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INITIALLY AN ANALYST

In 1956, first research under the direction of Choquet on his now well known Theorem on extreme
points of convex sets. Long discussions with him made me familiar with the intricate properties of
infinite dimensional locally convex spaces.

These properties are used in my 3rd cycle thesis which deals with convex geometry and
applications to optimization, extending results of Rosenbloom . The main result is a new definition
of a polyhedron which extends to the infinite dimensional case, namely as a convex set such that
each supporting cone is closed.
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This photo shows Charles and
Choquet at the "Congrès des
Mathématiciens d'expression latine"
(Nice, 1957). Our 22 years long close
relation with Charles began at this
time.
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FROM ANALYSIS
TO

CATEGORY THEORY



DISCOVERY OF CATEGORY LAND
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The main theorem is the "Complete Enlargement Theorem" which translates in this
categorical setting the construction of the species of local structures associated to a pseudogroup
of transformations. It comes in 2 parts:

(i) If a subcategory C of C' acts on S, extension of this action in an action of C' on a set S';
(ii) If C and C' are "local categories" (in modern terms special categories internal to the category

of locales) and S a locale, extension of a "local" action into a complete local action of C' on a locale
S' (complete meaning that it satisfies a "sheaf" property).
Applications are given to the construction of locally trivial fibre bundles and foliations.

I discovered categories through Charles' paper "Gattungen von lokalen Struckturen" (1957), the
first where he uses the word 'category'. In it he introduced the action of a (local) category C on a
(local) set S, calling S a (local) species of structures over C.
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He proves that it corresponds to a functor
F from C to Set, such that the 'fibers' Fe

are disjoint, and S is their union.
He also defines and characterizes the
associated discrete fibration p (called 'cat-

egory of hypermorphisms') on the set C*S
of 'composable' pairs (s, x).



DISTRIBUTIONS AND PARTIAL ACTIONS

Imitating Charles' Complete Enlargement Theorem, the above citation suggested to
construct distributions on a lcs E, with values in an lcs E' through a "bi-completion" process:

(i) Differential operators d define a 'partial action' on the lcs of continuous maps from an open
subset U of E to E', the composite df being defined only iff f has a d-derivative. This partial action
is extended into an action (enriched in Lcs), leading to the presheaf of finite order E'-valued
distributions over E.

(ii) A sheafification of this presheaf leads to the sheaf of E'-valued distributions over E.

" Une distribution est, localement, une dérivée d'une fonction continue "
Laurent Schwartz, Théorie des distributions (1950), p. 8

Motivated by problems in functional analysis and differential equations, I developed a
categorical frame, the theory of distructures (translated in modern terms in my Calais
presentation, 2008) for studying different kinds of "generalized functions", and in particular for
extending Schwartz distributions to infinite dimensional locally convex vector spaces (lcs).

It led to the notion of a partial action of a category C on a set S, and to its extension to
an action of C on S'. A partial action is defined as an action, except that, for x: e → e' the
'composition' F(x): s |→ xs is only defined on a subset Fx of the fiber Fe , and the 'transitivity'
condition is: the composite x'(xs) is defined if and only if xs and (x'x)s are both defined.

This notion is 'enriched' into that of a (K, M)-semi-functor for defining distructures,
and, later, 'internalized' for studying control problems.



ENRICHED PARTIAL ACTION. DISTRUCTURES

Associated Functor Theorem. If K admits pullbacks and 'enough' colimits, there is a reflexion P
from the category SS(K, M) of (K, M)-semi-functors to the category Diag(K) of functors to K.

Let K be a category, M a class of monomor-
phisms containing |K|, stable by pullbacks and
with at most one m between 2 objects. A (K, M)-
semi-functor on C is a map from C to K such that:

(i) F(e) is an object Fe for e in |C|.
(ii) For x: e' → e, F(x): Fx → Fe' where Fx is an

object such that there exists mx: Fx → Fe in M.
(iii) Transitivity condition: for x': e" → e' in C, the

pullback Ix'x of (mx', F(x)) is also the pullback of
(mx, mx'x) and F(x'x)px'x = F(x')p'x'x where px'x and
p'x'x are projections of the PB's.

A generator of (K,M)-distructures on a category H is a functor B from Hop to the category
SS(K M). Its composite B': Hop → Diag(K) with the reflection P: SS(K, M) → Diag(K) is the presheaf of
K-distructures generated by B. If H is equipped with a Grothendieck topology (or a convenient
order), the sheaf associated to B' is the sheaf of (K, M)-distructures.

