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Dedicated to Francis Borceux on the occasion of his 60th
birthday

RÉSUMÉ. Nous démontrons que la classe des équivalences
faibles entre groupöıdes internes dans une catégorie régulière
protomodulaire est une “congruence à biproduits fibrés” et, par
conséquent, elle admet un calcul à droite des fractions. Comme
application, nous montrons que les foncteurs monöıdaux entre
groupöıdes internes dans les groupes et les homomorphismes en-
tre 2-algèbres de Lie strictes sont les fractions des foncteurs in-
ternes par rapport aux équivalences faibles.

RÉSUMÉ. We prove that the class of weak equivalences be-
tween internal groupoids in a regular protomodular category is
a bipullback congrence and, therefore, has a right calculus of
fractions. As an application, we show that monoidal functors be-
tween internal groupoids in groups and homomorphisms of strict
Lie 2-algebras are fractions of internal functors with respect to
weak equivalences.

1. Introduction

It is well known that any monoidal category is monoidally equivalent to
a strict one. This is not true for strong monoidal functors: not every
strong monoidal functor is naturally isomorphic to a strict one (i.e., to a
functor F such that the structural isomorphisms FA⊗FB → F (A⊗B)
and I → FI are identities). An important example of this fact is given
by Schreier theory of group extensions. In fact, let A and B be groups
and write D(A) for A seen as a discrete internal groupoid in the cate-
gory Grp of groups, and OUT (B) for the internal groupoid in Grp corre-
sponding to the crossed module B → Aut(B) of inner automorphisms.
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Then internal (= strict) functors from D(A) to OUT (B) correspond to
split extensions of A through B, whereas monoidal functors from D(A)
to OUT (B) correspond to arbitrary extensions of A by B.

The previous example leads to the following question: what is the
precise relation between the 2-category of internal groupoids and inter-
nal functors in Grp and the 2-category of internal groupoids in Grp and
monoidal functors? The same question can be asked working internally
to the category Lie of Lie K-algebras (for K a fixed field), replacing
monoidal functors by homomorphisms of strict Lie 2-algebras (precise
definitions are in Section 7).

A possible answer to the previous questions is suggested by the fact
that if F : C → D is an internal functor in Grp which is a weak equiv-
alence (i.e., full, faithful and essentially surjective on objects) then the
quasi-inverse functor F−1 : D→ C is no longer an internal functor, but
it is still a monoidal one. More precisely, we prove that:

1. The 2-category of internal groupoids in Grp and monoidal func-
tors is the 2-category of fractions of the 2-category of internal
groupoids and internal functors in Grp with respect to weak equiv-
alences.

2. The 2-category of internal groupoids in Lie and homomorphisms is
the 2-category of fractions of the 2-category of internal groupoids
and internal functors in Lie with respect to weak equivalences.

The paper is organized as follows:

- In Section 2 we recall some basic facts on bicategories of fractions
established by D. Pronk in [16]. We then revisit the right calculus
of fractions for classes of 1-cells using bipullbacks.

- In Section 3 we show that, for a category C with finite limits,
the 2-category Grpd(C) of internal groupoids and internal func-
tors has bipullbacks. More precisely, we show that the standard
homotopy pullback in Grpd(C) also satisfies the universal property
of a bipullback.

- Using bipullbacks, we show in Section 4 that if C is regular, then
the class of weak equivalences in Grpd(C) has a right calculus of
fractions.
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- In Section 5 we refine the previous result showing that if C is regu-
lar and protomodular, then weak equivalences satisfy the “2⇒ 3”
property and therefore they are a bipullback congruence, a notion
inspired by Bénabou’s approach to categories of fractions (see [4]).

- In the last two sections we choose as base category C the category
of groups (Section 6) and the category of Lie K-algebras (Section
7) and we prove the results announced above.

Since Grp and Lie are Mal’cev categories, internal categories coincide
with internal groupoids (see [11]). This is the reason why we restrict
our attention to internal groupoids.

Let me finish with some comments. The result established in Section
6 is not at all a surprise. In fact, if we work with isomorphism classes of
internal functors, then Proposition 6.4 becomes a result on categories of
fractions (not on 2-categories of fractions) quite easy to prove directly
and also easy to deduce using the Quillen model structures studied in
[13] and in [15]. So, in my opinion, what is interesting is not the result
per se but the fact that the 2-categorical nature of its proof requires
the use of bipullbacks, whereas other kinds of 2-dimensional limits (like
homotopy pullbacks) are not convenient in this context (see the Intro-
duction in [4] for some comments on bilimits). Concerning the analogous
result for Lie algebras stated in Section 7, I think it is interesting for a
completely different reason. The notion of monoidal functor is a well-
established one, whereas the notion of homomorphism of Lie 2-algebras
is much more recent, so Proposition 7.4 could help to understand the
2-dimensional theory of Lie algebras.

Notation: the composite of f : A→ B and g : B → C is written f · g
or fg.

Terminology: bicategory means bicategory with invertible 2-cells.

2. Bicategories of fractions

2.1 Categories of fractions have been introduced by P. Gabriel and M.
Zisman in [14] (see also Ch. 5 in [5]). If C is a category and Σ a class of
arrows in C, the category of fractions of C with respect to Σ is a functor

PΣ : C → C[Σ−1]
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universal among all functors F : C → A such that F(s) is an isomor-
phism for all s ∈ Σ. This can be restated saying that for every category
A

PΣ · − : Funct(C[Σ−1],A)→ FunctΣ(C,A)

is an equivalence of categories, where FunctΣ(C,A) is the category of
functors making the elements of Σ invertible. If the class Σ has a right
calculus of fractions, then C[Σ−1] has a quite simple description:

Proposition 2.2 (Gabriel-Zisman) Assume that Σ satisfies the follow-
ing conditions:

CF1. Σ contains all identities;

CF2. Σ is closed under composition;

CF3. For every pair f : A→ B ← C : g with g ∈ Σ there exist g′ : P →
A and f ′ : P → C such that g′ · f = f ′ · g and g′ ∈ Σ;

CF4. If a pair of parallel arrows is coequalized by an element of Σ, then
it is also equalized by an element of Σ.

Then the objects of C[Σ−1] are those of C and an arrow from A to B is
C[Σ−1] is a class of spans

A I
soo f // B

with s ∈ Σ. Two spans (s, I, f) and (s′, I ′, f ′) are equivalent if there
exist arrows x, x′ in C such that x · s = x′ · s′ ∈ Σ and x · f = x′ · f ′.

The analogous problem for bicategories has been solved by D. Pronk
in [16]. For an introduction to bicategories see [3] or Ch. 7 in [5] where
2-categories are also discussed.

Definition 2.3 (Pronk) Let B be a bicategory and Σ a class of 1-cells in
B. The bicategory of fractions of B with respect to Σ is a homomorphism
of bicategories

PΣ : B → B[Σ−1]
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universal among all homomorphisms F : B → A such that F(S) is an
equivalence for all S ∈ Σ. This can be restated saying that for every
bicategory A

PΣ · − : Hom(B[Σ−1],A)→ HomΣ(B,A)

is a biequivalence of bicategories, where HomΣ(B,A) is the bicategory
of those homomorphisms F such that F(S) is an equivalence for all
S ∈ Σ.

Definition 2.4 (Pronk) Let B be a bicategory and Σ a class of 1-cells in
B. The class Σ has a right calculus of fractions if the following conditions
hold:

BF1. Σ contains all equivalences;

BF2. Σ is closed under composition;

BF3. For every pair F : A→ B← C : G with G ∈ Σ there exist G′ : P→
A, F ′ : P→ C and ϕ : G′ · F ⇒ F ′ ·G with G′ ∈ Σ;

BF4. For every α : F ·W ⇒ G ·W with W ∈ Σ there exist V ∈ Σ and
β : V ·F ⇒ V ·G such that V ·α = β ·W, and for any other V ′ ∈ Σ
and β ′ : V ′ · F ⇒ V ′ ·G such that V ′ ·α = β ′ ·W there exist U,U ′

and ε : U · V ⇒ U ′ · V ′ such that U · V ∈ Σ and

U · V · F
U ·β //

ε·F
��

U · V ·G

ε·G
��

U ′ · V ′ · F
U ′·β′

// U ′ · V ′ ·G

commutes;

BF5. If α : F ⇒ G is a 2-cell, then F ∈ Σ if and only if G ∈ Σ.

If the class Σ has a right calculus of fractions, the bicategory B[Σ−1]
can be described in a way similar to that recalled in Proposition 2.2.
Here we do not give full details because what we will use in Sections 6
and 7 is the following useful result:
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Proposition 2.5 (Pronk) Let B be a bicategory and Σ a class of 1-
cells in B which has a right calculus of fractions. Consider a bifunctor
F : B → A such that F(S) is an equivalence for all S ∈ Σ and let

F̂ : B[Σ−1] → A be its extension. Then F̂ is a biequivalence provided
that F satisfies the following conditions:

EF1. F is surjective up to equivalence on objects;

EF2. F is full and faithful on 2-cells;

EF3. For every 1-cell F in A there exist 1-cells G and W in B with W
in Σ and a 2-cell F(G)⇒ F(W ) · F.

(In [16] it is stated that conditions EF1-EF3 are also necessary for F̂
being a biequivalence. This is not true, as proved by M. Dupont in [12].)

2.6 Recall that a diagram

P
F ′

//

G′

��

C

G
��

A
F

//

ϕ
;C

�������

�������

B

in a bicategory B is a bipullback of F and G if for any other diagram

X
K //

H
��

C

G
��

A
F

//

ψ
;C

�������

�������

B

there exists a fill-in, that is a triple (L : X → P, α : L · G′ ⇒ H, β : L ·
F ′ ⇒ K) such that

L ·G′ · F
L·ϕ //

α·F

��

L · F ′ ·G

β·G

��
H · F

ψ
//K ·G
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commutes, and for any other fill-in (L′, α′, β ′) there exists a unique
λ : L′ ⇒ L such that

L′ ·G′
λ·G′

//

α′

##G
GG

GG
GG

GG
L ·G′

α
{{xx

xx
xx

xx
x

H

L′ · F ′
λ·F ′

//

β′

##G
GG

GG
GG

GG
L · F ′

β{{xx
xx

xx
xx

x

K

commute.

Remark 2.7 1. Bipullbacks are determined uniquely up to equiva-
lence.

2. A 1-cell W : B → A is called full and faithful if for every X the
hom-functor

B(X,W ) : B(X,B)→ B(X,A)

is full and faithful in the usual sense. Consider now the following
diagrams, the first one being a bipullback,

K
W2 //

W1

��

B

W
��

B
W

//

w
;C

~~~~~~~

~~~~~~~

A

B
id //

id
��

B

W
��

B
W

//

W
;C

�������

�������

A

Let (DW : B → K, δ1 : DW ·W1 ⇒ id, δ2 : DW ·W2 ⇒ id) be the
fill-in of the second diagram through the first one. Then W is full
and faithful iff the second diagram is a bipullback iff the diagonal
DW is an equivalence.

Proposition 2.8 Let B be a bicategory with bipullbacks and Σ a class
of 1-cells in B. Assume that Σ satisfies the following conditions:

BP1. Σ contains all equivalences;

BP2. Σ is closed under composition;

BP3. Σ is stable under bipullbacks;

BP4. If W is in Σ, then the diagonal DW is in Σ;

BP5. If α : F ⇒ G is a 2-cell, then F ∈ Σ if and only if G ∈ Σ.

