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In October 2008, an International Conference was organized at the
Royal Flemish Academy of Belgium in Brussels to celebrate the 60th birth-
days of Francis Borceux and Dominique Bourn. After that, we decided to
honour their important contribution to category theory by devoting a vol-
ume of the "Cahiers" to Francis Borceux, and a volume of TAC to Domi-
nique Bourn. This is the first issue of the volume for Francis.

Francis obtained his Thesis [2] in 1972, under the direction of René
Lavendhomme. Assistant in Leuven from 1970 to 1973, he was appointed
Chargé de cours (1973-1980) and Professeur (since 1980) in Louvain-la-
Neuve, where he directed 12 theses and, from 1996 to 2001, acted as Dean
of the Faculty of Sciences.

We are very grateful to Francis for his role as a highly original re-
searcher in category theory and as one of the most active members of the
community in the diffusion of category research for more than 35 years.
He regularly organized beautiful category conferences (e.g., the Haute-
Bodeux meetings) and summer schools in the Ardennes, where he always
took great care to invite not only leading category theorists from all over
the world, but also young research students who were given the opportuni-
ty to talk about their research. Many generations of mathematicians have
greatly benefited from both his scientific guidance and his generous sup-
port.

He published, alone or in collaboration, 11 research monographs
and textbooks; of particular value is his three-volume comprehensive
Handbook of Categorical Algebra. He is also an author or co-author of
more than eighty research papers, as indicated by his list of publications
here below.

The Editors of the volume:
J. Adamek, A.C. Ehresmann, M. Gran, G. Janelidze and R. Kieboom
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ABSTRACT. Nous étudions les revêtements et les extensions
normales relatives aux structures galoisiennes munies de ce
que nous appelons foncteurs test. Ces foncteurs apparaissent
naturellement dans les structures galoisiennes associées aux
théories de torsion dans les catégories homologiques. Sous des
hypothèses additionnelles appropriées, tout morphisme à
noyau sans torsion est un revêtement, et tout revêtement est
une extension normale, pourvu qu’il soit un morphisme de
descente effective. Nos contre-exemples, qui montrent
l’importance de ces conditions supplémentaires, sont semi-
abéliens, et proviennent de la théorie des groupes, en faisant
intervenir des produits semi-directs de groupes cycliques.
Nous comparons nos nouveaux résultats avec ceux connus
pour les revêtements localement semi-simples et pour les
extensions centrales généralisées.

ABSTRACT. We study covering morphisms and normal
extensions with respect to Galois structures equipped with
what we call test functors. These test functors naturally occur
in Galois structures associated with torsion theories in
homological categories. Under suitable additional conditions,
every morphism with a torsion free kernel is a covering, and
every covering is a normal extension whenever it is an
effective descent morphism. Our counter-examples showing
the relevance of those additional conditions are semi-abelian,
and moreover, group-theoretic, involving semidirect products
of cyclic groups. We also briefly compare our new results with
what is known for the so-called locally semi-simple coverings
and for generalized central extensions.

Introduction

The purpose of categorical Galois theory is to study covering morphisms
in general categories defined with respect to so-called Galois structures,
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which sometimes are merely abstract semi-left-exact reflections in the
sense of [CHK] (see e.g. [J1], [BorJ], [J2]). Apart from classical cases,
where the covering morphisms become (quasi-) separable algebras over
commutative rings, ordinary covering maps of locally connected
topological spaces, étale coverings of schemes in algebraic geometry, etc.,
there are non-trivial examples far away from commutative algebra and
algebraic topology and geometry, such as generalized central extensions in
congruence modular varieties of universal algebras. Another “non-
classical” case is the Galois theory associated with a torsion theory; it was
briefly examined in [CJKP] in the abelian case, and then in [GR] for non-
abelian torsion theories in the sense of [BG]. While being Galois theory of
the torsion-free reflection, it also substantially uses the torsion coreflection,
and clearly suggests considering a more general situation of an abstract
Galois structure equipped with what we call a test functor because such a
functor T is required to “test” trivial covering morphisms via the
equivalence

(A,f) is a trivial covering  T(f) is an isomorphism.

As explained in Section 2 below, in the case of a torsion theory this
condition essentially follows from Bourn protomodularity.

The purpose of the present paper is to continue the study of Galois theories
associated with torsion theories, and, specifically, to prove/explain/clarify
the following:

 Under suitable additional conditions, every morphism with a torsion free
kernel is a covering, and every covering is a normal extension whenever it
is a monadic extension (=an effective descent morphism).

 There are simple (counter-)examples showing the relevance of those
additional conditions. The ones we consider have varieties of groups as
their ground categories, and all groups used in the covering morphisms we
construct are nothing but semidirect products of cyclic groups.

 The ground structure needed to obtain our main results is far more
general than a torsion theory: it is a finitely complete admissible Galois

GRAN & JANELIDZE - COVERING MORPHISMS AND NORMAL EXTENSIONS...

- 172 -



structure equipped with the above-mentioned test functor: in fact it is a
new notion we introduce.

 Coverings defined via torsion theories are to be compared with central
extension defined via Birkhoff subcategories [JK] (see also [J2], [G2], and
references there), and with locally semisimple coverings in the sense of
[JMT1].

The paper is divided into six sections as follows:

1. Coverings and normal extensions in general categories. It recalls basic
notions of categorical Galois theory; the next sections freely use them and
their simple properties.

2. Covering morphisms under the presence of a test functor. Test functors
are introduced and our main results are presented as simple propositions on
a Galois structure equipped with a test functor.

3. Galois structures of torsion theories. The main results are translated into
the context of a torsion theory.

Sections 4 and 5 present our examples, and Section 6 makes brief
comparisons with central extensions and locally semisimple coverings.

1. Coverings and normal extensions in general categories

A finitely complete admissible Galois structure  = (C,X,I,H,,,F,) (as
defined in [J2], slightly differently from the original definition in [J1]) on a
category C consists of an adjunction

(I,H,,) : C  X (1.1)

between categories with finite limits, and two classes F and  of
morphisms in C and X respectively, whose elements are called fibrations;
the following conditions on fibrations are required:
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- 173 -



 the classes of fibrations are pullback stable;

 the classes of fibrations are closed under composition and contain all
isomorphisms;

 the functors I and H preserve fibrations;

 for every object C in C and every fibration  : X  I(C) in X, the
composite

I(CHI(C)H(X))  IH(X)  X (1.2)

of canonical morphisms is an isomorphism. This last condition is called
admissibility.

We assume such a structure to be fixed, and, for an arbitrary object C in C,
write

(IC,HC,C,C) : F(C) (I(C))

for the usual induced adjunction, in which:

 F(C) is the full subcategory in (CC) with objects all (A,f) in (CC), in
which f : A  C is a fibration;

 similarly (I(C)) is the full subcategory in (XI(C)) with objects all
(X,) in (XI(C)), in which  : X  I(C) is a fibration;

 IC(A,f) = (I(A),I(f)), HC(X,) = (CHI(C)H(X),pr1), and C and C are
defined accordingly; in particular (C)(X,) is determined by the composite
(1.2) and so the admissibility condition simply says that C is an
isomorphism for each C in C.

Let us recall (e.g. again from [J2]):
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Definition 1.1. (a) For a fibration p : E  B in C, the object (E,p) in F(B)
is said to be a monadic extension of B if the pullback functor

p* : F(B)  F(E)

is monadic, or, equivalently, p is an effective descent morphism with
respect to the class F.

(b) An object (A,f) in F(B) is said to be a trivial covering of B if the
diagram

A

A HI(A)

f HI(f)

B HI(B)
B

is a pullback, or, equivalently, the morphism (B)(A,f) : (A,f)  HBIB(A,f) is
an isomorphism.

(c) An object (A,f) in F(B) is said to be split over a monadic extension
(E,p) of B, if p*(A,f) is a trivial covering of E.

(d) An object (A,f) in F(B) is said to be a covering of B if it is split over
some monadic extension; we then also say that f : A  B is a covering
morphism.

(e) A monadic extension (E,p) is said to be a normal extension if it is split
over itself.

Remark 1.2. There is a long list of known examples, which we do not
recall here. Let us, however, mention that the main ingredient of a Galois
structure is of course the adjunction (1.1) that is usually a reflection. In
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particular the following types of reflections seem to be especially
important:

(a) Totally disconnected reflections, where I(C) is the object of connected
components of C in a suitable sense. These types of reflections produce
classical examples mentioned at the beginning of Introduction.

(b) Reflections of varieties of universal algebras into their subvarieties, or,
more generally, reflections of exact categories into their Birkhoff
subcategories [JK]. Their covering morphisms are generalized central
extensions in the sense of [JK], and in particular central extensions of -
groups in the sense of A. S.-T. Lue [L], who also refers to A. Fröhlich’s
work. A further generalization is developed in [G2].

(c) Torsion-free reflections associated with torsion theories, whose
covering morphisms are studied in this paper, continuing [GR].

2. Covering morphisms under presence of a test functor

Definition 2.1. Let  = (C,X,I,H,,,F,) be as above. A test functor is a
finite limit preserving functor T : C  Y from C to any category Y with
finite limits, such that the following conditions on a fibration f : A  B in
C are equivalent:

(a) (A,f) is a trivial covering of B;

(b) T(f) : T(A)  T(B) is an isomorphism in Y.

We will fix such a test functor T; the reasons for introducing it are the
following obvious facts:

Proposition 2.2. The following conditions on a fibration f : A  B and a
monadic (E,p) of B are equivalent:

(a) (A,f) is split over (E,p);

(b) the pullback projection T(EBA)  T(E)T(B)T(A)  T(E) is an
isomorphism. 
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Proposition 2.3. The following conditions on a monadic extension (E,p) of
B are equivalent:

(a) (E,p) is a normal extension;

(b) the pullback projections T(EBE)  T(E)T(B)T(E)  T(E) are
isomorphisms;

(c) T(p) : T(E)  T(B) is a monomorphism. 

From now on we will assume that the category C is pointed, write 0 for its
zero object and its zero morphisms, and write ker(f) : Ker(f)  A for a
(the) kernel of a morphism f : A  B in it. We will also assume that all
morphisms into 0 are fibrations. Furthermore, since the functor I must
preserve zero, the admissibility condition implies that the functor H is fully
faithful, and we will identify the category X with its replete H-image in C.

Proposition 2.4. The following conditions on an object C in C are
equivalent:

(a) C is in X, i.e. the morphism C : C  HI(C) is an isomorphism;

(b) the zero morphism C  0 is a trivial covering;

(b) T(C) = 0. 

Proposition 2.5. For a fibration f : A  B in C the implications
(a)(b)(c) hold for:

(a) (A,f) is a normal extension;

(b) (A,f) is a covering;

(c) Ker(f) is in X.

Moreover:

(d) if (A,f) is a monadic extension and every morphism in Y with zero
kernel is a monomorphism, then conditions (a), (b), and (c) are equivalent
to each other;
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(e) if there exists a monadic extension (E,p) of B with E in X, then
condition (c) implies condition (b).

Proof. The implication (a)(b) is trivial.

(b)(c): When (A,f) is a covering, p*(A,f) = (EBA,pr1) is a trivial covering
for some monadic extension (E,p) of B. Since the class of trivial covering
morphisms is (obviously) pullback stable, this makes Ker(pr1 : EBA  E)
 Ker(f)  0 a trivial covering, and we can apply Proposition 2.4.

(d) follows from Proposition 2.3.

(e): We have T(EBA)  T(E)T(B)T(A) = 0T(B)T(A) = Ker(T(f))  T(Ker(f)),
which tell us that EBA is in X if and only if so is Ker(f). But having E and
EBA in X implies that (A,f) is split over (E,p) and therefore is a covering.

3. Galois structures of torsion theories

In this section we construct a finitely complete admissible Galois structure
 = (C,X,I,H,,,F,) equipped with a test functor T as follows:

 C is a homological category in the sense of [BB];

 (I,H,,) : C  X is the torsion-free reflection of a torsion theory (Y,X)
on C in the sense of [BG] (which generalizes the classical, i.e. abelian,
case of S. E. Dickson [D]; we do not consider here the most general
context of [JT]);

 F and  are the classes of all morphisms in C and X respectively;

 T : C  Y is the torsion coreflection of the torsion theory (Y,X) above.

We need conditions (a) and (b) of Definition 2.1 to be equivalent to each
other. For, given a morphism f : A  B in C, consider the diagram
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A A

0 T(A) A I(A) 0

T(f) f I(f)

0 T(B) B I(B) 0,
B B

where  is the counit of the torsion coreflection. We need to know that the
right-hand square is a pullback if and only if the first vertical arrow is an
isomorphism. However, since the rows of this diagram are short exact
sequences and the category C is homological, this follows from Bourn
protomodularity (see [BB]).

For this Galois structure  associated with the torsion theory (Y,X), the
main result of Section 2 becomes:

Theorem 3.1. For a morphism f : A  B in C the implications
(a)(b)(c)(d) hold for:

(a) (A,f) is a monadic extension, and f induces a monomorphism T(f) : T(A)
 T(B) in Y from the torsion coreflection of A to the torsion coreflection
of B;

(b) (A,f) is a normal extension;

(c) (A,f) is a covering;

(d) Ker(f) is torsion free.

Moreover:

(e) if (A,f) is a monadic extension and every morphism in Y with zero
kernel is a monomorphism, then conditions (a), (b), (c) and (d) are
equivalent to each other;

(f) if there exists a monadic extension (E,p) of B with E in X, then
condition (d) implies condition (c). 
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Such a theorem obviously suggests to:

 Find non-trivial examples where 3.1(e) and 3.1(f) can be applied; here
“non-trivial” has a specific meaning: not every covering should be trivial
(in the sense of Definition 1.1(b)).

 Show that conditions 3.1(a), 3.1(b), and 3.1(c) in general are not
equivalent to each other. More precisely, find an example where (A,f)
satisfies 3.1(d) but not 3.1(c), and another example where it is monadic and
satisfies 3.1(c) but not 3.1(b).

