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IHE EXPLICIT S30LUTION OF THE EQUATIONS OF THE ELASTIC DEFORMATICNS FOR A
STRATIFIED ROAD UNDER GIVEN STRESSES IN THE DYNAMIC CASE

A, Bastiani*

SYNOP3I3

A road is considered as an elastic stratified body in a three dimensional spaece, Tt is assumed that
each layer is a homogenous material, characterized by its Lamé elastic constants {vr its Young modulus
and Polsson ratio) and its density, The systom of partial differential equations which determine in the i-th
layer and in function of the time the displacement cumponents is solved under the following condilions: Kor
t = 0, displacement components and their partial derivatives in t vanish; for ¢ o 0, stress components are
known functions on the free surface and, at the points of contact of two layers, the displacements and stresses
are the same if computed in the upper ar lower layer,

First, we solve the problem of finding the solution of the system in the i-th iayer, keowing displace-
ment or stress components at the upper or lower surfaces.  For this, the notion of function is generalized
using the Fhresmann leecal structures and the differential system is considered as a system of equations for
the new chjects; by an integral transformation the system is reduced ta a system of linear equationz. By
solving this system, we obtain relations between the integral transforms of the displacement and stress com-
ponents at the upper and lower intersurfaces of the i-th layer as well as at ihe upper surface of the last
layer.

Assuming the displacement components known on the {ree surface, the integral transforms of the stress
and displacement components are computed on the second intersurface as functions of these parameters,
These quantities are also computed as functions of the displacement vomponents at the last intersurface. By
writing that the solution is the same in both cases, we are led to a system of linear equations, the solu-
tions of which are the integral transforms of the displacement compenents at the free surface and at the last
intersurface. From thess, we deduce the solutions of the initial equations,

The solutions are uvbtained in the form of ordinary integrals containing the given stress compHienls.
These integrals can be comnputed with a computing machine or approximated by elementary functions (the ap-

proximation depends on respective sizes of the parameters),

The regularity conditions imposed for the given stresses are practivally not restrictive; in particalar,

strain and siress components are not suppesed ta be harmonic,

Examples: stresses produced by a vibrating machine or by the movement of a wehicle,

INTRODUCTION

A road will be considered as an elastic strati-
fied body in three dimensional space R3 Let
(0, &1, €2, e3) be an orthogonal frame of R3, the
coordinates of a point x heing (X1, X3, X3). It is
assumed that the vecior Oey is vertical and down-
ward oriented and that the free surface of the road
the surface xq = 0.

There are g layers of homogenous and iso-
tropic materials, characterized for the p-th layer
by Lamé’s elastic constants AP and P and den-
sity pP; the constants AP and g4P are obtained
from the Young’s modulus FP and the Poisson’s
ratio ¢F by the formulas:

AP - o PEP ; tlP - Y
(3 +a'p)(l - 2crp} 2(1 +crp)

The p-th layer is defined by the inequalities:
hp-1 € %3 < hp fo::j any p < g, and the g-th layer
iz defined by hq_]_ < Xg.

The time parameter will be denoted by t.
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In the p-th layer, the displacement uP has

components (ulf, ug, ug) which are functions of x

and t and solutions of the system (1):

i
Po*af P AP (F e B)2bk . ;
F'a}}_':k H'Au" {k*”)ng’o .
where: ] =1,2,3
L P 1 P z P
Au}: P ITy s Su_f

T +3—x% %t (2}

B
95 - auf " au: + 3113 (3)
Ix,  Ixy Ix,

Furthermore, the following boundary condi-
Liony are imposed:

il

1} For t = 0, the displacement components and
their first partial derivatives int vanish in every
point.

