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by Jiřı́ ADÁMEK and Lurdes SOUSA
Dedicated to Francis Borceux on the occasion of his sixtieth birthday

Résumé
Les quasi-équations, données par des paires parallèles de morphismes

finitaires, représentent des propriétés des objets: un objet satisfait la pro-
priété si son foncteur hom contravariant fusionne les morphismes de la
paire. Récemment Adámek et Hébert ont caractérisé les sous-catégories
des catégories localement de présentation finie spécifiées par des quasi-
équations. Nous présentons ici une logique de quasi-équations proche de
la logique classique équationnelle de Birkhoff. Nous prouvons qu’elle est
consistante et complète dans toute catégorie localement présentation finie
avec relations d’équivalence effectives.

Abstract
Quasi-equations, given by parallel pairs of finitary morphisms, repre-

sent properties of objects: an object satisfies the property if its contravari-
ant hom-functor merges the parallel pair. Recently Adámek and Hébert
characterized subcategories of locally finitely presentable categories spec-
ified by quasi-equations. We now present a logic of quasi-equations close
to Birkhoff’s classical equational logic. We prove that it is sound and com-
plete in all locally finitely presentable categories with effective equivalence
relations.
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1 Introduction

It was Bill Hatcher who first considered a representation of properties of
objects via a parallel pair u, v : R → X of morphisms in the sense that an
object A has the property iff every morphism f : X → A fulfils f ·u = f ·v,
see [11]. Later Bernhard Banaschewski and Horst Herrlich [5] considered
the related concept of injectivity w.r.t. a regular epimorphism c : X → Y :
this is just the step from parallel pairs to their coequalizers. For regular
epimorphisms which are finitary, that is, have finitely presentable domain
and codomain, Banaschewski and Herrlich [5] characterized full subcate-
gories of “suitable” categories which can be specified by such injectivity:
they are precisely the subcategories closed under products, subobjects, and
filtered colimits. Recently the same result was proved for all locally finitely
presentable categories, see [2], where parallel pairs of morphisms u, v with
finitely presentable domain and codomain are called quasi-equations. Nota-
tion: u ≡ v.

In the present paper we introduce a logic of quasi-equations: for every
set Q of quasi-equations we characterize its consequences, that is, quasi-
equations u ≡ v which hold in every object satisfying every quasi-equation
in Q. In fact, we introduce two logics. The first one is sound and complete in
every locally finitely presentable category. Moreover, this logic is extremely
simple: it states that (1) u ≡ u always holds, (2) if u ≡ v holds, then also
q · u ≡ q · v holds, and (3) if u ≡ v holds and c is a coequalizer of u and v

v′
² ² Â
Â
Â

u′
² ² Â
Â
Â

u //
v

//
c //

then for all pairs with c · u′ = c · v′ we have that u′ ≡ v′ holds. However
this last rule makes the logic disputable in applications. Think of Birkhoff’s
Equational Logic in the category Alg Σ: its aim is to describe the fully in-
variant congruence generated by (u, v), whereas the coequalizer rule takes
the congruence that (u, v) generates for granted.

We therefore present our main logic, called the Quasi-Equational Logic,
without the coequalizer rule. Instead, we work with the parallel pairs alone.
This logic is a bit more involved than (1)-(3) above, but is much nearer to
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Birkhoff’s classical result [7]. We prove its completeness in
(i) every locally finitely presentable category with effective equiva-

lence relations
and

(ii) in ModΣ, the category of Σ-structures for every (many-sorted)
first-order signature.

However, we also present an example of a regular, locally finitely presentable
category in which the Quasi-Equational Logic is not complete.

Related Work Satisfaction of a quasi-equation u ≡ v is equivalent to injec-
tivity w.r.t. the coequalizer of u and v. Our simple logic is just a translation
of the injectivity logic w.r.t. epimorphisms presented in [4]. The full logic
we introduce below is based on a description of the kernel pairs which for
regular, locally finitely presentable categories was presented by Pierre Gril-
let [10], and the generalization to all locally finitely presentable categories
we use stems from [1].

Acknowledgements The authors are grateful to the referees for a number of
useful suggestions.

2 The Coequalizer Logic

Here we present a (surprisingly simple) deduction system for quasi-
equations which is sound and complete in all locally finitely presentable cat-
egories. Its only disadvantage is that it uses the concept of coequalizer, and
this makes the usufelness in applications a bit questionable.

Throughout the paper we assume that a locally finitely presentable cate-
gory is given, see [9] or [3].

2.1. Definition A finitary morphism is one whose domain and codomain are
finitely presentable objects. A quasi-equation is a parallel pair of finitary
morphisms u, v : R → X . We use the notation u ≡ v. An object A satisfies
u ≡ v if f · u ≡ f · v holds for all f : X → A. A quasi-equation u ≡ v is
said to be a consequence of a set Q of quasi-equations, written Q |= u ≡ v,
if every object satisfying all members of Q also satisfies u ≡ v.
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2.2. Observation Let the diagram

R′

v′
² ²

u′
² ²

R
u //
v

// X
c // C

be such that we have

c · u′ = c · v′ and c = coeq(u, v).

Then the quasi-equation u′ ≡ v′ is a consequence of u ≡ v. In fact, if A
satisfies u ≡ v then for every f : X → A we see that f factors through c,
consequently, f · u′ ≡ f · v′.

This suggests the following

2.3. Definition The Coequalizer Logic uses the following deduction rules:

Reflexivity:
u ≡ u

u ≡ v
Left Composition: given

u
% %

v

99
q //

q · u ≡ q · v

u ≡ v c · u′ = c · v′
Coequalizer:

for c = coeq(u, v)

u′ ≡ v′

2.4. Remark (i) The Coequalizer Deduction System is obviously sound:
whenever we can prove a quasi-equation u ≡ v from a given set Q by using
the above three deduction rules, it follows that u ≡ v is a consequence of Q.

(ii) We will prove the completeness of the above deduction system by
reducing it to the completeness of the logic presented by Manuela Sobral
and the authors in [4]. That logic concerned injectivity w.r.t. finitary epi-
morphisms e : X → Y . Recall that an object A is injective w.r.t. e if every
morphism from X to A factors through e. We say that e is an injectivity
consequence of a set E of finitary epimorphisms provided that every object
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injective w.r.t. members of E is also injective w.r.t. e. We formulated the
following logic of injectivity consisting of one axiom and three deduction
rules (where e and e′ are finitary epimorphisms):

(A) idX for finitely presentable objects X

(P)
e
e′

for every pushout

e //

² ² ² ²
e′

//

(C) e e′

e · e′ given e′ // e //

(L) e · e′
e′

And we proved that this represents a sound and complete injectivity logic in
every locally finitely presentable category. That is, given a set Q of finitary
epimorphisms, then the injectivity consequences e of Q are precisely those
which have a (finite) proof applying the above axiom and deduction rules to
members of Q.

(iii) Before proceeding with our logic of quasi-equations, we observe an
unexpected property of proofs based on the rules above: Let Q be a set of
finitary epimorphisms containing all finitary identity morphisms. Then for
every injectivity consequence e of Q there exists a proof of the following
form

(A)





e1
...
ek1

(P)





ek1+1
...
ek2
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(C)





ek2+1
...
ek3

(L)





ek3+1
...
ek4 = e

whose first part consists of elements of Q, the second part uses only (P),
the third one only (C), and the last one only (L). This follows from the next
lemma in which we put

QC = {e1 · e2 . . . ek; ei ∈ Q} (the closure under (C))
QL = {e′; e · e′ ∈ Q for some e} (the closure under (L))

and
QP = {e; e finitary and opposite to a member of Q in a pushout}

(the closure under (P))

2.5. Lemma Let Q be a set of finitary epimorphisms containing all idX , X
finitely presentable. Then ((QP )C)L is closed under pushout, composition
and left cancellation.

Proof Observe that (QP )C is closed under pushout (and composition) since
a pushout of a composite is the composite of pushouts.

To prove the statement, let us first prove that ((QP )C)L is closed under
pushout: Given e′ ∈ ((QP )C)L, there exists e finitary such that ee′ ∈ (QP )C .
Consider the pushout e′′ of e′ along u

e′ //

u

² ²

e //

v

² ²
w

² ²

e′′
//

f
// P

and form a pushout P of e along v to get, by the above, f ·e′′ ∈ (QP )C , thus,
e′′ ∈ ((QP )C)L. Next we prove that ((QP )C)L is closed under composition:
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Consider a composite f ′ · e′

e′ // f ′ //

e

² ²
f

² ²

v Â Â wÄÄ
P

where e · e′ ∈ (QP )C and f · f ′ ∈ (QP )C . Form the pushout P of e and
f · f ′ to get v ∈ (QP )C , thus v · e · e′ = w · f · f ′ · e′ ∈ (QP )C . This proves
f ′ · e′ ∈ ((QP )C)L. 2

2.6. Theorem The Coequalizer Deduction System is sound and complete in
every locally finitely presentable category. That is, a quasi-equation is a
consequence of a set Q of quasi-equations iff it can be deduced from Q.

Proof We apply the result of [4] mentioned in 2.4: given a set H of finitary
epimorphisms containing all finitary identity morphisms, then the injectivity
consequences of e form the closure of H under composition, pushout, and
left cancellation.
Denote by Afp the full subcategory of all finitely presentable objects in the
category A and by

K : A⇒
fp −→ A→

fp

the functor assigning to every quasi-equation its coequalizer. We have

Q |= u ≡ v iff K(u, v) is an injectivity consequence of K[Q].

Assume, without loss of generality, that Q contains all pairs u ≡ u. Then
the above result together with Lemma 2.5 tells us that

Q |= u ≡ v iff K(u, v) ∈ ((K[Q]P )C)L.

Thus, all we need to do is to present a proof of u ≡ v from Q given that the
coequalizer c = K(u, v) lies in the left-cancellation hull of (K[Q]P )C , i.e.,
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it has the form

· · ·

cn

??ÄÄÄÄÄÄÄ

c2
??ÄÄÄÄÄÄÄ

u //
v

//

c1
??ÄÄÄÄÄÄÄ c //

f

OO

and for every i we have a pushout
ui //
vi

//
gi

² ²

ki //

hi

² ²
ci

//

for some ui ≡ vi in Q and ki = K(ui, vi). Observe first that ci is a coequal-
izer of u′i = gi · ui and v′i = gi · vi and we have

ui ≡ vi

u′i ≡ v′i

due to Left Composition. The Coequalizer Rule then yields

cncn−1 . . . c1u = cncn−1 . . . c1v u′n ≡ v′n
cn−1 . . . c1u = cn−1 . . . c1v u′n−1 ≡ v′n−1

...

c1u = c1v u1 ≡ v1

u ≡ v 2

3 The Quasi-Equational Logic in Exact Categories

In the present section we introduce the logic of quasi-equations that only
works with parallel pairs (and does not use coequalizers). This logic is sound
in all locally finitely presentable categories, and we prove here that it is com-
plete whenever the category is exact, see [6] or [8], which means that
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(a) it is regular in the sense of Michael Barr (that is, it has regular factor-
izations, meaning regular epimorphism followed by a monomorphism,
and regular epimorphisms are closed under pullback)

and

(b) it has effective equivalence relations (see 3.5 for details).

We present also important examples (graphs, posets, first-order structures)
of categories in which our logic is complete, although they are not exact.
However, a counter-example demonstrates that the logic is not complete in
every regular, locally finitely presentable category.

3.1. Definition The Quasi-Equational Logic uses the following deduction
rules

Reflexivity:
u ≡ u

Symmetry:
u ≡ v
v ≡ u

Transitivity:
u ≡ v v ≡ w

u ≡ w

Union:
u ≡ v u′ ≡ v′

u + u′ ≡ v + v′

Composition:
u ≡ v

q · u · p ≡ q · v · p given
p //

u
% %

v

99
q //

Epi-Cancellation:
u · p ≡ v · p

u ≡ v
for epimorphisms p

We say that a quasi-equation u ≡ v is deducible from a set Q of quasi-
equations, in symbols

Q ` u ≡ v

if there exists a (finite) proof of u ≡ v applying the above deduction rules to
members of Q.
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3.2. Remark The Quasi-Equational Logic is obviously sound: whenever
Q ` u ≡ v, then the quasi-equation u ≡ v is a consequence of Q. That is,
every object satisfying all quasi-equations in Q satisfies u ≡ v too.

We will discuss the completeness in this and the next section.

3.3. Remark Every proof in Birkhoff’s Equational Logic has an easy trans-
lation into the Quasi-Equational Logic: Recall that that logic for a given
signature Σ consists of Reflexivity, Symmetry, Transitivity, and the follow-
ing rules:

Invariance:
u ≡ v

σ(u) ≡ σ(v)
for all substitutions σ

Congruence:
u1 ≡ v1, u2 ≡ v2, . . . , un ≡ vn

h(u1, u2, . . . , un) ≡ h(v1, v2, . . . , vn)
for all n-ary
symbols h in Σ

Let F : Set → Alg Σ be the left adjoint of the forgetful functor of
Alg Σ. A (finitary) equation u ≡ v (where u, v : 1 → FX are Σ-terms for
some finite set X of variables) may be regarded as a pair of morphisms of
Alg Σ

F1
v //
u

// FX

extending u and v. This replacement of equations by quasi-equations, to-
gether with a convenient translation of the deduction rules, transforms every
formal proof in Birkhoff’s equational logic into one in the Quasi-Equational
Logic. The Invariance Rule is a special case of Left Composition (recall that
a substitution is nothing else than an endomorphism σ : FX → FX):

u ≡ v
σ · u ≡ σ · v

For the Congruence Rule, consider the homomorphism h : F1 → Fn taking
the generator of F1 to the term h(0, . . . , n − 1) in Fn. By applying Union
we obtain

u0 + u1 + · · ·+ un−1 ≡ v0 + v1 + · · ·+ vn−1 : Fn → FX
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and then we just compose with h from the right and the codiagonal from the
left:

F1
h // Fn

u0+···+un−1 //

v0+v1+···+vn−1

// FX + · · ·+ FX
∇ // FX

3.4. Example In the category of posets deduction of quasi-equations is rather
trivial:

(i) Consider the following quasi-equation

• ©©*
HHj •0

•1v0

u01
2

From u0 ≡ v0 we can deduce the following quasi-equation u1 ≡ v1:

• ©©©©©* • •

•¢
¢
¢

A
A

A
SSw

u1

v1

In fact, by using Composition we deduce from u0 ≡ v0 the following

• ³³³³³1

PPPPPq

• •

•¡
¡

¡

u′0

v′0

and • XXXXXXXXz

••

•@
@

@

SSw

u′′0

v′′0

Symmetry yields v′0 ≡ u′0 and, since u′0 = u′′0, Transitivity yields

u0 ≡ v0 ` u1 ≡ v1 .

(ii) Analogously we deduce from u0 ≡ v0 the following quasi-equations
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• ©©©©©* • •

•¢
¢
¢

A
A

A

1

• •

•¢
¢
¢

A
A

A

2

• •
¢¢AA

. . .

• •

•¢
¢
¢

A
A

A

n

ZZ~

un

vn

(iii) More generally, we will show that the consequences of u0 ≡ v0 are
all quasi-equations u, v : A → B such that

(*) u(a) and v(a) lie in the same component of B for all a ∈ A.

Given a quasi-equation u ≡ v satisfying (*) then

u0 ≡ v0 ` u ≡ v .