Then Σ has a right calculus of fractions.
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Proof. Clearly BP3 implies BF3. We have to show that BF4 holds.
Consider the following diagrams, the first one being a bipullback,

K
W2 //

W1

��

B

W
��

B
W

//

w
;C

~~~~~~~

~~~~~~~

A

B
id //

id
��

B

W
��

B
W

//

W
;C

�������

�������

A

C
G //

F
��

B

W
��

B
W

//

α
;C

�������

�������

A

Let (DW : B → K, δ1, δ2) be the fill-in of the second diagram through
the first one, and (H : C → K, α1, α2) the fill-in of the third diagram
through the first one. Consider also the bipullback

D
V //

L
��

C

H
��

B
DW

//

ϕ
;C

~~~~~~~

~~~~~~~

K

and define β : V · F ⇒ V ·G as follows

V F
V α−1

1 // V HW1
ϕ−1W1// LDWW1

Lδ1 // L
Lδ−1

2 // LDWW2
ϕW2 // V HW2

V α2 // V G

Observe that since W ∈ Σ, then DW ∈ Σ by BP4, and then V ∈ Σ
by BP3. Moreover, the condition V · α = β ·W follows from the fill-in
condition on (DW , δ1, δ2) and (H,α1, α2).

Let β ′ : V ′ · F ⇒ V ′ ·G be such that V ′ ∈ Σ and V ′ · α = β ′ ·W. We
obtain two fill-in of

D′
V ′·F //

V ′·F
��

B

W

��
B

W
//

V ′FW

4<qqqqqqqqqqqqq

qqqqqqqqqqqqq
A

through the bipullback (K,W1,W2, w) : the first one is

( D′
V ′

// C
F // B

DW // K , V ′ · F · δ1, V
′ · F · δ2)

and the second one is

( D
′

V ′

// C
H // K , V ′ · α1, V

′HW2
V ′α2 // V ′G

(β′)−1

// V ′F )
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By the universal property of (K,W1,W1, w), there exists a unique β∗ : V ′·
F ·DW ⇒ V ′ ·H such that

V ′ · F ·DW ·W1
β∗·W1 //

V ′·F ·δ1 ((PPPPPPPPPPPP
V ′ ·H ·W1

V ′·α1xxppppppppppp

V ′ · F

and

V ′ · F ·DW ·W2
β∗·W2 //

V ′·F ·δ2
��

V ′ ·H ·W2

V ′·α2

��
V ′ · F

β′

// V ′ ·G

commute. Let (U : D′ → D, η : U · L ⇒ V ′ · F, ε : U · V ⇒ V ′) be the
fill-in of

D
′

V ′

//

V ′·F
��

C

H

��
B

DW

//

β∗

:B
~~~~~~~

~~~~~~~

K

through the bipullback (D, L, V, ϕ). If we choose U ′ = id, we have ε : U ·
V ⇒ U ′ · V ′. Since V ′ ∈ Σ, then also U ′ · V ′ and U · V are in Σ because
of BP1, BP2 and BP5. It remains to check the compatibility of ε, β and
β ′ as in BF4, but this is just a diagram chasing.

3. Bipullbacks in Grpd(C)

The aim of this section is to prove the following result:

Proposition 3.1 Let C be a category with finite limits, and let Grpd(C)
be the 2-category of internal groupoids, internal functors and internal
natural transformations in C. The 2-category Grpd(C) has bipullbacks.

3.2 Let us fix notation (details can be found in Ch. 7 of [5] or in
Appendix 3 of [7]):
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- An internal groupoid C is represented by

C1 ×c,d C1
m // C1

d //

c
// C0eoo C1

i // C1

where the following diagram is a pullback

C1 ×c,d C1
π2 //

π1

��

C1

d

��
C1 c

// C0

- An internal functor F : C→ D is represented by

C1
F1 //

d
��
c

��

D1

d
��
c

��
C0 F0

// D0

- An internal natural transformation α : F ⇒ G : C → D is repre-
sented by

C1

F1 //

G1

//

d
��
c

��

D1

d
��
c

��
C0

F0 //

G0

//

α||||

>>||||

D0

3.3 It is helpful to start recalling that in Grpd(Set) bipullbacks are
comma-squares. With the notations of 2.6:

- an object in P is a triple (a0 ∈ A0, b1 : F0(a0)→ G0(c0), c0 ∈ C0),

- an arrow from (a0, b1, c0) to (a′0, b
′
1, c

′
0) is a pair of arrows (a1 : a0 →

a′0, c1 : c0 → c′0) such that F1(a1) · b
′
1 = b1 ·G1(c1),

- G′ : P → A and F ′ : P → C are the obvious projections, and
ϕ(a0, b1, c0) = b1,
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- L0(x0) = (H0(x0), ψ(x0), K0(x0)), L1(x1) = (H1(x1), K1(x1)), α =
id and β = id,

- λ(x0) = (α′(x0), β
′(x0)).

3.4 The description of bipullbacks in Grpd(Set) recalled in 3.3 indi-
cates that the first step to obtain bipullbacks in Grpd(C) is to construct

from an internal groupoid B a new internal groupoid ~B whose objects
are arrows in B and whose arrows are commutative squares in B. The
construction of ~B is quite standard:

~B =

(
~B1 ×~c,~d

~B1
~m // ~B1

~d //

~c
// B1~eoo ~B1

~i // ~B1

)

- ~B1 is defined by the following pullback

~B1

m2 //

m1

��

B1 ×c,d B1

m

��
B1 ×c,d B1 m

// B1

- ~d = m1 · π1 and ~c = m2 · π2,

- ~e is the unique factorization through ~B1 of the following commu-
tative diagram

B1
<d,1> //

<1,c>

��

B0 ×B1
e×1 // B1 ×c,d B1

m

��
B1 × B0 1×e

// B1 ×c,d B1 m
// B1

- we leave to the reader the task of describing ~m and ~i.

3.5 The internal groupoid ~B is equipped with two internal functors
δ, γ : ~B→ B specified by

~B1

δ1=m2·π1 //

~d
��
~c

��

B1

d

��
c

��
B1 δ0=d

// B0

~B1

γ1=m1·π2 //

~d
��
~c

��

B1

d

��
c

��
B1 γ0=c

// B0
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and it tourns out that to give an internal natural transformation α : F ⇒
G : A→ B is the same as giving an internal functor α : A→ ~B such that
α · δ = F and α · γ = G. Indeed, the internal functor α is specified by

A1

d

��
c

��

α1 // ~B1

~d
��
~c

��
A0 α

// B1

where α1 is the unique factorization through ~B1 of the following com-
mutative diagram

A1
<1,c> //

<d,1>

��

A1 × A0
F1×α // B1 ×c,d B1

m

��
A0 ×A1 α×G1

// B1 ×c,d B1 m
// B1

3.6 We are ready to prove Proposition 3.1. We use the notations of
2.6.

Proof. Given F : A→ B and G : C→ B in Grpd(C), a bipullback

P
F ′

//

G′

��

C

G
��

A
F

//

ϕ
;C

�������

�������

B

is given by the following limit in Grpd(C) (recall that Grpd(C) has limits
computed componentwise in C)

P

G′

wwppppppppppppppp

ϕ

��

F ′

''NNNNNNNNNNNNNNN

A

F ��>
>>

>>
>>

>
~B

δ����
��

��
�

γ
��=

==
==

==
C

G����
��

��
��

B B
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Indeed, any diagram

X
K //

H
��

C

G
��

A
F

//

ψ
;C

�������

�������

B

produces a commutative diagram

X

H

wwppppppppppppppp

ψ
��

K

''NNNNNNNNNNNNNNN

A

F ��>
>>

>>
>>

>
~B

δ����
��

��
��

γ
��>

>>
>>

>>
> C

G����
��

��
��

B B

so that following the universal property of P as a limit there exists a
unique L : X → P such that L · G′ = H, L · F ′ = K and L · ϕ = ψ. (In
other words, (P, G′, F ′, ϕ) is the standard homotopy pullback of F and
G.)
Clearly, (L, α = id, β = id) is a fill-in of (X, H,K, ψ) through (P, G′, F ′, ϕ).
Let (L′, α′, β ′) be another fill-in of (X, H,K, ψ) through (P, G′, F ′, ϕ).
We have to show that there exists a unique λ : L′ ⇒ L such that
λ ·G′ = α′ and λ · F ′ = β ′. Define:

- τ1 to be the unique factorization through B1×c,dB1 of the following
diagram

X0
β′

//

L′

0

��

C1
G1 // B1

d
��

P0 ϕ
// B1 c

// B0

- τ2 to be the unique factorization through B1×c,dB1 of the following
diagram

X0
ψ //

α′

��

B1

d
��

A1 F1

// B1 c
// B0
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- τ to be the unique factorization through ~B1 of the following dia-
gram

X0
τ2 //

τ1

��

B1 ×c,d B1

m

��
B1 ×c,d B1 m

// B1

Finally, λ is the unique factorization through P1 of the following diagram

X0

α′

wwnnnnnnnnnnnnnnn

τ

��

β′

''PPPPPPPPPPPPPPP

A1

F1   @
@@

@@
@@

@
~B1

m2·π1

~~}}
}}

}}
}} m1·π2

  A
AA

AA
AA

A
C1

G1~~~~
~~

~~
~~

B1 B1

Clearly, λ·G′ = α′ and λ·F ′ = β ′. To check that λ·d = L′
0 and λ·c = L0,

the naturality of λ, and its uniqueness is a diagram chasing using that
{G′

1, ϕ1, F
′
1}, {m1, m2} and {π1, π2} are jointly monomorphic.

4. Weak equivalences in Grpd(C)

Definition 4.1 (Bunge-Paré) Let F : C→ B be in Grpd(C).

1. F is essentially surjective on objects if

C0 ×F0,d D1
t2 // D1

c // D0

is a regular epimorphism, where t2 is given by the following pull-
back

C0 ×F0,d D1
t2 //

t1

��

D1

d

��
C0 F0

// D0

2. F is a weak equivalence if it is full and faithful (see 2.7) and
essentially surjective on objects.
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The previous definition is due to M. Bunge and R. Paré (see [10]). In
[13] a more general notion of weak equivalence involving a Grothendieck
topology on C has been considered. Since in Sections 6 and 7 the base
category C is regular, I adopt for the moment the definition of Bunge
and Paré. More on this point is contained in 5.10.

Next lemma is well-known and we only sketch the proof.

Lemma 4.2 Let F : C→ D be in Grpd(C).

1. F is full and faithful if and only if the following is a limit diagram

C1

d

vvnnnnnnnnnnnnnnnn

F1

��

c

((QQQQQQQQQQQQQQQQ

C0

F0   B
BB

BB
BB

B
D1

d}}||
||

||
||

c
!!B

BB
BB

BB
B

C0

F0~~||
||

||
||

D0 D0

2. F is an equivalence if and only if it is full and faithful and

C0 ×F0,d D1
t2 // D1

c // D0

is a split epimorphism.

Proof. 1. If the diagram is a limit diagram and α : G·F ⇒ H ·F : X→ D

is an internal natural transformation, then α · d = G0 · F0 and α · c =
H0 · F0. By the universal property of C1 we get a unique β : X0 → C1

such that β · d = G0, β · d = H0 and β · F1 = α. So we have β : G⇒ H

such that β · F = α. (The naturality of β follows from that of α.)
Conversely, any commutative diagram

X0

G0

vvnnnnnnnnnnnnnnnn

α

��

H0

((QQQQQQQQQQQQQQQ

C0

F0   B
BB

BB
BB

B
D1

d}}||
||

||
||

c
!!B

BB
BB

BB
B

C0

F0~~||
||

||
||

D0 D0
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gives rise to internal functors G,H : X→ C with discrete domain

X0
H0·e

//
G0·e //

1
��

1
��

C1

d
��
c

��
X0

H0

//
G0 //

C0

and to an internal natural transformation α : G ·F ⇒ H ·F. To give an
internal natural transformation β : G ⇒ H such that β · F = α means
precisely to give a factorization β : X0 → C1 of (G0, α,H0) through
(d, F1, c).
2. Let F be an equivalence and consider an internal natural transfor-
mation β : G · F ⇒ IdD. Since β · d = G0 · F0, there exists a unique
j : D0 → C0 ×F0,d D1 such that j · t1 = G0 and j · t2 = β. Therefore
j · t2 · c = β · c = id.