2) For t > 0, the stress components on the free
surface xg = 0 are given functions my, mo, My of
(%1, %q, t) and we have the following equations {n-
duced on xg = O:
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3x, 9%y
1S 2yl dul __ 5
B L}g?- ﬁ*;)_ﬂ’:. (5)
2{1.1 a—uil-i—‘ll B:L:ffg {ﬁ)
I Xy

3) For t > 0, the displacement and stress compo-
nents on the intersurface x3 = hy are the same if
computed in the p-th layer or in the (p + 1}-th
layer, which leads to the following equations in-
duced on x3 = hp:

p+l e} . F ;
u.]' =u , Wwhere j= 3 i 7)
i
E' 313_B 335+(PH Jaxk!k% )
o 2 e, R R ) (o
@L Feqt )axs—{ + t‘)ax!l ! I%x‘tc)xz} )

Thus the displacement iz solution of a mixed
Cauchy problem for the system (1), This problem
is solved by the method sketched in (b}, which is
an application of the notion of distructures intro-
duced in {c).

DISTRIBUTIONS

Let RO be the n-dimensional space; 4 point x
of RY has coordinates Xy, . . . Xy An open set of
B! iz u set £ which contains, with each point x of

2, an open dise E?zl(}rj - xj)2 < €. A bounded

set iz a set which is contained in a disc.

In all this section, ¢ will denote an infinitely
differentiable rTeal-valued function defined in an
open set £ of RIL

Let f be a continuous real-valued function de-
fined in £; for every ¢ vanishing outside a bounded
set contained in 2, the (Lebesgue} integral: figh)
= [pix) ¢ (x)dx is defined and: @ »f(f) is a
linear functional of ¢ denoted alse by [,

For every set of integers (i, .. .., Iip).

8P i .
8"11. - f’xip will be denoted byall L 1p¢

and the mapping:
¢ — 118, 8
1 T p

is a linear functional of ¢ denoted by 611 . ipf

and called the functional (17 . . .Ip)—partial de-
rivative of L.

If { is p times continuously differentiable, Lhis
functional is the {functional corresponding as above
to the ordinary (i1 . lp)-partial derivative
611 L ip f.

Let @ be the zet of all the functionals defined
above corresponding to all open sets £ of B an
element I of @ can be obtained in different ways,

eg, F - ail U f= 6}'1_ g & Thedomain

in which F is defined will be dencted by £2(F).

We may define an order in @ in the following
way: F is a restriction of G, or ¥ < G, it and
only if, for every ¢ vanishing outside a hounded
set contained in Q{F), we have: Fig) = Gig).

With thiz order, @ is a species of lpcal struc-
tures spread over the set of the open sets of BT,
sccording to Ehresmann’s definition. A disiribu-
tion is an element of the complete species of local
structures (4 associated with @: Two elements
F and F' of ¢ are compatible if, for every ¢ van-
ishing oculside a bounded set contained in LNF) and
in 2(F"), we have F{g} = F' {¢#). A distribution is
a complete family C of elements of @, that is a
family satisfying the following conditions:

1) Two elements of C are compatible.

2) C contains, with F, all the restrictions of F.

3) Let {Fij)ie] be a sub-family of elements of C
such that F; < G for any i in I; then C contains the
restriction of Gto the set of all the points belong -
ing at least to one §2(Fi).

The set £{C) of all the points belonging at
least to one £2(F), where F iz any element of C, is
the domain of C.

In pariicular, an element ¥ of ¢ is the dis-
tribution defined by all the restrictions of F. The
distribution ' is called restriction of Clor T'< &)
if C' is contained in C. Given a family (F }iel of
compatible elements of @, there isasmallestdis-
tribution € such that F; < C for any { inL; Cis
called the distribution generated by (Fi)iel-

A distribution C such that £(C) = R" deter-
mines a linear functional also denoted by C on the
set o1 of allfunctions @ vanishing outside a bounded
set, Tn this case, the notion 1s equivalent with that
of a distribution defined by Schwartz ) as an ele-
menl of the dual of the vectorial topological space
$) . The definition given above is a particular case
of the definition of distructures (¢}, Some methods
which will be used are of local nature; it would be
difficult to justify them with the ordinary (global)
definition of distributions, but they follow easily
from the theory of Ehresmann loca] structures.