In my thesis K is the category Lcs of locally convex vector spaces and M the insertions
into a lcs of a vector subspace with a finer topology. In particular I give an explicit construction of
the sheaf of vector distributions on infinite dimensional manifolds.
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To define these infinite dimensional ditributions, I had to develop a 'good' differential calculus in
lcs (1962). In 1964, trying to extend the main theorems of differential geometry (e.g., the
transitivity of prolongations for manifolds) in this frame, I realized that the category of
differentiable maps Diff had to be 'Cartesian closed'. At this end, I replaced topologies by quasi-
topologies (or "Limesräum"); this idea was later taken back by Keller, Frölicher and others.

DIFFERENTIABILITY. CONTROL SYSTEMS

'Internal' partial actions are at the root of my work on Control Systems, giving a
categorical frame to model Cauchy boundary problems and variation problems (1963-1966). The
main results give optimisation theorems for solutions of a control system in terms of infinite
dimensional vector distributions; they specify and extend the dynamic programing method of
Bellman.

A nucleus of action is a partial action of a topological
category C on the topological space S such that the
composition law k: (x, s) |→ xs be continuous from
an open subset C*S of CxS to S. It has an associated

'partial fibration' p: C*S → C..
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σ A control system is a nucleus of action with a top-
ological functor q: C → C'. A solution of this system is
a topological functor σ: C' → C*S section of qρ.
Differentiable Control Systems are obtained by
replacing Top by Diff.



ON SKETCHES AND THEIR MODELS

2nd Conference on the Algebra of Categories (AMIENS 1975); photo taken in Chantilly

The notions developed for adapting categorical notions to analysis paved the way for our research
with Charles. From 1968 up to Charles' death in 1979, our joint papers had to do with problems
about sketches and the categories of their models. These problems were also at the basis of the
work of several members of our research team "Théorie et Applications des Catégories" (Paris-
Amiens) which we developed during this period.



SKETCHES AND THEIR MODELS

I and J being classes of small categories, an (I, J)-sketch S is a (neo)category ∑ equipped with a set of
projective cones indexed by I and a set of inductive cones indexed by J.
A prototype is a sketch in which the projective (resp. inductive) cones are limit (resp. colimit) cones.
An (I, J)-type is a prototype in which each functor indexed by an element of I has a limit (resp. (resp.
of J has a colimit).

Theorem (1972). The 2-category of (I, J)-sketches admits a 2-reflection into the 2-category of (I, J)-
prototypes and into that of (I, J)-types; the prototype and the (I, J)-type so associated to a sketch
are explicitly constructed (by induction) up to an isomorphism.
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A model M of the sketch S into a category V is a functor from ∑ to V sending the projective
cones on limit-cones and the inductive cones on colimit cones; it also defines a model of the
prototype associated to S. The category VS of models of S in V is a full sub-category of the category V∑.



MONOIDAL CLOSED CATEGORIES OF MODELS

In the second part of our 1972 paper, we give conditions for the category of models VS of a
projective sketch S in a symmetric monoidal closed category V to be monoidal closed.

S being a projective sketch, we say that S is cartesian if SetS is cartesian closed. We give
different equivalent conditions (and later Street has given still other ones).

Theorem. We suppose that S is cartesian, and that V admits ∑-ends and coproducts indexed by the
Hom of ∑. If the tensor product commutes with I-projective limits and if the categories in I are
connected, then the category VS has a symmetric monoidal closed structure, which is a sub-
structure of that of the category V∑. In particular if V is cartesian closed, then so are VS and Cat(V).

For V-internal categories, we have a stronger result and give a construction of the internal Hom
generalizing that of natural transformations from C to C' as functors from C to the category SqC' of
commutative squares of C'.

Theorem. Let V be a symmetric monoidal closed category which admits pullbacks and equalisers of
pairs. If its tensor product commutes with pullbacks, then Cat(V) has a symmetric monoidal closed
structure whose internal Hom is given by

Hom(C, C') = ∫ V(C(-), SqC'(-))

where SqC' is the V-internal category of commutative squares of C'.



THE CATEGORY MCat OF MULTIPLE CATEGORIES

My last series of papers with Charles (1974-1979) studies the categories Catn of n-fold categories.
An n-fold category A is defined by induction as a category internal to Catn-1; it "is" a class A of
"blocks", equipped with n laws of categories 2x2 permutable. Given a sequence i,… j of m laws of
A, we denote by Ai,…,j the m-fold category on A obtained by retaining only these laws.

Theorem. MCat has a "partial" monoidal closed structure:
1. The internal Hom, MCat(A, B), is defined only if the multiplicity n of A is less than the

multiplicity p of B, and then it is the (p-n)-fold category of multiple functors T from A to B, its
compositions being deduced from the p-n last compositions of B.

2. The tensor product of (A, B) is the n+p fold category A ◊ B on AxB whose i-th category is

Adis x Bi if i ≤ p and Ai –p x Bdis if p < i ≤ n+p.