This is clear from (ii) in case A = 1 = {0} is the terminal object: since
u(0) and v(0) lie in the same component they are connected by a zig-zag.
By using Union and Composition (with the codiagonal as q and p = id) we
conclude that the statement holds for all u, v : A → B with A = 1+ · · ·+1.
And if A is arbitrary use the epimorphism e : 1 + · · · + 1 → A carried by
the identity map: since u0 ≡ v0 ` u · e ≡ v · e, Epi-Cancellation yields
u0 ≡ v0 ` u ≡ v.

(iv) Conversely, every quasi-equation u ≡ v where u, v : A → B are
distinct implies u0 ≡ v0. In fact, choose p ∈ A with u(p) 6= v(p); say,
u(p) 6≥ v(p). Then we have an isotone map q : B → 2 = {0, 1} where
q(u(p)) = 0 and q(v(p)) = 1. Consequently, u ≡ v ` u0 ≡ v0 by Compo-
sition:

1
u0 //

v0

//

p

²²

2

A
u //

v
// B

q

OO

(v) Given u, v : A → B such that (*) does not hold, then u ≡ v implies
the quasi-equation l ≡ r for the coproduct injections l, r : 1 → 1 + 1: use
Composition picking p : 1 → A such that u · p and v · p lie in different
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components and q : B → 1 + 1 which maps one of the components to l and
the rest to r.

(vi) Conversely, l ≡ r implies every quasi-equation. In fact, by Com-
position we clearly derive quasi-equations u, v : 1 → B. Using Union and
Composition this yields all u, v : 1+1 · · ·+1 → B. Finally, use e : A′ → A
as in (ii) above.

3.5. Remark Recall from [6] or [10] that in a regular, locally finitely pre-
sentable category:

(i) By a relation R on an object X is meant a subobject of X × X . We
can represent it by a collectively monic pair u, v : R → X .

(ii) The inverse relation R−1 is represented by v, u : R → X .
(iii) The relation composite R ·R′ of relations represented by collectively

monic pairs u, v : R → X and u′, v′ : R′ → X is obtained from the pullback
P of v and u′ via a factorization of u · p, v′ · p′ : P → X:

e

P
p

yysssssssssss
p′

% %KKKKKKKKKKK

R
u

~~~~
~~

~~
~~

v
% %KKKKKKKKKKK R′

u′yysssssssssss
v′

Ã ÃA
AA

AA
AA

A

X X X

// // R = R ·R′

u

ddIIIIIIIIIIIIIIIIIIII

v

: :tttttttttttttttttttt

as a regular epimorphism e : P → R · R′ followed by a collectively monic
pair u, v : R ·R′ → X . This composition is associative.

(iv) An equivalence relation is a relation R which is
a. reflexive, i.e., ∆X ⊆ R
b. symmetric, i.e., R = R−1, and
c. transitive, i.e., R = R ·R.

Example: every kernel pair is an equivalence relation.
(v) A regular category has effective equivalence relations if every equiv-

alence relation u, v : R → X is a kernel pair (of some morphism – it follows
that it is the kernel pair of coeq(u, v)).
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(vi) Let R be a reflexive and symmetric relation. Then the smallest equiv-
alence relation containing R is

R̂ = R ∪ (R ·R) ∪ (R ·R ·R) ∪ . . .

see [10], 1.6.8. That is, we form the chain R1 ⊆ R2 ⊆ R3 ⊆ . . . of
subobjects of X × X defined by R1 = R and Rn+1 = R · Rn, and the
union of this chain (a) is an equivalence relation and (b) is contained in every
equivalence relation containing R.

3.6. Examples (i) Sets, presheaves, Σ-algebras (for every finitary, possibly
many-sorted signature Σ) and their varieties all form exact, locally finitely
presentable categories.

(ii) Every coherent Grothendieck topos is an exact, locally finitely pre-
sentable category.

(iii) The category
ModΣ

of models of a (possibly many-sorted) first-order signature is a regular, lo-
cally finitely presentable category. Recall that Σ is given by a set Σf of func-
tion symbols with prescribed arities σ : s1 . . . sn → s (for s1 . . . sn ∈ S∗ and
s ∈ S) and a set Σr of relation symbols with prescribed arities s1 . . . sn in
S∗. A model of Σ is an S-sorted set A = (As)s∈S together with functions
σA : As1 × · · · × Asn → As for all σ : s1 . . . sn → s in Σf and relations
ρA ⊆ As1 × · · · × Asn for all ρ in Σr of arity s1 . . . sn.

The regularity of ModΣ is due to the fact that a homomorphism h :
A → B is a regular epimorphism iff every sort hs : As → Bs (s ∈ S) is
an epimorphism in Set and for every relation ρ of arity s1 . . . sn the derived
function from ρA to ρB (restricting hs1 × · · · × hsn) is an epimorphism in
Set.

These categories are not exact in general. A simple example in the cate-
gory of directed graphs (Σ given by one binary relation): let u, v : 2×2 → 2
(where 2 is the chain 0 < 1) be the kernel pair of the morphism 2 → 1.
If R is the subobject of 2 × 2 with the same underlying set which has
(0, 0) < (1, 1) as the only strict relation, then u, v : R → 2 is an equiv-
alence relation that is not a kernel pair.

(iv) The category of posets (and monotone maps) is not regular. In fact,
let A be a coproduct of two 2-chains a < a′ and b < b′, and let e : A → B
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be the surjection which merges a′ with b to get the 3-chain a < a′ < b′.
The map e : A → B is a regular epimorphism, but its pullback along the
embedding of the 2-chain a < b′ into B is not: the pullback is the map from
the discrete two-point set into a 2-chain.

3.7. Notation Given a parallel pair u, v : R → X we denote by

u0, v0 : R0 → X

the reflexive and symmetric relation it generates in the following sense: fac-
torize the pair

[u, v, id], [v, u, id] : R + R + X → X

as a regular epimorphism e0 : R + R + X ³ R0 followed by a collectively
monic pair (u0, v0). Then we denote by

Rn
0 ½ R̂

the inclusion of the n-subobject in the union of 3.5(vi), represented by

un, vn : Rn
0 → X.

3.8. Remark For further use let us recall here that in a locally finitely pre-
sentable category every directed union R =

⋃
i∈I Ri of subobjects is the

colimit R = colim Ri of the corresponding diagram of inclusion maps, see
[3], 1.62.

3.9. Theorem The Quasi-Equational Logic is sound and complete in every
exact, locally finitely presentable category. That is, for every set Q of quasi-
equations and every quasi-equation u ≡ v, Q |= u ≡ v iff Q ` u ≡ v.

Proof (1) We prove first that for every quasi-equation u ≡ v the relations
un, vn : Rn

0 → X of 3.7 have the following property:

(*) u ≡ v ` un · s ≡ vn · s for every s : S → Rn
0

with S finitely presentable.

The proof is by induction in n.
Case n = 0: Given s : S → R0:
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Qi
qi //

qi

² ²² ²

Q s //

e0

² ²² ²

R + R + X
[u,v,id]

, ,

[v,u,id]

22

e0

² ²² ²

X

Si
//

si

// S
s // R0

u0

; ;wwwwwwwwwwwwwwwwwwww

v0

; ;wwwwwwwwwwwwwwwwwwww

we form the pullback Q of s along e0 and express Q as a filtered colimit
of finitely presentable objects with the colimit cocone qi : Qi → Q (i ∈
I). Then we form the regular factorization of e0 · qi as indicated in the
diagram above. The object S is the union of the subobjects si : Si → S (i ∈
I) because [si] :

∐
i∈I Si → S is a regular epimorphism. In fact, [si] ·∐

qi = e0 · [qi] obviously is a regular epimorphism (since in the regular
category e0 is a regular epimorphism), thus, so is [si]. By 3.8 we have S =
colim Si, therefore, the fact that S is finitely presentable implies that sj is an
isomorphism for some j ∈ I . We now have a derivation of u0 · s ≡ v0 · s as
follows:

u ≡ v
by Symmetry and Reflexivity

u ≡ v v ≡ u id ≡ id
by Union and Composition (with
p = id, q = ∇ : X + X + X → X)

[u, v, id] ≡ [v, u, id]
by Composition (p = s · qj , q = id)

u0 · s · sj qj ≡ v0 · s · sj · qj
by Epi-Cancellation

u0 · s ≡ v0 · s

Induction Case: Suppose (*) holds and s : S → Rn+1
0 with S finitely

presentable is given.
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Qi
qi //

qi

² ²² ²

Q

en+1

² ²² ²

s // Pn

pn

||yyyyyyyy
p′n

" "EEEEEEEE

en+1

Rn
0

un

~~}}
}}

}}
}} vn

" "FFFFFFFF R0

u0

||yy
yy

yy
yy

y
v0

Ã ÃA
AA

AA
AA

A

X X X

Si
//

si

// S s
// Rn+1

0

un+1

ccGGGGGGGGGGGGGGGGGG

vn+1

; ;xxxxxxxxxxxxxxxxxxx
oooo

Analogously to the above case we form the pullback Q of s and en and
express Q as a filtered colimit of finitely presentable objects Qi with the
colimit cocone qi : Qi → Q (i ∈ I). We then form regular factorizations
of en+1 · qi as indicated, and by the above argument we conclude that sj is
an isomorphism for some j ∈ I . Therefore, by induction hypothesis, from
u ≡ v, we can deduce

u0 ·p′n ·s · qj ≡ v0 ·p′n ·s · qj and un ·pn ·s · qj ≡ u0 ·p′n ·s · qj (3.1)

since vn · pn = u0 · p′n. Hence, by Transitivity,

un · pn · s · qj ≡ v0 · p′n · s · qj

that is,
un+1 · s · sj · qj ≡ vn+1 · s · sj · qj .

Now, by Epi-Cancellation, we conclude

un+1 · s ≡ vn+1 · s .

(2) We are ready to prove the completeness of the Quasi-Equational
Logic. Since the Coequalizer Deduction System is complete, and the only

ADAMEK & SOUSA - QUASI-EQUATIONS IN LOCALLY PRESENTABLE CATEGORIES II

- 19 -



deduction rule not contained in 3.1 is the Coequalizer rule, it is sufficient to
find a translation of that rule:

R′

v′
² ²

u′
² ²

R
u //
v

// X
c // Y

Suppose u ≡ v and u′ ≡ v′ are quasi-equations such that the coequalizer c
of u, v fulfils c · u′ = c · v′. Then we will find a derivation of u′ ≡ v′ from
u ≡ v in the deduction system of 3.1. Let û, v̂ : R̂ → X be the kernel pair of
c. Then R̂, being an equivalence relation, is the smallest equivalence relation
containing R0 in 3.7, consequently R̂ =

⋃
n∈NRn

0 by 3.5(vi). Then the pair
u′, v′ factorizes through it via a morphism t : R′ → R̂. Now R̂ is a chain
colimit by 3.8, and R′ is finitely presentable, thus, t factors through one of
the colimit morphisms rn = [un, vn] : Rn

0 ½ R̂:

R′

t

wwoooooooooooooooooooooooooooo

t

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

u′

² ²

v′

² ²
Rn

0

vn

88

un

& &// rn // R̂
û //

v̂
// X

That is, we have t : R′ → Rn
0 such that un · t = u′ and vn · t = v′. Thus, we

can derive u′ ≡ v′ from u ≡ v, see (1). 2

3.10. Remark (i) Observe that the effectivity of equivalence relations was
not used in the first part of the proof.

(ii) Observe also that Epi-Cancellation was only used for regular epimor-
phisms in the above proof. We will use it more generally in 3.12 below.

3.11. Remark The above theorem implies that in categories

Alg Σ

of algebras of an arbitrary finitary S-sorted (algebraic) signature Σ the Quasi-
Equational Logic is complete: in fact, Alg Σ is an exact, locally finitely
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presentable category. We want to extend this result to categories ModΣ of
3.6(iii). Although ModΣ does not have effective equivalence relations, we
have the following:

3.12. Proposition The Quasi-Equational Logic is complete in ModΣ.

Proof Consider the adjoint situation

ModΣ

W

> , ,
Alg Σf

D

ll

where W forgets the relations and D defines them to be empty. Both W and
D preserve limits, colimits and finitely presentable objects. Consequently,
they preserve regular factorizations and composition of relations.

As in the previous proof, we just need to translate the Coequalizer rule:
given quasi-equations in ModΣ:

R′

v′
² ²

u′
² ²

R
u //
v

// X
c // Y

with c · u′ = c · v′ for c = coeq(u, v), we will prove that

u ≡ v ` u′ ≡ v′.

From the proof of 3.9 and 3.10 we have that u ≡ v ` un · s ≡ vn · s for all
s : S → Rn

0 with S finitely presentable. Further, since Wc is the coequalizer
of Wu, Wv and the kernel pair of Wc is represented by the relation

WR̂ =
⋃

WRn
0 =

⋃
(WR)n

0

we see that the pair Wu′, Wv′ factorizes through some Wun, Wvn : WRn
0 →

WX via a morphism t : WR′ → WRn
0 . In case R′ = DWR′ we have a

morphism s : R′ → Rn
0 with t = Ws, and then u ≡ v ` u′ ≡ v′ because

u′ = un · s and v′ ≡ vn · s. In general, the counit of D a W gives an
epimorphism e : DWR′ → R′ (carried by the identity map) and the above
consideration yields u ≡ v ` u′ · e ≡ v′ · e. Using Epi-Cancellation, we
derive u ≡ v ` u′ ≡ v′. 2
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3.13. Example The Quasi-Equational Logic is complete in the category of
posets. This follows easily from Example 3.4: If u ≡ v is a consequence of a
set Q of quasi-equations, and if some member of Q does not satisfy (*), then
Q ` l ≡ r, and from that Q ` u ≡ v follows. If all members of Q satisfy
(*) then also u ≡ v does (it is easy to see that the set of all quasi-equations
satisfying (*) is closed under the deduction rules of 3.1). Thus, either Q
contains a nontrivial quasi-equation, in which case we deduce u0 ≡ v0 from
Q and we also deduce u ≡ v from u0 ≡ v0. Or Q contains only quasi-
equations w ≡ w, but then u = v.

3.14. Example of incompleteness of the Quasi-Equational Logic. For the
language Σ2 of one binary relation the category ModΣ2 (of directed graphs
and homomorphisms) has complete Quasi-Equational Logic by 3.12. Let
A be the full subcategory of all graphs (X, R) which are antireflexive (R ∩
∆X = ∅) with the terminal object added. A is closed under limits, filtered
colimits and regular factorizations in ModΣ2, thus, it is a regular, locally
finitely presentable subcategory.

The quasi-equation

• ©©*
HHj •

•
6

u

v

is satisfied by precisely those graphs in A that are discrete or terminal.
Therefore, it has as a consequence the quasi-equation

• ³³³³³1

PPPPPq

• •

•

-

u′

v′

However, we cannot derive u′ ≡ v′ from u ≡ v. In fact, all quasi-equations
u ≡ v that can be deduced from u ≡ v have the property (*) in 3.4, since
the quasi-equation u ≡ v fulfils it and the set of all quasi-equations u ≡ v
fulfilling it is closed under all deduction rules. Since u′ ≡ v′ does not, the
proof is concluded.
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4 The Quasi-Equational Logic in Non-Exact Categories

In the present section we work in a locally finitely presentable category
with effective equivalence relations – but we do not assume regularity. We
prove, again, that the Quasi-Equational Logic is complete. However, we
need to extend slightly the concept of quasi-equation: we will consider all
parallel pairs u, v : R → X where X is finitely presentable but R only
finitely generated. Since finitely generated objects are precisely the strong
quotients e : R ³ R of finitely presentable objects R, the difference is
just a small technicality: for the quasi-equations (in the sense of preceding
sections) u′ ≡ v′ where u′ = u · e, v′ = v · e we have u ≡ v ` u′ ≡ v′ by
Composition and, conversely, u′ ≡ v′ ` u ≡ v by Epi-Cancellation.

4.1. Definition A weak quasi-equation is a parallel pair of morphisms (u, v)
whose domain is finitely generated and codomain is finitely presentable. An
object A satisfies u ≡ v if A(−, A) merges u and v.

4.2. Theorem The Quasi-Equational Logic is complete and sound in ev-
ery locally finitely presentable category with effective equivalence relations.
That is, given a set Q of weak quasi-equations, then a weak quasi-equation
u ≡ v is a consequence of Q iff it can be deduced from Q.

4.3. Remark Before we prove this theorem, we need to modify Remark
3.5. Every locally finitely presentable category has the factorization system
(strong epi, mono), see [3], 1.61. By a relation we again understand a sub-
object of X ×X . In the definition of composite, see 3.5 (iii), we just use the
(strong epi, mono)-factorization of u · p, v′ · p′. Then the concept of equiva-
lence relation and having effective equivalence relations as in 3.5. However,
relation composition is not associative in general.

Let R be a reflexive and symmetric relation. Then the smallest equiva-
lence relation containing R is

R̂ = R ∪ (R ·R) ∪ (R · (R ·R)) ∪ ((R ·R) ·R) ∪ . . .

that is, the union
R̂ =

⋃
i∈I

Ri
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of the smallest set Ri (i ∈ I) of relations containing R and closed under
composition. This is essentially proved in [1]. For the sake of easy reference
here is a proof:

(a) R̂ is reflexive since R is (so that Ri is reflexive for every i since a
composite of reflexive relations is reflexive).

(b) R̂ is symmetric since R is: the formula

(Rj ·Ri)
−1 = R−1

i ·R−1
j

implies that the set {Ri}i∈I is closed under the formation of inverses.

(c) R̂ is transitive because by 3.8

R̂ = colim
i∈I

Ri

and in locally finitely presentable categories pullbacks commute with filtered
colimits. Indeed, let ui, vi : Ri → X be the pair representing ri and û, v̂ :
R̂ → X that representing r̂. Form the pullback

P̂
p

¡¡¡¡
¡¡

¡¡
¡¡ p′

Á Á>
>>

>>
>>

>

R̂
û

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

v̂ Â Â?
??

??
??

? R̂

ûÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ v̂

Â Â?
??

??
??

?

X X X

Transitivity of R̂ means that the pair û · p, v̂ · p′ : P̂ → X factors through
û, v̂. The above pullback is a colimit of the pullbacks

Pi

pi

