norm ‖ ‖∞) ; then, for x ∈ V , we have :
- if j 6∈ I(a), xj−Maxi∈I(a)(xi) ≤ |xj|+|Maxi∈I(a)(xi)| ≤ 2‖x‖∞ <

2r ≤ Max(a)− aj, and thus again aj + xj ≤Max(a)+ Maxi∈I(a)(xi),

- if j ∈ I(a), aj + xj =Max(a) + xj ≤ Max(a)+Maxi∈I(a)(xi) ;
finaly, for all x ∈ V , we have Max(a + x) ≤Max(a)+ Maxi∈I(a)(xi) ;
hence the result. Same for Min.

4) Since N∞=Max.ϑn, (where ϑn = ϑ×· · ·×ϑ, n times), the function
N∞ is G-differentiable by composition (section 2).

5) Since N1 = σ.ϑn, where σ is the addition of Rn, N1 is
G-differentiable still by composition. �

Remarks 3.7
1) We are giving here, for each G-differentiable function h studied

in 3.6, the domain D(h) on which h is differentiable.
a) D(ϑ) = R∗ = R− {0}.
b) D(N2) = (R∗)n.
c) D(Max) = {a ∈ Rn | ∃!i ≤ n (ai = Max(a))}. For instance,

for n = 2, D(Max)=∆c where ∆ is the diagonal.
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d) Here D(N∞) = {a ∈ Rn | ∃!i ≤ n (|ai| = ‖a‖∞)}. For n = 2,
D(N∞) = ({a ∈ R2 | |a1| = |a2|})c.

e) For N1, we have D(N1) = {a ∈ Rn | ∀i ≤ n ai 6= 0}.
2) Of course, there exist G-differentiable maps which are not

R+-homogeneous : 3.6 gives a lot of such examples. Indeed, a trans-
late g(x) = f(a+x) of a R+-homogeneous map f is not necessarily still
R+-homogeneous, although, in our examples, such a translate remains
G-differentiable (by composition).

Proposition 3.8 Let f : (Ra, U) −→ (E ′f(a), U
′) be a centred map.

Then f is G-differentiable iff f admits left and right derivatives at a. In
this case, referring to 3.3 for the linear isometry can, we have k+fa =
can−1(f ′l (a), f ′r(a)).

Continuously G-differentiable maps

Our aim here is to prove that, in finite dimension, every continuously
G-differentiable map f (i.e G-differentiable such that k+f is continuous)
is in fact of class C1. We need some preliminary results.

Proposition 3.9 Let U be an open subset of R and f : U −→ R a
continuous function admitting left and right derivatives at every point
of U and such that the functions f ′l , f ′r : U −→ R are continuous at
a ∈ U . Then f ′l (a) = f ′r(a), so that f is derivable at a.

Proof : We need the following well-known lemma :

Lemma 3.10
1) Let f : [a, b] −→ R be a continuous function which admits a right

derivative at every point of ]a, b[, and k ∈ R. Then,
a) If, for all t ∈ ]a, b[ f ′r(t) ≤ k, then f(b)− f(a) ≤ k(b− a),
b) If, for all t ∈ ]a, b[ f ′r(t) ≥ k, then f(b)− f(a) ≥ k(b− a).

2) Same statements with f ′l instead of f ′r.

We come back to the proof of 3.9 : Let ε > 0 ; let us prove that
f ′l (a) ≤ f ′r(a) + ε. Since f ′r is continuous at a, there exists η > 0 such
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that f ′r(x) < f ′r(a) + ε for all x ∈ ]a − η, a + η[⊂ U . Let k = f ′r(a) + ε.
Then, 3.10 provides that, for all x ∈ R verifying a − η < x < a, we
have f(a) − f(x) ≤ k(a − x), i.e f(a)−f(x)

a−x ≤ k, which gives f ′l (a) ≤ k
(doing x→ a−) ; hence f ′l (a) ≤ f ′r(a), doing ε→ 0. Same for the reverse
inequality. �

Corollary 3.11 Let f : (E,U) −→ (R, U ′) be a G-differentiable map,
such that the map k+f : U −→ Hom+(E,R) : x 7→ k+fx is continuous
at a ∈ U . Then, for all v ∈ E, the directionnal derivative at a ∂f

∂v
(a) =

lim06=t→0
f(a+tv)−f(a)

t
exists in R.

Theorem 3.12 We assume that E and E ′ are n.v.s. of finite dimen-
sions and that f : (E,U) −→ (E ′, U ′) is a centred map which is conti-
nuously G-differentiable. Then, f is of class C1.

Proof : Begin first with E ′ = R. �

4 Fractality and neo-fractality

Here Σ = N′r (see section 1). The interest of this particular case is
to speak of fractality.

As in section 3, we remain in the n.v.s. context. Let us fix a real
number 0 < r < 1. Now, E,E ′ being two n.v.s., we specify (referring
to 1.2 and 1.11 for N′r) that the N′r-Lhomogeneous maps h : E0 −→ E ′0
are the maps h : E −→ E ′ which are lipschitzian and which satisfy the
following fractality property : h(rx) = rh(x) for all x ∈ E ; such maps
will be called “r-Lfractal”. Thus, we merely write Fracr(E,E ′) for the
n.v.s. which we should denote N′r-Contr(E0, E

′
0) : see section 2.

Examples 4.1
1) The R+-Lhomogeneous maps E0 −→ E ′0 are r-Lfractal.
2) Consider the function f : R −→ R defined by f(0) = 0 and

f(x) = x sin log |x| for all x 6= 0. Then, f is r-Lfractal for r = e−2π.
3) More generally, for p ∈ {1, 2,∞}, the map fp : Rn −→ Rn :

x 7→ λp(x)x, where λp : Rn −→ R is the function defined by λp(0) = 0
and λp(x) = sin log ‖x‖p for x 6= 0. Then fp is r-Lfractal for r = e−2π.
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4) K being the triadic Cantor set, let K∞ = ∪n∈N3nK and
g : R −→ R : x 7→ d(x,K∞). Then g is 1

3
-Lfractal.

Proof :
2) is a particular case of 3) ... see Fig 1.

Figure 1

3) The fact that fp is lipschitzian, comes from the formulas k+f
p
x(y) =

(sin log ‖x‖p)y+ cos log ‖x‖p
‖x‖p k+N

p
x(y)x and |k+N

p
x(y)| ≤ ‖y‖p (referring to

the examples of 4.6). Using now 3.11, we obtain that fp is 2-lipschitzian.
4) g is 1-lipschitzian. Besides, as 1

3
K∞ = K∞, we have g(1

3
x) =

d(1
3
x,K∞) = d(1

3
x, 1

3
K∞) = 1

3
d(x,K∞) = 1

3
g(x). See Fig 2 3

Figure 2

�

Proposition 4.2 Let h ∈ Fracr(E,E ′).
1) If E 6= {0}, we have : ‖h‖ = sup{‖h(x)‖

‖x‖ | r < ‖x‖ ≤ 1}.

3. We could call g the “Giseh” function, if, as Napoleon, we gaze at the Giseh
pyramides diminishing at the horizon !
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2) For every ε > 0, we have ρ(Th0) = sup{‖h(x)−h(y)‖
‖x−y‖ |x 6= y,

x, y ∈ C(r, ε)}, with C(r, ε) = {x ∈ E | r < ‖x‖ < 1 + ε}.

Proof : 2) Let us put R(ε) = sup{‖h(x)−h(y)‖
‖x−y‖ |x 6= y x, y ∈ C(r, ε)}.

Clearly, , R(ε) ≤ ρ(Th0) since h is ρ(Th0)-lipschitzian (by 2.12). Let us
now show that ρ(Th0) ≤ R(ε). Let a ∈ E verifying 0 < ‖a‖ ≤ 1 and
n ∈ N such that rn+1 < ‖a‖ ≤ rn, i.e r < ‖r−na‖ ≤ 1. Let us put ε′ =
rnMin{ε, r−n‖a‖ − r} and let x ∈ B(a, ε′). Then, r−na, r−nx ∈ C(r, ε) ;
so that, if x 6= a, we have R(ε) ≥ ‖h(r−nx)−h(r−na)‖

‖r−nx−r−na‖ = ‖h(x)−h(a)‖
‖x−a‖ , which

proves that h is R(ε)-LSLa. This being true for every a ∈ B′(0, 1)−{0},
we deduce that the restriction h|B′(0,1) is R(ε)-lipschitzian (see section
1 in [5]) which finally implies that ρ(Th0) ≤ R(ε). �

Definition 4.3 A centred map f(Ea, U) −→ (E ′f(a), U
′) is said to be

r-neo-fractal at a ∈ U if f is N′r-contactable at a ; in this case, krfa will
merely denote kN′rfa.

Remarks 4.4 In each case, E and E ′ are n.v.s. and f : U −→ E ′

where U is an open subset of E, and a ∈ U .
1) When f is G-differentiable at a, it is also r-neo-fractal for every

0 < r < 1, and we have krfa = k+fa.
2) Every r-fractal map h : E −→ E ′ is r-neo-fractal at 0 and we

have krh0 = h.
3) Every r-neo-fractal map at a is tangentiable at a.
4) When f is r-neo-fractal at a, then f is G-differentiable at a iff

krfa ∈ Hom+(E,E ′) ; in this case, k+fa = krfa.