This will be done in Sections 4 and 5 respectively.

Remark 3.2. Theorem 3.1 certainly applies to protolocalisations of
homological categories in the sense of [BCGS]. However, in that case the
functor I preserves all pullbacks along regular epimorphisms, which makes
every covering trivial.

4. Two “non-trivial” examples where conditions 3.1(e) and
3.1(f) do apply

Example 4.1. The additional assumption on Y made in 3.1(e) obviously
holds in the following two cases:

(a) When Y is hereditary in C with respect to normal monomorphisms, i.e.
when every normal monomorphism m : C  Y in C with Y in Y must have
C in Y. It follows that Theorem 3.1 includes the main result in [GR], which
was obtained in the more restrictive context of quasi-hereditary torsion
theories.

(b) When C is (regular and) additive – since this forces Y to be additive. In
particular C could be abelian as in [CJKP].

For both of these cases “the simplest” example of a non-trivial covering
morphism (which is even a normal extension) f : A  B has
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 C = the category of abelian groups;

 X = the category of torsion free abelian groups (in the usual sense);

 f = any epimorphism from the additive group of integers to a non-zero
cyclic group.

For this ordinary torsion theory of abelian groups 3.1(f) also applies since
every abelian group is a quotient of a torsion-free abelian group. However,
it does not apply well to e.g. the dual torsion theory (since only torsion
abelian groups are subgroups of torsion abelian groups; see [CJKP] for
some related remarks).

Example 4.2. Let T be a semi-abelian algebraic theory, i.e. an algebraic
theory whose models form a semi-abelian category, or, equivalently, a
pointed BIT speciale variety in the sense of A. Ursini [U] (see also [BouJ],
[JMT2], and [JMU] for the clarification of the relationship between the
categorical and universal-algebraic approaches). The models of T are
universal algebras of a fixed type admitting, among others, a constant 0, n
binary terms s1, ..., sn, and an (n  1)-ary term t, satisfying the identities

t(s1(x,y),...,sn(x,y),y) = x, s1(x,x) = ... = sn(x,x) = 0, u = 0

for all 0-ary terms u. Note that these terms also satisfy the implication

s1(x,y) = ... = sn(x,y) = 0  x = y. (4.1)

We take

 C = the category of topological T-algebras (=models of T in the category
of topological spaces), which is known from F. Borceux and M. M.
Clementino [BC] to be a homological category;

 X = the category of totally disconnected topological T-algebras, hence
obtaining the torsion theory (Y,X), whose torsion objects are connected
topological T-algebras.
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We claim that every morphism f : A  B in the category Y of connected
topological T-algebras that has the trivial kernel in Y is a monomorphism
in Y. Indeed:

Let g, h : Y  A be morphisms in Y with fg = fh, and k1, ..., kn : Y  A be
maps (which are not necessarily T-algebra homomorphisms) defined by

ki(y) = si(g(y),h(y)) (i = 1, ..., n).

Our next step requires to compare the kernel of f in Y with the kernel of f
in C, and we will denote these kernels by KerY(f) and KerC(f) respectively.
We observe:

 fg = fh easily implies that fki = 0 for all i = 1, ..., n.

 Since KerC(f) = {a  A  f(a) = 0} and fki = 0 for all i = 1, ..., n, the
images of Y under all ki’s are in KerC(f).

 Since KerY(f) is nothing but the connected component of 0 in KerC(f),
and since Y is connected, the previous observation implies that the images
of Y under all ki’s are in KerY(f).

 Therefore KerY(f) = 0 implies ki = 0 for all i = 1, ..., n, which itself
implies g = h by the implication (4.1).

That is KerY(f) = 0 implies that f is a monomorphism.

There are many non-trivial coverings, e.g. the canonical map R  R/Z in
the case when T is the theory of groups, where R is the topological
(additive) group of real numbers and Z is the group of integers. This is,
again, a normal extension, and, topologically it is nothing but the classical
universal covering of the 1-dimensional sphere S1 = R/Z of course.

Remark 4.3. Concerning 3.1(f): We do not know if, in the situation 4.2,
for every object B in C, there exists a monadic extension (E,p) of B with E
in X. However, as mentioned in [GR] with a reference to A.
Arkhangel’skiĭ [A], this is the case when T is the theory of groups.

GRAN & JANELIDZE - COVERING MORPHISMS AND NORMAL EXTENSIONS...

- 182 -



5. Counter-examples for (d)(c)(b) in Theorem 3.1

Example 5.1. Let Bn be the Burnside variety (of groups) of exponent n, i.e.
the variety of all groups G with xn =1 for all x in G, and Cn the cyclic group
of order n. We construct the data described in Section 3 by taking C = B6

and X = B3, and take f to be the unique epimorphism from the symmetric
group S3 to C2. Then Ker(f) = C3 is torsion free, but (S3,f) is not a covering.
Indeed:

Consider the pullback diagram

pr2

P S3

pr1 f

C6 C2

p

in which p is the unique epimorphism C6  C2. An easy calculation shows
that the projection P  C6 induces an isomorphism I(P)  I(C6) of the
torsion-free reflections; since that projection itself is not an isomorphism, it
follows that (P,pr1) is not a trivial covering. On the other hand, since the
category C = B6 is exact, and since C6 is a projective object in it with
respect to regular epimorphisms, if (S3,f) were a covering then it would be
split over (C6,p), i.e. (P,pr1) would be a trivial covering.

Example 5.2. Now we construct the data described in Section 3 by taking:

 C = the category of groups;

 X = the category of torsion-free groups in the usual sense, which will
make Y to be the category of all groups generated by their elements of
finite order.

Let us also take B = C2 (=the cyclic group of order 2), A = BZ = the
infinite dihedral group, and f : A  B to be the semidirect product
projection. In particular f is a split epimorphism and (A,f) is a monadic
extension. Consider the pullback diagram
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pr2

P A

pr1 f

Z B
p

in which p is the unique epimorphism from the additive group of integers
to B. Since Z and P are (obviously) torsion free, and (Z,p) is a monadic
extension (since p is a regular epimorphism in an exact category), we
conclude that (A,f) is a covering of B. On the other hand, since f is a split
epimorphism, if (A,f) were a normal extension it would be a trivial
covering. And (A,f) is not a trivial covering since A and B are in Y, while f
is not an isomorphism.
That is, (A,f) is a covering that is a monadic extension but not a normal
extension.

6. Remarks on central extensions and locally semisimple
coverings

In this section we compare three contexts, which we will call TT, CE, and
LSC for short. They are:

 TT: The context of a torsion theory described in Section 3.

 CE stands for “central extension”; it is the context used in [JK], where
the ground Galois structure  = (C,X,I,H,,,F,) has C an exact category,
X a Birkhoff subcategory in C, and F and  are the classes of regular
epimorphisms in C and X respectively. When C is pointed, we could try to
define a test functor T : C  Y, where Y is a suitable subcategory in C, by
T(C) = Ker(C). Moreover, such a functor was actually used in [JK] (called
R there) in results similar to ours. However, in general this functor will not
preserve finite limits.
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 LSC stands for “locally semisimple covering”; it is a context used in
[JMT1], where still having (exact) C and a full subcategory X in it, we do
not require the existence of the reflection I : C  X. One then replaces
trivial coverings with morphisms in X and modifies definitions of Section
1 accordingly. So, a locally semisimple covering is a morphism in C that is
“in X up to effective descent” rather than a “trivial covering up to effective
descent”.

Let us begin our comparisons with the property

((A,f) is a monadic extension and a covering)  ((A,f) is a normal
extension), (6.1)

which we obtained in TT under any of the following conditions:

Every morphism in Y with zero kernel is a monomorphism, (6.2)

There exists a monadic extension (E,p) of B with E in X. (6.3)

The implication (6.1) does not make much sense in LSC (unless A is in X),
but it holds in CE under additional conditions that are (when C is exact)
much weaker (see [JK]) than what we require in TT. And (6.2) holds in CE
as soon as the category C has the similar property. Still, in order to prove it
in CE, neither the arguments we used for 3.1(e) nor the arguments we used
for 3.1(f) can be applied. The reason is that neither 3.1(a)(b) nor (6.3)
can be used.

Now let us consider the property

(Ker(f) is in X)  ((A,f) is a covering). (6.4)

It “almost never” holds in CE: for instance it does not hold for the ordinary
central extensions of groups, which is a very basic fact in group theory (not
every group extension with an abelian kernel is central!); an example
where it does hold is given by the Birkhoff subcategory Dis(C) of discrete
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equivalence relations in the category Grpd(C) of internal groupoids in a
semi-abelian category C studied in [G1] and [EG].
But it holds in many special cases of LSC for essentially the same reasons
as for 3.1(f). Moreover, 3.1(f) is a consequence of Proposition 2.3 in
[JMT1] (in the case of exact C, although as mentioned in [JMT1],
exactness is not essential there). Indeed, it is easy to see that X in TT is a
semisimple class in C (when C is exact) in the sense of [JMT1] satisfying
Condition 2.2 of [JMT1], as required in Proposition 2.3 there.

Finally, note that our examples, especially 5.1 and 5.2, are, in a sense,
suggested by these comparisons; in fact Example 5.1 can be used also in
the context CE and Example 5.2 can be used also in the context LSC (since
(6.3) holds there).
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Dedicated to Francis Borceux on the occasion of his sixtieth birthday

Abstract
We investigate sets with infinitary linear combinations sub-

ject to the usual axioms with coefficients in a suitable ring, e.g.
a complete valuation ring. They are Eilenberg-Moore algebras
for a monad of countable arity. Moreover, they are always mod-
ules; surprisingly infinitary linear combinations yield a property.
This is quite different from real or the complex case studied by
Pumplün and Röhrl.

These modules were called cotorsion modules and defined by
a cohomological property by Matlis. They form a reflective sub-
category; the reflection also has a cohomological description. This
yields some insight, particularly if the first Ulm functor does not
vanish.

Nous étudions des ensembles avec combinaisions linéaires in-
finies, qui satisfont aux axiomes ordinaires, ayant des coefficients
dans un anneau avec certaines propriétés, p.ex. un anneau com-
plet d’évaluation. Ici, il s’agit d’algèbres d’Eilenberg-Moore pour
une monade d’arité dénombrable. En plus elles sont toujours des
modules; de manière inattendue combinaisions linéaires infinies
impliquent une propriété. C’est tout à fait différent du cas réel
ou complexe considéré par Pumplün et Röhrl.

Ces modules de cotorsion étaient définit par une propriété co-
homologique par Matlis. Ils constituent une sous-catégorie réflexive;
la réflexion a une description cohomologique. Cela nous ouvre
des perspectives, en particulier si le premier foncteur d’Ulm ne
disparâıt pas.
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1 Introduction

Pumplün and Röhrl [10] introduced the category TC of totally convex
spaces as the Eilenberg-Moore category of the monad induced by the
adjunction between the unit-ball functor Ban1 −→ Set and its left ad-
joint, where Ban1 is the category of Banach spaces and linear operators
of norm ≤ 1 over the field R or C. For Banach spaces over a complete
field with a Krull-valuation subject to some mild conditions the monad
and its Eilenberg-Moore-algebras can be formed analogously and form a
locally countably presentable category, but they look quite different. As
opposed to the real and to the complex situation, the Eilenberg-Moore-
algebras admit an addition subject to the usual rules; this leads to an
additive and even abelian category. The algebras are modules over the
valuation ring, and finitary linear combinations are formed as in the
module. The existence of infinitary linear combinations excludes the ex-
istence of non-trivial divisible submodules; following some authors we
call a module with this property reduced. The module carries a canoni-
cal topology, which turns out to be bounded, and every infinitary linear
combination is the limit of the finitary sub-combinations in this topol-
ogy. If the topology is Hausdorff, this limit is unique; this happens if and
only if the module is division-free, i.e. the first Ulm functor vanishes. But
there also exist division elements in Eilenberg-Moore-algebras; surpris-
ingly, then the infinitary linear combinations are still determined by the
finitary ones. The Eilenberg-Moore-category is even a full subcategory
of the category of all modules. Its objects were already investigated by
Matlis [9] in a different context and called cotorsion modules ; according
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to new terminology we call them reduced Matlis-cotorsion modules. It
is well-known that Matlis-cotorsion is equivalent to completeness in the
division-free situation, but surprisingly, our results remain valid if there
exist non-trivial division elements. Then infinitary linear combinations
are still uniquely determined, though the limit of the corresponding
finitary linear combinations is not unique. Infinitary linear combina-
tions can also be characterized as unique solutions of systems of linear
equations. Though always some Ulm functor vanishes, the chain of Ulm
functors can be arbitrarily long. This easily implies that the category of
reduced Matlis-cotorsion modules has no cogenerator.

2 Eilenberg-Moore-algebras

In this section we consider a field K with a Krull–valuation, i.e. a sur-
jective map v : K −→ Γ, where Γ := Γ ∪ {∞}, Γ a totally ordered
(additively written) abelian group and ∞ is an additional largest ele-
ment, subject to the following axioms:

(V1) v(α) = ∞ if and only if α = 0.

(V2) v(αβ) = v(α) + v(β) for all α, β ∈ K.

(V3) v(α+ β) ≥ min(v(α), v(β)) for all α, β ∈ K.

Surjectivity of v can always be achieved by codomain restriction. We
want to include the case that the value group Γ is not archimedean; the
valuation is non-archimedean anyway. The totally ordered group Γ is
archimedean if and only if it can be embedded into R; the most famous
examples are p-adic valuations. In order to avoid some trivial cases, we
assume that Γ contains a countable unbounded subset; this guarantees
the existence of convergent subsequences which are not eventually con-
stant. Since the single-element group is obviously bounded, Γ has at
least two elements; this makes the canonical topology non-discrete. The
above conditions are always satisfied for non-trivial real-valued valua-
tions. Moreover, we assume that K is complete, i.e. sequence (αn)n∈N in
K converges if (αn−αn+1)n∈N converges to 0; we always assume 0 ∈ N.
Here a sequence (αn)n∈N converges to α ∈ K if v(αn − α) → ∞ for
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n→∞. The valuation ring R := {α ∈ K |v(α) ≥ 0} is a local ring with
maximal ideal {α ∈ K | v(α) > 0}.