~~~~
~~

~~
~ p′i

Ã Ã@
@@

@@
@@

Ri

ui

~~}}
}}

}}
}

vi Ã ÃA
AA

AA
AA

A Ri

ui~~}}
}}

}}
}} vi

Ã ÃA
AA

AA
AA

X X X

and for each i ∈ I we have j ∈ J with Rj = Ri · Ri, therefore, the pair
ui · pi, vi · p′i : Pi → X factors through uj, vj . From p = colim pi and

ADAMEK & SOUSA - QUASI-EQUATIONS IN LOCALLY PRESENTABLE CATEGORIES II

- 24 -



p′ = colim p′i we conclude that the pair û · p, v̂ · p′ factors through û, v̂, as
requested.

(d) It is obvious that an equivalence relation S containing R contains
each Ri, thus, R̂ ⊆ S. Moreover, it is easy to see that for every morphism
c : X → Y we have

c · u = c · v iff c · û = c · v̂

(since c · u = c · v implies that the set of all relations u′, v′ with c · u′ = c · v′
is closed under inverse and relation composite – thus, c · ui = c · vi for all
i ∈ I .)

4.4. Notation For a weak quasi-equation u, v : R → X we denote by
u0, v0 : R0 → X the reflexive-and-symmetric hull given by a factorization
of [u, v, id], [v, u, id] : R + R + X → X as a strong epimorphism followed
by a collectively monic pair (u0, v0). Then we have the above subobjects

ri : Ri → R̂ (i ∈ I)

forming the least equivalence relation R̂ =
⋃

i∈I Ri containing R0 repre-
sented by pairs ui, vi : Ri → X . If the pair û, v̂ : R̂ → X represents the
equivalence relation R̂, then ui = û · ri and vi = v̂ · ri.

4.5. Proof of Theorem 4.2 Let u, v : R → X be a weak quasi-equation
which is a consequence of a set Q of weak quasi-equations. We prove Q `
u ≡ v.

(1) We first prove that for every weak quasi-equation u ≡ v we have

u ≡ v ` ui · s ≡ vi · s for every s : S → Ri with S finitely generated

by structural induction on i ∈ I: we verify first the case s : S → R0 for the
reflexive-and-symmetric hull R0 of R, and then show that if the above holds
for Ri and Rj , then it holds for Ri ·Rj .

Base case: As in 3.9 derive [u, v, id] ≡ [v, u, id] from u ≡ v, then use
Epi-Cancellation to get u0 ≡ v0. Using Composition u ≡ v ` u0 · s ≡ v0 · s.

Induction case: Let Rk = Ri ·Rj and let

u ≡ v ` ui · s ≡ vi · s and u ≡ v ` uj · s ≡ vj · s

ADAMEK & SOUSA - QUASI-EQUATIONS IN LOCALLY PRESENTABLE CATEGORIES II

- 25 -



hold for all morphisms s with finitely generated domain and codomain such
that the composites are defined. Given

s : S → Rk , S finitely generated,

we prove u ≡ v ` uk ·s ≡ vk ·s. Let us recall the definition of Rk = Ri ·Rj:

Qd
qd //

qd

² ²² ²

Pk

pi

~~}}
}}

}}
}} pj

Ã ÃA
AA

AA
AA

A

ek

Ri

ui

ÄÄ¡¡
¡¡

¡¡
¡¡

vi
Â Â@

@@
@@

@@
@

Rj

uj
ÄÄ~~

~~
~~

~~ vj

Â Â?
??

??
??

?

Qd * *

md

* *UUUUUUUUUUUUUUUUUUUUUUU X X X

S

s

OO Â
Â
Â

s
// Rk

uk

ggOOOOOOOOOOOOOOO
vk

7 7oooooooooooooooooooo

Express Pk as a filtered colimit of finitely presentable objects Qd (d ∈ D)
with the colimit cocone qd : Qd → Pk (d ∈ D) and let the (strong epi,
mono)-factorization of ek · qd be

ek · qd = md · qd for md : Qd ½ Rk .

Then Rk =
⋃

d∈D Qd because [md] ·
∐

d∈D qd = ek · [qd] is a strong epimor-
phism, thus, so is [md]. By 3.8

Rk = colim Qd

is a colimit of a directed diagram of monomorphisms. Since S is finitely
generated, A(S,−) preserves this colimit, consequently, s : S → colim Qd

factors through some md:

s = md · s for some d ∈ D and s : S → Qd .

By induction hypothesis,

u ≡ v ` ui · pi · qd ≡ vi · pi · qd and u ≡ v ` uj · pj · qd ≡ vj · pj · qd
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which by Transitivity and vi · pi = uj · pj yields

u ≡ v ` ui · pi · qd = vj · pj · qd .

In other words,
u ≡ v ` uk · ek · qd ≡ vk · ek · qd .

Now from ek · qd = md · qd we deduce, due to Epi-Cancellation,

u ≡ v ` uk ·md ≡ vk ·md

and using s = md · s we get, via Composition,

u ≡ v ` uk · s ≡ vk · s

as desired.
(2) The rule Coequalizer (for finitary morphisms) is, due to (1), translated

to the rules of 3.1 quite analogously as in the proof of 3.9, part (2).
(3) To prove the completeness, let u, v : R → X be a weak quasi-

equation which is a consequence of the set Q. Since R is finitely generated,
it is a strong quotient e : R∗ ³ R of a finitely presentable object R∗ and we
consider the quasi-equation u∗ ≡ v∗ obtained from u ≡ v by composition
with e. Analogously, for every member u ≡ v of Q we form a quasi-equation
u∗ ≡ v∗ in the above manner and get a set Q∗ of quasi-equations.

It is clear that u ≡ v is a consequence of Q iff u∗ ≡ v∗ is a consequence
of Q∗: use the soundness of Epi-Cancellation and Composition. By Theo-
rem 2.6, there is a formal proof of u∗ ≡ v∗ from Q∗ using the Coequalizer
Deduction System. We see from (2) that this formal proof gives rise to a
proof of u∗ ≡ v∗ from Q∗ using the deduction rules of 3.1. Now Q ` u ≡ v
follows from the fact that Q ` Q∗ and u∗ ≡ v∗ ` u ≡ v. 2
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Department of Theoretical Computer Science, Technical University of Braunschweig,
Postfach 3329,
38023 Braunschweig, Germany

Lurdes Sousa
School of Technology of Viseu, Campus Politecnico, 3504-510 Viseu, Portugal
CMUC, University of Coimbra, 3001-454 Coimbra, Portugal

ADAMEK & SOUSA - QUASI-EQUATIONS IN LOCALLY PRESENTABLE CATEGORIES II

- 28 -



Abstract

Separable Frobenius monoidal functors were defined and studied
under that name by Kornél Szlachányi [14], [15], and by Brian
Day and Craig Pastro[5]. They are a special case of the linearly
distributive functors of Robin Cockett and Robert Seely [4]. Our
purpose is to develop thetheory of such functors in a very precise
sense. We characterize geometrically which monoidal expressions
are preserved by these functors (or rather, are stable under conju-
gation in an obvioussense). We show, by way of corollaries, that
they preserve lax (meaningnotnecessarily invertible) Yang-Baxter
operators, weak Yang-Baxter operators in thesense of [2], and (in
the braided case) weak bimonoidsin the sense of [12]. Actually,
every weak Yang-Baxter operator is the imageof a genuineYang-
Baxter operator under aseparableFrobeniusmonoidal functor. Pre-
bimonoidal functorsarealso defined anddiscussed.

Les foncteurs monoïdaux Frobeniusséparables ont été définis
et étudiés, sousce nom, par Kornél Szlachányi [14], [15], et par
Brian Day et Craig Pastro [5]. Ils sont un cas spécial des foncteurs
linéaires entre catégories linéarement distributives, introduits par
RobinCockett et Robert Seely [4]. Notreobjet est dedévelopper la
théorie deces foncteurs en un senstrès précis. Nouscaractérisons
géométriquement les expressionsqui sont préservées par ces fonc-
teurs (c’est-à-dire, sont stables sous conjugaison en un sens évi-
dent). Nousmontronssous forme de corollaire qu’ils préservent
les opérateurs Yang-Baxter lax (non-nécessairement inversibles),
les opérateurs Yang-Baxter faibles dans le sens de [2], et (dans le
cas tressé) les bimonoïdes faibles dans le sens de [12]. En fait,
chaqueopérateur Yang-Baxter faible est uneimaged’un opérateur
Yang-Baxter véritable par un foncteur Frobenius séparable. Les
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foncteurs prébimonödaux sontaussi définis et discutés.

Mathematics Subject Classification: 18D10

Keywords: Frobenius monoidal functor, monoidal category, weak
bimonoid,Yang-Baxter operator, separableFrobeniusalgebra, weak
distributive law.

Dedicated to FrancisBorceux on theoccasion of his 60th birthday.

1 Intr oduction

Frobenius monoidal functors F : C → X between monoidal categories were
defined and studied under that name in [14], [15] and [5] and in a more
general context in [4]. If the domain C is the terminal category 1, then
F amounts to a Frobenius monoid in X . It was shown in [5] that Frobenius
monoidal functorscompose, so that, by thelast sentence, they takeFrobenius
monoidsto Frobeniusmonoids. Weconcentratehereon separableFrobenius
F and show that various kinds of Yang-Baxter operators and (in the braided
case) weak bimonoids arepreserved by F .

We introduceprebimonoidal functorsF : C → X between monoidal cat-
egories which are, say, braided. If the domain C is the terminal category 1,
then any (weak) bimonoid in X gives an example of such an F . We show
that prebimonoidal functorscomposeand relatethem to separableFrobenius
functors.

2 Definitions

Justified by coherence theorems (see [8] for example), we write as if our
monoidal categories were strict. A functor F : C → X between monoidal
categories is Frobenius when it is equipped with amonoidal structure

φA,B : FA⊗FB→ F(A⊗B) φ0 : I → FI ,

and an opmonoidal structure

ψA,B : F(A⊗B) → FA⊗FB ψ0 : FI → I
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such that

FA⊗FB⊗FC FA⊗F(B⊗C)
1⊗φB,C

//

F(A⊗B)⊗FC

FA⊗FB⊗FC

ψA,B⊗1

��

F(A⊗B)⊗FC F(A⊗B⊗C)
φA⊗B,C // F(A⊗B⊗C)

FA⊗F(B⊗C)

ψA,B⊗C

��

FA⊗FB⊗FC F(A⊗B)⊗FC
φA,B⊗1

//

FA⊗F(B⊗C)

FA⊗FB⊗FC

1⊗ψB,C

��

FA⊗F(B⊗C) F(A⊗B⊗C)
φA,B⊗C // F(A⊗B⊗C)

F(A⊗B)⊗FC

ψA⊗B,C

��

Weshall call F : C → X separableFrobeniusmonoidal when it isFrobe-
nius monoidal and each composite

F(A⊗B)
ψA,B
−→ FA⊗FB

φA,B
−→ F(A⊗B)

is the identity. We call F : C → X strong monoidal when it is separable
Frobenius monoidal, φA,B is invertible, and φ0 and ψ0 aremutually inverse.

Suppose F : C → X is both monoidal and opmonoidal. By coherence,
wehavecanonical morphisms

φA1,...,An : FA1⊗·· ·⊗FAn −→ F(A1⊗·· ·⊗An)

and
ψA1,...,An : F (A1⊗·· ·⊗An) −→ FA1⊗·· ·⊗FAn

defined by composites of instances of φ and ψ. If n = 0 then these reduce to
φ0 and ψ0; if n = 1, they are identities.

TheF-conjugateof amorphism

f : A1⊗·· ·⊗An −→ B1⊗·· ·⊗Bm
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in C is thecomposite f F :

FA1⊗·· ·⊗FAn

F(A1⊗·· ·⊗An)

φA1,...,An

  B
BB

BB
BB

BB
BB

BB

F(A1⊗·· ·⊗An) F(B1⊗·· ·⊗Bm)
F f // F(B1⊗·· ·⊗Bm)

FB1⊗·· ·⊗FBm

ψB1,...,Bm

>>|||||||||||||

inX . For m= 1, this really only requiresF to bemonoidal while, for n = 1,
this really only requires F to be opmonoidal. If a structure in C is defined
in terms of morphisms between multiple tensors, we can speak of the F-
conjugate of the structure in X . For example, we can easily see the well-
known fact that the F-conjugate of a monoid, for F monoidal, is a monoid;
dually, the F-conjugate of a comonoid, for F opmonoidal, is a comonoid. It
wasshown in [5] that theF-conjugateof aFrobeniusmonoid isaFrobenius
monoid.

Notice that, for a separable Frobenius monoidal functor F , we have φn◦

ψn = 1 for n > 0.
SupposeC and X are braided monoidal. We say that a separable Frobe-

nius monoidal functor F : C −→ X is braided when the F-conjugate of the
braiding cA,B : A⊗B→ B⊗A in C is equal to cFA,FB : FA⊗FB→ FB⊗FA
inX . Becauseof separability, it followsthat F isbraided asboth amonoidal
and opmonoidal functor.