Examples 4.5
We consider successively the examples 2),3),4) already studied in 4.1 :

1) The function f is e−2π-neo-fractal at 0, and differentiable on R∗.
2) For p ∈ {1, 2,∞}, the map fp is e−2π-neo-fractal at 0, and

G-differentiable at every x 6= 0.
3) The Giseh function g is G-differentiable at every x /∈ K∞. Fur-

thermore, if we denote K+
∞ and K−∞ the subsets of K∞ defined, for

x ∈ K∞, by : x ∈ K+
∞ ⇐⇒ ∃ε > 0 (]x− ε, x[∩K∞ = ∅),
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x ∈ K−∞ ⇐⇒ ∃ε > 0 (]x, x+ ε[∩K∞ = ∅),
then g is 1

3
-neo-fractal at every point of K+

∞ ∪ K−∞, and we have : for
a ∈ K+

∞, k 1
3
ga = g ; and for a ∈ K−∞, k 1

3
ga = g−, where g−(x) = g(−x).

Proof : 1), 2) Use 4.4.
3) For the Giseh function, we verify that, in the neighborhood of a,

we have g(x) = g(x − a) if a ∈ K+
∞, and g(x) = g(a − x) if a ∈ K−∞ ...

for a detailed proof, see section 5 in [5]. �

Remarks 4.6 In the previous examples, we notice that :
1) a) Thanks to 4.4, we see that f is e−2π-neo-fractal at 0, but not

G-differentiable at 0. Same remark for the fp where p ∈ {1, 2,∞}.
b) g is not G-differentiable at all x ∈ K+

∞ ∪ K−∞, although it is
1
3
-neo-fractal at these points.

2) a) Of course, there exist neo-fractal maps which are not Lfractal :
we have just, as in 3.7, to translate our previous examples at every point
where they are neo-fractal.

b) As for the function f of 4.5 which remains differentiable at 0,
although no more Lfractal, we obtain a convincing example considering
the function x2 + f(x) ... So guided, we can find a lot of other good
examples of neo-fractal maps which are not Lfractal.

Construction of fractal functions

Let s and T be strictly positive real numbers and f : R −→ R a
T -periodic and s-lipschitzian function which admits a right derivative
at every point (we have |f ′r(x)| ≤ s for all x ∈ R) ; in particular, f is
bounded on R. Then, we associate to f the function ϕ : R −→ R defined
by ϕ(0) = 0 and, for x 6= 0, ϕ(x) = xf(log |x|). Then ϕ admits a right
derivative at every points of ]0,+∞[ which is bounded, thus lipschitzian
on R. Clearly, ϕ is r-Lfractal.

Let us consider now the set PT of the T -periodic functions R −→ R
which are lipschitzian and which admit a right derivative at every point.
Then, PT has a structure of vectorial subspace of RR. The previous
construction provides a map j : PT −→ Fracr(R,R), where j(f) is the
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function ϕ associated to f as above. This map is clearly linear and
injective. By composition, we have an injective linear map :

PT
j−→ Fracr(R,R)

J−→ Jet((R, 0), (R, 0))
can−→ Jetfree (R,R)

which provides the following statement (for the free jets, refer to [6]) :

Proposition 4.7 The space Jetfree (R,R) is thus a vectorial space of
infinite dimension.

Summary
The tangentiable maps have made in evidence new classes of maps.

We give a recapitulative diagram of the various implications mentionned
all along this paper :

C1 1 +3

5 �&
EEEEEEEE

EEEEEEEE
Diffa

2 +3 R−conta 2′ +3 G−diffa 3 +3 r−neofra
4

t| pppppppppp

pppppppppp

LLa 6
+3 Tanga 7

+3 LSLa 8
+3 C0

a

Where, here, Diffa, G-diffa and r-neofra and R−conta stand respec-
tively for differentiable, G-differentiable , r-neo-fractal and standard
R-contactable at a for all of them (C1 means “of class C1 ”, and C0

a

means continuous at a). In the above diagram, every inverse implica-
tion is false ; we give counter-examples below.

Counter-examples 4.8
In each case (except for 2), we denote f : R −→ R the given counter-

example (here a = 0 and f(0) = 0 ; the “number” i) corresponding to a
counter-example to the iieth above implication).

1) f(x) = x2 sin 1
x
(well-known),

2) see 2.12,
2’) f(x) = |x| (see 3.6 and 3.7),
3) f(x) = x sin(log |x|) (see example 4.6 and 4.7),
4) f(x) = x sin(log | log |x||) if x 6= 0 [4].
5) f(x) = |x| (lipschitzian but not differentiable at 0).
6) f(x) = x2 sin 1

x2
(see section 3 in [5]),
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7) f(x) = x sin 1
x
(same as for 6)),

8) f(x) = x
1
3 (same as for 6)).

Remarks 4.9 We complete the above diagram of implications, adding
the following diagram (where R-Lhom, R+- Lhom and r-Lfrac stand for
standard R-Lhomogeneous, R+-Lhomogeneous and r-Lfractal) :

R−Lhom +3

��

R+−Lhom +3

��

r−Lfrac

��
R−cont0 +3 G−diff0

+3 r−neofr0

The inverse implications are false : refer to 2’) and 3) in 4.8 for the
horizontal non-implications, and to 3.7 and 4.6 for the vertical ones.

5 Local extrema

In this last section, we present nice generalisations of classical theo-
rems about extrema of functions taking their values in R. In particular,
we give a sufficient condition for having an extremum which only needs
hypotheses at order 1 ! In 5.1 and 5.2, Σ is a valued monoid.

Theorem 5.1 Let f : (M,U) −→ (Rb,R) be a centred Σ-contactable
function which admits a local minimum at ω ∈ U ; then KΣf admits a
global minimum at ω.

Proof : We recall (see 1.8 and 1.11) and that, Rb is a revertible Σ-
contracting space for the canonical structure, with t ?y = v(t)(y− b)+ b

(for every t ∈ Σ and y ∈ R), and t
−1
? y = t−1 ? y = y−b

v(t)
+ b (if t 6= 0). If

h =KΣf , we have h(x) = lim06=v(t)→0 t
−1
? f(t ?x) = lim06=v(t)→0

f(t?x)−b
v(t)

+
b, for every x ∈ M . Since f admits a local minimum at ω, we have
f(x) ≥ f(ω) = b on a neighborhood V of ω in U . Fixing x ∈ M , and
since limv(t)→0 t ? x = ω, there exists ε > 0 such that, for all t ∈ Σ,
0 < v(t) < ε =⇒ t ? x ∈ V . So, when 0 < v(t) < ε, we have f(t ? x) ≥ b,
which implies t

−1
? f(t ? x) = f(t?x)−b

v(t)
+ b ≥ b. Doing v(t)→ 0, we obtain

h(x) ≥ b = h(ω). �
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Corollary 5.2 Let f : (Ea, U) −→ (Rf(a),R) a centred Σ-contactable
function which admits a local minimum at a ∈ U ; then kΣfa admits a
global minimum at 0.

Proof : It, comes from the fact that, for all x ∈ E, we have kΣfa(x) =
KΣf(x+ a)− f(a) ≥ 0 =kΣfa(0), where KΣf : Ea −→ Rf(a). �

Remark 5.3 This gives back the well-known result of the differentiable
case : “ f admits a local minimum at a =⇒ a is a critical point of f ”
since there exists a unique continuous linear function E −→ R which
admits a global minimum at 0 : the null function.

Theorem 5.4 Let f : (M,U) −→ (Rb,R) a R+-contactable centred
function. If M is a Daniel space (i.e a metric space in which every
closed and bounded subset is compact) and if KΣf : M −→ Rb admits a
strict global minimum at ω, then f admits a strict local minimum at ω.

Proof : We can supposeM 6= {ω} and set S = {x ∈M | d(x, ω) = 1}.
Then S is a non empty compact (if x ∈M−{ω}, we have 1

d(x,ω)
?x ∈ S).

Since h =KΣf is continuous, h reaches its inferior bound at x0 ∈ S, so
that h(x) ≥ h(x0) > b for all x ∈ S. Consider ε = h(x0) − b > 0.
Since f �≺ω h|U , there exists η > 0 such that B(ω, η) ⊂ U and verifying
the implication : 0 < d(x, ω) < η =⇒ |f(x) − h(x)| < εd(x, ω) for all
x ∈M . Let us fix x ∈ B(ω, η)−{ω} ; it verifies f(x) > h(x)− εd(x, ω).
If y = 1

d(x,ω)
? x, we have y ∈ S, so that h(y) ≥ h(x0) which implies

h(y) − b − ε ≥ h(x0) − b − ε = 0. Hence (since h : M −→ Rb is
R+-homogeneous, where R+ is a quasi-group) h(x) − εd(x, ω) =
h(d(x, ω) ? y) − εd(x, ω) = d(x, ω)(h(y) − b) + b − εd(x, ω) =
d(x, ω)(h(y) − b − ε) + b ≥ b. Thus, for all x ∈ B(ω, η) − {ω}, we
have f(x) > h(x)− εd(x, ω) ≥ b = f(ω). �

Corollary 5.5 Let f : (Ea, U) −→ (Rf(a),R) a centred G-differentiable
map (where E is a n.v.s. of finite dimension), such that k+fa > 0 (i.e
verifying k+fa(x) > 0 for every x ∈ E − {a}). Then, f admits a strict
local minimum at a.