Let us now define (K, v)-Banach spaces; in the case of a real-valued
field they were defined by A.F. Monna and studied by van Rooij [11].
This leads to an easy generalization to this case; assuming ||α|| := e−v(α)

for α 6= 0 and ||0|| := 0. Then the (K, v)-Banach spaces form a com-
plete and cocomplete category; the construction of limits and colimits
sometimes requires suprema and infima which exist by completeness of
R. For non-archimedean Γ this is not possible, because then Γ is not
complete and cannot even be embedded into a complete totally ordered
group. Therefore, we define the Banach structure on a K-vector space
E by a binary relation a on E × Γ; here x a g should be thought of
as u(x) ≥ g for some (valuation) map u : E → Γ; for a real-valued v
we can define (K, v)-Banach spaces by v in this way. Another problem
occurs: If Γ has no least positive element, then 0 is the infimum of all
positive elements, and every element of Γ is the supremum of all strictly
smaller elements and the infimum of all strictly larger elements. If Γ
has a smallest positive element, this is not the case. This requires a
distinction of two cases; we come to the following definition:

A (K, v)-Banach space is a K-vector space E together with a binary
relation a on E × Γ with:

(KB0) For every x ∈ E there exists a g ∈ Γ with x a g. 0 a g holds for all
g ∈ Γ, but for every x ∈ E \ {0} there exists a g ∈ Γ with x 6a g.

(KB1) x a g′ whenever x a g and g ≥ g′.

(KB2) αx a v(α) + g whenever x a g, α ∈ K \ {0}.

(KB3) x+ y a g if x a g and y a g.

(KB4) If (xn)n∈N is a sequence in E such that for every g ∈ Γ there exists
an n0 ∈ N with xn − xn+1 a g for all n ≥ n0, then there exists
an x ∈ V such that for every g ∈ Γ there exists an n1 ∈ N with
xn − x a g for all n ≥ n1.

If Γ has a least positive element (but only in this case) we also assume:

(KB5) x a 0 whenever x a g for all positive g ∈ Γ.
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A morphism f : E0 → E1 of (K, v)-Banach spaces is a K-linear map
E0 → E1 such that x a g implies f(x) a g.

Observe that (KB4) is a completeness condition; it means that ev-
ery Cauchy sequence in the canonical topology converges; the canonical
topology has the sets Ug := {x;x a g} as a basis. The Banach structure
is already given by the unit ball ©E := {x ∈ E|x a 0} of E; observe
x a v(α) if and only if α−1x ∈ ©E for α 6= 0. ©E is no longer a
K-vector space, but still an R-module. Observe that the base-field K is
always a (K, v)-Banach space in the canonical way with ©K = R. By
the existence of a countable unbounded set in Γ this topology is always
first-countable and hence sequential, i.e. every sequentially closed set is
closed.

The set-valued functor © on the category of (K, v)-Banach spaces
has a left adjoint and induces a monad on the category of sets. This left
adjoint maps every set X to the K-vector space `1(X) of all families
(ξx)x∈X ∈ KX such that for each g ∈ Γ there are only finitely many
x ∈ X with v(ξx) < g; we define (ξx)x∈X a g :⇔ ∀x ∈ X v(ξx) ≥ g
for (ξx)x∈X ∈ `1(X) and g ∈ Γ. An Eilenberg-Moore-algebra is a non-
empty set M together with maps MN → M for (αn)n∈N ∈ Ω, which we
shall write as x• := (xn)n∈N 7→

∑∞
n=0 αnxn, where Ω := `1(N) = {α• =

(αn)n∈N| ∀n ∈ N αn ∈ R, v(αn) →∞ for n→∞}. For α• = (αn)n∈N ∈
Ω we put α�• := (αn+1)n∈N ∈ Ω; likewise we define x�• := (xn+1)n∈N ∈
MN for x• := (xn)n∈N ∈ MN. Moreover, for β ∈ K and α• ∈ Ω we
define βα• := (βαn)n∈N; it even belongs to Ω if βαn ∈ R = ©K for
all n ∈ N; this is always satisfied for β ∈ R. Since every α• ∈ Ω
converges to 0 by hypothesis, for each β ∈ R\{0} there are only finitely
many n ∈ N with β−1αn /∈ R; therefore iterated application of � to
β−1α• finally leads to an element of Ω. There is always a distinguished
element 0 =

∑∞
n=0 0xn ∈ M , which does not depend on the xn ∈ M .

The Eilenberg-Moore-algebras for the adjunction given by the above
unit ball functor © and its left adjoint `1 can be characterized in our
situation in the same way as Pumplün and Röhrl did in the real and in
the complex situation (cf. [10]).

Theorem 2.1 The Eilenberg-Moore-category of the monad induced by
the set-valued functor © is the category of non-empty sets M together
with maps (xn)n∈N 7→

∑∞
n=0 αnxn for (αn)n∈N ∈ Ω subject to the follow-
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ing axioms:

(LC1)
∑∞

n=0 δn,mxn = xm for all m ∈ N, where δ is the Kronecker symbol
with values in R, i.e. δn,n = 1 and δn,k = 0 for n 6= k.

(LC2)
∑∞

n=0 αn(
∑∞

m=0 βn,mxm) =
∑∞

m=0(
∑∞

n=0 αnβn,m)xm for all α• ∈
Ω, and βn,• ∈ Ω for all n ∈ N, where xm ∈M for all m ∈ N.

The proof is completely analogous to the real and in the complex sit-
uation; nevertheless, the algebras look quite different. As in the real and
in the complex case, the monad has rank ℵ1; all operations are count-
able; therefore the category is locally countably presentable (cf. [6]).
Moreover Ω contains all sequences in R with only finitely many non-
zero entries; this defines finitary linear operations in every algebra M ;
soM becomes an R-module. In this way the Eilenberg-Moore-category is
additive; it even turns out to be abelian; it is also a symmetric monoidal
closed category, even an autonomous category in the sense of Linton [8].
The tensor product in this category can be constructed by applying the
reflection to the usual tensor product of modules. The set-theoretical
image of every morphism is a subalgebra, in particular a submodule.
This submodule can always be divided out; so we see that all epimor-
phisms are surjective. All this is different from the real and the complex
case because 1 + 1 = 2 > 1 holds there; thus the category is no longer
additive. These algebras were studied in more detail in the habilitation-
sschrift of the second author [7].

We can also define (K, v)-normed vector spaces as above by omitting
the completeness condition (KB4); we do not need the completeness of
K. Instead of Ω we get the set of all sequences in R with only finitely
many non-zero entries. Now the operations can be viewed as finitary
linear combinations; in particular, we have a binary addition and a
multiplication with an element of R on each Eilenberg-Moore-algebra
M . Then we easily see that M is an R-module under these operations,
and arbitrary linear combinations are just as in this module. Conversely,
in every R-module the finitary linear combinations satisfy (LC1) and
(LC2). Therefore the Eilenberg-Moore-category is just the category of
R-modules in this situation.
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If σ : Γ → Γ′ is a surjective order-preserving group homomorphism,
and if we still have Γ′ 6= {0}, then the valuation v′ := σ ◦ v also satisfies
the above conditions. The kernel of σ is then bounded, but the valuation
ring R′ of v′ is strictly larger than R unless σ is bijective, because there
are elements g < 0 in Γ with σ(g) = 0. Every (K, v)-Banach space E is
a (K, v′)-Banach space in the obvious way; it carries the same canonical
topology, but as a (K, v′)-Banach space it has a larger unit ball. In
particular, R is the unit ball of K over R and admits infinitary linear
combinations with (LC1) and (LC2) over R, but not over R′.

3 Finitary and infinitary linear combina-

tions

In the remainder of this paper we shall consider a more general situa-
tion. The ring R need not be a valuation ring. But we assume that R
is an integral domain and K 6= R is its quotient field. More generally,
every R-module M carries a canonical topology, whose basis are all sets
αM with α ∈ R \ {0}. For a valuation v it coincides with our previ-
ous definition. Since R is not a field, the canonical topology on R is
Hausdorff. This happens for valuations because we consider surjective
Krull-valuations rather than (possibly non-surjective) valuations into
R; for the latter approach, a trivial valuation would lead to the discrete
topology. Moreover, we assume R to be first countable in the canonical
topology; this is equivalent to saying that R is powerful in the sense of
Matlis [9], i.e. K is countably generated as an R-module; then K has
homological dimension 1, as we shall see: K is a union of an increas-
ing chain of countably many submodules γ−1

n R with γn ∈ R \ {0} for
all n ∈ N; we also can assume γ0 = 1. This can always be achieved by
choosing γn as the product of the denominators of the first n generators.
Each one of the modules γ−1

n R is isomorphic to R. If R is a valuation
ring for a valuation v : K → Γ and if the set of integer multiples of v(γ)
is unbounded in R for some γ ∈ R\{0}, then we can choose γn := γn for
all n ∈ N; this yields γ−1

n γn+1 = γ for each n ∈ N. In the non-powerful
case the situation may be much more complicated.

In particular, we have a short exact sequence 0 → R(N) → R(N) →
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K → 0, where the morphism R(N) → R(N) maps the n-th unit vector en

to en−(γ−1
n γn+1)en+1; the other non-trivial map is R(N) → K, en 7→ γ−1

n .
M is also sequential in the canonical topology; i.e. every sequentially
closed subset of M is closed. Finally we assume R to be (sequentially)
complete in the canonical topology; this means that every sum in R
converges in the canonical topology provided its members converges to
0. This is more general as the case of a valuation ring, but it cannot
always be achieved by completion; e.g. the completion of the powerful
integral domain Z has zero-divisors; it is the product of all rings of
p-adic integers for all primes p.

For valuations v, v′ and a surjection σ as above, every R′-module is
an R-module by restriction of the operations, and one easily sees that
the canonical topologies coincide for both valuations.

The first Ulm functor U = U1 is defined by UM :=
⋂

α∈R\{0} αM

for every R-module M ; this is an R-module again. Moreover, U0 is the
identity functor for R-modules; for each ordinal number κ we define
Uκ+1 := UUκ, and for a limit ordinal λ we set UλM :=

⋂
κ<λ U

κM .
Moreover, we put U∞M :=

⋂
κ ordinal U

κM . Then M is divisible if and
only if UM = M holds;M is called division-free if and only if UM = {0}
holds. IfM admits infinitary linear combinations with (LC1) and (LC2),
then all UκM , in particular U∞M , are closed under these combinations.

Theorem 3.1 The division-free R-modules form a full reflective sub-
category of the category of all R-modules; the reflection maps M to
M/UM .

Proposition 3.2 For an R-module M the following statements are
equivalent:

(i) M is reduced.

(ii) U∞M = {0}.

(iii) Hom(K,M) = {0}.

Proof. (i) ⇒ (ii): The UκM form a decreasing sequence of submodules
of M ; thus it must become constant somewhere. Hence there exists an
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ordinal κ with UκM = Uκ+1M = UUκM ; therefore U∞M = UκM is
divisible. Now (i) yields U∞M = {0}.

(ii) ⇒ (iii): For an R-linear map f : K → M we obtain f(K) =
f(U∞K) ⊂ U∞M = {0}.

(iii) ⇒ (i): Let D ⊂ M be a divisible submodule and assume x0 ∈
D. We have an increasing representation K =

⋃∞
n=0 γ

−1
n R with γ0 =

1. Since D is divisible, we can find a sequence (xn)n∈N in D with
(γ−1

n γn+1)xn+1 = xn for all n ∈ N. Now for each n ∈ N we consider
the map γ−1

n R → M, ξ 7→ γnξxn. This map is R-linear, and the map
for n + 1 extends the map for n. So they can be merged to a linear
map f : K → M , which is trivial by (iii). This implies x0 = f(1) = 0,
proving D = {0}.

The statements (i) and (ii) are always equivalent, and they imply
(iii), but the proof of (iii)⇒ (i) needs the hypothesis that R be powerful.
Modules satisfying (iii) are called h-reduced, e.g. by Matlis [9]. The
assumption is necessary in the case of a valuation ring R for a Krull
valuation v : K → Γ. Indeed, if R is not powerful, i.e. if in Γ 6= {0}
every countable subset is bounded; then the homological dimension of
K as an R-module is ≥ 2 by VI,3.4 of [3], and from VII, 2.8 of [3] we
see that there exists a reduced R-module which is not h-reduced and
hence an h-divisible R-module which is not divisible.

The canonical topology of an R-module M has the set of all γM
with γ ∈ R \ {0} as a basis of 0-neighbourhoods; it is Hausdorff if
and only if M is division-free. The finite sums

∑m
n=0 αnxn converge to

the infinitary linear combination
∑∞

n=0 αnxn in the canonical topology
for all α• ∈ Ω. In the division-free case, the limit is unique, (LC1)
and (LC2) are clearly satisfied, and we can split up the infinitary linear
combinations into module operations and limits. In general, an infinitary
linear combination is one operation and the coefficients are crucial,
not just the summands. In particular, it cannot be split into module
operations and some unique limits, maybe in a finer topology, as we see
in the following

Theorem 3.3 If an R-module M admits infinitary linear combinations
satisfying (LC1) and (LC2), then an element x0 of M belongs to UM if
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and only if it is of the form x0 =
∑∞

n=0 αnyn with α• ∈ Ω and αnyn = 0
for all n ∈ N.

Proof. For x0 of the given form and for γ ∈ R \ {0} there is an m ∈ N
such that m applications of � to γ−1α• yield an element of Ω. Then we
have

x0 =
∞∑

n=0

αnyn =
m−1∑
n=0

αnyn +
∞∑

n=m

αnyn

=
m−1∑
n=0

0 +
∞∑

n=m

(γ−1αn)(γyn) = γ

∞∑
n=m

(γ−1αn)yn ∈ γM.