Conversely, if j : D0 → C0 ×F0,d D1 such that j · t2 · c = id, we can
construct a quasi-inverse internal functor G : D → C as follows: first
define G0 by

G0 = j · t1 : D0 → C0 ×F0,d D1 → C0

Then, define j1 : D1 → D1 by

j1 =< d · j · t2, 1, c · j · t2 · i > ·(m×1) ·m : D1 → D1×c,dD1×c,dD1 → D1

Finally, since F is full and faithful, by the first part of the lemma we
get a unique arrow G1 : D1 → C1 such that G1 · d = d ·G0, G1 · F1 = j1
and G1 · c = c ·G0.

Corollary 4.3 Every equivalence in Grpd(C) is a weak equivalence.
The converse is true provided that in C the axiom of choice holds (i.e.,
regular epimorphisms split).

4.4 Regular categories have been introduced by M. Barr in [2] (see also
Ch. 2 in [6]). In a regular category regular epimorphisms behave well:
they are closed under composition and finite products, stable under
pullbacks, and if a composite arrow f · g is a regular epimorphism, then
g is a regular epimorphism. It follows that if F : C → D is in Grpd(C)
with C regular and if F0 is a regular epimorphism, then F is essentially
surjective on objects.
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Proposition 4.5 Let C be a regular category and let Σ be the class of
weak equivalences in Grpd(C). Then Σ has a right calculus of fractions.

Proof. Since by Proposition 3.1 Grpd(C) has bipullbacks, to prove that
Σ has a right calculus of fractions we check conditions BP1–BP5 in
Proposition 2.8.
BP1 is given by Corollary 4.3, BP4 follows from 2.7 and BP5 is an
exercise for the reader.
BP2: full and faithful internal functors are closed under composition
because so they are in Grpd(Set). Assume now that F : A → B and
G : B→ C are essentially surjective. Consider the following pullbacks

A0 ×F0,d B1
t2 //

t1

��

B1

d

��
A0 F0

// B0

B0 ×G0,d C1
t2 //

t1

��

C1

d

��
B0 G0

// C0

A0 ×F0G0,d C1
τ2 //

τ1

��

C1

d

��
A0 F0·G0

// C0

The essential surjectivity of F ·G comes from the commutativity of the
following diagram

A0 ×F0,d B1 ×G1c,d C1
t2×1 //

1×G1×1
��

B1 ×G1c,d C1
c×1 // B0 ×G0,d C1

t2

��
A0 ×F0G0,d C1 ×c,d C1

1×m
��

C1

c

��
A0 ×F0G0,d C1 τ2

// C1 c
// C0

BP3: full and faithful internal functors are stable under bipullbacks be-
cause so they are in Grpd(Set) (use 3.3) and Grpd(C)(X,−) : Grpd(C)→
Grpd(Set) preserves bipullbacks. Consider now a bipullback

P
F ′

//

G′

��

C

G
��

A
F

//

ϕ
;C

�������

�������

B
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and assume that F is essentially surjective. Following the description
of P given at the beginning of 3.6, we have a limit diagram in C

P0
G′

0

vvnnnnnnnnnnnnnnnn

ϕ

��

F ′

0

((PPPPPPPPPPPPPPPP

A0

F0   B
BB

BB
BB

B
B1

d~~||
||

||
||

c
  B

BB
BB

BB
B

C0

G0~~||
||

||
||

B0 B0

But such a limit can be obtained performing two pullbacks as follows

P0

yysssssssssss

F ′

0

  A
AA

AA
AA

AA
AA

AA
AA

AA
AA

A

A0 ×F0,d B1

t1

yyssssssssss
t2

%%KKKKKKKKKK

A0

F0 %%LLLLLLLLLLL B1

d
yyrrrrrrrrrrr

c
  B

BB
BB

BB
B

C0

G0~~||
||

||
||

B0 B0

Since by assumption t2 · c : A0 ×F0,d B1 → B1 → B0 is a regular epi-
morphism, F ′

0 also is a regular epimorphism and then F ′ is essentially
surjective (see 4.4).

5. Bipullback congruences

Next definition is the direct bicategorical generalization of the notion of
pullback congruence introduced by J. Bénabou in [4].

Definition 5.1 Let B be a bicategory with bipullbacks and Σ a class
of 1-cells in B. The class Σ is a bipullback congruence if the following
conditions hold:

BC1. Σ contains all equivalences;
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BC2. Σ satisfies the “2 ⇒ 3” property: let F : C → D and G : D → E

be 1-cells in B; if two of F, G and F · G are in Σ, then the third
one is in Σ;

BC3. Σ is stable under bipullbacks;

BC4. If α : F ⇒ G is a 2-cell, then F ∈ Σ if and only if G ∈ Σ.

Proposition 5.2 Let B be a bicategory with bipullbacks. Any bipullback
congruence has a right calculus of fractions.

Proof. It is enough to prove that a bipullback congruence Σ satisfies
condition BP3 in Proposition 2.8. Let W : B → A be in Σ and let
(DW : B → K, δ1 : DW ·W1 ⇒ id, δ2 : DW ·W2 ⇒ id) be the diagonal
fill-in as in 2.7. By BC1, id ∈ Σ, and then by BC4 DW ·W1 ∈ Σ. Since
by BC3 W1 ∈ Σ, we conclude by BC2 that DW ∈ Σ.

5.3 Protomodular categories have been introduced by D. Bourn in [8]
(see also [7]). Since we are concerned only with regular categories, we
can consider the next lemma, proved in [9], as a definition of proto-
modular category. This lemma makes also evident the analogy between
bipullback congruences and regular protomodular categories: in a reg-
ular protomodular category pullbacks satisfies the “2 ⇒ 3” property.
This analogy will be made precise in Proposition 5.5.

Lemma 5.4 (Bourn-Gran) Let C be a regular category. The following
conditions are equivalent:

1. C is protomodular;

2. In any commutative diagram

//

��

//

b
�� ��// //

where b is a regular epimorphism, if the left hand square and the
outer rectangle are pullbacks, then the right hand square is a pull-
back.
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Proposition 5.5 Let C be a regual protomodular category. The class
of weak equivalences in Grpd(C) is a bipullback congruence.

Let F : A → B and G : B → C be in Grpd(C). In order to prove
Proposition 5.5 we need two lemmas on the shape of certains limits.
The proof is routine.

Lemma 5.6 Consider the pullbacks

A0 ×F0,d B1
t2 //

t1

��

B1

d

��
A0 F0

// B0

B1 ×c,F0 A0
s2 //

s1

��

A0

F0

��
B1 c

// B0

and the commutative diagrams

A1
c //

<d,F1>

��

A0

F0

��
A0 ×F0,d B1 t2

//

(1)

B1 c
// B0

A1
d //

<F1,c>

��

A0

F0

��
B1 ×c,F0 A0 s1

//

(2)

B1 d
// B0

Then F : A → B is full and faithful iff (1) is a pullback iff (2) is a
pullback.

Lemma 5.7 Consider the pullbacks

A0 ×F0,d B1
t2 //

t1

��

B1

d

��
A0 F0

// B0

C1 ×c,G0 B0
s2 //

s1

��

B0

G0

��
C1 c

// C0

A0 ×F0G0,d C1
τ2 //

τ1

��

C1

d

��
A0 F0·G0

// C0

and the commutative diagrams

A0 ×F0,d B1
t2 //

t1

��

B1
<G1,c>// C1 ×c,G0 B0

s1

��
C1

d
��

A0 F0

//

(3)

B0 G0

// C0

A0 ×F0,d B1
t2 //

1×G1

��

B1
c // B0

G0

��
A0 ×F0G0,d C1 τ2

//

(4)

C1 c
// C0

Then (3) is a pullback iff (4) is a pullback.
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5.8 We are ready to prove Proposition 5.5.

Proof. Let Σ be the class of weak equivalences in Grpd(C). We have
to show that condition BC2 holds, since the other conditions have been
checked in the proof of Proposition 4.5. More precisely, given F : A→ B

and G : B → C in Grpd(C) such that F · G ∈ Σ, we have to prove that
F ∈ Σ iffG ∈ Σ. There are two not obvious steps. (The protomodularity
of C is needed only for the first step.)
1. If F · G is full and faithful and F is a weak equivalence, then G is
full and faithful. Consider the following commutative diagram

A1
c //

<d,F1>

��

A0

F0

��
A0 ×F0,d B1

t2 //

1×G1

��

B1
c // B0

G0

��
A0 ×F0G0,d C1 τ2

// C1 c
// C0

Since F is full and faithful, by Lemma 5.6 the top square is a pullback.
Since F · G is full and faithful, by Lemma 5.6 the outer rectangle is a
pullback. Since F is essentially surjective, the second row is a regular
epimorphism. Following Lemma 5.4 the bottom square is a pullback.
Therefore, by Lemma 5.7, the outer rectangle of the following commu-
tative diagram is a pullback

A0 ×F0,d B1
t2 //

t1

��

B1
<G1,c>//

d

��

C1 ×c,G0 B0

s1

��
C1

d
��

A0 F0

// B0 G0

// C0

Since the left hand square is a pullback by definition and the second
column is a split epimorphism, by Lemma 5.4 the right hand square is a
pullback. By Lemma 5.6 again we conclude that G is full and faithful.
2. If F · G is essentially surjective and G is full and faithful, then F is
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essentially surjective. Consider the following pullback (notations as in
Lemma 5.7)

Q
λ2 //

λ1

��

B0

G0

��
A0 ×F0G0,d C1 τ2

// C1 c
// C0

By assumption τ2 ·c is a regular epimorphism, so that λ2 also is a regular
epimorphism. Since G is full and faithful, there exists λ : Q→ B1 such
that λ · d = λ1 · τ1 · F0, λ · G1 = λ1 · τ2 and λ · c = λ2. From the first
equation on λ, we deduce the existence of µ : Q→ A0×F0,dB1 such that
µ · t1 = λ1 · τ1 and µ · t2 = λ. Finally, µ · t2 · c = λ · c = λ2, so that t2 · c
is a regular epimorphism. (Note that we need only the existence of λ,
not its uniqueness. In other words we only use the “fullness” of G, and
not its “faithfulness”.)

5.9 Observe that, contrarily to Lemma 5.4, Proposition 5.5 is not a
characterization of regular protomodular categories. Indeed, if C is Set
(more generally, if in C the axiom of choice holds) then weak equivalences
in Grpd(C) are the same that equivalences (see Corollary 4.3), and the
class of equivalences obviously is a bipullback congruence.

5.10 G. Janelidze pointed out to me that condition 2 in Lemma 5.4
holds in any protomodular (not necessarily regular) category C provided
that the arrow b is a pullback stable strong epimorphism. This fact has
an interesting consequence. Indeed, Proposition 4.5 holds when C is any
finitely complete category and Σ is the class of “weak E-equivalences”,
where:

- E is any class of arrows that behaves well (in the sense explained
in 4.4) and contains the split epimorphisms,

- an internal functor F is a weak E-equivalence if it is full and faith-
ful and essentially E-surjective (that is, the arrow t2 · c : C0 ×F0,d

D1 → D1 → D0 of Definition 4.1 is in E).

Therefore, Proposition 5.5 holds for weak E-equivalences in any pro-
tomodular category C provided that E behaves well, contains the split
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epimorphisms and is contained in the class of pullback stable strong
epimorphisms. Examples are:

i. the class of pullback stable regular epimorphisms,

ii. the class of pullback stable regular epimorphisms that are effective
descent morphisms.

6. Monoidal functors

All along this section we fix C = Grp, the category of groups, which is a
regular and protomodular category. I use additive notation for groups.

6.1 The aim of this section is to prove that the 2-category MON de-
scribed hereunder is the bicategory of fractions of Grpd(C) with respect
to weak equivalences.

