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ABSTRACT

Memory Evolutive Systems represent a
mathematical model for natural seif-orga-
nizing systems, such as blological or so-
ciological systems, which are open, have a
hierarchical structure with components of
increasing orders of complexity, and deve-
lop a memory enabling them to store and
retrieve informations about their environ-
ment, and use their past experiences to
adapt to it

This model {introduced in preceding
papers) is bazed on a recent demain of
Mathematics, Catepory Theory, which
provides an adequate setting Ffor studying
the dynamical intercennections between
the different complexity levels and the
formation of more and more complex
units by integration of simpler cnes.

INTRODUCTION

The study of neural networks has
been very active these last years. However
most models cannot explain the develop-
ment of higher cognitive processes, and it
seems new methods are needed for it. The
Memary Evolutive Systems presented here
are a tentative model to allow for compu-

tations on the “synchronous assemblies of

neurens” which are thought to be the
basis of higher neural functions {cf. [91}.
It has been obtained by refinement of a
general model for autenomous natural
systems, called a Hierarchical Evolutive
Svstem, introduced in [3]. Based on a less
classical mathematical domain, Category
Theary, it relies on two interrelated cate-
gorical notions: the (linductivel “limit”
operation (cf. (7)) to explain the formation
of complex units by binding together of
more elementary ones, and the completion
of a category by the adjunction of certain
types of limits, to describe the dynamical
evoluticn of the system by successive
complexifications.

In (4] we have considered the case in
which the dymamics depends on the inter-
action of the system with an internal
Center of Regulation (CR) which receives
partial informations on the present state
and on the external constraints. Thiz cen-
ter forms its own representation of the
system, called its landscape, and .uses it
to direct a stepwise trial-and-error learn-
ing process.

The next step toward the modelization
of a neural system has consisted in adding
to the system a procedural memory in
which past experiences are stored and may
be retrieved later on. Moreover a natural
systemt has net a unique CR, but all a
hierarchy of competitive CR's. Whence the
notion of a Memory Evolutive System {cf.
[51} that we develop here, in which the
evolution is modulated by the interactions
between a family of CR's. Fach CR has a
specific’ time scale and complexity arder,
and it interacts with the system through
its own Jandscape. But the strategies of
heterogeneous CRs may be conflictual,
and there develops a “dialectics™ between
them which is the basis for the generation
of more complex processes,

The generai notions will be first in-
troduced in the particular case of a neu-
ronal system, so that their practical mea—
ning may be more easily grasped.

I. THE CATEGORY OF NEURONS

A category consists of objects and ar-
rows between them, forming an oriented
graph; there is given a rule to combine
two successive arrows in another one, so
that a path of the graph gives the same
arrow by combination whatever be its 2-2
decomposition, and each object has an
identity arrow (cf. [7]}. The state of a na-
tural system at a given time t will be
modeled by a category K, which repre-
sents its internal crganization: the objects
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figure the components, the arrows {called
links} their interreiations such as informa-
tion or energy channels, constraints, caus-
al relations. The combination ensures the
transitivity of transfers.

In particular, to describe the state of a
neural system at a given instant ¢, we
define the category of neurons as follows:
We start from the neurons and the synap-
ses between them; a neuron is characteriz-
ed by its activity (or instantaneous firing
rate}, a synapse by its strength. The ob-
jects of the category are the neurons, the
links from N to N' are classes of synaptic
paths having the same strength; two paths
have the same strength if the activity of
N generates the same effect on N that it
is propagated along one path or the other.
Successive paths are combined by concate-
nation.

An external stimulus or an internal
process activates a pattern of neurons N
linked by some specific synaptic paths. For
simple enough patterns, there exists a
single neurcn N, called a pilot-neuran lor
a cardinal ceill by Barlow), which subsu-
mes the pattern; it means that the N;'s
are strongly linked to N, and if N is link-
ed to another neuron N', it propagates the
same activity to N° as the whole pattern
when it is synchronically firing. We'll see
(§2) that it means N js a limit of the
pattern in the category of neurans (cf.
Figure 1). Such feature-detector cells exist
in the visual cortex, for instance some
individual neurons in the area 17 detect
segments of a given direction, or angles.