Examples: A locally Integrable funetion f defines
a distribution still denoted by f (), Thedistribution
generated in Rl by d, %, where:

if x<m
if mgx,

Zi)=m
Z{x)=x + m

is the Tleaviside function Ym. Its first functional
derivative is the Dirac measure fp, such that:

Sm(P) = B(m for every ¢,

Operations: We will use the following operations,
where C denotes a distribution on R

1) Dérivation:
By .. 1, Ci¢) - ¢DPCByy . . iy &)
2) Tensor product: If ¢ 1s defined on R+ Mand

vanishes outside a bounded set, let ¢'}, be the func-
tion:




X = @', ¥)

where x is 4 point of BR, ¥ a point of RM, so that
(x, ¥) is a point of RN+M = RO x BN Themapping
@ ¥ > Cigl) is aninfinitely differentiable func-
tion on RM which vanishes outside a bounded set.
Let ©' be a distribution on BIY; then, there is a
distribution C @ C* or RN+M guch that:

CR®T' @) ~C @B

C®C' is called the tensor product of C and C' and
we have: CEC'=C'®C.

3) Product by an infinitely differentiable functionos

o Cip) = Clag).

4} Division by a polynomial: For every polynomial
P, there exist distributions C/P such that:

(P(C/P) ) {¢) = Cig).

All these distributions have the same restriction
to the open set of RM formed by the points which
are net roots of B

Temperate distributions: Since the definition
of distributions i1z of a local nature {n R, it can
be extended to a manifold {that is 2 space which is
locally homeomorphic to an open set of R, zee
Ehresmann | ). In particular, some distributions
on R are the restriction lo RD of a distribution
the domain of which is the sphere 5P (obtained by
adjoining to RP a point « at infinity). Such a dis-
tribution 1 is called a temperate distribution: T
is a linear funclional on the set ¥’ of all infinitely
differentizble functions ¥ which Tapidly decrease
to 0 near the point =, as well as every of their
p-th partial derivatives,

The Fourier transform:

1 roa -aiﬂ'x.i
(S’y}ti,;-—a?:)j{x)e as ,

where t = {1, x. £ = xy 89+ . +xpén, € be-
ing a point of R" (or rather of its dual space), is
defined for every ¥. The Fourier transform of o
temperate distribution T is the functional defined

hy:
g (FT)(y)=2(F ),
for every ¥ incf: @T will also be denoled by T.

The distribution defined by a function f can be
temperate as a distribution, even if the ordinary
Fourier transform of f is not defined.

For every temperate distribution T, there ex-~
isls an unique distribution T such that: 9T = T.
Writing T = # T, we have: F 1) - T.

We will use the following formulas, in which
8., I the Dirac measure en RL, T u temperate
distribution on R! and £ a point of R1 (respec-
tively of RY:

&, e-2i7tmé, (11)
?{3‘11.'.‘1?‘1‘):{21?1’)1’ 831'” ‘jp% {12}

396

METHOD IN THE p-th LAYER

In this section, we will consider only the p-th
layer and may omil the exponents p.

Problem (I}: To find a solution of the svstem (1)
salisfying the following boundary conditions:

(I1) For t =0, we have:

u:I = 0, %}— = 0, where j=1,2,3.

{Is) For t > @, the functionsu: are known functions
B resp. by} of t, x1 and X3, on the surface xj
= hp—l {resp. xy = h_p). where j=1,2,8.

As the system (1) is hyperbolic in the sense
of Petrowsky ), it is known that the problem (I)
haz one and only one solution corresponding to the
given funetions uj and uy.

The probiem {I) being a mixed Cauchy problem,
we apply to it the method indicated in ). This
method consists in solving the problem (II):

Problem (II}: To find a solution of the system (1)
satisfying the conditions {I1}, {I2), and the condition:
{I3) For t > 0, the funetions é‘)gu]— are known func-
lions B3uj {resp. dauj) of t, x1, x5 on the surface
X3 = hp__iJ {resp. 3 - hp), where {1 = 1, 2, 3.

The condition {I3) being in excess, the problem
(I} has generally no solution; but if iladmits a so-
tution, then this solution iz solution of the problem
(. Thus, by solving the problem (II}, we will at
once solve the problem {I) and find relaticns he-
tween uj, uj, Gzu; and Szu;.

