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In Saint-Valery (near Amiens) during
the 1st Conference on the Algebra of
Categories, Amiens 1973

IN 1973



CHANTILLY 1975

A collective photo taken during a
visit to Chantilly on the last day of
the 2nd Conference on the Algebra of
Categories, Amiens July 1975



"Mémoire" with Mersch on a paper of
Charles on completions. Thesis (1972)
directed by Lavendhomme on enriched
algebra, where he introduces the

SOME LANDMARKS

Prepares his "thèse de 3e cycle"
(1973) on internal monads in our
research team "TAC",
Assistant in Lille in 1973, Maître dealgebra, where he introduces the

notion of an indexed limit. He exposed
it in our Paris seminar in1972.
Assistant in Leuven (1970-73), Chargé
de cours, then Professor in Louvain-la-
Neuve, where he supervises twelve
theses. Dean from 1996 to 2001.
Main actor in the diffusion of category
research through the organization of
several meetings and invitations to
Louvain, his edition of books, and his
11 comprehensive books.

Assistant in Lille in 1973, Maître de
Conférences in Amiens from 1977 to
1994. In 1984 I untrust him with the
direction of "TAC".
"Doctorat d'Etat" in 1990 with Jean
Benabou, on his 4 main papers on
cohomology.
Professor in Calais since 1993. There
he creates the pure mathematics
laboratory. He has organized several
SIC meetings and, in June, the 2008
International Conference.

Both have multiple collaborations



EVOLUTIVE SYSTEMS

Transition
F F F F

The Memory Evolutive Systems have been introduced (with J.-P.
Vanbremeersch, 1986-2007) to model living systems. Here the idea is to apply the MES
philosophy to a MES, Math, describing the mathematical community with its individuals,
the groups they form, and their 'memory' (papers, books,...)

An Evolutive System (ES) is a semi-sheaf of categories over a category Time defining
the order on a finite or connected subset of R+, called its timescale. Thus it associates to
each t a category Ft and to t' > t a functor 'Transition' from a sub-category of Ft to Ft'

sending At on its 'new' state At' at t' if it exists, and so that: If At' is defined, then At has a
state At" for t" > t' if and only if At' admits At" as a state at t". A component of the system
(e.g. an individual) is modeled by the sequence (At) of its successive states.

Time



F(t2,t3)

Ft3

Ft2

HIERARCHICAL EVOLUTIVE SYSTEMS

F(t2,t3)

Time

A hierarchical category is a category whose objects are partitioned into a finite number
of levels so that an object of level n is the colimit of at least one diagram into the sub-
category whose objects are of level < n.

A Hierarchical Evolutive System (HES) is an ES in which the Ft are hierarchical and the
transitions preserve the levels. We say that Ft' is a complexification of Ft for a strategy S
if S defines a sketch on a surcategory of Ft and if the transition F(t, t') is the functor from
Ft to the prototype of this sketch (so that this transition has for effect to add/suppress the
limit or colimit of some distinguished cones).

In Math the individuals (level 0) are organized in small groups (e.g., research teams),
then departments, universities,..., Over time, some groups decline, others are formed.



MEMORY EVOLUTIVE SYSTEMS

A Memory Evolutive System is a HES with a net of sub-ES of various levels, the
Coregulators, which model specialized internal regulation organs, and a sub-HES, the
Memory, related to a learning process. A morphism of a MES has a 'propagation delay'
(additive) and a 'weight' (multiplicative) varying over time. Each CR has its own discrete
timescale defining its time-lag p, a threshold h and a differential access to a part of the
memory whose objects model its admissible 'strategies'.

In Math the CRs of increasing levels can be: an individual, a group of individuals
working together, specialized research centers, universities, The memory contains
books, varied archives,..



LANDSCAPE OF A CR

A step of a CR from t to t' has 3 phases: 1. Formation of its actual landscape Lt whose
objects (or perspectives) are components of the subcategory of the comma category
Ft↓CR formed of morphisms with a propagation delay <p and a weight >h. 2. Selection
of an admissible strategy S on Lt. 3. Carrying out of S modelled by the complexification
L' of Lt for S. At the next step, comparison of L' with the new Lt'.
At a given time, there is an 'interplay' among the commands of the strategies of the
various CRs, and the operative strategy carried out on the system is its result. It may
cause a fracture to the CRs whose strategies cannot be achieved.

For a research team, the landscape gathers the information received by its members,
the strategies correspond to collective tasks (e.g. planifying a conference), the
effectuation to carry them out (its organisation) there is a fracture if it is not possible,
(no enough funding).



