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1.1. SEMI-SHEAVES OF SETS
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A semi-sheaf (of sets) F on C is a map from C to Set which associates to an
object e of C the fibre Fe on e, to an arrow x from e' to e a map F(x) from a sub-set Fx of
Fe to the fibre on e', and satisfies the 'transitivity condition': if s is in Fx then sx = F(x)(s)
is in Fx' if and only if s is also in Fxx', and then s(xx') = (sx)x'.

We also call the map (x, s) |→ sx if s is in Fx a semi-action of Cop on the disjoint union S
of the fibers. (The system of structures of C. Ehresmann are a slightly more general
notion.)
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1.2. (K, M)-SEMI-SHEAVES

K is a category and M a class of monomorphisms (in red on the figure) of K
containing the identities, stable by pullbacks and with at most one m between 2 objects. A
(K, M)-semi-sheaf F on C is a map from C to K such that:

1. F(e) is an object Fe for each object e of C. 2. For x: e' → e, F(x): Fx → Fe' where Fx is an
object such that there exists an mx: Fx → Fe in M. 3. 'Transitivity condition': for x': e" → e' in
C, the pullback Ixx' of (mx', F(x)) is also the pullback of (mx, mxx') and F(xx')pxx' = F(x')p'xx'

where pxx' and p'xx' are projections of the PB's.
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1.3. THE CATEGORY SS(K, M)

Fx

If F is a (K, M)-semi-sheaf on C and F* a (K, M)-semi-sheaf on C*, we define a
morphism (λ, µ): F → F* by a functor λ from C to C* and a map µ from C to K making
commutative the above diagrams. The category SS(K, M) admits as a full subcategory the
category PS(K) of K-presheaves.

Examples. I have used particular (Top, open ins.)-semi-sheaves, called nuclei of actions, to
study control problems for differential equations. The Evolutive Systems (defined with J.P.
Vanbremeersch for modeling living systems) are (Cat, subcat)-semi-sheaves.
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1.4. K-PRESHEAFIFICATION OF A (K, M)-SEMI-SHEAF
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Associated Presheaf Theorem. If K admits colimits, the category PS(K) of K-presheaves is
a reflective subcategory of the category SS(K, M).

The K-presheaf F' associated to the (K, M)-semi-sheaf F is explicitly constructed: its fiber F'ε
is the colimit of the functor Gε: Sub(ε↓C) → K where Sub(ε↓C) is the subdivision category of
the category ε↓C of objects under ε,

Gε (ix) = mx and Gε (cx) = F(x).

If K = Set, this F'ε becomes the quotient of the sum of (Fe)y:ε→e by the equivalence generated
by the relations: (y, sx) ~ (xy, s) for each s in Fx.
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1.5. LOCALLY CONVEX SEMI-SHEAVES
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If K is the category Lcs of locally convex spaces and MV the class of insertions of
a vector subspace with a finer topology, an (Lcs, MV)-semi-sheaf F is called a locally convex
semi-sheaf, and its associated Lcs-presheaf F' a locally convex presheaf. The fiber F'ε of F'
on ε (colimit of Gε) is the lcs space quotient of the locally convex direct sum of the family of
lcs spaces (Fe)y:ε→e by the equivalence relation generated by the relations: (y', sx) ~ (xy', s)
where s is in Fx and x: e' → e in C and sx = F(x)(s).
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2.1. GENERATOR OF (K, M)-DISTRUCTURES

φB
B(u)(x)

e
m(u)x
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A generator of (K,M)-distructures on a category H is a functor B from Hop to the
category SS(K M) of (K, M)-semi-sheaves. Thus B(u), for an object u of H, is a (K, M)-semi-
sheaf on a category Γu , and B(v) is a morphism (Γ(v), µv): B(u) → B(u'). Its composite B' with
the associated presheaf functor Psh from SS(K, M) to PS(K) is called the presheaf of K-
distructures generated by B.

The Γu are the fibers of a presheaf of categories Γ on H; let F(Γ) be its associated
fibration. B determines a (K, M)-semi-sheaf φB on F(Γ) with B(u)e as its fiber on (u, e),

φB(v,,x) = B(u)x and φB(v, x) = µv(e')B(u)(x).
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2.2. ANOTHER CHARACTERISATION OF DISTRUCTURES

F(Γ)op

φB' = P'

Γu
op Γu'

op
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φB = P

Theorem. There exists a 1-1 correspondance φ between the generators B of (K, M)-
distructures with Γ as their base Cat-presheaf and the (K, M)-semi-sheaves on the
fibration F(Γ) associated to Г. It sends the K-presheaf B' generated by B to the K-
presheaf associated to φB.