Solution of the problem {II}:

If u j is solution of the problem {II}, the func-
tions Vi, j = 1,2,3, such that:

Y]

¥i

] 1:f x3 < hp.q or hy < x3
uj if hp-1¢ %3 £ hp

Wowm

are two limes differentiable functions with respect
to t, Xp1,Xxy, and have first order discontinuities
with respect to x3 on the surfaces x3 = hp-1 and
X3 = hp. Considered as disiributions, lhey have
tunctional 3-partial derivatives such that:

hy
25591 = - Sl i) 3 g b dx
= -{ujthe)olhpl 4oy (hy yJoplh oo+ 3y u; )
i.e 93vj = '3.’1.:) ty;@ Shi,: Ej@éhf (13)
and also: .
'33](7‘1=33ku3 4-’31:::1‘j v k=1,2
B53717 %5y +ag,

where:

(1)

27983y, -5y ® 3,

iy
B8 8y 738 By (¢1)




From the equations (13), {14) and (1}, we get
the system:

i‘z%zvi —_ t,.ﬂv,-—{?up)ajﬁv - 1‘\1 (15}

where:
ny=-gday+by)- (Arp) Fpag » J=1L.2
h'5=-{)l- +2u) {95a5+b3)-{h+y~] (91a1+ 3232)

As the system (1) is hyperbelic, it can be
proved (&) that the system {15) will enly have for
solutions the distributions vj corresponding to the
functions uj solulions of (1}; moreover if the func-
tions uj and uj define temperate distributions,
these solutions are also temperate distributions.
Our method does net depend upon these resulis and
could prove themn anew (as done in {¢)). We use
them here for the sake of simplification.

Applying the Fourier transformation to the
two members of (13), we obtain a system of linear
equations, where T, &1, 59 53 denote the waria-
bles after the Fourier transformation:
~

QM"Gj Y l’.")f’j {§1¢'1+ 5,3_331-5,333):—};3; @.6)
F\j =-t,;('Liwf,aaj-rgj)—l(lﬂ_,t]iﬁ&jia , i=L 2
By = (e 20 ind 3y b2 helin (§8,0 55,

where: N
HT-.T,‘ = ?tl-— &d‘*,f»rf,,, +§;)
P2t = p - (A S E AEIAE])

The ordinary Cramer method for linear equa-
tiong reduces the system (16) to the system {17)*
{the equations with * will be found at the end of this
paper). If the problem ({f) has a solution uj, the
corresponding distribution vj admits as a Fourier
{ransform one of the distributions vbtained by di-
viding the second members of (17)* by the polync-
mial: ~2iM A+ 2M2NZ, Among the distribu-
tions obtained by this division, there is only one
temperaie distribution the inverse Fourier trans-
form of which has a restriction equal to 0 on the
set xg < h_y, X3 > hy (see {C)y. The transition
from (1) tg 815) may imtroduce solutions of (15)
which are not solutions of the problem (II); in fact,
the distributions introduced by the boundary con-
ditions are ‘‘supported” by the boundary of the
volume defined by:

(cg)

t 0, hp-1x3 £ hp

in the 4-dimensional space ({t, X1, Xa, X3); this
houndary has singular lines for t = 0, so that other
boundary conditlons could give rise to the same
distributions. By expressing that the conditions in
problem ([} are satisfied, we will delermineg nec-
essary and sufficient relations between the given
functions in preblem (II) for the existence of a so-
lution.

In order to write thal the condition (Ja) is ful-

filled, we are going to compute the inverse Fourier
W

transforms P ; ] 3"3 j of the distributions Gj con-

gidered as distributions with respect to $3 alone.
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The compete justification of the{ollowing computa-
tion, which requires a precise local study of the
involved distributions, can be found in (c); this is
one of the most difficult parts of our problem.