CATEGORIES IN FRANCE

1945 1950 1957 1960 1965 1970 1975 1979

Grothendieck

Accepted for homological algebra, algebraic
topology and geometry (Seminars, Courses)

Diffusion Opposition

Cat(Top), Cat(Diff)
CHARLES' CATEGORICAL ES

FRENCH'S CATEGORICAL ES

WAR

Up to the late 50's categories were ignored by most mathematicians (e.g., Choquet).
At the same time, fierce opposition to probabllity theory and logic.
Charles used groupoids in the late 40's, but general categories only from 1957 on, first
motivated by differential geometry and the definition of mathematical structures, e.g.
local structures, then for their themselves. Our research team TAC (Paris-Amiens)
was officially recognized in 1968, and more and more opposed in the seventies.

1945 1950 1957 1963 1968 1970 1975 1979

GD, jets Local Cat. and actions
Type functors

Fibred spaces
Pseudogroups

Completions
Sketches

Sketched structures

n-fold categories

Groupoids
Categories TAC

Local structures (concrete) internal cat.

Fractures



FRANCIS' EVOLUTIVE SYSTEM

Enriched theories

Completion

Semi-abelian cat.
Protomodular cat.

Internal actions

Sheaves:
ring, modules,
Banach modules

Localizations

Quantales:
sheaves,

C*-algebras

Localic topos

Morita equivalence

Enriched accessible
categories

Topological
semi-abelian

algebras

Enriched sketches:

Enriched sheaves

V-Localizations

Enriched algebra
Indexed limits

Proto-
localisations

1972 1980 1985 1995 20052000

sheaves,
C*-algebras

Azumaya cat.

Galois Theory



DOMINIQUE'S EVOLUTIVE SYSTEM

2-categories

Long cohomology
sequence

Internal
monads

Reductible
2-categories

Indexed limits:

Profunctors for
stack completion,

shape theory

Tower of n-Cat(E)

Tower of n-GrdE
CnA ≈ n-GrdA

nerve for n-GrdE

n-categorification
weak n-categories

Tower of N-n-GrdE

Fibration Pt(E):
Mal'cev cat.

Abelian groupoid

1973 1980 1985 1991 2005

Cohomology

Long cohomology
sequence

Lax limits

Indexed limits:
Action on them
Homotopy limits

Protomodular cat.
Action groupoid

Normal sub-objects

Mal'cev cat.
Semi-abelian cat.

2000



NON-ABELIAN COHOMOLOGY

1 ← E ← GrdE ← 2-GrdE ← ... ← n-GrdE ← (n+1)-GrdE ← ...

In 1964: Charles had generalized to a functor F: C → Grd the notion of crossed
homomorphism: it is a section of the associated fibration; He defines H0(C,F) and
H1(C,F) as the sets of components of the limit and of the lax limit of F.

1973. As an application of his theory of lax limits, DB extends this to H2: If C is a monoid
and F: C → Ab, then H2(C, F) = set of components of the 2-lax limit of F. It motivates him
to define internally n-categories and n-limits to obtain a similar result for Hn.

1986. Tower of exact fibrations, if E is a Barr exact category:

()

[X] [1]
1 ← E ← GrdE ← 2-GrdE ← ... ← n-GrdE ← (n+1)-GrdE ← ...

Theorem (generalizes Dold-Kan). If E is additive, the category
n-GrdE of internal n-groupoids in E is equivalent to the category
CnE of positive complexes of length n.
There are n different monoidal closed structures on n-GrdAb.

1989. Long cohomology sequence. It is obtained if E is Barr
exact and A an abelian group object in E, by defining the group
Hn(E, A) by induction : H0(E, A) = group of global elements of A,

Hn+1(E, A) = colimXHn([X], θ*(A*)),

the colimit being taken on all the X with global support θ: X → 1,
where [X] = fibre on X of ()n and A* the abelian group object in
[1] defined by A. If E is abelian, then Hn gives back Extn.

()n

X

A•θ*(A*)•
θ*

1θ

()n

n-GrdE

E
X0•

A •

(n+1)-GrdE
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FUNCTOR NERVE. CATEGORIFICATION

1987. The fibration of pointed objects p: PtE → E has for
objects the pairs (ei, si) of an epi ei of E and a splitting si, for
morphisms the commutative squares Q between them; and
p(Q) = f.

Theorem. If E is left exact, GrdE is monadic over PtE. Whence
an enriched comprehension scheme if E is Barr exact.

1998. Tower of normalized n-groupoids: By induction, an n-
groupoid Xn in E is normalized if Xn-1 = ()n-1(Xn) is normalized
and if t : X → 1 in the fibre [X ] splits. Then there is a tower fand if tn : Xn → 1 in the fibre [Xn-1] splits. Then there is a tower
of fibrations:

E ← PtE ← N-GrdE ← N-2-GrdE ← ... ← N-n-GrdE ← N-(n+1)-GrdE ← ...                                   

where N-(n+1)-GrdE is monadic over N-n-GrdE, the corresponding category of
algebras being (n+1)-GrdE.