Proof : For all x 6= a, we have K+f(x) = f(a)+k+fa(x− a) > f(a).
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Remark 5.6 This theorem has not its equivalent, at order 1, in diffe-
rential calculus, since a linear function cannot have a strict minimum.
It is rather inspired by theorems giving sufficient conditions, at order 2,
for the existence of extrema.
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Abstract

Nous étudions les tricatégories de Penon, et nous démontrons

que, dans le cas des tricatégories deux fois dégénérées, on ob-

tient les catégories monöıdales symétriques et non les catégories

monöıdales tressées. Nous prouvons que les tricatégories de Penon

ne peuvent pas donner toutes les tricatégories. Pour corriger

cette situation, nous proposons une petite modification de la

d’efinition, utilisant les ensembles globulaires non-réflexifs à la

place des ensembles globulaires réflexifs, et nous démontrons

qu’ainsi le problème précédent relatif aux tricatégories deux fois

dégénérées n’apparâıt plus.

We show that doubly degenerate Penon tricategories give

symmetric rather than braided monoidal categories. We prove

that Penon tricategories cannot give all tricategories, but we

show how to modify the definition slightly in order to rectify the

situation. We give the modified definition, using non-reflexive

rather than reflexive globular sets, and show that the problem

with doubly degenerate tricategories does not arise.

Keywords: tricategory, degenerate tricategory, braided

monoidal category, symmetric monoidal category, globular set,

reflexive, non-reflexive.
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Introduction

Many different definitions of weak n-category have been proposed but
as yet the relationship between them and their validity have not been
well understood. One preliminary check that can be applied to any
proposed definition is that it “agrees”, in some suitable sense, with
well-established low-dimensional examples. Thus, one might begin by
checking the definition of 1-category against the usual definition of cate-
gory (and this is not always trivial) and then the definition of 2-category
against the classical definition of bicategory [1].

After this point things become more difficult; the definition of tri-
category [5] has been accepted but a completely algebraic version of the
definition has since been proposed [7], and questions remain about what
should be “the” definition of tricategory, if indeed a unique definition
should be sought at all. However, there is a degenerate form of tri-
category which is much better understood – that is, braided monoidal
categories.

Corollary 8.7 of [5] states that “one-object, one-arrow tricategories
are precisely braided monoidal categories”. However, the results of [3]
show that the correspondence is not straightforward, and one-object
one-arrow tricategories (“doubly degenerate tricategories”) in fact give
rise to braided monoidal categories with various extra pieces of struc-
ture. However, it is shown that braided monoidal categories should at
least arise among the totality of tricategories; by focussing on this in
the present work we avoid the intricate questions involved in the above
Corollary.

The main aim of this paper is to show that Penon’s definition of
n-category in its original form is not as general as it might be, as it
gives symmetric rather than braided monoidal categories in the “doubly
degenerate” case. This should not be seen as a serious problem – the
situation is quite easily rectified by starting with globular sets instead
of reflexive globular sets in Penon’s definition. A reflexive globular set
is one in which putative identities are already picked out. This can be
thought of as being analogous to degeneracies being part of the structure
of a simplicial set, but then the analogy breaks down. For simplicial sets
the presence of degeneracies is a rich and crucial part of the structure,
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but in Penon’s definition of n-category, it is precisely these degeneracies
that cause the resulting definition to be slightly too strict, yielding a
symmetry instead of a braiding in the one-object, one-arrow situation.

The problem in the reflexive case is that, since the identities are
picked out in the underlying globular set, when forming the free 3-
cateogry on such a structure it is possible to have non-identity cells
whose source and target are the identity. In the non-reflexive case, the
identities are added in freely in the free 3-category, so the only cells
whose source or target are identities are themselves identities. It is a
general principle that having non-trivial cells with identity source and
target causes problems, as in the following situations:

• Strict computads do not form a presheaf category but strict many-
to-one computads do; the problem is caused by the possibility of
cells with source and target the identity [9], so this is avoided by
insisting that the target is 1-ary (thus disallowing identities since
they are “nullary”).

• Coherence for tricategories [6] says that all diagrams of constraints
in a free tricategory commute, but not all diagrams of constraints
in a general tricategory commute; in a general tricategory a dia-
gram of constraints commutes if it involves no non-identity cells
with the identity in the source or target. For example, the di-
agram asserting that a braiding is in fact a symmetry does not
necessarily commute; it involves cells whose source and target are
the identity.

We present the result in two different ways. The first, more intu-
itively clear but less precise, says that “A degenerate Penon tricategory
is a symmetric monoidal category”. This is the subject of Section 2.
We simply examine a degenerate Penon tricategory and express it as
a braided monoidal category in the expected way; we then see that in
fact the braiding is forced to be a symmetry. However, this is not a pre-
cise mathematical statement – all it says is that the generally expected
method of producing a braided monoidal category from a doubly de-
generate tricategory does not gives us all braided monoidal categories,
only the symmetric ones. However this may be considered to be the
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heart of the problem, and was pointed out by the second author during
the Workshop on n-categories at the IMA in June 2004.

In Section 3 we “go backwards” in order to make a precise statement.
First we exhibit a monoidal category which can be equipped with a
braiding but cannot be equipped with a symmetry. We then express
this as a tricategory and show that it does not satisfy the axioms for
a Penon tricategory. Thus we conclude that Penon’s original notion of
tricategory does not include all the examples we would like.

In Section 4 we give the non-reflexive version of Penon’s definition,
and in Section 5 we show that these problems do not arise in this case.

We begin in Section 1 by reviewing the basic definitions. Note that
we will often use the term “n-category” even when n might be ω.

1 Basic definitions

In this section we recall the definition of n-category proposed by Penon
[10]. According to this definition, an ω-category is an algebra for a
certain monad P on the category of reflexive globular sets. Our state-
ment of the definition is more similar to that of Leinster [8]; for more
explanation we also refer the reader to [4]. The definition starts with
the underlying data given by a reflexive globular set, then imposing the
structure of a magma (for composition) and contraction (for coherence).
For finite n a simple truncation is applied to the underlying data, while
some care must be taken over the n-cells when defining contractions in
this case.

1.1 Reflexive globular sets

We write RGSet for the category of reflexive globular sets. RGSet

is the category of presheaves [Rop,Set] where R is the category whose
objects are the natural numbers and whose morphisms are as depicted
below:

· · · 3 2 1 0
t

oo
soo

t
oo

soo

t
oo

soo

t
oo

soo

i

??

i

??

i

??
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satisfying globularity and reflexivity conditions. However we will write
a reflexive globular set explicitly as a diagram of sets

· · · A(3) A(2) A(1) A(0)
s //

t
//

s //

t
//

s //

t
//

s //

t
//

i

^^

i

^^

i

^^

satisfying the globularity conditions ss = st and ts = tt, and the re-
flexivity condition si = ti = 1. For the finite n-dimensional case we
truncate the diagram to get the category RGSetn of n-dimensional
reflexive globular sets as below

A(n) A(n − 1) · · · A(1) A(0)
s //

t
//

s //

t
//

s //

t
//

s //

t
//

i

^^

i

[[

i

__

i

``

We call the elements of A(k) the k-cells of A. The maps s and t give
the source and target of each k-cell and the map i picks out the putative
identity for each k-cell. Part of the structure of the monad P will be
to ensure that these really do act as (weak) identities in the n-category
structure.

A map of reflexive globular sets is a map of these diagrams making
all the obvious squares commute.

Note Every strict n-category has an underlying n-dimensional reflex-
ive globular set.

1.2 Magmas

A magma is a reflexive globular set equipped with binary composition
at all levels. That is, for all m ≥ 1 we can compose along bounding
k-cells for any 0 ≤ k ≤ m − 1. So given α, β ∈ A(m) with

tm−kα = sm−kβ

we have composite β ◦k α ∈ A(m) with source and target given by

s(β ◦k α) =

{

s(β) ◦k s(α) if k < m − 1
s(α) if k = m − 1
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t(β ◦k α) =

{

t(β) ◦k t(α) if k < m − 1
t(β) if k = m − 1

Note that the composites on the right hand side make sense because
of the globularity conditions. For examples and diagrams illustrating
these composites see [4].

A map of magmas is a map of the underlying reflexive globular sets
preserving composition.

An n-dimensional magma is one whose underlying reflexive globular
set is n-dimensional.