However complex encugh patterns ha-
ve no pilot-neuron (there are no “grand-
mother neurons™ except for some particu-
larly significant features), In this case, the
storage and ulterior recognition of the
stimulus will depend on the modification
of its specific links which become stron-
ger and so increase the cohesion of the
pattern. Thus in time it becomes a syn-
chronous assembly of interconnected neu-
rons ie Hebb's sense [6], and the stimulus
is recognized by the coherent oscillation
of this assembly, or, in case of noise or
damage, of a modified but close enough
neuronal group (9]

One of the interests of using Category
Theaory is that it is better equipped to

handle this process than most classical
methods. A natural idea would be to re-
present the assetnbly by a simple graph,
but this representation would not have the
required stability. In our model, we con-
struct, by the complexification process (cf.
§ 2 a larger category, the category of
neursns and category-neurons {Figure 2),
in which a synchronous assembly which
has no limit is the category of neurcns
acquires a limit; this limit may be thought
of as a conceptual (but not physical} unit,
called a category-neuron, and it is also
the limit of the other close patterns that
yield the same output. Hence it provides
an accurate storage of the corresponding
stimulus or process, yet allowing for a
flexible, non strictly deterministic recogni-
tion process (thus satisfying the "degene-
racy” property formulated in £21).

‘The construction of the larger catego—
ry helps also to define the correct notion
for the links between two synchronous as-
semblies, so that computations on them
are easily performed. For instance, it will
be possible to compare twa assemblies
and to determine to which extent an
assembly may be damaged without modify-
ing its overall activity. And the com-
pilexification will be jrerated to form
superassemblies by the binding of less
complex pre-existing ones, thus leading to
the stable representation of more and
more complex stimuli or processes.

These results depend on the following
categoricai notions. ’

2. COMPLEXIFICATION

A pattern in a category is a family of
objects N; with some specified links bet-
ween them. A collective link from this
pattern to an object N' consists of indivi-
dual links from the N,s to N, intercon-
nected by the specificifinks; hence it mo-
dels how an informatign or a constraint is
globally transmitted tp N' in a coherent
way by all the components of the pattern.

"In some cases {not always}, the pat-
tern looked at as an entity is “really”™ re-
presented in the category by a unique ob-
ject M. More precisely, an object N is a
limit (or cohesive binding} of this pattern
if there exists a canonical collective link
from the pattern to N and if the links
from N to N are in I-1 correspondance



with the collective links from the pattern
to N. If there exists such an N, it may be
considered as a complex object admitting
the pattern for its internal organization.

If we “forget” the specified links and
just keep the N;'s, then the limit of this
reduced pattern would be the sum § of
the N;'s (Figure 1}. The coherence and the
censtraints  introduced by the specified
links is measured by the comparison fink
from S to N {cf. [31). it explains the
emergence of new properties fer the
complex object. N not shared by its com-
ponents, while the properties of the sum
are fust those of its components N;'s. It
is important to notice that two patterns
may have the same limit, that means their
overall organization is similar.

A natural system changes in time. Its
evolution is modeled by an evefutive sys-
tem: it consists of a sequence of catego-
ries K, representing its successive states,
cennected by transition functors from K,
to K, which represent the change from
the instant ¢t to a later instant ¢,

An avelutive system is a hierarchical
svstem [3] if the objects of each state ca-
tepory are classified in complexity levels,
s0 that an object at level n+l is a limit of
a pattern of level n objects {cf. Figure 3i.
Then it has alse a more complicated
internal organization of the lower levels.
And each object presents a double Fface:
elementary component of a higher level
object, or complex entity representing the
integrality of its internal organization.

The complexification process used in
§1 is an adaptation of the completion of a
categery by some limits. It has been in-
traduced in [3} to model the evolution of
natural seif-organized systems, which is
mainly shaped by recurrence of the four
“archetypal singularities” (cf. Thom [101}):
birth, death, collision and scission. For
example, for a cell, they correspond to
absorption of external molecules, exccyto-
sis, synthesis of new products, scissions
of components. L

Ta describe this situation, we start
with a category on which there is given
a strategy which requires that some pat-
terns without a limit be “binded”, that so-
me objects or limits be suppressed and
that some external elements be added.