Let MCat be the category whose objects are all the n-fold categories for each n, and the
morphisms the multiple functors defined as follows: there is a multiple functor T from the n-fold
category A to the p-fold category B iff n ≤ p of B, and then T is an n-fold functor from A to B1,…,n.
MCat contains all the categories Catn for n ≥ 1 as full sub-categories.
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LIMITS RELATIVE TO A MULTIPLE CATEGORY

We say that H is representable if H1,…,n admits H-wise limits indexed by 2¤n, where the n-
fold category 2¤n is defined by induction by: 2¤1 = 2 and 2¤(n+1) = 2¤n¤2.

Theorem. 1. The functor -¤2¤p: Catn → Catp+n is left adjoint to the functor from Catp+n to Catn

'omitting' the n first compositions; and the category Catn is the inductive closure of {2¤n}.
2. If H is representable, so are 1SqH and CubH.
3. If H is representable and |H| complete, then H1,…,n is H-wise complete.

For double categories, these results have been extended by Grandis & Paré (1998) to double
functors.
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Let H be an (n+1)-fold category. If A is an n-fold category, MCat(A, H) is a category whose objects
are the n-fold functors f from A to the n-fold subcategory of H consisting of its objects for the (n+1)-
th law. Then a multiple functor T: A → H can be considered as a H-transformation from f to g.

Let |H| be the sub-category of Hn+1 formed by the blocks which are objects for the n
first laws. A cofree object generated by f with respect to the functor "insertion" of |H| into
MCat(A, H) is called a H-wise limit of f.



THE FUNCTORS Square AND Link ON Catn

a

a

There is a functor 1Sq: MCat → MCat mapping an n-fold category A on the n+1-fold category 1SqA
on the class of commutative squares of A1: its n-1 first laws are that of MCat(2x2, A), the n-th is
the vertical composition of squares and the (n+1)-th their horizontal composition.

Theorem. The functor from Catn to Catn+1 restriction of 1Sq has a left adjoint Link such that
Link(1SqA) is isomorphic to A for each n-fold category A.
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The n-fold category LinkB is constructed as a quotient of the category of all the paths on
the graph G whose vertices e are objects for the last 2 laws of B, the edges from e to e' being all the
blocks b admitting e and e' for "extremities", the relation identifying b with the paths below; so
LinkB is formed of classes of srings of objects for Bn and Bn+1.

For a 2-category C, LinkC is isomorphic to the category of components of C1.
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MONOIDAL CLOSED STRUCTURES ON Catn

Theorem. Catn is cartesian closed, with internal Hom:

Homn(A, B) = MCat(A, 1SqnB)

where 1Sqn is the n-th composite of the functor 1Sq.

The proof uses the fact that

A x B = Linkn(A ◊ B)1,n+1,…,i, i+1,…, n,2n

Other monoidal closed structures can be defined on Catn by 'laxifying' the preceding
construction, replacing the functor Square by the functor Cube defined as follows:

Let Q be the double category with one 2-cell c and four 1-cells forming a square "commutative
up to c ", and let M = Q x 2, where 2 is the double category on 2 whose 2nd law is discrete. If A is an
n-fold category, a cube of A is a double functor from M to An,1. The (n+1)fold category CubA has for
blocks the cubes of A, the laws being defined as for squares.
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Theorem. The functor Cub: Catn → Catn+1 mapping A on CubA has a left adjoint LaxLink .

The construction of LaxLinkB 'laxifies' that of Link using the relation

so that its blocks are classes of strings formed by objects for Bn-1, Bn et Bn+1.

THE INTERNAL HOM LaxHomn ON Catn

Theorem. Catn admits a monoidal closed structure whose internal Hom is

LaxHomn(A, B) = MCat(A, (CubnB)1,3,…,2n-1, 2,4,…,2n)

The tensor of (A, B) is LaxLinkn(A ◊ B)1,n+1,,…,i,n+i,,…,n,2n and its unit is the n-fold category on 1.

≈

Corollary. LaxLink is a left inverse of a sub-functor Cyl of Cub, so that an n-
fold category A is isomorphic to LaxLink(CylA).

CylA is the n-fold subcategory of CubA formed by the cubes
whose source and target for the n-th law are also objects for the n-1-th law.



Theorem. For n > 2, an n-fold category A admits an n-fold embedding into the n-fold category
Cubn-2Q(C), where C is the 2-category String(LaxLinkn-2A).

RELATIONS BETWEEN Catn AND 2-CATEGORIES

Given a 2-category C, we denote by Q(C) the double subcategory of CubC formed by the objects
for the first law, i.e. by the double functors Q → C (often called squares of C, or, by Charles,
quintets of C).

Theorem. The insertion of the category 2-Cat of 2-categories into Cat2 has a left adjoint String
such that each double category A is isomorphic to a double subcategory of the double category
Q(StringA), where

StringA = LaxLinkAdis,1,2.