1. Objects of MON are internal groupoids in Grp. Note that since
the forgetful functor Grp→ Set preserves finite limits, any object
of MON is also a groupoid in the usual sense.

2. 1-cells F : A → B in MON are monoidal functors, that is, pairs
(F, F2) where F is a (not necessarily internal) functor and

F2 = {F a,b
2 : Fa+ Fb→ F (a+ b)}a,b∈A0

is a natural family of arrows in B satisfying the cocycle condition

Fa+ Fb+ Fc
1+F b,c

2 //

F
a,b
2 +1

��

Fa+ F (b+ c)

F
a,b+c
2

��
F (a+ b) + Fc

F
a+b,c
2

// F (a+ b+ c)

(and suitable F0 : 0→ F0 is uniquely determined by F and F2).

3. 2-cells λ : F ⇒ G in MON are monoidal natural transformations,
that is, natural transformations such that the following diagram

VITALE - BIPULLBACKS AND CALCULUS OF FRACTIONS

- 105 -



commutes

Fa+ Fb
F

a,b
2 //

λa+λb

��

F (a+ b)

λa+b

��
Ga+Gb

G
a,b
2

// G(a+ b)

Remark 6.2 1. The 2-category Grpd(C) embeds into the 2-category
MON : internal functors F : A → B are precisely those monoidal
functors for which all the F a,b

2 are identites. Indeed, in this case
the naturality of F2 corresponds to the fact that F1 : A1 → B1

is a group homomorphism, and the cocycle condition is verified
because e : B0 → B1 is a group homomorphism.

2. The embedding F : Grpd(C)→ MON is full and faithful on 2-cells.
Indeed, if F a,b

2 = id = G
a,b
2 , then the fact that λ is monoidal cor-

responds to the fact that λ : A0 → B1 is a group homomorphism.

3. The embedding F : Grpd(C)→ MON preserves weak equivalences.
In fact, the forgetful functor Grp → Set preserves and reflects
finite limits and regular epimorphisms (this is because Grp is an
algebraic category, see Ch. 3 in [6]), so that weak equivalences
in Grpd(C) and in MON are 1-cells which are full, faithful and
essentially surjective in the usual sense.

4. In MON weak equivalences coincide with equivalences. Indeed, if
F : A → B is a weak equivalence, any quasi-inverse G : B → A

can be equipped with a monoidal structure as follows: choose,
for each x ∈ B0, an arrow βx : F (Gx) → x so to have a natural
transformation β : G · F ⇒ Id. Then define

G
x,y
2 : Gx+Gy → G(x+ y)

to be the unique arrow making the following diagram commutative

F (Gx+Gy)
F (Gx,y

2 )
// F (G(x+ y))

βx+y

��
F (Gx) + F (Gy)

F
Gx,Gy
2

OO

βx+βy

// x+ y
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It is straightforward to check naturality and cocycle condition for
G2 and that β is monoidal. Moreover, we get a monoidal natural
transformation α : F ·G⇒ Id via the equation F (αa) = βFa.

5. The above construction of G2 makes clear that even if F is a weak
equivalence in Grpd(C) in general G is in MON but not in Grpd(C).

Lemma 6.3 The 2-category MON has bipullbacks. Moreover, given 1-
cells F : A → B and G : C → B, it is possible to choose a bipullback of
F and G

P
F ′

//

G′

��

C

G
��

A
F

//

ϕ
;C

�������

�������

B

in such a way that F ′ and G′ are internal functors in Grp.

Proof. The construction of the pullback P is as in 3.3. The interesting
point is that, even if F and G are monoidal (not necessarily internal)
functors, P is an internal groupoid in Grp and not just a monoidal
category. Indeed, if

(a, f : Fa→ Gx, x) and (b, g : Fb→ Gy, y)

are objects in P, their tensor product (a, f : Fa→ Gx, x) + (b, g : Fb→
Gy, y) is given by

(a+ b, F (a+ b)
(F a,b

2 )−1

// Fa+ Fb
f+g // Gx+Gy

G
x,y
2 // G(x+ y) , x+ y)

If (c, h : Fc→ Gz, z) is a third object in P, to check that the above tensor
product is strictly associative easily reduces to the commutativity of the
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following diagram

F (a+ b+ c)

Fa+ F (b+ c)

F
a,b+c
2

44iiiiiiiiiiiiiiiii

f+(F b,c
2 )−1·(g+h)·Gy,z

2

��

F (a+ b) + Fc

F
a+b,c
2

jjUUUUUUUUUUUUUUUUU

(F a,b
2 )−1·(f+g)·Gx,y

2 +h

��

Fa+ Fb+ Fc

1+F b,c
2

jjUUUUUUUUUUUUUUUUU

F
a,b
2 +1

44iiiiiiiiiiiiiiiii

f+g+h
��

Gx+Gy +Gz

1+Gy,z
2ttiiiiiiiiiiiiiiiii

G
x,y
2 +1 **UUUUUUUUUUUUUUUUU

Gx+G(y + z)

G
x,y+z
2 **UUUUUUUUUUUUUUUUU

G(x+ y) +Gz

G
x+y,z
2ttiiiiiiiiiiiiiiiii

G(x+ y + z)

that is, to the cocycle condition on F2 and G2.

The fact that F ′ and G′ are internal functors is obvious.

Proposition 6.4 The embedding F : Grpd(C) → MON is the bicate-
gory of fractions of Grpd(C) with respect to the class of weak equiva-
lences.

Proof. Let Σ be the class of weak equivalences in Grpd(C). From Propo-
sition 4.5 we know that Σ has a right calculus of fractions. Moreover,
by 6.2.3 and 6.2.4, F(W ) is an equivalence for every W ∈ Σ. It remains
to check conditions EF1–EF3 in Proposition 2.5: EF1 is obvious and
EF2 is precisely 6.2.2. As far as EF3 is concerned, consider a 1-cell
F : A→ B in MON and perform the bipullback of F along the identity
1-cell I as in Lemma 6.3

P
G //

W
��

B

I
��

A
F

//

ϕ
;C

�������

�������

B

so that both W and G are internal functors. Since equivalences are
stable under bipullbacks, W is an equivalence in MON and therefore it

VITALE - BIPULLBACKS AND CALCULUS OF FRACTIONS

- 108 -



is a weak equivalence in Grpd(C). Finally, ϕ : F(W ) · F ⇒ F(G) is the
2-cell needed in EF3. Following Proposition 2.5, F : Grpd(C) → MON
is the bicategory of fractions with respect to Σ.

Remark 6.5 Observe that we cannot expect to describe a class larger
than the class of monoidal functors as fractions of internal functors
with respect to weak equivalences. Indeed, the existence of a 2-cell
F(W ) · F ⇒ F(G) as in condition EF3 implies that F is monoidal.

7. Homomorphisms of strict Lie 2-algebras

In this section the base category C is the category Lie of Lie algebras
over a fixed field K, which is a regular and protomodular category. The
situation is completely analogous to the situation described in Section 6
for groups. The reason is that the forgetful functors Lie→ Vect (where
Vect is the category of vector spaces over K) and Vect → Set preserve
and reflect finite limits and regular epimorphisms (because Lie and Vect
are algebraic categories) and moreover in Vect the axiom of choice holds
(because every vector space is free and therefore regular projective).

7.1 The aim of this section is to prove that the 2-category LIE de-
scribed hereunder is the bicategory of fractions of Grpd(C) with respect
to weak equivalences.

1. Objects of LIE are internal groupoids in Lie, also called strict Lie
2-algebras in [1].

2. 1-cells F : A → B in LIE are internal functors in Vect equipped
with a family of arrows in B

F2 = {F a,b
2 : [Fa, Fb]→ F [a, b]}a,b∈A0

which is natural, bilinear, antisymmetric, and satisfies the follow-
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ing Jacobi condition

[Fa, [Fb, Fc]]

[1,F b,c
2 ]

��

[[Fa, Fb], F c] + [Fb, [Fa, Fc]]

[F a,b
2 ,1]+[1,F a,c

2 ]
��

[Fa, F [b, c]]

F
a,[b,c]
2

��

[F [a, b], F c] + [Fb, F [a, c]]

F
[a,b],c
2 +F

b,[a,c]
2

��
F [a, [b, c]] F [[a, b], c] + F [b, [a, c]]

These 1-cells are simply called homomorphisms in [1], where in
fact they are defined for more general semi-strict Lie 2-algebras.

3. 2-cells λ : F ⇒ G in LIE are internal natural transformations in
Vect such that the following diagram commutes

[Fa, Fb]
F

a,b
2 //

[λa,λb]
��

F [a, b]

λ[a,b]

��
[Ga,Gb]

G
a,b
2

// G[a, b]

Remark 7.2 1. The 2-category Grpd(C) embeds into the 2-category
LIE : internal functors F : A → B are precisely those homo-
morphisms for which all the F a,b

2 are identites. The embedding
F : Grpd(C) → LIE is full and faithful on 2-cells, and preserves
weak equivalences.

2. In LIE weak equivalences coincide with equivalences. Indeed, let
F : A → B be a weak equivalence in LIE. Then F is also a weak
equivalence in the 2-category of internal groupoids and internal
functors in Vect. Since in Vect the axiom of choice holds, F has
a quasi-inverse G : B → A which is an internal functor in Vect
(see Corollary 4.3). Now G can be equipped with a structure of
homomorphism as follows: consider the internal (in Vect) natural
transformation β : G · F ⇒ Id and define

G
x,y
2 : [Gx,Gy]→ G[x, y]
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to be the unique arrow making the following diagram commutative

F [Gx,Gy]
F (Gx,y

2 )
// F (G[x, y])

β[x,y]

��
[F (Gx), F (Gy)]

F
Gx,Gy
2

OO

[βx,βy]
// [x, y]

Lemma 7.3 The 2-category LIE has bipullbacks. Moreover, given 1-
cells F : A → B and G : C → B, it is possible to choose a bipullback of
F and G

P
F ′

//

G′

��

C

G
��

A
F

//

ϕ
;C

�������

�������

B

in such a way that F ′ and G′ are internal functors in Lie.

Proof. Once again the point is that, even if F and G are homomor-
phisms, the bipullback P constructed as in 3.3 is an internal groupoid in
Lie and not just a semi-strict Lie 2-algebra. Indeed, the Lie operation
in P is defined by

([a, b], F [a, b]
(F a,b

2 )−1

// [Fa, Fb]
[f,g] // [Gx,Gy]

G
x,y
2 // G[x, y] , [x, y])

and the Jacobi identity is strictly verified thanks to the Jacobi condition
on F2 and G2.

Proposition 7.4 The embedding F : Grpd(C) → LIE is the bicategory
of fractions of Grpd(C) with respect to the class of weak equivalences.

Proof. The proof is analogous to that of Proposition 6.4 and we omit
details.
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Résumé. Nous clarifions le rôle de l'axiome de
Hofmann dans la définition "à l'ancienne mode"
de catégorie semi-abélienne. En enlevant cet
axiome nous obtenons la contrepartie catégorique
de la notion de variété avec détermination des
idéaux ("ideal determined") d'algèbres universel-
les – que nous appelons alors catégorie idéal
déterminée. En utilisant des contre-exemples
provenant de l'algèbre universelle nous pouvons
conclure qu'il y a des catégories idéal déterminées
qui ne sont pas des catégories de Mal'tsev. Nous
montrons aussi qu'il existe des catégories de
Mal'tsev idéal déterminées qui ne sont pas semi-
abéliennes.