This yields x0 ∈ UM .
Conversely, we have an increasing representation K =

⋃∞
n=0 α

−1
n R

with α0 = 1; in particular we have α• ∈ Ω. Since x0 ∈ UM , there are xn

in M with x0 = αnxn for all n ∈ N. Then for yn := xn− (α−1
n αn+1)xn+1

(n ∈ N) we obtain

x0 = x0 +
∞∑

n=1

αnxn −
∞∑

n=1

αnxn =
∞∑

n=0

αnxn −
∞∑

n=1

αnxn

=
∞∑

n=0

αnxn −
∞∑

n=0

αn+1xn+1 =
∞∑

n=0

αnyn

with αnyn = αnxn − αn+1xn+1 = x0 − x0 = 0.

A topological R-module M is called bounded if for every
0–neighbourhood W ⊂M there is an α ∈ R \ {0} with αM ⊂ W . M is
called sequentially complete if every Cauchy sequence converges; a se-
quence (xn)n∈N is called a Cauchy sequence if for every 0–neighbourhood
W ⊂ M there exists an n0 ∈ N with xn1 − xn2 ∈ W for all n1, n2 ≥ n0;
since we are in the non-archimedean situation this property of n0 is
equivalent to xn+1 − xn ∈ W for all n ≥ n0. If M is a sequentially
complete R-module, then for every α• ∈ Ω the partial sums

∑m
n=0 αnxn

converge to
∑∞

n=0 αnxn for m→∞.

Proposition 3.4 Let M be a topological R–module such that
(
∑m

n=0 αnxn)m∈N converges for every α• ∈ Ω, x• ∈ MN. Then M is
bounded.
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Proof. Assume the contrary. Then there is a 0–neighbourhood W ⊂M
with γM 6⊂ W for all γ ∈ R \ {0}. Since R is powerful, we can find
αn ∈ R, n ∈ N with

⋃
n∈N α

−1
n R = K; we can even achieve αn+1 ∈

αnR for all n ∈ N. Then for every n ∈ N there is an xn ∈ M with
αnxn /∈ W ; hence (αnxn)n∈N does not converge to 0 in M , therefore
(
∑m

n=0 αnxn)m∈N cannot converge in M , though α• ∈ Ω.

The following observation is crucial for the further discussion: We
shall see later that infinitary linear combinations do not guarantee that
the canonical topology is Hausdorff, i.e. that the module is division-free.
But it is still true that the modules are reduced, i.e. they may contain
non-trivial divisible elements, but not divisible submodules (which would
be closed under these operations by our previous remark).

Theorem 3.5 Every R-module that admits infinitary linear combina-
tions satisfying (LC1) and (LC2) is reduced.

Proof. We use 3.2 (iii) ⇒ (i). For an R-module M let f : K →M be R-
linear. As above, we can represent K as an increasing union

⋃∞
n=0 α

−1
n R

of copies of R with α0 = 1. Then in M for every ξ ∈ K we obtain

f(ξ) +
∞∑

n=1

αn f(α−1
n ξ) =

∞∑
n=0

αn f(α−1
n ξ) =

∞∑
n=0

αn ((α−1
n αn+1)f(α−1

n+1ξ)) =
∞∑

n=0

αn+1f(α−1
n+1ξ) =

∞∑
n=1

αnf(α−1
n ξ) ,

hence f(ξ) = 0, proving f = 0.

The following observation looks surprising at first glance:

Theorem 3.6 If M and N admit infinitary linear combinations with
(LC1) and (LC2) and if f : M → N is an R-module homomorphism,
then f preserves these infinitary linear combinations.
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Proof. The set

D := {
∞∑

n=0

αnf(xn)− f(
∞∑

n=0

αnxn)|xn ∈M for n ∈ N, α• ∈ Ω}

is an R-submodule of M ; and we have to show D = {0}; by 3.5 it suffices
to show that D is divisible. For an arbitrary

y =
∞∑

n=0

αnf(xn)− f(
∞∑

n=0

αnxn) ∈ D,

and m ∈ N we obtain

y =
m−1∑
n=0

αnf(xn)− f(
m−1∑
n=0

αnxn) +
∞∑

n=m

αnf(xn)− f(
∞∑

n=m

αnxn) =

∞∑
n=m

αnf(xn)− f(
∞∑

n=m

αnxn)

because the linear map f preserves finitary linear combinations. For
every γ ∈ R \ {0} there exists an m ∈ N with γ−1α• ? m ∈ Ω. Then we
have z :=

∑∞
n=m(γ−1αn)f(xn) − f(

∑∞
n=m(γ−1αn)xn) ∈ D and γz = y.

This proves y ∈ UD, hence D is divisible.

Corollary 3.7 On an R-module there is at most one way to introduce
infinitary linear combinations with (LC1) and (LC2) extending the fini-
tary ones.

Proof. Apply 3.6 to the identity map.

This is the only case we know, where a full reflective subcategory
of an equational locally finitely presentable category is equational (and
locally countably presentable), but not locally finitely presentable.

4 Cotorsion Modules

We have seen that infinitary linear combinations are unique in every
R-module and are preserved by every R-linear map; so the remaining
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question is their existence. Modules admitting infinitary linear com-
binations with (LC1) and (LC2) form a full subcategory of the cate-
gory of all R-modules; we shall see that they coincide with the modules
called cotorsion modules by Matlis [9], who introduced them. Later it
has become common to define this term without reducedness; also the
stronger notions of Enochs-cotorsion and Warfield-cotorsion were in-
troduced; they were studied by Enochs, Fuchs, Harrison, Matlis and
Warfield (cf. [2], [3], [5]). M is a reduced Matlis-cotorsion module if and
only if Hom(K,M) = {0} and Ext1(K,M) = {0} hold; torsion-free ones
are classical examples of splitters (cf. [4]).

The above subcategory is also reflective. Once we have character-
ized it, we can describe the reflection in terms of the long cohomology
sequence. But in order to achieve the characterization, we need its ex-
istence first and also another property.

Lemma 4.1 The R-modules admitting infinitary linear combinations
with (LC1) and (LC2) form a reflective subcategory of the category of
R-modules. The reflection map is injective if and only if M is reduced.

Proof. Since the category of modules with infinitary linear combina-
tions with (LC1) and (LC2) is defined by adding more operations and
equations to an equationally defined category, the existence of the left
adjoint follows from the Adjoint Functor Theorem (cf. [1]).

Obviously, M is reduced by 3.5 if the reflection map r : M → M ′

is injective. Conversely, for reduced M consider the pushout of r along
the multiplication M → M, ξ 7→ γξ for some γ ∈ R \ {0}, i.e. the
map r′ : M → M ′′ := (M × M ′)/N, x 7→ (x, 0) + N , where N :=
{(γx,−r(x))|x ∈ M} ⊂ M × M ′. This yields a module structure on
M ′′; it does not admits infinitary linear combinations with (LC1) and
(LC2) for simple categorical reasons. Usually, the definition does not
contain the minus sign; but here it does not change the module and it
allows to ”add the components” in the usual way. The infinitary linear
combinations are given by

∞∑
n=0

αn((xn, yn) +N) := (
∞∑

n=0

αnr
′(xn, 0)) + (0,

∞∑
n=0

αnyn) +N
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and

∞∑
n=0

αnr
′(xn, 0) := (

m∑
n=0

αnxn,
∞∑

n=m+1

(γ−1αn)r(xn)) +N =

m∑
n=0

αnr
′(xn, 0) + γ

∞∑
n=m+1

(γ−1αn)r′(xn, 0)

whenever α• ∈ Ω, x• ∈ MN, y• ∈ M ′N,γ ∈ R \ {0}, and γ−1αn ∈ R for
n > m; the result does not depend on the choice of m.

Now from the universal property of r we obtain an R-module homo-
morphism f : M ′ → M ′′ with f ◦ r = r′. This implies that the kernel
Ñ of r is contained in the kernel γÑ of r′. As γ ∈ R \ {0} is arbitrary,
Ñ ⊂M is divisible; since M is reduced, this implies Ñ = {0}.

Theorem 4.2 For an R-module M the following statements are equiv-
alent:

(i) M admits infinitary linear combinations with (LC1) and (LC2).

(ii) The following system of linear equations has a unique solution
(yα•,x•)α•∈Ω,x•∈MN:

yα•,x• = α0x0 + yα�• ,x�•
for all α• ∈ Ω, x• ∈MN

yβα•,x• = βyα•,x• for all β ∈ R, m ∈ N, α• ∈ Ω, x• ∈MN.

(iii) M is a reduced Matlis-cotorsion module, i.e. Hom(K,M) = {0}
and Ext1(K,M) = {0}.

Proof. (i) ⇔ (ii): If we have infinitary linear combinations, we can solve
the system of equations by yα•,x• :=

∑∞
n=0 αnxn for all α• ∈ Ω, m ∈ N,

(xn)n∈N ∈ MN, β ∈ R. The solution is unique, because the correspond-
ing homogenous system has only the zero solution. Indeed, if we have a
solution for xn = 0 for all n ∈ N, then the yn form a divisible submodule
of M , which must vanish by (i) and 3.5. Conversely, if we have a solution
of the system of equations, we define

∑∞
n=0 αnxn := yα•,x• for α• ∈ Ω,

(xn)n∈N ∈MN. Using the uniqueness, we get (LC1) and (LC2).
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(i) ⇒ (iii): Consider the torsion-free cover F of M ; it can be con-
structed as the module of all homomorphisms f fromK into the injective
hull J of M with f(1) ∈ M . Then F is torsion-free, and we have the
canonical projection F → M ; according to the above construction it is
the linear map f 7→ f(1). Its kernel N consists of all f : K → J with
f(1) = 0. Moreover, N is torsion-free as a submodule of F .

Now assume thatM admits infinitary linear combinations with (LC1)
and (LC2); from 3.5 we see that M is reduced. So we still have to show
Ext1(K,M) = {0}. For each fixed ξ ∈ K there is a γ ∈ R \ {0} with
γξ ∈ R. Then for every g ∈ F we obtain γg(ξ) = g(γξ) = (γξ)g(1) ∈M .
So for ξ and γ as above we can define the map

∑∞
n=0 αnfn : K → J in

F by (
∑∞

n=0 αnfn)(ξ) :=
∑∞

n=0 αn(γfn(γ−1ξ)). This definition does not
depend on the choice of γ.

This defines infinitary linear combinations with (LC1) and (LC2) on
the torsion-free R-module F. So F is complete in the canonical topology,
and from Matlis [9] we obtain Ext1(K,F ) = {0}. Since K has projective
dimension 1, we have Ext2(K,N) = {0}.

Now we apply the left-exact functor Hom(K,−) to the short exact
sequence

0 → N → F →M → 0.

Then the long cohomology sequence contains the part Ext1(K,F ) →
Ext1(K,M) → Ext2(K,N). Since the first and the last module vanish,
we can conclude Ext1(K,M) = {0}.

(iii) ⇒ (i): Assume Hom(K,M) = {0} and Ext1(K,M) = {0} and
let r : M → M ′ be the reflection map from 4.1. Then M is reduced by
3.2, hence r is injective, and we have a short exact sequence

0 →M →M ′ →M ′/M.

Since M ′ admits infinitary linear combinations with (LC1) and (LC2), it
is also reduced, i.e. Hom(K,M ′) = {0}, and from the long cohomology
sequence we see that Hom(K,M ′/M) = {0}, i.e. M ′/M is reduced. But
M ′/M is also divisible: For all z ∈ M ′ and all γ ∈ R \ {0} we have to
show z + r(M) ∈ γ(M ′/r(M)) = γM ′ + r(M). By a routine argument,
z is of the form z =

∑∞
n=0 αnr(xn) for some α• ∈ Ω and some x• ∈MN,
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because all such elements form a submodule of M ′ containing r(M)
closed under infinitary linear combinations. Then there is anm ∈ N with
γ−1α• ? m ∈ Ω, and then we get z =

∑∞
n=0 αnr(xn) =

∑m−1
n=0 αnr(xn) +∑∞

n=m αnr(xn) = r(
∑m−1

n=0 αnxn)+γ
∑∞

n=m(γ−1αn)r(xn) ∈ r(M)+γM ′.
So M ′/M is both divisible and reduced, thus we have M ′/M =

{0}. This means that r is bijective; since M ′ admits infinitary linear
combinations with (LC1) and (LC2), M also does.

For an individual α′• ∈ Ω and x′• ∈ MN the linear combination∑∞
n=0 α

′
nx

′
n can be uniquely characterized by a countable system of lin-

ear equations. In order to determine yα•,x• it suffices to have the equa-
tions in (ii) for countably many cases.

For an increasing representation K =
⋃∞

n=0 α
−1
n R we need only the

countably many cases where β is αm for somem ∈ N and βα• is obtained
from α′• by finitely many applications of � and x• is obtained from x′• by
the same number of applications of �. This is true because (β−1αm)m∈N
always converges to 0 for β 6= 0, therefore it contains only finitely many
elements outside R. For β = 0 the statement is trivial anyway.

Corollary 4.3 Every torsion-free reduced Matlis-cotorsion module is
division-free.

Proof. For a torsion-free reduced Matlis-cotorsion module M assume
x ∈ UM . Then by 3.3, x can be written as x =

∑∞
n=0 αnyn with αnyn = 0

for all n ∈ N. Since M is torsion-free, this implies yn = 0 for all n ∈ N
with αn 6= 0. But this easily yields x = 0.

Lemma 4.4 Ext1(K/R,M) = {0} holds for every divisible R-module
M .