Note In a magma only binary composites are given (i.e. in the lan-
guage of Leinster it is “biased”) and no axioms are required to be sat-
isfied. In particular, the putative identities are still not required to act
as identities with respect to the composition. Further, note that any
strict n-category has an underlying n-dimensional magma.

1.3 Contractions

Composition in a magma is not required to be in any way coherent;
we achieve coherence for n-categories by way of a “contraction”. A

contraction is a piece of structure that can be defined on any map A
f

−→
B of reflexive globular sets. The idea of a contraction is similar to
contractibility of topological spaces, in that it measures holes, or rather

lack thereof. A contraction on a map A
f

−→ B essentially ensures that
A has “no more holes up to homotopy” than B; the contraction cells
witness the contraction of A onto B.

First we need a notion of parallel k-cells.

Definition 1.1. A pair of k-cells α, β are called parallel if

• k = 0, or

• k ≥ 1 and sα = sβ, tα = tβ.
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Definition 1.2. A contraction [ , ] on a map A
f

−→ B of reflexive
globular sets gives, for any pair of parallel k-cells α and β such that
fα = fβ, a (k + 1)-cell

[α, β] : α −→ β

such that

1. f [α, β] = i(f(α))

2. [α, α] = iα.

For the n-dimensional case a contraction gives the above for k < n;
given α and β as above for k = n we must have α = β.

The cells [α, β] are referred to generally as “contraction cells”. This
definition can also be thought of informally as saying that “any disc in
B with a lift of its boundary to A gives a lift of the disc as well”.

1.4 The crucial category Q

We construct the monad P from an adjunction

Q

RGSet

U

��

⊣F

OO

The category Q has objects of the form

A

B

f, [ , ]

where
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• A is a magma

• B is a strict n-category

• f is a map of magmas

• [ , ] is a contraction on f

The idea is that the contraction ensures that A has “no more holes up
to homotopy” than the strict n-category B, so although it need not be
a strict n-category itself, it cannot be too incoherent.

A morphism of such objects is a square

A

B

f

A′

B′

f ′

g1

g2

where g1 is a map of magmas, g2 is a map of strict n-categories, and
the square of underlying magma maps commutes; furthermore the maps
must preserve contraction cells, that is, for every contraction cell [α, β]
in A, we must have

g1[α, β] = [g1α, g1β].

1.5 The adjunction

There is a forgetful functor

Q
U

−→ RGSet

sending an object as above to the underlying reflexive globular set of
A. This functor has a left adjoint F ; we define P to be the monad
induced by this adjunction. For the n-dimensional case we write Pn for
the induced monad on RGSetn
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The existence of this adjoint can be deduced from standard Adjoint
Functor Theorems; it is proved by Penon in [10, Section 4], and it is also
quite straightforward to construct using results of [2]. Given a reflexive
globular set A we can express FA as

PA

TRA

φ, [ , ]

where TR is the free strict ω-category monad on reflexive globular sets.

Note This is quite different from a free strict ω-category on a non-
reflexive globular set; for example TR1 = 1 as reflexive globular sets
(as the unique cell at each dimension must be the identity) which is
certainly not true of non-reflexive globular sets. This difference may be
thought of as being the heart of the problem considered in this paper.

The idea is to combine two types of structure: contraction and
magma. We proceed dimension by dimension – at each level we first
add in the required contraction cells freely, and then binary composites
freely. φ then acts by sending all contraction cells to the identity in
TRA, and forgetting the parentheses in all composites.

For the finite n-dimensional case the final stage of the construction
consists of identifying any n-dimensional composites that lie over the
same cell in TRA.

Definition 1.3. An ω-category is defined to be a P -algebra. An n-
category is defined to be a Pn-algebra.

2 Doubly degenerate 3-categories as sym-

metric monoidal categories

In this section we show how a doubly degenerate Penon 3-category gives
rise to a braided monoidal category, and that the braiding given in this
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way is in fact necessarily a symmetry. Since the main aim of this section
is to show why the braiding must be a symmetry, we do not go through
the details of checking all the axioms for a braided monoidal category.

A doubly degenerate tricategory is one that has only one 0-cell and
one 1-cell. The general idea is as follows. We obtain a category from it
by regarding the old 2-cells as objects and the old 3-cells as morphisms,
that is, we take the unique hom-category on the unique 1-cell. We
obtain a monoidal structure by taking the tensor product to be given by
vertical composition of 2-cells. Finally we use an “up to isomorphism”
Eckmann-Hilton argument to show that this tensor is “commutative up
to isomorphism” – that is, it is a braiding.

We now state this in the framework of Penon’s definition. For con-
venience we now write P = P3 for the “free Penon 3-category” monad

on reflexive 3-globular sets. Let

(

PA

θ��
A

)

be a P -algebra where A is a

doubly degenerate reflexive 3-globular set i.e. it has only one 0-cell and
only one 1-cell. We construct a braided monoidal category from it as
follows:

• the objects are given by A(2)

• the morphisms are given by A(3)

• the tensor product is given by α ⊗ β = α ◦ β as 2-cells of A

• the braiding γα,β : α⊗β −→ β⊗α is given by the contraction cell
[α ◦ β, β ◦ α].

To see that this contraction cell exists we need to show that

φ(α ◦ β) = φ(β ◦ α) ∈ TRA

where φ is the map PA −→ TRA. So we need to show that α ◦ β =
β◦α ∈ TRA. This is proved by an Eckmann-Hilton type argument using
the fact that the source and target 1-cells of α and β are the identity in
TRA. We find it helpful to place the various stages of the argument on
the following “clock face”:
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α β

α
1

1
β

α 1

1 β

α
β

1 α

β 1

1
β

α
1

β α

β
1

1
α

β 1

1 α

β
α

1 β
α 1

1
α

β
1 β ∗ α

△

(β ◦ 1) ∗ (1 ◦ α)

⊳
(β ∗ 1) ◦ (1 ∗ α)

▽

β ◦ α

⊲
(1 ∗ β) ◦ (α ∗ 1)

△

(1 ◦ α) ∗ (β ◦ 1)

⊳α ∗ β

▽
(α ◦ 1) ∗ (1 ◦ β)

⊲
(α ∗ 1) ◦ (1 ∗ β)

△
α ◦ β

⊳
(1 ∗ α) ◦ (β ∗ 1)

▽
(1 ◦ β) ∗ (α ◦ 1)

⊲

interchange

interchangeinterchange

interchange

Since all these composites are equal in the strict 3-category TRA, we
have in particular a contraction cell in PA

[α ◦ β, β ◦ α] : α ◦ β −→ β ◦ α

It is routine to check the axioms for a braided monoidal category using
the contraction conditions at the top dimension; we show further that
the symmetry axiom must hold, that is:

γβ,α ◦ γα,β = 1

i.e.
[β ◦ α, α ◦ β] ◦ [α ◦ β, β ◦ α] = 1.
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This is also true by contraction; in fact for any contraction 3-cell [x, y]
we have

[x, y] ◦ [y, x] = 1

since
φ([x, y] ◦ [y, x]) = φ[x, y] ◦ φ[y, x] = 1 = φ(1).

Thus we see that a doubly degenerate 3-category is forced to be a sym-
metric monoidal category, not just a braided monoidal category as orig-
inally expected.

3 Comparison with braided monoidal cat-

egories

In this section we give a precise sense in which Penon 3-categories are
not the same as classical tricategories. We exhibit a tricategory which
does not arise as a Penon 3-category. We will later show that this
problem does not arise in the non-reflexive version.

The tricategory we examine is a doubly degenerate one: the free
braided (strict) monoidal category on one object. We show that its
underlying monoidal category cannot be equipped with a symmetry
and thus that it cannot be expressed as a doubly degenerate Penon
3-category.

Let B denote the free braided (strict) monoidal category on one
object. This has

• objects the natural numbers

• homsets B(n, m) =

{

nth braid group if m = n

∅ otherwise

• tensor product on objects addition, on morphisms juxtaposition
of braids

• unit object 0

• braiding γm,n : m + n −→ n + m depicted by
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Now we observe that γ is not a symmetry: for example in the case
m = n = 1 the composite γn,m ◦ γm,n is depicted by



































44
44

44
44

44
44

44
44

which is not equal to the identity braid on 2.

Proposition 3.1. The underlying monoidal category of B cannot be
equipped with a symmetry.

Proof. We seek a symmetry

σAB : A ⊗ B −→ B ⊗ A

natural in A and B. Put A = B = 1. In particular we need a morphism

σ1,1 : 2 −→ 2.

The only such maps are given by γk
1,1 for all k ∈ Z. We have seen above

that γ1,1 is not a symmetry, and similarly γk
1,1 is not a braiding for any

k ≥ 0. For k = 0 we have the identity, but if σ1,1 = id then the braid
axioms force σm,n = id for all m, n which does not satisfy naturality.
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Since there are no other morphisms 2 −→ 2 ∈ B we conclude that there
is no symmetry on this monoidal category. 2

We can now realise this braided monoidal category as a doubly de-
generate tricategory whose 2-cells are the natural numbers and whose
3-cells n −→ m are given by B(n, m) as above. Composition along both
0-cells and 1-cells is given by ⊗ and the interchange constraint is derived
from the braiding in the obvious way, with the homomorphism axiom
following from the Yang-Baxter equation.