A lax Yang-Baxter (YB) operator on an object A of a monoidal category
C is amorphism y : A⊗A−→ A⊗A satisfying thecondition

(y⊗1)◦ (1⊗y)◦ (y⊗1) = (1⊗y)◦ (y⊗1)◦ (1⊗y)

A Yang-Baxter (YB) operator is an invertible lax YB-operator.
Recall that the Cauchy (idempotent splitting) completion Q C of a cate-

gory C is the category whose objects are pairs (A,e) where e : A→ A is an
idempotent on A and whose morphisms f : (A,e) → (B, p) are morphisms
f : A → B in C satisfying pf e = f (or equivalently pf = f and f e = f ).
Note emphatically that the identity morphism of (A,e) is e : (A,e) → (A,e);
in particular, this means the forgetful Q C → C , (A,e) 7→ A, is not a functor.
If C is monoidal then so is Q C with (A,e)⊗ (A′,e′) = (A⊗A′,e⊗e′) and
unit (I ,1).
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A weak Yang-Baxter operator on A (compare [2]) in C consists of an
idempotent ∇ : A⊗A−→ A⊗A, and lax YB-operators y : A⊗A−→ A⊗A
and y′ : A⊗A−→ A⊗A, subject to the following conditions:

∇◦y =y = y◦∇ (2.1)

∇◦y′ =y′ = y′ ◦∇ (2.2)

y◦y′ =∇ = y′ ◦y (2.3)

(1⊗∇)◦ (∇⊗1) = (∇⊗1)◦ (1⊗∇) (2.4)

(1⊗y)◦ (∇⊗1) = (∇⊗1)◦ (1⊗y) , (2.5)

(1⊗∇)◦ (y⊗1) = (y⊗1)◦ (1⊗∇) . (2.6)

Notice that Equations 2.1, 2.2 and 2.3 say that y : (A⊗A,∇) −→ (A⊗A,∇)
is amorphism with inversey′ inQ C .

Suppose(A,µ : A⊗A−→A,η : I −→A) and (B,µ : B⊗B−→A,η : I −→
B) are monoids in the monoidal category C . Let a morphism λ : A⊗B−→

B⊗Abegiven. Thefollowingconditionsimply that A⊗Bbecomesamonoid

with multiplication A⊗B⊗A⊗B
1⊗λ⊗1
−→ A⊗A⊗B⊗B

µ⊗µ
−→ A⊗B and unit

I
η⊗η
−→ A⊗B:

λ◦ (µ⊗1B) = (1B⊗µ)◦ (λ⊗1A)◦ (1A⊗λ) , (2.7)

λ◦ (1A⊗µ) = (µ⊗1A)◦ (1B⊗λ)◦ (λ⊗1B) , (2.8)

λ◦ (η⊗1B) = 1B⊗η, λ◦ (1A⊗η) = η⊗1A. (2.9)

Thesearetheconditionsfor λ tobeadistributivelaw [3]. A weakdistributive
law [13] is thesameexcept that Equations 2.9 are replaced by:

(1⊗µ)◦ (λ⊗1)◦ (η⊗1⊗1) = (µ⊗1)◦ (1⊗λ)◦ (1⊗1⊗η) . (2.10)

In themonoidal category C , supposeA isequipped with amultiplication
µ : A⊗A−→ A and a“switch morphism” λ : A⊗A−→ A⊗A. Supply A⊗A

with themultiplication A⊗A⊗A⊗A
1⊗λ⊗1
−→ A⊗A⊗A⊗A

µ⊗µ
−→A⊗A. Then a

comultiplication δ : A−→A⊗A preservesmultiplication when thefollowing
holds:

δ◦µ= (µ⊗µ)◦ (1⊗λ⊗1)◦ (δ⊗δ) . (2.11)
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Dually, if we start with δ and λ, define the comultiplication A⊗ A
δ⊗δ
−→

A⊗A⊗A⊗A
1⊗λ⊗1
−→ A⊗A⊗A⊗A on A⊗A, and ask for µ to preserve co-

multiplication, weare led to thesameEquation 2.11
In a braided monoidal category C , a weak bimonoid (see [12]) is an ob-

ject A equipped with amonoid structureand acomonoid structuresatisfying
Equation 2.11 (with λ = cA,A) and the “weak unit and counit” conditions:

ε◦µ◦ (1⊗µ) = (ε⊗ ε)◦ (µ⊗µ)◦ (1⊗δ⊗1) (2.12)

= (ε⊗ ε)◦ (µ⊗µ)◦
(

1⊗c−1
A,A⊗1

)

◦ (1⊗δ⊗1)

(1⊗δ)◦δ◦η = (1⊗µ⊗1)◦ (δ⊗δ)◦ (η⊗η) (2.13)

= (1⊗µ⊗1)◦
(

1⊗c−1
A,A⊗1

)

◦ (δ⊗δ)◦ (η⊗η)

A lax Yang-Baxter (YB) operator on afunctor T :A → C into amonoidal
category C is anatural family of morphisms

yA,B : TA⊗TB−→ TB⊗TA

satisfying thecondition

TA⊗TB⊗TC

TB⊗TA⊗TC
y⊗1

99ssssssssss

TB⊗TA⊗TC TB⊗TC⊗TA
1⊗y // TB⊗TC⊗TA

TC⊗TB⊗TA

y⊗1

%%KKKKKKKKKK

TA⊗TB⊗TC

TA⊗TC⊗TB
1⊗y %%KKKKKKKKKK

TA⊗TC⊗TB TC⊗TA⊗TB
y⊗1

// TC⊗TA⊗TB

TC⊗TB⊗TA

1⊗y

99ssssssssss

One special case is where A = 1 so that T is an object of C : then we
obtain a lax YB-operator on the object T as above. Another case is where
A = C and T is the identity functor: each (lax) braiding c on C gives an
examplewith yA,B = cA,B.

Suppose T : A → C is a functor and F : C → X is a functor between
monoidal categories. Suppose lax YB-operators y on T and z on FT are
given. We define F to be prebimonoidal relative to y and z when it is
monoidal and opmonoidal, and satisfies
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F(TA⊗TB)⊗F(TC⊗TD)

FTA⊗FTB⊗FTC⊗FTD

ψ⊗ψ

JJ���������

FTA⊗FTB⊗FTC⊗FTD FTA⊗FTC⊗FTB⊗FTD
1⊗z⊗1// FTA⊗FTC⊗FTB⊗FTD

F(TA⊗TC)⊗F(TB⊗TD)

φ⊗φ

��)
))

))
))

))

F(TA⊗TB⊗TC⊗TD) F(TA⊗TC⊗TB⊗TD)
F(1⊗y⊗1)

//

F(TA⊗TB)⊗F(TC⊗TD)

F(TA⊗TB⊗TC⊗TD)

φ

��)
))

))
))

))

F(TA⊗TC⊗TB⊗TD)

F(TA⊗TC)⊗F(TB⊗TD)

ψ

JJ���������

WhenC andX are(lax) braided and T istheidentity with yA,B = cA,B and
zA,B = cFA,FB, we merely say F is prebimonoidal. Such an F is bimonoidal
when, furthermore, FI , with its natural monoid and comonoid structure, is
a bimonoid. We were surprised not to find this concept in the literature,
however, we have found that it was presented in preliminary versions of the
forthcoming book [1], and in talks by theauthors of thesame.

3 Separable invar ianceand connectivity

We begin by reviewing some concepts from [9]. Progressive plane string
diagrams are deformation classes of progressive plane graphs. Here we will
draw them progressing from left to right (direction of the x-axis) rather than
from down to up (direction of the y-axis). A tensor scheme is a combina-
torial directed graph with vertices and edges such that the source and target
of each edge is a word of vertices (rather than a single vertex). Progressive
string diagramsΓ can belabelled (or can havevaluations) in atensor scheme
D: for a given labelling v : Γ → D, the labels on the edges (strings) γ of Γ
are vertices v(γ) of D while the labels on the vertices (nodes) x of Γ are
edges v(x) : v(γ1) · · ·v(γm) → v(δ1) · · ·v(δn) of D where γ1, · · · ,γm are the
input edgesand δ1, · · · ,δn are theoutput edgesof x read from top to bottom;
see Figure 1 where f = v(x), A1 = v(γ1), Bn = v(δn), and so on. The free
monoidal category F D on a tensor schemeD has objects words of vertices
and morphisms progressive plane string diagrams labelled in D; composi-
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tion progresseshorizontally while tensoring isdefined by stacking diagrams
vertically.

Figure1:

Every monoidal category C has an underlying tensor scheme: the ver-
ticesaretheobjectsof C and theedgesfrom oneword A1 · · ·Am of objects to
another B1 · · ·Bn is a morphism f : A1⊗·· ·⊗Am → B1⊗·· ·⊗Bn in C ; see
Figure 1. When we speak of a labelling of a string diagram in C we mean
a labelling in the underlying tensor scheme; here we will simply call this a
string diagram in C . The value v(Γ) of the string diagram v : Γ → C is a
morphism obtained by deforming Γ so that no two vertices of Γ are on the
samevertical line then by horizontally composing strips of the form

1C1 ⊗·· ·⊗1Ch ⊗ f ⊗1D1 ⊗·· ·⊗1Dk.

Calculations in monoidal categoriescan beperformed using string diagrams
rather than thetraditional diagramsof category theory. Thevalueof Figure1
is of course f . Figure 2 shows a string diagram v : Γ → C whose value v(Γ)
is

A1⊗·· ·⊗Am⊗D1⊗·· ·⊗Dq

B1⊗·· ·⊗Bn⊗C1⊗·· ·⊗Cp⊗D1⊗·· ·⊗Dq

f⊗1

��
B1⊗·· ·⊗Bn⊗C1⊗·· ·⊗Cp⊗D1⊗·· ·⊗Dq

E1⊗·· ·⊗Ep

1⊗g

��

Now wereturn to our study of separableFrobenius monoidal functors.
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Figure2:

Suppose v : Γ → C is a string diagram in a monoidal category C and
F : C → X is a monoidal and opmonoidal functor. We obtain a conjugate
string diagram vF : Γ → X in X by defining

vF(γ) = Fv(γ) and vF(x) = v(x)F

for each edge γ and each node x of Γ. The conjugate of the string diagram
in Figure 2 is shown in Figure 3. A (progressive plane) string diagram Γ
is called [separable] Frobenius invariant when, for any labelling v : Γ → C

of Γ in any monoidal category C and any [separable] Frobenius monoidal
functor F : C → X , the value of the conjugate diagram vF in X is equal to
theconjugateof thevalueof v; that is,

vF(Γ) = v(Γ)F
. (3.1)

As mentioned before, for a separable Frobenius monoidal functor F , we
have φn◦ψn = 1 for n > 0.

The following two theorems characterizewhich string diagrams arepre-
served by Frobenius and separable Frobenius monoidal functors in terms of
connectedness and acyclicity. Robin Cockett pointed out to us that similar
geometric conditions occur in the work of Girard [7] and Fleury and Re-
toré ([6], §3.1). There may be a relationship with our results but the precise
nature is unclear.
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Figure3:

Theorem 3.1. A progressive plane string diagram is separable Frobenius
invariant if and only if it is connected.

Proof. In Figure 4, we show that Equation 3.1 holds for the string diagram
v : Γ → C as in Figure2, provided p> 0 (as required for Γ to beconnected).
To simplify notation we write FA for F(A1 ⊗ ·· · ⊗Am) and write AF for
FA1⊗ ·· · ⊗FAm. We also leave out some tensor symbols ⊗. The second
equality in Figure4 iswhereseparability, and thefact that thelength p of the
word C is strictly positive, are used; the third is where a Frobenius property
is used.

Similarly, an obvious(horizontal) dual diagram to Figure2 (look through
the back of the page!) can be shown separably invariant. Furthermore, it is
simple to show that diagrams of the form shown in Figure 5 are separably
invariant, as well as their diagrams of thedual form.

By asimilar proof to theabove, such diagramsand their dualsaresepara-
bly invariant. Every connected string diagram can beconstructed by iterating
these four processes, this proves “ if ” . For “only if ” , we exploit the fact that
every string diagram can be interpreted in the terminal monoidal category
1 and that separable Frobenius monoidal functors F : 1 → C are precisely
separableFrobenius algebras in C .

Suppose for a contradiction that a disconnected string diagram Γ with
n input wires and m output wires is invariant under conjugation by such a
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Figure4:
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Figure5:

separable Frobenius F , that is, a separable Frobenius algebra C. This as-
serts the equality of two morphisms C⊗n

−→ C⊗m, the first (obtained by
taking the (trivial) value of the labelling in 1 and then applying F) is the
composite of n-fold multiplication followedby m-fold comultiplication; the
second (obtained by applying F to the labelling and then taking the value
in C ) is considerably more complicated, containing at least two connected
components since Γ is assumed to be disconnected. By prepending n units
and appending m counits, the first becomes the barbell of unit followedby
counit; the latter becomes an endomap of the tensor unit of C with at least
two connected components. If the tensor product of C issymmetric, this last
simplifies to as many copies of the barbell as there are connected compo-
nents of Γ; hence, it suffices to find aseparableFrobenius algebra for which
thebarbell does not equal any non-trivial powerof itself.

Wegivetwo examplesof such separableFrobeniusalgebras, asimpleal-
gebraic exampleand amorecomplicated geometric example. First, consider
the complex numbers as a Frobenius algebra over the reals. Kock ([10], Ex-
ample 2.2.14) notes that C −→ R given by x+ iy 7→ ax+ by is a Frobenius
form on C for all a and b not both zero. Choosing a = 2,b = 0 givesasepa-
rableFrobeniusstructure, and the“barbell” R−→C−→R ismultiplication
by 2, which does not equal any non-trivial power of itself. This completes
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theproof of theconverseof the theorem.
We sketch the construction of a more complicated but perhaps more

pleasing, geometric example: consider the category 2Thick, as described
in [11], whose objects are finite disjoint unions of the interval (identified
with the natural numbers), embedded in the plane, and whose morphisms
are boundary-preserving-diffeomorphism classes smooth oriented surfaces
embedded in the plane with boundary equal to the union of domain and
codomain. For instance, Figure 6 shows a morphism in 2Thick from 2 to
1. Lauda proves that 2Thick is the free monoidal category containing a

Figure6: A morphism in 2Thick

Frobenius algebra; the morphism from 2 to 1 shown in Figure 6 is the mul-
tiplication for this Frobenius algebra; the obvious similar map from 1 to 2
is the comultiplication. However, for this theorem, we require a separable
Frobenius algebra, so we modify 2Thick to obtain a category in which the
equality in Figure7 holds; in fact, weconjecture, to obtain thefreemonoidal
category containing a separable Frobenius algebra. Specifically, instead of
taking boundary-preserving diffeomorphism classes of morphisms, we say
that two morphisms k −→ l are equal if there is a suitable 3-manifold M
with corners which can be embedded in the unit cube in such that the in-
tersection with the top face is the first morphism and the intersection with
the bottom face is the second morphism. Here “suitable” means that the
3-manifold must be trivial on the domains and codomains k and l , and, cru-
cially, the only critical points of the boundary of M permitted are “cups” –
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Figure7:

that is, critical points which are not saddle points where the convex portion
of the critical point lies outside the manifold M. There is an evident such
“cup” which will witness thedesired equality shown in Figure7. Let uscall
this quotient of 2Thick by thename2Thick′.

Most importantly, it is clear that no two morphisms with different num-
bersof connected componentscan be identified by thisequivalencerelation,
so any disconnected string diagram will fail to be separably invariant with
respect to thecanonical separableFrobenius functor 1−→ 2Thick′.

