Andrée C. EHRESMANN and Plamen L. SIMEONOV

WLIMES: The Wandering LIMES

Towards a Framework for Modeling Living Systems unifying the Memory Evolutive Systems (MES) and the Wandering Logic Intelligence (WLI) Plamen L. SIMEONOV

WLI: The Wandering Logic Intelligence

From Biology to Engineering and Back

The Wandering Logic Intelligence (WLI)

1		verview
	U	

- 2. Basics
- 3. Definition
- 4. Operation
- 5. Conclusions
- 6. Outlook

- A *bio-inspired* adaptive and evolvable system model for mobile multimedia telecommunications (2001-2002)
 - → Four dimensions of the network reconfiguration and programming:
 - 1. Applications
 - 2. Operating system resources
 - 3. Hardware node components
 - 4. Node clusters (Grids, Clouds)
 - → Generic architectures:
 - → *Netbots* (autonomous reconfiguriable active mobile nodes)
 - Shuttles (active packets) that can transfer executable <u>genetic code</u> about a predictable node state.

The Wandering Logic Intelligence (WLI) General Framework

1. Overview

- 2. Basics
- 3. Definition
- 4. Operation
- **5. Conclusions**
- 6. Outlook

Components

Netbots

- → can be modified through shuttles
- → can generate shuttles

Shuttles

- can transport code and data for upgrading/ degrading and reconfiguration of active nodes
- can replicate themselves: only for the <u>pilots</u> (a special kind of shuttles)

Genetic Code

 can cause structural and functional changes in the nodes and the network architecture

Design Principles

- I. Dualistic
 - Congruence (DC)
- II. Self-Reference (SR)
- III. Pulsating
 - Metamorphosis (PM)
- IV. Multidimensional
 - Feedback (MF)

1. Overview

3. Definition

4. Operation

6. Outlook

5. Conclusions

2. Basics

I. Dualistic Congruence (DC)

Active nodes (netbots) can adapt to the communication in such a way, that they optimally reflect the structure of active packets (shuttles) at the moment of their arrival.

A shuttle that approaches a netbot can reconfigure itself, in order to reflect most effectively the requirements of the netbot's computing environment.

II. Self-Reference (SR)

Active nodes (netbots) know best their own state and are required to report its changes to their direct neighbours.

IV. Multidimensional Feedback

multiple, simultaneously active *feedback mechanisms between the different* components of the first and of the second configuration levels, such as caching with routing, transcoding with filtering, fusion-with-fission-with-delegation, etc.

Reconfigurable Intra-Node Profiling

1st Annual Conference on Integral Biomathics -- ACIB 11 -- Stirling, Scotland, UK, August 29-31, 2011

1. Overview

2. Basics

- 3. Definition
- 4. Operation

5. Conclusions

6. Outlook

The Wandering Network (WN)

Characteristics:

1. Overview

2. Basics

- 3. Definition
- 4. Operation
- **5. Conclusions**
- 6. Outlook

based on the WLI framework

Extends former models by three essential characteristics:

- 1. It is a *hyper-active* network, i. e. a really proogramable and reconfigurable, incl. the network hardware;
- 2. It is a run-time extendible and replacible network both in software and hardware components;
- 3. It is an evolutionary network that realizes the *adaptive* self-distribution and replication of sub-networks:
 - via guided and autonomous node and component mobility as hardware;
 - via encoding of essential state information in the mobile code of the active packets and via the execution of <u>genetic transcoding</u> mechanisms in the active nodes (netbots).

The Wandering Network (WN) WARAAN: A WLI Adaptive Routing Algorithm for Mobile Networks

The Wandering Network (WN) WARAAN: Implementation and Operation

structural RT navigation information Sink **Source** RT information Netbot X Ś Netbot Y 1. Overview g-gene r-gene DATA CODE 2. Basics Active Ad-hoc 3. Definition Mobile Network g inChan outChan g inChan outCharg a 4. Operation a) Horizontal View 5. Conclusions EE EE 6. Outlook NodeOS **NodeOS** Active Ad-hoc Mobile Network **b) Vertical View**

The Wandering Network (WN) WARAAN: Implementation

The Wandering Logic Intelligence (WLI) Summary

WLI – important characteristics:

1. Overview

3.