Proof. Represent K as an increasing union of copies γ−1
n R of R. It

suffices to show that every short exact sequence 0 → M → M ′ →
K/R → 0 splits. Since divisible modules are closed under extensions,
M ′ is also divisible. Since the projection q : M ′ → K/R in this se-
quence is surjective, there is an x0 ∈ M ′ with q(x0) = γ−1

0 + R. If xn

has already been defined with q(xn) = γ−1
n + R, the surjectivity of q

yields an y ∈M ′ with q(y) = γ−1
n+1 +R, hence also q((γ−1

n γn+1)y−xn) =
(γ−1

n γn+1)q(y)−q(xn) = 0. Therefore (γ−1
n γn+1)y−xn is in the kernel of q,
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i.e. in the image of the divisible module M ′. Thus there is a z ∈M ′ with
q(z) = 0 and (γ−1

n γn+1)z = (γ−1
n γn+1)y− xn, i.e. xn = (γ−1

n γn+1)(y− z).
Now we define xn+1 := y − z ∈ M ′, thus (γ−1

n γn+1)xn+1 = xn and
q(xn+1) = q(y) − q(z) = γ−1

n+1 + R. Thus there is a unique linear map
K/R → M ′, which maps γ−1

n + R to xn for all n ∈ N; this map splits
the short exact sequence.

For R a discrete valuation ring 4.4 is obvious because every divisible
module is injective.

Theorem 4.5 Mapping an arbitrary R-module M to the canonical
map M → Ext1(K/R,M) yields the reflection from the category of R-
modules to the category of reduced Matlis-cotorsion R-modules.

Proof. First we claim that the canonical map
Ext1(K/R,M) → Ext1(K/R,M/U∞M) is always an isomorphism. The
long cohomology sequence for the functor Hom(K/R,−) applied to the
short exact sequence 0 → U∞M → M → M/U∞M → 0 contains the
part Ext1(K/R,U∞M) → Ext1(K/R,M) → Ext1(K/R,M/U∞M) →
Ext2(K/R,U∞M). The first module vanishes by 4.4, and the last part
vanishes, since R has cohomological dimension 1. The assignment in
the theorem is obviously a natural transformation. By 3.2 U∞M is al-
ways in the kernel, so by 4.4 we can restrict our attention to reduced
modules. Since K/R is a torsion module and M/U∞M is reduced, we
have Hom(K/R,M/U∞M) = {0}. Now by 2.1 of [9] Ext1(K/R,M) is
a Matlis-cotorsion module.

For a reduced Matlis-cotorsion module M , the long cohomology se-
quence of Hom(−,M) applied to 0 → R → K → K/R → 0 contains
the part Hom(K,M) → Hom(R,M) → Ext1(K/R,M) → Ext1(K,M).
Since the first and the last module vanish, the middle arrow is an iso-
morphism; thus also the canonical arrow M → Ext1(K/R,M/U∞M) ∼=
Ext1(K/R,M).

So we have a natural transformation from the identity functor to a
functor that maps allR-modules to reduced Matlis-cotorsionR-modules,
and for all reduced Matlis-cotorsion R-modules the natural transforma-
tion yields an isomorphism. Therefore this must be the reflection.
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5 The Chain of Ulm Functors

We have seen that every R-module M admitting infinitary linear com-
binations with (LC1) and (LC2) is reduced, but we have not seen that
it is division-free, though we have not given a counterexample up to
now. At first glance the difference looks quite harmless; we always have
U∞M = {0}, but not necessarily UM = {0}. We do not see immedi-
ately why not all elements of UM have to be divisible, i.e. why we may
have U2 6= U1. Of course, the Uκ form a decreasing chain of functors;
thus it must be eventually constant, and for reduced M this can hap-
pen only at {0}, i.e. there is a κ with U∞M = UκM = {0}. But the
smallest κ with this property can be arbitrarily large, even for a reduced
Matlis-cotorsion module. We shall see this below, using the machinery
of infinitary linear combinations used above.

Theorem 5.1 For every torsion-free reduced Matlis-cotorsion module
M and for every ordinal κ there exists a reduced Matlis-cotorsion module
P with UκP ∼= M .

Proof. We represent K as a union of an increasing sequence of α−1
n R,

we assume α0 = 1 and we consider the set T of all tuples
t = ((ν1, . . . , νn), (m1, . . . ,mn)), where the νk form a strictly decreas-
ing chain of ordinals < κ, including the empty tuple Λ, and where
m1, . . . ,mn is a strictly increasing tuple of natural numbers; for such a
pair of pairs we use the shorter notation t = (ν1, . . . , νn;m1, . . . ,mn),
and we put ν0 := κ.

Now MT is a torsion-free Matlis-cotorsion module; we write its el-
ements as maps φ : T → M . Consider the submodule M [T ] ⊂ MT

of all φ ∈ MT such that for each γ ∈ R \ {0} there are only finitely
many t ∈ T with φ(t) /∈ γM ; since R is powerful and M is torsion-free,
hence also division-free, this implies φ(t) = 0 for all but countably many
t ∈ T ; we write φ as a formally uncountable linear combination. For each
t ∈ T we have an R-module homomorphism ut : M → M [T ] defined by
ut(x)(t) := x for x ∈M and ut(x)(t

′) := 0 for t′ ∈ T with t′ 6= t. LetN ⊂
M [T ] be the submodule of all infinitary linear combinations of elements
of the form u(ν1,...,νn−1;m1,...mn−1)(x)− (α−1

mn−1
αmn)u(ν1,...,νn;m1,...,mn)(x). In

such a representation of a φ ∈ N , we assume w.l.o.g. that all t :=
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(ν1, . . . , νn;m1, . . . ,mn) are different; otherwise we gather all entries
with the same t. Moreover we can assume x 6= 0 for all summands;
otherwise we can omit them. If φ 6= 0, for some t the coefficient β of
some ut(x) does not vanish; we can choose t = (ν1, . . . νn;m1 . . . ,mn)
in such a way that νn is minimal. Since M is torsion-free by hypothe-
sis, this implies φ(t)(βα−1

mn−1
αmn)x 6= 0. So if we have φ(t) = 0 for all

t := (ν1, . . . , νn;m1, . . . ,mn) with νn < µ for some ordinal µ, we see
that φ is a linear combination of generators t as above with νn ≤ µ. Let
P := M [T ]/N be the quotient and let q : M [T ] → P be the canonical pro-
jection. Since N ⊂ M [T ] is closed under infinitary linear combinations,
P is a reduced Matlis-cotorsion module.

We claim that for each ordinal µ ≤ κ the Ulm submodule UµP
consists of all q(x), where x(ν1, . . . , νn;m1, . . .mn) = 0 holds whenever
νn < µ. The limit step is obvious. Now we assume the statement for some
µ < κ and prove it for µ+ 1. For the first direction consider a φ ∈M [T ]

with φ(ν1, . . . , νn;m1, . . . ,mn) = 0 for νn ≤ µ and a γ ∈ R\{0}. By φ ∈
M [T ], the set S := {s ∈ T |φ(s) /∈ γM} is finite, and we have φ = γψ +∑

t∈T\S uT (φ(t)) for some ψ ∈ M [T ] with ψ(ν1, . . . , νn;m1, . . . ,mn) = 0
for νn ≤ µ; by induction hypothesis this implies ψ ∈ UµP . Now there
exists a natural number l > mn with α−1

mn
αl ∈ γR. For νn+1 := µ and

mn+1 := l we get

u(ν1,...,νn;m1,...,mn)(x)− (α−1
mn
αmn+1)u(ν1,...,νn+1;m1,...,mn+1)(x) ∈ N,

hence

q(u(ν1,...,νn;m1,...,mn)(x)) = (α−1
mn
αmn+1)q(u(ν1,...,νn+1;m1,...,mn+1)(x)),

for all x ∈M . By induction hypothesis we have

q(u(ν1,...,νn+1;m1,...,mn+1)(x)) ∈ UµP,

therefore

q(u(ν1,...,νn;m1,...,mn)(x)) ∈ (α−1
mn
αmn+1)U

µP ⊂ γUµP.

This implies

φ = γψ +
∑
s∈S

us(φ(s)) ∈ γUµP,
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proving φ ∈ UUµP = Uµ+1P .
Conversely, assume φ ∈ M [T ] with q(φ) ∈ Uµ+1P = UUµP ⊂ UµP ;

by hypothesis we assume φ(ν1, . . . , νn;m1, . . . ,mn) = 0 for νn < µ. For
every γ ∈ R \ {0} there is a ψ ∈ UµP with ψ(ν1, . . . , νn;m1, . . . ,mn) =
0 for νn < µ and q(φ) = γq(ψ) = q(γψ), hence φ − γψ ∈ N . For
t = (ν1, . . . , νn;m1, . . . ,mn) ∈ T we have φ − γψ(t) = 0 whenever
νn < µ. Then by our above considerations we can assume that only
elements t with νn ≥ µ have non-zero coefficients; therefore we have
φ− γψ(t) = 0 for νn = µ. Thus we get φ(t) = γψ(t) ∈ γM ; this proves
φ(t) ∈ UM = {0}, because M is division-free.

This proof works only in the torsion-free case; otherwise the transfi-
nite induction breaks down. We do not see whether 5.1 is still true oth-
erwise, even in the division-free case. But of course, UκP is not always
division-free; the above construction also yields modules with prescribed
division-free Uκ+1P . The question looks even interesting for κ = 1; then
it would follow for all finite κ. Moreover, maybe one can only prove that
every reduced Matlis-cotorsion module occurs as a submodule of some
UκP .

Corollary 5.2 The category of reduced Matlis-cotorsion R-modules has
no cogenerator.

Proof. Assume the contrary, i.e. let C be a cogenerator. Then there
exists an ordinal κ with U∞C = UκC = {0}. Now by 5.1 there exists
a reduced Matlis-cotorsion R-module M with UκM = R 6= {0}. Then
an R-linear map M → C maps all elements of UκM to 0, hence it does
not separate them.
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Dedicated to Francis Borceux on the occasion of his sixtieth birthday

Abstract

Nous introduisons la notion de catégorie accessible qui com-
prend une grande partie des catégories protomodulaires, dont les
catégories des groupes, des anneaux, des algèbres associatives
et des algèbres de Lie. Cette notion a l’avantage de permettre
de calculer intrinséquement les centralisateurs des sous-objets et
des relations d’équivalence. Nous montrons que dans de telles
catégories les notions de commutateurs pour les sous-objets et
pour les relations d’équivalence cöıncident.

We introduce and study action accessible categories. They
provide a wide class of protomodular categories, including all
varieties of groups, rings, associative and Lie algebras, in which
it is possible to calculate centralizers of equivalence relations and
subobjects. We show that, in those categories, the equivalence
relation and subobject commutators agree with each other.

Key words : Protomodular and semi-abelian categories; centralizers;
commutators; split exact sequences.
[2000]primary: 20J05,18G50, 18C15; secondary: 18G30, 18G35.

Introduction.
When X is a subset of a group A, the centralizer Z(X) of X in A is

defined as
Z(X) = {a ∈ A/x ∈ X ⇒ axa−1 = x}

When X is a normal subgroup in A, sending a ∈ A to the automor-
phism c(a) of X defined by c(a)(x) = axa−1 determines a group homo-
morphism c : A → Aut(X), and the centralizer Z(X) can equivalently
be defined as: Z(X) = Ker(c).
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When X is a normal subobject in an object A in a semi-abelian cat-
egory C, the centralizer Z(X) is to be defined as the largest subobject
K of A with [[X,K]] = 0 (here and below we write [[, ]] for the “clas-
sical” subobject commutator in order to distinguish it from the equiva-
lence relation commutator [, ]). The existence of such a Z(X) can then
be proved in the case of a semi-abelian variety, but not in general: a
counter-example was constructed by S. A. Huq [12].

Since the group Aut(X) is a particular example of the split extension
classifier (introduced in [3], and denoted there by [X]; see also [2]), it
is natural to ask if the equality Z(X) = Ker(c) still holds for the ap-
propriate c : A→ [X] whenever the protomodular category C is action
representable, i.e. whenever the split extension classifier [X] exists.

Among others, there are two main results in this paper:

(a) We not just answer positively the question above, but prove a
stronger result applicable to a much wider class of categories,
which we call action accessible. They include e.g. all varieties
of groups, rings, associative and Lie algebras.

(b) As an application, we prove that in any action accessible category
the equivalence relation and subobject commutators agree in the
sense that [R,S] =0 if and only if [[IR, IS]] = 0, where IR is the
normal subobject associated with R; as we know from [6], this is
also true in any strongly protomodular category, but for a very
different reason.

The paper is divided into six sections as follows:
Section 1 introduces faithful split extensions and studies their simple

properties, especially in the case of rings - which is the most important
non-action-representable case. For familiar algebraic categories faithful
split extensions

0 // X // k // A
p // // Boo
s

oo // 0

correspond to faithful actions of B on X, which is the reason of choosing
the term “faithful”. Note also that all generic split extensions

0 // X // // X n [X] // // [X]oooo // 0
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(in the sense of [3], with the concept of semidirect product introduced
in [9]) are faithful by very definition.

Section 2 defines the action accessible categories as those “with ac-
cess to faithful split extensions”, i.e. as those where every split extension
admits a morphism into a faithful one. It is shown that the following
categories are action accessible:

• any action representable category (trivially);

• the category of rings;

• any Birkhoff subcategory of a homological action accessible cate-
gory;

• the category of split epimorphisms into any object in an action
accessible category.

Section 3 essentially shows that working with split extensions is the
same as working with internal groupoids, and therefore allows to apply
the constructions with split extensions to (internal) equivalent relations.

Section 4 shows, using the results of Section 3, how to calculate
centralizers of equivalence relation as kernel pairs of morphisms into
split extensions, and in particular concludes that all action representable
and all action accessible (homological) categories admit centralizers.

Section 5 studies centralizers of normal subobjects, compares them
with centralizers of equivalence relations and concludes that the equiva-
lence relation and subobject commutators agree in any action accessible
category.