Note that this is in fact a Gray-category since everything is strict
except interchange. So we do indeed have a tricategory, and it does not
satisfy the axioms for a Penon 3-category.

Remark

We might ask if every tricategory is equivalent to a Penon 3-category
but this cannot be true. The above braided monoidal category cannot
be equivalent to a symmetric monoidal category since we know that a
braided monoidal category is equivalent to a symmetric monoidal cate-
gory if and only if it is itself symmetric [5].

4 The non-reflexive case

In this section we give a non-reflexive version of Penon’s definition; we
will then show that the problems encountered in the previous sections
no longer arise.

An ω-category will now be defined as an algebra for a monad N on
ordinary (non-reflexive) globular sets. We write a globular set A as a
diagram of sets as below.

· · · A(3) A(2) A(1) A(0)
s //

t
//

s //

t
//

s //

t
//

s //

t
//

Now we have a forgetful functor Q −→ GSet given by compos-
ing the old forgetful functor Q −→ RGSet with the forgetful functor
RGSet −→ GSet. As before, this has a left adjoint
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Q

GSet

��

⊣

OO

inducing a monad which we will call N . There is also an n-dimensional
version as before, which we will call Nn.

Definition 4.1. An ω-category is an N-algebra. An n-category is an
Nn-algebra.

Note that we thus have a commuting triangle of adjunctions

RGSet GSet

Q

G1

⊤
//

F1

oo

��
⊣

OO

F3

G3

��

⊣

OO

F2

G2

(where the bottom is monadic but the other two sides are not). Thus
we immediately have a construction of NA – we first add in putative
identities freely and then proceed as in the reflexive case.

We may write F3A as

(

NA

��
TRF1A

)

=

(

NA

��
TA

)

where T is the free strict ω-category monad on non-reflexive globular
sets, and we observe the crucial difference between the reflexive and
non-reflexive versions of the theory — in NA the identities are freely
added, so there are no non-identity cells which have identities as their
source or target, whereas in PA there may exist such cells.
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5 Degenerate 3-categories in the non-

reflexive version

In this section we briefly examine degenerate 3-categories in the non-
reflexive case and show that the previous problem of braidings being
forced to be symmetries does not now arise. We consider a doubly

degenerate 3-category

(

PA

θ��
A

)

. As before, we construct a monoidal

category from it with

• objects given by A(2)

• morphisms given by A(3)

• tensor product given by α ⊗ β = α ◦ β as 2-cells of A.

However, we cannot copy the previous construction of a braiding as we
no longer have α◦β = β ◦α in the strict 3-category TA. This is because
TA is now the free strict 3-category on the non-reflexive globular set A,
so TA(1) 6= 1 although A(1) = 1.

In the reflexive version, the unique 1-cell of A becomes the identity
1-cell of TRA, so all the composites on the Eckmann-Hilton “clockface”
are equal. In the non-reflexive version, the unique 1-cell of A generates
the 1-cells of TA but there is a new (formal) 1-cell identity. So the
composites on the Eckmann-Hilton clockface do not even have the same
source and target, and are certainly not equal.

This shows that the previous problem no longer arises; it remains to
see how to construct a braiding at all. We sketch a proposed argument
here, but checking the axioms is not straightforward and we defer this
to a future work.

Examining the Eckmann-Hilton clockface again we see that, apart
from α ◦ β and β ◦α, the clock splits in two: the top half is all equal to
β ∗ α and the bottom half to α ∗ β. So in NA we do have a contraction
cell

χ = [(1 ∗ α) ◦ (β ∗ 1), (β ∗ 1) ◦ (1 ∗ α)]

(“10 o’clock to 2 o’clock”), so we seek to extend this to a braiding

α ◦ β −→ β ◦ α.
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In the following argument we write ◦ and ∗ for the formal composition
in NA, and evaluate these composites in A by means of the algebra
map θ. We write the unique 1-cell in A as e and the unit 1-cell in NA

as I. Since this is only a sketch, we also ignore associativity issues with
the understanding that for a precise construction these would need to
be dealt with using further contraction cells.

We proceed in the following steps.

1. We have contraction 2-cells in NA e = [I ∗ e, e], e = [e ∗ I, e]
and also [I ∗ I, I]. We know that θ(I) = θ(e) = e, so by algebra
associativity we have

θ( e) = θ([I ∗ I, I]) = θ( e)

in A. (This is the familiar result I = I in any bicategory.) By
contraction, we also have pseudo-inverses for these cells, which we
will denote ( )∗.

2. We have contraction 3-cells in NA

λα = [ e ◦ (1I ∗ α) ◦ ∗
e, α]

ρβ = [ e ◦ (β ∗ 1I) ◦
∗
e, β].

3. We now form ρ◦1λ, composing these 3-cells along the 1-cell bound-
ary, and apply θ. Now,

        

s(θ(ρ ◦1 λ)) = θ
(

θ( e) ◦ θ(β ∗ 1I) ◦ θ( ∗
e) ◦ θ( e) ◦ θ(1I ∗ α) ◦ θ( ∗

e)
)

so we can precompose by contraction cells at the middle factor
(indicated), giving a composite 3-cell

ξ : θ
(

θ( e) ◦ θ(β ∗ 1I) ◦ θ(1I ∗ α) ◦ θ( ∗
e)
)

_*4 θ(β ◦ α)
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4. Recall we have a contraction cell

χ : θ
(

(1e ∗ α) ◦ (β ∗ 1e)
)

_*4 θ
(

(β ∗ 1e) ◦ (1e ∗ α)
)

.

Now, using algebra axioms we can rewrite this as

θ
(

θ(1e ∗ α) ◦ θ(β ∗ 1e)
)

_*4 θ
(

θ(β ∗ 1e) ◦ θ(1e ∗ α)
)

and thus, to make it composable with ξ it remains to compose
it vertically with the identity 3-cells on e and ∗

e; we have then
bridged the “gap” into 3 o’clock.

5. A similar argument then takes us from 9 o’clock to 10 o’clock.

Evidently the above arguments are not ideal and we hope to find a
more efficient method for calculating in this framework. It remains to
prove that this is in fact a braiding, but it is clear that the argument
previously used to show that the braiding was a symmetry is no longer
applicable.
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Abstract. We describe a notion of projective line (over a fixed field k): a groupoid
with a certain structure. A morphism of projective lines is then a functor preserving
the structure. We prove a structure theorem: such projective lines are isomorphic to
the coordinate projective line ( = set of 1-dimensional subspaces of k2).

Résumé. Nous décrivons une notion de droite projective (sur un corps fixe k): un
groupoı̈de avec une certaine structure. Un morphisme de droites projectives est alors
un foncteur préservant la structure. Nous prouvons un théorème de structure: telle
droite projective est isomorphe à la droite projective des coordonnées ( = l’ensemble
des sous-espaces linéaires de dimension 1 dans k2).

Keywords: Projective line, groupoid, cross ratio.
MSC 2010: 14A25, 51A05.

Introduction
For V a vector space over a field k, one has the Grassmannian manifold P(V )
consisting of 1-dimensional linear subspaces of V . If V is n+1-dimensional,
P(V ) is a copy of n-dimensional projective space. For n ≥ 2, P(V ) has a
rich combinatorial structure, in terms of incidence relations (essentially: the
lattice of linear subspaces), in fact, this structure is so rich that one can es-
sentially reconstruct V from the combinatorial structure.

But for n = 1, this combinatorial structure (in the form of a lattice), is
trivial; as expressed by R. Baer, “A line . . . has no geometrical structure, if
considered as an isolated or absolute phenomenon, since then it is nothing
but a set of points with the number of points on the line as the only invari-
ant. . . ”, [1] p. 71.

However, it is our contention that a projective line has another kind of
structure, making it possible to talk about a projective line as a set equipped
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with a certain structure, in such a way that isomorphisms (projectivities)
between projective lines are bijective maps which preserve this structure.

The structure we describe (Section 2) is that of a groupoid (i.e. a category
where all arrows are invertible), and with certain properties. The fact that
the coordinate projective line P(k2), more generally, a projective space of
the form P(V ) (and also the projective plane in the classical synthetic sense)
has such groupoid structure, was observed in [3], and further elaborated on in
[2]; we shall recall the relevant notions and constructions from [3] in Section
1, and a crucial observation from [2] in Section 3. The present note may be
seen as a completion of some of the efforts of these two papers.