2. Basics

- 3. Definition
- 4. Operation
- **5. Conclusions**
- 6. Outlook

- <complex-block>

 Inavigation

 Information

 DATA

 Segene

 r-gene

 CODE

 Structure
- new functionality either resident on the nodes and waits to be activated, or transported to the target
- 2. Parallel roles

Classifikation

Principles I-IV

Role changes

3. Netbot genesis ("N"-geneering)

during the operation

encoding and integration of predictable structure/ state information of a netbot and its environment within a shuttle gen.

The Wandering Logic Intelligence (WLI) Benefits of Self-Organization

1. Overview

2. Basics

3. Definition

4. Operation

5. Conclusions

6. Outlook

Traditional routing rely on distributed routing databases, maintained by the operators either in the network nodes or in specialized management nodes.

Self-organization can bring a *paradigm shift* in the way networks are organized that can even lead to fundamental change in the relationship between Information technology and society

Infrastructure-less, self-organizing network means that the network is deployed by the end-users

Ad hoc mobile self-organization:

(a) quick propagation of changes in topology or reachability

- (b) quick resource discovery an QoS negotiation
- (c) *quick adaptation* of the network w. r. t. these changes

WLI: Essence

1. Overview

- 2. Basics
- 3. Definition
- 4. Operation
- 5. Conclusions
- 6. Outlook

- ⇒ WLI is a technical concept taken from the domain of biology, i.e. a "bioinspired" mechanism with the goal to solve problems of growing complexity in communication networks.
- ➡ It combines information processing, exchange, storage and virtualization into a robust operational engineering framework.
- The solutions are distributed "human-designed", i.e. invented, self-organization algorithms (WARAAN, HiPeer) implemented as conventional Turing Machine computation.
 - ⇒ The latter are certainly artificial and not natural constructs and run essentially as any other communication protocol (e.g. TCP/IP) so far.
 - ⇒ The only distinction is their *inherent growing behavioral complexity* achieved by "memorizing" and distributing more and more navigation and structural information about the evolving environment "locally" in the genetic code of the shuttles when traversing the netbots.

WLI: Potential

	⇔	WLI provides an operational framework for exploring highly complex naturalistic ecologies of virtually unlimited size (e.g. HiPeer).
1. Overview 2. Basics	⇔	but the nature of the WLI interpretation of feedback signals from the environment is:
3. Definition		\Rightarrow defined, i.e. limited, by the designer and <i>not</i> by the algorithm itself.
4. Operation 5. Conclusions		⇒ threshold and event-based at multiple levels, i.e. highly undeterministic
6. Outlook	⇔	WLI as an extracted from Nature model could be applied back to biological systems in a series of iterations to ensure its verification.
	⊳	The most characteristic WLI concept is the one of fractal virtualization of resources and its continuous multiplication in terms of <i>software chunks</i> , which does not really have analogs in biology and physiology.
	⊳	Could this be the subtle key to model and understand higher levels
	1st Annual Conference o	n Integral Biomathics ACIB 11 Stirling, Scotland, UK, August 29-31, 2011

Research Areas

- 1. Overview
- 2. Basics
- 3. Definition
- 4. Operation
- 5. Conclusions
- 6. Outlook

... and then ?

INBIOSA's Idea Binding Approach

Andrée C. EHRESMANN (work in collaboration with Jean-Paul VANBREMEERSCH)

MES: Memory Evolutive Systems

A dynamic category theory incorporating time

Category Theory (CT) and Memory Evolutive Systems(MES)

Graphs and Categories

- 2. Basics
- 3. Definition
- 4. Operation
- 5. Conclusions
- 6. Outlook

A (multi-)graph G has vertices A, B, ..., and arrows $f: A \rightarrow B$. Path of G = sequence of consecutive arrows.

Category = graph in which each path (f, g) has a *composite fg*, the composition being associative and with identities.

Functionally equivalent paths $\leftarrow \rightarrow$ their composites are equal

Examples of categories: monoids, partially ordered sets, groups, groupoids, category of paths of a graph.