The 1-morphisms of StringA are (classes of) strings of objects for alternately the 1st and the 2nd

law, and a 2-cell is a string of blocks (an,…,a1).
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(Guitart proved that it follows that A is also isomorphic to a double subcategory of Q(Cat).)



A NEW ORIENTATION
MODELING LIVING SYSTEMS
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HIERARCHICAL CATEGORIES

A category H is hierarchical if its objects are partitioned into 'levels', so that each object A of level
n+1 is the colimit of at least one pattern (= diagram) with values in the full sub-category Hn whose
objects are of level ≤ n. Then A admits 'ramifications' down to level 0.
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A pattern P in H defines an object P* of the category IndH. A morphism G*: P* → P'*
in IndH corresponds to a cluster G of morphisms between components of P and P'. If P and P' are
patterns in Hn admitting colimits C and C' in H, then G 'binds' into a morphism cG: C → C', called
an n-simple link. The composite cG cL of n-simple links may not be n-simple if C is the colimit of
two patterns P and Q in Hn such that P* and Q* are not isomorphic in IndH. Such a C is called a
multiform object, and cG cL is an n-complex link. These links model n+1-emergent properties.

H is a based hierarchy if all the morphisms are n-simple or n-complex for some n.



COMPLEXITY ORDER. COMPLEXIFICATION

An object C of H of level n+1 is m-reducible if it is the
colimit of a pattern in Hm. The complexity order of C is
the smallest m ≤ n such that C is m-reducible.

Theorem. Let C be an object of level n+1 which is the
colimit of a pattern P in Hn. If no P(i) is multiform, C is
n-1-reducible, hence of complexity order ≤ n-1.

Corollary. In a hierarchical category without multiform
objects, all objects are of complexity order 0.
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Theorem. If K has multiform objects, so does a
complexification K' of K, and iterated complex-
ifications lead to the emergence of objects of
strictly increasing complexity order.

A complexification K' of a category K has for
objectives to 'suppress' a given set E of
objects, to 'absorb' a category A, to 'add'
(co)limits to some patterns and to preserve
some given (co)limits. It is constructed as the
prototype associated to a sketch.
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A based hierarchy H is consructed from H0 through iterated complexifications just adding colimits.
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A Hierarchical Evolutive System is a partial action F of a category Time enriched in the category of
hierarchical categories; it models the successive configurations of a complex natural system with
a hierarchy of components of increasing complexity order. The 'transition' F(ti, tj) models the
change of configuration and is obtained by a complexification process, so that:

Theorem. The emergence of objects of strictly increasing complexity order is characterized by
the existence of multiform objects (Multiplicity Principle).

MEMORY EVOLUTIVE SYSTEMS

To model self-organization, we define a Memory Evolutive System as a HES with a net
of subsystems, the Coregulators, modeling specialized internal regulation organs, and a sub-
system, the Memory, developed by learning. The dynamics is modulated by the competitive
interactions between CRs, each CR selecting objectives on its 'landscape' with its own timescale.
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Ft3

Ft2

Timet1 t2
t1 t3

t4



THE MENS MODEL FOR COGNITIVE SYSTEMS

The model MENS (Memory Evolutive Neural System) of a neural and cognitive system is a MES
obtained by successive complexifications of the ES of neurons modelling the neural system of
an animal. We describe how a procedural and a semantic memory develop and lead to the
formation of an interconnected personal memory, the archetypal core essential for the
emergence of higher cognitive processes up to conscious processes.
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In MENS, the categories are equipped with a functor d to R+ which models the
propagation delays of the morphisms. We characterize the 'polychronous' neural groups
(Izhikevitch & al.) activated by mental events by a categorical property (d-connexity), which
allows the extension of d to a complexification in which the distinguished patterns are of this
form. It allows extending to MENS the equations known for neural systems.



"CAHIERS" and CHARLES' OEUVRES

The "Cahiers" began under the title "Séminaire de Topologie et Géométrie Différentielle" in
1957/58, published by Belgodère. To be more free, Charles decided to publish them directly and I
helped with the material work. They became the quarterly journal "Cahiers de Topologie et
Géométrie Différentielle" in 1967 and were briefly edited by Dunod up to 1972, when we took
the entire editing work. In 1984, I added the word "Catégoriques" and created an Editorial board.
Now the "Cahiers" have an Internet site, and backsets are made available by NUMDAM.

From 1980 to 1983, the 7 volumes of "Charles Ehresmann : Œuvres complètes et commentées"
appeared as Supplements. They contain all Charles' papers and also about 450 pages of
comments (in english) to translate' them is a more modern language, to replace them in the
historical context, to extend some results. enrichment