Preliminary inverse Fourier transforms:

Let us first compute:
,
1- 5t (Pr1/uME)),
where PI(1/¢M2) is the particular distribution ob-

tained by division of 1 by ng the inverse Fourler
transform of which is:

472 %
91;2#3;2

with respect to (T, fl '52, -53); Z)z is thedistribu-
tion of M. Riesz in R4 defined ) by:
-4
22 = 11m
-2

21—1 r I"(%) [‘(Q—EE}

82=12/p -ri/u if 134 )T/ end B0

8220 octherwise

r=\,f E +x22 + x":a,’ (ca}

Since Zg is a temperate disiribution, we have
also:

-4 1T
S

2
ST a7 Falixpat %2
Let € be a positive number; it may be proved that:
2 RY H
1= lim XLl Je 1lﬂ(xiilfxa_ L)]-n‘h){ 16)

Ea0 Piﬂ.(_’}fz

where:

J‘ Z, g-2imtir-ie) g
P‘P

. 1 (AT
) ﬂ-%r{g)r(&z&)ws e
T,=dwie~iz) .

The symbal cﬁ; denotes the ordinary Laplace trans-
formation, We have:

g rid) 2 7

b st ﬂtﬁ:? ('v'g%) Ky, (qu,r) (19)

Ky, being the modified Hankel function '; since:
Kq/2 () AL et

we abtain:

VB a'dft‘ 2T

I'=
4mr

(20)

We apply Bochner’s formula (j):

fumﬁ—"ﬁg [Ty Ty 2y
o E3




in which f{ denotes a function of |x|-y¥

= I/x1 +, . xn in Rn, [§|=‘f§i+ . .+5r21, and Iy is

modified Bessel function (), in the case n = 2.
From (1B} and {20) it follows then:

Ry T rof o
I:]im [%Lf :r g_rgqv{:{y +.‘(3) I.,(Z-ﬂycﬂdy

k=rd o

a®= E2, 82 {c,)

This integral is the limit for € — 0 of the Fourler
transform in u = 0, of the function:

1
w > o O/RE T o auzeg)B)
if %zl <u
vw— O otherwise
where u=y/ }f2+x§ .

From this, we get:

AT ’_(ﬁ/t‘)e—zn’lxam

where:

(21)

{Cg)
a=ty B La? ir e (pe? ®
In the same way, we have:
by - 27‘(|K3|5
¥ (psd X3)==T% {22)
EB( {11—1,{4}1\1?')( ) ?L+l{1

where:

- 2 T 2 2
B _\ﬁ_—;\%g if Uk+2{.()d )?t

B =i\f}—\%& -d° if (l+2f;.)d2<qr

Furthermore:

1 o1 a1 ]
te pfu(h+2n)M2bT? MmN w2

and:
(A*- BY)AB TZST =?r[A e'lﬁm’iB~Be'l”lx"ﬁ(23)

Inverse Fourier transform of ¥;:

if]- iz a sum of terms of the form:

- {18 §m). « £ @o-2imls

8= Pf( v =P 5 )
MR ¥ N

where T iz a lmown distribution, ¢ 2 polynomial;
Pt denotes the guotient distribution such that the
restriction of its inverse Fourier transform to the
set: x3 < hp_q or by < x3 is 0,

We will not prove here the following result,
the demonstration of which depends eszentially upon
the local definition of a distribution and may be
found in (©); 5’} 5 isinfact afunctionof x3 taking
its values in the space of the distributions with re-
spect to (T, &;, £3) and such that:
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(1,5 (e3) = (FE, g8z ) k3 - m) T
The distributions 5" 53(]\72‘;—12) are obtained from

the formulas {12), (21}, {22) and {23). Thus, the
Fourier transform of ¥; with respect to £3 iz a
function of x5, sum of funclions Fta 5.