Then we explicitly construct a larger
category, the complexification, in  which
the objectives of the strategy are fulfilled
in the most economical way, both on a
thearetical and an energy-cost basis (Figu-
re 4). In particular each pattern to bind
acquires a flimit in this category, which
may be thought of as the pattern itself
taken in its integrality as a new object of
a higher complexity level, this object
being a stable representation oot eonly of
the particular pattern but of the whole
class formed by the similarly organized
patterns.

This construction is not a purely
theoretical device. lts practical interest is
to provide an explicit construction of the
“good” links between the new objects, and
hence between the patterns they are bin-
ding (e.g. between two synchronous as-
semblies of peurons if we complexify the
category of neurons). And the construction
can be iterated to get more and moare
complex objects by successive complexifi-
cations. This kind of operation, akin te
the passage frem a language to a higher
order one, is at the base of any knowled-
ge: new terms are defined frem maore
primitive terms, and they become primitive
terms for a higher complexification. It
will be the hasis of a stepwise trial and
error learning process for evolutive sys-
tems, and in particular neural systems.

3. THE LEARNING PROCESS.

Now we are going to study how a
neural system functions. The category of
neuraons and category-neurcns changes in
time: some neurons or synapses are dama-
ged, new limit-neurons are recruted, and
the cognition process consists in adding
catepory-neurons representing synchronous
assemblies, which form a hierarchy of
conceptual units with higher and higher
complexity levels, These! modifications rely
on mealecular mechanisms which, translated
at the neuron level, change the activity of
the neuwrcns and the strength of the sy-
napses, according to the following rules
{which lead to eguations and to simula-
tions we have no time tec indicate here).
The activity of a neuron at a given time
is a bounded abave function of the sum of
the activities of the npesurons linked to it,
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pondered by the strength of the links, The
strength of a synapse is increased if the
activities of its presynaptic and postsyn-
aptic neurons are correlated, reduced if
they are anti-correlated (that seems phy-
siologically relevant, cf. [81}. Learning
occurs by the differential ampiification of
some patterns which modifies the strength
of the synapses and increases their thres-
hold, with a local selection winner-ta-
kes-all rule ("neural Darwinism™ [21).

From a categorical point of view, we
model the neural system by a hierarchical
evolutive system with several levels, from
the level of its melecular organization up
to levels of category-neurons representing
synchronous assemblies or super-assem-
blies. The dynamics of the system by au-
to-regulation and learning is described
stepwise as follows {cf. [4,51h

We distinguish two hierarchical sub-
systems: a Memory and a Center af Regu-
jation CR ({corresponding to associative
areas, e.g. basal ganglia), with simple
neurons in the lower levels, and catego-
ry-neurons representing synchronous as-
semblies or superassemblies of neurons in
the higher ones. The center has both
afferent and efferent links with the me-
mery, and with effectors (motor neuronst.

At a given time, the receptors {senso-
ry cells) extract local features from the
environment and the center receives infor-
mations on the state of the system thanks
to links from the receptors, the effectors
and the memory. These informations are
modelled by a new category, called the CR
actual Iapdscape {cf. [4,51): its objects are
ciasses of links from the system to the
CR which convey the "same” information,
i.e. which are interconnected by links in
the CR {Figure 5). The distortion between
the landscape and the system is measured
by a functor.

A chaoge in the landscape at t will
prompt the beginning of a new step. Then,
taking Into account informations on the
internal and external constraints and re-
calling similar past experiences, a strategy
is chosen on the landscape to activate so-
me assemblies or superassemblies of neu-
rons, to cantrol the effectors in an ade-
quate way and to facilitate the storage of
the present context in the memory. This
strategy consists in suppressing some ele-

ments and adding category-neurons to SO
me patterns. The following anticipated
landscape should be the corresponding
complexification. But the effective one
may be different, because the goals of the
strategy are not necessarily fulfilled.
Indeed, the strategy has been selected on
the landscape and is only repercuted to
the system with a distorticn. We measure
the difference between the anticipated and
the effective landscapes at the CR level
by the comparison functor (Figure 6}, and
describe how to feedback the results to
the memory, so that they may be retrieved
later on {(cf. (4,51

In this section, we have focused on a
particular CR. But in fact to explain the
development of higher order cognitive
processes we'll have to counsider all a
family of interacting CR’s.