Section 6 provides a new characterization of antiadditivity (=the
property for an object of having trivial centres) via faithfulness of a
particular split extension, extending a simple property of groups.
Remark: (a) The authors did their best to adjust the terminology and
notation they use with those of the papers they refer to – even though
in some cases it almost created disagreements They hope, however, that
the choices they made will be most convenient for the readers, especially
those who studied the book [1].
(b) The action accessibility defined in this paper has nothing to do
with the concept of accessible category – it is only a coincidence of
terminology.
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1 Faithful split extensions

Let C be a finitely complete pointed category. Recall it is protomodular
when for any diagram with ps = 1B and k the kernel of p:

0 // X // k // A
p // // Boo
s

oo // 0

the pair (k, s) is jointly strongly epic.
Now let C be a fixed pointed protomodular category, and

0 // X // k //

1X
��

A
p // //

f
��

Boo
s

oo //

g
��

0

0 // X //
l

// C
q // // Doo
t

oo // 0

(1.1)

a diagram in C, which has the following properties:
• it reasonably commutes, i.e. has l = fk, qf = gp, and fs = tg;
• it has ps = 1B and qt = 1D;
• k and l are kernels of p and q respectively.

We will consider such a diagram as a morphism (g, f) of split exten-
sions (with fixed X), write

(g, f) : (B,A, p, s, k) → (D,C, q, t, l) (1.2)

and denote the category of such split extensions by

SplExt(X) = SplExtC(X)

The functor
SplExt(X) → C (1.3)

sending (B,A, p, s, k) to B is a faithful fibration in which every vertical
morphism is an isomorphism (since g = 1D ⇒ f is an isomorphism) and
therefore every morphism is cartesian. This follows from the protomod-
ularity of C, and, moreover, when C is just required to be pointed and
to have finite limits, this is equivalent to protomodularity.
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Observation 1.1. Using protomodularity we observe:
(a) to say that the functor (1.3) is faithful is of course the same as
to say that the morphism f in (1.1) (provided it exists) is determined
by other morphisms, which follows from the fact that the pair (k, s) is
jointly (strongly) epic;
(b) to say that every morphism in SplExt(X) is cartesian (with respect
to the functor (1.3)) is the same as to say that in every diagram in C
of the form (1.1) the square qf = gp is a pullback;
(c) the category SplExt(X) obviously has connected finite limits pre-
served by the functor (1.3), and, since this functor (1.3) is faithful, it
not only preserves, but also reflects monomorphisms.

Definition 1.2. An object in SplExt(X) is said to be faithful, if any
object in SplExt(X) admits at most one morphism into it.

Observation 1.3. For arbitrary two objects X and Y in C, consider
the split extension (Y, Y × X, pY , iY , iX), in which pY : Y × X → Y
is the product projection, and iY = 〈1, 0〉 : Y → Y × X and iX =
〈0, 1〉 : X → Y × X are the “product injections”. This split extension
belongs to SplExt(X), and it becomes its initial object if and only if
Y = 0. Furthermore, it always admits a (unique) morphism into the
initial object, and therefore it is faithful if and only if it is initial. In
particular this implies that whenever the category C has at least one
object X for which every object in SplExt(X) is faithful, the category
C has no non-zero objects, in other words C is indiscrete.

Using Observation 1.1(c) we obtain:

Proposition 1.4. For a morphism (g, f) : (B,A, p, s, k) → (D,C, q, t, l)
with faithful codomain (D,C, q, t, l), the following conditions are equiv-
alent:
(a) (B,A, p, s, k) is faithful;
(b) (g, f) is a monomorphism in SplExt(X);
(c) g is a monomorphism in C.

In particular, the category SplExt(X) might have a terminal object,
which is to be called the generic split extension with kernel X (accord-
ing to [3]), or the universal split extension of X (according to [2]); this
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is the case when C has representable object actions in the sense of [3]
or is action representative in the sense of [2] (these two concepts co-
incide, except that the categories considered in [3] were required to be
semi-abelian). The image of the generic split extension with kernel X
under the functor (1.3) was called the split extension classifier for X
and denoted by [X] in [3], and by D(X) in [2]. From Proposition 1.4
we obtain:

Corollary 1.5. When C is action representative, the following condi-
tions on an object (B,A, p, s, k) in SplExt(X) are equivalent:
(a) (B,A, p, s, k) is faithful;
(b) the corresponding classifying morphism B → [X] is a monomor-
phism.

Note that in the case of groups the morphism B → [X] becomes
B → Aut(X), which justifies the term faithful. However there are
other justification results beyond the action representative cases, such as
Proposition 1.6 below or a similar result for commutative rings. When
C is semi-abelian [13], the category SplExt(X) is equivalent to the cat-
egory of pairs (B, ξ), where ξ is an action of B on X in the sense of
[9] (see [3] and [4] for details). Therefore Definition 1.2 in fact gives a
definition of a faithful object action.

Proposition 1.6. Let C be the variety Rg of (not-necessarily-unitary)
rings, and X an object in SplExt(X). Then the following conditions
on an object (D,C, q, t, l) in SplExt(X) are equivalent:
(a) (D,C, q, t, l) is faithful;
(b) if d and d′ are elements in D with t(d)l(x) = t(d′)l(x) and l(x)t(d) =
l(x)t(d′) for all x in X, then d = d′;
(c) if d is an element in D with t(d)l(x) = 0 = l(x)t(d) for all x in X,
then d = 0.

Proof. (b) ⇔ (c) is obvious.

(a) ⇒ (b): for an object (D,C, q, t, l) in SplExt(X) and an element
d in D we can construct an object (B,A, p, s, k) in SplExt(X) and a
morphism (g, f) : (B,A, p, s, k) → (D,C, q, t, l) as follows:
• we take B to be the free algebra in C on a one-element set {z};
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• we define g : B → D as the unique ring homomorphism from B to D
with g(z) = d;
• A is B ×X as an abelian group, with the multiplication defined by

(b, x)(b′, x′) = (bb′, bx′ + xb′ + xx′), (1.4)

where bb′ and xx′ are defined as in B and in X respectively, and bx′ and
xb′ are defined by

l(bx′) = tg(b)l(x′) and l(xb′) = l(x)tg(b′) (1.5)

respectively (using the fact that l is injective);
• we define p, s, k, and f by

p(b, x) = b, s(b) = (b, 0), k(x) = (0, x), and f(b, x) = tg(b) + l(x)
(1.6)

respectively.
Checking that this determines a morphism in SplExt(X) requires

a long but straightforward calculation, which we omit. Let us now
compare the morphism (g, f) : (B,A, p, s, k) → (D,C, q, t, l) with the
morphism (g′, f ′) : (B′, A′, p′, s′, k′) → (D,C, q, t, l) constructed in ex-
actly the same way but with an element d′ instead of d. We claim that
if

t(d)l(x) = t(d′)l(x) and l(x)t(d) = l(x)t(d′)

for all x inX, then (B′, A′, p′, s′, k′) = (B,A, p, s, k). Indeed, we observe:
• B′ = B, A′ = A as abelian groups, and p′, s′, k′ are the same maps as
p, s, k respectively in any case. Therefore we only need to show that for
all b, b′ in B and x, x′ in X, (b, x)(b′, x′) in A′ is the same as (b, x)(b′, x′)
in A.
• According to (1.4) and (1.5), to show that (b, x)(b′, x′) in A′ is the
same as (b, x)(b′, x′) in A for all b, b′ in B and x, x′ in X, it suffices to
show that:

tg(b)l(x) = tg′(b)l(x) and l(x)tg(b) = l(x)tg′(b) (1.7)

for all b in B and x in X.
• Since, by the assumption on d and d′, the equalities (1.7) hold for
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b = z, it suffices to show that the set of elements b in B for which the
equalities (1.7) hold form a subring in B. Moreover, since that set is
obviously a subgroup of the additive group of B, we only need to show
that it is closed under the multiplication in B. This, however, easily
follows from the fact that tg and tg′ are ring homomorphisms and the
multiplication in D is associative.

Next, since (D,C, q, t, l) is faithful, (B′, A′, p′, s′, k′) = (B,A, p, s, k)
implies g = g′, and so d = d′.

(b) ⇒ (a): let (g, f) and (g′, f ′) be morphisms from (B,A, p, s, k) to
(D,C, q, t, l) and b and x be elements in B and X respectively. Since
p(s(b)k(x)) = ps(b)pk(x) = 0, there exists y in X with k(y) = s(b)k(x),
and we have:

tg(b)l(x) = fs(b)fk(x) = f(s(b)k(x)) = fk(y) = l(y) = f ′k(y)

= f ′(s(b)k(x)) = f ′s(b)f ′k(x) = tg′(b)l(x)

and similarly l(x)tg(b) = l(x)tg′(b). Condition (b) then tells us that
g(b) = g′(b) for all b in B. That is, g = g′, and since k and s are jointly
epic this also gives f = f ′, as desired.

2 Action accessibility

Definition 2.1. Let C be a pointed protomodular category. An object
in SplExt(X) is said to be accessible, if it admits a morphism into a
faithful object. If every object in SplExt(X) is accessible, we will say
that C is action accessible.

As immediately follows from this definition, every action represen-
tative category is action accessible. So this is in particular the case for
the categories Gp of groups and R-Lie of Lie R-algebras. The following
example of action accessible category will show that the converse is not
true:

Proposition 2.2. The variety Rg of (not-necessarily-unitary) rings is
action accessible.
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Proof. For an object (B,A, p, s, k) in SplExt(X) we construct the de-
sired morphism (g, f) : (B,A, p, s, k) → (D,C, q, t, l) into a faithful
object as follows:
• The set I = {b ∈ B | ∀x∈X s(b)k(x) = 0 = k(x)s(b)} is an ideal in
B. Indeed, for b in I and b′ in B we have s(b′b)k(x) = s(b′)s(b)k(x) =
0 = s(b)s(b′)k(x) = s(bb′)k(x), where the third equality follows from
the fact that s(b′)k(x) = k(y) for some y in X; similarly k(x)s(b′b) =
0 = k(x)s(bb′). We take D = B/I.
• The image s(I) of I under s is an ideal in A. In order to prove this,
it suffices to show that for b in I, b′ in B, and x in X, the elements
s(b′)s(b), s(b)s(b′), k(x)s(b), and s(b)k(x) are in s(I). For the elements
s(b′)s(b) = s(b′b) and s(b)s(b′) = s(bb′) this follows from the fact that I
is an ideal in B. The elements k(x)s(b) and s(b)k(x) are simply equal
to 0 by definition of I. We take C = A/s(I).
• We define q, t, and l as the morphisms induced by p, s, and k
respectively, and take f and g to be the canonical morphisms A →
A/s(I) and B → B/I. This obviously determines a morphism (g, f) :
(B,A, p, s, k) → (D,C, q, t, l), since all the maps involved are ring ho-
momorphisms and the resulting diagram considered as a diagram in the
category of abelian groups becomes isomorphic to the diagram

0 // X // //

��

X ⊕B // //

��

Boooo //

��

0

0 // X // // X ⊕B/I // // B/Ioooo // 0

of canonical morphisms.
It remains to prove that (D,C, q, t, l) is faithful. According to Propo-

sition 1.6 it suffices to prove that if d is an element in D with t(d)l(x) =
0 = l(x)t(d) for all x in X, then d = 0. We have d = b + I for some b
in B, and then t(d)l(x) = 0 = l(x)t(d) in D means that the elements
s(b)k(x) and k(x)s(b) are in s(I). On the other hand, d = 0 in D means
that b is in I, i.e. that s(b)k(x) = 0 = k(x)s(b) for all x in X. That is,
we have to prove the implication

∀x∈X s(b)k(x), k(x)s(b) ∈ s(I) ⇒ ∀x∈X s(b)k(x) = 0 = k(x)s(b)

However, it follows from the much stronger and obvious implication

s(b)k(x), k(x)s(b) ∈ s(B) ⇒ s(b)k(x) = 0 = k(x)s(b)
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Many other examples of action accessible categories can be obtained
from

Proposition 2.3. If C is an action accessible homological (i.e. pointed
protomodular regular) category and D is a Birkhoff subcategory in C,
then D also is action accessible.

Proof. ForX in D and a morphism (g, f) : (B,A, p, s, k) → (D,C, q, t, l)
with (B,A, p, s, k) in SplExtD(X) and a faithful object (D,C, q, t, l)
in SplExtC(X) just take (C being regular) (g′, f ′) : (B,A, p, s, k) �
(D′, C ′, q′, t′, l′), where (D′, C ′, q′, t′, l′) is the suitably constructed image
of (g, f), and (g′, f ′) is induced by (g, f).

Now let PtC(Y ) denote the category whose objects are the split epi-
morphisms above Y and morphims are the commutative triangles be-
tween those split epimorphims. When C is protomodular, then PtC(Y )
is pointed protomodular.

Proposition 2.4. Let C be a pointed protomodular category.
(a) Given a morphism (g, f) : (B,A, p, s, k) → (D,C, q, t, l) in the cat-
egory SplExt(X), the diagram

A // 〈p,f〉 //

p

��

B × C
B×q // //

pB

��

B ×Doo
B×t

oo

pB

��
B

OO
s

OO

B
OO
〈1,tg〉

OO

B
OO
〈1,g〉

OO

(2.1)

is a split extension in PtC(B) that is faithful whenever so is (D,C, q, t, l).
(b) If C is action accessible, then, for any object B, the category PtC(B)
is action accessible.

Proof. (a): Omitting straightforward verification of the first assertion,
consider another split extension

A // h //

p

��

A′ p′ // //

u

��

B′oo
s′

oo

v

��
B

OO
s

OO

B
OO
x

OO

B
OO

y

OO

(2.2)
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with the same A, p, and s, and two morphisms (m,n) and (m′, n′) from it
to the split extension (2.1). We have to prove that n = n′. Since pBn =
v = pBn

′, it suffices to prove that the composites pDn and pDn
′ of n and

n′ with the projection pD : B ×D → D are equal to each other. This,
however, follows from the fact that (pCm, pDn) and (pCm

′, pDn
′) can be

presented as two parallel morphisms into (D,C, q, t, l) in SplExtC(X)
and (D,C, q, t, l) is faithful.