Abstract. We clarify the role of Hofmann’s
Axiom in the old-style definition of a semi-
abelian category. By removing this axiom we
obtain the categorical counterpart of the notion of
an ideal determined variety of universal algebras
– which we therefore call an ideal determined
category. Using known counter-examples from

IDEAL DETERMINED CATEGORIES

               CAHIERS DE TOPOLOGIE ET                                                        Vol. LI-2 (2010)

GEOMETRIE DIFFERENTIELLE CATEGORIQUES

by G. JANELIDZE*, L. MARKI**, W. THOLEN° and A. URSINI

- 115 -



universal algebra we conclude that there are ideal
determined categories which fail to be Mal’tsev.
we also show that there are ideal determined
Mal’tsev categories which fail to be semi-abelian.

Keywords: semi-abelian category, ideal determined category, normal
subobject, ideal
MSC: 18A32, 08A30, 08C05, 18C99

1. Introduction

In modern terms, a pointed category C with finite limits and finite colimits
is semi-abelian if it is Barr exact and Bourn protomodular. As shown in
[JMT], these two conditions may be equivalently replaced by the following
older-style axioms:

(A) Every morphism admits a pullback stable (normal epi, mono)-
factorization (where “normal epimorphism” means “cokernel of some
morphism”).

(B) For every commutative diagram

q
F C

w v (1.1)

E B
p

with normal epimorphisms p, q and monomorphisms v, w, one has

(B1) if w is normal, then so is v;

(B2) ("Hofmann's Axiom”) if v is normal and ker(p)  w as subobjects of
E, then w is also normal.
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While the equivalence proof for the new-versus-old-style definitions given
in [JMT] went a long way towards Mac Lane's [M] original quest for an
appropriate categorical setting that would allow for a generalization of
various classical group-theoretic constructions and results (see in particular
[BB]), the following rather obvious question remained unanswered:

Question 1.1. Is Hofmann's Axiom redundant in the list of old-style
axioms (i.e., does (B2) follow from (A), (B1) for pointed finitely complete
and finitely cocomplete categories)?

This question draws particular relevance from the fact that some authors
worked in settings that do not include Hofmann's Axiom, especially those
working in Kurosh-Amitsur radical theory.

By exploiting known results and counterexamples from universal algebra,
in this paper we provide the expected negative answer to Question 1.1. In
fact, we will show that a pointed finitely complete and finitely cocomplete
Barr exact category satisfying conditions (A), (B1)

 may fail to be Mal'tsev (which is a necessary condition for
protomodularity in this context) and

 may fail to be protomodular even when it is Mal'tsev.

The pivotal step for this exploitation is the surprising realization that
pointed varieties of universal algebras satisfying (A), (B1) were studied
already in the 1970s and 80s under different names: they were called BIT
(“buona teoria degli ideali”) in [U1] and ideal determined in [GU], and
this fact leads us not just to a single counterexample but to an interesting
class of them. We use the latter term to introduce the categorical notion
given in the title of this paper and use results from [JMU1] and [JMU2] to
demonstrate its relevance beyond the resolution of Question 1.1. We
conclude the paper with some open questions that should form the basis for
future work in this context, work that should also clarify more
comprehensively the status of the notion of ideal determined category vis-
a-vis Z. Janelidze's subtractive categories [J1].
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2. Ideal determined categories

Let us recall some notions from universal algebra used in this paper:

Definition 2.1. A pointed variety C of universal algebras is said to be BIT
in the sense of [U1], or, equivalently, ideal determined in the sense of
[GU], if its congruences are determined by its ideals, i.e., if the following
two conditions hold:

(a) every congruence on any algebra in C is generated by its 0-class (i.e.,
no smaller congruence has the same 0-class);

(b) every ideal in every algebra in C is normal, i.e., it is the 0-class of a
congruence.

Varieties of universal algebras satisfying condition 2.1(a) are called 0-
regular. On the other hand, as mentioned in [JMU1], in the language of
categorical algebra condition 2.1(a) simply says that every regular
epimorphism in C is normal. Since every variety of universal algebras
admits a pullback stable (regular epi, mono)-factorization, condition 2.1(a)
is nothing but the algebraic version of condition (A) of the Introduction.

As shown in [JMU2], a subalgebra S of an algebra A in a pointed variety C
is an ideal if, and only if, there exist a surjective homomorphism f : A'  A
in C and a normal subalgebra N in A' for which f(N) = A'. Therefore, under
condition (A), condition 2.1(b) is nothing but the algebraic version of
condition (B1) of the Introduction.

Accordingly we introduce:

Definition 2.2. A pointed finitely complete and finitely cocomplete
category C is said to be ideal determined if it satisfies conditions (A) and
((B1).

We obtain immediately:

Proposition 2.3. A pointed variety of universal algebras is ideal
determined as a category if and only if it is ideal determined in the sense of
universal algebra. 
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Furthermore, the universal-algebraic motivation for “ideal determined” can
be reformulated categorically as follows:

According to [JMU2], a monomorphism v : C  B in a pointed category C
with finite limits and colimits satisfying condition (A) should be called an
ideal if there exists a commutative diagram of the form (1.1) in C, in which
p and q are normal epimorphisms and w is a normal monomorphism.
Hence, with this terminology C is ideal determined if, and only if, its ideals
are normal monomorphisms. On the other hand, condition (A) simply says
that C is a regular category in which every regular epimorphism is normal.
Hence, in terms of the correspondence between normal monomorphisms
and normal epimorphisms we may briefly say that ideal determined
categories are regular categories in which regular epimorphisms are
determined by ideals.

Let us now recall when a variety of universal algebras is semi-abelian,
combining past work from both category theory and universal algebra. The
universal-algebraic side of the story was discovered in [JMU1] (see
Theorems 1.3 and 1.4 in [JMU1]), with another crucial remark made in
[JMU2]. The equivalence (a)(c) in the following theorem follows also
from the main result of [BJ], while (b)(c) had been proved originally in
[Be]:

Theorem 2.4. The following conditions on a pointed variety C of universal
algebras are equivalent:

(a) C is a semi-abelian category;

(b) C satisfies the Split Short Five Lemma (see [JMT]);

(c) C is 0-coherent in the sense of E. Beutler [Be], i.e., for every A in C,
every subalgebra A' in A, and every congruence R on A, one has:

{a  A  (0,a)  R}  A' implies {a  A  (a',a)  R}  A' for all a' in
A.

(d) C is BIT speciale in the sense of [U2] (=classically ideal determined in
the sense of [U3]), i.e., there are binary terms t1, ..., tn, and an (n+1)-ary
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term t satisfying the identities t(x,t1(x,y),...,tn(x,y)) = y and ti(x,x) = 0 for
each i = 1, ..., n. 

This theorem shows that various semi-abelian categorical constructions are
closely related to the universal-algebraic theory of Magari ideals as
developed by Ursini and his collaborators in [U1], [U2], and by the authors
of various subsequent papers.

Remark 2.5. Already from [U2] it is well known that not every ideal
determined (=BIT) variety of universal algebras is classically ideal
determined (=BIT speciale). Hence, not every ideal determined category is
semi-abelian, but is it always a Mal’tsev category? The negative answer is
again provided by universal algebra. The first of a string of counter-
examples was provided in [GU] (“implication algebras”), which eventually
led to the proof of the following much stronger result by G. D. Barbour and
J.G. Raftery [BR]: For every natural number n  2 there is a pointed ideal
determined variety of universal algebras which has (n1)-permutable
congruences but not n-permutable congruences.

3. Not every ideal determined Mal’tsev category/variety is
semi-abelian

Throughout this section C denotes a pointed variety of universal algebras.
We shall write M(C) for the (pointed) variety obtained from C by adding a
ternary operation p satisfying the Mal’tsev identities:

p(x,y,y) = x = p(y,y,x). (3.1)

Given a morphism  : A  B in C with B in M(C), we can always make A
an object in M(C), by choosing any map (not necessarily a
homomorphism)  : (A)  A with
(0) = 0 and (b) = b for each b  (A), and then by defining p on A by
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x if y = z,
p(x,y,z) = z if x = y,

(p((x),(y),(z))) if x  y  z;

we will denote that object by A[,]. The morphism  determines a
morphism
A[,]  B in M(C), and if  is a morphism in C, it actually determines a
morphism B  A[,] in M(C).

Now, consider the diagram

' '
K A' B

'
 (3.2)

α 
K A B

 

in C constructed as follows:

  and  are arbitrary morphisms in C with  = 1B;
 K = 1(0) is the kernel of , and A' is a subalgebra in A containing K and
(B);
 , , and ' are the inclusion maps, and ' and ' the induced maps
determined by ' =  and ' = , respectively.

There are many ways of making B an object in M(C); let us put

x if y = z,
p(x,y,z) = z if x = y,

0 if x  y  z

in B and denote this object by B0. After that we can form A[,], and, since
A' contains (B), it determines a subalgebra in A[,]; moreover, that
subalgebra is nothing but A'[','], and the diagram (3.2) determines a
similar diagram in M(C), namely,
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' '
K0 A'[','] B0

'
 (3.3)


K0 A[,] B0,

 

where K0 is constructed similarly to B0. This proves:

Theorem 3.1. M(C) is semi-abelian if and only if so is C. 

In particular, since we know that not every (pointed) ideal determined
variety is semi-abelian, we immediately conclude that not every ideal
determined Mal’tsev variety is semi-abelian. Therefore there exist Barr
exact, Mal’tsev and ideal determined categories that are not semi-abelian.

Remark 3.2. (a) The arguments used for obtaining (3.3) from (3.2) and
then deducing Theorem 3.1, apply obviously not just for (3.1) but also for
similar conditions involving equalities of “one-step” terms.

(b) One could use similar arguments with  in (3.2) being merely a map
with
(0) = 0 and (b) = b for every b  (A), not a homomorphism, as we
originally required in the construction of A[,].

4. Four open questions

Question 4.1. Is every ideal determined category Barr exact?

An obvious candidate for a counter-example would be a quasi-variety of
universal algebras that generates a familiar ideal determined variety.
However, this does not work: in fact, it is easy to show that if a quasi-
variety generates an ideal determined variety then it is a variety. This
indicates that one should begin by studying exact completions of ideal
determined categories.
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Question 4.2. Is a pointed finitely complete and finitely cocomplete Barr
exact category ideal determined if, and only if, it satisfies condition (A)
and is subtractive in the sense of Z. Janelidze [J1]?

Since the subtractive categories that are varieties are the same as
subtractive varieties, in the “varietal” case the affirmative answer is well
known [GU], and this is in fact the reason why we are interested in this
question. Barr exactness is essential here, and the reason for that is clear
not only by the comment to Question 4.3 given below, but also by the fact
that, say, the category of torsion-free abelian groups is subtractive and
satisfies condition (A) but fails to be ideal determined.

Question 4.3. Is a category C abelian whenever both C and Cop are ideal
determined?

This question is closely related to the previous ones since, as shown by Z.
Janelidze [J2], under mild additional conditions (which are much weaker
than the conjunction of (A) and our standard assumption of being pointed
and finitely complete and finitely cocomplete), C is additive whenever
both C and Cop are subtractive. And together with Barr exactness additivity
would imply abelianness.

Our fourth question is rather vague:

Question 4.4. What is the role of finite cocompleteness in this work?

Finite cocompleteness is not very often used, but it holds in all algebraic
examples. It is not clear to us to what extent it would be interesting to
study the classes of categories considered above without this assumption.
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Résumé
En ayant remarqué que la propriété d’hérédité faible des

opérateurs réguliers de fermeture dans Top et des opérateurs de
fermeture homologiques dans les catégories homologiques permet
d’identifier les théories de torsion, nous étudions ces opérateurs de
fermeture en parallèle, en montrant que les opérateurs réguliers de
fermeture jouent en topologie le même rôle que les opérateurs de
fermeture homologiques jouent en algèbre.