What this implies is that separableFrobeniusmonoidal functorspreserve
equations in monoidal categories for which both sides of the equation are
values of connected string diagrams. For example:

Corollary 3.2. For n > 1, equations of the form:

(an⊗1)(1⊗an−1)(an−2⊗1) · · · = (1⊗bn)(bn−1⊗1)(1⊗bn−2) · · · ,

involving morphisms

a1, . . . ,an,b1, . . . ,bn : A⊗A−→ A⊗A,

arestableunder F-conjugation. In fact, for n = 2, Frobenius F will do.

Theproof of Theorem 3.1 can beslightly modified to give theanalagous
result for merely Frobenius monoidal functors instead of separable Frobe-
nius monoidal functors.

Theorem 3.3. A progressive plane string diagram is Frobenius invariant if
and only if it is connected and simply connected.
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Proof. We have noted that all connected string diagrams can be obtained
as iterations of the constructions shown in Figures 2 and 5 and their duals,
with the restriction that p > 0. Al l connected and simply connected string
diagrams can be obtained in this way with the restriction that p = 1. The
only step of the proof in Figure 4 (and also the corresponding proof for
the case shown in Figure 5) which requires separability is the cancellation

of FC
ψ

−−→ CF φ
−−→ FC to obtain the identity on FC; since p = 1, we have

FC = CF = FC1, and both of these maps are identities. Hence, the same
proof will go through in this case, establishing “ if ” .

Conversely, supposethat Γ isastringdiagramwhich isnot connectedand
acyclic. By Theorem 3.1, we may assume that Γ is connected and therefore
is not acyclic. Then for Γ to be invariant under the canonical Frobenius
monoidal functor 1 −→ 2Thick described in [11] and referred to already
in Theorem 3.1 would imply that there is a diffeomorphism between two
2-manifolds of different genus; this is not thecase.

Corollary 3.4. Weak bimonoids are preserved by braided separable Frobe-
nius functors.

Proof. Weak bimonoids satisfy Equations 2.11, 2.12, and 2.13 these equa-
tions are labelled versions of the following string-diagrams:
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These are clearly connected and hence preserved by separable Frobenius
functors. The asterisks indicate labellings by braids or their inverses, these
arepreserved by braided Frobenius functors.

However, genuinebimonoidsarenot preserved in general: the threeunit
and counit equations for abimonoid involvenon-connected string diagrams.

Corollary 3.5. Weak distributive lawsarepreserved under F-conjugation.

However, distributive laws are not preserved in general: the string dia-
grams for the right-hand sides of Equations 2.9 arenot connected.

Corollary 3.6. Lax YB-operatorsarepreserved under F-conjugation.

However, YB-operatorsarenot preserved: invertibility involvesan equa-
tion whose underlying diagram is a pair of disjoint strings and so is discon-
nected.

Corollary 3.7. Weak YB-operators are preserved under F-conjugation. In
particular, theF-conjugateof a YB-operator is a weak YB-operator.

Proposition 3.8. Every weak YB-operator in a monoidal category in which
idempotents split is the conjugate of a YB-operator under someseparable
Frobenius monoidal functor.

Proof. Let C beasuchamonoidal category containinganobject D andan
idempotent ∇ : D⊗D−→ D⊗D such that (∇⊗1)(1⊗∇) = (1⊗∇)(∇⊗1).
Then there is an idempotent ∇n : D⊗n

−→ D⊗n recursively defined by:

∇0 = 1I

∇1 = 1D

∇2 = ∇
∇n = (1⊗∇n−1)◦ (∇⊗1) for n > 2

Let C (D) be the subcategory of Q C whose objects are the pairs (D⊗n,∇n)
andwhosemorphisms f : (D⊗n,∇n)→ (D⊗m,∇m) arethoseinQ C for which:

(1⊗ f )(∇n⊗1) = (∇m⊗1)(1⊗ f ) (3.2)

( f ⊗1)(1⊗∇n) = (1⊗∇m)( f ⊗1). (3.3)
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Thecategory C (D) becomes monoidal via

(D⊗n
,∇n)⊗ (D⊗m

,∇m) = (D⊗(n+m)
,∇n+m).

Note that this is not the same as the usual tensor product on Q C which is
inherited from that of C . A weak Yang-Baxter operator on D in C isaYang-
Baxter operator on D in C (D). Since idempotents split in C then we have
a functor C (D) → C taking each idempotent to a splitting. Moreover, this
functor C (D) → C is separable Frobenius (although not strong) and so each
weak YB-operator is the imageof agenuineYB-operator.

Proposition 3.9. Prebimonoidal functors compose.

Proof. Suppose that F : C −→ X is prebimonoidal with respect to a YB-
operator y on T : A −→ C and a YB-operator z on FT, and suppose further
that G : X −→ Y is prebimonoidal with respect to zand aYB-operator a on
GFT. Then the diagram in Figure 8 proves that GF is prebimonoidal with
respect to y and a.
The diamonds commute by naturality of φ and ψ and the left and right pen-
tagons commute by prebimonoidality of F and G, respectively.

Proposition 3.10. If F isseparableFrobenius then it isprebimonoidal rela-
tive to y and z= yF.

Proof. Theproof is contained in Figure9.
The five diamonds commute since F is Frobenius, and the two right-hand
triangles commute since F is separable. The rhombus commutes by defini-
tion of yF , theparallelogramsby naturality of φ and ψ, and the two irregular
cells are trivial.

Proposition 3.11. A strong monoidal functor between braided monoidal cat-
egories is prebimonoidal if and only if it is braided.

Proof. As noted above, strong monoidal functors are separable Frobenius,
and strong monoidal functors are braided precisely when cF

A,B = cFA,FB,
so Proposition 3.10 establishes “ if ” . Conversely, suppose that F is pre-
bimonoidal with respect to the two braidings, and consider thecommutative
diagram in Figure10.
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GF(Tu⊗Tv)⊗GF(Tw⊗Tx)

G(FTu⊗FTv)⊗G(FTw⊗FTx)

Gψ⊗Gψ

%%KKKKKKKKKKKKKKKK

G(FTu⊗FTv)⊗G(FTw⊗FTx)

GFTu⊗GFTv⊗GFTw⊗GFTx

ψ⊗ψ

��
GFTu⊗GFTv⊗GFTw⊗GFTx

GFTu⊗GFTw⊗GFTv⊗GFTx

1⊗a⊗1

��
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Figure8: Proof of Proposition 3.9
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Figure9: Proof of Proposition 3.10
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Figure10: Proof of Proposition 3.11
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The middle cell commutes since F is prebimonoidal, the bottom left
since φ is monoidal, and the top left since ψ is opmonoidal. The three right-
hand cellscommuteby definition, and, noting that φ0 and ψ0 areboth natural
and mutually inverse, theleft-hand cell doesso also. Hence, thefull diagram
shows that cF

A,B = cFA,FB, as desired.
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Résumé. Dans le contexte des catégories enrichies dans un quantaloı̈de, nous ex-
pliquons comment toute classe de poids saturée définit, et est définie par, une unique
sous-KZ-doctrine pleine de la doctrine pour la cocomplétion libre. Les KZ-doctrines
qui sont des sous-KZ-doctrines pleines de la doctrine pour la cocomplétion libre, sont
caractérisées par deux conditions simples de “pleine fidélité”. Les poids coniques
forment une classe saturée, et la KZ-doctrine correspondante est exactement (la
généralisation aux catégories enrichies dans un quantaloı̈de de) la doctrine de Haus-
dorff de [Akhvlediani et al., 2009].
Abstract. In the context of quantaloid-enriched categories, we explain how each
saturated class of weights defines, and is defined by, an essentially unique full sub-
KZ-doctrine of the free cocompletion KZ-doctrine. The KZ-doctrines which arise
as full sub-KZ-doctrines of the free cocompletion, are characterised by two sim-
ple “fully faithfulness” conditions. Conical weights form a saturated class, and the
corresponding KZ-doctrine is precisely (the generalisation to quantaloid-enriched
categories of) the Hausdorff doctrine of [Akhvlediani et al., 2009].
Keywords. Enriched category, cocompletion, KZ-doctrine, Hausdorff distance
Mathematics Subject Classification (2010). 18D20, 18A35, 18C20

1. Introduction

At the meeting on “Categories in Algebra, Geometry and Logic” honouring Fran-
cis Borceux and Dominique Bourn in Brussels on 10–11 October 2008, Walter
Tholen gave a talk entitled “On the categorical meaning of Hausdorff and Gromov
distances”, reporting on joint work with Andrei Akhvlediani and Maria Manuel
Clementino [2009]. The term ‘Hausdorff distance’ in his title refers to the follow-
ing construction: if (X, d) is a metric space and S, T ⊆ X , then

δ(S, T ) :=
∨
s∈S

∧
t∈T

d(s, t)

defines a (generalised) metric on the set of subsets of X . But Bill Lawvere [1973]
showed that metric spaces are examples of enriched categories, so one can aim at
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suitably generalising this ‘Hausdorff distance’. Tholen and his co-workers achieved
this for categories enriched in a commutative quantale V . In particular they devise
a KZ-doctrine on the category of V-categories, whose algebras – in the case of
metric spaces – are exactly the sets of subsets of metric spaces, equipped with the
Hausdorff distance.

We shall argue that the notion of Hausdorff distance can be developed for quant-
aloid-enriched categories too, using enriched colimits as main tool. In fact, very
much in line with the work of [Albert and Kelly, 1988; Kelly and Schmitt, 2005;
Schmitt, 2006] on cocompletions of categories enriched in a symmetric monoidal
category and the work of [Kock, 1995] on the abstraction of cocompletion pro-
cesses, we shall see that, for quantaloid-enriched categories, each saturated class
of weights defines, and is defined by, an essentially unique KZ-doctrine. The KZ-
doctrines that arise in this manner are the full sub-KZ-doctrines of the free cocom-
pletion KZ-doctrine, and they can be characterised with two simple “fully faith-
fulness” conditions. As an application, we find that the conical weights form a
saturated class and the corresponding KZ-doctrine is precisely (the generalisation
to quantaloid-enriched categories of) the Hausdorff doctrine of [Akhvlediani et al.,
2009].

In this paper we do not speak of ‘Gromov distances’, that other metric notion
that Akhvlediani, Clementino and Tholen [2009] refer to. As they analyse, Gromov
distance is necessarily built up from symmetrised Hausdorff distance; and because
their base quantale V is commutative, they can indeed extend this notion too to
V-enriched categories. More generally however, symmetrisation for quantaloid-
enriched categories makes sense when that quantaloid is involutive. Preliminary
computations indicate that ‘Gromov distance’ ought to exist on this level of gener-
ality, but quickly got too long to include them in this paper: so we intend to work
this out in a sequel.

2. Preliminaries

2.1 Quantaloids

A quantaloid is a category enriched in the monoidal category Sup of complete lat-
tices (also called sup-lattices) and supremum preserving functions (sup-morphisms).
A quantaloid with one object, i.e. a monoid in Sup, is a quantale. Standard refer-
ences include [Rosenthal, 1996; Paseka and Rosicky, 2000] .

Viewing Q as a locally ordered category, the 2-categorical notion of adjunction
in Q refers to a pair of arrows, say f :A //B and g:B //A, such that 1A ≤ g ◦ f
and f ◦ g ≤ 1B (in which case f is left adjoint to g, and g is right adjoint to f ,
denoted f a g).
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Given arrows

A
f

//

h ��
@@@@@@@ B

g
~~~~~~~~~

C

in a quantaloid Q, there are adjunctions between sup-lattices as follows:

Q(B,C) ⊥
− ◦ f

((

{f,−}
hh Q(A,C), Q(A,B) ⊥

g ◦ −
((

[g,−]

hh Q(A,C),

Q(A,B) ⊥
{−, h}

((

[−, h]

hh Q(B,C)op.

The arrow [g, h] is called the lifting of h trough g, whereas {f, h} is the extension
of h through f . Of course, every left adjoint preserves suprema, and every right
adjoint preserves infima. For later reference, we record some straightforward facts:

Lemma 2.1 If g:B //C in a quantaloid has a right adjoint g∗, then [g, h] = g∗ ◦
h and therefore [g,−] also preserves suprema. Similarly, if f :A //B has a left
adjoint f! then {f, h} = h ◦ f! and thus {f,−} preserves suprema.

Lemma 2.2 For any commutative diagram

A

f   
@@@@@@@ B

g

~~~~~~~~~
h

  
@@@@@@@ C

i��~~~~~~~

D
j

// E

in a quantaloid, we have that [i, h] ◦ [g, f ] ≤ [i, j ◦ f ]. If all these arrows are left
adjoints, and g moreover satisfies g ◦ g∗ = 1D, then [i, h] ◦ [g, f ] = [i, j ◦ f ].

Lemma 2.3 If f :A //B in a quantaloid has a right adjoint f∗ such that moreover
f∗ ◦ f = 1A, then [f ◦ x, f ◦ y] = [x, y] for any x, y:X

//
//A.
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2.2 Quantaloid-enriched categories

From now on Q denotes a small quantaloid. Viewing Q as a (locally ordered)
bicategory, it makes perfect sense to consider categories enriched inQ. Bicategory-
enriched categories were invented at the same time as bicategories by Jean Bénabou
[1967], and further developed by Ross Street [1981, 1983]. Bob Walters [1981]
particularly used quantaloid-enriched categories in connection with sheaf theory.
Here we shall stick to the notational conventions of [Stubbe, 2005], and refer to that
paper for additional details, examples and references.

AQ-category A consists of a set of objects A0, a type function t:A0
//Q0, and

Q-arrows A(a′, a): ta // ta′; these must satisfy identity and composition axioms,
namely:

1ta ≤ A(a, a) and A(a′′, a′) ◦ A(a′, a) ≤ A(a′′, a).

A Q-functor F :A //B is a type-preserving object map a 7→ Fa satisfying the
functoriality axiom:

A(a′, a) ≤ B(Fa′, Fa).

And a Q-distributor Φ:A c //B is a matrix of Q-arrows Φ(b, a): ta // tb, indexed
by all couples of objects of A and B, satisfying two action axioms:

Φ(b, a′) ◦ A(a′, a) ≤ Φ(b, a) and B(b, b′) ◦ Φ(b′, b) ≤ Φ(b, a).

Composition of functors is obvious; that of distributors is done with a “matrix”
multiplication: the composite Ψ ⊗ Φ:A c //C of Φ:A c //B and Ψ:B c //C has as
elements

(Ψ⊗ Φ)(c, a) =
∨
b∈B0

Ψ(c, b) ◦ Φ(b, a).

Moreover, the elementwise supremum of parallel distributors (Φi:A c //B)i∈I gives
a distributor

∨
i Φi:A c //B, and it is easily checked that we obtain a (large) quan-

taloid Dist(Q) of Q-categories and distributors. Now Dist(Q) is a 2-category, so
we can speak of adjoint distributors. In fact, any functor F :A //B determines an
adjoint pair of distributors:

A ⊥
B(−, F−)c

((

B(F−,−)
chh B. (1)

Therefore we can sensibly order parallel functors F,G:A //
//B by putting F ≤ G

whenever B(−, F−) ≤ B(−, G−) (or equivalently, B(G−,−) ≤ B(F−,−)) in
Dist(Q). Doing so, we get a locally ordered category Cat(Q) of Q-categories and
functors, together with a 2-functor

i:Cat(Q) //Dist(Q):
(
F :A //B

)
7→
(
B(−, F−):A c //B). (2)
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(The local order in Cat(Q) need not be anti-symmetric, i.e. it is not a partial order
but rather a preorder, which we prefer to call simply an order.)