(b): Let us now begin with an arbitrary split extension (2.2) in PtC(B),
and let (X, k′) be the kernel of p′. Since C is action accessible, there is
a faithful split extension (D,C, q, t, l) and a morphism

(g′, f ′) : (B′, A′, p′, s′, k′) → (D,C, q, t, l)

in SplExtC(X). After that all we need is to observe that the morphism
(g′, f ′) induces a morphism from the split extension (2.2) to the split
extension

A // 〈p,f〉 //

p

��

B × C
B×q // //

pB

��

B ×Doo
B×t

oo

pB

��
B

OO
s

OO

B
OO
〈1,tg〉

OO

B
OO
〈1,g〉

OO

constructed as follows:
• putting g = g′y makes B × q a morphism (B × C, pB, 〈1, tg〉) →
(B×D, pB, 〈1, g〉) in the category PtC(B), and we define k : (A, p, s) →
(B × C, pB, 〈1, tg〉) as the kernel of that morphism;
• we then define f : A → C as the composite of k with the product
projection B × C → C, which makes k = 〈p, f〉;
- and that this split extension is faithful by (a).

3 The fibration of X-groupoids

In this section we extend the previous observations to internal reflex-
ive graphs and groupoids, which we shall need to introduce centraliz-
ers. For an object X in C, by a reflexive graph structure on an object
(B,A, p, s, k) in SplExt(X) we will mean a morphism u : A → B with
us = 1B; we will then also say that (B,A, p, s, u) is the underlying re-
flexive graph of ((B,A, p, s, k), u). Conversely, given any reflexive graph
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(B,A, d0, s0, d1), the morphism d1 gives a reflexive graph structure on
the object (B,A, d0, s0, k) in SplExt(X), where (X, k) is any kernel of
d0.

Since every protomodular category is a Maltsev category, being an
internal groupoid in C is the same as being an internal reflexive graph
in C satisfying certain property (not having an additional structure).
Specifically, a reflexive graph (B,A, d0, s0, d1) is a groupoid if and only
if the commutator

[R[d0], R[d1]] (3.1)

is trivial, where R[f ] denotes (as in [1]) the equivalence relation deter-
mined by the kernel pairs of any morphism f :

R[f ]

p0 //

p1

//
X

f //s0oo Y

and where, given any pair (R, S) of equivalence relations on an object
X, we say that the commutator [R, S] is trivial and write [R,S] = 0
when the pair (R,S) has a connector [7], i.e. it admits a morphism:

p : R×X S → X,

which, written with generalized elements as (xRySz) 7→ p(x, y, z), sat-
isfies the identities p(x, y, y) = x and p(y, y, z) = z.

Accordingly, by a groupoid structure on an object (B,A, p, s, k) in
SplExt(X) we will mean a morphism u : A → B for which us = 1B

and [R[p], R[u]] = 0; the system (B,A, p, s, k, u) will then be called an
X-groupoid. X-groupoids form a category Grpd(X) = GrpdC(X), in
which a morphism

(g, f) : (B,A, p, s, k, u) → (D,C, q, t, l, v) (3.2)

is a morphism (g, f) : (B,A, p, s, k) → (D,C, q, t, l) in SplExt(X) with
vf = gu. Similarly to the functor (1.3), the functor

Grpd(X) → C (3.3)
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sending (B,A, p, s, k, u) to B is a faithful fibration in which every verti-
cal morphism is an isomorphism and therefore every morphism is carte-
sian. This last point means that every morphism inGrpd(X) determines
a discrete fibration of (internal) groupoids.

Similarly to Definitions 1.2 and 2.1, we introduce

Definition 3.1. (a) An X-groupoid is said to be faithful, if any X-
groupoid admits at most one morphism into it.
(b) An X-groupoid is said to be accessible, if it admits a morphism into
a faithful X-groupoid. If every X-groupoid is accessible, we will say that
C is groupoid accessible.

Lemma 3.2. An X-groupoid is faithful if and only if its underlying
object of SplExt(X) is faithful.

Proof. Let (D,C, q, t, l, v) be a faithful X-groupoid, and

(g, f), (g′, f ′) : (B,A, p, s, k) ⇒ (D,C, q, t, l)

a pair of morphisms in SplExt(X). Consider the diagram

R[p]
R(f) //

R(f ′)
//

p1

��

p0

��

R[q] w //

p1

��

p0

��

C

v

��

q

��
A

f //

f ′
//

p

��

C
v //

q

��

D

B
g //

g′
//

s

OO

D

t

OO

where the top parts of the first two columns the kernel equivalence rela-
tions of p and q, the top morphisms between them are induced by (g, f)
and (g′, f ′), and w is the “division map” (with generalized elements it
would be written as w(φ, ψ) = ψφ−1) of the kernel equivalence relation
of q considered as a groupoid. Since the X-groupoid (D,C, q, t, l, v) is
faithful, we get vf = vf ′. Thus we have g = vtg = vfs = vf ′s′ = g′.

Conversely, let (D,C, q, t, l, v) be a X-groupoid with a faithful un-
derlying action. Then any pair

(g, f), (g′, f ′) : (B,A, p, s, k, u) ⇒ (D,C, q, t, l, v)
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of morphisms in Grpd(X) determines an underlying pair of morphisms
in SplExt(X), and consequently g = g′.

By this lemma and Proposition 5.1 in [2] which shows that any split
extension classifier underlies an internal groupoid, any action represen-
tative category C is groupoid accessible. We then get the following:

Proposition 3.3. Suppose the category C is pointed protomodular and
groupoid accessible; then it is action accessible.

Proof. Just observe that any object (B,A, p, s, k) in SplExt(X) admits
a morphism into the underlying object of an X-groupoid, e.g. of the
kernel equivalence relation of p, and use the previous lemma.

On the other hand we have:

Proposition 3.4. Suppose C is homological. Let

(g, f) : (B,A, p, s, k) → (D,C, q, t, l)

be a morphism in SplExt(X) in which g (and therefore also f) is a
normal epimorphism. When (B,A, p, s, k) has a reflexive graph struc-
ture or a groupoid structure u, the object (D,C, q, t, l) also has such a
structure v with vf = gu.

Proof. Consider the diagram

I

i
��

1I // I
j

��
0 // X // k //

1X
��

A
p // //

f
��

Boo
s

oo //

g
��

0

0 // X //
l

// C
q // // Doo
t

oo // 0

(3.4)

in which (I, i) and (I, j) are the kernels of f and g respectively, and
we can assume that they involve the same object I and have j = pi
(and i = sj) since the square formed by qf = gp is a pullback. Given a
morphism u : A→ B with us = 1B, we observe:
• Since f being a normal epimorphism is a cokernel of i, and since
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gui = gusj = gj = 0, there exists a morphism v : C → D with vf = gu.
Moreover, for such a morphism v, we have vtg = vfs = gus = g, and
since g is an epimorphism, we obtain vt = 1D.
• After this it remains to prove that if u is a groupoid structure on
(B,A, p, s, k), and v is a reflexive graph structure on (D,C, q, t, l) with
vf = gu, it is also a groupoid structure. But this is the case by Theorem
3.1 in [10], since any homological category is Malt’sev and regular, and
g, f are both normal (and thus regular) epimorphisms.

¿From this proposition, using also Proposition 1.4 and the obvious
(normal epi, mono)-factorization system in SplExt(X), we obtain:

Corollary 3.5. Suppose C is homological. Then C is action accessible
if and only if it is is groupoid accessible.

4 The centralizer of an accessible equiva-

lence relation

Here is our main result:

Theorem 4.1. Let R be an equivalence relation on an object B in a pro-
tomodular category C, X an object in C, and (g, f) : (B,A, p, s, k, u) →
(D,C, q, t, l, v) a morphism in Grpd(X), in which (B,A, p, s, k, u) is the
equivalence relation R considered as a groupoid in C, and (D,C, q, t, l, v)
is faithful. Then the kernel pair R[g] of g is the centralizer of R, i.e.
the largest equivalence relation on B with [R,R[g]] = 0.

Proof. The fact the commutator [R,R[g]] is trivial follows from the fact
that the morphism R[f ] → R[g] of equivalence relations induced by
(p, q) is a discrete fibration of groupoids (see [7] for details).
It remains to prove that if an equivalence relation R′ = (B,A′, p′, s′, u′)
has [R,R′] = 0, then R′ is less or equal to the kernel pair of g. That is,
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we have to prove that gp′ = gu′ whenever there exists a diagram

E

e1

��

e2

��

e′1 //

e′2

// A′

p′

��
u′

��
A

p //

u
// B

(4.1)

in which each pair of parallel arrows determines an equivalence relation,
and the pairs (e1, p

′) and (e2, u
′) determine discrete fibrations. Since

the relevant squares are pullbacks, the two horizontal top arrows in
(4.1) determine an object Grpd(X), and both pairs (e1, p

′) and (e2, u
′)

determine a morphism from that object to (B,A, p, s, k, u). Composing
these morphisms with (g, f) and using the fact that (D,C, q, t, l, v) is
faithful, we obtain the desired equality.

Corollary 4.2. All equivalence relations in a groupoid accessible cate-
gory C have centralizers. This is the case in particular for any action
representative category and any homological action accessible category.

5 Centralizer of subobjects and centra-

lizer of equivalence relations

As soon as the category C is pointed protomodular, there is an intrinsic
notion of commutation for subobjects; see [5]. Indeed, given any pair
(X,Y ) of objects, the following downward square is a pullback:

X

��

iX // X × Y
pY

��
0 // Y

iY

OO

and consequently the pair (iX , iY ) is jointly strongly epic. Accordingly
given any pair of subobject x : X � Z, y : Y � Z, there is at most
one map φ : X × Y → Z such that φiX = x and φiY = y. When this is
the case, we say that the subojects commute, call φ the cooperator of
these two subobjects, and write [[X, Y ]] = 0 as in [6].
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On the other hand, since C is pointed, any equivalence relation R
on Z determines a subobject, namely the “equivalence class” iR = d1k :
IR � Z of the initial map given by the following pullback:

IR

��

k // R

d0
��

d1 // Z

0 αZ

// Z

The following lemma is an obvious consequence of protomodularity:

Lemma 5.1. The normalization function which associates with any
equivalence relation on Z its normal subobject

Rel(Z) → SubZ , R 7→ IR

preserves and reflects the order.

It is also clear that [R,S] = 0 implies [[IR, IS]] = 0. The converse is
true for strongly protomodular categories, but not in general, as shown
in [6]. We are now going to show that groupoid accessible categories
share this converse property with the strongly protomodular ones.

For, let us begin with the following observation. Let R be an equiv-
alence relation on an object B, whose normalization is X and the cor-
responding X-groupoid is (B,A, p, s, k, u). When C is groupoid acces-
sible, there is a morphism (g, f) : (B,A, p, s, k, u) → (D,C, q, t, l, v)
in Grpd(X) with the groupoid (D,C, q, t, l, v) being faithful. We have
shown that the kernel pair R[g] of g is the centralizer of R, i.e. the
largest equivalence relation on B that commutes with R.

Proposition 5.2. Suppose C is groupoid accessible. For R and g as
above, the kernel morphism kg : Kg � B of g (which is the normaliza-
tion of R[g] as well) is the largest subobject of B commuting with the
normalization uk : X � B of R.

Proof. Of course [R,R[g]] = 0 implies [[X,Kg]] = 0; see [1] for in-
stance. Suppose now we have any momomorphism j : J � B such
that [[X, J ]] = 0; we have to check that J is less or equal to Kg, which is
nothing but gj = 0. For, we will construct various morphisms of split
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extensions and then use Observation 1.3 as follows:
• Let φ : J ×X → B be the cooperator of j : J � B and uk : X � B.
First we construct the diagram

X ×X // iX×X//

p1

��
p0

��

J ×X ×X
φ1 //

J×p1
��

J×p0
��

A

u
��

p
��

X // iX //

uk
//

J ×X
φ // B

where: (a) the left-hand square is a discrete fibration of equivalence
relations; (b) since every such discrete fibration (=“fibrant morphism”)
in a protomodular category is cocartesian with respect to the forgetful
functor into the ground category (see Lemma 5.1 in [8] or Lemma 6.1.6
in [1]), the new morphism φ1 can be defined as the morphism making
the right-hand side of the diagram an internal functor.
• Note that φ1iX×Xi1 = k, since pφ1iX×Xi1 = ukp0i1 = 0 = pk,
uφ1iX×Xi1 = ukp1i1 = uk, and p and u are jointly monic.
• Next, using the morphism φ1 above, we construct the diagram

X

l
��k~~~~

~~
~~iX

rrfffffffffffffffffffffffffffff

J ×X
iJ×X

//

pJ

��

J ×X ×X
φ1

//

J×p0
��

A
p

��

f
// C

q
��

J
iJ //

j
//

iJ

OO

J ×X
φ //

J×s0

OO

B g
//

s

OO

D

t

OO

(in obvious notation), which reasonably commutes, i.e.: (a) its top part
commutes; (b) its bottom part formed by solid arrows represent mor-
phisms between split epimorphisms (with specified splittings). Accord-
ingly we have a morphism in SplExt(X):

(gj, fφ1(iJ ×X)) : (J, J ×X, pJ , iJ , iX) → (D,C, q, t, l)

• Since (D,C, q, t, l) is faithful, Observation 1.3 then tell us that gj =
0.
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Observation 5.3. If (g, f) is the unique morphism from the indiscrete
relation ∇X = (X,X×X, p0, s0, p1) into a faithful groupoid, then R[g] is
the largest equivalence relation commuting with ∇X and Kg is nothing
but the largest subobject commuting with 1X , namely the centre ZX of
X.

Remark: When the category C in question is the category Rg of rings,
this centre ZX is nothing but the annihilator of the ring X.