How Can Categories and MES Help Modeling Living Systems

Andrée C. EHRESMANN (work in collaboration with Jean-Paul VANBREMEERSCH)

The Hierarchy of Components

The system at *t* is represented by a *hierarchical category*: objects = components at *t*, links = channels for their interactions.

Objects divided into levels so that C of level n+1 has an internal organization into a pattern P of linked components of lower levels. which it 'binds', so that C and P have the same functional role. C is modeled by the *colimit* of P.

Hierarchical Evolutive System. Complex Identity.

5. Conclusions

6. Outlook

HES = family of hierarchical categories indexed by time, and partial transition functors between them satisfying a transitivity condition, so that a *component* N is a maximal family (N_t) of objects related by transitions.

N preserves its *complex identity* while its components progressively change. *Stability span* of N at t = greatest period dt during which N admits a decomposition Qt at t remaining a decomposition of N up to t+dt.

Multiform Objects \rightarrow Flexibility

1. Overview

2. Basics

3. Definition

- 4. Operation
- **5. Conclusions**
- 6. Outlook

Edelman

C is *n-multiform* if it has 2 lower levels decompositions P and Q not connected by a cluster of links. The passage from P to Q is called a *switch*.

 \rightarrow P and Q have the same functional role, though not well interconnected. Edelman calls this property *degeneracy:*

" a ubiquitous biological property [...] a feature of complexity [...], both necessary for, and an inevitable outcome of, natural selection." (Edelman & Gally, 2001)

It is formalized by the **Multiplicity Principle** which gives robustness / flexibility to the system via the possibility of switches.

MP → Inter-Level Emergence

2. Basics

- 3. Definition
- 4. Operation
- 5. Conclusions
- 6. Outlook

Multiplicity Principle (MP): There are *n*-multiform objects C binding patterns P and Q of levels $\leq n$ not connected by a cluster.

An *n-simple link* from C to A binds a cluster of links between components of C and A.

 $MP \rightarrow Emergence of n-complex links$

which are composites of *n*-simple links binding clusters separated by a switch.

Emergence of Complexity

Emergence via Complexification

Transitions via procedures, specifying logic after: addition/suppression of components, binding/ classifying of some patterns. Modeled by the *complexification process* (explicitly constructed). Might be accessible to 'spatial" or "diagrammatic" computations" (cf. Giavitto-Spicher; Lair-Duval).

EMERGENCE THEOREM. *MP* is preserved by iterated complexifications, and is at the root of the emergence over time of increasing complexity orders and of the mixing of causalities in "organisms".

Multi-Scale Self-Organization

1. Overview

2. Basics

3. Definition

4. Operation

5. Conclusions

6. Outlook

The dynamics of a MES is modulated by:

A heterarchical net of s p e c i a l i z e d subsystems, the *coregulators* CR, each w i t h i t s o w n complexity, rhythm, logic and differential access to a long-term *m e m o r y* w h i c h develops by learning and has plasticity thanks to MP.

Each link has a *propagation delay*, a *weight*, and, at a given time, can be *passive* or *active*.

A Co-Regulator CR as a Hybrid System

$MP \rightarrow$ Flexibility in Interplay among Coregulators

Laws of Synchronicity

Conclusions

MES not an invariant a-temporal (Rosen) model, but a dynamic methodology in progress, adaptable to any kind of living system, and characterizing the roots of emergence and robustness/flexibility (MP)

What about WLIMES, the Wandering LIMES ?

1. Overview

2. Basics

- 3. Definition
- 4. Operation
- **5. Conclusions**

6. Outlook

- Can MES and WLI be merged to approach the computational problem raised by MES?
- ⇒ Can WLI provide an "operational semantics" for MES?
- ⇒ The CRs in MES and the *netbots* in WLI play similar roles.
- ⇒ What about the WLI's *shuttles*?

- ⇒ In MES a link is 'active, at *t* if some information passes through it. This information of various kinds (physicial,chemical,code,...) could be carried by a *shuttle*, activating several consecutive links.
- Problem: At time t, the commands sent to effectors by the various CRs can be conflictual, making competitive shuttles. Can this "interplay" problem be solved using WLI methods?