This is the starting point for the theory of quantaloid-enriched categories, in-
cluding such notions as:

- fully faithful functor: an F :A //B for which A(a′, a) = B(Fa′, Fa), or
alternatively, for which the unit of the adjunction in (1) is an equality,

- adjoint pair: a pair F :A //B, G:B //A for which 1A ≤ G ◦ F and also
F ◦G ≤ 1B, or alternatively, for which B(F−,−) = A(−, G−),

- equivalence: an F :A //B which are fully faithful and essentially surjective
on objects, or alternatively, for which there exists aG:B //A such that 1A ∼=
G ◦ F and F ◦G ∼= 1B,

- left Kan extension: given F :A //B and G:A //C, the left Kan extension
of F through G, written 〈F,G〉:C //B, is the smallest such functor satisfy-
ing F ≤ 〈F,G〉 ◦G,

and so on. In the next subsection we shall recall the more elaborate notions of
presheaves, weighted colimits and cocompletions.

2.3 Presheaves and free cocompletion

If X is an object of Q, then we write ∗X for the one-object Q-category, whose
single object ∗ is of type X , and whose single hom-arrow is 1X .

Given a Q-category A, we now define a new Q-category P(A) as follows:

- objects: (P(A))0 = {φ: ∗X c //A | X ∈ Q0},
- types: t(φ) = X for φ: ∗X c //A,

- hom-arrows: P(A)(ψ, φ) = (single element of) the lifting [ψ, φ] in Dist(Q).

Its objects are (contravariant) presheaves on A, and P(A) itself is the presheaf
category on A.

The presheaf category P(A) classifies distributors with codomain A: for any
B there is a bijection between Dist(Q)(B,A) and Cat(Q)(B,P(A)), which asso-
ciates to any distributor Φ:B c //A the functor YΦ:B //P(A): b 7→ Φ(−, b), and
conversely associates to any functor F :B //P(A) the distributor ΦF :B c //A with
elements ΦF (a, b) = (Fb)(a). In particular is there a functor, YA:A //P(A),
that corresponds with the identity distributor A:A c //A: the elements in the image
of YA are the representable presheaves on A, that is to say, for each a ∈ A we
have A(−, a): ∗ta c //A. Because such a representable presheaf is a left adjoint in
Dist(Q), with right adjoint A(a,−), we can verify that

P(A)(YA(a), φ) = [A(−, a), φ] = A(a,−)⊗ φ = φ(a).
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This result is known as Yoneda’s Lemma, and implies that YA:A //P(A) is a
fully faithful functor, called the Yoneda embedding of A into P(A).

By construction there is a 2-functor

P0:Dist(Q) //Cat(Q): (Φ:A c //B) 7→ (Φ⊗−:P(A) //P(B)),

which is easily seen to preserve local suprema. Composing this with the one in (2)
we define two more 2-functors:

Dist(Q)

P0

$$IIIIIIIIIIIIIII

P1 // Dist(Q)

Cat(Q)

i

OO

P
// Cat(Q)

i

OO

(3)

In fact, P1 is a Sup-functor (a.k.a. a homomorphism of quantaloids). Later on we
shall encounter these functors again.

For a distributor Φ:A c //B and a functor F :B //C between Q-categories,
the Φ-weighted colimit of F is a functor K:A //C such that [Φ,B(F−,−)] =
C(K−,−). Whenever a colimit exists, it is essentially unique; therefore the nota-
tion colim(Φ, F ):A //C makes sense. These diagrams picture the situation:

B F // C

A

cΦ
OO

colim(Φ, F )

?? B CcC(F−,−)
oo

c
[Φ,C(F−,−)] = C(colim(Φ, F )−,−)

��

A

cΦ
OO

A functor G:C //C′ is said to preserve colim(Φ, F ) if G ◦ colim(Φ, F ) is the
Φ-weighted colimit of G ◦ F . A Q-category admitting all possible colimits, is
cocomplete, and a functor which preserves all colimits which exist in its domain,
is cocontinuous. (There are, of course, the dual notions of limit, completeness and
continuity. We shall only use colimits in this paper, but it is a matter of fact that a
Q-category is complete if and only if it is cocomplete [Stubbe, 2005, Proposition
5.10].)

For two functors F :A //B and G:A //C, we can consider the C(G−,−)-
weighted colimit of F . Whenever it exists, it is 〈F,G〉:C //B, the left Kan exten-
sion of F through G; but not every left Kan extension need to be such a colimit.
Therefore we speak of a pointwise left Kan extension in this case.
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Any presheaf category P(C) is cocomplete, as follows from its classifying
property: given a distributor Φ:A c //B and a functor F :B //P(C), consider the
unique distributor ΦF :B //C corresponding with F ; now in turn the composition
ΦF ⊗ Φ:A c //C corresponds with a unique functor YΦF⊗Φ:A //P(C); the latter
is colim(Φ, F ).

In fact, the 2-functor
P:Cat(Q) //Cat(Q)

is the Kock-Zöberlein-doctrine1 for free cocompletion; the components of its
multiplication M :P ◦ P +3P and its unit Y : 1Cat(Q)

+3P are

colim(−, 1P(C)):P(P(C)) //P(C) and YC:C //P(C).

This means in particular that (P,M, Y ) is a monad on Cat(Q), and aQ-category C
is cocomplete if and only if it is a P-algebra, if and only if YC:C //P(C) admits
a left adjoint in Cat(Q).

2.4 Full sub-KZ-doctrines of the free cocompletion doctrine

The following observation will be useful in a later subsection.

Proposition 2.4 Suppose that T :Cat(Q) //Cat(Q) is a 2-functor and that

Cat(Q)

P
''

T
77
Cat(Q)

=
⇒ε

is a 2-natural transformation, with all components εA: T (A) //P(A) fully faithful
functors, such that there are (necessarily essentially unique) factorisations

P ◦ P M +3 P

1Cat(Q)

Y
dl QQQQQQQQQ

QQQQQQQQQ

ηrzT ◦ T

ε ∗ ε

KS

µ
+3 T

ε

KS

1A Kock-Zöberlein-doctrine (or KZ-doctrine, for short) T on a locally ordered category K is a
2-functor T :K //K for which there are a multiplication µ: T ◦ T +3 T and a unit η: 1K +3 T
making (T , µ, η) a 2-monad, and satisfying moreover the “KZ-inequation”: T (ηK) ≤ ηT (K) for all
objectsK ofK. The notion was invented independently by Volker Zöberlein [1976] and Anders Kock
[1972] in the more general setting of 2-categories. We refer to [Kock, 1995] for all details.
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Then (T , µ, η) is a sub-2-monad of (P,M, Y ), and is a KZ-doctrine. We call the
pair (T , ε) a full sub-KZ-doctrine of P .

Proof : First note that, because each εA: T (A) //P(A) is fully faithful, for each
F,G:C // T (A),

εA ◦ F ≤ εA ◦G =⇒ F ≤ G,

thus in particular εA is (essentially) a monomorphism in Cat(Q): if εA ◦ F ∼=
εA ◦ G then F ∼= G. Therefore we can regard ε: T +3P as a subobject of the
monoid (P,M, Y ) in the monoidal category of endo-2-functors on Cat(Q). The
factorisations of M and Y then say precisely that (T , µ, η) is a submonoid, i.e. a
2-monad on Cat(Q) too.

But P:Cat(Q) //Cat(Q) maps fully faithful functors to fully faithful functors,
as can be seen by applying Lemma 2.3 to the left adjoint B(−, F−):A c //B in
Dist(Q), for any given fully faithful F :A //B. Therefore each

(ε ∗ ε)A: T (T (A)) //P(P(A))

is fully faithful: for (ε ∗ ε)A = P(εA) ◦ εT A and by hypothesis both εA and εT A are
fully faithful. The commutative diagrams

P(A)
P(YA)

// P(P(A))

T (P(A))

YT (A)

OO

T (A)

εA

OO

T (ηA)
//

T (YA)

;;vvvvvvvvvvvvvvv
T (T (A))

T (εA)

OO
(ε ∗ ε)A

YY
P(A)

YP(A)
//

ηPA
##HHHHHHHHHHHHHHH
P(P(A))

T (P(A))

YT (A)

OO

T (A)

εA

OO

ηT (A)
// T (T (A))

T (εA)

OO
(ε ∗ ε)A

YY

thus imply, together with the KZ-inequation for P , the KZ-inequation for T . 2

Some remarks can be made about the previous Proposition. Firstly, about the
fully faithfulness of the components of ε: T +3P . In any locally ordered category
K one defines an arrow f :A //B to be representably fully faithful when, for any
object X of K, the order-preserving function

K(f,−):K(X,A) //K(X,B):x 7→ f ◦ x
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is order-reflecting – that is to say, K(f,−) is a fully faithful functor between or-
dered sets viewed as categories – and therefore f is also essentially a monomor-
phism in K. But the converse need not hold, and indeed does not hold in K =
Cat(Q): not every monomorphism in Cat(Q) is representably fully faithful, and
not every representably fully faithful functor is fully faithful. Because the 2-functor
P:Cat(Q) //Cat(Q) preserves representable fully faithfulness as well, the above
Proposition still holds (with the same proof) when the components of ε: T +3P are
merely representably fully faithful; and in that case it might be natural to say that
T is a “sub-KZ-doctrine” of P . But for our purposes later on, the interesting notion
is that of full sub-KZ-doctrine, thus with the components of ε: T +3P being fully
faithful.

A second remark: in the situation of Proposition 2.4, the components of the
transformation ε: T +3P are necessarily given by pointwise left Kan extensions.
More precisely, 〈YA, ηA〉: T (A) //P(A) is the T (A)(ηA−,−)-weighted colimit
of YA (which exists because P(A) is cocomplete), and can thus be computed as

〈YA, ηA〉: T (A) //P(A): t 7→ T (A)(ηA−, t).

By fully faithfulness of εA: T (A) //P(A) and the Yoneda Lemma, we can com-
pute that

T (A)(ηA−, t) = P(A)(εA ◦ ηA−, εA(t)) = P(A)(YA−, εA(t)) = εA(t).

Hence the component of ε: T +3P at A ∈ Cat(Q) is necessarily the Kan extension
〈YA, ηA〉. We can push this argument a little further to obtain a characterisation of
those KZ-doctrines which occur as full sub-KZ-doctrines of P:

Corollary 2.5 A KZ-doctrine (T , µ, η) on Cat(Q) is a full sub-KZ-doctrine of P if
and only if all ηA:A // T (A) and all left Kan extensions 〈YA, ηA〉: T (A) //P(A)
are fully faithful.

Proof : If T is a full sub-KZ-doctrine of P , then we have just remarked that εA =
〈YA, ηA〉, and thus these Kan extensions are fully faithful. Moreover – because
εA ◦ ηA = YA with both εA and YA fully faithful – also ηA must be fully faithful.

Conversely, if (T , µ, η) is a KZ-doctrine with each ηA:A // T (A) fully faith-
ful, then – e.g. by [Stubbe, 2005, Proposition 6.7] – the left Kan extensions 〈YA, ηA〉
(exist and) satisfy 〈YA, ηA〉◦ηA ∼= YA. By assumption each of these Kan extensions
is fully faithful, so we must now prove that they are the components of a natural
transformation and that this natural transformation commutes with the multiplica-
tions of T and P . We do this in four steps:

(i) For any A ∈ Cat(Q), there is the free T -algebra µA: T (T (A)) // T (A).
But the free P-algebra MA:P(P(A)) //P(A) on P(A) also induces a T -algebra
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on P(A): namely, MA ◦ 〈YP(A), ηP(A)〉: T (P(A) //P(A). To see this, it suffices
to prove the adjunction MA ◦ 〈YP(A), ηP(A)〉 a ηP(A). The counit is easily checked:

MA ◦ 〈YP(A), ηP(A)〉 ◦ ηP(A) = MA ◦ YP(A) = 1P(A),

using first the factorisation property of the Kan extension and then the split adjunc-
tion MA a YP(A). As for the unit of the adjunction, we compute that

ηP(A) ◦MA ◦ 〈YP(A), ηP(A)〉 = T (MA ◦ 〈YP(A), ηP(A)〉) ◦ ηT (P(A))

≥ T (MA ◦ 〈YP(A), ηP(A)〉) ◦ T (ηP(A))

= T (MA ◦ 〈YP(A), ηP(A)〉 ◦ ηP(A))

= T (1P(A))

= 1T (P(A)),

using naturality of η and the KZ inequality for T , and recycling the computation we
made for the counit.

(ii) Next we prove, for each Q-category A, that 〈YA, ηA〉: T (A) //P(A) is a
T -algebra homomorphism, for the algebra structures explained in the previous step.
This is the case if and only if 〈YA, ηA〉 = (MA◦〈YP(A), ηP(A)〉)◦T (〈YA, ηA〉)◦ηT (A)

(because the domain of 〈YA, ηA〉 is a free T -algebra), and indeed:

MA ◦ 〈YP(A), ηP(A)〉 ◦ T (〈YA, ηA〉) ◦ ηT (A)

= MA ◦ 〈YP(A), ηP(A)〉 ◦ ηP(A) ◦ 〈YA, ηA〉
= MA ◦ YP(A) ◦ 〈YA, ηA〉
= 1P(A) ◦ 〈YA, ηA〉
= 〈YA, ηA〉.

(iii) To check that the left Kan extensions are the components of a natural trans-
formation we must verify, for any F :A //B in Cat(Q), that P(F ) ◦ 〈YA, ηA〉 =
〈YB, ηB〉 ◦ T (F ). Since this is an equation of T -algebra homomorphisms for the
T -algebra structures discussed in step (i) – concerning P(F ), it is easily seen to be
a left adjoint and therefore also a T -algebra homomorphism [Kock, 1995, Proposi-
tion 2.5] – it suffices to show that P(F ) ◦ 〈YA, ηA〉 ◦ ηA = 〈YB, ηB〉 ◦ T (F ) ◦ ηA.
This is straightforward from the factorisation property of the Kan extension and the
naturality of YA and ηA.
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(iv) Finally, the very fact that 〈YA, ηA〉: T (A) //P(A) is a T -algebra homo-
morphism as in step (ii), means that

T (T (A))
T (〈YA, ηA〉)

//

µA

��

T (P(A))
〈YP(A), ηP(A)〉

// P(P(A))

MA

��

T (A)
〈YA, ηA〉

// P(A)

commutes: it expresses precisely the compatibility of the natural transformation
whose components are the Kan extensions, with the multiplications of, respectively,
T and P . 2

3. Interlude: classifying cotabulations

In this section it is Proposition 3.3 which is of most interest: it explains in particular
how the 2-functors on Cat(Q) of Proposition 2.4 can be extended to Dist(Q). It
could easily be proved with a direct proof, but it seemed more appropriate to include
first some material on classifying cotabulations, then use this to give a somewhat
more conceptual proof of (the quantaloidal generalisation of) Akhvlediani et al.’s
‘Extension Theorem’ [2009, Theorem 1] in our Proposition 3.2, and finally derive
Proposition 3.3 as a particular case.

A cotabulation of a distributor Φ:A c //B between Q-categories is a pair of
functors, say S:A //C and T :B //C, such that Φ = C(T−, S−). If F :C //C′
is a fully faithful functor then also F ◦S:A //C′ and F ◦T :B //C′ cotabulate Φ;
so a distributor admits many different cotabulations. But the classifying property of
P(B) suggests a particular one:

Proposition 3.1 Any distributor Φ:A c //B is cotabulated by YΦ:A //P(B) and
YB:B //P(B). We call this pair the classifying cotabulation of Φ:A c //B.