Let us write the equations:
84 (9, 90 (hpd +al§ Qhp)=bediobey
(F;, 95 tha) = iy

which express the condition {I3). Afler multiplica-
tion of the two members of these equalions by:
HEA + ZABIAZ  B2) we obtain the system (24)*,
in which we have put:

¥ =haiy B, . xon

¥=bidy + 50, ¥ =i
21“?=§l?33_ul+f.2&‘£2, 2ing=5du,
2irrg’=§1?21+525}“22, 2imf==9’-23

a=e-2“(hp_hp-1)A5 b= E-Zan‘hp-J)E (Cs)

The system (24)* indicales lhe relations be-
tween the given functions W, w, W, w, 9.9, ¢, ¢,
which are necessary and sufficient for the exist-
ence of a solution of problem (I}, By the ordinary
Cramer method for linear equations, we obtain
from (24)* the =sysiems (25)*%, (26)* and (27)*%. In
these systems, we have put:

K = 1o 2K (Co)
-27thy-hyy 1)K 9

|=

{eg)

ek =1+e

where K = A, B, 24, 2B, withthe following conven-
tion:

cJ—'ch = c}_:r, Gpepn S ep g (:]'(:Lr= (‘.LL

By replacing in (17)* @, @, Pund @ by their
values given by (26)*, we find the distributions ¥j,
the Fourier transforms of which are the distribu-
tions zolutions of the problem (1), If in (25)* we ap-
ply ihe {ransformation:

WeorW, weo-w, Pen P, P> @ we get
(W, w) as functions of {W,w} and &, @).

Last layver

The method is the same ag in the p-th layer,
bul the boundary surface ls xg = hy-q; the condi-
tions (Iz) and (I3} are now: (Igcﬁ or t >0, the
funetions l.l;[1 are known funcliems qu of {t, x1, x3)
on the surface x3 = hg-1, where j = 1, 2, 3. (lg}
For t > 0, the functions dyui are known functions
Boull of (t, xq, xg) on surface xgq= hy 1, where
1= 1,2,3.

The equations (17) are still verified if we re-
place aj and b] by :

24 _ .4 q . q 4

;L]. Hj ®6hq-1 , bj aguj @ dhq-l (Cl .
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The condition (Iq) is expressed by the follow-
ing systemn:

éi[ 1A_1f ).11-1[.1‘1 bﬂ -i (171‘1 H‘l} (Jﬂlqhbi)ﬁiﬂq— ‘.f*ijljalxlw
[ 18 {?:if—l p J = (11 )D’E’ +1 lﬂ(ﬂ.&b’)ﬂ? !

where:

Elé% * 521'_13- !q”‘ig cdy
2in P= 515(3_31_1% 5, FiBug)s2 irrf= 5P,u

General solution of the problem

From now on, we will suppose that pk = pP' for
any integer p, p* < Q.

Asgsume that thedisplacement compo-
j=1, 2,3 on the free
{4), we deduce:

Firat layer:
nents are known functions 31
asurface, From the equalions

L .
g s-p fupeng o g=1,2

28
(23 = - (A1 Bt Ny (z8)

and, applying the Fourier transformation tothetwe
members of these equations:

"q’i = - Ld".'\.-.fi ¥

(7(‘+L£J.)(f AWy
whera:

aiw V= EiReEA, 211:*:%3{010)

The equations (25)* and {26)*, congidere
the first layer detfrmine (& w3 and(
functions of (W w} and (W, 1}))

(29)

]as

Second layer: Applying the Fourier transforma-
tion, the equations (7}, (B}, (9) become:

wl, \},_2 = ‘il
1@3- 121_'_(&1__&3}:[1‘:1
(gt (N2 e R

From the equations (30), {25)* and (26}*, we get
the equations (31)}* and (32)%.

w2 =

(30)

(prl)-th layer;: Assume (WP-1, wP~1yand P, ¢P)
complted; the equations (7}, {8), {9) give, after the
Fourier transformation:

prl_

WPl < WP WP WP

p+1@p‘l F(PP *([J. E,L )dg,
(r** 2 o&zg )"+ (- )«"")\J"

(33)

s0 that @pﬂ Qp } are distributions given by
(34)* and (WP, wF) may be determined by {25)*.

g-th layer: The method just explained determmes
(W4, w9 and (9, ¢9) as functions of (W1, wl} and
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form:

{ifr, ). Putting these values in (27)*, we obtain a
system of linear equations from which (W~, w7}
are known as functions of (¥, ). Thusthe Fourier
transforms of the displacement components {and
consequently of the stresses) are determined in
every point by (1T)*.