A (K,M)-semi-sheaf P on F(Γ) is of the form φB for the generator of (K, M)-
distructures B such that B(u) is the composite of P with the insertion of Γu in F(Γ), and

B(v) = (Γ(v), P(v,-))   for   v: u' → u.
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2.3. LOCALLY CONVEX DISTRUCTURES
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A generator of locally convex distructures L, and its generated presheaf L', are
obtained in the case (K, M) = (Lcs, MV). Then L and L' have underlying Top-presheaves Θ and
Θ', with Θu = coproduct of the topologies on the fibers of L(u). The figure emphasizes the 'di-
structure' on the topological sum S' of the fibers of Θ': the category Hop acts 'horizontally' on it
while Nop acts 'vertically', where N = coproduct of the Гu.

If H is equipped with a topology of Grothendieck T, and if Γ a sheaf for T, the sheaf
of distructures generated by L (or by L') is the composite L* of L' with the associated Lcs-
sheaf functor Sh. The Top-sheaf Θ* underlying L* is the Top-sheaf associated to Θ'. The Lcs-
presheaf φL* corresponding to L* is a sheaf for the topology on F(Γ) 'lifted' from T.
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2.4. A (PRE)SHEAF OF DISTRUCTURES OVER MONOIDS
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If L is a generator of locally convex distructures such that the base Cat-presheaf Γ
is a sheaf of monoids, then L(u) has only one fibre L(U)e = Vu..

This Vu is also the fiber of an Lcs-presheaf V on H having Θ as its underlying Top-
presheaf. Thus L is entirely determined by: a presheaf Γ of monoids, a presheaf V of locally
convex spaces and, for each u, a semi-action of Γu

op on Vu, these semi-actions being
preserved by the change of fibers. Idem for the presheaf L' and the sheaf L* generated by L.
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3.1. PARTIAL DERIVATIVES OF A FUNCTION

∂αf(a) ▪

0 ai
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f
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f(a)+kan ▪

a+kan ▪

f(a) ▪
U
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E is a locally convex space and A = (ai)i an algebraic base of E. We denote by A*
the free commutative monoid on A and by o its unit. An element α of A is a finite multiset
α = {α1, α2,…αn} of n (possibly repetitive) elements of A.

Let f be a function from an open subset U of E to a locally convex space E'. We
say that f has an α-derivative ∂αf(a) at a if the restriction of f to the affine sub-space a+ΣiRαi is
n-differentiable at a and admits ∂αf(a) for its partial derivative with respect to (α1, α2, …αn). (It
is independent on the order.)

NB. The following theory of distributions could use another kind of differentiability.

E
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3.2. GENERATOR OF DISTRIBUTIONS
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E and E' are complete metrizable locally convex spaces. A generator of E'-
valued distributions on E is a generator D of locally convex distructures on the category H
of open subsets U of E of the following form:
Its base Cat-sheaf Γ is the sheaf constant on the monoid A*; the unique fiber of D(U) is
the lcs C(U) of continuous maps from E to E', with the compact-open topology; D(U)α is
the subspace of C(U) consisting of the functions f admitting a continuous α-derivative on
U, with the compact-open topology for f and all its derivatives up to α, and D(U)(α)(f) = ∂αf.

The underlying Lcs-presheaf C on H maps the insertion ι: U' → U on the

restriction map g |→ g/U' from C(U) to C(U').
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3.3. FINITE ORDER DISTRIBUTIONS
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The presheaf D' generated by the generator of E'-distributions D is the presheaf of
E'-distributions of finite order. Its fiber C'(U) at U is the lcs: C'(U) = αεA*C(U)/r, with r the
equivalence generated by: (αα', f) ~ (α', ∂αf) if f is in D(U)α.

Theorem. An element of C'(U) (or finite order distribution) is an equivalence class [α, g] for
the equivalence on A*×C(U): (α, g) ~ (α', g') iff there exist

β, β' in A* and g, g' such that αβ = α'β', g = ∂βf, g' = ∂β'f'  and  ∂αβ(g – g') = 0.