Proof : We compute for a ∈ A and b ∈ B that P(B)(YB(b), YΦ(a)) = YΦ(a)(b) =
Φ(b, a) by using the Yoneda Lemma. 2

For two distributors Φ:A c //B and Ψ:B c //C it is easily seen that YΨ⊗Φ =
P0(Ψ) ◦ YΦ, so the classifying cotabulation of the composite Ψ⊗Φ relates to those
of Φ and Ψ as

Ψ⊗ Φ = P(C)(P0(Ψ) ◦ YΦ−, YC−). (4)
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For a functor F :A //B it is straightforward that YB(−,F−) = YB ◦ F , so

B(−, F−) = P(B)(YB−, YB ◦ F−). (5)

In particular, the identity distributor A:A c //A has the classifying cotabulation

A = P(A)(YA−, YA−). (6)

Given that classifying cotabulations are thus perfectly capable of encoding compo-
sition and identities, it is natural to extend a given endo-functor on Cat(Q) to an
endo-functor on Dist(Q) by applying it to classifying cotabulations. Now follows
a statement of the ‘Extension Theorem’ of [Akhvlediani et al., 2009] in the gener-
ality of quantaloid-enriched category theory, and a proof based on the calculus of
classifying cotabulations.

Proposition 3.2 (Akhvlediani et al., 2009) Any 2-functor T :Cat(Q) //Cat(Q)
extends to a lax 2-functor T ′:Dist(Q) //Dist(Q), which is defined to send a dis-
tributor Φ:A c //B to the distributor cotabulated by T (YΦ): T (A) // T (P(B)) and
T (YB): T (B) // T (P(B)). This comes with a lax transformation

Dist(Q)
T ′ // Dist(Q)

Cat(Q)

i

OO

T
//

⇐
=

Cat(Q)

i

OO

(7)

all of whose components are identities. This lax transformation is a (strict) 2-
natural transformation (i.e. this diagram is commutative) if and only if T ′ is normal,
if and only if each T (YA): T (A) // T (P(A)) is fully faithful.

Proof : If Φ ≤ Ψ holds in Dist(Q)(A,B) then (and only then) YΦ ≤ YΨ holds
in Cat(Q)(A,P(B)). By 2-functoriality of T :Cat(Q) //Cat(Q) we find that
T (YΦ) ≤ T (YΨ), and thus T ′(Φ) ≤ T ′(Ψ).

Now suppose that Φ:A c //B and Ψ:B c //C are given. Applying T to the com-
mutative diagram

A

YΦ !!DDDDDDDD B
YB

}}zzzzzzzz
YΨ

!!DDDDDDDD C
YC

}}zzzzzzzz

P(B)
P0(Ψ)

// P(C)

I. STUBBE - HAUSDORFF DISTANCE VIA CONICAL COCOMPLETION

- 62 -



gives a commutative diagram in Cat(Q), which embeds as a commutative diagram
of left adjoints in the quantaloid Dist(Q) by application of i:Cat(Q) //Dist(Q).
Lemma 2.2, the formula in (4) and the definition of T ′ allow us to conclude that
T ′(Ψ)⊗ T ′(Φ) ≤ T ′(Ψ⊗ Φ).

Similarly, given F :A //B in Cat(Q), applying T to the commutative diagram

A

F ��
>>>>>>>> B

1B

���������� YB

!!DDDDDDDD B

YB}}zzzzzzzz

B
YB

// P(B)

gives a commutative diagram in Cat(Q). This again embeds as a diagram of left
adjoints in Dist(Q) via i:Cat(Q) //Dist(Q). Lemma 2.2, the formula in (5) and
the definition of T ′ then straightforwardly imply that

T ′(B(−, F−)) = T (P(B))(T (YB)−, T (YB)−)⊗ T (B)(−, T (F )−)

≥ T (B)(−, T (F )−),

accounting for the lax transformation in (7).
It further follows from this inequation, by applying it to identity functors, that

T ′ is in general lax on identity distributors. But Lemma 2.2 also says: (i) if each
T (YB): T (B) // T (P(B)) is fully faithful (equivalently, if T ′ is normal), then nec-
essarily (i ◦ T )(F ) ∼= (T ′ ◦ i)(F ) for all F : A //B in Cat(Q), asserting that
the diagram in (7) commutes; (ii) and conversely, if that diagram commutes, then
chasing the identities in Cat(Q) shows that T ′ is normal. 2

We shall be interested in extending full sub-KZ-doctrines of the free cocomple-
tion doctrine P:Cat(Q) //Cat(Q) to Dist(Q); for this we make use of the functor
P1:Dist(Q) //Dist(Q) defined in the diagram in (3).

Proposition 3.3 Let (T , ε) be a full sub-KZ-doctrine ofP:Cat(Q) //Cat(Q). The
lax extension T ′:Dist(Q) //Dist(Q) of T :Cat(Q) //Cat(Q) (as in Proposition
3.2) can then be computed as follows: for Φ:A c //B,

T ′(Φ) = P(B)(εB−,−)⊗ P1(Φ)⊗ P(A)(−, εA−). (8)

Moreover, T ′ is always a normal lax Sup-functor, thus the diagram in (7) commutes.

Proof : Let Φ:A c //B be a distributor. Proposition 3.2 defines T ′(Φ) to be the
distributor cotabulated by T (YΦ) and T (YB); but by fully faithfulness of the com-
ponents of ε: T +3P , and its naturality, we can compute that

T (P(B))(T (YB)−, T (YΦ)−)
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= P(P(B))((εP(B) ◦ T (YB))−, (εP(B) ◦ T (YΦ))−)

= P(P(B))((P(YB) ◦ εB)−, (P(YΦ) ◦ εA)−)

= P(B)(εB−,−)⊗ P(P(B))(P(YB)−,P(YΦ)−)⊗ P(A)(−, εA−).

The middle term in this last expression can be reduced:

P(P(B))(P(YB)−,P(YΦ)−) = [P(B)(−, YB−)⊗−, P(B)(−, YΦ−)⊗−]

= [−,P(B)(YB−,−)⊗ P(B)(−, YΦ−)⊗−]

= [−,P(B)(YB−, YΦ−)⊗−]

= [−,Φ⊗−]

= P(B)(−,P0(Φ)−)

= (i ◦ P0)(Φ)(−,−)

= P1(Φ)(−,−).

Thus we arrive at (8). Because P1 is a (strict) functor and because each εA is fully
faithful, it follows from (8) that T ′ is normal. Similarly, becauseP1 is a Sup-functor,
T ′ preserves local suprema too. 2

If we apply Proposition 3.2 to the 2-functor P:Cat(Q) //Cat(Q) itself, then we
find that P ′ = P1 (and thus it is strictly functorial, not merely normal lax). In
general however, T ′ does not preserve composition.

4. Cocompletion: saturated classes of weights vs. KZ-doctrines

The Φ-weighted colimit of a functor F exists if and only if, for every a ∈ A0,
colim(Φ(−, a), F ) exists:

B F // C

A

cΦ
OO

colim(Φ, F )

77

∗ta

cA(−, a)

OO colim(Φ(−, a), F )

@@

cΦ(−, a) = Φ⊗ A(−, a)

HH

Indeed, colim(Φ, F )(a) = colim(Φ(−, a), F )(∗). But now Φ(−, a): ∗ta c //B is a
presheaf on B. As a consequence, a Q-category C is cocomplete if and only if it
admits all colimits weighted by presheaves.
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It therefore makes perfect sense to fix a class C of presheaves and study thoseQ-
categories that admit all colimits weighted by elements of C: by definition these are
the C-cocomplete categories. Similarly, a functor G:C //C′ is C-cocontinuous if
it preserves all colimits weighted by elements of C.

As [Albert and Kelly, 1988; Kelly and Schmitt, 2005] demonstrated in the case
of V-categories (for V a symmetric monoidal closed category with locally small,
complete and cocomplete underlying category V0), and as we shall argue here for
Q-categories too, it is convenient to work with classes of presheaves that “behave
nicely”:

Definition 4.1 A class C of presheaves on Q-categories is saturated if:

i. C contains all representable presheaves,

ii. for each φ: ∗X c //A in C and each functor G:A //P(B) for which each
G(a) is in C, colim(φ,G) is in C too.

There is another way of putting this. Observe first that any class C of presheaves on
Q-categories defines a sub-2-graph k:DistC(Q)

�� //Dist(Q) by

Φ:A c //B is in DistC(Q)
def.⇐⇒ for all a ∈ A0: Φ(−, a) ∈ C. (9)

Then in fact we have:

Proposition 4.2 A class C of presheaves onQ-categories is saturated if and only if
DistC(Q) is a sub-2-category of Dist(Q) containing (all objects and) all identities.
In this case there is an obvious factorisation

Cat(Q)
i //

j %%

Dist(Q)

DistC(Q)
+ � k

99rrrrrrrrrr

Proof : With (9) it is trivial that C contains all representable presheaves if and only
if DistC(Q) contains all objects and all identities.

Next, assume that C is a saturated class of presheaves, and let Φ:A c //B and
Ψ:B c //C be arrows in DistC(Q). Invoking the classifying property of P(C) and
the computation of colimits in P(C), we find colim(Φ(−, a), YΨ) = Ψ ⊗ Φ(−, a)
for each a ∈ A0. But because Φ(−, a) ∈ C and for each b ∈ B0 also YΨ(b) =
Ψ(−, b) ∈ C, this colimit, i.e. Ψ ⊗ Φ(−, a), is an element of C. This holds for all
a ∈ A0, thus the composition Ψ⊗ Φ:A c //C is an arrow in DistC(Q).
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Conversely, assuming DistC(Q) is a sub-2-category of Dist(Q), let φ: ∗A c //B
be in C and let F :B //P(C) be a functor such that, for each b ∈ B, F (b) is in C.
By the classifying property of P(C) we can equate the functor F :B //P(C) with
a distributor ΦF :B c //C and by the computation of colimits in P(C) we know that
colim(φ, F ) = ΦF ⊗ φ. Now ΦF (−, b) = F (b) by definition, so ΦF :B c //C is in
DistC(Q); but also φ : ∗A c //B is in DistC(Q), and therefore their composite is in
DistC(Q), i.e. colim(φ, F ) is in C, as wanted.

Finally, if F :A //B is any functor, then for each a ∈ A the representable
B(−, Fa): ∗ta c //B is in the saturated class C, and therefore B(−, F−):A c //B
is in DistC(Q). This accounts for the factorisation of Cat(Q) //Dist(Q) over
DistC(Q)
�� //Dist(Q). 2

We shall now characterise saturated classes of presheaves on Q-categories in
terms of KZ-doctrines on Cat(Q). (We shall indeed always deal with a saturated
class of presheaves, even though certain results hold under weaker hypotheses.) We
begin by pointing out a classifying property:

Proposition 4.3 Let C be a saturated class of presheaves and, for a Q-category
A, write JA: C(A) //P(A) for the full subcategory of P(A) determined by those
presheaves on A which are elements of C. A distributor Φ:A c //B belongs to
DistC(Q) if and only if there exists a (necessarily unique) factorisation

A
YΦ //

IΦ   

P(B)

C(B)
JB

;;xxxxxxxx
(10)

in which case Φ is cotabulated by IΦ:A // C(B) and IB:B // C(B) (the latter
being the factorisation of YB through JB).

Proof : The factorisation property in (10) literally says that, for any a ∈ A, the
presheaf YΦ(a) on B must be an element of the class C. But YΦ(b) = Φ(−, b)
hence this is trivially equivalent to the statement in (9), defining those distributors
that belong to DistC(Q). In particular, if C is saturated then DistC(Q) contains
all identities, hence we have factorisations YB = JB ◦ IB of the Yoneda embed-
dings. Hence, whenever a factorisation as in (10) exists, we can use the fully faithful
JB: C(B) //P(B) to compute, starting from the classifying cotabulation of Φ, that

Φ = P(B)(YB−, YΦ−) = P(B)(JB(IB(−)), JB(IΦ(−))) = C(B)(IB−, IΦ−),

confirming the cotabulation of Φ by IΦ and IB. 2

I. STUBBE - HAUSDORFF DISTANCE VIA CONICAL COCOMPLETION

- 66 -



Any saturated class C thus automatically comes with the 2-functor

C0:DistC(Q) //Cat(Q):
(

Φ:A c //B) 7→ (
Φ⊗−: C(A) // C(B)

)
and the full embeddings JA: C(A) //P(A) are the components of a 2-natural trans-
formation

Dist(Q) P0

##

DistC(Q)

k 44

C0

// Cat(Q)

=
⇒ J

Composing C0 with j:Cat(Q) //DistC(Q) it is natural to define

C:Cat(Q) //Cat(Q):
(
F :A //B

)
7→
(
B(−, F−)⊗−: C(A) // C(B)

)
together with

Cat(Q)

P
))

C
55
Cat(Q)

=
⇒J

(slightly abusing notation). We apply previous results, particularly Proposition 2.4:

Proposition 4.4 If C is a saturated class of presheaves on Q-categories then the
2-functor C:Cat(Q) //Cat(Q) together with the transformation J : C +3P forms
a full sub-KZ-doctrine of P . Moreover, the C-cocomplete Q-categories are pre-
cisely the C-algebras, and the C-cocontinuous functors between C-cocomplete Q-
categories are precisely the C-algebra homomorphisms.

Proof : To fulfill the hypotheses in Proposition 2.4, we only need to check the
factorisation of the multiplication: if we prove, for any Q-category A and each
φ ∈ C(C(A)), that the (J ∗ J)A(φ)-weighted colimit of 1P(A) is in C(A), then we
obtain the required commutative diagram

P(P(A))
colim(−, 1P(A))

// P(A)

C(C(A)) //

(J ∗ J)A

OO

C(A)

JA

OO

But because (J ∗ J)A = P(JA) ◦ JC(A) we can compute that

colim((J ∗ J)A(φ), 1P(A)) = colim(P(A)(−, JA−)⊗ φ, 1P(A)) = colim(φ, JA)
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and this colimit indeed belongs to the saturated class C, because both φ and (the
objects in) the image of JA are in C.

AQ-category B is a C-algebra if and only if IB:B // C(B) admits a left adjoint
in Cat(Q) (because C is a KZ-doctrine). Suppose that B is indeed a C-algebra,
and write the left adjoint as LB: C(B) //B. If φ: ∗X c //A is a presheaf in C and
F :A //B is any functor, then C(F )(φ) is an object of C(B), thus we can consider
the object LB(C(F )(φ)) of B. This is precisely the φ-weighted colimit of F , for
indeed its universal property holds: for any b ∈ B,

B(LB(C(F )(φ)), b) = C(B)(C(F )(φ), IB(b))

= P(B)(JB(C(F )(φ)), JB(IB(b)))

= [P(F )(JB(φ)), YB(b)]

= [B(−, F−)⊗ JB(φ),B(−, b)]
= [JB(φ),B(F−,−)⊗ B(−, b)]
= [φ,B(F−, b)].

(Apart from the adjunction LB a IB we used the fully faithfulness of JB and its
naturality, and then made some computations with liftings and adjoints in Dist(Q).)

Conversely, suppose that B admits all C-weighted colimits. In particular can we
then compute, for any φ ∈ C(B), the φ-weighted colimit of 1B, and doing so gives
a function f : C(B) //B:φ 7→ colim(φ, 1B). But for any φ ∈ C(B) and any b ∈ B
it is easy to compute, from the universal property of colimits and using the fully
faithfulness of JB, that

B(f(φ), b) = [φ,B(1B−, b)] = P(B)(φ, YB(b))

= P(B)(JB(φ), JB(IB(b))) = C(B)(φ, IB(b)).