Theorem 5.4. Suppose C is groupoid accessible. Let R and S be two
equivalence relations on an object X. Then [R,S] = 0 if and only if
[[IR, IS]] = 0.

Proof. We have already noticed that [R,S] = 0 implies [[IR, IS]] = 0,
which is a very general fact. Conversely suppose [[IR, IS]] = 0. So, by
Proposition 5.2, we have IS ⊂ Kg, and according to Lemma 5.1, we
have also S ⊂ R[g]. Whence, according to Theorem 4.1, [R,S] = 0.

6 A characterization of antiadditivity

Recall that a morphism k : X → A is said to be central, if there is
a (necessarily unique) cooperator φ : X × A → A such that φiX = k
and φiA = 1A; we use here the terminology of [5] again, although this
concept of centrality (and of commutator) was originally studied by
S. A. Huq [11] (in a slightly different context). In accordance with
the terminology of [5], let us call an object A antiadditive if there are
no nonzero central morphisms into it; that is, a pointed protomodular
category is antiadditive in the sense of [5], see also [1], if and only if
every object in it is antiadditive in our sense. If C is antiadditive, any
abelian object is trivial. When the ground category C is homological,
an object A is antiadditive if and only if A has a trivial centre, and C
is antiadditive if and only if C has no non trivial abelian objects.

Theorem 6.1. An object A in a pointed protomodular category C is
antiadditive if and only if the split extension

0 // A // 〈0,1〉// A× A
p0 // // Aoo
s0

oo // 0 (6.1)
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is faithful.

Proof. Suppose the split extension (6.1) is faithful and consider any
central morphism k : X → A with cooperator φ. Since both

0 // A // iA //

1A
��

X × A
pX // //

〈kpX ,φ〉
��

Xoo
iX
oo //

k
��

0

0 // A //
〈0,1〉

// A× A
p0 // // Aoo
s0

oo // 0

and

0 // A // iA //

1A
��

X × A
pX // //

0×1A
��

Xoo
iX
oo //

0
��

0

0 // A //
〈0,1〉

// A× A
p0 // // Aoo
s0

oo // 0

are morphisms in SplExt(A), we obtain k = 0.
Conversely, suppose A antiadditive and suppose we have a morphism

(k, f) in SplExt(A) whose codomain is the split extension (6.1). Then,
since the square formed by f , k, and the appropriate arrows between
them is a pullback, the domain of (k, f) must be isomorphic to the split
extension

0 // A // iA // X × A
pX // // Xoo

〈1X ,k〉
oo // 0 (6.2)

Therefore two parallel morphisms (k, f) and (l, g) into the split ex-
tension (6.1) will create an isomorphism h : X × A → X × A with
pXh = pX , h〈1X , k〉 = 〈1X , l〉, and hiA = iA. Composing h with the
projection pA : X ×A→ A we then obtain a morphism φ : X ×A→ A
with φ〈1X , k〉 = l and φiA = 1A. The second identity makes φiX central,
and so φiX = 0. Together with φiA = 1A this implies φ = pA, and then
l = φ〈1X , k〉 = pA〈1X , k〉 = k. Therefore the split extension (6.1) as
faithful, as desired.

Corollary 6.2. A pointed protomodular category C is antiadditive if
and only if the split extension (6.1) is faithful for each object A in C.

Let us now assume that the category C is action representable and
call the morphism A → [A] corresponding to the split extension (6.1)
canonical. From the previous results and Corollary 1.5 we obtain:
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Corollary 6.3. Let C be a (pointed protomodular) action representative
category. Then:
(a) an object A in C is antiadditive if and only if the canonical morphism
A→ [A] is a monomorphism;
(b) the category C is antiadditive if and only if the canonical morphism
A→ [A] is a monomorphism for each object A in C.

Note that:
• Corollary 6.3(a) applied to the category of groups becomes the fol-
lowing obvious and yet nice observation: a group A has trivial centre if
and only if the canonical homomorphism A→ Aut(A) is injective.
• In several action representative categories, such as the dual Setop

∗
of the category of pointed sets, or the categories BooRg and vNRg
of Boolean rings and von Neumann regular rings, the canonical mor-
phisms A→ [A] have been independently shown to be monomorphisms
for all object A. As we see now, this can be used as a proof of their
antiadditivity – even though direct proofs are also easy.
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Combinatorial model categories were introduced by J. H. Smith as model
categories which are locally presentable and cofibrantly generated. There are
of course cofibrantly generated model categories which are not combinato-
rial – the first example is the standard model category of topological spaces.
This model category is Quillen equivalent to the combinatorial model cate-
gory of simplicial sets. G. Raptis [6] has recently proved a somewhat sur-
prising result saying that, assuming Vopěnka’s principle, every cofibrantly
generated model category is Quillen equivalent to a combinatorial model cat-
egory. Vopěnka’s principle is a set-theoretical axiom implying the existence
of very large cardinals (see [2]). A natural question is whether Vopěnka’s
principle (or other set theory) is needed for Raptis’ result.
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Abstract. G. Raptis has recently proved that, assuming Vopĕnka’s principle,

every cofibrantly generated model category is Quillen equivalent to a combina-

torial one. His result remains true for a slightly more general concept of a cofi-

brantly generated model category. We show that Vopĕnka’s principle is equiva-

lent to this claim. The set-theoretical status of the original Raptis’ result is open.

Résumé. G. Raptis a récemment démontré que, sous le principe de Vopĕnka,

chaque catégorie de modèles à engendrement cofibrant est Quillen équivalente à

une catégorie de modèles combinatoire. Son résultat est valable pour un concept

un peu plus général de catégorie de modèles à engendrement cofibrant. On va

démontrer que le principe de Vopĕnka est équivalent à cette assertion. Le statut

ensembliste du résultat de Raptis est ouvert.
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A model category is a complete and cocomplete categoryM together with
three classes of morphisms F , C and W called fibrations, cofibrations and
weak equivalences such that

(1) W has the 2-out-of-3 property and is closed under retracts in the arrow
categoryM→, and

(2) (C,F ∩W) and (C ∩W,F) are weak factorization systems.

Morphisms from F ∩W are called trivial fibrations while morphisms from
C ∩W trivial cofibrations.

A weak factorization system (L,R) in a category M consists of two
classes L andR of morphisms ofM such that

(1) R = L�, L = �R, and
(2) any morphism h ofM has a factorization h = gf with f ∈ L and g ∈
R.

Here, L� consists of morphisms having the right lifting property w.r.t. each
morphism fromL and �R consists of morphisms having the left lifting prop-
erty w.r.t. each morphism fromR.

The standard definition of a cofibrantly generated model category (see [5])
is that the both weak factorization systems from its definition are cofibrantly
generated in the following sense. A weak factorization system (L,R) is
cofibrantly generated if there exists a set X of morphisms such that

(1) the domains of X are small relative to X -cellular morphisms, and
(2) X� = R.

Here,X -cellular morphisms are transfinite compositions of pushouts of mor-
phisms of X . The consequence of this definition is that L is the smallest
cofibrantly closed class containing X . A cofibrantly closed class is defined
as a class of morphisms closed under transfinite compositions, pushouts and
retracts in M→. Moreover, one does not need to assume that (L,R) is a
weak factorization system because it follows from (1) and (2). This obser-
vation led to the following more general definition of a cofibrantly generated
weak factorization system (see [1]).

A weak factorization system (L,R) is cofibrantly generated if there ex-
ists a set X of morphisms such that L is the smallest cofibrantly closed class
containing X . The consequence is that X� = R. A model category is cofi-
brantly generated if the both weak factorization systems from its definition
are cofibrantly generated in the new sense. It does not affect the definition
of a combinatorial model category because all objects are small in a locally

by Jiri ROSICKY
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presentable category. Moreover, the proof of Raptis [6] works for cofibrantly
generated model categories in this sense as well.

We will show that Vopěnka’s principle follows from the fact that every
cofibrantly generated model category (in the new sense) is Quillen equivalent
to a combinatorial model category. We do not know whether this is true for
standardly defined cofibrantly generated model categories as well. Our proof
uses the trivial model structure on a category M where all morphisms are
cofibrations and weak equivalences are isomorphisms.

Given a small full subcategory A of a category K, the canonical functor

EA : K → SetA
op

assigns to each object K the restriction

EAK = hom(−, K)
/
Aop

of its hom-functor hom(−, K) : Kop → Set to Aop (see [2], 1.25).
A small full subcategory A of a category K is called dense provided that

every object of K is a canonical colimit of objects from A. It is equivalent
to the fact that the canonical functor

EA : K → SetA
op

is a full embedding (see [2], 1.26). A category K is called bounded if it has
a (small) dense subcategory (see [2]).

Dense subcategories were introduced by J. R. Isbell [4] and called left
adequate subcategories. The following result is easy to prove and can be
found in [4].

Lemma 1. LetA be dense subcategory of K and B a small full subcategory
of K containing A. Then B is dense.

Proposition 2. Let K be a cocomplete bounded category. Then (K, Iso) is a
cofibrantly generated weak factorization system.

Proof. Clearly, (K, Iso) is a weak factorization system. The canonical func-
tor

EA : K → SetA
op

has a left adjoint F (see [2], 1.27). The weak factorization system

(SetA
op

, Iso)

in SetA
op

is cofibrantly generated (see [9], 4.6). Thus there is a small full
subcategory X of SetA

op

such that each morphism in SetA
op

is a retract of
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a X -cellular morphism. Hence each morphism in K is a retract of a F (X )-
cellular morphism. Thus (K, Iso) is cofibrantly generated. �

Given a complete and cocomplete categoryK, the choice C = K andW =
Iso yields a model category structure on K. The corresponding two weak
factorization systems are (K, Iso) and (Iso,K) and the homotopy category
Ho(K) = K. We will call this model category structure trivial.

Corollary 3. Let K be a complete, cocomplete and bounded category. Then
the trivial model category structure on K is cofibrantly generated.

Proof. Following Proposition 2, it suffices to add that the weak factorization
system (Iso,K) is cofibrantly generated by X = {idO} where O is an initial
object of K. �

Theorem 4. Vopěnka’s principle is equivalent to the fact that every cofi-
brantly generated model category is Quillen equivalent to a combinatorial
model category.

Proof. Necessity follows from [6]. Under the negation of Vopěnka’s prin-
ciple, [2], 6.12 presents a complete bounded category A with the following
properties

(1) For each regular cardinal λ, there is a λ-filtered diagram Dλ : Dλ → K
whose only compatible cocones δλ are trivial ones with the codomain
1 (= a terminal object),

(2) For each λ, id1 does not factorize through any component of δλ.
Since, following (1), δλ is a colimit cocone for each λ, (2) implies that 1
is not λ-presentable for any regular λ. Condition (2) is not stated explicitly
in [2] but it follows from the fact that there is no morphism from 1 to a
non-terminal object of A. In fact, A is the full subcategory of the category
Gra consisting of graphs A without any morphism Bi → A where Bi is the
rigid class of graphs indexed by ordinals (whose existence is guaranteed by
the negation of Vopěnka’s principle). The existence of a morphism 1 → A
means the presence of a loop in A and, consequently, the existence of a
constant morphism Bi → A (having a loop as its value).

Assume that the trivial model category A is Quillen equivalent to a com-
binatorial model category M. Since HoM is equivalent to A, it shares
properties (1) and (2). Moreover, since HoK = K, the diagrams Dλ are
diagrams in K. It follows from the definition of Quillen equivalence that the
corresponding diagrams in HoM (we will denote them by Dλ as well) can
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be rectified. It means that there are diagramsDλ inM such thatDλ = PDλ;
here, P : M→ HoM is the canonical functor. Following [3] and [8], there
is a regular cardinal λ0 such that the replacement functor R : M → M
preserves λ0-filtered colimits. R sends each object M to a fibrant and cofi-
brant object and the canonical functor P can be taken as the compositionQR
whereQ is the quotient functor identifying homotopy equivalent morphisms.

Let
(δλd : Dλd→Mλ)d∈Dλ

be colimit cocones. Then

(Rδλd : RDλd→ RMλ)d∈Dλ

are colimit cocones for each λ > λ0. Following (1), RMλ
∼= 1 for each λ >

λ0. The object RMλ0 is µ-presentable inM for some regular cardinal λ0 <
µ. Since RMλ0 and RMµ are homotopy equivalent, there is a morphism
f : RMλ0 → RMµ. Since f factorizes through some Rδµd, id1 factorizes
through some component of δµ, which contradicts (2). �

While the weak factorization system (Iso,K) is cofibrantly generated in
the sense of [5], it is not true for (K, Iso) because the complete, cocomplete
and bounded category in [2], 6.12 is not locally presentable just because it
contains a non-presentable object. Thus we do not know whether Vopěnka’s
principle follows from the original result from [6].

The proof above does not exclude that A has a combinatorial model, i.e.,
that there is a combinatorial model categoryM such that A is equivalent to
HoM.

Proposition 5. Assume the existence of a proper class of compact cardinals
and let K be a complete, cocomplete and bounded category. Then the trivial
model category K has a combinatorial model if and only if K is locally
presentable.

Proof. If K is locally presentable the trivial model category K is combinato-
rial. Assume that the trivial model category K is equivalent to HoM where
M is a combinatorial model category. Let X be a dense subcategory of K.
Following [8], 4.1, there is a regular cardinal λ such that

(1) X ⊆ P (Mλ) whereMλ denotes the full subcategory ofM consisting
of λ-presentable objects,

(2) The composition H = EP (Mλ) · P preserves λ-filtered colimits.
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Since P (Mλ) is dense in K (see Lemma 1), EP (Mλ) is a full embedding.
Hence K is the full image of the functor H , i.e., the full subcategory on
objects H(M) with M inM. Following [7], Corollary of Theorem 2, K is
locally presentable. �

Vopěnka’s principle is stronger than the existence of a proper class of
compact cardinals. Thus, assuming the negation of Vopěnka’s principle but
the existence of a proper class of compact cardinals, there is a cofibrantly
generated model category without a combinatorial model.
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