Abstract
Observing that weak heredity of regular closure operators in Top

and of homological closure operators in homological categories iden-
tifies torsion theories, we study these closure operators in parallel,
showing that regular closure operators play the same role in topology
as homological closure operators do algebraically.
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Introduction

Homological categories were introduced by Borceux and Bourn [2],
and have since then been studied by several authors, as the right non-
abelian setting to study homology. As shown by Bourn and Gran [6],
these categories provide also a suitable setting to study torsion theo-
ries. In [6] the authors introduce torsion theories in homological cat-
egories and show that they are identifiable by weak heredity of their
homological closure operators. This result resembles the characteriza-
tion of disconnectednesses of topological spaces via weak heredity of
their regular closure operators, and encompasses the characterization
of torsion-free subcategories of abelian categories via weak heredity of
their regular closure operators obtained in [7] (see also [12]). Having as
starting point this common property, we establish parallel properties of
regular and homological closure operators, in topological spaces and in
homological categories, respectively. Since in abelian categories regu-
lar closure operators are exactly the homological ones, this study raises
the question of finding in which cases these closure operators coincide
in homological categories. We show that it is necessary that they are
induced by a subcategory of abelian objects. Moreover, in semi-abelian
categories regular and homological closures coincide exactly when they
are induced by a regular-epireflective subcategory of abelian objects.

In Section 1 we describe briefly disconnectednesses of topological
spaces and torsion theories in homological categories. In Section 2 we
introduce regular and homological closure operators, showing that the
latter ones can be described as maximal closure operators. In Section 3
we establish parallel results for regular and homological closures, based
on the results obtained in [6]. In Theorem 3.1.4 we show the validity of
the corresponding topological version of the characterization of heredi-
tary torsion theories via hereditary homological closure operators. Next
we investigate openness and closedness of regular epimorphisms, with
respect to the regular closure, showing that these properties are unlikely
topological; see Propositions 3.2.2 and 3.3.2. Finally, in Corollary 3.4.2,
we characterise the regular-epireflective subcategories of semi-abelian
categories for which the regular and the homological closures coincide,
generalising the result obtained in [13] for abelian categories.
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1 (Dis)connectednesses and Torsion Theories

1.1 (Dis)connectednesses in Topology

Given a subcategory A of the category Top of topological spaces
and continuous maps, we define the full subcategories

lA := {X ∈ Top | if f : X → A and A ∈ A, then f is constant},

rA := {X ∈ Top | if f : A → X and A ∈ A, then f is constant}.
A subcategory of the form lA for some A is said to be a connectedness,
while a subcategory of the form rA is said to be a disconnectedness.
Connectednesses and disconnectednesses of Top were thoroughly stud-
ied by Arhangel’skǐı and Wiegandt in [1]. We list here some properties
of these subcategories we will need throughout.

1.1.1 Proposition

(1) Every disconnectedness is a regular-epireflective subcategory of Top.

(2) Top, the subcategory of T0-spaces Top0, the subcategory of T1-
spaces Top1 and the subcategory Sgl consisting of the empty and
the singleton spaces are disconnectednesses.

(3) Let A be a disconnectedness. If A is different from Top and from
Top0, then A ⊆ Top1. If A is different from Sgl, then A contains
the subcategory TDisc of totally disconnected spaces.

(4) Sgl, the subcategory Ind of indiscrete spaces, and Top are con-
nectednesses. These are the only connectednesses closed under
subspaces.

1.2 Torsion theories in homological categories

A pointed category C is homological if it is

(1) (Barr-)regular, that is if it is finitely complete and (regular epimor-
phisms, monomorphisms) is a pullback-stable factorization system
in C, and
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(2) protomodular, that is given a commutative diagram

A //

² ²
1

B //

² ²
2

C

²²
D // E // F

where the dotted vertical arrow is a regular epimorphism, if 1

and the whole rectangle are pullbacks, then 2 is a pullback as
well.

C is said to be semi-abelian if it is pointed, exact and protomodular.
That is, in addition to (1) and (2) the pointed category C also satisfies

(3) every equivalence relation is effective, i.e. a kernel pair relation.

A torsion theory in a homological category is a pair (T,F) of full
and replete subcategories of C such that:

1. If T ∈ T and F ∈ F, then the only morphism T → F is the zero
morphism.

2. For each X ∈ C there is a short exact sequence

0 // T // X
ρX // F // 0

with T ∈ T and F ∈ F.

If (T,F) is a torsion theory, the subcategory T is called the torsion
subcategory, and F is called the torsion-free subcategory. Every torsion-
free subcategory F is regular-epireflective, with the F-reflection of X
given by ρX as above.

Torsion theories in homological categories were introduced by Bourn
and Gran in [6], encompassing the properties of Dickson’s torsion theo-
ries in abelian categories [10].

The notion of abelian object has been studied in non-abelian settings
(see [2]). In homological categories they can be defined as those objects
which have an internal abelian group structure. As shown by Bourn in
[5]:
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1.2.1 Proposition

(1) In a homological category, the following conditions are equivalent
for an object X:

(i) X has an internal abelian group structure;

(ii) the diagonal δX : X → X ×X is an equaliser.

(2) In a semi-abelian category, the following conditions are equivalent
for an object X:

(i) X has an internal abelian group structure;

(ii) the diagonal δX : X → X ×X is a kernel.

2 Regular and homological closure operators

2.1 Closure operators

Throughout C is a finitely complete category with cokernel pairs
and M is a pullback-stable class of monomorphisms of C. This means
that C has inverse M-images, that is for each morphism f : X → Y
there is a change-of-base functor

f−1( ) : M/Y → M/X

where M/X is the (preordered) category of M-subobjects of X, that
is of morphisms in M with codomain X. When, for each morphism
f : X → Y , the functor f−1( ) : M/Y → M/X has a left adjoint
f( ) : M/X → M/Y , we say that C has direct M-images.

A closure operator c on C with respect to M assigns to each m :
M → X in M a morphism cX(m) : cX(M) → X in M such that, for
every object X,

(C1) cX is extensive: m ≤ cX(m) for every m : M → X in M;

(C2) cX is monotone: m ≤ m′ ⇒ cX(m) ≤ cX(m′), for every m :
M → X, m′ : M ′ → X in M;

(C3) morphisms are c-continuous: cX(f−1(n)) ≤ f−1(cY (n)) for every
morphism f : X → Y and every n : N → Y in M.
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When C has direct M-images, condition (C3) can be equivalently
expressed by

(C3′) f(cX(m)) ≤ cY (f(m)), for every M-subobject m of X.

Extensivity of c says that every m : M → X ∈ M factors as

M
m //

jm # #GG
GG

GG
GG

G X

cX(M)
cX(m)

; ;wwwwwwwww

The morphism m : M → X is c-closed if cX(m) ∼= m, and c-dense if
cX(m) ∼= 1X .

A closure operator c is said to be

• idempotent if cX(m) is c-closed for every m : M → X ∈ M;

• weakly hereditary if jm is c-dense for every m ∈ M;

• hereditary if, for m : M → X, l : X → Y and l ·m in M,

cX(m) ∼= l−1(cY (l ·m)).

It is immediate that hereditary closure operators are in particular weakly
hereditary.

Closure operators with respect to M can be preordered by

c ≤ d :⇔ ∀m : M → X ∈ M cX(m) ≤ dX(m).

2.2 Regular versus homological closure operators

For any such class M of monomorphisms containing the regular
monomorphisms, every reflective subcategory A of C induces a regu-
lar closure operator regA on C with respect to M, assigning to each
m : M → X in M the equaliser of the following diagram

X
u //
v

// Y
ρY // RY ,
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where (u, v) is the cokernel pair of m and ρY is the A-reflection of Y ;
that is,

regA
X(m) = eq(ρY · u, ρY · v).

Regular closure operators are idempotent but not weakly hereditary in
general.

When the category C is pointed, replacing equalisers by kernels in
the construction above gives rise to another interesting closure opera-
tor. Let M be a pullback-stable class of monomorphisms containing the
kernels, and let A be a reflective subcategory of C. The homological
closure operator hA induced by A in M assigns to each m : M → X the
kernel of the following composition of morphisms

X
πM // Y

ρY // RY ,

where πM is the cokernel of m and ρY is the A-reflection of Y ; that is,

hA
X(m) = ker(ρY · πM).

Homological closure operators are idempotent but not weakly hered-
itary in general.

If C has direct M-images, then regA is completely determined by its
restriction to A, via the formula

regA
X(m) ∼= ρ−1

X (regA
RX(ρX(m))), (?)

for any m : M → X in M, with ρX : X → RX the A-reflection of X.
There is an alternative way of replacing equalisers by kernels in

the definition of regular closure operator. Indeed, regA is the maximal
closure such that every equaliser in A is closed. In particular:

2.2.1 Lemma If A is a reflective subcategory of Top and X is an
object of A, then:

(1) the diagonal δX : X → X ×X is regA-closed;

(2) For every x ∈ X, the inclusion {x} → X is regA-closed.
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In a pointed finitely-complete category C, given a pullback-stable class
of monomorphisms M containing the zero-subobjects and a reflective
subcategory A, one calls maximal closure operator induced by A, the
maximal closure operator maxA with 0A : 0 → A closed, for every
A ∈ A (or, equivalently, with kernels of A-morphisms closed). It is
easily verified that:

2.2.2 Proposition If A is a reflective subcategory of a pointed and
finitely-complete category C with cokernels, then hA = maxA.

While regular closure operators were introduced by Salbany [15]
more than 30 years ago, and widely studied since then, homological
closure operators were introduced more recently by Bourn and Gran [6]
in the context of homological categories.

For comprehensive accounts on closure operators and homological
categories we refer the reader to [12] and [2, 14] respectively.

3 How close are regular and homological closure
operators

3.1 (Weak) heredity

The study of weak heredity of regular closure operators presented in
[7] encompasses the following topological and algebraic results.

3.1.1 Theorem

(1) For a regular-epireflective subcategory A of Top, the following
assertions are equivalent:

(i) regA is weakly hereditary;

(ii) A is a disconnectedness.

(2) For a (regular-)epireflective subcategory A of an abelian category
C, the following conditions are equivalent:

(i) regA is weakly hereditary;

(ii) A is a torsion-free subcategory.
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Disconnectedness in topological spaces and torsion-free subcategories
in abelian categories are particular cases of right-constant subcategories
(see [9] for details), hence the two theorems above are instances of a
more general result. Moreover, as shown in [13], if C is an abelian
category, then the regular closure operator induced by an epireflective
subcategory A coincides with the maximal closure operator induced by
A. This shows, moreover, that Theorem 3.1.1.2 is a particular case of
the following result, due to Bourn and Gran [6].

3.1.2 Theorem For a regular-epireflective subcategory A of a homo-
logical category C, the following conditions are equivalent:

(i) maxA is weakly hereditary;

(ii) A is a torsion-free subcategory.

In [6] Bourn and Gran show also that heredity of maxA identifies hered-
itary torsion theories, that is those torsion theories with hereditary tor-
sion part.

3.1.3 Theorem For a regular-epireflective subcategory A of a homo-
logical category C, the following conditions are equivalent:

(i) maxA is hereditary;

(ii) A is a hereditary torsion-free subcategory.

As for weak heredity there is a corresponding result in topology.