This straightforwardly implies that φ 7→ f(φ) is in fact a functor (and not merely a
function), and that it is left adjoint to IB; thus B is a C-algebra.

Finally, let G:B //C be a functor between C-cocomplete Q-categories. Sup-
posing that G is C-cocontinuous, we can compute any ψ ∈ C(B) that

G(LB(ψ)) = G(colim(ψ), 1B) = colim(ψ), G) = LC(C(G)(ψ)),

proving that G is a homomorphism between the C-algebras (B, LB) and (C, LC).
Conversely, supposing now that G is a homomorphism, we can compute for any
presheaf φ: ∗X c //A in C and any functor F :A //B that

G(colim(φ, F )) = G(LB(C(F )(φ))) = LC(C(G)(C(F )(φ))) = colim(φ,G ◦ F ),

proving that G is C-cocontinuous. 2

Also the converse of the previous Proposition is true:
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Proposition 4.5 If (T , ε) is a full sub-KZ-doctrine of P:Cat(Q) //Cat(Q) then

CT := {εA(t) | A ∈ Cat(Q), t ∈ T (A)} (11)

is a saturated class of presheaves on Q-categories. Moreover, the T -algebras are
precisely the CT -cocomplete categories, and the T -algebra homomorphisms are
precisely the CT -cocontinuous functors between the CT -cocomplete categories.

Proof : We shall write DistT (Q) for the sub-2-graph of Dist(Q) determined – as
prescribed in (9) – by the class CT , and we shall show that it is a sub-2-category con-
taining all (objects and) identities of Dist(Q). But a distributor Φ:A c //B belongs
to DistT (Q) if and only if the classifying functor YΦ:A //P(B) factors (necessar-
ily essentially uniquely) through the fully faithful εB: T (B) //P(B).

By hypothesis there is a factorisation YA = εA ◦ ηA for any A ∈ Cat(Q), so
DistT (Q) contains all identities. Secondly, suppose that Φ:A c //B and Ψ:B c //C
are in DistT (Q), meaning that there exist factorisations

A
YΦ //

IΦ !!

P(B)

T (B)
εB

::vvvvvv

B
YΨ //

IΨ !!

P(C)

T (C)
εC

::vvvvvv

The following diagram is then easily seen to commute:

T (B)
εB //

T (IΨ)

��

P(B)

P(IΨ)

��

P(YΨ)

||

T (T (C))
εT (C)

//

T (εC)

��

(ε∗ε)C
%%

µC

{{vvvvvvvvvvvvvvv
P(T (C))

P(εC)

��

T (C)

εC
##HHHHHHHHHHHHHHH
T (P(C)) εP(C)

// P(P(C))

MC
yytttttttttttttttt

P(C)

But we can compute, for any φ ∈ P(B), that

(MC ◦ P(YΨ))(φ) = colim(P(A)(−, YΨ−)⊗ φ, 1P(A))
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= colim(φ, YΨ)

= Ψ⊗ φ
= P0(Ψ)(φ)

and therefore YΨ⊗Ψ = P0(Ψ)◦YΦ = MC◦P(YΨ)◦εB◦IΦ = εC◦µC◦T (IΨ)◦IΦ,
giving a factorisation of YΨ⊗Φ through εC, as wanted.

The arguments to prove that aQ-category B is a T -algebra if and only if it is CT -
cocomplete, and that a T -algebra homomorphism is precisely a CT -cocontinuous
functor between CT -cocomplete Q-categories, are much like those in the proof of
Proposition 4.4. Omitting the calculations, let us just indicate that for a T -algebra
B, thus with a left adjoint LB: T (B) //B to ηB, for any weight φ: ∗X c //A in
CT – i.e. φ = εA(t) for some t ∈ T (A) – and any functor F :A //B, the ob-
ject LB(T (F ))(t) is the φ-weighted colimit of F . And conversely, if B is a CT -
cocomplete Q-category, then T (B) //B: t 7→ colim(εB(t), 1B) is the left adjoint
to ηB, making B a T -algebra. 2

If C is a saturated class of presheaves and we apply Proposition 4.4 to ob-
tain a full sub-KZ-doctrine (C, J) of P:Cat(Q) //Cat(Q), then the application
of Proposition 4.5 gives us back precisely that same class C that we started from.
The other way round is slightly more subtle: if (T , ε) is a full sub-KZ-doctrine of
P then Proposition 4.5 gives us a saturated class CT of presheaves, and this class in
turn determines by Proposition 4.4 a full KZ-doctrine of P , let us write it as (T ′, ε′),
which is equivalent to T . More exactly, each (fully faithful) εA: T (A) //P(A) fac-
tors over the fully faithful and injective ε′A: T ′(A) //P(A), and this factorisation is
fully faithful and surjective, thus an equivalence. These equivalences are the com-
ponents of a 2-natural transformation δ: T +3 T ′ which commutes with ε and ε′.

We summarise all the above in the following:

Theorem 4.6 Propositions 4.4 and 4.5 determine an essentially bijective corre-
spondence between, on the one hand, saturated classes C of presheaves on Q-
categories, and on the other hand, full sub-KZ-doctrines (T , ε) of the free co-
completion KZ-doctrine P:Cat(Q) //Cat(Q); a class C and a doctrine T cor-
respond with each other if and only if the T -algebras and their homomorphisms
are precisely the C-cocomplete Q-categories and the C-cocontinuous functors be-
tween them. Proposition 3.3 implies that, in this case, there is a normal lax Sup-
functor T ′:Dist(Q) //Dist(Q), sending a distributor Φ:A c //B to the distributor
T ′(Φ): T (A) c // T (B) with elements

T ′(Φ)(t, s) = P(B)(εB(t),Φ⊗ εA(s)), for s ∈ T (A), t ∈ T (B),
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which makes the following diagram commute:

Dist(Q)
T ′ // Dist(Q)

Cat(Q)
T
//

i

OO

Cat(Q)

i

OO

5. Conical cocompletion and the Hausdorff doctrine

5.1 Conical colimits

Let A be a Q-category. Putting, for any a, a′ ∈ A,

a ≤ a′ def.⇐⇒ ta = ta′ and 1ta ≤ A(a, a′)

defines an order relation on the objects of A. (There are equivalent conditions in
terms of representable presheaves.) For a given Q-category A and a given object
X ∈ Q0, we shall write (AX ,≤X) for the ordered set of objects of A of type X .
Because elements of different type in A can never have a supremum in (A0,≤), it
would be very restrictive to require this order to admit arbitrary suprema; instead,
experience shows that it makes good sense to require each (AX ,≤X) to be a sup-
lattice: we then say that A is order-cocomplete [Stubbe, 2006]. As spelled out in
that reference, we have:

Proposition 5.1 For a family (ai)i∈I in AX , the following are equivalent:

i.
∨

i ai exists in AX and A(
∨

i ai,−) =
∧

iA(ai,−) holds in Dist(Q)(A, ∗X),

ii.
∨

i ai exists in AX and A(−,
∨

i ai) =
∨

iA(−, ai) holds in Dist(Q)(∗X ,A),

iii. if we write (I,≤) for the ordered set in which i ≤ j precisely when ai ≤X aj
and I for the free Q(X,X)-category on the poset (I,≤), F : I //A for the
functor i 7→ ai and γ: ∗X c // I for the presheaf with values γ(i) = 1X for all
i ∈ I, then the γ-weighted colimit of F exists.

In this case, colim(γ, F ) =
∨

i ai and it is the conical colimit of (ai)i∈I in A.

It is important to realise that such conical colimits – which are enriched colimits! –
can be characterised by a property of weights:

Proposition 5.2 For a presheaf φ: ∗X c //A, the following conditions are equiva-
lent:
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i. there exists a family (ai)i∈I in AX such that for any functor G:A //B, if
the φ-weighted colimit of G exists, then it is the conical colimit of the family
(G(ai))i,

ii. there exists a family (ai)i∈I in AX for which φ =
∨

iA(−, ai) holds in
Dist(Q)(∗X ,A),

iii. there exist an ordered set (I,≤) and a functor F : I //A with domain the free
Q(X,X)-category on (I,≤) such that, if we write γ: ∗X c // I for the presheaf
with values γ(i) = 1X for all i ∈ I, then φ = A(−, F−)⊗ γ.

In this case, we call φ a conical presheaf.

Proof : (i⇒ii) Applying the hypothesis to the functor YA:A //P(A) – indeed
colim(φ, YA) exists, and is equal to φ by the Yoneda Lemma – we find a family
(ai)i∈I such that φ is the conical colimit in P(A) of the family (YA(a))i. This
implies in particular that φ =

∨
iA(−, ai).

(ii⇒iii) For φ =
∨

iA(−, ai) it is always the case that [
∨

iA(−, ai),−] =∧
i[A(−, ai),−], i.e. P(A)(

∨
iA(−, ai),−) =

∧
i P(A)(A(−, ai),−). Thus φ is

the conical colimit in P(A) of the family (A(−, ai))i, and Proposition 5.1 allows
for the conclusion.

(iii⇒i) If, for some functor G:A //B, colim(φ,G) exists, then, by the hy-
pothesis that φ = A(−, F−) ⊗ γ, it is equal to colim(A(−, F−) ⊗ γ,G) =
colim(γ,G ◦ F ). The latter is the conical colimit of the family (G(F (i)))i∈I ; thus
the family (F (i))i fulfills the requirement. 2

A warning is in order. Proposition 5.2 attests that the conical presheaves on a
Q-category A are those which are a supremum of some family of representable
presheaves on A. Of course, neither that family of representables, nor the family of
representing objects in A, need to be unique.

Now comes the most important observation concerning conical presheaves.

Proposition 5.3 The class of conical presheaves is saturated.

Proof : We shall check both conditions in Proposition 4.1. All representable pre-
sheaves are clearly conical, so the first condition is fulfilled. As for the second
condition, consider a conical presheaf φ: ∗X c //A and a functor G:A //P(B)
such that each G(a): ∗ta c //B is a conical presheaf too. The φ-weighted colimit
of G certainly exists, hence the first statement in Proposition 5.2 applies: it says
that colim(φ,G) is the conical colimit of a family of conical presheaves. In other
words, colim(φ,G) is a supremum of a family of suprema of representables, and is
therefore a supremum of representables too, hence a conical presheaf. 2
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5.2 The Hausdorff doctrine

Applying Theorem 4.6 to the class of conical presheaves we get:

Definition 5.4 We writeH:Cat(Q) //Cat(Q) for the KZ-doctrine associated with
the class of conical presheaves. We call it the Hausdorff docrine on Cat(Q), and
we say that H(A) is the Hausdorff Q-category associated to a Q-category A. We
writeH′:Dist(Q) //Dist(Q) for the normal lax Sup-functor which extendsH from
Cat(Q) to Dist(Q).

To justify this terminology, and underline the concordance with [Akhvlediani et
al., 2009], we shall make this more explicit. According to Proposition 4.4, H(A)
is the full subcategory of P(A) determined by the conical presheaves on A. By
Proposition 5.2 however, the objects of H(A) can be equated with suprema of rep-
resentables; so suppose that

φ =
∨
a∈A

A(−, a) and φ′ =
∨

a′∈A′

A(−, a′)

for subsets A ⊆ AX and A′ ⊆ AY . Then we can compute that

H(A)(φ′, φ) = P(A)(φ′, φ)

= [φ′, φ]

= [
∨
a′

A(−, a′),
∨
a

A(−, a]

=
∧
a′

[A(−, a′),
∨
a

A(−, a)]

=
∧
a′

∨
a

[A(−, a′),A(−, a)]

=
∧
a′

∨
a

A(a′, a).

(The penultimate equality is due to the fact that each A(−, a′): ∗Y c //A is a left
adjoint in the quantaloid Dist(Q), and the last equality is due to the Yoneda lemma.)
This is precisely the expected formula for the “Hausdorff distance between (the
conical presheaves determined by) the subsetsA andA′ of A”. It must be noted that
[Schmitt, 2006, Proposition 3.42] describes a very similar situation particularly for
symmetric categories enriched in the commutative quantale of postive real numbers.

Similarly for functors: given a functor F :A //B between Q-categories, the
functor H(F ):H(A) //H(B) sends a conical presheaf φ on A to the conical pre-
sheaf B(−, F−) ⊗ φ on B. Supposing that φ =

∨
a∈AA(−, a) for some A ⊆ AX ,
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it is straightforward to check that

B(−, F−)⊗ φ =
∨
x∈A

(
B(−, Fx) ◦

∨
a∈A

A(x, a)

)

=
∨
a∈A

(∨
x∈A

B(−, Fx) ◦ A(x, a)

)
=

∨
a∈A

B(−, Fa).

That is to say, “H(F ) sends (the conical presheaf determined by) A ⊆ A to (the
conical presheaf determined by) F (A) ⊆ B”.

Finally, by Proposition 3.3, the action of H′ on a distributor Φ:A c //B gives
a distributor H′(Φ):H(A) c //H′(B) whose value in φ ∈ H(A) and ψ ∈ H(B) is
P(B)(ψ,Φ⊗ φ). Assuming that

φ =
∨
a∈A

A(−, a) and ψ =
∨
b∈B

B(−, b)

for some A ⊆ AX and B ⊆ BY , a similar computation as above shows that

H′(Φ)(ψ, φ) =
∧
b∈B

∨
a∈A

Φ(b, a).

This is the expected generalisation of the previous formula, to measure the “Haus-
dorff distance between (the conical presheaves determined by) A ⊆ A and B ⊆ B
through Φ:A c //B”.

5.3 Other examples

The following examples of saturated classes of presheaves have been considered by
[Kelly and Schmitt, 2005] in the case of categories enriched in symmetric monoidal
categories.

Example 5.5 (Minimal and maximal class) The smallest saturated class of pre-
sheaves onQ-categories is, of course, that containing only representable presheaves.
It is straightforward that the KZ-doctrine on Cat(Q) corresponding with this class is
the identity functor. On the other hand, the class of all presheaves on Q-categories
corresponds with the free cocompletion KZ-doctrine on Cat(Q).
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Example 5.6 (Cauchy completion) The class of all left adjoint presheaves, also
known as Cauchy presheaves, on Q-categories is saturated. Indeed, all repre-
sentable presheaves are left adjoints. And suppose that Φ:A c //B and Ψ:B c //C
are distributors such that, for all a ∈ A and all b ∈ B, Φ(−, a): ∗ta c //B and
Ψ(−, b): ∗tb c //C are left adjoints. Writing ρb:C c // ∗tb for the right adjoint to
Ψ(−, b), it is easily verified that Ψ is left adjoint to

∨
b∈B B(−, b)⊗ ρb. This makes

sure that (Ψ ⊗ Φ)(−, a) = Ψ ⊗ Φ(−, a) is a left adjoint too, and by Proposition
4.2 we can conclude that the class of Cauchy presheaves is saturated. The KZ-
doctrine on Cat(Q) which corresponds to this saturated class of presheaves, sends
a Q-category A to its Cauchy completion [Lawvere, 1973; Walters, 1981; Street,
1983].

Inspired by the examples in [Lawvere, 1973] and the general theory in [Kelly
and Schmitt, 2005], Vincent Schmitt [2006] has studied several other classes of
presheaves for ordered sets (viewed as categories enriched in the 2-element Boolean
algebra) and for generalised metric spaces (viewed as categories enriched in the
quantale of positive real numbers). He constructs saturated classes of presheaves
by requiring that each element of the class “commutes” (in a suitable way) with all
elements of a given (not-necessarily saturated) class of presheaves. These inter-
esting examples do not seem to generalise straightforwardly to general quantaloid-
enriched categories, so we shall not survey them here, but refer instead to [Schmitt,
2006] for more details.
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