1 Groupoid structure on P(V )

Let k be a field and let V a 2-dimensional vector space over k. We have a
groupoid L(V ), whose set of objects is the set P(V ) of 1-dimensional lin-
ear subspaces of V , and whose arrows are the linear isomorphisms between
these. For A ∈ P(V ), the linear isomorphisms A→ A are in canonical bijec-
tive correspondence with the invertible scalars,

L(V )(A,A) = k∗;

on the other hand, if A and B are distinct 1-dimensional subspaces, then the
linear isomorphisms A→ B are all of the form “projection from A to B in
a certain unique direction C”, with C ∈ P(V ) and C distinct from A and B.
(This also works in higher dimensions, cf. [3] and [2]; one just has to require
that C belongs to the 2-dimensional subspace spanned by A and B.) This is in
fact a bijective correspondence, so L(V )(A,B) is canonically identified with
the set P(V )\{A,B}. Here is a picture (essentially) from [3]:
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The linear isomorphism A→ B thus described, we shall denote (C : A→
B). It is clear that the composite of (C : A→ B) with (C : B→ A) gives the
identity map of A (projecting forth and back in the same direction). Also it
is clear that (C : A→ B) composes with (C : B→ D) to give (C : A→ D).
These equations will appear in the axiomatics for abstract projecive lines as
the “idempotency laws”, (2) and (3) below.

Also, it is clear that two linear isomorphisms from A to B differ by a
scalar ∈ k∗; thus, for A and B distinct, and (C : A→ B) and (D : A→ B),
there is a unique scalar µ ∈ k∗ such that

(C : A→ B) = µ · (D : A→ B) = (D : A→ B) ·µ. (1)

(We compose from left to right.) This scalar µ is (for A,B,C,D mutually
distinct) the classical cross-ratio (A,B;C,D), cf. [3] (3) and [2] Theorem
1.5.3. (For A,B,C distinct, and D = C, we have (A,B;C,C) = 1.) Permuting
the four entries (assumed distinct) will change the cross ratio according to
well known formulae (see e.g. [6], [5]) which we shall make explicit and
take as axioms.

Thus, the groupoid L(V ), which we in this way have associated to a
2-dimensional vector space V over k, will be an example of an abstract pro-
jective line L, in the sense of the next Section.

2 Abstract projective lines: axiomatics
Let k be a field. By a k-groupoid, we understand a groupoid L which is
transitive (i.e. the hom set L(A,B) is non-empty, for any pair of objects
A,B in L), and such that all vertex groups L(A,A) are identified with the
(commutative, multiplicative) group k∗ of non-zero elements of the field k.
We assume that k∗ is central in L in the sense that for all f : A→ B and
λ ∈ k∗ = L(A,A) = L(B,B), λ · f = f ·λ .

A k-functor between k-groupoids is a functor which preserves k∗ in the
evident sense.

We now define the notion of abstract projective line over k; it is to be a
k-groupoid L, equipped with the following kind of structure (L denotes the
set of objects of L):
for any two different objects A,B ∈ L, there is given a bijection between the
set L(A,B) and the set L\{A,B},
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and these bijections should satisfy some equational axioms: the idempotence
laws (2) and (3), and the permutation laws (4),. . . ,(7). To state these laws,
we use, as in Section 1, the notation:

if C ∈ L\{A,B}, then the arrow A→ B corresponding to it (under the
assumed bijection) is denoted by (C : A→ B), or just by C, if A and B are
clear from the context (say, from a diagram).

Here is the first set of equations that we assume (the “idempotence equa-
tions”): Let A,B,F be mutually distinct, then

(F : A→ B) · (F : B→ A) = 1 ∈ k∗ (2)

and for A,B,C,F mutually distinct

(F : A→ B) · (F : B→C) = (F : A→C). (3)

The permutation laws which we state next are concerned with the crucial
notion of cross ratio: If A,B,C,D are four distinct elements of L, we let
(A,B;C,D) be the unique scalar (element of k∗) such that

A
C

- B

A

D

?
(A,B;C,D)

-

commutes; also, (A,B;C,D) makes sense if C = D, and in this case equals
1 ∈ k∗, by (2). This scalar is called the cross ratio of the 4-tuple A,B,C,D. 1

Since the elements of L both appear as objects of L and as labels of ar-
rows of L, the four entries (assumed distinct) in a cross ratio expression can
be permuted freely by the 24 possible permutations of four letters. We as-
sume the standard formulas for these permutation instances of a given cross
ratio µ = (A,B;C,D); they give six values,

µ,µ
−1,1−µ,(1−µ)−1,1−µ

−1,(1−µ
−1)−1,

1Convenience, as well as continuity, prompts us to define (A,B;C,B) = 0; this is consis-
tent with determinant formulas for cross ratios in P(k2) to be given later. In fact, one may
consistently define (A,B;C,D) whenever A 6= D and B 6= C; (A,A;C,D) = (A,B;C,C) = 1,
and (A,B;A,D) = (A,B;C,B) = 0.
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see e.g. [6] p. 8 or [5] 0.2. The equations are

(A,B;C,D) = (B,A;D,C) = (C,D;A,B) = (D,C;B,A), (4)

and the following equations, where µ denotes (A,B;C,D),

(A,B;C,D) =µ; (A,B;D,C) =µ
−1; (5)

(A,C;B,D) =1−µ; (A,C;D,B) =(1−µ)−1; (6)

(A,D;B,C) =1−µ
−1; (A,D;C,B) =(1−µ

−1)−1. (7)

(This set of equations is not independent.) We had not needed to be so spe-
cific about these “permutation equations”, since we shall only need the fol-
lowing consequence: if a map Φ : L→ L′ preserves a cross ratio (A,B;C,D)
for some distinct A,B,C,D, then it also preserves any other cross ratio in
which the entries are A,B,C,D in some other order.

We have now stated what we mean by an abstract projective line L. For
(iso-)morphisms (“projectivities”) between such: Let L and L′ be abstract
projective lines with object sets (underlying sets) L and L′, respectively. By
an isomorphism L→ L′ of projective lines, we understand a bijective map
φ : L→ L′ with the property that if we put

φ(F : A→ B) := (φ(F) : φ(A)→ φ(B)), (8)

(and φ(λ ) = λ for any scalar λ ∈ k∗), then φ commutes with composition,
i.e. it defines a functor L→L′ (preserving scalars, i.e. it defines a k-functor).
The noticeable aspect of the category L of abstract projective lines, with
(iso)morphisms as just defined, is that the “underlying” functor L 7→ L (from
L to the category of sets) is a faithful functor, so that it makes sense to say
whether a given function L→ L′ is a morphism (projectivity) or not.

As always in such situations, it is convenient to use the same notation
for the object itself, and its underlying set; so we henceforth do not have to
distinguish notationally between L and L.

Cross ratio was defined as a special case of composition; projectivities,
in the sense defined here, commute with composition, since projectivities are
functors. Hence it is clear that projectivities preserve cross ratios.
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In an (abstract) projective line L, one may draw some diagrams that are
meaningless in more general categories, like the following square (whose
commutativity actually can be proved on basis of the axiomatics):

A

(9)

(where A,B,C are three distinct points in L). The commutativity of this
diagram, for L = P(V ), expresses an evident geometric fact that one sees by
contemplating the figure (essentially from [3], p. 3):
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The existence of this diagram (9) shows that “cross ratios do not immediately
encode all the geometry” of projective lines; for, no cross ratio (except 1) can
be concocted out of just three distinct points; four are needed.

3 Three-transitivity
The “Fundamental Theorem” for projective lines P(V ) coming from 2-
dimensional vector spaces V is: for any two lists of three distinct points,
there is a unique projectivity taking the points of the first list to the points of
the second. This theorem, we shall prove holds for abstract projective lines.

Let L and L′ be abstract projective lines over the field k.

Theorem 1 (Fundamental Theorem) Given three distinct points A,B,C in
L, and given similarly A′,B′,C′ three distinct distinct points in L′. Then there
is a unique projectivity φ : L→ L′ taking A to A′, B to B′ and C to C′.
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Proof. For D distinct from A,B,C, we put φ(D) := D′, where D′ is the
unique element in L′ with (A′,B′;C′,D′) = (A,B;C,D); equivalently D′ is
determined by the equation

(C′ : A′→ B′) · (D′ : B′→ A′) = (A,B;C,D).

By construction and the permutation equations, φ preserves cross ratios of
any distinct 4-tuple, three of whose entries are A,B,C. Next, by the idempo-
tence equations (2) and (3),

(A,B;D,E) = (A,B;D,C) · (A,B;C,E),

and similarly for the A′, . . . ,E ′. Each of the cross ratios on the right have
three entries from the original set A,B,C, and so are preserved, hence so is
the cross ratio on the left hand side, (A,B;D,E). So we conclude that any
cross ratio, two of whose entries are A and B, is preserved. Next,

(A,D;E,F) = (A,D;E,B) · (A,D;B,F),

and similarly for the A′, . . . ,F ′, so we conclude that any cross ratio with A as
one of its entries is preserved. Finally,

(D,E;F,G) = (D,E;F,A) · (D,E;A,G),

and similarly for the A′, . . . ,G′, so we conclude that all cross ratios are pre-
served.

We have now described the bijection φ : L→ L′, and proved that it pre-
serves cross ratio of any four distinct points. To prove that it is a projectivity,
in the sense defined, we need to argue that the corresponding φ (as described
by (8)) preserves composition of arrows. This is essentially an argument
from [2] 2-4-4, which we make explicit:

Proposition 2 If a bijection φ : L→L′ preserves cross ratio formation, then
φ preserves composition.