The topology on C'(U) is the final locally convex topology for the maps [α, -]: g |→ [α, g] from
C(U) to C'(U). The map [o, -] identifies C(U) to a vector subspace of C'(U).

[The proof uses that each continuous function is of the form ∂α f for some f in D(U) α.]



3.4. THE SHEAF OF DISTRIBUTIONS

e
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The sheaf D* associated to D' is the sheaf of E'-distributions on E. If U is the
union of (Ui)i an element of its fibre C*(U) is a family ([αi, gi])i drawn from C'(U) such that :
[αi, gi/Uij] = [αj, gj/Uij] on Uij = Ui∩Uj. And D*(U)(α) maps ([αi, gi]i) on ([ααi, gi])i.

If E is a finite dimensional space, the E'-distributions coincide with the Schwartz
E'-valued distributions (via the weak integral [α, g]φ = (-1)n∫g∂αφ if α has n terms.and φ is a
C∞ function from E to R with compact support).

U
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E
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4.1. INTERNAL SEMI-SHEAVES

6 PB: ap1 = bp2,, ap’1 = p°p’2,
ap"1 = bp'1p"2, p"2m1 = mp
mq1 = h1m1 m’, mq2 = h2m’,
Axioms: ak = ap2 and bk = bp1

p°k’ = bp’1m (action)
p'1mj = ip° and p'2mj = idS = k'j
p1p = p"1 and p2p = p'1p"2

p'1h1 = kp and p'2h1 = p'2p"2
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To define internal semi-sheaves, we construct the above sketch of the (equivalent
notion of) semi-action k': C*S → S of a category C on S; the distinguished cones are the 6
PB. A semi-sheaf internal to (K, M) on the category Cop internal to K is a model R of this
sketch in K mapping m in M; it defines an internal semi-action R(k') of C on S = R(S), and a
semi-fibration R(p'1m): C*S → C.

Theorem. If K admits pullbacks and cokernels stable by pullbacks, the Associated Presheaf
Theorem extends to this internal case.

The internal to K action associated to R is an action k" of C on the cokernel S' of an
adequate pair (R(m), n), with k" deduced from R(h1) via cokernels.
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p'1h1 = kp and p'2h1 = p'2p"2

p’1h2 = p"1m1 and p’2h2 = k’p"3
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4.2. CONTROL SYSTEMS
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A semi-action internal to (Top, open ins.) is called a nucleus of action; it defines a
continuous semi-fibration ρ: C*S → C. Paired with a continuous functor q: C → C' it becomes
a Control System (1963). A solution of this system is a continuous functor σ: C' → C*S which
is a section of qρ. Differentiable Control Systems are obtained by replacing Top by Diff. The
primitive example models the solutions of differential equations depending on a parameter.

The main results on Control Systems (1963-66) develop a categorical frame for
studying Cauchy boundary problems (with applications to Burmister's equation in elasticity),
and for obtainaing optimization theorems for solutions of a control system (possibly in terms
of distributions), which specify the dynamic programing method of Bellman

a' C'
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4.3. HIERARCHICAL EVOLUTIVE SYSTEMS

Time
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The Memory Evolutive Systems have been introduced (with J.-P. Vanbremeersch,
1986-2007) to model living systems. An Evolutive System is a semi-sheaf F of categories on
the category Timeop , where Time defines the order on a subset of R+. The fiber Ft on t
models the components of the system and their relations around t, and F(ti, tj) the change
from ti to tj. This 'transition' generally corresponds to a completion process (or
'complexification') to add and/or suppress particular limits and/or colimits.

A hierarchical category is a category whose objects are partitioned in a finite
number of levels so that an object of level n is the colimit of at least one functor toward the
sub-category whose objects are of level < n. Let HCat the category of hierarchical categories
with functors preserving the levels. A Hierarchical Evolutive System is a (HCat, Ins.)-semi-
sheaf on Timeop,



4.4. THE MODEL MENS FOR COGNITIVE SYSTEMS

The Memory Evolutive Systems modeling living systems are HES, with sub-
systems, the coregulators CRs and the Mem(ory), allowing for an internal regulation.

From the ES of neurons modelling the neural system of an animal,
successive complexifications lead to the model MENS (Memory Evolutive Neural
System) of a cognitive system (2001) in which a procedural and a semantic memory
Sem develop. We model the formation of an interconnected personal memory, the
archetypal core AC and the process by which it allows the formation of an internal
global landscape at the basis of conscious processes.
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Fore more details on MES,