4. MEMORY EVOLUTIVE SYSTEMS

The dynamics of autonomous systems
such as biological systems is shaped by
the interactions between internal regulato-
ry organs with different complexity levels
and propagation delays. To model this
situation, we use the following notion (51

A Memory Evolutive System is an
evolutive system equipped with a hierar-
chical evolutive sub-system, called the
Memory, and a family of Centers of Regu-
latien (CR} satisfving the fellowing condi-
tions (Figure 7). Each CR has a differential
access to the system and in particular to
the central memory through afferent and
efferent links. Its objects, called actors,
are of a specific complexity level and it
functions with a given propagation delay,
forming an evolutive system with its own
time-scale the length of the steps being
related to the propagation -delay. The
time-scales Increase with the complexity
level. Parallel CR's with the same com-
plexity level may have different time-sca-
les. Higher levels CR's are associative, in
that they collect informations through
patterns of lower level actors. For instan-
ce in a neural system, there are specializ-
ed visual or auditive CR's, but also asso-
ciative CR's regrouping them, up to the
conscious level.

Each CR directs a trial and error
Jearning process (cf. [S)) which is descri-
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bed as above for the neural system, and
in which it has a triple function: as an
observational svstem, it forms its actual
fandscape, which gives a particular internal
representation of the system. As a deci-
sion and contrel organ, it selects a stra-
tegy on this landscape to command effec-
tors and, at the end of the step, to mem-
orize the strategy and its results, eva-
luated thanks ta the comparison functor
{Figure 6}. In time, these memorized stra-
tegies constitute a growing procedural
memory, in which they can be compared
and eventually weighted.

At a piven tme. the strategies devi-
sed by the different CR's on their respec—
tive landscapes are only repercuted to the
system with a distortion and they become
competitive, and eventually conflictual. In
that case, some CR's will not be able to
enforce their current strategy and they'll
have to change it before the normal com-
pletion of the present step; we say there
is a fracture in their landscape (analvtical-
ly it would be expressed by a catastrophe
in Thom's sense}. Several tvpes of Fract-
ures are investigated (cf. [4,51). For ins-
tance, during one step of an associative
CR, say CR3. a lower level CR goes
through a sequence of shorter steps {Fi-
gure 8); the modifications generated by
each of these steps are not directly per—
ceived at the CR3I level, but their accumu-
lation may disrupt the processing of the
strategy devised by CR3, thus causing a
fracture for CR3 and shortening its step.
Conversely, a higher level fracture may
backfire later on and force the lower le-
vels to adopt a specific strategy. Other
fractures come from a severe modification
of the environment, or because of a con-
flictual standstill between two parailel
CR's, which has to be deblocked by a hi-
gher level. So the evolution of the system
is shaped by the dialectics between CR's
which are heterogeneous by their com-
plexity level and their time-scale, the
bottom-top regulation being predominent
on a short term, but modulated by up-
down stringent controls that shape the
evolution on the long run {ef. [51h

In the case of a neural system, this
madel can explain the formation of higher
cognitive structures through the interac—
tion with the environment and the dialec-

tics between heterogeneous CR's. Follo-
wing Changeux [l1 and Edelman (2], it
might be conjectured that consciousness is
an emergent property of the dialectics
between a higher level CR and lower CR's
which direct automatic processes. In parti-
cular, man develops a semantic memory
formed by more and more complex ca-
tegory-neurons representing abstract con-
cepts, controled by the higher CR associa-
ted to the language (Broca and Wernicke
areas). Thought wouid be produced by
sequences of fractures caused in this CR
by lower ones, which impose a revision of
the situation (through inter-levels leops
[2]), yet leaving some indeterminism in
the choice of the new strategy thanks to
the flexibility of the category-neurons.

On a less conjectural side, the model
helps understand some experimental re-
sults of Cognitive Science and suggests
new questions to explore. It may alse be
adapted to study the dynamics of varicus
biological or sociological systems, to de-
sign knowledge-based machines in Artifi-
cial Intelligence, or to describe knowledge
acquisition in Epistemology.
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