It suffices to prove that commutative triangles go to commutative triangles.
If the three vertices of the triangle agree, these arrows are scalars ∈ k∗, and
φ preserves scalars. If two, but not all three, vertices agree, one arrow is
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a scalar, and commutativity of the triangle expresses that this scalar is the
cross ratio (or its inverse) of the four points that appear as the two vertices
and those two labels (likewise points in L) that appear on the non-scalar
arrows in the triangle; this is a an immediate consequence of the definition
(1), possibly combined with the idempotence law (2). We conclude that
composites of this form are likewise preserved by φ . Finally, we consider the
case where the three vertices of the triangle are distinct, so the three arrows
in the triangle are of the form (E : A→B), (F : B→C), and (G : A→C) with
A,B,C distinct. Consider (E : A→ B) · (F : B→C) · (G : C→ A), displayed
as the top composite in the diagram

A
E

- B
F

- C
G

- A

A

1

? E
- B

1

? F
- C

1

?

A

1

?

E
- B

1

?

E
- A.

(A,B;F,E)

?

All squares commute; the lower right hand rectangle commutes because of
the idempotence law (3) (the two Fs combine into one). The lower compos-
ite is 1, because of an idempotence law (2). So we conclude:

(A,C;G,F) · (A,B;F,E) = 1 iff (E : A→ B) · (F : B→C). · (G : C→ A) = 1.

Multiplying on the right by G : A→C (which is inverse to G : C→ A), we
conclude

(A,C;G,F) · (A,B;F,E) = 1 iff (E : A→ B) · (F : B→C) = (G : A→C).

Thus commutativity of diagrams can be expressed in terms of cross ratio.
Hence since cross ratio are preserved, the composite of (E : A→ B) and
(F : B→ C) is preserved by

F
- A

(A,C;G,F)

?

φ . This proves the Proposition, and therefore
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also the existence assertion of the Theorem. The uniqueness is clear, since
a projectivity preserves cross ratios, so that we are forced to define φ(D) as
the D′ ∈ L′ with (A′,B′;C′,D′) = (A,B;C,D).

4 L = P(k2) as an abstract projective line
The content of the present Section is mostly classical, but it emphasizes the
category aspects of P(k2). Non-zero vectors in k2 are denoted a = (a1,a2),
b = (b1,b2) etc., and the 1-dimensional linear subspace of k2 spanned by a
is denoted A; similarly, b spans B, etc; A, B, . . . , are the points of the set
L = P(k2). We now have available the precious tool of determinants of 2×2
matrices. We denote the determinant whose rows (or columns) are a,b by
the symbol |a,b|.

Given distinct A, B, and C, spanned by a, b, and c, respectively. We
describe the linear map “projection from A to B in the direction of C” by
describing its value on a ∈ A; this value, being in B, is of the form λ · b
for some unique scalar λ ∈ k∗, and an elementary calculation with linear
equation systems (say, using Cramer’s rule) gives that λ = |c,a|/|c,b]. Thus

(C : A→ B)(a) =
|c,a|
|c,b|

·b (10)

is the basic formula. We can calculate the value of the composite (C : A→
B) · (D : B→ E) on a ∈ A; it takes a ∈ A into

|c,a|
|c,b|

· |d,b|
|d,e|

· e ∈ E. (11)

In particular, if E = A, a ∈ A goes into (A,B;C,D) ·a, where

(A,B;C,D) :=
|c,a|
|c,b|

· |d,b|
|d,a|

=
|a,c| · |b,d|
|a,d| · |b,c|

(using |c,a| = −|a,c|, and similarly for the other factors). This is the stan-
dard cross ratio (A,B;C,D), and the standard permutation rules follow by
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known determinant calculations, as do the idempotency laws. So P(k2) is
indeed an abstract projective line, in our sense.

In L = P(k2), we describe the points A∈L by homogeneous coordinates
[a1 : a2], where a is any vector spanning A. It is convenient to select three
particular points in P(k2), called V,H, and D (for “vertical”, “horizontal”,
and “diagonal”, respectively):

V = [0 : 1], H = [1 : 0], D = [1 : 1].

For any point X distinct from V , there exists a unique x∈ k so that X = [1 : x].
Thus, the x ∈ k corresponding to H and D are 0 and 1, respectively. For X
distinct from V , the corresponding x ∈ k may be calculated in terms of a
cross ratio,

x = (V,H;D,X),

again by an easy calculation with determinants. Thus L\{V} has, by the
chosen conventions, been put in 1-1 correspondence with the affine line k,
so

L = {V}+ k;

V is the “point at infinity” of the (“vertical”) copy {(1,x) | x∈ k} of the affine
line k inside k2.

The Fundamental Theorem then has the following

Corollary 3 For every abstract projective line L over k, there exists an iso-
morphism (= “projective equivalence”) with the projective line P(k2).

Proof. Pick three distinct points A,B,C in L, and let φ = φA,B,C be the unique
projectivity (as asserted by the Theorem) L→ P(k2) sending A to [1 : 0], B
to [0 : 1], and [C] to [1 : 1].

The isomorphism φ described is not canonical, since it depends on choice
of three distinct points A,B,C. However, it gives rise to certain canonical
bundles; this will be exploited in Section 6.

The isomorphism/projectivity φ described in this Corollary, although not
canonical, allows us to perform calculations in L using coordinates, in the
form of such projective equivalence L∼= P(k2).
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Let us for instance prove commutativity of (9). It suffices to prove that it
holds in L = P(k2). For, then it follows from the Fundamental Theorem that
it also holds for three distinct points in an abstract projective line L.

So consider points A,B,C in P(k2), and pick non-zero vectors a ∈ A, b ∈
B, and c∈C. Using (11), we see that the composite (C : A→ B) ·(A : B→C)
takes a ∈ A into

|c,a|
|c,b|

· |a,b|
|a,c|

· c,

and since |c,a| = −|a,c|, two factors cancel except for the sign, and we are
left with

−|a,b|
|b,c|

· c;

an easy calculation shows that this by B : C→ A goes to −a. (See [2] 1-4-2
for a more coordinate free proof.)

To complete the comparison with the classical “coordinate-” projective
line P(k2), we need to compare projectivities in our sense (functors) with
classical projectivities, meaning maps P(k2)→ P(k2) that are “tracked” by
linear automorphisms k2→ k2.

Let f : k2 → k2 be such linear automorphism. Then it defines a map
P( f ) : P(k2)→ P(k2) by [a1 : a2] 7→ [ f (a1) : f (a2)]. We shall see that this
map preserves composition of arrows, hence is a functor; for, by (10), f (C :
A→ B)) takes f (a) ∈ P( f )(A) to

| f (c), f (a)|

|c,b|
· c =−|b,a|

| f (c), f (b)|
· f (b) =

|c,a|
|c,b|

· f (b) ∈ P( f )(B)

(using the product rule for determinants and then cancelling the occurrences
of the determinant of f that appear). The fact that composition is preserved
is then a consequence of the formula (11).

On the other hand, every projectivity φ : P(k2)→ P(k2) (in our sense) is
of the form P( f ) for some linear automorphism f : k2→ k2 (which is in fact
unique modulo k∗). Let φ(H) = A, φ(V ) = B and φ(D) = C. Pick non-zero
vectors a ∈ A, b ∈ B and c ∈C. Any linear automorphism f : k2→ k2 with
matrix

f =
[

a1 λb1
a2 λb2

]
,
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with λ 6= 0 has the property that it takes (1,0) to a and (0,1) to λb, hence
P( f ) takes H to A and V to B. Also f takes (1,1) to a + λb; so to ensure
P( f )(D) = C, we must ensure a+λb ∈C, i.e. we must ensure linear depen-
dence of the pair consisting of a+λb and c. This means that we should pick
λ so that the determinant |a + λb,c| is 0; there is a unique λ solving this,
namely −|a,c|/|b,c|. With this λ , the maps φ and P( f ) agree on H, V , and
D, and since they both are projectivities, they agree everywhere, by the Fun-
damental Theorem. This proves that every projectivity φ : P(k2)→ P(k2)
(functor) is indeed tracked by a linear automorphism k2→ k2.

Remark. The projectivity φ : P(k2)→ P(k2) tracked by a linear automor-
phism f : k2→ k2 with matrix [αi j] is also classically described as the frac-
tional linear transformation

x 7→ α21 +α22x
α11 +α12x

.

This refers to the identification of x ∈ k with [1 : x] ∈ P(k2).

5 Structures on punctured projective lines
We identify k with the subset P(k2)\{V} ⊆ P(k2) via x 7→ [1 : x] (recall that
V denotes [0 : 1]). The group PGL(2,k) of auto-projectivities of P(k2) con-
tains a subgroup of those auto-projectivities which are tracked by matrices of

the form
[

1 0
α21 α22

]
(with α22 6= 0); they are those φ ∈ PGL(2,k) which

satisfy φ(V ) = V , or equivalently which map k ⊆ P(k2) to itself. Such φ

map k to itself by an affine bijection, x 7→ α21 +α22x. Thus, the subgroup of
auto-projectivities of P(k2) which fix V , is identified with the group Aff(k)
of affine bijections k→ k.