2000. The functor Nerve connects the algebras of this tower with those of the tower of
split n-simplicial objects in E.

2005. With J. Penon, construction of the categorification of structures defined by
cartesian monads, through an iteration process. It is applied to construct weak n-
categories and compare the limit of the iteration with Leinster weak ∞-categories.



ENRICHED ALGEBRA

V is a symmetric monoidal closed category.

1972;1975 (+Kelly). Definition and study of various enriched notions. In 72, introduc-
tion of the indexed limit L of (F, G), where F: A→ V and G: A → B are V-functors:

Nat(F, B(B, G-)) ≈ B(B, L) for each B.

1996 (+ Quinteiro). If V is locally finitely presentable + Barr regular, there are bijections:

localizations of [Cop, V] universal closure operations on it

V-Grothendieck topologies J on C categories of V-enriched sheaves for J.

1998 (+Quinteiro, Rosicky). If V is locally finitely presentable, definition and study of
enriched accessible categories and enriched sketches; a 'Morita Theorem' is proved.

Theorem, If C is a V-category:

C is V-accessible C is V-sketchable.

The accessibility level can be defined by a class of colimits rather than a cardinal.

2002 (+Moens). Generalization of the theory of regular modules to V-categories without
units, with applications in algebra and analysis, e.g., to Hilbert-Schmidt operators.

2002 (+Vitale). Theory of Azumaya V-categories and of the V-Brauer group. It extends
the classical theory where V = ModR (R a commutative ring with unit) to the case of
topological, matrix or Banach modules and to their sheaves,



ALGEBRAIC THEORIES. SHEAVES

1991 +Pedicchio). Characterisation Theorem. The categories of separated objects for
a Lawvere-Tierney topology on a Grothendieck topos are the locally presentable locally

1983. Study of the localizations of the category Sh(H,T) of sheaves of T-
algebras on a locale H, if T is a finitary algebraic theory. Its 'formal initial
segments' form the open sets of a compact space, the pure spectrum of T.

Sheaf Representation Theorem. A T-algebra is isomorphic to the T-
algebra of global sections of a sheaf on the pure spectrum of T.

Applications are given to the theory of modules on a ring with unit and to
the theory of Gelfand rings and their representations..

a Lawvere-Tierney topology on a Grothendieck topos are the locally presentable locally
cartesian closed categories in which strong equivalence relations are effective.

1993 (+Cruciani, Berni-Canani), Quantales are multipicative lattices generalizing the
lattice of closed right ideals of a non-commutative C*-algebra. Sheaves over a quantale
Q are defined in 3 equivalent ways. Applications to C*-algebras are developed.

2005 (+Clementno). Theorem. If T is an algebraic theory such that SetT is semi-abelian,
then the category TopT of its topological models is homological.

2008 (+Clementino, Gran, Sousa, Mantovani). Definition of a protolocalisation of a
homological or semi-abelian category (the reflection preserving short exact sequences).
It is associated to a closure operator and a torsion theory. Extension to regular
categories. Examples in algebra and topos theory.



NON ADDITIVE (CO)HOMOLOGICAL ALGEBRA

In 1966, Charles tried to define a non-abelian cohomology by adapting the notion of
exact sequence, e.g. in Cat. Now the approach is to characterize non-additive
categories supporting (usual) exact sequences, homological lemmas and cohomology
as in Gp. A main candidate seems to be the protomodular categories introduced by DB.

1991. A category E is protomodular if it is left exact and if, in the fibration of pointed
objects p: PtE → E, each change of base reflects isomorphisms. Then an internal
category in E is a groupoid. Protomodularity is stable by slices and coslices. Many
examples, e.g. each fibre of the fibration ()0: GrdC → C of a left exact category C.

1996. p allows a comparison with other near-by notions: E is naturally Mal'cev iff p is1996. p allows a comparison with other near-by notions: E is naturally Mal'cev iff p is
additive; Mal'cev iff p is unital; essentially affine iff p is trivial, additive iff it has a 0 and p
is trivial; if it is semi-abelian, the changes of base are monadic. Whence:

semi-abelian essentially affine Naturally Mal'cev

homological protomodular Mal'cev

1999. Notions of normal subobject and abelian object in a protomodular
category.

2007. The joint book (opposite) and recent papers study these various kinds
of categories and their homological properties. Notions such as central
morphisms, action groupoids and abelian groupoids are analysed.