Systems with 4 layers: From the equations {231)*,
{32)%, (25)* and (34)*, we get the equations (35)*
and (36)* which give (W3, w ¥ and @3, ¢3 as func-
tions of (_'1 w+) and (¥, ), in which we use the
abbreviating symbols (C11)* and the symbols ob-
tained from them hy permutation of the letters in
the following way: from the symbol 851, we de-
duce 8p2 by permuting in the expression of the
symbol Ha11 the exponents 1 and 2; SZB]_,hypermut—
ing al 5& as well as A2 and B

the 4-th layer, the qumtwns (27)y* give
(¢4 41 as functions of é_ w?). From the equa-
tions {33), we deduce {2 y as functions of (W=,
w4) given by the equations {237}*. Puiting these
values in the eguations which give (W°, w°) as

functions of (W3, w’), we get the system (38h
2 fi"a.}]:‘ (Apt-dIBP W =L, Whs it et

2pe2d B (ABt-dYN w2 -1 5 W e L wh (38}
in which J and L are given by (Cy2)*.

From the systems (37)* and (26)*, we deduce
the system {39)*.

Writing that (35)* and (38)* give the same val-
ues as (36)* and (35)* for (_W_S,_\y )and (@3, %), we
obtain the system ({40)* of 4 linear equations in
which we use the following abbreviations:

1 _ a3 2 1,1 2

AT =20y —p ) 2 ATGy 1+ B DBz) €0
1 .3 2.2 1 2 13
B'Z,1 7 2(y -y )4 (2B B 1+ B7F,9)

This linear system may be solved by theordi-
nary Cramer method. The explicit formulas are
rather complicated, but easily obtained. We omit
them here hecause they are not of great ineterest
for the purpose of this paper, but useful for nu-
merical computations. They are of the following

AX=18V 42 By

Axl=-E'¥ 41 8'y (41)
where A, 8, X, 9' and Z' are polynomials of
the variables _'r % of sguare roots of the
polynomxals E&J) . {BJ) j=1,2,3,4, and of func-
tions &7 , nP dencting the thickness of the
p-th layver and KP = AP or BP.

The formulas corresponding to the case of 4
layers can be applied for the case of less than 4
layers by identification of corresponding constants.
In particular, we have the final equations (42}* in
the case of one layer.

Final results:

From (41), we deduce:



1_ o B 2 B oAl ;

!j“{n& Lm\ b "55?;5“3}‘51 et
1 _ E (g gy, 8 27 %
AL L“f‘\ (Bufeebaf) » T m | = 5

The distributions u: are in fact defined by
functions, This may be proved directly by our
method but i= also a known result for hyperbolic
systems as gaid before. If the boundary conditions
are regular encugh, we have:

£+:_;irrlz d_zjjelinbttﬁ,fxzizlsj &;E:},,_)ng‘]én

whera the integrals are ordinary integrals which
may be -computed with an electronic computer.
These regularity comditions are satisfied for ex-
ample: 1) In the case of a plate in contact with
the free surface and vibrating in any given direc-
tion; 2j In the case of heavy bodies moving along
the free surface with constant velocity or constant
acceleration.

ul=

For given values of the elastic parameters,
it is possible 1o indicate simple approximations of
the solutions which could be used for experimental
purposes; such an approximalion depends only ona
certain range of values for theratlios of the param-
eters, In two cases, these approximationz gave nu-
merical results which were in agrcement with ex-
perimental data (corresponding to small values of
the Young modulus EP, wherep =1, 2, 3) and ex-
plained some observed irregularities.

The older methods of harmonic analysis which
have been applied to system (1) {for one or two
layers) may give the solution only for very regular
boundary conditions, whereas our method gives the
solution in all cases which areofpractical interest,
since the boundary conditions must only be expres-
sible in termns of temperate distributions.
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The same method can be applied in the case of
other boundary conditions and, more generally, to
solve all mixed Cauchy problems with respect (o
hyperbolic syatems.
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