We shall prove

Proposition 4 Given an abstract projective line L. 1) For any point A in
L, the set L\{A} carries a canonical structure of affine line. 2) For any
two distinct points A,B in L, the set L\{A} carries a canonical structure of
vector line, with B as 0. 3) For any three distinct points A,B,C in L, the set
L\{A} carries a canonical structure of vector line with a chosen basis, with
B as 0 and C as the chosen basis vector.
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Proof. For 1): Given A ∈ L. Pick distinct B and C in L\{A}. Consider
the unique projectivity φA,B,C : L→ P(k2) with A 7→V , B 7→ H and C 7→ D,
as in the Fundamental Theorem. Then since φA,B,C maps A to V , it maps
L\{A} bijectively to P(k2)\{V} = k. We import the affine structure which
k has back to L\{A} via this bijection. This affine structure on L\{A} does
not depend on the choice of B and C; for, φA,B,C and φA,B′,C′ (same A!) will
differ by a projectivity φA,B,C ◦ φ

−1
A,B′,C′ : P(k2)→ P(k2) which fixes V , and

such projectivity preserves the affine structure on k⊆ P(k2), as we observed.
This proves 1). For 2) and 3): It is a well known fact that an affine line
with a chosen point B carries a canonical structure of vector line with B as
0. Also, a vector line with a chosen point C 6= 0 carries a canonical structure
of vector line with a chosen basis vector C, i.e. it is canonically isomorphic
to the vector space k. Then it is clear that 2) and 3) are consequences of 1).

Remark. Instead of deriving 2) from 1) using the “well known fact”, we
might prove 2) directly along the same lines as used for proving 1), namely
by observing that a projectivity P(k2)→ P(k2), which fixes V as well as H,
is tracked by a diagonal matrix, and therefore restricts along k ⊆ P(k2) to
a linear k→ k. Also, 3) may be seen as an immediate consequence of the
Fundamental Theorem.

The affine, resp. vector line, structures described in this Proposition de-
pend on the choice of the point A, resp. on the choice of the points A,B.
We can record the dependence using some notions from fibre bundle theory.
This is the content of the following Section.

6 The canonical fibre bundles
We consider a pull-back diagram of sets, having the following form

U×F
h

- E

U

pro j

?

γ

- B

π

?
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with γ a surjection. Thus for each u ∈ U , h provides a bijection h(u,−)
from F to the fibre Eγ(u). One may say that such pull-back diagram provides
E → B with structure of fibre bundle with fibre F (or modelled on F). The
situation gives rise to a “cocycle” h : U×BU→ Aut(F), where Aut(F) is the
group of all bijections F → F , namely

h(u1,u2) := h(u1,−)−1 ◦h(u2,−)

(composing from right to left).
If F carries some structure T , say structure of vector space, affine space,

or projective line, the structure defines a subgroup AutT (F) of Aut(F),
namely the subgroup of bijections F → F which preseve the structure in
question. For vector space structure T , the customary notation for AutT (F)
is GL(F), and similarly Aff(F) for affine space structure.

If now F carries T -structure, and if the cocycle h factors through
AutT (F), the fibres Ex can canonically be provided with T -structure as well.
Namely, pick a u ∈U with γ(u) = x, and transport the T -structure from F
to Ex via the bijection h(u,−) : F → Ex. The structure thus defined does
not depend on the choice of u; any two choices u1 and u2 will give the
same T -structure on Ex since h(u1,−)−1 ◦ h(u2,−) was assumed to be a
T -automorphism.

Thus if F is a vector space, and if the cocycle h takes values in GL(F),
E → X acquires structure of a vector bundle; similarly for affine-space bun-
dles or projective-line bundles.

We consider now a fixed (abstract) projective line L. The isomorphisms
L ∼= P(k2), as given by the Fundamental Theorem, are not canonical, but
depend on the choice of three distinct points in L. Out of these isomorphisms
grow, however, certain canonical fibre bundles:

Let L(2), resp. L(3), denote the set of pairs, resp. triples, of distinct points
in L. We also have the set L(2)×L L(2) of quadruples ((A,B),(A,B′)) with A
distinct from B and from B′. These sets appear in pull-back diagrams

L(3)× k k
ha - L(2) L(3)×

hl- L(2)×L L(2)

L(3)
?

- L
?

L(3)
?

- L(2)
?

(12)
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where the displayed vertical maps are projection onto the first factor, or fac-
tors, and likewise for the horizontal maps in the bottom row. The maps
in the top row are essentially given by the φs of the Fundamental Theo-
rem; thus ha(A,B,C,µ) is (A,X), where X ∈ L\{A} is the unique point with
φA,B,C(X) = µ; and φl(A,B,C,µ) is ((A,B),(A,X)) where X , as before, is
the unique point with φA,B,C(X) = µ .

To the left of these pull-back diagrams, we can, if we want, adjoin yet
another one, namely the following pull-back over L(0) = 1 (so a cartesian
product diagram), i.e.

L(3)×P(k2)
hp - L

L(3)
?

- 1
?

(13)

with hp(A,B,C,µ) the unique X such that φA,B,C(X) = µ . Here φA,B,C : L→
P(k2) is the isomorphism of projective lines provided by the Fundamen-
tal Theorem, cf. Corollary 3 (and its proof). The cocycle L(3)×L(3) →
Aut(P(k2)) takes values in the subgroup of projectivities of P(k2), i.e. in
PGL(2,k). – Also, to the right of the pull-back diagrams in (12), we may ad-
join another “extreme” one (which we shall not use), likewise deriving from
the Fundamental Theorem.

L(3)×P(k2)
∼=- L(3)×L

L(3)
?

=
- L(3).

?

The cocycles associated to the two pull-back diagrams in (12) take values
in the subgroup Aff(k) ⊆ PGL(2,k), resp. in GL(k) = k∗ ⊆ PGL(2,k). For
the first of these diagrams, note that the right hand vertical map L(2) →
L has for its fibre over A ∈ L (a set which may canonically be identified
with) L\{A}; and for given (A,B,C) ∈ L(3), the map ha maps (A,B,C,µ)
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according to the recipe in terms of φA,B,C, given in the proof of Proposition
4; and, as we observed there, for ((A,B,C),(A,B′,C′))∈L(3)×L L(3), (same
A!) the value of the “difference” (cocycle) φA,B,C ◦φ

−1
A,B′,C′ belongs to Aff(k).

For the second of the diagrams, the right hand vertical map L(2) ×L
L(2) → L(2) has for its fibre over (A,B) ∈ L(2) a set which again may be
canonically identified with L\{A} (by identifying ((A,B),(A,C)) with C).
And for given (A,B,C) ∈ L(3), the map hl maps (A,B,C,µ) according to the
same recipe as the one for ha. The cocycle now takes for its input tuples
((A,B,C),(A,B,C′)) (same A and B!), and, as we observed in the Remark,
φA,B,C ◦φ

−1
A,B,C′ takes values in k∗.

Thus, the first diagram in (12) exhibits the L\{A}s as the fibres of an
affine line bundle over L; and the second diagram in (12) exhibits the L\{A}s
as the fibres of a vector line bundle over L(2), both these bundles modelled
on the fibre k, viewed as, respectively, an affine line or a vector line.

One may similarly consider the diagram (13) as exhibiting the (abstract)
projective line L as a projective line bundle over 1, modelled on the coordi-
nate projective line P(k2).

Stacks of projective lines
The notion of projective line, and of morphism (= isomorphism = projec-
tivity) between such, as described here, is a (1-sorted) first order theory.
This immediately implies that the notion of a bundle of projective lines over
a space M makes sense, and in fact, such bundles pull back along maps,
and descend along surjections, so projective line bundles form canonically
a stack over the base category of sets, or, with suitable modifications, over
the base category of spaces, say. Continuity, or other forms of cohesion, will
usually follow by the the fact that the constructions employed are canoni-
cal, as in [4], Section A.5. The study of bundles of projective lines in the
category of schemes, from [5], was the input challenge for the present work,
and I hope to push further into loc. cit. using the abstract-projective-line con-
cepts.

Example. Let k denote the field of three elements Z3. Every 4-element set
carries a unique structure of abstract projective line over this k. We invite
the reader to construct this structure (a groupoid with 4 objects, and each
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hom-set a 2-element set); the composition laws follow from the idempotence
equations; the cross ratio of the four distinct points (in any order) is −1.

(Another argument: the group PGL(2;Z3) has 24 elements, which is also
the number of permutations of a 4-element set, hence every permutation of
a 4-element set is a projectivity.)

It follows that for any space M, and for any 4-fold covering E →M, the
bundle E →M is uniquely a bundle of projective lines over k. Clearly, such
E → M need not have a section M → E, so does not come about from a
bundle of affine lines over M, by completing the fibres by points at infinity
(the fibrewise infinity points would provide a cross section).
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