3.1.4 Theorem For a regular-epireflective subcategory A of Top, the
following conditions are equivalent:

(i) regA is hereditary;

(ii) A is an hereditary disconnectedness (that is, its connectedness
counterpart l(A) is hereditary);

(iii) A is either Top or the category Top0 of T0-spaces or the category
Sgl consisting of singletons and the empty set.
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Proof. First we remark that (ii)⇔(iii) follows from Proposition 1.1.1(4).
(iii)⇔(i): If A = Top, then regA is the discrete closure, which is

trivially hereditary. If A = Top0, then regA is the b-closure, with, for
A ⊆ X,

bX(A) = {x ∈ X | for every neighbourhood U of x, {x} ∩ U ∩ A 6= ∅},
which is known to be hereditary (see for instance [12]). If A = Sgl,
then regA is the indiscrete closure, that is

regSgl
X (A) = X for every ∅ 6= A ⊆ X and regSgl

X (∅) = ∅,
which is hereditary. Conversely, assume that A is none of these three
subcategories. By Proposition 1.1.1(3), TDisc ⊆ A ⊆ Top1. Con-
sider the Sierpinski space S = {0, 1}, with {0} the only non-trivial
open subset, and its product S × S. The two-point discrete space D =
{(0, 1), (1, 0)} is a subspace of S×S; the A-reflection of S×S is a single-
ton, while D ∈ A. Hence regA

D(0, 1) = (0, 1) while regA
S×S(0, 1) = S×S,

and therefore regA is not hereditary.
¤

3.2 Openness of regular epimorphisms

Another interesting feature of homological closure operators pointed
out by Bourn and Gran [6] is to make regular epimorphisms open. Recall
that, given a closure operator c, a morphism f : X → Y is c-open if, for
every n : N → Y ∈ M,

cX(f−1(n)) ∼= f−1(cY (n));

that is, the inequality in the c-continuity condition (C3) becomes an
isomorphism. It was shown in [8] that:

3.2.1 Proposition For an idempotent closure operator c in a homo-
logical category C the following conditions are equivalent:

(i) c = maxA for some regular-epireflective subcategory A;

(ii) regular epimorphisms in C are c-open.
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It is easy to check that in general this is not a common property of
regular closure operators in Top.

3.2.2 Proposition For a closure operator c in Top the following con-
ditions are equivalent:

(i) c is regular, and every regular epimorphism is c-open;

(ii) c is either the discrete or the indiscrete closure operator.

Proof. (ii)⇒(i) is trivial.
(i)⇒(ii): Let c be a regular closure operator induced by a regular-

epireflective subcategory A different from Top. Then either A = Top0

or A ⊆ Top1. If A = Top0, then regA is the b-closure, which does
not satisfy (i): take X = {0, 1, 2, 3} → Y = {0, 1, 2} with f(i) = i if
i ≤ 2 and f(3) = 2, where the only non-trivial open subset of X is
{1, 2}, hence the quotient topology is indiscrete; then f−1(b(0)) = X
and b(f−1(0)) = {0, 3}. If A ⊆ Top1, then regA is indiscrete in the
Sierpinski space. Hence, for every closed, non-open, subset C of a space
Z, since χC : Z → S is a quotient map, hence regA-open, one has
regA

Z (C) = χ−1
C (regA

S (1)) = Z. Therefore, if Z is T1 and non-discrete, it
has a non-open point z, and so regA

Z (z) = Z, which implies that Z 6∈ A.
This means then that A has only discrete spaces, and then A ⊂ TDisc,
which implies A = Sgl by Proposition 1.1.1. ¤

3.3 Closedness of regular epimorphisms

Closed morphisms with respect to a closure operator are defined
analogously to open morphisms, replacing inverse images by direct im-
ages. When C has direct M-images, a morphism f : X → Y is said to
be c-closed if, for every m ∈ M/X,

f(cX(m)) ∼= cY (f(m)).

(As said before, the inequality f(cX(m)) ≤ cY (f(m)) is equivalent to
c-continuity of f .)

We recall that an epireflective subcategory is said to be Birkhoff if
it is closed under regular epimorphisms.

Next we analyse the topological counterpart of the following result.
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3.3.1 Proposition [6] If A is a regular-epireflective subcategory of a
semi-abelian category C, the following assertions are equivalent:

(i) regular epimorphisms are maxA-closed;

(ii) A is a Birkhoff subcategory.

3.3.2 Proposition For a regular-epireflective subcategory A of Top
the following conditions are equivalent:

(i) regular epimorphisms are regA-closed;

(ii) A is a Birkhoff subcategory;

(iii) A = Top or A = Sgl.

Proof. Trivially (iii)⇒(ii). To show that (ii)⇒(iii), first note that Top0

is not closed under quotients, hence it is not a Birkhoff subcategory.
Now, if A ⊆ Top1 and A contains a non-discrete space Z, hence with a
closed non-open subset C, then χC : Z → S is a quotient map although
the Sierpinski space S does not belong to A. Hence every object of A
is discrete, which implies that A = Sgl.

(iii)⇒(i) is clear, since regTop is the discrete closure and regSgl is the
indiscrete closure, both making regular epimorphisms c-closed.

(i)⇒(iii): If A = Top0, regA is the b-closure. The quotient map
X → Y used in the proof of Proposition 3.2.2 is not b-closed since

f(b(0)) = f({0, 3}) = {0, 2} and b(f(0)) = b(0) = {0, 1, 2}.

If A ⊆ Top1 and C is a closed, non-open, subset of Z ∈ A, then
χC : Z → S is a quotient map. Moreover, regA is indiscrete in S, since
the A-reflection of S is a singleton, and every point in Z is regA-closed,
because Z ∈ A (see Lemma 2.2.1). For any z ∈ C one has

χC(regA
Z (z)) = χC(z) = 1 6= regA

S (χC(z)) = regA
S (1) = S.

Therefore every object of A is discrete, and so A = Sgl. ¤
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3.4 When regular and homological closures coincide

Finally, it is natural to ask in which pointed regular categories regu-
lar and maximal closure operators coincide. Until the end of this section,
we will assume that these closure operators are defined in the class of
monomorphisms of C.

3.4.1 Theorem Let A be a regular-epireflective subcategory of a pointed
regular category with cokernels. The following assertions are equivalent:

(i) when restricted to A, regA and maxA coincide;

(ii) regA = maxA;

(iii) in A every equaliser is a kernel;

(iv) for every object A of A, the diagonal δA is a kernel in A.

Proof. (i)⇒(ii): On one hand, since the maximal closure maxA is the
largest closure c with 0A : 0 → A c-closed for any A ∈ A and regA and
maxA coincide in A, regA ≤ maxA.

On the other hand, denoting by ρ the A-reflection, by (?) of Section
2 we have that regA

X(m) ∼= ρ−1
X (regA

RX(ρX(m))) is maxA-closed since, by
(i), regA

RX(ρX(m)) ∼= maxA
RX(ρX(m)), hence regA

X ≥ maxA
X .

(ii)⇒(iii): Since every equaliser m : M → A in A is regA-closed,
hence maxA-closed by (ii), and the maxA-closure of m in A is the kernel
of

A
πM // Y

ρY // RY ∈ A,

m ∼= maxA
A (m) ∼= ker(ρY · πM) is a kernel in A as claimed.

(iii)⇒(iv) is obvious, while (iv)⇒(iii) follows from the fact that the
equaliser of f, g : A → B is the pullback of δB : B → B × B along
< f, g >: A → B ×B.

(iii)⇒(i): A monomorphism in A is regA-closed (resp. maxA-closed)
if, and only if, it is an equaliser in A (resp. a kernel in A). If equalisers
are kernels, then, as idempotent closure operators, necessarily regA and
maxA coincide in A. ¤

If A is a regular-epireflective subcategory of a homological category,
then A is homological as well (see [4]), and so in A every coequaliser is
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a cokernel. In the theorem above the dual property is required for A so
that its homological and regular closure operators coincide. Indeed this
condition leads us again to an abelian-like condition, as we show next.

3.4.2 Corollary

(1) If A is a regular-epireflective subcategory of a homological category
C with regA = maxA, then A consists of abelian objects.

(2) If A is a regular-epireflective subcategory of a semi-abelian cate-
gory C, then the following conditions are equivalent:

(i) regA = maxA;

(ii) every object in A is abelian.

Proof. First we remark that both C and A are homological (semi-
abelian resp.), and so the result follows from Proposition 1.2.1 since:

X is abelian :⇔ X has an internal abelian group structure

If regA = maxA, then δA : A → A × A is a kernel, for every A ∈ A.
Hence, A is abelian. Conversely, if A is abelian then it has an internal
abelian group structure in C, hence also in A, and so δA must be a
kernel in A in case A is semi-abelian. ¤

We point out that there are non (semi-)abelian homological cate-
gories where every equaliser is a kernel. In fact such categories are
necessarily additive but may fail to be exact. (We recall that an exact
and additive category is abelian: see [14].) This is the case, for in-
stance, for the category of topological abelian groups, which is regular
and protomodular but not exact (see [3] for details.)
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Abstract

La caractérisation des extensions centrales doubles en termes de commutateurs
de Janelidze (dans le cas des groupes) et de Gran et Rossi (dans le cas des
variétés de Mal’tsev) est montrée d’être toujours valide dans le contexte des
catégories exactes de Mal’tsev avec coégalisateurs.

The characterisation of double central extensions in terms of commutators due
to Janelidze (in the case of groups) and Gran and Rossi (in the case of Mal’tsev
varieties) is shown to be still valid in the context of exact Mal’tsev categories
with coequalisers.

In his article [10], George Janelidze gave a characterisation of the double central
extensions of groups in terms of commutators. Not only did he thus relate Galois
theory to commutator theory, but he also sowed the seeds for a new approach to
homological algebra, where higher-dimensional (central) extensions are used as a
basic tool—see, for instance, [5, 6, 11, 16].

Expressed in terms of commutators of equivalence relations [15, 17], his result
amounts to the following: a double extension

X
c ,2

d
��

C

��
D

f
,2 Z

(A)

is central if and only if [R[d], R[c]] = ∆X = [R[d]∩R[c],∇X ]. HereR[d] andR[c]
denote the kernel pairs of d and c, and ∆X and ∇X are the smallest and the largest
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equivalence relation on X . This characterisation was generalised to the context of
Mal’tsev varieties by Marino Gran and Valentina Rossi [9]. Although one of the
implications (the “only if”-part) of the proof given in [9] is entirely categorical and
easily seen to be valid in any Barr exact Mal’tsev category with coequalisers, the
other implication is not, and makes heavy use of universal-algebraic machinery. The
aim of this note is to provide a proof of the other implication which is valid in any
exact Mal’tsev category with coequalisers.

In our proof, we shall not only consider double extensions, but also three-fold
and four-fold extensions. Therefore, we begin this note with a few introductory
words on higher-dimensional extensions. For an in-depth discussion on this subject
in the context of semi-abelian categories we refer the reader to [6] and [5].

Let A be a regular category, i.e., a finitely complete category with pullback-
stable regular epi-mono factorisations. Given n ≥ 0, denote by ArrnA the category
of n-dimensional arrows inA. (A zero-dimensional arrow is an object ofA.) n-fold
extensions are defined inductively as follows. A (one-fold) extension is a regular
epimorphism inA. For n ≥ 1, an (n+1)-fold extension is a commutative square A
in Arrn−1A (an arrow in ArrnA) such that in the induced commutative diagram

X
c

!*

d

�%

�(HHHHHHHHH

D ×Z C ,2

��

C

��
D ,2 Z

every arrow is an n-fold extension. Thus for n = 2 we regain the notion of double
extension. Note that, since in the regular category Arrn−1A a pullback of regu-
lar epimorphisms is always a pushout, it follows that an (n + 1)-fold extension is
necessarily a pushout in Arrn−1A, for any n ≥ 1.

Suppose from now on that A is, moreover, Mal’tsev [4, 3], i.e., every (internal)
reflexive relation in A is an equivalence relation. It was shown in [1] that, for a
regular category A, the Mal’tsev condition is equivalent to the following property:
if, in a commutative diagram

R[f ]

r

��

,2,2 A
f ,2

a

��

B

b

��
R[g] ,2,2 C g

,2 D

EVERAERT & VAN DER LINDEN - DOUBLE CENTRAL EXTENSIONS...

- 144 -



f , g, a and b are extensions, then the right hand square is a double extension if
and only if its kernel pair in ArrA—the morphism r in the diagram—is an exten-
sion. Since the concept of double extension is symmetric, this has the following
consequences:

• double extensions are stable under composition;

• if a composite g ◦ f : A → B → C of arrows in ArrA is a double extension
and B is an extension, then g : B → C is a double extension;

• any split epimorphism of extensions is a double extension.

And then also the following is straightforward to prove:

• the pullback in ArrA of a double extension A→ B along a double extension
C → B is a double extension.

In fact, for any n ≥ 2, a commutative square in Arrn−2A consisting of (n− 1)-
fold extensions is an n-fold extension if and only if its kernel pair in Arrn−1A is an
(n− 1)-fold extension, and thus for all of the above listed properties one obtains
higher dimensional versions as well. This is easily shown by induction, if one takes
into account that the notion of n-fold extension (for n ≥ 3) is symmetric in the fol-
lowing sense: any commutative cube in Arrn−3A can be considered in three ways as
a commutative square in Arrn−2A; if any of the three squares is an n-fold extension,
then the same is true for the other two.

Lemma. Let n ≥ 3, and suppose that the following commutative cube in Arrn−3A
is an n-fold extension.

A′ ,2

��

B′

��

A ,2

��

:D���������
B

��

:D���������

C ′ ,2 D′

C ,2

:D

D

:D���������

If the top square is a pullback, then so is the bottom square.
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Proof. Taking pullbacks in the top and bottom squares of the cube, we obtain the
comparison square

A ,2

��

A′ ×B′ B

��
C ,2 C ′ ×D′ D.

Since the cube is an n-fold extension, this square is an (n − 1)-fold extension. In
particular, it is a pushout in Arrn−3A, and it follows that the lower comparison
morphism is an isomorphism as soon as the upper one is so.

From now on, we assume that the regular Mal’tsev category A is, moreover,
(Barr) exact (every equivalence relation inA is effective) and thatA admits coequal-
isers. This allows us to consider the commutator of equivalence relations defined in
[15] (see also [14]), which is a generalisation of Jonathan Smith’s definition in the
context of Mal’tsev varieties [17]. Following [7] we call an objectA ∈ A abelian if
[∇A,∇A] = ∆A, and we write AbA for the full subcategory ofA determined by all
abelian objects. Then AbA is a reflective subcategory of A and the abelianisation
of an object A ∈ A is given the quotient abA = A/[∇A,∇A]. It was shown in [7]
that AbA is a Birkhoff subcategory of A, which means that it is, moreover, closed
in A under subobjects and regular quotients. Recall from [12] that the Birkhoff
condition is equivalent to the following one: for any extension f : A→ B in A the
commutative square canonically induced by the unit η

A
ηA ,2

f

��

abA

��
B ηB

,2 abB

(B)

is a double extension. Note that this condition, together with the lemma above for
n = 3, implies that

• the abelianisation functor ab : A → AbA preserves pullbacks of split epi-
morphisms along extensions.

(To see this, keep in mind that a split epimorphism of double extensions is always a
three-fold extension.) This important property was first discovered by Marino Gran
in [8], and we shall need it in the proof of our theorem.

Recall from [12] that an extension f : A→ B is trivial (with respect to the Birk-
hoff subcategory AbA) if the induced square B is a pullback; it is central if there ex-
ists an extension p : E → B such that the pullback p∗(f) : E×BA→ E of f along

EVERAERT & VAN DER LINDEN - DOUBLE CENTRAL EXTENSIONS...

- 146 -



p is a trivial extension; it is normal when the projections of its kernel pair R[f ] are
trivial. Let us denote by ExtA and CExtA the full subcategories of ArrA determined
by all extensions and all central extensions, respectively. It was shown in [8] (see
also [2, 13]) that the central extensions (with respect to AbA) are precisely those
extensions f : A → B with [R[f ],∇A] = ∆A. As explained in [13] (in the case of
Mal’tsev varieties—but the argument remains valid), this implies in particular that
the category CExtA is reflective in ExtA and that the centralisation of an extension
f : A → B is given by the induced quotient centrf = A/[R[f ],∇A] → B. The
centralisation functor centr : ExtA → CExtA has the following property, which is
a consequence of the fact that the commutator of equivalence relations is preserved
by regular images [15]: for any double extension f : A → B, the square in ArrA
canonically induced by the unit η1

A
η1A ,2

f
��

centrA

��
B

η1B

,2 centrB

(C)

is a three-fold extension. Using the terminology of [5, 6] this means that CExtA is a
strongly E1-Birkhoff subcategory of ExtA, where E1 denotes the class of all double
extensions. Applying the lemma for n = 4, it follows that

• the centralisation functor centr : ExtA → CExtA preserves pullbacks of split
epimorphisms of extensions along double extensions.

(To see this, keep in mind that a split epimorphism of three-fold extensions is al-
ways a four-fold extension.) Taking this into account, one is then able to prove
also the following consequences of the strong E1-Birkhoff property of CExtA, all
of which are well-known in the case of one-fold extensions [12]. Analogous to the
one-dimensional case, a double extension f : A→ B is trivial when the induced
square C is a pullback; it is central if there exists a double extension p : E → B
such that the pullback p∗(f) : E ×B A→ E of f along p is a trivial double exten-
sion; it is normal when the projections of its kernel pair R[f ] are trivial.

• The pullback in ArrA of a trivial double extension along a double extension
is a trivial double extension;

• the pullback in ArrA of a double central extension along a double extension
is a double central extension;
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• a double central extension that is a split epimorphism in ArrA is necessarily
trivial.

And it follows that

• the concepts of central and normal double extension coincide.

We need one last consequence of the strong E1-Birkhoff property of CExtA. For
this, consider a three-fold extension, pictured as the right hand square in the follow-
ing diagram in ArrA.

R[f ]

��

,2,2 A
f ,2

��

B

��
R[g] ,2,2 C g

,2 D

By applying the centralisation functor centr : ExtA → CExtA to the left hand com-
mutative square of (say) first projections, we obtain a commutative cube in ArrA
which is a four-fold extension as a split epimorphism of three-fold extensions:

centrR[f ] ,2

��

centrA

��

R[f ] ,2

��

η1
R[f ]

:D��������
A

��

η1A

:D���������

centrR[g] ,2 centrC

R[g] ,2
η1
R[g]

:D

C.

η1C

:D���������

It follows from the lemma that the bottom square in this cube is a pullback as soon
as the top square is a pullback, i.e., if f is a normal extension, then so is g. Since
the concepts of central and normal double extension coincide, it follows that

• a quotient of a double central extension by a three-fold extension is again a
double central extension.

We are now in a position to prove the characterisation of double central exten-
sions. As mentioned before, we only need to consider one implication: for the other,
we refer the reader to [9].
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Let A be a double extension such that [R[d], R[c]] = ∆X = [R[d] ∩R[c],∇X ].
The first condition [R[d], R[c]] = ∆X says that there exists a partial Mal’tsev
operation p : R[c]×X R[d]→ X , i.e., a morphism p that satisfies the conditions
p(α, γ, γ) = α and p(α, α, γ) = γ. Recall from [4] that such a p, in a regu-
lar Mal’tsev category, necessarily satisfies the conditions dp(α, β, γ) = d(γ) and
cp(α, β, γ) = c(α). We use the notation R[d]�R[c] for the largest double equi-
valence relation on R[d] and R[c], which “consists” of all quadruples (α, β, δ, γ)
of “elements” of X that satisfy c(α) = c(β), c(δ) = c(γ), d(α) = d(δ) and
d(β) = d(γ). Such a quadruple may be pictured asα c β

d d
δ c γ

 . (D)

Writing
π : R[d]�R[c]→ R[c]×X R[d]

for the canonical comparison map (π sends a quadruple D inR[d]�R[c] to the triple
(α, β, γ)) and q : R[d]�R[c]→ R[d] ∩R[c] for the map which sends a quadruple D
to the couple (p(α, β, γ), δ) inR[d]∩R[c], we obtain the pullback of split epimorph-
isms

R[d]�R[c]
π ,2

q

��

R[c]×X R[d]

p

��
R[d] ∩R[c] p1

,2 X.

Applying the abelianisation functor gives us the following commutative cube, in
which the slanted arrows are components of the unit η.

ab(R[d]�R[c]) ,2

��

ab(R[c]×X R[d])

��

R[d]�R[c] ,2

��

:D����������
R[c]×X R[d]

��

:D����������

ab(R[d] ∩R[c]) ,2 abX

R[d] ∩R[c] ,2

:D

X

:D�����������
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Since the reflector ab preserves pullbacks of extensions along split epimorphisms,
the back square of this cube is a pullback.

The second condition [R[d] ∩ R[c],∇X ] = ∆X tells us that the extension
(d, c) : X → D ×X C is central. This is equivalent to the kernel pair projection
p1 : R[d] ∩R[c]→ X being a trivial extension, which is another way to say that the
bottom square in the above cube is a pullback. Hence the two conditions together
imply that so is its top square

R[d]�R[c]
π ,2

ηR[d]�R[c]

��

R[c]×X R[d]

ηR[c]×XR[d]

��
ab(R[d]�R[c])

abπ
,2 ab(R[c]×X R[d]).

Now consider the left hand side cube and the induced right hand side cube of pull-
backs.

ab(R[d]�R[c]) ,2

��

abR[d]

��

R[d]�R[c]
p2 ,2

p1

��

ηR[d]�R[c]

:D��������
R[d]

p1

��

ηR[d]

:D��������

abR[c] ,2 abX

R[c] p2
,2

ηR[c]

:D

X

ηX

:D���������

ab(R[d]�R[c]) ,2

��

abR[d]

��

P ,2

p1

��

:D���������
Q

p1

��

:D��������

��
��

abR[c] ,2 abX

R[c] ,2

ηR[c]

:D

X

ηX

:D���������

Taking into account that, since R[c]×X R[d] is a pullback of a split epimorphism
along a split epimorphism, ab(R[c]×X R[d]) = abR[c]×abX abR[d], the foregoing
results imply that the left hand side cube is a limit diagram. Hence the comparison
square

R[d]�R[c] ,2

��

R[d]

��
P ,2 Q

between the two cubes is a pullback, which means that the front square (considered
as a horizontal arrow) of the left hand side cube is a trivial double extension. (The
vertical arrows p1 in this double extension are split epimorphisms, so their central-
isation is their trivialisation—the two arrows p1 on the right hand side.) A fortiori,
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it is a double central extension. Now consider the commutative cube below. Con-
sidered as a horizontal arrow, it is a split epimorphism between pullbacks of regular
epimorphisms; consequently it is a three-fold extension.

R[d]�R[c]

p1

z���
��

��
��

��

p2 ,2

p2

��

R[d]

p1

z���
��

��
��

��

p2

��

R[c]
p2 ,2

��

X

d

��

R[c]

z���
��

��
��

��
p2

,2 X

d
z���

��
��

��
��

�

R[f ] p2
,2 D

We have just seen that this cube’s top square, considered as a horizontal arrow,
is a double central extension. It follows that the bottom square, also considered
as a horizontal arrow, is a double central extension as well, being a quotient of a
double extension along a three-fold extension. But this bottom square is one of the
projections of the kernel pair of the double extension A, so that also A is central,
and we obtain:

Theorem. In a Barr exact Mal’tsev category with finite colimits, a double extension

X
c ,2

d
��

C

��
D

f
,2 Z

is central if and only if [R[d], R[c]] = ∆X = [R[d] ∩R[c],∇X ].
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We have created a new Internet site for the "Cahiers":

http://pagesperso-orange.fr/ehres/Cahiers/Ctgdc.htm

It extends and will replace the former site

http://pagesperso-orange.fr/vbm-ehr/CT/

It gives a general presentation of the journal, an Index of all the papers
published since Volume I and abstracts (in English) of the papers pub-
lished since 1999. It also contains pdf files of some recent issues of the
"Cahiers" (before their posting on NUMDAM), and the list of contents of
the volumes of the pre-publication

"Esquisses Mathématiques"

which we had published from 1970 to 1981.

We recall that all the former volumes of the "Cahiers" are freely ac-
cessible on the site of the NUMDAM cell of the Centre National de la Re-
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years after the publication of the printed version.
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